

1 **Female lineages and changing kinship patterns in Neolithic Çatalhöyük**

2
3 Eren Yüncü^{1*}, Ayça Küçükakdağ Doğu^{1*}, Damla Kaptan^{1*}, Muhammed Siddık Kılıç^{2*},
4 Camilla Mazzucato³, Merve N. Güler², Elifnaz Eker¹, Büşra Katircioğlu¹, Maciej Chyleński⁴,
5 Kivilcim Başak Vural¹, Arda Sevkar⁵, Gözde Ataç¹, N. Ezgi Altınışık⁵, Fatma Küçük
6 Baloğlu^{1,6}, Defne Bozkurt⁷, Jessica Pearson⁸, Marco Milella⁹, Cansu Karamurat¹⁰, Sevval
7 Aktürk¹¹, Ekin Sağlıcan², Nisan Yıldız², Dilek Koptekin^{2,12}, Sevgi Yorulmaz¹, Duygu Deniz
8 Kazancı¹, Ayça Aydoğan⁵, Nergis Bilge Karabulut¹, Kanat Gürün¹, Eline M.J.
9 Schotsmans^{13,14}, Jana Anvari¹⁵, Eva Rosenstock¹⁶, Jennifer Byrnes¹⁷, Peter F. Biehl¹⁸, David
10 Orton¹⁹, Vendela Kempe Lagerholm^{20,21}, Hasan Can Gemici¹⁰, Milena Vasic²², Arkadiusz
11 Marciniak²³, Çiğdem Atakuman¹⁰, Yılmaz Selim Erdal^{5,24}, Emrah Kirdök²⁵, Marin Pilloud²⁶,
12 Clark Spencer Larsen²⁷, Scott D. Haddow^{3#}, Anders Götherström^{20,21#}, Christopher J.
13 Knüsel^{14#}, Füsun Özer^{5#}, Ian Hodder^{7,28#}, Mehmet Somel^{1#!}
14

15 ¹ Department of Biological Sciences, Middle East Technical University, Ankara, Turkey

16 ² Department of Health Informatics, Graduate School of Informatics, Middle East Technical University,
17 Ankara, Turkey

18 ³ Department of Cross-Cultural and Regional Studies, University of Copenhagen, Copenhagen,
19 Denmark

20 ⁴ Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University in Poznań,
21 Poznań, Poland

22 ⁵ Human-G Laboratory, Department of Anthropology, Hacettepe University, Ankara, Turkey.

23 ⁶ Department of Biology, Giresun University, Giresun, Turkey

24 ⁷ Department of Archaeology and History of Art, Koç University, Istanbul, Turkey

25 ⁸ Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, UK

26 ⁹ Institute of Forensic Medicine, Department of Physical Anthropology University of Bern, Bern,
27 Switzerland

28 ¹⁰ Department of Settlement Archaeology, Middle East Technical University, Ankara, Turkey

29 ¹¹ Department of Bioinformatics, Hacettepe University, Ankara, Turkey

30 ¹² Department of Computational Biology, University of Lausanne, Lausanne, Switzerland

31 ¹³ School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Australia

32 ¹⁴ CNRS, PACEA, UMR 5199, University of Bordeaux, Bordeaux, France

33 ¹⁵ Department of Prehistoric Archaeology, University of Cologne, Cologne, Germany

34 ¹⁶ Bonn Center for ArchaeoSciences, Institute for Archaeology and Cultural Anthropology, University
35 of Bonn, Bonn, Germany

36 ¹⁷ Department of Anthropology, University of Nevada, Nevada, Las Vegas, USA

37 ¹⁸ Department of Anthropology, University of California Santa Cruz, Santa Cruz, CA, USA

38 ¹⁹BioArCh, Department of Archaeology, University of York, York, UK
39 ²⁰Centre for Palaeogenetics, Stockholm, Sweden
40 ²¹Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
41 ²²Institute for Near Eastern Archaeology, Berlin Freie Universität, Berlin, Germany
42 ²³Faculty of Archaeology, Adam Mickiewicz University in Poznań, Poznań, Poland
43 ²⁴Husbio-L Laboratory, Department of Anthropology, Hacettepe University, 06800 Beytepe, Ankara,
44 Turkey.

45 ²⁵Department of Biotechnology, Mersin University, Yenişehir, Mersin, Turkey

46 ²⁶Department of Anthropology, University of Nevada, Reno

47 ²⁷Department of Anthropology, The Ohio State University, Columbus, OH, USA

48 ²⁸Department of Anthropology, Stanford University, Stanford, CA, USA

49

50 *These authors contributed equally

51 #These authors jointly supervised this work.

52 [!]Corresponding authors: eren26285@gmail.com, somel.mehmet@gmail.com

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78 **Abstract**

79

80 Arguments have long suggested that the advent of early farming in the Near East and
81 Anatolia was linked to a 'Mother Goddess' cult. However, evidence for a dominant female
82 role in these societies has been scarce. We studied social organisation, mobility patterns
83 and gendered practices in Neolithic Southwest Asia using 131 paleogenomes from
84 Çatalhöyük East Mound (7100-5950 BCE), a major settlement in Central Anatolia with an
85 uninterrupted occupation and an apparent egalitarian structure. In contrast to widespread
86 genetic evidence for patrilocality in Neolithic Europe, the Çatalhöyük individuals revealed no
87 indication of patrilocal mobility. Analysing genetic kin ties among individuals buried in the
88 same house (co-burials) across 35 Çatalhöyük buildings, we identified close ties
89 concentrated within buildings and among neighbours in Çatalhöyük's Early period, akin to
90 those in the preceding Pre-Pottery Neolithic in Southwest Asia. This pattern weakened over
91 time: by the late 7th millennium BCE, subadults buried in the same building were rarely
92 closely genetically related, despite sharing similar diets. Still, throughout the site's
93 occupation, genetic connections within Çatalhöyük buildings were much more frequently
94 connected via the maternal than the paternal line. We also identified differential funerary
95 treatment of female subadults compared to those of males, with a higher frequency of grave
96 goods associated with females. Our results reveal how kinship practices changed while key
97 female roles persisted over one thousand years in a large Neolithic community in western
98 Eurasia.

