

1 **Myeloid progenitor dysregulation fuels immunosuppressive macrophages in tumors**

2
3 Samarth Hegde^{1,2,7}, Bruno Giotti^{1,3,7}, Brian Y. Soong^{1,2,7}, Laszlo Halasz^{1,2,7}, Jessica Le Beriche^{1,2,7}, Assaf
4 Magen^{1,2,7}, Benoit Kloeckner⁸, Raphaël Mattiuz^{1,2,7}, Matthew D. Park^{1,2,7}, Adam Marks^{1,2,3,7}, Meriem
5 Belabed^{1,2,7}, Pauline Hamon^{1,2,7}, Theodore Chin^{1,2,7}, Leanna Troncoso^{1,2,7}, Juliana J. Lee⁹, Dughan
6 Ahimovic¹⁰, Michael Bale¹⁰, Grace Chung^{1,2,4}, Darwin D'souza^{1,2,4,7}, Krista Angeliadis^{1,2,4,7}, Travis
7 Dawson^{1,2,4,7}, Seunghee Kim-Schulze^{1,2,4,7}, Raja M. Flores^{5,6,7}, Andrew J. Kaufman^{5,6,7}, Florent Ginhoux⁸,
8 Steven Z. Josefowicz^{10,11}, Sai Ma^{1,3,7}, Alexander M. Tsankov^{1,3,7}, Thomas U. Marron^{1,2,3,5,6,7}, Brian D.
9 Brown^{1,2,3,7}, Miriam Merad^{1,2,4,7*}

10 **Affiliations:**

11 1 Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai

12 2 Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai

13 3 Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai

14 4 The Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai

15 5 Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai

16 6 Center for Thoracic Oncology, Icahn School of Medicine at Mount Sinai

17 7 The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA

18 8 Gustave Roussy Cancer Campus, Villejuif, France; Institut National de la Santé Et de la Recherche
19 Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France

20 9 Department of Immunology, Harvard Medical School, Boston, MA, USA

21 10 Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences

22 11 Laboratory of Epigenetics and Immunity, Department of Pathology and Laboratory Medicine, Weill
23 Cornell Medicine, Cornell University, New York, NY, USA

24 * corresponding author: Miriam Merad (miriam.merad@mssm.edu)

25 **Running title:** Stress-associated cytoprotective pathways sustain immunosuppressive macrophages in
26 cancer.

27 **ABSTRACT**

28 Monocyte-derived macrophages (mo-macs) drive immunosuppression in the tumor microenvironment
29 (TME) and tumor-enhanced myelopoiesis in the bone marrow (BM) fuels these populations. Here, we
30 performed paired transcriptome and chromatin analysis over the continuum of BM myeloid progenitors,
31 circulating monocytes, and tumor-infiltrating mo-macs in mice and in patients with lung cancer to identify
32 myeloid progenitor programs that fuel pro-tumorigenic mo-macs. Analyzing chromatin accessibility and
33 histone mark changes, we show that lung tumors prime accessibility for Nfe2l2 (NRF2) in BM myeloid
34 progenitors as a cytoprotective response to oxidative stress. NRF2 activity is sustained and increased
35 during monocyte differentiation into mo-macs in the lung TME to regulate oxidative stress, in turn
36 promoting metabolic adaptation, resistance to cell death, and contributing to immunosuppressive
37 phenotype. NRF2 genetic deletion and pharmacological inhibition significantly reduced mo-macs' survival
38 and immunosuppression in the TME, enabling NK and T cell therapeutic antitumor immunity and
39 synergizing with checkpoint blockade strategies. Altogether, our study identifies a targetable epigenetic
40 node of myeloid progenitor dysregulation that sustains immunoregulatory mo-macs in the TME.

45 **MAIN**

46 A major focus in cancer immunotherapy has been reprogramming monocyte–derived macrophages (mo-
47 macs) in the tumor microenvironment (TME) of solid tumors to reverse immunosuppression and unleash
48 T cell/NK cell responses¹. While this TME–centric approach has considerable merit, it fails to tackle the
49 ‘wellspring’ of bone marrow (BM) myeloid progenitors seeding monocytes and mo-macs in the TME via
50 tumor-driven myelopoiesis²⁻⁵. Demand-adapted myelopoietic mobilization during infection/trauma is
51 linked to transcriptomic changes in BM myeloid progenitors enabling their expansion and survival⁶⁻⁸, but
52 we have not yet deciphered the exact nature of epigenetic and metabolic changes that occur in myeloid
53 progenitors and mo-mac progeny during tumor-induced myelopoiesis. As our view of systemic tumor–
54 host crosstalk expands, it becomes important to understand if and how complex tumoral cues can ‘pre-
55 condition’ myeloid progenitors in BM by altering their chromatin states, priming gene programs of
56 immunoregulation and undermining anti-tumor responses. Understanding such regulation during chronic
57 tumor inflammation is key to therapeutically targeting the mo-mac replenishment cycle and developing
58 more durable myeloid-targeting therapies. Here, we sought to identify genetic and epigenetic changes
59 that prime myeloid progenitors in tumor-bearing hosts, probe their contribution to tumorigenic
60 immunoregulatory mo-mac plasticity in the TME, and harness this knowledge to redirect TME mo-mac
61 fate towards an anti-tumor phenotype.

62

63 **Pathogenic myelopoiesis in lung cancer associates with changes in the chromatin state of BM**
64 **myeloid progenitors.**

65 To initially characterize the impact of lung cancer growth on BM myelopoiesis, we profiled progenitors in
66 BM of naïve and *Kras*^{LSL-G12D/+}; *Trp53*^{fl/fl} (KP)^{9,10} tumor-bearing mice at early (day 7), middle (day 15), and
67 advanced (day 21+) timepoints using multiparametric flow cytometry. We observed a marked increase in
68 hematopoietic stem cells (HSC-LT), granulocytic-monocytic progenitors (GMP) and committed monocyte
69 progenitor (cMoP) by flow cytometry in BM of advanced tumor-bearing mice (**Fig. 1A**). In support of
70 myeloid-biased expansion, BM progenitors from late-stage tumor-bearing mice formed markedly more
71 granulocytic-monocytic colonies (CFU-GM) compared to erythroid colonies (BFU-E) and proliferated
72 more than their naïve counterparts (**Extended Data Fig. 1A**). In addition, we observed an increased
73 mobilization of Ly6C^{hi} monocytes and Ly6G^{hi} neutrophils in circulation tracking with increased tumor
74 burden (**Fig. 1B**). We also observed an expansion of GMP-derived CD157⁺ or CD177⁺ Ly6C^{hi} neutrophil-
75 like monocytes in the BM and peripheral blood of late-stage tumor-bearing mice (**Fig. 1C**). These GMP-
76 derived monocytes have been described to expand in emergency inflammatory conditions and engender
77 oxidative burst-associated degranulation gene programs^{11,12}.

78 Given this phenotypic shift during myeloid expansion in response to malignancy, we probed how
79 molecular programs are transcriptionally and epigenetically rewired in myeloid progenitors during tumor-
80 induced myelopoiesis. We directed our attention to monocytic lineage progenitors (GMP and cMoP) as
81 they are the main source of suppressive mo-macs in tumors^{13,14}. Experimentally, we utilized scRNA-seq
82 to interrogate myeloid progenitor lineages (Lineage^{neg} CD117^{hi} Sca1^{neg} CD34⁺ CD16/32⁺) sorted from the
83 BM of age-matched naïve and advanced-stage tumor-bearing mice. We could identify distinct
84 granulocytic lineage i.e. GP, pre-neutrophil, immature neutrophil, mature neutrophil¹⁵, and monocytic
85 lineage i.e. GMP, cMoP, Ly6C^{hi} monocyte, Ly6C^{low} monocyte¹⁶, delineated by established gene markers
86 (**Extended Data Fig 1B**). Importantly, differentially upregulated genes in tumor-associated GMPs and
87 cMoPs were associated with biological processes involving *response to reactive oxygen species (ROS)*,
88 *hypoxia response*, *regulation of apoptosis*, and *metabolic regulation of superoxide generation* (**Extended**
89 **Data Fig 1C**). When we analyzed public datasets of BM HSCs and myeloid progenitors isolated from
90 PyMT breast cancer-bearing mouse models^{17,18}, we found similar enrichment of genes involved in
91 *response to ROS*, *response to hypoxia*, and *integrated stress response/endoplasmic reticulum (ER)*
92 *stress response* (**Extended Data Fig. 1D**). We orthogonally found tumor-associated BM cMoPs and
93 Ly6C^{hi} monocytes to have higher gene signature scores for oxidative stress response and ER stress
94 response (**Fig. 1D**; gene list in **Supplementary Table 1**). Using flow cytometry, we confirmed that BM
95 GMPs and Ly6C^{hi} monocytes from tumor-bearing mice had increased cellular ROS burden, lipid
96 peroxidation, and mitochondrial oxidative stress (**Fig. 1E**). Thus, across three datasets spanning two
97 different models of cancer, we identified conserved pathways of response to ROS stress and apoptosis
98 regulation upregulated in tumor-associated BM myeloid progenitors.

99
100 We next focused on understanding the genomic changes influencing transcription factor (TF) occupancy
101 which drive downstream gene programs during tumor-induced myelopoiesis. To do so, we integrated the
102 scRNA-seq profile of myeloid cells with paired scATAC-seq data from the same experiment, which
103 facilitated an unprecedented granular look at co-regulated gene programs within each myeloid cell state
104 and correlation to chromatin accessibility profiles (**Extended Data Fig. 1E**). We could verify that
105 differentially accessible marker regions for GMPs were enriched in TF motifs such as *Gata2*, *Tal1*,
106 *Lyl1*^{19,20}, while cMoPs and monocytes had increased motif enrichment for well-established TFs such as,
107 *Irf4*, *Cebpb*²¹ and *Spib*²² (**Extended Data Fig. 1F**). Having established the transcriptional changes and
108 accessible chromatin regions for each BM myeloid cluster, we sought to identify TF motifs enriched in
109 differentially accessible regions of tumor-associated cell states. In line with our transcriptional results,
110 tumor-associated GMPs and cMoPs had increased motif accessibility for cytoprotective oxidative stress-
111 responsive TFs such as *Nfe2l2*, *Bach1*, *Fosl2*, *Atf3*, *Atf5*, *Nfil3*, *Stat3*, and *Xbp1*²³, AP-1 stress-response

112 factors *Jund*, *Fos*, and granulocytic fate regulators *Cebpd* and *Cebpa*^{15,16} (**Fig. 1F**), when compared to
113 naïve counterparts. These observations were further supported by our analysis of H3K4me3 CUT&RUN
114 data on tumor-associated BM GMPs and monocytes; here we observed H3K4me3 signal (denoting
115 poised and active promoter regions) was gained in tumor-associated GMPs and monocytes in genomic
116 regions associated with oxidative stress handling, detoxification, chromatin remodeling, and proliferation
117 (**Fig. 1G** and **Extended Data Fig. 1G**). On the other hand, we observed a distinct reduction of Type-I/III
118 interferon (IFN)-stimulated gene expression in tumor-associated BM cMoPs and pre-monocytes, implying
119 a dampened inflammatory state^{24,25} distal to the TME (**Fig. 1H**; gene list in **Supplementary Table 1**). We
120 found reduced chromatin accessibility for several IFN pathway TFs including *Irf3*, *Irf7*, *Irf5*, and *Stat2* in
121 tumor-associated GMPs and cMoPs (**Fig. 1I**), supporting our transcriptomic findings of IFN hypo-
122 sensitivity. These results collectively suggested that tumor-associated myelopoiesis drives poising and
123 potential activation of pathways in BM GMPs encompassing proliferation-induced ROS stress
124 response²⁶, mitochondrial and ER metabolic adaptations²⁷, and IFN hypo-responsiveness to prevent
125 chronic IFN-dependent exhaustion²⁸.

126

127 Subsequently, we quantified mobilized progenitor populations in the blood of patients with early-stage
128 NSCLC and found that CD34⁺CD38^{neg}CD90⁺CD49f⁺ HSCs, CD34⁺CD38^{neg}CD90^{neg}CD49f^{neg} multipotent
129 progenitors (MPPs), and CD34⁺CD38⁺ GMPs were much more abundant in peripheral blood from patients
130 with early-stage NSCLC when compared to healthy donors (**Fig. 1J**). Mirroring our murine transcriptional
131 findings, oxidative stress response gene signature scores were higher in CD14⁺ monocytes from
132 peripheral blood of patients with NSCLC when compared to healthy donors (**Fig. 1K**). We found the gene
133 programs differentially expressed in CD14⁺ monocytes from patients with NSCLC to be downstream of
134 TF regulators such as *NFE2L2*, *STAT3*, *PPARG*, and *SMAD4* (**Extended Data Fig. 1H**). Epigenetically,
135 the differentially accessible regions in CD14⁺ monocytes from patients with NSCLC were enriched for
136 genes associated with *metabolic processes, response to ROS and response to oxidative stress* (**Fig. 1L**)
137 downstream of TFs such as *NFE2L2* and *STAT3*. Thus, we found tumor-induced myelopoiesis to drive
138 stress-responsive transcriptomic and epigenetic changes in the mobilized monocytic lineage of patients
139 with NSCLC, recapitulating our findings from murine tumor models. Our data collectively demonstrate
140 that cancer-associated inflammation provokes demand-adapted mobilization of HSCs and multipotent
141 progenitors with myeloid skewing²⁹⁻³¹, and that this mobilization can impart genetic programs and imprint
142 epigenomic states of BM myeloid progenitors for oxidative stress response and IFN hypo-
143 responsiveness.

144

145

146 **Tumor myelopoiesis fuels mo-macs in TME with sustained cytoprotective stress response.**

147 We evaluated if such imprinting of stress-responsive genetic programs in BM myeloid progenitors upon
148 sensing tumor cues can influence the subsequent development of monocytic-macrophages (mo-macs)
149 in the TME. To do so, we traced the fate of transferred GMPs primed in tumor-bearing mice, and found
150 the CD64⁺MERTK⁺ mo-macs derived from tumor-primed GMPs to be more immunoregulatory in the TME,
151 characterized by increased presence of GPNMB⁺CD9⁺ TREM2^{hi} mo-macs^{32,33} expressing higher PD-L1,
152 increased Arg1⁺ mo-macs³⁴, and decreased CD86⁺MHCII⁺ immunostimulatory mo-macs (**Fig. 2A**). In
153 addition, we utilized an *ex vivo* model of tumor conditioning early in bone marrow-derived macrophage
154 (BMDM) differentiation and compared it to tumor exposure later in differentiation. The exposure to tumor
155 inflammatory cues early in the differentiation trajectory resulted in BMDMs with increased Arg1 and PDL1
156 expression, and decreased MHCII and CD86 (**Fig. 2B**). These results collectively implied that initial
157 exposure of myeloid progenitors to tumor cues impacted their ultimate trajectory in the TME; we therefore
158 proceeded to study the gene regulation of progeny monocytes and mo-macs in the TME in relation to
159 initial changes in BM progenitors.

160

161 We conducted paired scRNA-seq and scATAC-seq on myeloid-enriched immune cells isolated from naïve
162 and KP tumor-bearing lungs. Building on our previous work^{14,35}, we could identify discrete scRNA-seq
163 clusters of inflammatory Ly6C^{hi} monocytes, patrolling Ly6C^{low} monocytes, resident tissue alveolar
164 macrophages (AM), and major interstitial mo-mac subsets such as Arg1^{hi} mo-macs³⁴ and Trem2^{hi} mo-
165 macs³² (**Extended Data Fig. 2A**). Using gene-gene correlation^{36,37}, we identified a module of metabolic
166 genes implicated in anti-apoptotic cytoprotection, detoxification, glycolytic shift, and regulation of
167 oxidative stress (e.g.- *Aldoa*, *Ldha*, *Pgk1*, *Sgk1*, *Pfkp*, *Ptafr*, *Got1*, *Tgm2*, *Bcl2a1b*, *Slc7a11*, *Prdx1*,
168 *Txnrd1*, *Hmox1*, *Vegfa*, *Socs3*) that was specifically enriched in tumor-infiltrating immunoregulatory Arg1^{hi}
169 mo-macs and Trem2^{hi} mo-macs (**Extended Data Fig. 2B**, gene list in **Supplementary Table 2**).
170 Background-corrected gene set enrichment analyses indicated this co-regulated gene module was
171 regulated by TFs such as *STAT3*, *NFE2L2*, *HIF1A*, *KLF4*, *SPI1*, *CEBPB*; reminiscent of our findings in
172 BM progenitors (**Extended Data Fig. 2B**). In the scATAC-seq data, we captured a similar diversity of
173 tumor-infiltrating myeloid cells through independent clustering of chromatin accessibility features
174 (**Extended Data Fig. 2C**) and verified their identity by visualizing known marker gene loci (**Extended**
175 **Data Fig. 2D**). Upon assessing TF motifs enriched in differentially accessible regions across clusters, we
176 could recapitulate cell-type specific enrichment of lineage-determining TF motifs, such as *Stat5*³⁸, *Pparg*³⁹
177 in AMs and *Nr4a1*⁴⁰ in patrolling Ly6C^{low} monocytes (**Fig. 2C**). Importantly, we found that TFs for oxidative
178 stress response such as *Nfe2l2*, *Fosl2*⁴¹, and *Bach1*⁴² were specifically enriched in tumor-dominant Arg1^{hi}
179 and Trem2^{hi} mo-macs compared to naïve tissue resident populations such as AMs (**Fig. 2B**). These

180 results, echoing our findings in BM myeloid progenitors, suggest that oxidative stress-induced
181 cytoprotective chromatin changes initiated in tumor-educated myeloid progenitors are maintained along
182 the monocytic lineage in tumoral mo-macs.

183

184 **Stress-induced cytoprotective response identified along monocytic lineage in patients with lung**
185 **cancer.**

186 To determine whether the stress-associated chromatin changes observed across the monocytic lineage
187 of tumor-bearing animals was also induced in patients with cancer, we profiled paired single-cell
188 chromatin accessibility and gene expression of all immune cells in human NSCLC primary lung tumors
189 and adjacent lung tissue⁴³. The resultant dataset spans 14 patients with NSCLC (metadata in
190 **Supplementary Table 3**) and builds prior work from our group encompassing 35 patients with NSCLC⁴⁴.
191 Based on marker gene-based filtering in our 10x Multiome dataset of 5 patients, we isolated 4,177
192 myeloid cells and classified them according to their nuclear RNA-seq profiles and by weighted gene
193 correlation network analysis (**Extended Data Fig. 2E** and **2F**; gene list in **Supplementary Table 4**). We
194 could distinguish monocytes and transitional mo-mac states having recently infiltrative monocyte features
195 (mo-mac_transition) from regulatory SPP1^{hi} mo-macs and immunosuppressive TREM2^{hi} mo-macs
196 (**Extended Data Fig. 2F** bottom; gene module in **Supplementary Table 4**). We integrated the cellular
197 identity from Multiome-capture to 24,346 scATACseq-captured myeloid cells from 10 patients and
198 verified the fidelity of gene-activity score markers in these clusters (**Extended Data Fig. 2G**). In close
199 agreement with our mouse analyses, we observed motifs for cytoprotective TFs such as *NFE2L2*, *FOSL2*,
200 *JUN*, and *BACH1* to be enriched in marker peaks of tumor-infiltrating activated CD14 monocytes, mo-
201 mac_transition, and tumoral TREM2^{hi} mo-macs (**Fig. 2D**). Notably, SPP1^{hi} mo-macs had motif enrichment
202 for TGFβ–BMP related TFs such as *EGR1*, *SMAD5*, *ZBTB7A*, and *KLF6*^{45,46}.

203

204 Subsequently, we conducted a targeted analysis to identify candidate TF regulators of tumor-associated
205 myelopoiesis with sustained cell type-specific activity in TME monocytes and mo-macs. Encouragingly,
206 putative TF regulators in our mouse dataset included *Spi1/PU.1*, *Mafb*, and *Cebpb* important to mo-mac
207 differentiation and identity^{16,21}, as well as NF-κB/Rel family members *Nfkb1*, *Relb*, *Hivep3* and AP-1
208 family members *Jun/Fos* associated with early response to inflammation and growth factors⁴⁷ (**Extended**
209 **Data Fig. 2H**). Strikingly, we again observed the nexus of TFs known to regulate cytoprotective programs
210 in response to oxidative stress, principally *Nfe2l2*, *Bach1*, *Fosl2*, and small MAF members *Mafk*, *Mafg*.
211 Concurrent analyses in our human NSCLC dataset of TME monocytes and mo-macs indicated very
212 similar candidate regulators such as *NFKB1*, *REL*, *SPIB*, *CEBPB*, *CEBPA* but also oxidative stress- and
213 integrated stress-response regulators *NFE2L2*, *BACH1*, *MAFF*, *FOSL2*, *ATF4* (**Fig. 2E**). Pathways

enriched downstream of TF regulators across our mouse and human TME mo-macs included terms surrounding *Heme signaling*, *Cytoprotection by HMOX1*, *Response to ER Stress*, and *Mitochondrial Biogenesis* (Fig. 2F). Thus, independent analyses across mouse lung cancer and human NSCLC identified a broadly conserved bloc of candidate TFs involved in shaping the fate of monocytic cells infiltrating the lung TME, including TFs we previously observed in tumor-educated BM progenitors. We further prioritized the TFs based on correlation to gene expression in human tissue monocytes and mo-macs, identifying *NFKB1*, *REL*, *NFE2L2*, and *CEBPB* (Fig. 2G). Given extensive prior work on the role of NF- κ B/Rel and C/EBP pathway activation during myeloid cell differentiation in the TME⁴⁸⁻⁵⁰, we homed in on cytoprotective TF *NFE2L2* (NRF2).