99 **Introduction**

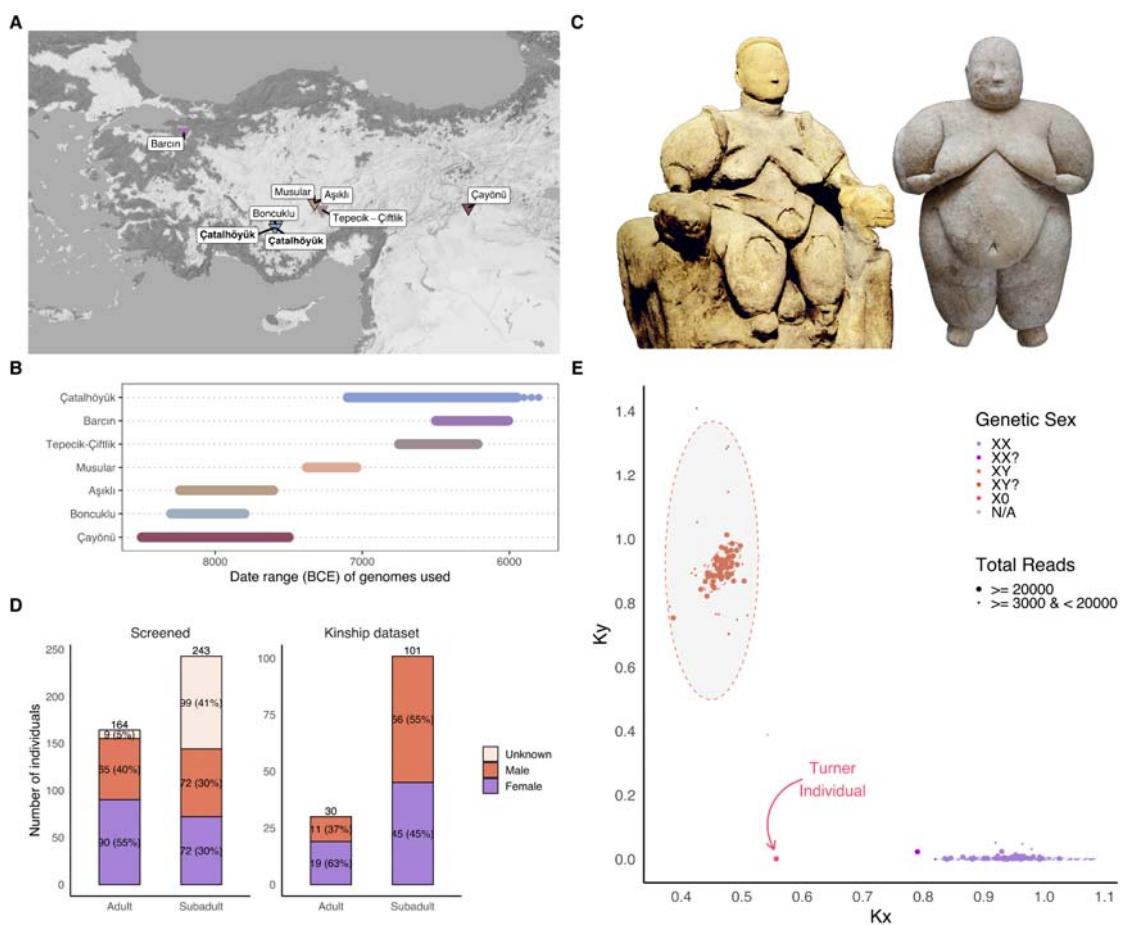
100

101 Social organisation and gender differentiation in prehistoric societies can be difficult to
102 discern from material culture data and are often subjects of controversy. One such long-
103 standing debate has revolved around the existence of a “Mother Goddess” cult in early food-
104 producing societies. This theory was originally inspired by dominant female figurines found
105 at Pottery Neolithic sites across Anatolia and the Aegean, interpreted as deities symbolising
106 fertility or as representatives of matriarchal organisation (1, 2). However, neither material
107 culture nor bioarchaeology has provided additional evidence for female-biased roles in these
108 societies (3, 4).

109

110 Recently, genetic data has emerged as a novel source of evidence to study social
111 organisation and mobility patterns in prehistoric societies. The majority of such studies have
112 thus far focused on European Neolithic societies, revealing a predominant picture of genetic
113 kin-based and patrilocal/patrilineal organisation [reviewed in (5)], such as generations within
114 village cemeteries frequently connected through the paternal genetic line (6–8) or close
115 genetic connections among mainly male burials in megalithic tombs (9, 10). It is unclear,
116 however, if these organisational patterns apply to the Neolithic Near East, where food-
117 producing cultures originally emerged. The limited genetic data published to date from
118 Anatolia has suggested that genetic kinship and sex-biased mobility in these societies may
119 have differed from those in Neolithic European groups, although the results have remained
120 inconclusive due to limited sample sizes (11).

121


122 Here, we tackle these questions using a comprehensive paleogenomic dataset from
123 Çatalhöyük, a major Pottery Neolithic site in Central Anatolia known for its elaborate
124 symbolism, including vivid wall paintings and diverse array of female figurines (1, 12)
(Figure 1A-C). The main Çatalhöyük East Mound was occupied uninterrupted through the
125 7th millennium BCE (7150-5900 BCE) (13) and has been divided into Early (7100-6700
126 BCE), Middle (6700-6500 BCE), Late (6500-6300 BCE), and Final (6300-5950 BCE) periods
127 based on typological changes. The settlement had a relatively large population for its time,
128 with estimations of 500-800 individuals at its peak (14) [3500-8000 in earlier work(15)]. The
129 neighbouring Çatalhöyük West Mound dates to the early Chalcolithic of Anatolia, 6100-5500
130 BCE (16, 17). Agriculture and animal husbandry were the main sources of subsistence in
131 both mounds, but hunting of wild animals also continued (18, 19), also reflected in the
132 symbolism (20). Neolithic Çatalhöyük has been described as a house-based and relatively
133 egalitarian society, with evidence neither for public buildings nor for systematic
134 socioeconomic inequality among houses, despite the apparent presence of private food
135 storage (18, 21, 22). Dominant social rules can be observed in the shared patterns of
136 internal architecture within buildings (21) and intramural burial patterns, where the dead
137 were buried under house floors while the buildings were still in use, with the adults usually
138 under raised platforms of the central room, and young subadults (e.g. neonates and infants)
139 more frequently near hearths or in storage rooms (23–26). The bioarchaeological evidence
140 indicates a generally healthy population, with the presence of large numbers of subadults
141 suggesting high fertility (27). Dietary differentiation between sexes was limited, and while
142 interpersonal violence is documented, lethal aggression is not (in contrast to the European
143 Neolithic evidence) (27, 28). Despite this wealth of knowledge about Çatalhöyük, significant
144 questions have remained open, such as its demographic connections with neighbouring
145

146 populations, possible sex-bias in mobility patterns (29), and the nature and extent of genetic
147 kin ties among individuals buried in the same building, which we term co-burials, including
148 the possible roles of maternal versus paternal connections (30).

149 **Results**

150 We genetically screened the skeletal remains of 395 individuals from Çatalhöyük by shallow
151 aDNA sequencing (Methods). Despite poor organic preservation and low endogenous
152 human DNA proportions (median 0.03%), we further shotgun sequenced libraries from 113
153 new individuals (Methods) and 4 previously published individuals (31); together with 17
154 previously published genomes (31) (Koptekin et al. forthcoming; Doğu et al. forthcoming) our
155 final dataset (used in population genetic or kinship analyses) comprised 131 individuals from
156 Çatalhöyük East Mound (c.7100-5900 BCE) and two individuals from the West Mound
157 (c.5900-5800 BCE), with final genomic coverages of 0.001-5.5x (median 0.06x) (**Figure 1D**,
158 **Figure S1**, **Table S1**). About 60% of the genetically available sample consists of subadults
159 owing to the superior aDNA preservation in subadult skeletal remains, a unique observation
160 we discuss later in this article. We identified the genetic sex of 179 individuals (**Table S1**) in
161 a new approach, K_{XY} (Methods), with the sex of most subadults determined for the first time
162 (**Figure 1E**). Among the adults, we documented a slightly higher frequency of females (58%)
163 but similar sex ratios among subadults (**Figure 1D-E**). One neonate carried a Turner
164 syndrome (X0) karyotype (**Figure 1E**) (**Supplementary Information**). We used 67 unrelated
165 genomes with $>0.03x$ coverage from the East Mound for demographic analyses (**Table**
166 **S1**), and 123 for estimating genetic kinship among 5535 pairs (**Table S1**; **Table S2**). We
167 also imputed two sets of genomes to perform haplotype-based analyses and diploid kinship
168 estimates, 18 with $>0.25x$ coverage, and 49 with $>0.1x$ coverage, respectively (**Table S1**),
169 while keeping track of possible biases that may arise from imputation on 0.1x genomes
170 using downsampling experiments (Methods). We screened all libraries, including 25 from
171 teeth, for pathogenic microbes, but did not identify reliable signatures (Methods;
172 **Supplementary Information**).

173
174

175

176 **Figure 1: Çatalhöyük, its figurines, and the genomic sample. A) Map of Çatalhöyük and**

177 Neolithic Anatolian settlements genetically analysed in this study. B) Timeline showing the

178 dates of the genetically sampled individuals used in this study. The date range of Çatalhöyük

179 West Mound genomes is shown as dots. C) Two renowned adult female figurines from

180 Çatalhöyük. D) The distribution of genetically analysed individuals with respect to age and

181 sex. The number of individuals in each category and their percentages are shown inside the

182 bars. E) Genetic sex assessment of 179 individuals comparing K_Y (observed/expected chrY

183 reads) and K_X (observed/expected chrX reads) statistics. The neonate with Turner syndrome

184 is indicated with an arrow. The size of points indicates the total number of DNA sequencing

185 reads available per individual, as shown in the figure.

186

187 Regional mobility and genetic interactions with neighbours

188

189 A central question about Çatalhöyük pertains to mobility dynamics that shaped the

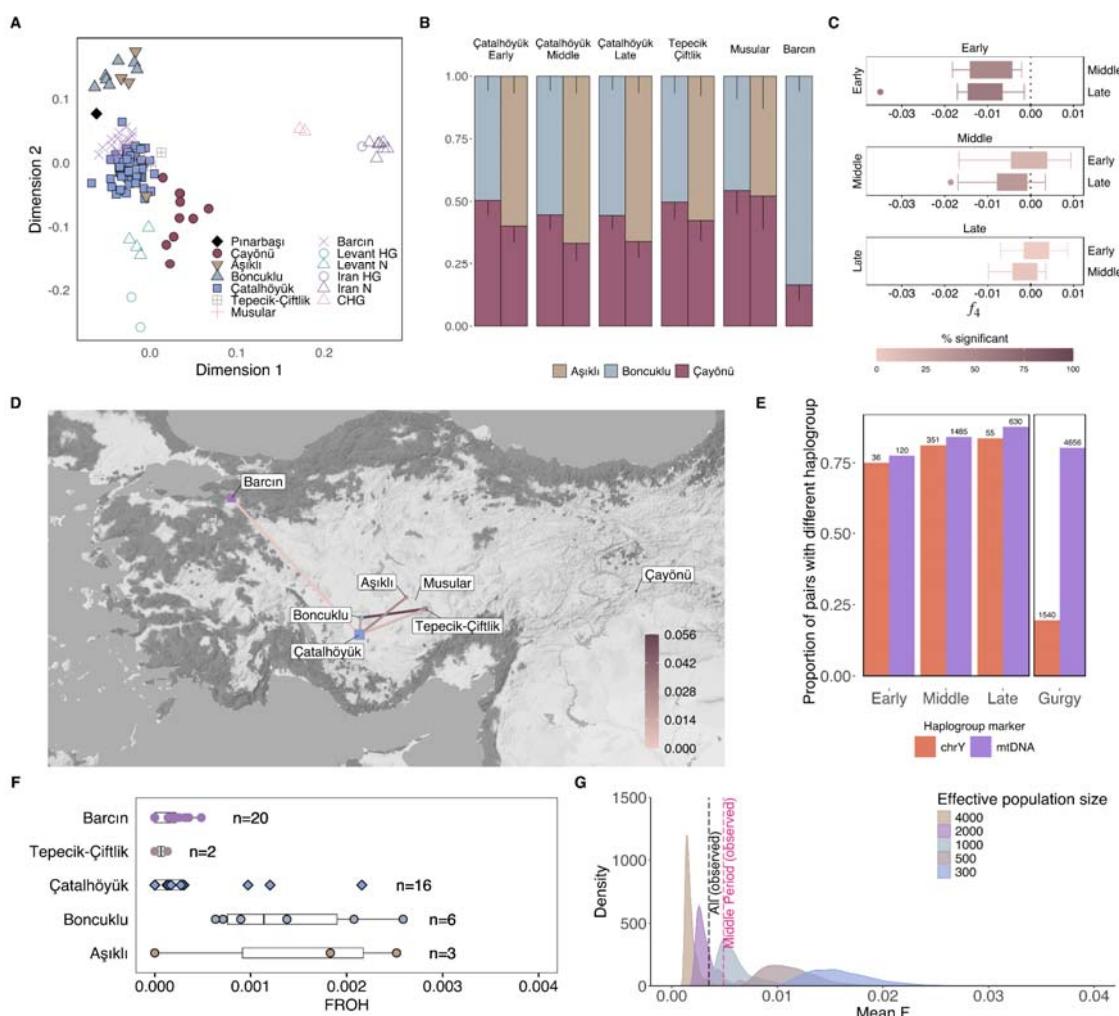
190 community through the 7th millennium BCE as reflected in its gene pool. Whether the site

191 was demographically insular given its conspicuous and persistent cultural characteristics

192 (e.g. the internal architecture of its houses) and also given the lack of large

193 contemporaneous settlements in the region has been a long-standing question (29, 32). The

194 presence of raw materials and products, e.g. from W and E Anatolia, might be considered


195 evidence for wide regional interaction networks (33, 34), although such interactions could

196 have happened without genetic mixing. To investigate evidence for regional gene flow into

197 Çatalhöyük through its occupation, we first explored possible shifts in its average genetic

198 profile over time. MDS and PCA-based clustering of the 67 unrelated Çatalhöyük genomes
199 suggested a relatively homogeneous group similar to other Pottery Neolithic West and
200 Central Anatolian sites (**Figure 2A; Figure S2**); qpAdm modelling also revealed an average
201 Çatalhöyük genetic profile similar to its Anatolian contemporaries (**Figure 2B; Table S3**).
202 This profile, which likely arose through gene flow incomers from U Mesopotamia into local
203 Aceramic/Pre-Pottery Neolithic (PPN) populations by the mid-8th millennium BCE(35),
204 appeared stable across Çatalhöyük's 1000-year occupation (**Figure 2B**). Allelic or haplotype
205 diversity levels were also stable over time, implying no major gene flow event involving
206 genetically distant populations (**Figure S3; Table S2; Supplemental Information**).
207 Meanwhile, individuals from Çatalhöyük's Early period were genetically more closely related
208 to other Early period Çatalhöyük individuals than those from other periods, as measured
209 using f_4 -statistics; this pattern was substantially weaker in the Middle or Late periods (**Figure**
210 **2C; Table S4**). This apparent loss of genetic homogeneity over time could be driven by
211 immigration, a pattern we replicate in population genetic simulations (**Supplemental**
212 **Information**). Indeed, using f_4 -statistics, we found that Çayönü genomes (8th mil. BCE U
213 Mesopotamia) show higher genetic affinity to Early period Çatalhöyük than to later periods,
214 whereas Barçın genomes (7th mil. BCE NW Anatolia) show higher affinity to Late period
215 Çatalhöyük than to earlier periods (**Figure S4; Table S4; Supplemental Information**).
216 Together, these results suggest subtle temporal shifts in the Çatalhöyük gene pool through
217 gene flow.