223

224 **Stepwise increase in NRF2 signaling occurs along monocytic lineage in lung cancer.**

225 We were especially interested in NRF2 due to its role in driving antioxidant gene batteries, promoting
226 resistance to lipid-associated ferroptosis, and opposing NF- κ B pro-inflammatory cascades⁵¹⁻⁵⁸. Our data
227 so-far demonstrated that NRF2 was differentially accessible in tumor-associated BM myeloid progenitors,
228 suggesting priming of stress-responsive pathways prior to mo-mac differentiation in the TME. NRF2
229 binding has recently been shown to directly influence pro-inflammatory signals by suppressing type-I IFN
230 pathway genes and limit inflammasome activation⁵⁹⁻⁶³, which also aligns with our observations of IFN
231 hypo-responsiveness in tumor-educated BM myeloid progenitors (Fig. 1H). In the lung, we observed
232 relative TF motif deviation for NRF2 to be highest in immunoregulatory Arg1^{hi} and Trem2^{hi} mo-macs that
233 accumulate in late-stage tumors (Fig. 3A). We probed the paired single-cell transcriptomic data of tumor-
234 infiltrating myeloid cells and calculated an aggregate score for curated NRF2 downstream genes as a
235 readout of pathway activation⁶². We did not rely on *Nfe2l2* gene expression alone since NRF2 is regulated
236 post-transcriptionally and post-translationally⁶⁴. There was a stepwise increase in pathway activation with
237 differentiation into mo-macs, with Trem2^{hi} mo-macs having the highest NRF2 activation score⁶⁵ (Fig. 3A;
238 gene list in **Supplementary Table 1**). Similarly, in our human NSCLC data, *NFE2L2* TF motif deviation
239 was highest in immunosuppressive TREM2^{hi} mo-macs and recently infiltrated mo-mac_transition, with
240 concomitantly high NRF2 activation score indicating downstream gene activation (Fig. 3B). As part of
241 corroborating our findings, we calculated the per-patient NRF2 activation score for monocytes and
242 macrophage clusters in an independent scRNA-seq dataset⁴⁴ and found the NRF2 activation score to be
243 highest in tumor-associated TREM2^{hi} mo-macs (Fig. 3C). We additionally found the NRF2 activation
244 score to be higher in tumor-infiltrating CD14+ monocytes compared to circulating CD14+ monocytes from
245 the same patients (Fig. 3D), suggesting a sustained activation of the gene program upon infiltrating the
246 TME.

247

Given the persistent NRF2 pathway activation in TME mo-macs with known immunoregulatory function, we next explored when NRF2-linked gene programs are activated during GMP differentiation to monocytes and mo-macs. We analyzed a replicate scRNA- and scATAC-seq integrated dataset filtered on a continuum of monocytic lineages across tumor-associated BM, blood, and lung of late-stage KP tumor-bearing mice. We found *Nfe2l2* TF motif accessibility to again be highest in lung TME Arg1^{hi} and Trem2^{hi} mo-macs (**Extended Data Fig. 3A**). This is consistent with observations that persistent oxidative stress generated in the TME due to accumulation of cellular low-density oxidized lipoprotein can stimulate NRF2 protective pathways^{63,66,67}. To validate the activation of NRF2-associated programs *in vivo*, we assayed the levels of nuclear NRF2 and intracellular heme oxygenase i.e., HO-1 (encoded by *Hmox1*)⁶⁸ by flow cytometry in myeloid cells infiltrating KP lung tumors. Across two orthotopic models of NSCLC, we found that TREM2^{hi} mo-macs were the main myeloid population in tumors with stable nuclear NRF2 and intracellular HO-1 (**Extended Data Fig. 3B**).

Crucially, we observed tumor-educated BM GMPs and monocytes had increased NRF2 accessibility compared to naïve counterparts, but this was not matched by downstream gene program activation (**Fig. 3E**), implying poising of NRF2-associated gene loci in BM. We also identified a surge of IFN-response genes in tumor-infiltrating monocytes²⁴ with subsequent decrease in *Irf3/Irf7* accessibility and lower IFN-stimulated gene program in TME mo-macs (**Fig. 3F**); aligning with work demonstrating negative regulation of Type-I IFN response by NRF2 activation^{60,62}. To further interrogate the poised programs associated with NRF2 in BM progenitors, we assessed H3K4me3 signal in open chromatin regions containing the NRF2 binding motif and differentially increased in tumor-educated BM GMPs and monocytes. Here, we found enrichment of pathways involving *regulation of apoptosis*, *regulation of hemopoiesis*, *response to oxidative stress*, *response to hypoxia*, along with *regulation of immune system process* and *defense response* (genes such as *S100a8/9*, *Plaur*, *Inhba*, *Trem2*, *Spp1*, and *Il4ra*) (**Fig. 3G**). These data demonstrate TME macrophage-centric gene programs spanning immunoregulation, programmed cell death, and metabolism to be poised in BM progenitors under the control of NRF2, providing unparalleled insight into the mechanics of immunosuppressive ‘pre-conditioning’ in the BM.

276 NRF2 is a regulator of mo-mac survival and immunosuppressive function in murine and human tumors.

Given our observations of chromatin accessibility for NRF2 binding in BM progenitors with downstream gene activation in tissue mo-macs, we next evaluated whether early sensing of tumor-stress in myeloid progenitors matters for progeny mo-mac NRF2 activation in the TME. To do so, we injected sorted GMPs primed in naïve or KP tumor-bearing mouse BM into congenic hosts bearing late-stage KP tumors. We

282 found that tumor-primed GMPs, after prior exposure to oxidative stress in BM, develop into mo-macs with
283 increased NRF2 activity and HO-1 (**Fig. 3H**). Furthermore, in ex vivo BMDM culture models, we observed
284 that early exposure to tumor cues during macrophage differentiation resulted in differentiated BMDMs
285 with increased activation of NRF2 and expression of HO-1 (**Fig. 3I**). These results collectively suggested
286 that initial exposure of BM myeloid progenitors to tumor cues is the ‘first hit’ that primes NRF2-associated
287 oxidative stress pathways and is linked to a more immunoregulatory fate in the TME.

288

289 Subsequently, we interrogated the necessity of NRF2 activation for our observed immunoregulatory
290 phenotype in the TME. We cultured BMDMs from NRF2 constitutive knockout mice (referred to as
291 *Nfe2l2*^{TKO}) or WT counterparts and exposed them to tumor conditioning to mimic TME polarization.
292 Remarkably, the absence of NRF2 resulted in tumor-educated BMDMs undergoing increased cell death
293 due to increased sensitivity towards lipid peroxidation-linked ferroptosis (**Fig. 3J**). The viable cells from
294 tumor-educated *Nfe2l2*^{TKO} BMDMs had reduced expression of HO-1 and immunoregulatory markers
295 Arg1 and PD-L1 with increased expression of costimulatory markers MHCII, CD86, and CD40
296 (**Extended Data Fig. 3C and 3D**). Orthogonally, we exposed BMDMs during tumor conditioning to
297 ML385, a validated inhibitor of Nfe2l2-Mafg DNA binding and transcriptional activity⁶⁹ or OB24, a non-
298 competitive inhibitor of HO-1⁷⁰. Addition of ML385 or OB24 in an acute setting resulted in a reduction of
299 HO-1 level as expected, but also caused a phenotypic shift with reduction in Arg1 as well as increased
300 expression of CD86 and MHCII (**Extended Data Fig. 3E**). Importantly, we observed that tumor-educated
301 *Nfe2l2*^{TKO} BMDMs had significantly increased ROS burden, lipid peroxidation, and mitochondrial stress
302 (**Fig. 3K**), underlying the increased susceptibility to ferroptosis. These results indicated that NRF2
303 activation functionally drives cytoprotective resistance to ferroptosis and controls immunosuppressive
304 genes in TME mo-macs.

305

306 **NRF2 signaling in myeloid lineage sustains myelopoiesis and promotes immunosuppression in 307 the TME.**

308 Considering the important role played by NRF2 in mo-mac survival pathways as well as
309 immunoregulation, we interrogated how loss of NRF2 functionally impacts myelopoiesis and the
310 intratumoral fate of mo-macs. To do so, we generated conditional knockout mice wherein NRF2 is floxed
311 out by Cre recombinase under the *Ms4a3* promoter (hereby referred to as *Nfe2l2*^{ΔMs4a3}) restricted to
312 granulocytic-monocytic precursors⁷¹. To ascertain the cell-intrinsic effects of NRF2 loss on myeloid
313 differentiation under acute tumor cues, we adoptively transferred GMPs from CD45.2 *Nfe2l2*^{ΔMs4a3} or
314 *Nfe2l2*^{fl/fl} control BM into congenic CD45.1 hosts bearing KP tumors. While there was no discernable
315 difference in the number of donor-derived monocytes and mo-macs in the lung TME (**Extended Data**

316 **Fig. 3F**), we observed GMPs from *Nfe2l2*^{ΔMs4a3} mice differentiated into more immunostimulatory
317 CD86⁺MHCII⁺ mo-macs and strikingly fewer TREM2^{hi} mo-macs in the lung TME (**Fig. 3L**), with the
318 TREM2^{hi} mo-macs having decreased PDL1 expression.

319

320 Subsequently, we implanted KP lung tumors orthotopically in *Nfe2l2*^{ΔMs4a3} or *Nfe2l2*^{fl/fl} mice. The lack of
321 myeloid NRF2 resulted in a significant reduction in tumor burden associated with greater overall survival
322 (**Fig. 4A** and **Extended Data Fig. 4A**). Similar results were obtained in the LLC1 aggressive lung cancer
323 model (**Extended Data Fig. 4B**) and the B16-F10 model of lung metastases (**Extended Data Fig. 4C**).
324 Assessing the levels of nuclear NRF2 and expressed HO-1, we could confirm that mo-macs in KP lung
325 tumors of *Nfe2l2*^{ΔMs4a3} mice had attenuated NRF2 signaling (**Fig. 4B** and **Extended Data Fig. 4D**). We
326 also generated transgenic mice wherein Kelch-like ECH-associated protein 1 (KEAP1) locus was floxed
327 under Ms4a3Cre resulting in GMP-restricted loss of KEAP1, denoted *Keap1*^{ΔMs4a3}. KEAP1 is a
328 component of the Cullin 3 (CUL3)-based E3 ubiquitin ligase complex controlling the stability of NRF2⁷²,
329 and deleting KEAP1 in myeloid lineage leads to sustained NRF2 activity. Lung tumors were significantly
330 larger in *Keap1*^{ΔMs4a3} mice when compared to negative littermates (**Extended Data Fig. 4E**), supporting
331 our findings in the *Nfe2l2*^{ΔMs4a3} experiments. These data collectively suggest that sustained NRF2
332 signaling in monocytic-lineage cells is crucial for blunting anti-tumor immunity. Reduced tumor burden in
333 *Nfe2l2*^{ΔMs4a3} mice was associated with a stark reduction in number of TREM2^{hi} mo-macs in the TME and
334 a compensatory increase in CD86⁺MHCII⁺ antigen presentation proficient mo-macs (**Fig. 4C**). Within
335 TREM2^{hi} mo-macs of *Nfe2l2*^{ΔMs4a3} mice, we observed a notably reduced expression of inhibitory PD-L1
336 (**Fig. 4D**). Reassuringly, the mo-mac phenotype in *Keap1*^{ΔMs4a3} mice was consistent with a tumor-
337 promoting role, with more abundant TREM2^{hi} mo-macs in the TME expressing PD-L1 (**Extended Fig.**
338 **4F** and **4G**).

339

340 While these observations underscore the clear impact of NRF2 signaling in driving mo-mac fate in the
341 TME, they do not reveal the full extent to which NRF2 poising impacts myelopoiesis. To disentangle local
342 reprogramming in the TME from replenishment due to pathogenic myelopoiesis, we created mixed-BM
343 chimeras with 1:1 reconstitution of CD45.2 *Nfe2l2*^{ΔMs4a3} and age-matched NRF2-proficient CD45.1
344 *Nfe2l2*^{WT} mice. This system enabled us to implant KP tumors and study the cell-intrinsic impact of NRF2
345 loss independent of tumor burden differences. The tumor burden in chimera mice was higher than control
346 mice which received only CD45.2 *Nfe2l2*^{ΔMs4a3} BM (**Fig. 4E**). Tumoral TREM2^{hi} mo-macs of *Nfe2l2*^{ΔMs4a3}
347 origin were less abundant in the chimera TME and had lower immunosuppressive PD-L1 while
348 CD86⁺MHCII⁺ mo-macs were increased (**Fig. 4F**). Importantly, there was decreased mobilization of
349 *Nfe2l2*^{ΔMs4a3} mouse-derived CD34⁺CD16/32⁺ myeloid progenitors in BM and CD157⁺ GMP-origin Ly6C^{hi}

350 monocytes in peripheral blood (**Fig. 4G**), suggesting a tumor burden-independent impact of NRF2
351 signaling on myelopoiesis at the medullary site.

352

353 Additionally, we determined the temporal importance of ablating NRF2 signaling in myeloid precursors
354 prior to or after tumor exposure— by utilizing the tamoxifen-inducible Ms4a3CreERT2 strategy⁷¹ to
355 generate *Nfe2l2*^{ΔMs4a3CreERT2} mice. Tamoxifen administration at the time of KP tumor implantation (i.e.
356 early) in *Nfe2l2*^{ΔMs4a3CreERT2} mice resulted in a significant reduction in tumor burden when compared to
357 tamoxifen administration at later stages of progression (**Fig. 4H**). In *Nfe2l2*^{ΔMs4a3CreERT2} mice with NRF2
358 signaling attenuated early, TME mo-macs had lower activation of nuclear NRF2 (**Fig. 4I**), were more
359 immunostimulatory (**Fig. 4J**), and had reduced PD-L1 expression (**Fig. 4K**). Early attenuation of NRF2
360 signaling in *Nfe2l2*^{ΔMs4a3CreERT2} mice i.e., prior to tumor-induced myelopoiesis, was associated with a
361 decrease in BM GMPs, cMoPs, and Ly6C^{hi} monocytes (**Fig. 4L**) with reduced mobilization of CD157⁺
362 Ly6C^{hi} monocytes into circulation (**Fig. 4M**). In line with our hypotheses, we found tumor-primed BM
363 GMPs with continuous attenuation of NRF2 signaling had lower lipid peroxidation and mitochondrial
364 oxidative stress (**Fig. 4N**).

365

366 Functionally, changes in the myeloid compartment upon myeloid knockout of NRF2 signaling were
367 associated with significant infiltration of NK cells into lung tumors (**Fig. 4O**). NK cells in the lung tumors
368 of *Nfe2l2*^{ΔMs4a3} mice had increased CD69 and NKG2D with increased IFN γ secretory capacity, indicating
369 activated tumoricidal qualities (**Fig. 4P**). CD8⁺ T cells were also more abundant in the tumors of
370 *Nfe2l2*^{ΔMs4a3} mice (**Fig. 4Q**), exhibiting an activated effector phenotype characterized by reduced
371 exhaustion marker LAG3, increased CD69, and production of IFN γ and TNF α (**Fig. 4R**). Antibody-based
372 depletion of NK cells in tumor-bearing *Nfe2l2*^{ΔMs4a3} mice resulted in an increased tumor burden,
373 highlighting the mode of mo-mac immunosuppression to be dependent on NK-cell exclusion (**Extended**
374 **Data Fig. 4H**). In conclusion, the loss of NRF2 in monocytic-lineage cells resulted in profound changes
375 in the TME, reducing the influx of mo-macs with immunosuppressive phenotype and shifting the balance
376 towards functionally anti-tumor effector cells. Overall, these data suggest that sustained monocytic
377 survival and mo-mac residency in the lung TME driven by activation of NRF2 downstream signaling
378 curtails NK cell-driven tumor surveillance and control^{33,73,74}.

379

380 **Targeting myeloid NRF2 pathway shifts intratumoral macrophage distribution and enhances**
381 **immunotherapy responses.**

382 Given the impact of NRF2 activation on mo-mac immunosuppressive fate curtailing anti-tumor NK cell
383 immunity, we were interested to study if and how myeloid-intrinsic NRF2 pathways influences

384 immunotherapy response. Spurred by our on *in vivo* results around genetic knockout of *Nfe2l2* in myeloid
385 cells, we tested pharmacological inhibition of the NRF2 pathway in a treatment setting. After challenging
386 mice with KP tumors, we administered the quassinoid agent Brusatol⁷⁵ with or without anti-PD1
387 checkpoint therapy starting at day 9 post-implant. Tissue profiling at 12 days post-treatment suggested
388 robust anti-tumor response and control of tumor burden associated with combination targeting of NRF2
389 signaling and checkpoint blockade (**Fig. 4S**). We observed that Brusatol and anti-PD1 combination
390 treatment was safe and had a distinct survival advantage beyond the benefit derived from anti-PD1
391 monotherapy (**Fig. 4T**). We observed a clear decrease in the abundance of mo-macs (**Extended Data**
392 **Fig. 4I**) along with a significant decrease in frequency of PDL1⁺ TREM2^{hi} mo-macs and concomitant
393 increase in CD86⁺MHCII⁺ mo-macs (**Extended Data Fig. 4J**). There was a substantial influx of NK cells
394 upon combination treatment, with increased expression of CD69 and tumoricidal IFN γ (**Extended Data**
395 **Fig. 4K and 4L**). Simultaneously, there was increased infiltration of CD8⁺ T in combination-treated tumors,
396 with the CD8⁺ T cells lacking exhaustion marks PD1 and LAG3, while producing IFN γ and TNF α
397 (**Extended Data Fig. 4M and 4N**). Overall, we demonstrate the substantial impact of targeting NRF2
398 signaling on tumor-induced myelopoiesis and mo-mac fate in the TME. Such a myeloid-directed
399 therapeutic strategy results in an unleashing of NK cell and CD8⁺ T cell activity to drive effective anti-
400 tumor immune responses in the lung.

401

402

403 DISCUSSION

404 Given that tumor-associated mo-macs associated with immunosuppression & poor prognosis are mostly
405 derived from BM myeloid progenitors, we posited that (1) enhanced myelopoiesis in tumor-bearing hosts
406 influences mo-mac dysfunction, and (2) targeting upstream processes that promote pathogenic
407 myelopoiesis and mo-mac persistence is more effective than merely targeting differentiated mo-macs in
408 the TME. Thus far, the exact contribution of epigenetic changes in BM HSCs and myeloid progenitors to
409 TME mo-mac programs and behavior have never been fully addressed. Leveraging chromatin and
410 transcriptional mapping of tumor-educated myeloid progenitors, monocytes, and tumor infiltrating mo-
411 macs, our work identifies a pivotal point of epigenetic alteration that is initiated in myeloid progenitors and
412 increases along myeloid lineage to promote mo-mac survival and dampen pro-inflammatory pathways in
413 the TME. Our research underscores the importance of identifying and targeting molecular ‘hits’
414 associated with tumor myelopoiesis in myeloid progenitors. NRF2 activity poising is a consequential
415 important first hit in the BM that is further solidified within the TME (**Extended Data Fig. 4O**).
416

417 Our findings in BM myeloid progenitors are indicative of hormetic oxidative stress during steady-state
418 hematopoiesis becoming dysfunctional during chronic inflammation and malignancy^{76,77}. We hypothesize
419 that in tumor-bearing hosts, emergency myeloid-biased expansion at the expense of self-maintenance
420 results in a maladaptive progenitor state wherein progeny cells withstand increased stress on
421 mitochondrial and ER protein machinery via activation of NRF2 and associated pathways⁷⁸. We find
422 NRF2 downstream gene programs to become progressively activated in tumor-infiltrating mo-macs,
423 providing these cells with pro-survival cues and detoxification machinery in the lipid-laden and hypoxic
424 TME. Moreover, our observations of cytoprotective pathway priming could help explain how mo-macs
425 persist during chemo-radiation therapies that elicit tumor cell death and peroxidative stress^{79,80}, and how
426 'reactive' myelopoiesis could contribute to treatment resistance and disease recurrence⁸¹. Our findings
427 align with work that demonstrates similar stress-induced metabolic adaptations in tumor-associated
428 neutrophils via the enzyme Acod1⁸², as well as mechanisms described for deterministic reprogramming
429 of neutrophils in hypoxia-stressed TME to adopt pro-angiogenic function⁸³. It is thus likely that oxidative
430 stress-based cytoprotection against ferroptosis is a conserved mechanism that maintains TME-infiltrative
431 GMP-derived monocytes and neutrophils. Our study illuminates a unified mechanism by which multiple
432 myeloid cell states, supported by untimely mobilization of immature myeloid progenitors, engender
433 immunosuppressive activity in the TME^{84,85}. Importantly, our data extends this paradigm, positing that
434 stress-induced maladaptation of NRF2 signaling is initiated early in tumor-educated BM myeloid
435 progenitors and solidified further along the monocyte and mo-mac lineages in the TME. Future studies
436 will help establish the cell-intrinsic and -extrinsic metabolic implications of such pro-survival pathways in
437 persistent TME mo-macs. Our work also insinuates establishment of epigenetic memory in HSCs^{86,87} and
438 myeloid progenitors driven by tumor inflammation. Assessing the heritability of chromatin changes
439 wrought by distal tumor cues in mobilized progenitors can provide us with important biomarkers in blood
440 PBMCs for tumor detection, monitoring, and patient stratification.

441

442 Notably, our data highlights the feasibility of targeting oxidative stress regulators such as NRF2 in
443 influencing monocyte fate and restoring mo-mac immunogenicity. Targeting NRF2 signaling in myeloid
444 progenitors and TME myeloid cells can complement cytotoxic therapies targeting the NRF2/ KEAP1 axis
445 vulnerability in lung cancers. Indeed, NRF2 hyperactivation is the third most frequent genomic event in
446 LUAD, primarily occurring via KEAP1 and ubiquitin ligase CUL3 loss-of-function mutation^{64,88}. Targeting
447 upstream regulators of cytoprotective and anti-inflammatory genes, such as in our study, can arguably
448 have more wide-ranging and durable impact than targeting genes such as HO-1⁶⁸, by altering the
449 trajectory of monocytic differentiation in the TME to facilitate differentiation into immunostimulatory mo-
450 macs. Therapeutic modalities including TF-targeted protein degrader PROTACs⁸⁹ can accelerate such

endeavors. It is important to note that NRF2 is part of a constellation of cytoprotective stress response regulators including FOSL2, BACH1, ATF4, NFIL3, and DDIT3/CHOP^{56,90-92}, which were also identified in our analyses and likely impinge on metabolic adaptations via PKR-like ER kinase (PERK) activation^{93,94}. Future studies can help decipher how these TFs interplay with each other and NRF2 in poising cytoprotective and immunoregulatory gene loci in myeloid progenitors to orchestrate distinct TME mo-mac phenotypes.