218
219

220

221

Figure 2: Characterising the Çatalhöyük East Mound gene pool and temporal change. A) Multidimensional scaling (MDS) plot summarising outgroup f_3 -based genetic distances among late Upper Pleistocene and early Holocene genomes from Southwest Asia, including 67 unrelated Çatalhöyük genomes. **B)** qpAdm modelling of ancestry sources (shown in colours) 8th and 7th millennium Neolithic Anatolian genomes from Çatalhöyük (three periods), Tepecik-Çiftlik, Musular, and Barçın. Each column indicates a feasible model, with the y-axis showing admixture proportions. **C)** f_4 -statistics between groups of genomes from the three Çatalhöyük periods. **D)** IBD-sharing with genetically sampled PPN and PN settlements from Anatolia. The colour represents the relative strength of IBD-sharing between two settlements, calculated as the total number of segments shared between all pairwise comparisons divided by the total number of comparisons and the maximum sharing between any pairs in the full sample. **E)** Mitochondrial DNA and Y chromosome haplogroup diversity in Çatalhöyük and French Neolithic Gurgy (8), the latter representing a gene pool shaped by patrilocal practices. The numbers of total pairs in each category is indicated on the bars. The difference in chrY diversities between Gurgy and Çatalhöyük is significant as measured by a random subsampling experiment (**Figure S7**). **F)** Comparison of the F_{ROH} values, the inbreeding coefficient estimated using runs of homozygosity (ROH) $>4\text{cM}$, among different Neolithic sites in Anatolia. **G)** The distribution of mean F (inbreeding coefficient) values in a sample of 16 individuals estimated using genealogy simulations

240 under various breeding population sizes shown in the key and the observed mean F_{ROH}
241 values for the 16 Çatalhöyük individuals tested (vertical grey dashed line) and for the 10
242 individuals from the Çatalhöyük Middle period only (vertical pink dashed line).

243
244 We next investigated regional mobility at the individual level, seeking genetic outliers in
245 Çatalhöyük and other Anatolian Neolithic sites using both clustering methods (MDS and
246 PCA) (**Figure 2A; Figure S2**) and formal tests (f_4 and qpWave) (**Figure S4, Table S4, Table**
247 **S5, Supplementary Information**). Although 28 of 67 Çatalhöyük individuals showed
248 divergent trends in one of five different tests, none displayed consistent affinity to
249 populations of distant regions (e.g. the Levant, Zagros, or Balkans) across multiple analyses
250 (**Figure S5, Table S6**) (for the sake of comparison: one Aşıklı (31) individual showed higher
251 affinity to the Levant than to its compatriots in all five tests). However, possible mobility into
252 Çatalhöyük could have involved genetically similar groups from the region. We indeed found
253 that 5 in 11 Middle and 1 in 3 Late period Çatalhöyük individuals with imputed genomes
254 shared 12-16cM identical-by-descent (IBD) segments (36) with various genetically sampled
255 Neolithic Anatolian communities, representing distant (e.g. >10 generations) relatedness
256 (**Figure 2D, Figure S6; Table S7, Table S8**). More interestingly, in f_4 -statistics, 5/67
257 Çatalhöyük individuals (subadults from Middle and Late periods) appeared more closely
258 related to contemporaneous Barçın than to other Çatalhöyük genomes (**Table S4**), again
259 suggesting mobility into Çatalhöyük from beyond Central Anatolia. Our results are
260 compatible with the strontium isotopic data which reported distinct profiles in 7 out of 77
261 individuals sampled, attesting to inter-regional mobility (29). Overall, Çatalhöyük was likely
262 not insular but received non-negligible levels of incomers mainly from proximate and hence
263 genetically alike communities, e.g. those in Central and West Anatolia (Koptekin et al. 2024),
264 who mixed with the village population.

265
266 **No evidence for patrilocal mobility in Çatalhöyük**
267

268 The observation that Neolithic Çatalhöyük received notable gene flow during its occupation
269 raises the question of whether this might be sex-biased. Ethnographic data suggests farming
270 societies, on average, tend to be more patrilocal than foragers (37). Strontium and genetic
271 evidence from European Neolithic societies have also frequently reported patrilocality, also
272 termed female exogamy (6–8, 38–40) [reviewed by Bentley(5); also see Hrncir and
273 colleagues (41) for alternative interpretations].

274
275 If mobility into Çatalhöyük was also shaped by female exogamy, this should cause divergent
276 haplogroup diversity levels between chromosome Y (chrY) and mitochondrial DNA (mtDNA).
277 We found comparable chrY and mtDNA diversity levels in all three Çatalhöyük periods
278 (**Figure 2E**). In contrast, the same analysis on a comparable-sized archaeogenetic dataset
279 from Gurgy, a Middle Neolithic burial group in France (8), revealed much lower chrY than
280 mtDNA diversity (**Figure 2E**). This is in line with pedigree reconstructions from Gurgy,
281 indicating patrilocality. The Gurgy chrY pattern was also significantly different ($p<0.001$) from
282 the Çatalhöyük profiles, as we demonstrate in a randomisation test (**Figure S7**). Together
283 with evidence of adult females buried with putative nephews in Çatalhöyük (see below) and
284 in other Neolithic Anatolian sites (11, 31, 42), our results imply that patrilocal-like traditions
285 observed in the later-coming European may have been inconspicuous, if not absent, in
286 Neolithic Anatolia.

287

288 **Low consanguinity in Çatalhöyük suggests active inbreeding avoidance**

289

290 Comparisons of modern-day mobile forager versus food-producing groups indicate a
291 tendency towards a higher frequency of consanguinity among food producers, possibly
292 owing to social dynamics shaped by property relationships (43, 44). Genetic data from past
293 societies also supports this general conclusion (45). We asked if the Çatalhöyük community
294 also practised consanguinity. We estimated ROH >4cM in 16 Çatalhöyük genomes with
295 >0.3x coverage with hapROH (46) (Methods). Çatalhöyük homozygosity levels measured
296 with the F_{ROH} statistic were overall lower than estimates from PPN Anatolian communities
297 but comparable with contemporaneous Pottery Neolithic (PN) groups (**Figure 2F, Table S9**).
298 This PPN-PN difference can be attributed to increased genetic diversity in the Neolithic
299 Anatolian gene pool over time owing to the 8th millennium BCE gene flow event mentioned
300 earlier (**Figure 2B**). More interestingly, of the tested Çatalhöyük individuals, only 9 of 16
301 carried ROH >4cM, with the most extreme case a possible offspring of second cousin mating
302 (**Figure S8**). This indicates relatively low levels of inbreeding in Çatalhöyük, as in other
303 Neolithic Anatolian groups.