457

458 ACKNOWLEDGEMENTS

459 M.M. was supported by National Institutes of Health (NIH) grants CA257195, CA254104 and CA154947.
460 S.H. was supported by the National Cancer Institute (NCI) fellowship K00CA223043. B.Y.S. was
461 supported by NIH Medical Scientist Training grant T32GM146636. R.M. was supported by the AACR-
462 AstraZeneca Immuno-oncology fellowship 21-40-12-MATT. We thank the patients and their families for
463 participating in the clinical study. This work was supported by grant R24-072073 to the Immunological
464 Genome Project (ImmGen) consortium. We thank members of the Merad laboratory and Brown
465 laboratory at the Marc and Jennifer Lipschultz Precision Immunology Institute at Mount Sinai for insightful
466 discussions and feedback. We would like to thank Emily Bernstein, Dan Hasson, and Dan Filipescu for
467 their technical advice and feedback. We acknowledge the Human Immune Monitoring Center, the Mount
468 Sinai Biorepository and Pathology Core, and the Mount Sinai Cytometry Core for extensive support and
469 resources. This work was supported in part through the computational resources and staff expertise
470 provided by the Bioinformatics for Next Generation Sequencing (BiNGS) Shared Resource Facility
471 funded by NCI P30 Cancer Center and NIH/NIAMS P30 Skin Biology Disease Resource-based Center
472 support grants. This work was also supported in part through the computational and data resources and
473 staff expertise provided by Scientific Computing and Data at the Icahn School of Medicine at Mount Sinai
474 and supported by the Clinical and Translational Science Awards (CTSA) grant UL1TR004419, and the
475 Office of Research Infrastructure award S10OD026880 and S10OD030463. The content is solely the
476 responsibility of the authors and does not necessarily represent the official views of the NIH.

477 AUTHOR CONTRIBUTIONS

478 Conceptualization: S.H. and M.M.

479 Methodology: S.H., B.G., A.Magen, S.M., A.M.T., and M.M.;

480 Investigation: S.H., J.L., R.M., M.D.P., A.Marks, M.Belabed, P.H., T.C., L.T., K.A., T.D., and G.C.

481 Computational investigation: S.H., B.G., B.Y.S., L.H., A.Magen, B.K., D.D., M.D.P., J.L.L., D.A., and
482 M.Bale

483 Writing – Original Draft: S.H.

484 Writing – Reviewing & Editing: S.H., B.Y.S., and M.M.

485 Resources: S.K-S., R.F., A.J.K., F.G., S.Z.J., S.M., A.M.T., T.U.M., B.D.B., and M.M.

486 Funding and Supervision: M.M.

487 **COMPETING INTERESTS**

488 M.M. serves on the scientific advisory board and hold stock from Compugen Inc., Dynavax Inc., Innate
489 Pharma Inc., Morphic Therapeutics, Asher Bio Inc., Dren Bio Inc., Nirogy Inc., Genenta Inc.,
490 Oncoresponse, Inc., and Owkin Inc. M.M. also serves on the *ad hoc* scientific advisory board of DBV
491 Technologies Inc. and Genentech Inc. and on the foundation advisory board of Breakthrough Cancer.
492 M.M. receives funding for contracted research from Genentech, Regeneron, and Boehringer Ingelheim.
493 T.U.M. has served on Advisory and/or Data Safety Monitoring Boards for Rockefeller University,
494 Regeneron Pharmaceuticals, Abbvie, Bristol-Meyers Squibb, Boehringer Ingelheim, Atara, AstraZeneca,
495 Genentech, Celldex, Chimeric, Glenmark, Simcere, Surface, G1 Therapeutics, NGMbio, DBV
496 Technologies, Arcus, and Astellas, and receives contracted grants from Regeneron, Bristol-Myers
497 Squibb, Merck, and Boehringer Ingelheim. The above interests are not directly relevant to this manuscript.
498 The remaining authors declare no competing interests relevant to this manuscript.

499

500 **FIGURE LEGENDS (with FIGURES)**

501

502

503 **SUPPLEMENTARY TABLES**

504 Supplementary Table 1: Mouse and Human gene signatures
505 Supplementary Table 2: Mouse gene module list – BM and Lung
506 Supplementary Table 3: Human cohort metadata
507 Supplementary Table 4: Human gene module list – Lung
508 Supplementary Table 5: Antibodies list for Mouse and Human flow cytometry
509 Supplementary Table 6: Accession code for public datasets

510 **MATERIALS & CORRESPONDENCE**

511 Further information and requests for reagents should be directed to the corresponding author, Miriam
512 Merad (miriam.merad@mssm.edu)

513

514 **METHODS**

515 **Mice**

516 C57BL/6 mice were obtained from Charles River Laboratories (Wilmington, MA) or Jackson Laboratory
517 (Bar Harbor, ME). Ms4a3^{Cre} mice were a gift from Florent Ginhoux, and subsequently purchased from
518 Jackson laboratory (C57BL/6J-Ms4a3em2(cre)Fgnx/J RRID:IMSR_JAX:036382), and Ms4a3^{CreERT2} mice
519 were received from Florent Ginhoux. Nfe2l2^{f/f} floxed mice were purchased from Jackson laboratory
520 (C57BL/6-Nfe2l2tm1.1Sred/SbisJ RRID:IMSR_JAX:025433). NRF2 constitutive KO mice were
521 purchased from Jackson laboratory (B6.129X1-Nfe2l2tm1Ywk/J RRID:IMSR_JAX:017009). Keap1^{f/f}
522 floxed mice were purchased from Jackson laboratory (B6(Cg)-Keap1tm1.1Sbis/J
523 RRID:IMSR_JAX:037075). Tumor implantations and other experiments were conducted in mice between
524 10–14 weeks of age. Both male and female mice were used, and we observed no significant differences
525 between sexes in any experiment. Where applicable, littermate controls were used to minimize variation
526 between mouse strains. Mice were housed in individually ventilated cages at the Mount Sinai specific-
527 pathogen-free (SPF) facilities, provided food and water *ad libitum*, with conditions maintained at 21~23C
528 and 39~50% humidity and 12/12 hour dark/light cycle. All experiments were approved by, and in
529 compliance with the Institutional Animal Care and Use Committee of the Icahn School of Medicine at
530 Mount Sinai.

531

532 **Human Subjects**

533 Informed consent was obtained utilizing the Universal Consent for Mount Sinai Biorepository (Human
534 Subjects Electronic Research Applications 20-01197), in accordance with the protocol reviewed and
535 approved by the Institutional Review Board (IRB) at the Icahn School of Medicine at Mount Sinai
536 (ISMMS). Participants provided written consent to analysis of their blood and resected tissue. Samples
537 of tumor and non-involved lung were then obtained from surgical specimens of the participants
538 undergoing resection at the Mount Sinai Hospital (New York, NY) in collaboration with the Thoracic
539 Surgery Department, the Mount Sinai Biorepository and Department of Pathology. Analysis of the tumor
540 and non-involved lung samples were performed under IRB Human Subjects Electronic Research
541 Applications 10-00472A, in accordance with the protocol reviewed and approved by the IRB at ISMMS.

542

543

544 **Murine Tumor models**

545 Unlabeled or GFP-transduced *Kras*^{LSL-G12D/+}; *Trp53*^{fl/fl} (KP) and non-fluorescent *Kras*^{LSL-G12D/+}; *Trp53*^{fl/fl};
546 *Rosa26*^{A3Bi}; *Rag1*^{-/-} (KPAR) cells derived from previously reported and validated mouse models of NSCLC
547^{9,10} were used for tumor implantation models. KP lines were maintained at 37C in RPMI supplemented
548 with 10% v/v Fetal Bovine Serum (FBS) and 1% v/v Penicillin/Streptomycin (Pen/Strep), and KPAR lines
549 were maintained at 37C in DMEM supplemented with 10% Fetal Bovine Serum and 1% Pen/Strep. LLC1
550 carcinoma cells were a gift from Dr. Lucas Ferrari de Andrade at Mount Sinai. B16-F10 melanoma cells
551 were purchased from ATCC (CRL-6475) and maintained in 37C in DMEM with 10% Fetal Bovine Serum
552 and 1% Pen/Strep. All cell lines were screened every 6 months for mycoplasma contamination. Cells
553 were injected *in vivo* when in log-phase of growth and within 3-4 passages of thawing. Depending on the
554 experiment, 500,000 KP cells, 150,000 KPAR cells, 500,000 B16-F10, or 500,000 LLC1 cells were
555 injected intravenously (i.v.) through the tail vein. For survival studies, mice were sacrificed when they
556 exhibited >15% body weight loss or moribund status (labored breathing, hunched posture, cachexia)
557 according to predetermined humane endpoints. For profiling studies, mice were sacrificed at the
558 timepoints described in text. All experiments were approved and in compliance with the Institutional
559 Animal Care and Use Committee of the Icahn School of Medicine at Mount Sinai.
560

561 **In vivo treatments**

562 To deplete NK cells specifically *in vivo*, tumor-bearing mice were administered anti-NK1.1 depleting
563 antibody (BioXcell Clone PK136, Cat #BE0036) or appropriate IgG2a isotype control (BioXcell, Cat
564 #BE0085) at indicated time point and continued every other day. Similarly, mice were administered anti-
565 CD8a depleting antibody (BioXcell Clone 2.43, Cat #BE0061) or appropriate IgG2b isotype control
566 (BioXcell, Cat #BE0090) every other day. To assess pharmacological inhibition of NRF2 pathway *in vivo*,
567 tumor-bearing mice were given Brusatol (MedChemExpress Cat #HY-19543) orally, dissolved in 5%
568 DMSO and 95% corn oil. Mice were administered 100 ug of anti-PD-1 neutralizing antibody (BioXcell
569 Clone RMP1-14, Cat #BE0146) i.v. with or without 50 ug of Brusatol every other day starting at day 10
570 after tumor implantation.
571

572 **Tissue processing (Mouse)**

573 Mice were euthanized by CO2 inhalation and death confirmed by cervical dislocation. Mice were
574 subjected to transcardiac perfusion with cold PBS and relevant tissue extracted for downstream studies.
575 Mouse lung lobes were digested on a shaker in RPMI media containing 10% FBS, Collagenase IV
576 (Sigma) and DNase I (Sigma) for 30 minutes at 37C before being triturated through an 18G needle and
577 filtered through a 70 μ m mesh. Samples were subjected to RBC Lysis Buffer (BioLegend) for 2 mins at

578 RT and quenched with ice-cold FACS Buffer (phosphate-buffered saline supplemented with 1% bovine
579 serum albumin and 2mM EDTA) prior to downstream processes. Bone marrow was flushed with cold
580 FACS Buffer using a 27G needle from both long bones (femur and tibia) and filtered through a 70 μ m
581 mesh. Samples were subjected to RBC Lysis Buffer (BioLegend) for 2 mins at RT and quenched with
582 ice-cold FACS Buffer prior to downstream processes. For assays such as low-input RNA and ATAC seq,
583 marrow cells were enriched for Kit⁺ progenitors using the Mojosort Mouse Lin-neg enrichment kit
584 (BioLegend #480004). Blood was collected by cardiac puncture in EDTA-coated tubes and RBCs were
585 lysed in two successive cycles of 5 mins each, at RT in RBC Lysis Buffer (BioLegend). Samples were
586 quenched with FACS Buffer and kept cold for downstream processes. Where relevant, serum was
587 collected by coagulating blood in regular microcentrifuge tubes for 30 mins at RT prior to centrifugation
588 at 5000g for 15 mins at RT. Serum aliquots were made and stored at -80C until experiment.

589

590 **Histology**

591 Tumor-bearing lungs were analyzed at indicated timepoints as follows: the left lung lobe was fixed in 4%
592 paraformaldehyde at 4C, embedded in paraffin, and examined as 5 μ m cross-sections. Following
593 hematoxylin and eosin (H&E) staining, lung tissue sections were scanned on slides at 20X magnification
594 using a Leica Aperio AT2 digital scanner and quantified by manual annotation of blinded slides using the
595 Panoramic viewer and QuPath software v0.4⁹⁵.

596

597 **Ex vivo culture models**

598 Bone marrow-derived macrophages (BMDMs) were generated ex vivo using established protocols ³³.
599 Briefly, bone marrow was flushed using cold sterile PBS in sterile conditions (under laminar flow) and
600 RBC-lysed for 1 min at RT. Cells were plated in DMEM containing 10% v/v FBS and 10 ng/ml recombinant
601 M-CSF (Peprotech #315-02). Cells were plated at a concentration of ~150,000 cells per cm² on non-
602 treated Petri plates. At day 2, media was replenished 1:1 with fresh media containing 10 ng/ml M-CSF.
603 At day 4, media was replaced with fresh media containing 10 ng/ml M-CSF. At day 6, cells were gently
604 replated onto test plates using ice-cold PBS containing 5 mM EDTA. KP conditioned media (CM) was
605 added at 1:1 ratio with existing media at indicated timepoint. Based on the experimental timepoint, at day
606 7 or 8, BMDMs (verified 90~95% of culture condition based on F4/80 and CD11b expression) were gently
607 lifted off plates using ice-cold PBS containing 10 mM EDTA and subjected to downstream processes
608 (flow cytometry, sequencing). KP CM was obtained from sub-confluent tumor cells grown in DMEM
609 containing 10% v/v FBS, spun down to remove large cellular debris and frozen in aliquots at -20C until
610 usage. For experiments involving inhibitors of specific pathways, day 7 BMDMs were exposed to ML385

611 (MedChemExpress, Cat#HY-100523) or OB24 (MedChemExpress, Cat#HY-118487) at indicated
612 concentration and incubated for 18-24 hours prior to wash off.

613

614 **Methylcellulose and Liquid culture assays**

615 Total hematopoietic cells were extracted from indicated mouse BM by flushing one femur with PBS, red
616 blood cell lysed, and cells resuspended to a concentration of 300,000 cells per ml in IMDM (Cytivia)
617 containing 1% pen/strep and 2% FBS. A volume of 0.4 ml of the resultant cells was added to pre-aliquoted
618 4 ml MethoCult tubes (StemCell Cat#M3434 containing recombinant mouse (rm)SCF, rmIL3, rmIL6,
619 recombinant human (rh)EPO, rhInsulin and Transferrin). The mixture was vortexed and dispensed onto
620 35-mm culture dishes in triplicates following manufacturer's instructions. The dishes were incubated in a
621 humidified incubator at 37C, 5% CO2. Colonies were manually counted on day 8 on a gridded scoring
622 dish and averaged across 4 independent plates. Liquid cultures from indicated mouse BM were
623 generated as follows; 500 myeloid progenitors were sorted in triplicates into a 96-well non-TC coated
624 plate (Greiner) containing 150uL IMDM media containing 5% FBS, 1% pen/strep, 50 μ M beta-
625 mercaptoethanol + cytokines (25 ng/ml each of rmSCF, IL11, FLT3, and rhTPO and 10 ng/ml each of IL3,
626 GMCSF, and rhEPO). 160 ul of fresh media was replenished every 2 days, and cells were counted using
627 a Countess on day 4, day 6, and day 8 post sort.

628

629 **Tissue processing (Human)**

630 Human NSCLC lung tissues were rinsed in cold PBS, minced, and incubated on a shaker for 35 minutes
631 at 37C in RPMI media containing Collagenase IV at 0.25 mg/ml, Collagenase D at 200 U/ml and DNase-
632 I at 0.1 mg/ml (Sigma). Cell suspensions were then quenched in ice-cold FACS Buffer, triturated through
633 a 18G needle, and filtered through a 70 μ m mesh prior to RBC lysis for 2 mins at RT. Cell suspensions
634 were enriched for CD45 $^{+}$ cells by either bead selection (bound fraction from Stem Cell EasySep Human
635 CD45 Depletion Kit II) per kit instructions or FACS sorting on a BD FACSaria or Beckman CytoFlex SRT
636 sorter prior to processing for scRNA-seq, scATAC-seq or Multiome.

637 Human NSCLC blood was processed as follows— PBMCs were isolated by Ficoll gradient and underwent
638 RBC lysis for 5 mins at RT. Cell suspensions were enriched for all myeloid cells or CD34 $^{+}$ myeloid cells
639 by either bead selection (bound fraction from StemCell Technologies Custom negative selection Kit or
640 CD34 positive selection II Kit) or FACS sorting on a BD FACSaria or Beckman CytoFlex SRT sorter prior
641 to processing for scRNA-seq, scATAC-seq or Multiome.

642

643 **Flow cytometry and fluorescence-activated cell sorting (FACS)**

644 **Mouse Tissue:** Single cell suspensions from mouse Lung, Blood, and BM were resuspended at desired
645 cellular concentration in ice-cold FACS buffer and subjected to immunostaining in the following ways—
646 cells were first incubated with Fixable Blue Live/Dead Dye (Thermo Fisher Scientific) and CD16/CD32
647 (clone 93, Biolegend) for 15 mins on ice prior to surface staining. Cells were stained for surface markers
648 for 25 mins on ice (antibody details listed in **Supplementary Table 5**). Subsequently, cells were acquired
649 fresh on BD LSR Fortessa analyzer. Alternatively, cells were fixed using BD Cytofix kit (BD #554655)
650 following manufacturer's instructions and acquired on analyzer within 3 days of fixation. For experiments
651 assaying intracellular markers, cells were fixed using BD Cytofix/Cytoperm (BD Cat#554722) following
652 manufacturer's instructions and stained for intracellular antigens in Perm Buffer for 30 mins at 4C. For
653 cytokine staining, cells were first stimulated in 10 µg/ml Brefeldin A, 0.2 µg/ml Ionomycin and 0.5 µg/ml
654 PMA (Thermo Fisher Scientific) for 4 hours at 37C prior to intracellular staining. For experiments assaying
655 intranuclear transcription factors, cells were fixed and permeabilized using Ebioscience FOXP3 kit
656 (Thermo Fisher Scientific #00-5523-00) following manufacturer's instructions and stained for intracellular
657 antigens in Perm Buffer for 30 mins at 4C. (antibody details listed in **Supplementary Table 5**).
658 Subsequently, cells were acquired on BD LSR Fortessa analyzer within 3 days of fixation. For sequencing
659 purposes, cells were stained as above and sorted on BD FACS Aria sorter or Beckman CytoFlex SRT
660 sorter using DAPI or 7-AAD to exclude dead cells. Cells were sorted into pre-chilled FBS-coated
661 microcentrifuge tubes in 200 µl of PBS containing 0.5% BSA. To assay reactive oxygen species and lipid
662 peroxidation stress, cells were stained with CellROX (Invitrogen Cat#C10444) and LiperFluo (Dojindo,
663 Cat#L248) according to manufacturer's instructions. To assess mitochondrial function and membrane
664 polarity, cells were similarly incubated with MitoSOX (Invitrogen Cat#M36006) and TMRM (Invitrogen
665 Cat#T668) according to manufacturer's instructions and acquired live on BD LSR Fortessa analyzer
666 along with propidium iodide (PI). For experiments analyzing ferroptosis, cells were stained with Annexin
667 V for 15 mins at RT in 1x binding buffer (Thermo Fisher Scientific), and fresh propidium iodide (PI) prior
668 to acquisition live on the BD LSR Fortessa analyzer.

669 **Human Tissue:** Cells were first incubated with Fixable Blue Live/Dead Dye (Thermo Fisher Scientific) and
670 TruStain FcX (BioLegend) for 15 mins on ice prior to surface staining. Cells were stained for surface
671 markers for 25 mins on ice (antibody details listed in **Supplementary Table 5**). Subsequently for
672 sequencing studies, cells were sorted fresh on BD FACS Aria sorter or Beckman CytoFlex SRT sorter
673 using DAPI or 7-AAD to exclude dead cells. Cells were sorted into pre-chilled FBS-coated microcentrifuge
674 tubes in 200 µl of PBS containing 0.5% BSA.

675

676

677

678 **In vivo GMP transfer**

679 Bone marrow from indicated donor mice was flushed with cold FACS Buffer using a 27G needle from four
680 long bones (femur and tibia) and filtered through a 70 μ m mesh. Samples were subjected to RBC Lysis
681 Buffer (BioLegend) for 2 mins at RT and quenched with ice-cold FACS Buffer prior to downstream
682 processes. Marrow cells were enriched for Kit $^+$ progenitors using the Mojosort Mouse Lin-neg enrichment
683 kit (BioLegend #480004). GMPs were sorted into pre-chilled FBS-coated microcentrifuge tubes in 200 μ l
684 of PBS containing 0.5% BSA on the Beckman CytoFlex SRT sorter. Cells were spun down and
685 resuspended to concentration of 200K cells/mL in ice-cold PBS. Recipient CD45.1 mice received 100 μ l
686 i.v. retro-orbitally under anesthesia at indicated timepoints. Recipient mice were subsequently sacrificed
687 at day 21 and subjected to flow cytometric analysis.