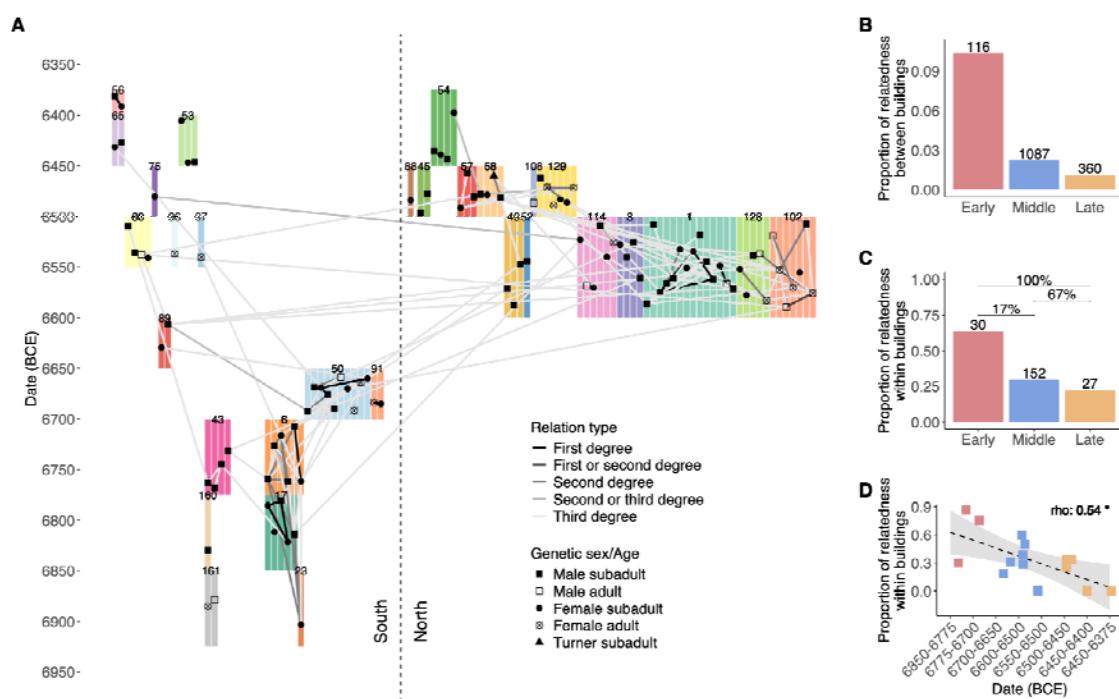
304

305 The finding of low inbreeding raises the possibility of active inbreeding avoidance in
306 Çatalhöyük. We asked whether the observed F_{ROH} levels might be compatible with random
307 mating under various breeding population sizes (N_b) without active inbreeding avoidance.
308 We performed genealogy simulations and estimated the inbreeding coefficient (F) assuming
309 a range of N_b values (300-4,000) and possible reproductive skew, allowing random mating
310 within generations but excluding sibling and half-sibling unions (Methods). We found that the
311 observed F_{ROH} levels could be attained without active inbreeding avoidance as long as N_b
312 was >1000, and more likely, ≥ 2000 (**Figure 2G**). Our results can therefore be explained by
313 either Çatalhöyük N_b being >1000 and not actively avoiding consanguinity, or, Çatalhöyük N_b
314 being <1000 and the community engaging in exogamous reproductive practices (29), e.g. by
315 choosing reproductive partners from outside and/or avoiding consanguinity by tracing
316 biological family lineages (**Figure S9, Figure S10**). Given recent estimates of a maximum of
317 c.300 breeding-age adults in Çatalhöyük (14), the latter scenario may be more likely.

318

319 **Çatalhöyük genetic kin networks**

320

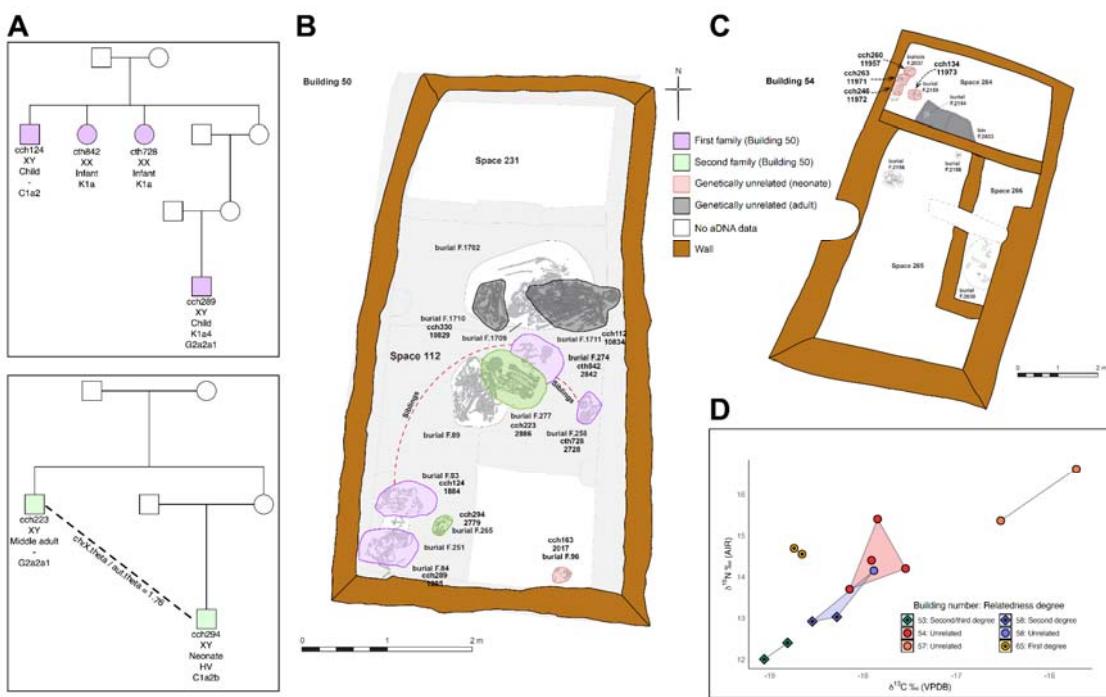

321 The common practice of intramural subfloor burials in Neolithic SW Asia presents a unique
322 opportunity to study the genetic relationships among individuals connected by a shared
323 social attribute, namely, having been interred in the same building during its occupation.
324 These individuals, while living, may have also been socially and genetically linked with the
325 building inhabitants, as implied by the memory of their burials (47–50). Our earlier work in
326 9th millennium BCE PPN Anatolian settlements suggested that co-burials were frequently
327 genetically closely related (31, 42). In contrast, samples from the PN sites of Çatalhöyük and
328 Barçın found that close genetic ties between spatially connected burials were fewer,
329 suggesting changing practices over time, albeit with much-limited data (31); analysis of
330 dental features and mtDNA had also pointed in the same direction (30, 51).

331

332 We estimated genetic relatedness between 123 individuals (7503 pairs, 5535 of which had
333 sufficient overlapping SNPs) using multiple tools and approaches simultaneously to
334 maximise the data without compromising accuracy (e.g. using an expanded SNP panel,

335 using imputed diploid genotypes for 49 genomes in genetic kin estimation, and a multi-tiered
336 genetic kin classification system) (Methods). We also analysed the data using different
337 thresholds and included fuzzy categories (e.g. “second- or third-degree”) to ensure the
338 robustness of these results and reflect the limitations of our inference (Supplementary
339 Information). This yielded a network of 133 first- to third-degree kin pairs (2.9% of all tested
340 pairs), connecting 108 individuals across 30 buildings in total (23 of these buildings with
341 multiple burials) (**Figure 3**, **Figure S11**). Both adult-adult and subadult-subadult pairs were
342 connected at similar rates within buildings (~30%), although adults were slightly more
343 connected across buildings (5% vs. 2%) (**Table S10**).
344

345 All first-degree pairs were found within buildings (**Figure 3**). Second- and third-degree
346 connections also tended to be spatially concentrated, either within buildings, between
347 successive buildings in the same location, or between buildings in the same area and period,
348 albeit not exclusively (**Figure 3**; **Table S11**). Inter-building connections were most frequent
349 in the Early period (15%) but declined in the Middle and Late periods (5% and 2%,
350 respectively), consistent with f_4 -statistics indicating higher homogeneity in Early period
351 Çatalhöyük (**Figure 3B**). The intensity of interbuilding genetic kin networks also appears
352 correlated with material culture similarity (52) (Mazzucato et al., forthcoming). Despite the
353 sparsity of the network, we reconstructed several multi-generational pedigrees, including
354 adult female pairs with possible mother-sibling or avuncular relationships (**Figure 4A-B**;
355 **Figure S11**).
356
357
358
359
360
361
362
363
364
365
366


367
368 **Figure 3:** A network of genetic kin across Çatalhöyük buildings and the changing frequency
369 of genetic ties among co-burials. **A)** The figure shows genetic relatedness among intramural
370 burials with common SNPs >3000 , shown as dots. The lines show close to more distant
371 relationships from dark to light colours. The coloured blocks show buildings, with building
372 numbers assigned by the excavation team indicated adjacent to the blocks. The height of the
373 blocks is proportional to the number of genetically represented burials in that building. North
374 and South refer to the two main excavation areas on the mound separated by ~ 200 m. **B)**
375 The proportion of genetic kin (up to third-degree) identified between individuals buried in
376 different buildings in the three Çatalhöyük periods. **C)** The proportion of genetic kin (up to
377 third-degree) identified in co-burials within the same building, separated into three
378 Çatalhöyük periods. See also **Figure S9** for the same proportion calculated for different sets
379 of relatives and age groups. The analysis involves 23 buildings. Percentages indicated on
380 the horizontal bars show the percentage of Monte Carlo simulations where the null
381 hypothesis of no difference between a pair of periods was rejected ($p < 0.05$) out of 24
382 scenarios involving various assumptions/conditions. The overall rate of rejection among all
383 108 comparisons was 69% (see **Figure S12** for details). **D)** The proportion of genetic kin
384 within co-burials in 15 buildings (only including buildings with a minimum of 2 burials). The
385 inset shows the Spearman correlation coefficient ($p = 0.03$).

387 Co-burial of genetically unrelated individuals increases over time

388 Interestingly, we noticed a temporal change in the density of genetic connections among
389 burials in the same building. Specifically, co-buried pairs inside Early-period buildings were
390 frequently third-degree (e.g., cousin) or closer genetic kin (63%) (**Figure 3**), a pattern similar
391 to those of PPN Anatolian settlements such as Aşıklı, Boncuklu, and Çayönü(31, 42). In
392 contrast, genetic kin among co-buried pairs was only at 30% and 22% frequencies in the
393 Middle and Late periods, respectively (**Figure 3**, **Figure S12**). We also calculated the
394 correlation between co-burial genetic kin frequencies per building and the building ages and

396 found a similar decrease in time (Spearman correlation $r=0.58$, $p=0.03$) (**Figure 3D**).
397 Notably, the only individuals recovered from Chalcolithic Çatalhöyük West, two neonates
398 interred in the infill of the same building (Byrnes and Anvari, forthcoming), were similarly
399 genetically unrelated (Doğu et al., forthcoming). Closer inspection revealed that the Middle
400 and Late-period buildings frequently either accommodated multiple biological families
401 interred together (e.g., Building 50 in **Figure 4A-B**) or burials with no genetic kin ties (e.g.
402 **Figure 4C**) (also see **Figure S12**). The predominance of subadults in the sample renders
403 this observation even more intriguing because if buildings were strictly used by nuclear
404 family groups for burial, then co-burials could include unrelated adults but children should all
405 be related.

406
407 We asked whether technical factors could account for the observed temporal change in co-
408 burial genetic ties, such as time variation in DNA preservation, the number of total burials or
409 genetically sampled burials, or the frequency of subadults per building. There was no
410 difference in endogenous DNA proportion or genome coverage among periods (Kruskal-
411 Wallis test $p>0.25$). To account for variation in sample sizes, we performed Monte-Carlo
412 simulations where we assigned burials within 23 buildings to hypothetical biological families
413 of fixed or variable sizes ($n=2-6$) under the null hypothesis of no difference among periods,
414 leading to 108 scenarios depending on the genetic kin definitions, hypothetical family sizes
415 used, and whether we included all individuals or only subadults (**Figure S13**). Under each
416 scenario, we randomly sampled burials from the simulated sets 10,000 times each, and
417 determined if the observed co-burial genetic kin frequency differences among periods could
418 be replicated in the simulations (Supplementary Methods). This revealed that the difference
419 among the periods was overall unexpected, with $p<0.05$ in 74 out of 108 scenarios (69%)
420 (**Table S12; Figure S13**).
421
422
423
424
425

Figure 4: Genetic kin ties and diet among Çatalhöyük co-burials. A) Two reconstructed pedigrees of burials inside Building 50 (Middle period), and **B)** their burial location inside the building. Circles show female and squares show male individuals. In the pedigrees, the lab ID, sex, approximate age at death, mitochondrial haplogroup, and Y chromosomal haplogroup, of each genetically studied individual is indicated, respectively. (-) indicates no reliable haplogroup information. On the building plan, individuals are indicated with their lab and excavation unit IDs; grey colouring indicates the individuals were not close genetic kin with the other individuals. The observations that the ratio between chrX and autosomal kinship coefficients (θ) between individuals with IDs 2779 and 2886 was ~ 1.8 and that these individuals are carried different Y haplogroups suggests a maternal genetic connection. **C)** Genetically unrelated burials in Building 54 (Late period). **D)** Comparison of carbon and nitrogen stable isotope ratios among neonates interred in Çatalhöyük's Late period buildings.

Share dietary signatures among unrelated neonates

The co-burial of genetically unrelated individuals, the majority of whom were neonates and infants, is intriguing. These individuals may have been unconnected during their lifetime but chosen for burial in the same houses for another reason. Indeed, the frequency of non-primary burials increases over time in Çatalhöyük (**Figure S14**) (Methods) (**Supplementary Information**), representing a practice that may have served to construct or consolidate inter-community ties in Neolithic communities (53). Alternatively, these co-buried but genetically unrelated pairs may also have been connected during their lifetimes, such as sharing diets or being raised by foster families (47–50).

In order to study this question in depth, we leveraged dietary isotope data collected from neonates (54), focusing on five buildings from the Late period with multiple neonate burials (Methods) (**Figure S15, Table S13**). Neonate isotopic profiles could reflect the diet of the

455 individuals carrying the child during pregnancy and providing breast milk or even catabolism
456 in its absence, as well as the duration of feeding (54). We found significant differences in
457 isotopic signature among neonates buried in different buildings (Kruskal-Wallis test $p<0.02$).
458 However, only three of the buildings contained genetic kin, whereas neonates buried in two
459 buildings were genetically unrelated, and one building contained both relatives and an
460 unrelated individual (**Figure 4D**). This record suggests that fostering or other social
461 mechanisms created shared environments for genetically unrelated individuals, and such
462 practices gained prominence over time in Çatalhöyük.