688

689 **Mouse CUT&RUN**

690 Low cell input CUT&RUN technique was performed as follows: antibody-stained cell suspensions were
691 lightly fixed in 200 μ L of 0.1% formaldehyde (Sigma# 252549) at room temperature for 1 min and then
692 quenched in 10 μ L of 2.5M Glycine. 10,000 sorted cells in PBS were mixed with an equal volume of 2X
693 Nuclear Extraction (NE) buffer i.e. 40mM HEPES, 20mM KCl, 0.2% Triton X-100, 40% Glycerol, 2mM
694 DTT, 1mM Spermidine, 2X Roche Complete Protease Inhibitor (Millipore Sigma# 11873580001). 100X
695 of KDAC inhibitor cocktail (100 μ M TSA, 50mM sodium butyrate and 50mM nicotinamide in 70% DMSO)
696 was added to the sorted sample for a final concentration of 1X prior to cryopreservation at -80°C.
697 CUT&RUN was performed in collaboration with EpiCypher following a modified CUT&RUN protocol. In
698 brief, samples were thawed and diluted to 1E10⁵ cells/mL in 1X NE buffer. Then, a mixture of 10 μ L of
699 activated Concanavalin A (ConA) beads, 2 μ L of 1:50 SNAP-CUTANA™ K-MetStat Panel, and 0.5 μ g of
700 primary antibody [rabbit IgG (EpiCypher 13-0042; Lot 20335004-04), H3K4me3 (EpiCypher 13-0041; Lot
701 210760004-01)] was added to 1E10⁴ cells per reaction and incubated overnight. Next day, beads were
702 washed twice with 250 μ L Digitonin Buffer [20 mM pH 7.5 HEPES, 150 mM NaCl, 0.5mM Spermidine,
703 1X Roche Complete mini, 0.01% digitonin] before adding 5 μ L of CUTANA pAG-MNase in 50 μ L Digitonin
704 Buffer per reaction. Beads were washed twice in Digitonin Buffer and suspended in 50 μ L. 2mM CaCl₂
705 was then added to activate MNase and 33 μ L High-Salt Stop Buffer [750mM NaCl, 26.4mM EDTA,
706 5.28mM EGTA, 66 μ g/mL RNase A, 66 μ g/mL Glycogen] to stop the MNase activity after 2 hr incubation
707 at 4°C. 20 pg of CUTANA E. Coli spike-in DNA was added per sample, followed by a 10 min incubation
708 at 37°C to release the cleaved chromatin. CUT&RUN-enriched DNA were isolated by ConA beads,
709 cleaned up using Serapure beads, and libraries were prepared using a CUTANA CUT&RUN Library Prep
710 Kit (EpiCypher #14-1001). Libraries were pooled and sequenced on Illumina NovaSeq 6000 SP (150-
711 cycle, paired end).

712 **Single-cell RNA sequencing (scRNA-seq) assay**

713 For each sample, a target recovery of 8000 cells were loaded onto each lane of a 10X Chromium chip
714 according to manufacturer's instructions. Libraries were prepared according to manufacturer's
715 instructions. All libraries were quantified via Agilent 2100 hsDNA Bioanalyzer and KAPA library
716 quantification kit (Roche, Cat. #0797014001). Libraries were sequenced at a targeted depth of 25,000
717 reads per cell using the NovaSeq 6000 S2 100 cycle kit (Illumina).

718

719 **Single-cell ATAC sequencing (scATAC-seq) and Multiome**

720 For scATAC-seq preparation, cells were subjected to nuclei isolation following 10x Genomics
721 manufacturer's protocol with minor adjustments. In case of low-input samples (with <100,000 cells), we
722 utilized 0.2 ml PCR tubes and centrifuged at 4C using swinging rotor buckets to maximize nuclear
723 recovery. For human NSCLC sample multiome assays, cells were subjected to nuclei isolation following
724 10x Genomics manufacturer's protocol in the presence of RNase inhibitor (Sigma) and DTT (Sigma) to
725 prevent RNA degradation. Viability of these nuclei was assessed using Acridine Orange/Propidium Iodide
726 viability staining reagent (Nexcelom), and all samples post-nuclei isolation demonstrated viability at or
727 below 1%. A target recovery number of 8000~10000 nuclei were loaded onto each lane of a 10X
728 Chromium chip according to manufacturer's instructions. Barcoded DNA was extracted from the GEMs
729 post-cleanup and amplified with 10x-specific sample indexing following the manufacturer's protocols.
730 Libraries were quantified using TapeStation (Agilent) and were sequenced in pair-end mode using the
731 NovaSeq 6000 S2 100 cycle kit (Illumina) targeting a depth of 25,000 reads per cell.

732

733 **Mouse scRNaseq analysis**

734 Gene expression reads were aligned to the mm10 reference transcriptome and count matrices were
735 generated using the default CellRanger 2.1 workflow, using 'raw' matrix output. Following alignment,
736 barcodes matching cells that contained > 500 unique molecular identifiers (UMIs) were extracted. From
737 these cells, those with transcripts >25% mitochondrial genes (QC thresholds min_mc_size = 25,
738 max_f_mit = 0.1) were filtered from downstream analyses. Matrix scaling, logarithmic normalization, and
739 batch correction via data alignment through canonical correlation analysis, and unsupervised clustering
740 using a *K-nn* graph partitioning approach were performed as previously described. Differentially
741 expressed genes were identified using the *FindMarkers* function in Seurat v4.4.0⁴³. Alternatively, we used
742 the *metacell* package for clustering cells across the tumor, blood, and bone-marrow samples separately
743 (parameters K=25, T_lfc=3). Subsequently clusters were annotated in a semi-supervised manner using
744 canonical markers for lineage (e.g.- T cell, B cell, Myeloid cell) and myeloid identity clusters were
745 subjected to gene-module analyses as follows: cells were uniformly down-sampled to 2,000 UMI before

746 selecting the set of variable genes. Subsequently, the gene–gene correlation matrix was computed for
747 each sample subsetting for myeloid cells. Correlation matrices were averaged via Fisher Z-
748 transformation. The inverse transformation resulted in the best-estimate correlation coefficients of gene–
749 gene interactions across the dataset. Genes were clustered into modules using complete linkage
750 hierarchical clustering over this correlation distance. Finally, myeloid clusters were annotated using
751 lineage/function-determining gene modules. Where indicated, gene set enrichment analysis was
752 performed (EnrichR) and redundancy-reduced/collapsed results are illustrated (REVIGO). Single-cell
753 gene signature scoring was conducted using UCell v2.4⁹⁶. Analyses were mostly run using mac x86 64-
754 bit platform running R v4.3.1 on macOS Big Sur 11.3.1 or mac x86 64-bit platform running R v4.2.2 on
755 Ubuntu 20.04.4 LTS.

756

757 **Mouse scATAC-seq analysis**

758 Fastq files from scATAC-seq samples were aligned to mouse genome reference mm10 using cellranger-
759 atac v2.0.0. Fragment files were parsed with ArchR v1.0.2 and initial quality control (QC) was applied
760 based on sequencing depth and quality (minTSS = 8, minFrags = 5000). Dimensionality reduction and
761 clustering was applied on cells passing filters using standard ArchR workflow^{97,98}. Peaks were called
762 using Macs2⁹⁹ to generate group coverages. To select for myeloid clusters, we relied on ArchR Gene
763 Scores or gene-activity scores (a surrogate for gene expression based on accessibility at the gene loci)
764 of canonical markers and *de novo* marker discovery using *getMarkerFeatures* and *getMarkers* on the
765 GeneScoreMatrix assay (FDR <=0.01 & Log2FC >=1). We filtered out lymphoid cell populations and
766 CD45-negative contaminants, repeating ArchR analysis workflow on these cells to increase the resolution
767 of the monocytic and macrophage compartment. We used *addGeneIntegrationMatrix* with constraints to
768 map between the paired scRNA and scATAC data. Correlation between Gene Scores in scATAC-seq
769 clusters and relative gene expression in scRNA-seq clusters was used to define similarity scores and
770 soft-label annotations to scATACseq clusters in a semi-supervised manner. TF deviations per cluster was
771 inferred following ChromVAR using JAPSAR2020 motifs. Importantly, we calculated differentially
772 accessible marker peak sets for identified monocytic–macrophage clusters and predicted which
773 transcription factors (TFs) mediate binding and define accessibility at these marker peaks using ArchR.
774 Such analysis yields key lineage-determining TFs important for cell identity but can also prioritize TFs
775 that are crucial to that cell’s state and function.

776 As part of candidate TF nomination, we computed TFs whose gene expression positively correlated with
777 changes in accessibility of their binding motifs (corr >0.4) and ranked by TF deviation (Δ) across clusters
778 to nominate candidate regulators likely to be important to cellular function and identity. To identify
779 differentially accessible motifs across conditions, we utilized *getMarkerFeatures* on the MotifMatrix assay

780 correcting for TSS enrichment and number of fragments (FDR <=0.05 unless noted). Analyses were run
781 using mac x86 64-bit platform running R v4.3.1 on macOS Big Sur 11.3.1.
782 For paired analyses of RNA and ATAC features; previously processed and annotated mouse BM, Blood
783 and Tumor scRNAseq Seurat objects were normalized and scaled again using *SCTransform*
784 (*glmGamPoi*, *vars.to.regress* = "percent.mt", *variable.features.n* = 8000). Mouse BM, Blood, and Tumor
785 scATACseq data were processed in parallel as follows; ATAC CellRanger fragment files were transformed
786 into ArrowFiles using ArchR package using above methodology. Peaks were called using MACS2 and
787 *addGroupCovariations*, *addReproduciblePeakSet* and *addPeakMatrix* functions. Peaks co-accessibility
788 matrix was obtained using *addCoAccessibility* function. To pair each scRNAseq cell with a scATACseq
789 cell, datasets from both modalities were split by tissue before running *FindTransferAnchors* and
790 *TransferData* using ATAC cells as reference and RNA cells as query. The combined Seurat object was
791 filtered on myeloid cells (scRNAseq metadata) and previously obtained peak matrix was also subsetted
792 before being incorporated. TF deviations was inferred following ChromVAR using JAPSAR2020 motifs.
793 Downstream gene activation score was calculated for gene sets using UCell v2.4.
794 For integrated velocity analysis in such paired data, first spliced and unspliced counts loom files were
795 obtained using Velocyto v1.0 from BAM files of respective scRNAseq dataset and loaded in Scanpy
796 v1.9.3. The object was subsetted on myeloid cells based on marker genes and pre-processed through
797 MultiVelo¹⁰⁰ using top 5000 variable genes. ArchR peak matrix with scATACseq cells renamed with their
798 matched scRNAseq cells was aggregated and feature linkage bedpe file was created based on previously
799 calculated co-accessibility peak matrix using *getCoAccessibility* ArchR function (corCutOff = 0.5, res =
800 1). MultiVelo *recover_dynamics_chrom* function was used to calculate new velocity that fed CellPath¹⁰¹
801 (*num_trajs* = 5, flavor = "k-means", *num_metacells* = 2000). AnnData object was then subsetted on cells
802 belonging to trajectories ending in terminal macrophage clusters. Final velocity and pseudotime were
803 calculated using CellRank¹⁰² with appropriate kernels.

804

805 **Mouse CUT&RUN analysis**

806 FASTQ data were adaptor trimmed using Trim Galore v0.6.6 and aligned to mm10 reference genome
807 using bowtie2 v.2.3.4.3 with parameters -X 700 -I 10. Uniquely mapped, non-duplicated and >MAPQ 30
808 reads were filtered using SAMToolsview and Picard *MarkDuplicates*. BEDTools intersect was used to
809 remove regions from ENCODE blacklist. Genome coverage tracks were generated using deeptools2
810 with parameters *bamCoverage* --binSize 10 --normalizeUsing CPM --extendReads --ignoreDuplicates --
811 *smoothLength* 50. Peaks were called using SEACR with parameters 'norm' and 'relaxed'. Paired binary
812 alignment map (BAM) files were generated for each sample after filtering for reads with a mapping quality
813 score > 30 and a sequence length < 150. Bigwig files were derived from fragment files by normalizing

814 read counts, and tracks were visualized using Interactive Genomics Viewer (IGV) v2.17.4. We retrieved
815 a list of myeloid genomic positions associated with open chromatin from the Immunological Genome
816 Project (ImmGen) murine ATAC-seq atlas¹⁰³ to prioritize active or poised states, and subsetted the
817 regions to those retained in the published analysis. We extended the summits ± 500 base pairs to form a
818 list of open chromatin regions (OCRs) and trimmed the regions to within chromosomal boundaries using
819 GenomicRanges v1.52.0. These OCRs were then used to derive counts matrices, defined by the number
820 of observed reads in each region, using chromVAR v1.22.1. Counts were then merged per histone mark,
821 empty regions were filtered, and GC bias calculated per region. Using motifmatchr v1.20.0, regions were
822 annotated for presence of TF motifs by referencing a custom database of mouse position frequency
823 matrices. Subsequent chromVAR deviation z-scores indicate the bias-corrected and normalized
824 presence of each histone modification around a particular transcription factor (TF) motif, across all OCRs.
825 To identify differentially variable regions with only 2-3 samples in each condition, we stratified data based
826 on the mean difference between two conditions, and the fraction of intra-sample variance over total
827 variance. The top hits from chromVAR analysis were confirmed by visual inspection on IGV. To unbiasedly
828 identify OCRs which were retained in both tumor-associated GMPs and tumor-associated Ly6Chi
829 monocytes, we applied k-means clustering to chromVAR-corrected OCR scores, and used the web-
830 based tool Genomic Regions Enrichment of Annotations v4.0.4 to annotate and summarize clusters of
831 interest into gene ontology terms. To visualize the underlying distribution of histone modification signal
832 without chromVAR correction, we used deeptools v3.5.5 to generate averaged profiles and heatmaps for
833 each cluster of interest. In brief, bigwigs for each cell type and condition were averaged using
834 *bigwigAverage*, browser extensible data (BED) files were outputted containing regions from each cluster,
835 score matrices were calculated by *computeMatrix*, and plots were generated through *plotHeatmap*.
836

837 Human scATAC-seq and Multiome analysis

838 Fastq files from scATAC-seq and multiome samples were aligned to human genome reference hg38
839 using cellranger-atac v2.0.0 or cellranger-arc v2.0.0 respectively. Fragment files were parsed with ArchR
840 v1.0.2 and initial quality control (QC) was applied based on sequencing depth and quality, discarding
841 cells with <3000 fragments or a transcription start site (TSS) enrichment score < 8. Dimensionality
842 reduction and clustering was applied on cells passing filters using ArchR. To select for myeloid clusters,
843 we relied on ArchR Gene Scores of canonical markers and *de novo* marker discovery using
844 *getMarkerFeatures* on the GeneScoreMatrix assay. Thus, we filtered out lymphoid cell populations and
845 CD45negative contaminants for downstream RNA-ATAC integration. snRNA-seq from multiome samples
846 was analyzed using Seurat v4.4.0. Cells with <800 UMI or <400 genes detected were filtered out followed
847 by default functions for data normalization and dimensionality reduction. To aid in the identification of

848 macrophages cell states, we utilized hdWGCNA v0.2.18. This method allows for identification of gene co-
849 expression modules after generation of metacells (groups of neighboring cells in embedding space) to
850 circumvent data sparsity. Metacells were generated with *MetacellsByGroups* function with following
851 parameters: $k=20$ $\text{max_shared}=15$ and $\text{min_cells}=20$. Gene modules were discovered with function
852 *ConstructNetwork* with following parameters: $\text{softpower}=3$, $\text{deepSplit}=1$, $\text{minModuleSize}=10$,
853 $\text{mergeCutHeight}=0.2$, $\text{maxblocksize}=35,658$. We also verified monocyte and macrophage assignment
854 using orthogonal methodology of consensus non-negative matrix factorization (cNMF; $k=55$). For each
855 cluster, we annotated using top genes ranked by spectra score in the gene expression program matrix
856 obtained and selected the top 50 genes to generate cellular expression program signatures. In addition
857 to soft assignments, this NMF-based approach can work around challenges of identifying and correcting
858 batch effects emerged during data integration and requires minimal pre-processing steps. To annotate
859 macrophage subtypes in chromatin space; we first co-embedded all scATAC samples and multiome
860 samples together, removed batch effects using harmony v0.1.1. We then annotated each cell cluster by
861 the most abundant macrophage state in Multiome-origin cells that passed QC and were previously
862 annotated in snRNA-seq using marker gene expression. TF activity was inferred using ChromVAR v1.16
863 implemented by ArchR via *addMotifAnnotations*, *addBgdPeaks* and *addDeviationsMatrix* functions. For
864 visualization, ArchR built-in plotting functions and ComplexHeatmap v2.10 were used. Subsequently, we
865 carried out similar TF motif enrichment, TF prioritization, and peak2gene linkage analyses as described
866 above in mouse section.

867

868 QUANTIFICATION AND STATISTICAL ANALYSIS

869 No statistical methods were used *a priori* to determined sample size. Sample size was based on power
870 analyses from prior studies in the lab and upon establishing reproducibility between experiments. For
871 flow cytometry, data was collected on FACSDiva v8 or Beckman CytoExpert, and analyzed using FlowJo
872 v10.9. Absolute cell numbers were calculated using initial loading volume and fluorescent beads
873 (Accucheck Counting Beads PCB100, Molecular Probes) following the manufacturer's instructions.
874 Where applicable, median fluorescence intensity (MFI) measurements were compared for markers of
875 interest. For histology, scanned H&E slides were quantified by manual annotation of investigator-blinded
876 slides using QuPath v0.4⁹⁵.

877 Statistical ranges in figures represent individual data points with mean value indicated, unless otherwise
878 indicated in box plots or violin plots where error bars indicate s.e.m. For continuous data satisfying
879 normality assumptions (flow cytometry, histology, and sequencing), statistical significance between
880 conditions was determined using unpaired Student's t-test for two independent comparisons, or one-way
881 ANOVA with multiple comparison correction for three or more independent groups. Statistical significance

882 between grouped data across three or more conditions was determined using two-way ANOVA with
883 appropriate multiple comparisons' correction. Statistical significance for mouse survival analyses was
884 performed using Kaplan-Meier log-rank estimate. Statistical analyses for flow cytometry and histology
885 were done using Prism v10.0 (GraphPad). UCell scores calculated on single-cell feature data are based
886 on the Mann-Whitney U statistic and robust to dataset size and sample heterogeneity. DEG analyses in
887 single-cell feature data were subjected to Wilcoxon rank sum test on pseudobulk values as well as 'bimod'
888 likelihood-ratio test optimal for single cell feature expression¹⁰⁴, unless otherwise indicated. Ontology
889 terms in EnrichR were ranked by p-value or odds ratio as indicated; where the enrichment p-value was
890 calculated using Fisher's exact test comparing the observed frequency with the frequency expected by
891 chance in background gene list. Statistical analyses for sequencing studies were done using native R
892 v4.3.1 function packages.

893 Notable R packages used: BiocManager v1.30.22; biomaRt v2.56.1; BSgenome v1.68.0;
894 BSgenome.Mmusculus.UCSC.mm10 sequences; BSgenome.Hsapiens.UCSC.hg38 sequences; Seurat
895 v4.9.9; harmony v0.1.1; scDissector v.1.0.0; parallel v4.3.1; ShinyTree v.0.2.7; data.table v.1.14.8;
896 reshape2 v.1.4.4; reticulate v1.32.0; heatmaply v.1.3.0; pheatmap v1.0.12; plotly v.4.10.0; ggviz v.0.4.7;
897 ggplot2 v.3.3.5; cowplot v1.1.1; patchwork v1.1.3; dplyr v.1.3.1; tidyverse v2.0.0; plyranges
898 v.1.20.0; Matrix v.0.9.8; seriation v.1.3.5; ArchR v1.0.2; chromVAR v1.22.1; Signac v.1.11.9;
899 complexHeatmap v2.16.0; hdWGCNA v0.2.18; edgeR v3.42.4; limma v3.56.2; presto v1.0.0;
900 EnhancedVolcano v1.18.0; GenomeInfoDb v1.36.1; GenomicRanges v1.52.0; motifmatchr v1.20.0,
901 deeptools v3.5.5, MAST v1.6; Nebulosa v1.10.0; RColorBrewer v1.1; scCustomize v1.1.3; sceasy
902 v.0.0.7; scTools v1.0; SeuratDisk v.0.0.0.9; SeuratWrappers v0.3.19; SignatuR v.0.1.1;
903 SingleCellExperiment v1.22.0; TFBSTools v1.38.0; UCell v2.4.0.

904

905 DATA AND CODE AVAILABILITY

906 Notable software package versions used in this study are listed. No new software pipelines were used in
907 the study beyond those described in relevant Methods sections. Accession numbers for re-analyzed
908 published datasets are listed in the **Supplementary Table 6**. Processed matrix files and metadata for the
909 mouse tissue scRNA-seq and scATAC-seq generated in this study are made publicly available at the time
910 of publication (**GSE255330**). Processed matrix files and metadata for the human tissue scATAC-seq and
911 10x multiome data generated in this study are also made publicly available at the time of publication. Any
912 additional information required to interpret data reported in this paper is available from the corresponding
913 author upon reasonable request.

914

915

916 **BIBLIOGRAPHY**

918 1 Goswami, S., Anandhan, S., Raychaudhuri, D. & Sharma, P. Myeloid cell-targeted therapies for solid
919 tumours. *Nat Rev Immunol* **23**, 106-120, doi:10.1038/s41577-022-00737-w (2023).

920 2 Collins, A., Mitchell, C. A. & Passegue, E. Inflammatory signaling regulates hematopoietic stem and
921 progenitor cell development and homeostasis. *J Exp Med* **218**, doi:10.1084/jem.20201545 (2021).

922 3 Sica, A., Guarneri, V. & Gennari, A. Myelopoiesis, metabolism and therapy: a crucial crossroads in
923 cancer progression. *Cell Stress* **3**, 284-294, doi:10.15698/cst2019.09.197 (2019).

924 4 Manz, M. G. & Boettcher, S. Emergency granulopoiesis. *Nat Rev Immunol* **14**, 302-314,
925 doi:10.1038/nri3660 (2014).

926 5 Loyher, P. L. et al. Macrophages of distinct origins contribute to tumor development in the lung. *J Exp
927 Med* **215**, 2536-2553, doi:10.1084/jem.20180534 (2018).

928 6 Chavakis, T., Mitroulis, I. & Hajishengallis, G. Hematopoietic progenitor cells as integrative hubs for
929 adaptation to and fine-tuning of inflammation. *Nat Immunol* **20**, 802-811, doi:10.1038/s41590-019-
930 0402-5 (2019).