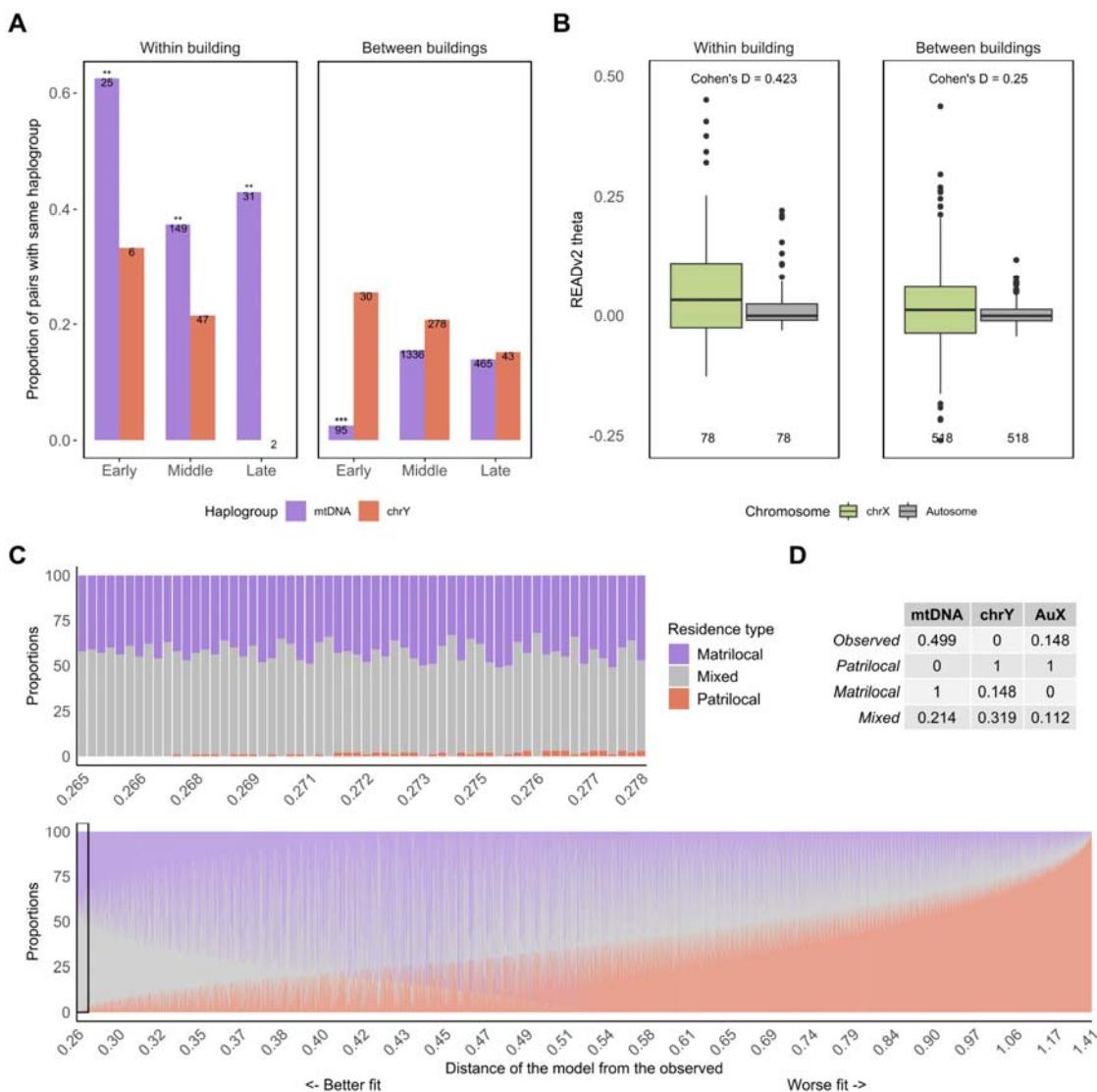
463

464 **Predominance of maternal genetic connections among Çatalhöyük co-burials**

465

466 The pedigrees we constructed revealed an interesting trend: intergenerational connections
467 within buildings frequently running through female lines (**Figure 4**; **Figure S11**). To study
468 this systematically, we compared mtDNA and chrY haplogroup similarity within buildings
469 (Methods). mtDNA haplogroup homogeneity within buildings was conspicuously higher than
470 between buildings, a pattern maintained across the site's occupation (**Figure 5A**). In
471 contrast, the chrY homogeneity was relatively low and comparable within and between
472 buildings. We further studied this result using comparisons of autosomal and chrX kinship
473 coefficients (θ). We found that chrX kinship between pairs from the same building was higher
474 than autosomal kinship, while there was no difference between chrX and autosomal kinship
475 coefficients when considering pairs from different buildings.

476


477 To evaluate this evidence further, we performed pedigree simulations of villages and 4-6
478 generation households with 4-6 offspring per generation, under strict matrilocality, strict
479 patrilocality, and mixed residence (note that here we study mobility among buildings, not
480 among settlements; matrilocality thus corresponds to matrilineality) (Methods). We
481 generated summary statistics (mtDNA and chrY homogeneity, and autosomal vs. chrX
482 kinship coefficient differences) (**Figure S16A-C**). Comparing the summary statistics from the
483 observed data with those from the simulations, we could best explain the observed data as
484 ~50% mixed and ~50% matrilocal residence but inferred practically no contribution of strictly
485 patrilocal residence (**Figure 5C**). These results suggest that whenever co-burials were
486 genetically connected, the connections were biased towards the matriline.

487

488

489

490

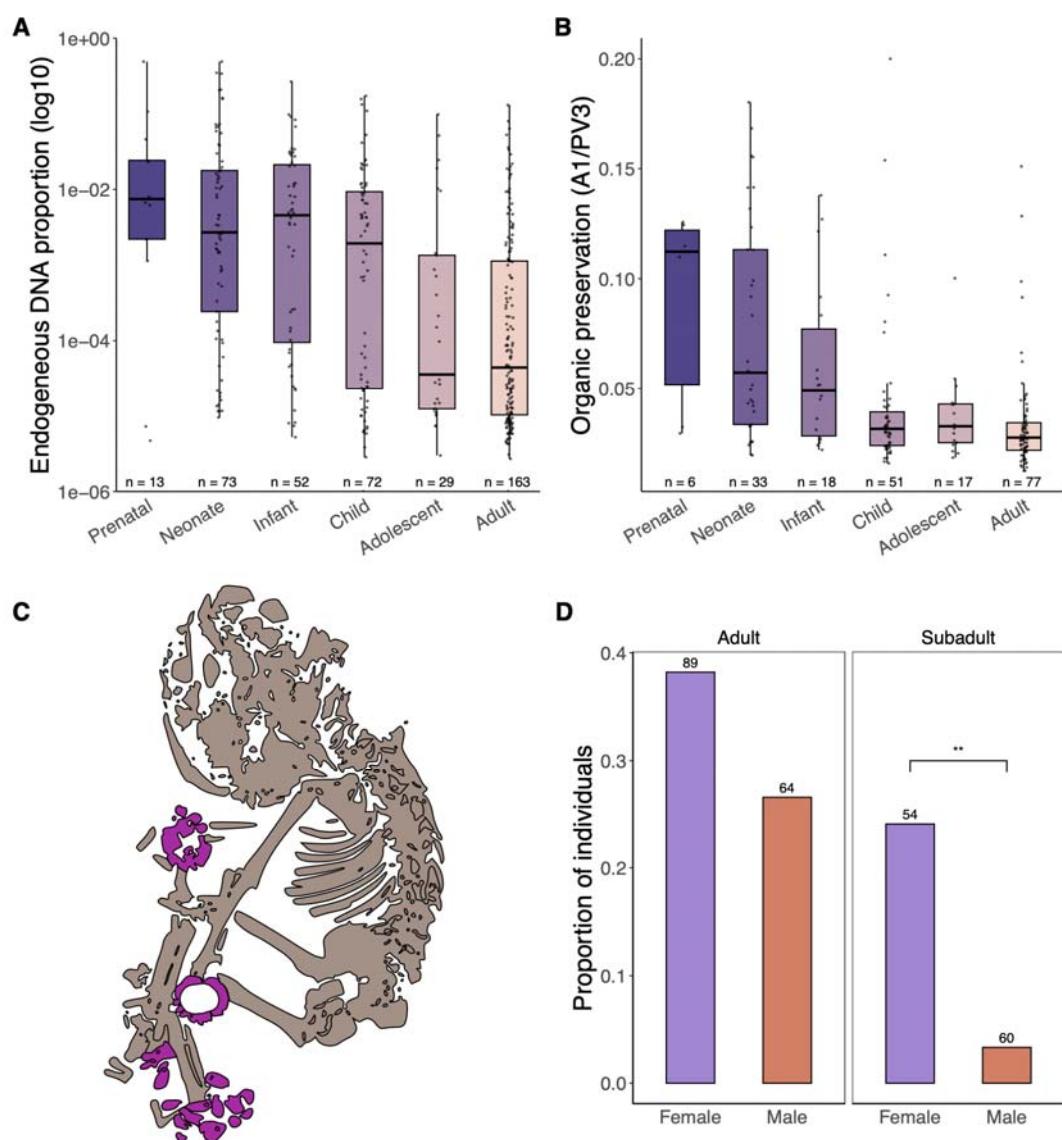
491
492

Figure 5: Maternal genetic connections in Çatalhöyük buildings. **A)** mtDNA and chrY haplogroup homogeneity estimates for all pairs buried within the same building (left) and between different buildings (right). The analysis was limited to pairs from the same building. The numbers inside the bars show the total number of pairs in that category. (*** indicates that the observed homogeneity was significantly ($p<0.001$) different from random expectation, (**) indicates that the observed homogeneity was significantly ($p<0.01$) different from random expectation, tested by randomly assigning individuals to buildings within the same period. **B)** Autosomal and chrX kinship coefficient (θ) estimates for all pairs buried within the same building (left) and between different buildings (right). The Cohen's D statistic shows the effect size between the two sets. **C)** Modelling the observed sex-biased diversity patterns using residence model simulations of matrilocal, patrilocal and mixed mobility. Matrilocal here describes the maternal line remaining within buildings across generations and males moving (analogous to matrilineality). We calculated all possible weighted averages of the mean summary statistics (i.e. chrY homogeneity, mtDNA homogeneity, autosomal vs. chrX θ differences). The weights (or proportions) are shown on the y-axis. We then calculated the Euclidean distance (x-axis) between each vector of weighted averages

509 and the observed values. Each bar represents one set of combinations. The model's fit to
510 the observed genetic data increases towards the left. The upper part of Panel C is a
511 zoomed-in version of the section within the rectangle in the lower part. **D)** The mean
512 summary statistics calculated for each scenario and the observed values are shown in the
513 inset table; each vector was normalised to ensure an equal contribution of each summary
514 statistic to the final result.