931 7 Schultze, J. L., Mass, E. & Schlitzer, A. Emerging Principles in Myelopoiesis at Homeostasis and
932 during Infection and Inflammation. *Immunity* **50**, 288-301, doi:10.1016/j.jimmuni.2019.01.019 (2019).

933 8 Olson, O. C., Kang, Y. A. & Passegue, E. Normal Hematopoiesis Is a Balancing Act of Self-Renewal
934 and Regeneration. *Cold Spring Harb Perspect Med* **10**, doi:10.1101/cshperspect.a035519 (2020).

935 9 Boumelha, J. et al. An Immunogenic Model of KRAS-Mutant Lung Cancer Enables Evaluation of
936 Targeted Therapy and Immunotherapy Combinations. *Cancer Res* **82**, 3435-3448, doi:10.1158/0008-
937 5472.CAN-22-0325 (2022).

938 10 Jackson, E. L. et al. The differential effects of mutant p53 alleles on advanced murine lung cancer.
939 *Cancer Res* **65**, 10280-10288, doi:10.1158/0008-5472.CAN-05-2193 (2005).

940 11 Trzebanski, S. et al. Classical monocyte ontogeny dictates their functions and fates as tissue
941 macrophages. *Immunity*, doi:10.1016/j.jimmuni.2024.04.019 (2024).

942 12 Ikeda, N. et al. The early neutrophil-committed progenitors aberrantly differentiate into
943 immunoregulatory monocytes during emergency myelopoiesis. *Cell Rep* **42**, 112165,
944 doi:10.1016/j.celrep.2023.112165 (2023).

945 13 Shibuya, T. et al. Immunoregulatory Monocyte Subset Promotes Metastasis Associated With
946 Therapeutic Intervention for Primary Tumor. *Front Immunol* **12**, 663115,
947 doi:10.3389/fimmu.2021.663115 (2021).

948 14 LaMarche, N. M. et al. An IL-4 signalling axis in bone marrow drives pro-tumorigenic myelopoiesis.
949 *Nature*, doi:10.1038/s41586-023-06797-9 (2023).

950 15 Evrard, M. et al. Developmental Analysis of Bone Marrow Neutrophils Reveals Populations
951 Specialized in Expansion, Trafficking, and Effector Functions. *Immunity* **48**, 364-379 e368,
952 doi:10.1016/j.jimmuni.2018.02.002 (2018).

953 16 Paul, F. et al. Transcriptional Heterogeneity and Lineage Commitment in Myeloid Progenitors. *Cell*
954 **163**, 1663-1677, doi:10.1016/j.cell.2015.11.013 (2015).

955 17 Hao, X. et al. Osteoprogenitor-GMP crosstalk underpins solid tumor-induced systemic
956 immunosuppression and persists after tumor removal. *Cell Stem Cell* **30**, 648-664 e648,
957 doi:10.1016/j.stem.2023.04.005 (2023).

958 18 Gerber-Ferder, Y. et al. Breast cancer remotely imposes a myeloid bias on hematopoietic stem cells
959 by reprogramming the bone marrow niche. *Nat Cell Biol* **25**, 1736-1745, doi:10.1038/s41556-023-
960 01291-w (2023).

961 19 Dey, S., Curtis, D. J., Jane, S. M. & Brandt, S. J. The TAL1/SCL transcription factor regulates cell cycle
962 progression and proliferation in differentiating murine bone marrow monocyte precursors. *Mol Cell Biol*
963 **30**, 2181-2192, doi:10.1128/MCB.01441-09 (2010).

964 20 de Pooter, R. F. et al. Cutting Edge: Lymphomyeloid-Primed Progenitor Cell Fates Are Controlled by
965 the Transcription Factor Tal1. *J Immunol* **202**, 2837-2842, doi:10.4049/jimmunol.1801220 (2019).

966 21 Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory
967 elements required for macrophage and B cell identities. *Mol Cell* **38**, 576-589,
968 doi:10.1016/j.molcel.2010.05.004 (2010).

969 22 Pham, T. H. et al. Dynamic epigenetic enhancer signatures reveal key transcription factors associated
970 with monocytic differentiation states. *Blood* **119**, e161-171, doi:10.1182/blood-2012-01-402453
971 (2012).

972 23 Mandula, J. K. & Rodriguez, P. C. Tumor-related stress regulates functional plasticity of MDSCs. *Cell
973 Immunol* **363**, 104312, doi:10.1016/j.cellimm.2021.104312 (2021).

974 24 Kwart, D. et al. Cancer cell-derived type I interferons instruct tumor monocyte polarization. *Cell Rep
975* **41**, 111769, doi:10.1016/j.celrep.2022.111769 (2022).

976 25 Alicea-Torres, K. et al. Immune suppressive activity of myeloid-derived suppressor cells in cancer
977 requires inactivation of the type I interferon pathway. *Nat Commun* **12**, 1717, doi:10.1038/s41467-021-
978 22033-2 (2021).

979 26 Kwak, H. J. et al. Myeloid cell-derived reactive oxygen species externally regulate the proliferation of
980 myeloid progenitors in emergency granulopoiesis. *Immunity* **42**, 159-171,
981 doi:10.1016/j.immuni.2014.12.017 (2015).

982 27 Pizzato, H. A. et al. Mitochondrial pyruvate metabolism and glutaminolysis toggle steady-state and
983 emergency myelopoiesis. *J Exp Med* **220**, doi:10.1084/jem.20221373 (2023).

984 28 Pietras, E. M. et al. Re-entry into quiescence protects hematopoietic stem cells from the killing effect
985 of chronic exposure to type I interferons. *J Exp Med* **211**, 245-262, doi:10.1084/jem.20131043 (2014).

986 29 Wu, W. C. et al. Circulating hematopoietic stem and progenitor cells are myeloid-biased in cancer
987 patients. *Proc Natl Acad Sci U S A* **111**, 4221-4226, doi:10.1073/pnas.1320753111 (2014).

988 30 Porembka, M. R. et al. Pancreatic adenocarcinoma induces bone marrow mobilization of myeloid-
989 derived suppressor cells which promote primary tumor growth. *Cancer Immunol Immunother* **61**, 1373-
990 1385, doi:10.1007/s00262-011-1178-0 (2012).

991 31 Giles, A. J. et al. Activation of Hematopoietic Stem/Progenitor Cells Promotes Immunosuppression
992 Within the Pre-metastatic Niche. *Cancer Res* **76**, 1335-1347, doi:10.1158/0008-5472.CAN-15-0204
993 (2016).

994 32 Molgora, M. et al. TREM2 Modulation Remodels the Tumor Myeloid Landscape Enhancing Anti-PD-1
995 Immunotherapy. *Cell* **182**, 886-900 e817, doi:10.1016/j.cell.2020.07.013 (2020).

996 33 Park, M. D. et al. TREM2 macrophages drive NK cell paucity and dysfunction in lung cancer. *Nat
997 Immunol* **24**, 792-801, doi:10.1038/s41590-023-01475-4 (2023).

998 34 Katzenelenbogen, Y. et al. Coupled scRNA-Seq and Intracellular Protein Activity Reveal an
999 Immunosuppressive Role of TREM2 in Cancer. *Cell* **182**, 872-885 e819,
1000 doi:10.1016/j.cell.2020.06.032 (2020).

1001 35 Casanova-Acebes, M. et al. Tissue-resident macrophages provide a pro-tumorigenic niche to early
1002 NSCLC cells. *Nature* **595**, 578-584, doi:10.1038/s41586-021-03651-8 (2021).

1003 36 Magen, A. et al. Intratumoral dendritic cell-CD4(+) T helper cell niches enable CD8(+) T cell
1004 differentiation following PD-1 blockade in hepatocellular carcinoma. *Nat Med* **29**, 1389-1399,
1005 doi:10.1038/s41591-023-02345-0 (2023).

1006 37 Martin, J. C. et al. Single-Cell Analysis of Crohn's Disease Lesions Identifies a Pathogenic Cellular
1007 Module Associated with Resistance to Anti-TNF Therapy. *Cell* **178**, 1493-1508 e1420,
1008 doi:10.1016/j.cell.2019.08.008 (2019).

1009 38 Lavin, Y. et al. Tissue-resident macrophage enhancer landscapes are shaped by the local
1010 microenvironment. *Cell* **159**, 1312-1326, doi:10.1016/j.cell.2014.11.018 (2014).

1011 39 Schneider, C. et al. Induction of the nuclear receptor PPAR-gamma by the cytokine GM-CSF is critical
1012 for the differentiation of fetal monocytes into alveolar macrophages. *Nat Immunol* **15**, 1026-1037,
1013 doi:10.1038/ni.3005 (2014).

1014 40 Hanna, R. N. et al. The transcription factor NR4A1 (Nur77) controls bone marrow differentiation and
1015 the survival of Ly6C- monocytes. *Nat Immunol* **12**, 778-785, doi:10.1038/ni.2063 (2011).

1016 41 Sarode, P. et al. Reprogramming of tumor-associated macrophages by targeting beta-
1017 catenin/FOSL2/ARID5A signaling: A potential treatment of lung cancer. *Sci Adv* **6**, eaaz6105,
1018 doi:10.1126/sciadv.aaz6105 (2020).

1019 42 Haldar, M. et al. Heme-mediated SPI-C induction promotes monocyte differentiation into iron-recycling
1020 macrophages. *Cell* **156**, 1223-1234, doi:10.1016/j.cell.2014.01.069 (2014).

1021 43 Hao, Y. et al. Integrated analysis of multimodal single-cell data. *Cell* **184**, 3573-3587 e3529,
1022 doi:10.1016/j.cell.2021.04.048 (2021).

1023 44 Leader, A. M. et al. Single-cell analysis of human non-small cell lung cancer lesions refines tumor
1024 classification and patient stratification. *Cancer Cell* **39**, 1594-1609 e1512,
1025 doi:10.1016/j.ccr.2021.10.009 (2021).

1026 45 Nurgazieva, D. et al. TGF-beta1, but not bone morphogenetic proteins, activates Smad1/5 pathway in
1027 primary human macrophages and induces expression of proatherogenic genes. *J Immunol* **194**, 709-
1028 718, doi:10.4049/jimmunol.1300272 (2015).

1029 46 Dhaouadi, N. et al. Computational identification of potential transcriptional regulators of TGF-ss1 in
1030 human atherosclerotic arteries. *Genomics* **103**, 357-370, doi:10.1016/j.ygeno.2014.05.001 (2014).

1031 47 McGinnis, C. S., Miao, Z., Reticker-Flynn, N. E., Winker, J. & Satpathy, A. T. The temporal progression
1032 of immune remodeling during metastasis. *bioRxiv*, doi:10.1101/2023.05.04.539153 (2023).

1033 48 Marigo, I. et al. Tumor-induced tolerance and immune suppression depend on the C/EBPbeta
1034 transcription factor. *Immunity* **32**, 790-802, doi:10.1016/j.jimmuni.2010.05.010 (2010).

1035 49 Porta, C. et al. Tolerance and M2 (alternative) macrophage polarization are related processes
1036 orchestrated by p50 nuclear factor kappaB. *Proc Natl Acad Sci U S A* **106**, 14978-14983,
1037 doi:10.1073/pnas.0809784106 (2009).

1038 50 Li, T. et al. c-Rel Is a Myeloid Checkpoint for Cancer Immunotherapy. *Nat Cancer* **1**, 507-517,
1039 doi:10.1038/s43018-020-0061-3 (2020).

1040 51 Dai, X. et al. Nrf2: Redox and Metabolic Regulator of Stem Cell State and Function. *Trends Mol Med*
1041 **26**, 185-200, doi:10.1016/j.molmed.2019.09.007 (2020).

1042 52 Vellelian, F. et al. Heme-stress activated NRF2 skews fate trajectories of bone marrow cells from
1043 dendritic cells towards red pulp-like macrophages in hemolytic anemia. *Cell Death Differ* **29**, 1450-
1044 1465, doi:10.1038/s41418-022-00932-1 (2022).

1045 53 Kadl, A. et al. Identification of a novel macrophage phenotype that develops in response to atherogenic
1046 phospholipids via Nrf2. *Circ Res* **107**, 737-746, doi:10.1161/CIRCRESAHA.109.215715 (2010).

1047 54 Tonelli, C., Chio, I. I. C. & Tuveson, D. A. Transcriptional Regulation by Nrf2. *Antioxid Redox Signal*
1048 **29**, 1727-1745, doi:10.1089/ars.2017.7342 (2018).

1049 55 Beury, D. W. et al. Myeloid-Derived Suppressor Cell Survival and Function Are Regulated by the
1050 Transcription Factor Nrf2. *J Immunol* **196**, 3470-3478, doi:10.4049/jimmunol.1501785 (2016).

1051 56 Nishizawa, H., Yamanaka, M. & Igarashi, K. Ferroptosis: regulation by competition between NRF2 and
1052 BACH1 and propagation of the death signal. *FEBS J* **290**, 1688-1704, doi:10.1111/febs.16382 (2023).

1053 57 Bellezza, I., Mierla, A. L. & Minelli, A. Nrf2 and NF-kappaB and Their Concerted Modulation in Cancer
1054 Pathogenesis and Progression. *Cancers (Basel)* **2**, 483-497, doi:10.3390/cancers2020483 (2010).

1055 58 Namgaladze, D., Fuhrmann, D. C. & Brune, B. Interplay of Nrf2 and BACH1 in inducing ferroportin
1056 expression and enhancing resistance of human macrophages towards ferroptosis. *Cell Death Discov*
1057 **8**, 327, doi:10.1038/s41420-022-01117-y (2022).

1058 59 Kobayashi, E. H. et al. Nrf2 suppresses macrophage inflammatory response by blocking
1059 proinflammatory cytokine transcription. *Nat Commun* **7**, 11624, doi:10.1038/ncomms11624 (2016).

1060 60 Ryan, D. G. et al. Nrf2 activation reprograms macrophage intermediary metabolism and suppresses
1061 the type I interferon response. *iScience* **25**, 103827, doi:10.1016/j.isci.2022.103827 (2022).

1062 61 Olagnier, D. et al. Nrf2 negatively regulates STING indicating a link between antiviral sensing and
1063 metabolic reprogramming. *Nat Commun* **9**, 3506, doi:10.1038/s41467-018-05861-7 (2018).

1064 62 Calcagno, D. M. et al. The myeloid type I interferon response to myocardial infarction begins in bone
1065 marrow and is regulated by Nrf2-activated macrophages. *Sci Immunol* **5**,
1066 doi:10.1126/sciimmunol.aaz1974 (2020).

1067 63 Ting, K. K. Y. et al. Oxidized Low-Density Lipoprotein Accumulation Suppresses Glycolysis and
1068 Attenuates the Macrophage Inflammatory Response by Diverting Transcription from the HIF-1alpha
1069 to the Nrf2 Pathway. *J Immunol* **211**, 1561-1577, doi:10.4049/jimmunol.2300293 (2023).

1070 64 Dodson, M. et al. Modulating NRF2 in Disease: Timing Is Everything. *Annu Rev Pharmacol Toxicol*
1071 **59**, 555-575, doi:10.1146/annurev-pharmtox-010818-021856 (2019).

1072 65 Kirschenbaum, D. et al. Time-resolved single-cell transcriptomics defines immune trajectories in
1073 glioblastoma. *Cell*, doi:10.1016/j.cell.2023.11.032 (2023).

1074 66 Hicks, K. C., Tyurina, Y. Y., Kagan, V. E. & Gabrilovich, D. I. Myeloid Cell-Derived Oxidized Lipids and
1075 Regulation of the Tumor Microenvironment. *Cancer Res* **82**, 187-194, doi:10.1158/0008-5472.CAN-
1076 21-3054 (2022).

1077 67 Ostrand-Rosenberg, S., Beury, D. W., Parker, K. H. & Horn, L. A. Survival of the fittest: how myeloid-
1078 derived suppressor cells survive in the inhospitable tumor microenvironment. *Cancer Immunol
1079 Immunother* **69**, 215-221, doi:10.1007/s00262-019-02388-8 (2020).

1080 68 Alaluf, E. et al. Heme oxygenase-1 orchestrates the immunosuppressive program of tumor-associated
1081 macrophages. *JCI Insight* **5**, doi:10.1172/jci.insight.133929 (2020).

1082 69 Singh, A. et al. Small Molecule Inhibitor of NRF2 Selectively Intervenes Therapeutic Resistance in
1083 KEAP1-Deficient NSCLC Tumors. *ACS Chem Biol* **11**, 3214-3225, doi:10.1021/acschembio.6b00651
1084 (2016).

1085 70 Alaoui-Jamali, M. A. et al. A novel experimental heme oxygenase-1-targeted therapy for hormone-
1086 refractory prostate cancer. *Cancer Res* **69**, 8017-8024, doi:10.1158/0008-5472.CAN-09-0419 (2009).

1087 71 Liu, Z. et al. Fate Mapping via Ms4a3-Expression History Traces Monocyte-Derived Cells. *Cell* **178**,
1088 1509-1525 e1519, doi:10.1016/j.cell.2019.08.009 (2019).

1089 72 Kong, X. et al. Enhancing Nrf2 pathway by disruption of Keap1 in myeloid leukocytes protects against
1090 sepsis. *Am J Respir Crit Care Med* **184**, 928-938, doi:10.1164/rccm.201102-0271OC (2011).

1091 73 Eisinger, S. et al. Targeting a scavenger receptor on tumor-associated macrophages activates tumor
1092 cell killing by natural killer cells. *Proc Natl Acad Sci U S A* **117**, 32005-32016,
1093 doi:10.1073/pnas.2015343117 (2020).

1094 74 Peng, L. S. et al. Tumor-Associated Monocytes/Macrophages Impair NK-Cell Function via TGFbeta1
1095 in Human Gastric Cancer. *Cancer Immunol Res* **5**, 248-256, doi:10.1158/2326-6066.CIR-16-0152
1096 (2017).

1097 75 Ren, D. et al. Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense
1098 mechanism. *Proc Natl Acad Sci U S A* **108**, 1433-1438, doi:10.1073/pnas.1014275108 (2011).

1099 76 van Galen, P. et al. Integrated Stress Response Activity Marks Stem Cells in Normal Hematopoiesis
1100 and Leukemia. *Cell Rep* **25**, 1109-1117 e1105, doi:10.1016/j.celrep.2018.10.021 (2018).

1101 77 Ratajczak, M. Z. & Kucia, M. Hematopoiesis and innate immunity: an inseparable couple for good and
1102 bad times, bound together by an hormetic relationship. *Leukemia* **36**, 23-32, doi:10.1038/s41375-021-
1103 01482-0 (2022).

1104 78 Merchant, A. A., Singh, A., Matsui, W. & Biswal, S. The redox-sensitive transcription factor Nrf2
1105 regulates murine hematopoietic stem cell survival independently of ROS levels. *Blood* **118**, 6572-6579,
1106 doi:10.1182/blood-2011-05-355362 (2011).

1107 79 Mantovani, A., Allavena, P., Marchesi, F. & Garlanda, C. Macrophages as tools and targets in cancer
1108 therapy. *Nat Rev Drug Discov* **21**, 799-820, doi:10.1038/s41573-022-00520-5 (2022).

1109 80 Ruffell, B. & Coussens, L. M. Macrophages and therapeutic resistance in cancer. *Cancer Cell* **27**, 462-
1110 472, doi:10.1016/j.ccr.2015.02.015 (2015).

1111 81 Innamarato, P. & Pilon-Thomas, S. Reactive myelopoiesis and the onset of myeloid-mediated immune
1112 suppression: Implications for adoptive cell therapy. *Cell Immunol* **361**, 104277,
1113 doi:10.1016/j.cellimm.2020.104277 (2021).

1114 82 Zhao, Y. et al. Neutrophils resist ferroptosis and promote breast cancer metastasis through aconitate
1115 decarboxylase 1. *Cell Metab* **35**, 1688-1703 e1610, doi:10.1016/j.cmet.2023.09.004 (2023).

1116 83 Ng, M. S. F. et al. Deterministic reprogramming of neutrophils within tumors. *Science* **383**, eadf6493,
1117 doi:10.1126/science.adf6493 (2024).

1118 84 Hegde, S., Leader, A. M. & Merad, M. MDSC: Markers, development, states, and unaddressed
1119 complexity. *Immunity* **54**, 875-884, doi:10.1016/j.immuni.2021.04.004 (2021).

1120 85 Veglia, F., Sanseviero, E. & Gabrilovich, D. I. Myeloid-derived suppressor cells in the era of increasing
1121 myeloid cell diversity. *Nat Rev Immunol* **21**, 485-498, doi:10.1038/s41577-020-00490-y (2021).

1122 86 Daman, A. W. et al. Microbial cancer immunotherapy reprograms hematopoietic stem cells to enhance
1123 anti-tumor immunity. *bioRxiv*, doi:10.1101/2024.03.21.586166 (2024).

1124 87 Cheong, J. G. et al. Epigenetic memory of coronavirus infection in innate immune cells and their
1125 progenitors. *Cell* **186**, 3882-3902 e3824, doi:10.1016/j.cell.2023.07.019 (2023).

1126 88 Singh, A. et al. NRF2 Activation Promotes Aggressive Lung Cancer and Associates with Poor Clinical
1127 Outcomes. *Clin Cancer Res* **27**, 877-888, doi:10.1158/1078-0432.CCR-20-1985 (2021).

1128 89 Chirnomas, D., Hornberger, K. R. & Crews, C. M. Protein degraders enter the clinic - a new approach
1129 to cancer therapy. *Nat Rev Clin Oncol* **20**, 265-278, doi:10.1038/s41571-023-00736-3 (2023).

1130 90 Cullinan, S. B. & Diehl, J. A. PERK-dependent activation of Nrf2 contributes to redox homeostasis and
1131 cell survival following endoplasmic reticulum stress. *J Biol Chem* **279**, 20108-20117,
1132 doi:10.1074/jbc.M314219200 (2004).

1133 91 Kress, J. K. C. et al. The integrated stress response effector ATF4 is an obligatory metabolic activator
1134 of NRF2. *Cell Rep* **42**, 112724, doi:10.1016/j.celrep.2023.112724 (2023).

1135 92 Keniry, M. et al. Survival factor NFIL3 restricts FOXO-induced gene expression in cancer. *Genes Dev*
1136 **27**, 916-927, doi:10.1101/gad.214049.113 (2013).

1137 93 Mohamed, E. et al. The Unfolded Protein Response Mediator PERK Governs Myeloid Cell-Driven
1138 Immunosuppression in Tumors through Inhibition of STING Signaling. *Immunity* **52**, 668-682 e667,
1139 doi:10.1016/j.immuni.2020.03.004 (2020).

1140 94 Raines, L. N. et al. PERK is a critical metabolic hub for immunosuppressive function in macrophages.
1141 *Nat Immunol* **23**, 431-445, doi:10.1038/s41590-022-01145-x (2022).

1142 95 Bankhead, P. et al. QuPath: Open source software for digital pathology image analysis. *Sci Rep* **7**,
1143 16878, doi:10.1038/s41598-017-17204-5 (2017).

1144 96 Andreatta, M. & Carmona, S. J. UCell: Robust and scalable single-cell gene signature scoring. *Comput
1145 Struct Biotechnol J* **19**, 3796-3798, doi:10.1016/j.csbj.2021.06.043 (2021).

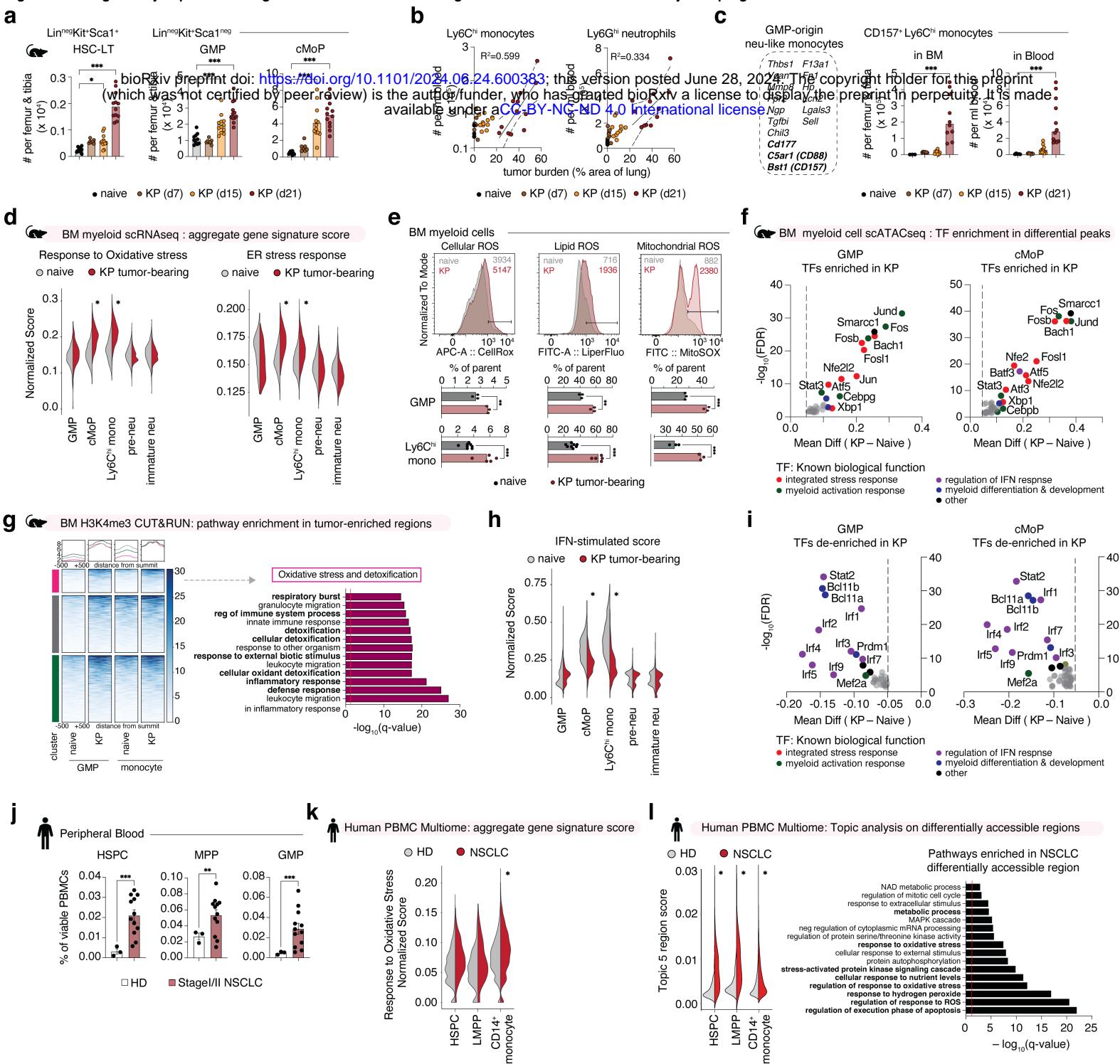
1146 97 Corces, M. R. et al. The chromatin accessibility landscape of primary human cancers. *Science* **362**,
1147 doi:10.1126/science.aav1898 (2018).

1148 98 Granja, J. M. et al. ArchR is a scalable software package for integrative single-cell chromatin
1149 accessibility analysis. *Nat Genet* **53**, 403-411, doi:10.1038/s41588-021-00790-6 (2021).

1150 99 Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). *Genome Biol* **9**, R137, doi:10.1186/gb-
1151 2008-9-9-r137 (2008).

1152 100 Li, C., Virgilio, M. C., Collins, K. L. & Welch, J. D. Multi-omic single-cell velocity models
1153 epigenome-transcriptome interactions and improves cell fate prediction. *Nat Biotechnol* **41**, 387-398,
1154 doi:10.1038/s41587-022-01476-y (2023).

1155 101 Zhang, Z. & Zhang, X. Inference of high-resolution trajectories in single-cell RNA-seq data by
1156 using RNA velocity. *Cell Rep Methods* **1**, 100095, doi:10.1016/j.crmeth.2021.100095 (2021).


1157 102 Lange, M. et al. CellRank for directed single-cell fate mapping. *Nat Methods* **19**, 159-170,
1158 doi:10.1038/s41592-021-01346-6 (2022).

1159 103 Yoshida, H. et al. The cis-Regulatory Atlas of the Mouse Immune System. *Cell* **176**, 897-912 e820,
1160 doi:10.1016/j.cell.2018.12.036 (2019).

1161 104 McDavid, A. et al. Data exploration, quality control and testing in single-cell qPCR-based gene
1162 expression experiments. *Bioinformatics* **29**, 461-467, doi:10.1093/bioinformatics/bts714 (2013).

1163

figure 1: Pathogenic myelopoiesis during cancer associates with changes in the chromatin state of BM myeloid progenitors

Fig. 1: Pathogenic myelopoiesis in cancer associates with changes in the chromatin state of bone marrow myeloid progenitors

a. Abundance of long-term hematopoietic stem cells (HSC-LT), granulocytic-monocytic progenitors (GMP), and common myeloid progenitors (CMP) in naïve and KP tumor-bearing mice at different time points. Pooled from two independent experiments. N=3–12 mice per group. Data are individual data points with bar denoting mean.

b. Abundance of Ly6C^{hi} monocytes and Ly6G^{hi} neutrophils in blood of naïve and KP tumor-bearing mice at different time points, correlated with tumor burden. Pooled from two independent experiments. N=7–12 mice per group. Data are individual data points with confidence intervals for linear regression.

c. Gene markers characterizing GMP-origin neutrophil-like monocytes, and abundance of CD115⁺Ly6C^{hi}CD157⁺ monocytes in BM and blood of naïve and KP tumor-bearing mice at different time points. Pooled from two independent experiments. N=3–12 mice per group. Data are individual data points with bar denoting mean.

d. Normalized UCell-computed scores for Oxidative stress response and ER stress response gene signatures in select BM cell states from scRNA-seq of naïve and KP tumor-bearing mice. Pooled from 3 mice for one experiment. Data are per-cell distribution violin plot.

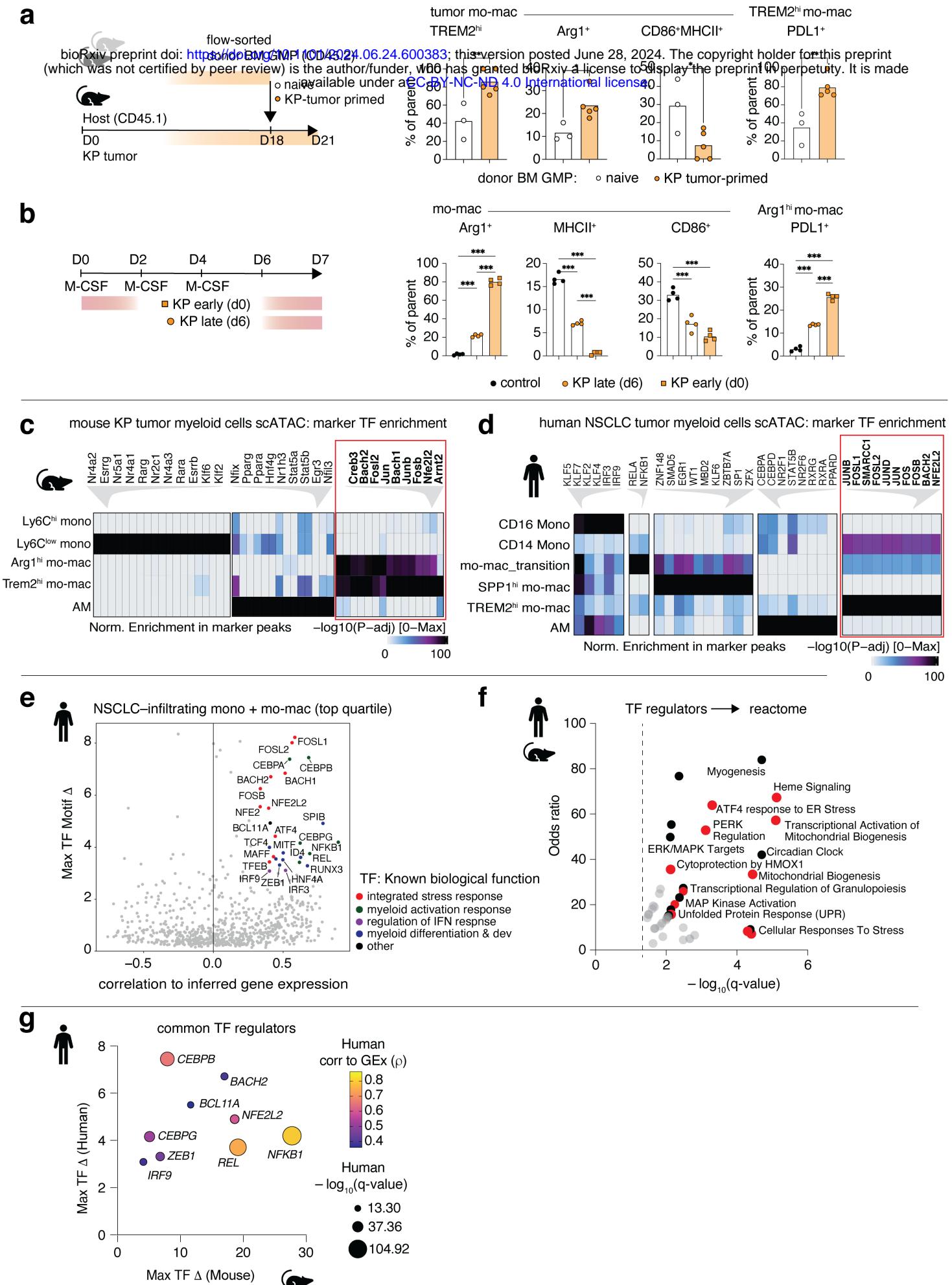
e. Representative flow cytometry histograms and quantification of CellROX, LiperFluo (lipid peroxidation indicator), and MitoSOX (mitochondrial oxidative burden indicator) in viable BM GMPs and CD115⁺Ly6C^{hi} monocytes from naïve and KP tumor-bearing mice. N=3–7 mice per group.

f. Transcription Factor (TF) motifs differentially enriched in KP-tumor bearing mouse BM GMPs (LEFT) and BM cMoPs (RIGHT) compared to naïve mice; ranked by false discovery rate. Dot color indicating major known biological pathways.

g. Clusters of H3K4me3 regions enriched in BM GMPs and Ly6C^{hi} monocytes from KP tumor-bearing mice compared to naïve mice (left), with pathways enriched in indicated cluster involving oxidative stress and detoxification (right). Curated terms arranged by adjusted p-value (log q-value).

h. Normalized UCell-computed scores for Type I/III Interferon (IFN)-stimulated gene signature in select BM cell states from scRNA-seq of naïve and KP tumor-bearing mice. Pooled from 3 mice for one experiment. Data are per-cell distribution violin plot.

i. TF motifs differentially de-enriched in BM GMPs (LEFT) and BM cMoPs (RIGHT) from KP tumor-bearing mice vs naïve mice; ranked by false discovery rate. Dot color indicating major known biological pathways.


j. Frequency of hematopoietic stem and progenitor cells (HSPCs), multipotent progenitors (MPP), and granulocytic-monocytic precursors (GMPs) from blood of patients with NSCLC (N=9) and healthy donors (HD, N=3). Pooled from three independent experiments.

k. Normalized UCell-computed scores for Oxidative stress response gene signature in indicated PBMC myeloid cells from patients with NSCLC (N=3) and healthy donors (HD, N=2). Data are per-cell distribution violin plot.

l. Region scores for topic associated with differentially accessible regions enriched in HSPCs and CD14 monocytes from blood of patients with NSCLC compared to healthy donors (left), with pathways enriched in indicated topic (right). Data are per-cell distribution violin plot (left).

p-values computed by one-way ANOVA with Dunnett's multiple comparisons test (A),(C),(D),(H),(K),(L). *p*-values computed by unpaired t-test across conditions (E),(J). *p*-values computed by hypergeometric test with multiple test correction (G),(L). *P*-value of < 0.05 denoted *; *p*-values < 0.01 denoted **; *p*-values < 0.001 denoted ***.

figure 2: Myelopoiesis fuels tumor mo-macs with sustained cytoprotective oxidative-stress response

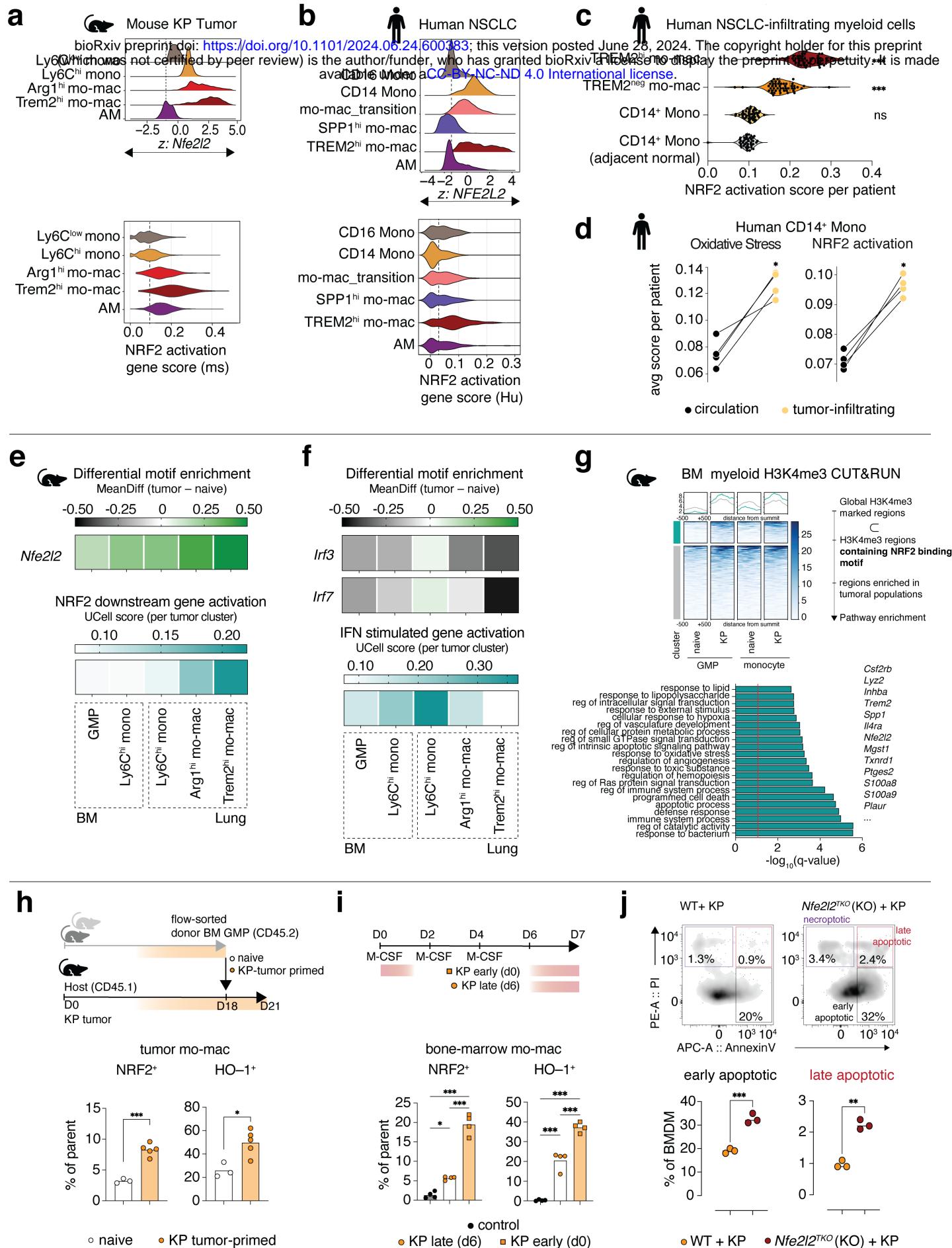
Fig. 2: Tumor myelopoiesis fuels mo-macs in TME with sustained cytoprotective stress responses.

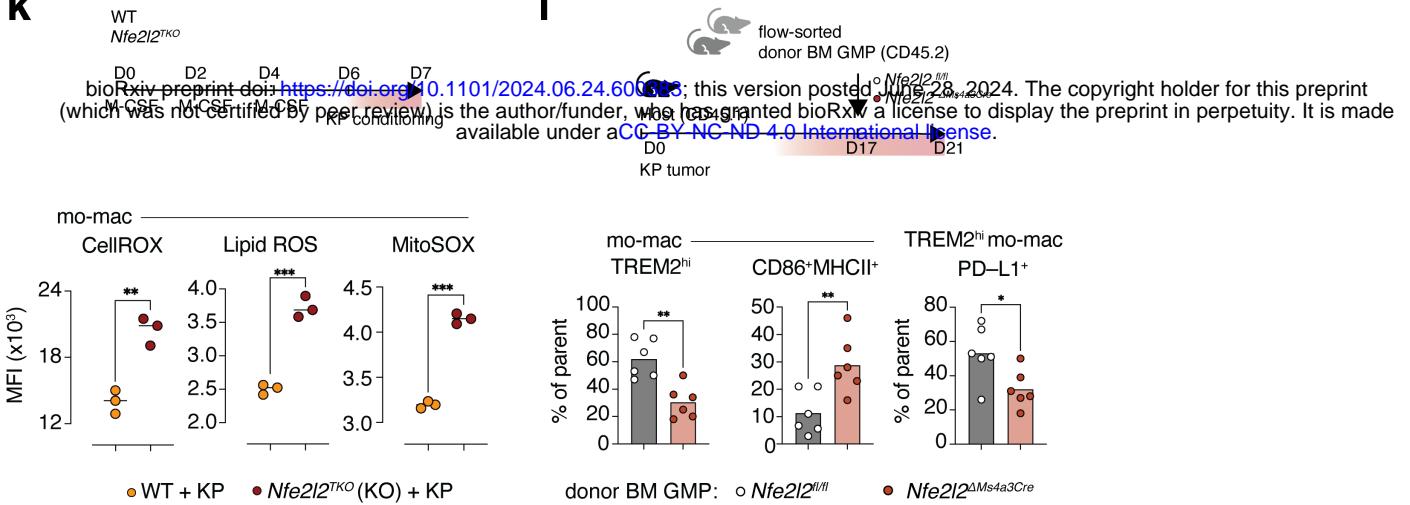
a. *In vivo* tracing of naïve or KP tumor-primed BM GMPs transferred into KP tumor-bearing congenic CD45.1 hosts, with frequency of donor-derived tumor mo-macs expressing GPNMB and CD9 (TREM2^{hi}), Arg1 (Arg1^{hi}), CD86 and MHCII (CD11b^{hi}), and frequency of donor-derived tumor mo-macs expressing PDL1. N=3 per group. One bioRxiv preprint doi: <https://doi.org/10.1101/2024.06.24.600382>; this version posted June 28, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

b. In vitro BM progenitor-derived macrophage culture with KP tumor conditioning early and late in differentiation or no conditioning (control), with frequency of macrophages expressing Arg1, MHCII, CD86, and frequency of Arg1^{hi} macs expressing PDL1. N=4 per group, representative of two independent experiments.

c. scATAC-seq heatmap depicting normalized score for transcription factor (TF) motif accessibility enriched in marker peaks of myeloid cell states in lung of naïve and tumor-bearing mice. N=4 pooled.

d. scATAC-seq heatmap depicting normalized score for TF motif accessibility enriched in marker peaks of indicated lung-infiltrating myeloid cell states of patients with NSCLC. N=14 pooled.


e. scATAC-seq candidate TF regulators in NSCLC-infiltrating monocyte and macrophage clusters of patients with NSCLC, prioritized by maximum TF motif deviation (Δ) across clusters. Dot color indicating major known biological pathway.


f. Reactome pathway terms enriched in TF regulators identified from mouse and human analysis, ranked by adjusted p-value (log q-value) and odds ratio. Red dots linked to stress-associated cytoprotective signaling.

g. Prioritization of common top-quartile TF regulators identified from mouse and human analysis, ranked by maximum TF deviation (Δ), and colored by correlation to human TF gene expression (GEx).

p-values computed by unpaired t-test across conditions (a). *p*-values computed by one-way ANOVA with Sidak's multiple comparisons test (b). *P*-value of < 0.05 denoted *; *p*-values < 0.01 denoted **; *p*-values < 0.001 denoted ***.

figure 3: Stepwise activation of NRF2 signaling regulates tumor-associated mo-mac survival and immunosuppressive function

k

Fig. 3: Stepwise activation of NRF2 signaling regulates tumor-associated mo-mac survival and immunosuppressive function

a. ChromVAR motif deviation for *Nfe2l2* (TOP) and UCell-computed score for NRF2 downstream gene program activation (BOTTOM) in recruited lymphoma-infiltrating myeloid cell clusters. N=14 pooled. bioRxiv preprint doi: <https://doi.org/10.1101/2024.06.24.660383>; this version posted June 28, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

b. ChromVAR motif deviation for *NFE2L2* (TOP) and UCell-computed score for NRF2 downstream gene program activation (BOTTOM) in human NSCLC-infiltrating myeloid cell clusters. N=14 pooled.

c. NRF2 downstream gene activation score per-patient in human lung-infiltrating myeloid cells from independent validation set of NSCLC re-analyzed from *Leader et al. 2021*. N=35 patients.

d. Normalized UCell-computed scores per-patient for Oxidative stress response (LEFT) and NRF2 downstream gene activation (RIGHT) in circulating CD14 monocytes and NSCLC-infiltrating CD14 monocytes for matched patient samples. N=4 patients.

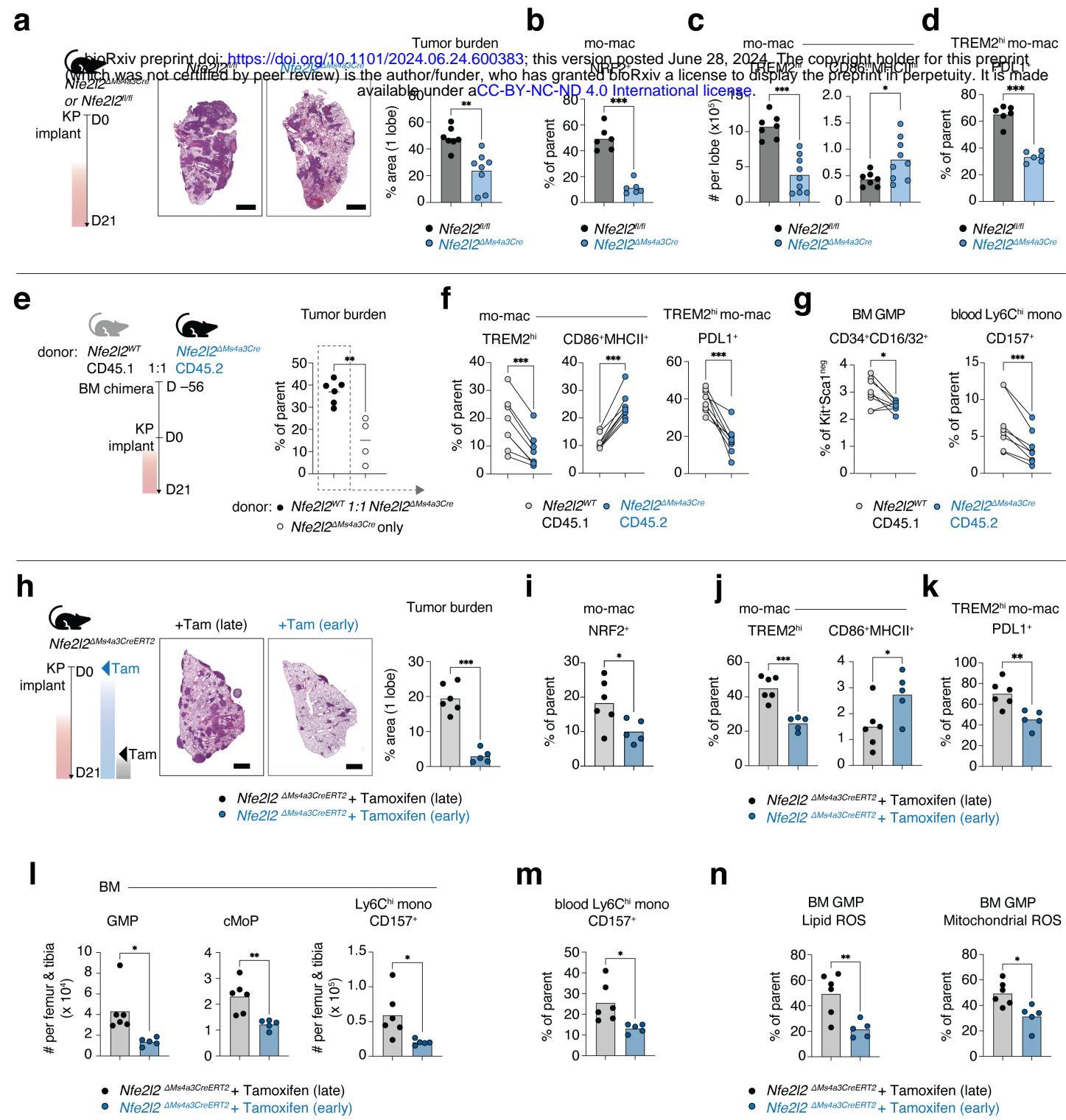
e. Relative *Nfe2l2* TF motif enrichment in tumor condition relative to naïve condition (TOP) and UCell-computed NRF2 downstream gene activation in tumor condition (BOTTOM) across indicated myeloid populations.

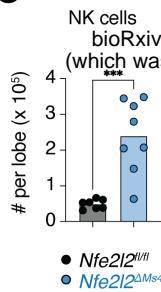
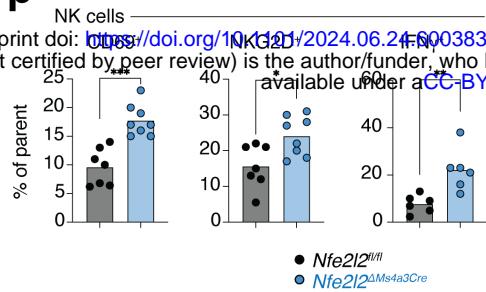
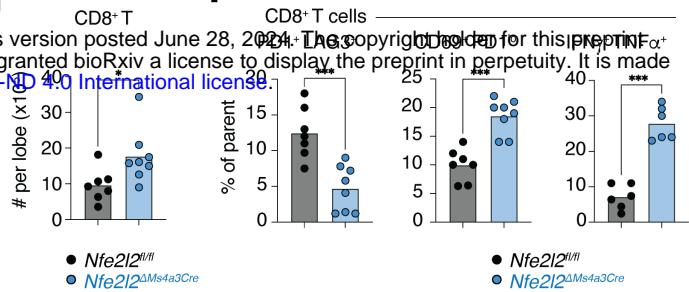
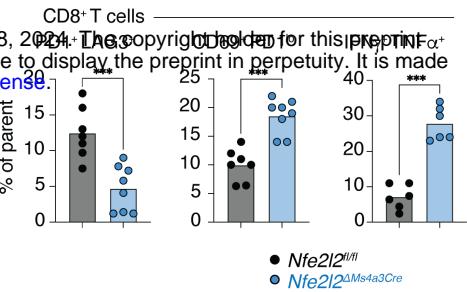
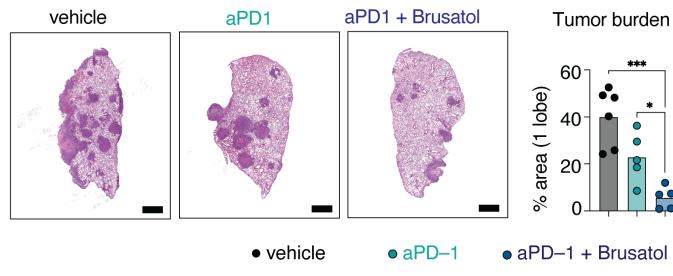
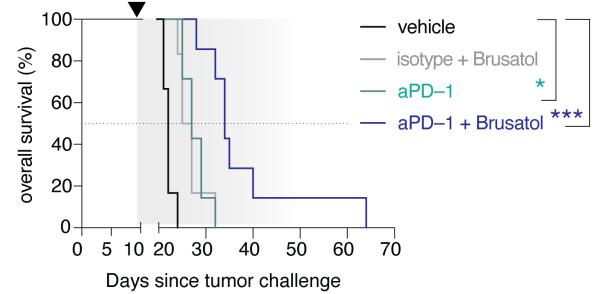
f. Relative TF motif enrichment for *Irf3* and *Irf7* in tumor condition relative to naïve condition (TOP) and UCell-computed IFN stimulated gene program in tumor condition (BOTTOM) across indicated myeloid populations.

g. Pathways enriched in indicated cluster of H3K4me3 promoter peaks containing NRF2 binding motif in BM GMPs and Ly6C^{hi} monocytes from KP tumor-bearing mice compared to naïve mice, with exemplar genes indicated. Curated terms arranged by adjusted p-value (log q-value).

h. *In vivo* tracing of naïve or KP tumor-primed BM GMPs transferred into KP tumor-bearing congenic CD45.1 hosts, with frequency of donor-derived tumor mo-macs expressing NRF2 and HO-1. N=3–5 per group. One experiment.

i. In vitro BM progenitor-derived macrophage culture with KP tumor conditioning early and late in differentiation or no conditioning (control), with frequency of macrophages expressing NRF2 and HO-1. N=4 per group, representative of two independent experiments.


j. Representative flow cytometry plots for AnnexinV and Propidium iodide (PI) in NRF2KO (KO) or control (WT) bone-marrow derived macrophages exposed to KP tumor conditioned media, with relative frequency of apoptotic cells. N=3 per group, representative of three independent experiments.







k. Relative MFI quantification of CellROX (reactive oxygen species), LiperFluo (lipid peroxidation), and MitoSOX (mitochondrial oxidative burden) in NRF2KO (KO) or control (WT) bone-marrow derived macrophages exposed to KP conditioned media. N=3 per group, representative of three independent experiments.

l. *In vivo* tracing of KP tumor-primed BM GMPs transferred from *Nfe2l2*^{ΔMs4a3} mice or *Nfe2l2*^{fl/fl} control littermates into KP tumor-bearing congenic CD45.1 hosts, with frequency of donor-derived tumor mo-macs expressing GPNMB and CD9 (TREM2^{hi}), CD86 and MHCII (CD86⁺MHCII⁺), and frequency of donor-derived TREM2^{hi} mo-macs expressing PDL1. N=6 per group. One experiment.

p-values computed by one-way ANOVA with Dunnett's multiple comparisons test (c), or Sidak's multiple comparisons test (i). *p*-values computed by paired t-test (d), or unpaired t-test (h),(j),(k),(l). *p*-values computed by hypergeometric test with multiple test correction (g). *P*-value of < 0.05 denoted *; *p*-values < 0.01 denoted **; *p*-values < 0.001 denoted ***.

figure 4: NRF2 signaling in myeloid lineage sustains myelopoiesis promoting NK and T cell immunosuppression in TME

o**p****q****r****s****t**

Fig. 4: NRF2 signaling sustains myelopoiesis promoting NK and T cell immunosuppression in TME

a. Representative lungs from KP tumor-bearing $Nfe2l2^{\Delta Ms4a3}$ mice or $Nfe2l2^{fl/fl}$ negative littermates with quantification of tumor burden. N=7–8 mice per group. Data are individual data points with bar denoting mean.

b. Nuclear NRF2 quantified in tumor-infiltrating mo-macs of $Nfe2l2^{\Delta Ms4a3}$ mice or $Nfe2l2^{fl/fl}$ littermates. N=6 mice per group. (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a [CC-BY-NC-ND 4.0 International license](https://creativecommons.org/licenses/by-nd/4.0/).

c. Number of tumor-infiltrating mo-macs expressing GPNMB and CD9 (TREM2^{hi}), CD86 and MHCII (CD86⁺MHCII⁺), in $Nfe2l2^{\Delta Ms4a3}$ mice or $Nfe2l2^{fl/fl}$ negative littermates. N=7–9 mice per group.

d. Frequency of tumor-infiltrating TREM2^{hi} mo-macs expressing immunoregulatory marker PDL1 in $Nfe2l2^{\Delta Ms4a3}$ mice or $Nfe2l2^{fl/fl}$ negative littermates. N=6 mice per group.

e. Schematic of mixed-BM chimera and quantification of tumor burden in $Nfe2l2^{WT}$ 1:1 $Nfe2l2^{\Delta Ms4a3}$ donor chimera and $Nfe2l2^{\Delta Ms4a3}$ donor chimera. N=4–6 mice per group. Data are individual data points with bar denoting mean.

f. Frequency of lung-infiltrating mo-macs from indicated donors expressing GPNMB and CD9 (TREM2^{hi}), CD86 and MHCII (CD86⁺MHCII⁺), and frequency of lung-infiltrating TREM2^{hi} mo-macs from indicated donors expressing immunoregulatory marker PDL1. N=8 mice per group.

g. Frequency of BM CD34⁺ myeloid progenitors (LEFT) and blood-circulating CD157⁺ Ly6C^{hi} monocytes (RIGHT) from indicated donors. N=8 mice per group.

h. Schematic of Tamoxifen-based early vs late temporal deletion of $Nfe2l2$ in $Nfe2l2^{\Delta Ms4a3CreERT2}$ mice, with representative lung tumor burden and quantification of tumor burden. N=5–6 mice per group. Data are individual data points with bar denoting mean.

i. Nuclear NRF2 quantified in tumor-infiltrating mo-macs of $Nfe2l2^{\Delta Ms4a3CreERT2}$ mice with early vs late deletion of NRF2. N=5–6 mice per group.

j. Number of tumor-infiltrating mo-macs expressing GPNMB and CD9 (TREM2^{hi}), CD86 and MHCII (CD86⁺MHCII⁺), in $Nfe2l2^{\Delta Ms4a3CreERT2}$ mice with early vs late deletion of NRF2. N=5–6 mice per group.

k. Frequency of tumor-infiltrating TREM2^{hi} mo-macs expressing immunoregulatory marker PDL1 in $Nfe2l2^{\Delta Ms4a3CreERT2}$ mice with early vs late deletion of NRF2. N=5–6 mice per group.

l. Abundance of GMPs, cMoPs, and CD157⁺ Ly6C^{hi} monocytes in BM of KP tumor-bearing $Nfe2l2^{\Delta Ms4a3CreERT2}$ mice with early vs late deletion of NRF2. N=5–6 mice per group.

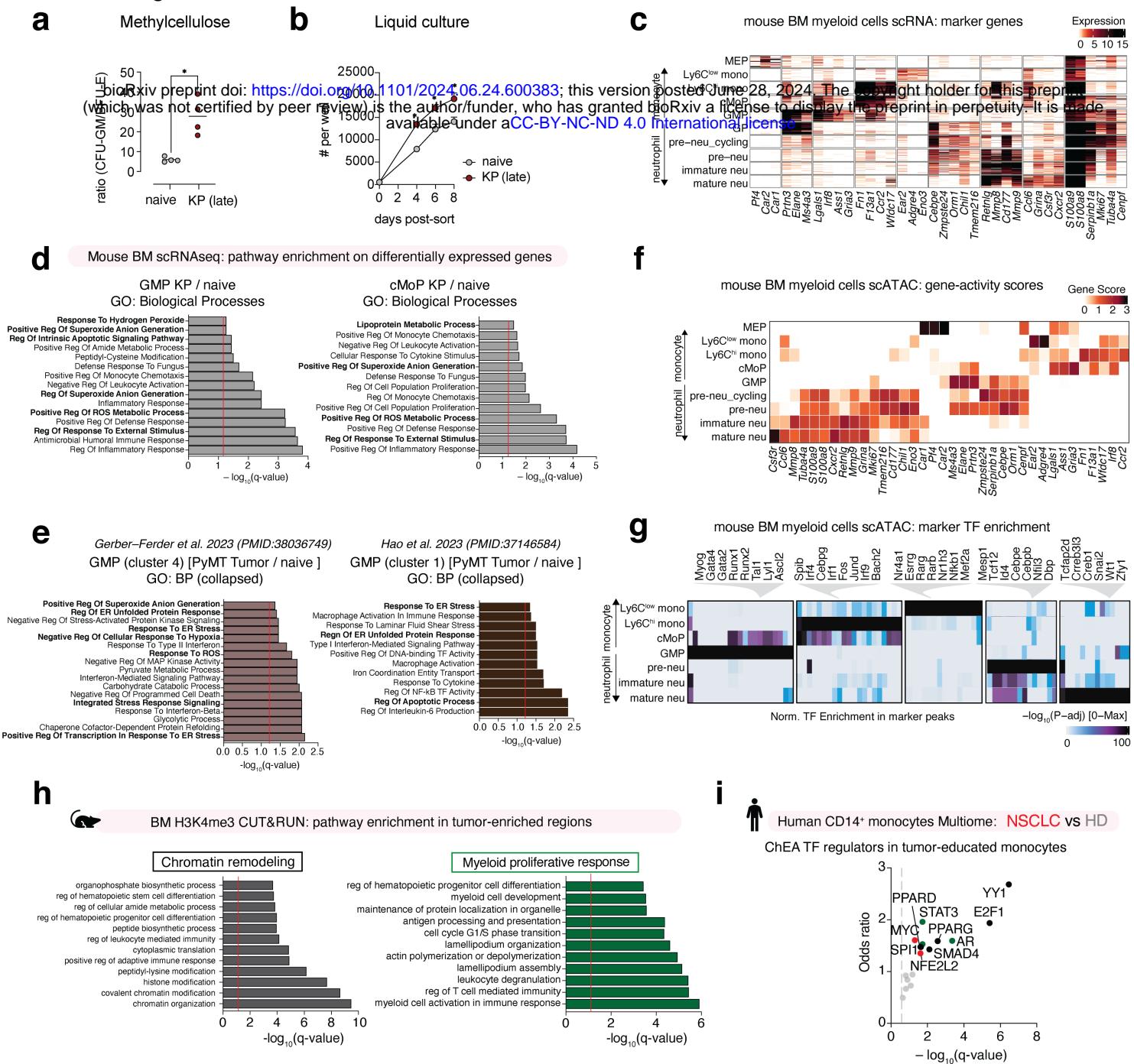
m. Frequency of CD157⁺ Ly6C^{hi} monocytes in circulation of KP tumor-bearing $Nfe2l2^{\Delta Ms4a3CreERT2}$ mice with early vs late deletion of NRF2. N=5–6 mice per group.

n. Relative LiperFluo (lipid peroxidation), and MitoSOX (mitochondrial oxidative burden) in BM GMPs of KP tumor-bearing $Nfe2l2^{\Delta Ms4a3CreERT2}$ mice with early vs late deletion of NRF2. N=5–6 mice per group.

o. Flow cytometry quantification of lung-infiltrating NK cells in KP tumor-bearing $Nfe2l2^{\Delta Ms4a3}$ mice or negative littermates at day 21. N=7–8 mice per group.

p. Frequency of lung-infiltrating NK cells expressing markers CD69, NKG2D, and producing IFN γ in KP tumor-bearing $Nfe2l2^{\Delta Ms4a3}$ mice or negative littermates. N=7–8 mice per group.

q. Flow cytometry quantification of lung-infiltrating CD8⁺ T cells in KP tumor-bearing $Nfe2l2^{\Delta Ms4a3}$ mice negative littermates at day 21. N=7–8 mice per group.


r. Frequency of lung-infiltrating CD8⁺ T cells expressing inhibitory markers PD1, LAG3, activating markers CD69, and producing IFN γ and TNF α in tumor-bearing $Nfe2l2^{\Delta Ms4a3}$ mice or littermates. N=7–8 mice per group.

s. Representative histology of KP tumor-bearing mice treated with Brusatol (NRF2 inhibitor) in conjunction with anti-PD1 immunotherapy, anti-PD1 alone, or vehicle; with quantification of tumor burden. N=5–7 mice per group, representative of two independent experiments.

t. Kaplan-Meier plot depicting overall survival of KP tumor-bearing mice treated with Brusatol (NRF2 inhibitor) in conjunction with anti-PD1 immunotherapy, Brusatol alone, anti-PD1 alone, or vehicle. N=6–8 mice per group. One experiment.

p-values computed by unpaired t-test (a)–(e),(h)–(r), and paired t-test (f),(g). p-values computed by one-way ANOVA with Dunnett's multiple comparisons test (s). p-values computed by Log-rank (Mantel-Cox) test (t). P-value of < 0.05 denoted *; p-values < 0.01 denoted **; p-values < 0.001 denoted ***.

extended data figure 1:

Extended Data Fig. 1: Pathogenic myelopoiesis in cancer associates with changes in the chromatin state of bone marrow myeloid progenitors.

a. Ratio of granulocytic/monocytic colony forming units (CFU-GM) to erythroid blasts (BFU-E) formed by BM progenitors from naïve and KP tumor-bearing mice. Pooled from 2 independent experiments. N=4 replicates.

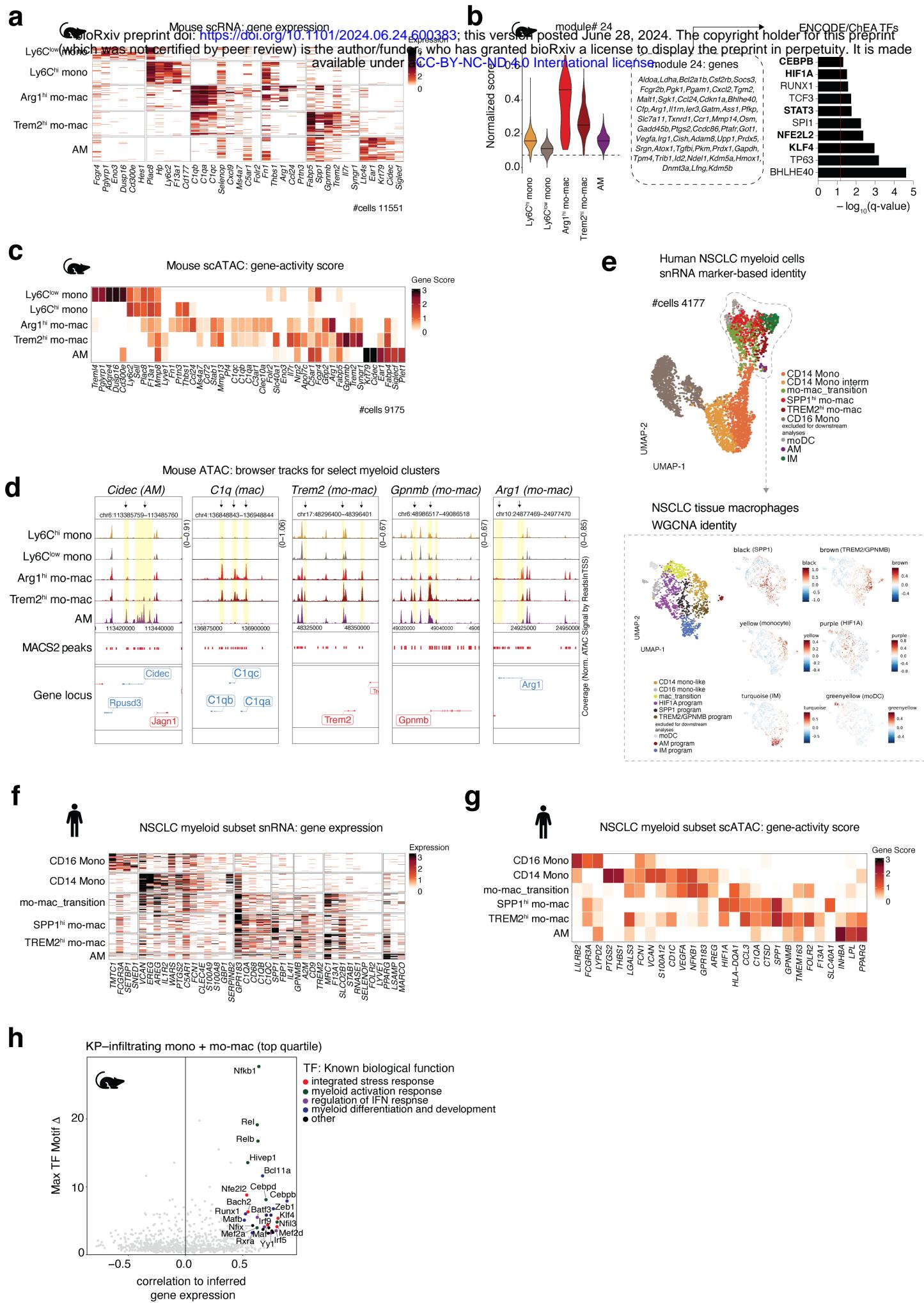
b. Cell growth quantified during longitudinal liquid culture expansion of sorted BM GMPs from naïve and KP tumor-bearing mice. Pooled from 2 independent experiments. N=3 replicates.

c. scRNA-seq heatmap of unique molecular identifier (UMI) counts per cell depicting sub-clustering of myeloid cells in BM of naïve and tumor-bearing mice and annotation of cell states based on characteristic markers. Pooled from N=3 mice per group.

d. Gene ontology (GO): Biological process (BP) terms enriched in KP tumor-bearing mouse BM GMPs (LEFT) and cMoPs (RIGHT) compared to naïve counterpart. Curated terms arranged by adjusted p-value (log q-value). p-values computed by hypergeometric test with multiple test correction.

e. Gene ontology (GO): Biological process (BP) terms enriched in PyMT tumor-bearing mouse GMPs compared to naïve counterpart; data obtained from Gerber-Ferder et al. 2023 (LEFT) and Hao et. al. 2023 (RIGHT). Curated terms arranged by adjusted p-value (log q-value). p-values computed by hypergeometric test with multiple test correction.

f. scATAC-seq heatmap depicting column-normalized gene scores across indicated myeloid cell states in BM of tumor-bearing and naïve mice. Pooled from N=3 mice per group.


g. scATAC-seq heatmap depicting normalized score for transcription factor (TF) motif accessibility enriched in marker peak regions of indicated myeloid cell states in BM of naïve and tumor-bearing mice. Pooled from N=3 mice per group.

h. Pathways in indicated clusters of H3K4me3 peaks enriched in BM GMPs and Ly6C^{hi} monocytes from KP tumor-bearing mice compared to naïve mice. Curated terms arranged by adjusted p-value (log q-value).

i. ChIP-X Enrichment Analysis (ChEA) calculated TF regulators on differentially expressed genes in CD14 monocytes from blood of patients with NSCLC compared to healthy donors. TFs arranged by adjusted p-value (log q-value). Dot color indicating major known biological pathways.

p-values computed by Welch's t-test (a). p-values computed by multiple unpaired t-test across timepoints (b). p-values computed by hypergeometric test with multiple test correction (d),(e),(h),(i). P-value of < 0.05 denoted *; p-values < 0.01 denoted **; p-values < 0.001 denoted ***.

extended data figure 2:

Extended Data Fig. 2: Tumor myelopoiesis fuels mo-macs in TME with sustained cytoprotective stress responses.

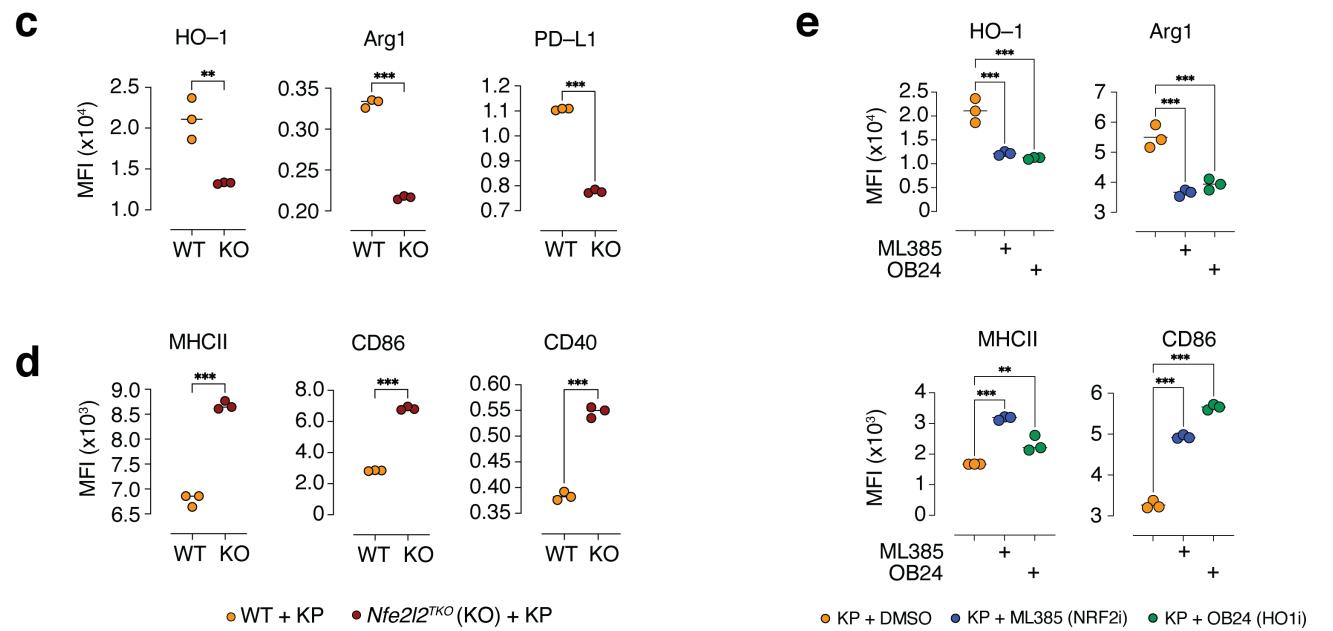
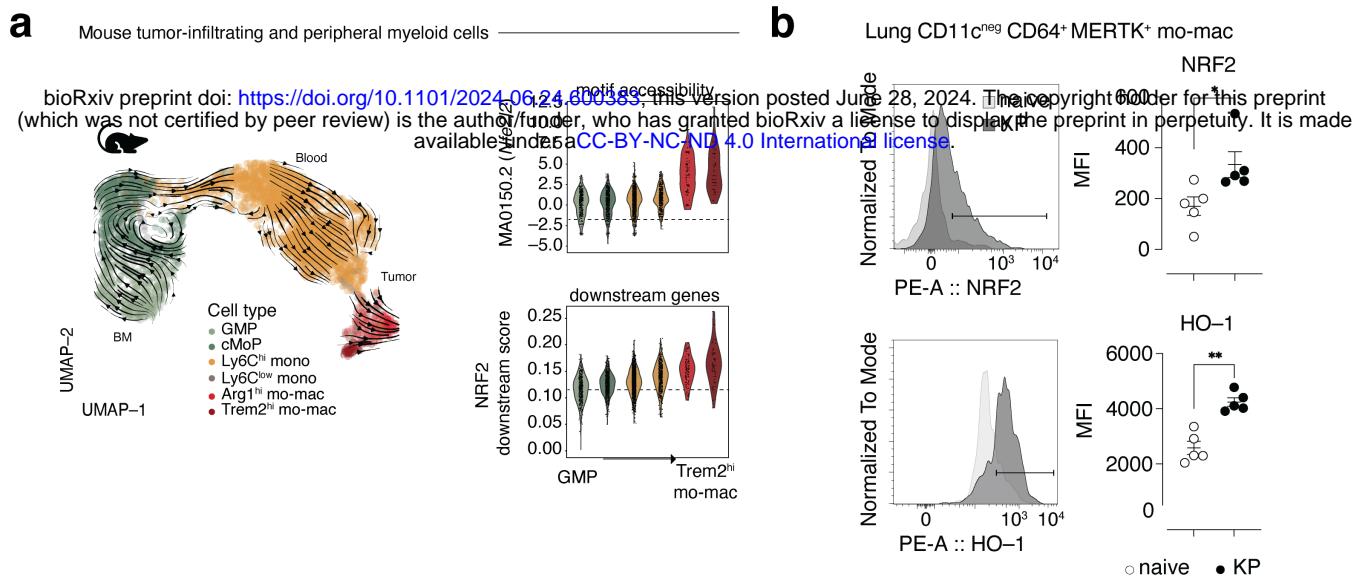
a. scRNA-seq heatmap plot of UMI counts per cell depicting sub-clustering of myeloid cells in lung of naïve and KP tumor-bearing mice and annotation of cell24 states3 based on characteristic markers. N=3 mice pooled for one experiment.
bioRxiv preprint doi: <https://doi.org/10.1101/240833>; this version posted April 18, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

b. Aggregate module score for metabolic and cytoprotective gene program across KP lung tumor-infiltrating myeloid cell clusters (LEFT), with ENCODE/ChEA3 calculated TF regulators on identified gene module.

c. scATAC-seq heatmap depicting column-normalized gene scores across indicated myeloid cell states in lung of naïve and tumor-bearing mice. N=4 pooled for one experiment.

d. Representative browser track plots at known marker gene loci for myeloid cell states identified in scATAC-seq data from lung of naïve and KP tumor-bearing mice. Yellow highlights and arrows indicate peak regions of interest.

e. UMAP depicting myeloid cells in snRNA-seq data from human NSCLC primary lung tumors (TOP; N=5 patients); colored by marker gene-based cellular identity. Representative UMAP depicting WCGNA-based identity for specific macrophage gene programs in subsetted dataset with exemplar weighted programs (BOTTOM).



f. snRNA-seq heatmap of UMI counts per cell depicting sub-clustering of myeloid cells in human NSCLC primary lung tumors and annotation based on characteristic markers. N=5 patients pooled.

g. scATAC-seq heatmap depicting column-normalized gene scores across indicated myeloid cell states in lung tumors of patients with NSCLC. N=14 patients pooled.

h. scATAC-seq candidate TF regulators in mouse tumor-infiltrating monocyte and macrophage clusters, prioritized by maximum TF motif deviation (Δ) across clusters. Dot color indicating major known biological pathway. N=4 pooled.

p-values computed by hypergeometric test with multiple test correction (b).

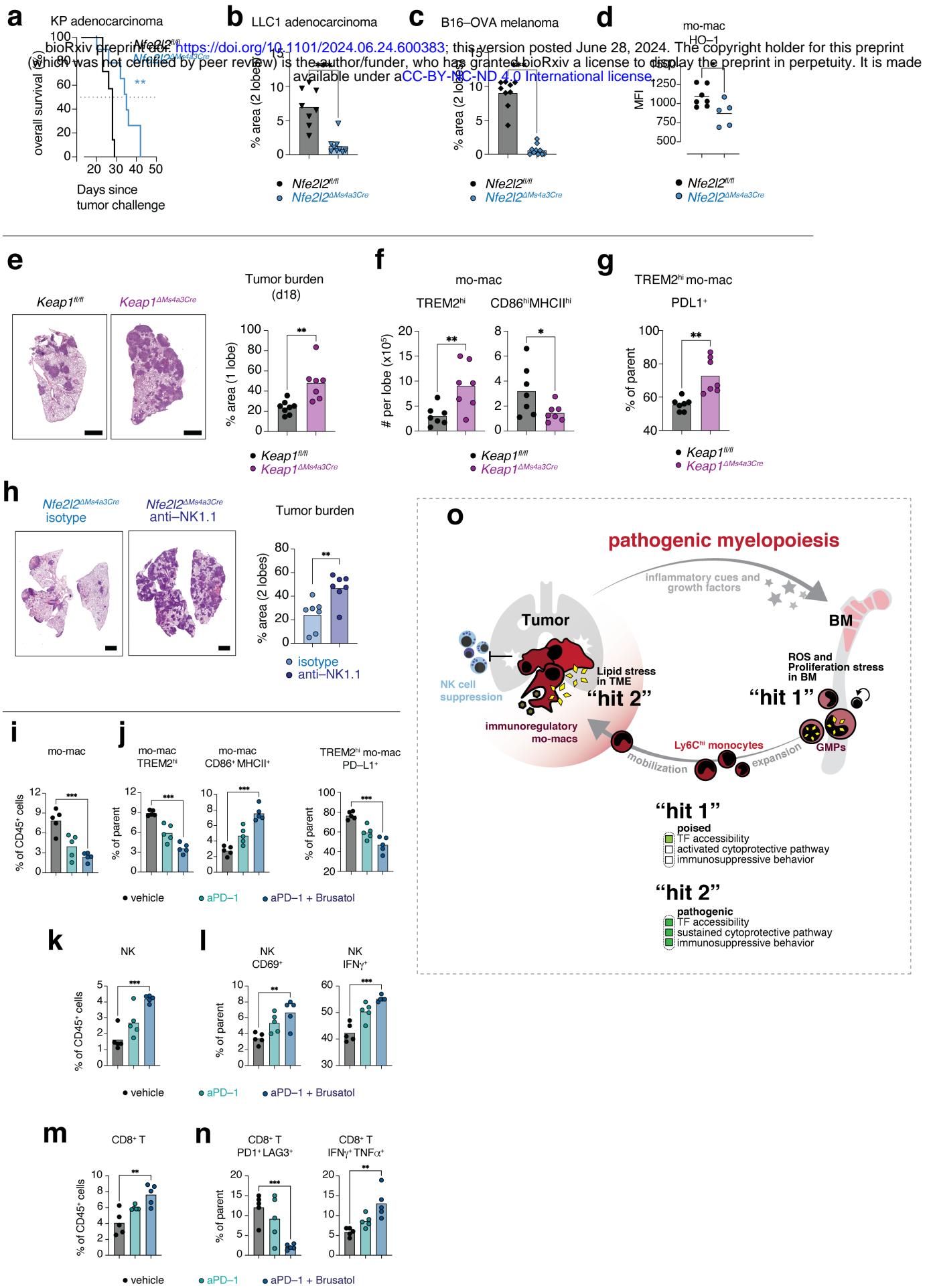
extended data figure 3:

Extended Data Fig. 3: Stepwise activation of NRF2 signaling regulates tumor-associated mo-mac survival and immunosuppressive function.

a. UMAP plot of paired mouse scRNA-seq labeled by cell type identity (LEFT) with quantification of *Nfe2l2* TF motif accessibility and aggregate score for the NFE2L2 gene. bioRxiv preprint doi: <https://doi.org/10.1101/2024.06.24.600383>; this version posted June 28, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

b. Representative flow cytometry histogram and median fluorescence intensity (MFI) quantification of NRF2 and HO-1 expression in lung-infiltrating CD64⁺MERTK⁺ mo-macs of naïve or KP tumor-bearing mice. N=5-6 mice per group.

c. Relative MFI quantification of HO-1, immunoregulatory markers Arg1, PDL1, CD206 in NRF2KO (KO) or control (WT) bone-marrow derived macrophages exposed to KP tumor conditioned media. N=3 per group.


d. Relative MFI quantification of immunostimulatory markers MHCII, CD80, CD86, and CD40 in NRF2KO (KO) or control (WT) bone-marrow derived macrophages exposed to KP tumor conditioned media. N=3 per group.

e. Relative MFI quantification of HO-1, Arg1, MHCII, CD86 in KP conditioned media-exposed BMDMs treated with ML385 (NRF2 inhibitor) and OB24 (HO-1 inhibitor). N=3 per group.

f. *In vivo* tracing of KP tumor-primed BM GMPs transferred from *Nfe2l2*^{ΔMs4a3} mice or *Nfe2l2*^{fl/fl} control littermates into KP tumor-bearing congenic CD45.1 hosts, with relative abundance of donor-derived tumor mo-macs and Ly6C^{hi} monocytes. N=6 per group. One experiment.

p-values computed by one-way ANOVA with Dunnett's multiple comparisons test (e). *p*-values computed by unpaired t-test (b),(c),(d),(f). *P*-value of < 0.05 denoted *; *p*-values < 0.01 denoted **; *p*-values < 0.001 denoted ***.

extended data figure 4:

Extended Data Fig. 4: NRF2 signaling sustains myelopoiesis promoting NK and T cell immunosuppression in TME.

a. Kaplan-Meier plot depicting overall survival of KP tumor-bearing $Nfe2l2^{\Delta Ms4a3}$ mice or $Nfe2l2^{fl/fl}$ negative littermates. N=8–10 mice per group.

b. Representative lungs from KP tumor-bearing $Nfe2l2^{\Delta Ms4a3}$ mice or $Nfe2l2^{fl/fl}$ negative littermates with quantification of tumor burden. N=9–10 mice per group. Data are individual data points with bar denoting mean.

c. Representative lungs from B16-OVA metastatic tumor-bearing $Nfe2l2^{\Delta Ms4a3}$ mice or $Nfe2l2^{fl/fl}$ negative littermates with quantification of tumor burden. N=9–10 mice per group.

d. MFI quantification of HO-1 expression in lung-infiltrating mo-macs of $Nfe2l2^{\Delta Ms4a3}$ mice or $Nfe2l2^{fl/fl}$ littermates. N=7–8 mice per group.

e. Representative lungs from KP tumor-bearing $Keap1^{\Delta Ms4a3}$ mice or $Keap1^{fl/fl}$ littermates with quantification of tumor burden. N=7–8 mice per group.

f. Number of lung-infiltrating mo-macs expressing GPNMB and CD9 (TREM2^{hi}), CD86 and MHCII (CD86⁺MHCII⁺) in KP tumor-bearing $Keap1^{\Delta Ms4a3}$ mice or $Keap1^{fl/fl}$ negative littermates. N=7–9 mice per group.

g. Frequency of lung-infiltrating TREM2^{hi} mo-macs expressing immunoregulatory marker PDL1 in KP tumor-bearing $Keap1^{\Delta Ms4a3}$ mice or $Keap1^{fl/fl}$ negative littermates. N=6 mice per group.

h. Representative histology at day 21 from KP tumor-bearing $Nfe2l2^{\Delta Ms4a3}$ mice that received either anti-NK1.1 depletion antibodies or isotype, with quantification of tumor burden. N=7–9 mice per group.

i. Frequency of mo-macs in lung tumors of tumor-bearing mice treated as indicated. N=5–7 mice per group.

j. Frequency of mo-macs expressing GPNMB and CD9 (TREM2^{hi}), CD86 and MHCII (CD86⁺MHCII⁺) and frequency of TREM2^{hi} mo-macs expressing PDL1 in tumor-bearing mice treated as indicated. N=5–7 mice per group.

k. Frequency of NK cells in tumor-bearing mice treated as indicated. N=5–7 mice per group.

l. Percentage of NK cells expressing activating marker CD69 and producing IFN γ in tumor-bearing mice treated as indicated. N=5–7 mice per group.

m. Frequency of CD8⁺ T cells in tumor-bearing mice treated as indicated. N=5–7 mice per group.

n. Frequency of CD8⁺ T cells expressing inhibitory markers PD1, LAG3 and producing IFN γ and TNF α in tumor-bearing mice treated as indicated. N=5–7 mice per group.

o. Model depicting “two subsequent hits” within the myeloid lineage during tumor-induced myelopoiesis that promote myeloid suppression in the TME. The first hit is in the BM where ROS and proliferative stress in response to tumor-induced expansion (1) poises NRF2 programs in myeloid progenitors and (2) initiates the pathogenic differentiation of Ly6C^{hi} monocytes. This is then compounded by a second hit which occurs when circulating Ly6C^{hi} monocytes accumulate within the lipid- and ROS-laden TME (3) which further solidifies NRF2 program to promote differentiation into immunosuppressive long-lived mo-macs (4).

p-values computed by Log-rank (Mantel-Cox) test (a). p-values computed by unpaired t-test (b)–(h). p-values computed by one-way ANOVA with Dunnett's multiple comparisons test (i)–(n). P-value of < 0.05 denoted *; p-values < 0.01 denoted **; p-values < 0.001 denoted ***.