515

516 An age-specific burial practice in Çatalhöyük


517

518 We had previously reported a trend towards higher aDNA preservation in juvenile temporal
519 bones versus adult temporal bones at Çatalhöyük(31). We replicated this observation using
520 248 subadult and 166 adult samples (Mann-Whitney U test $p<0.001$). Separating the sample
521 into further age subcategories revealed a remarkable monotonic decline in endogenous
522 proportion with individual age, with two orders of magnitude difference in median
523 endogenous human DNA proportion between newborns and adults (Spearman correlation
524 $r=-1$, $p<0.001$) (**Figure 6A**). This result is surprising, given the naive expectation that mature
525 and thus less porous bones of adults may better preserve DNA. We detected a similar but
526 non-significant trend using published and unpublished data in Aşıklı Höyük, while not in other
527 settlements such as Çayönü or Gurgy, denoting that this was not a universal pattern (**Figure**
528 **S17**). Meanwhile, a scan of organic matter preservation across 111 Çatalhöyük bone
529 samples using Fourier Transform Infrared Spectroscopy (FTIR) identified the same pattern
530 of age-related decline in preservation (Methods) (**Figure 6B**; **Table S1**; **Table S14**).

531

532 We hypothesised that this age effect could reflect the outcome of a specific treatment of the
533 corpse or burial practices affecting skeletal preservation, which was differentially applied to
534 the dead of different ages. The effect was observed across all Çatalhöyük periods (**Figure**
535 **S18A**), suggesting that the practice persisted across centuries. We sought possible
536 correlates of this differential preservation pattern, asking whether the burials with low versus
537 highly preserved aDNA, a) were identified as primary, disturbed, or secondary burials, b)
538 showed signs of extreme flexion, and c) differed in their burial location (**Figure S18B-C-D**)
539 (**Supplementary Information**). We found a correlation between aDNA preservation only
540 with burial location, with lower preservation among subadult burials in the platform area
541 (Mann-Whitney U test $p<0.001$) (**Figure S18D**). Still, burial location may not be the main
542 reason for the preservation difference; we instead speculate that a body treatment procedure
543 confounded with burial location choices, such as defleshing, drying or similar treatments of
544 selected bodies could have expedited decomposition and DNA degradation (55), e.g. by
545 boosting microbial activity. A previous histotaphonomic study carried out on a subset of
546 individuals from Çatalhöyük had failed to detect any bacterial bioerosion (56). We
547 nonetheless performed a comparative metagenomic analysis of 40 Çatalhöyük aDNA
548 libraries with the best and worst human DNA preservation (Supplementary Information),
549 which did identify systematic differences in microbial DNA abundance between the two
550 groups. We further found a higher frequency of aerobic microbes in the low-preserved (likely
551 more air-exposed) bones as opposed to a higher frequency of anaerobes in high-preserved
552 (likely immediately interred) bones (**Figures S19**). It is not yet possible to strictly identify
553 whether these microbial composition differences reflect causal or secondary effects. Still,
554 together with multiple reports on the defleshing and processing of adult Çatalhöyük corpses
555 (1, 24, 57), our results suggest that the age-specific application of funerary treatments on
556 bodies were behind the observed pattern of DNA preservation differences.

557
558

559
560
561
562
563
564
565
566
567
568
569
570
571
572
573

Figure 6: Age- and sex-specific burial practices. **A)** Endogenous DNA yield difference between all age subcategories. **B)** Amide I (A1)/Phosphate (PV3) ratios for assessing the relative organic content preserved in the bones between all age subcategories. **C)** Representation of an infant burial from Building 6 with multiple bone and coloured stone bead ornaments (artificially coloured purple in this image). The individual was not genetically sampled. **D)** Comparison of the inclusion frequencies of burial objects for male and female burials among adults and subadults. The numbers on the bars indicate the total sample size (**: Fisher's exact test $p < 0.01$).

574 **Gender differentiation among subadult burials**

575

576 Among organic preservation differences within Çatalhöyük age groups, we noted non-
577 significant trends for female children and adolescents to have lower endogenous DNA
578 proportions than male peers (**Figure S18E**), which, if true, could suggest their treatment was
579 more akin to those of adults. We further investigated possible sex differences involving
580 another burial practice, the placement of artefacts such as beads, shells, pigments or stone
581 tools in grave pits (58, 59) (**Figure 6C**). Previous work had found a slightly higher frequency
582 of burial objects associated with adult female burials, but the difference was not statistically
583 significant. In contrast, using subadults genetically sexed in this study, we found a five-fold
584 higher frequency of female burials containing objects than male burials (Fisher's exact test
585 $p<0.01$) (**Figure 6D; Table S15**). This result suggests that Çatalhöyük female subadults may
586 have received more elaborate treatment than their male counterparts upon death, which
587 could be related to the linking role of the female lineages across generations.

588 **Conclusion**

589 The new genetic evidence unveils novel features of Çatalhöyük funerary practices and social
590 organisation, some likely shared with other Neolithic Anatolian sites and others that might be
591 unique to Çatalhöyük. For instance, we find no indication of patrilocal residence in
592 Çatalhöyük. The sparse evidence from other Neolithic Anatolian settlements also points in
593 the same direction, both genetically (11) and isotopically (29). Hence, mobility might have
594 been bilateral or matrilocal in Neolithic Anatolia, which could be a continuation of earlier
595 forager traditions in this region (60). We further speculate that the patrilocal traditions
596 identified in Europe after the 6th millennium BCE emerged after the farming expansion
597 across that continent, either through cultural drift or in response to social stress (61).
598 Meanwhile, a putative burial treatment identified at Çatalhöyük reserved for adults (and
599 perhaps some female subadults) that influenced body decomposition appears (for now)
600 without parallel. Our data also revealed a surprising shift in Çatalhöyük funerary traditions
601 and social relations during its occupation: in the Early period co-burials were frequently
602 genetic kin, similar to Pre-Pottery Neolithic Anatolian settlements, while burials (mostly
603 subadults) in Middle and Late-period buildings were frequently not close genetic kin. The
604 choice of burial of genetically unrelated individuals in the same space is reminiscent of
605 practices identified in some Upper Palaeolithic and Mesolithic societies (62, 63) but unknown
606 for the majority of Neolithic contexts from W Eurasia genetically analysed [with the possible
607 exception of contemporaneous Barçın Höyük (31)]. Given the dietary similarities between
608 genetically unrelated Çatalhöyük neonates buried in the same building, it is tempting to
609 propose that the widespread fostering of newborns could partly explain the sparse genetic
610 ties among Middle and Late Çatalhöyük co-burials. Such practices could be related to
611 houses becoming economically more independent over time in Çatalhöyük (e.g. grazing
612 sheep in different areas and including larger storage areas) (64, 65), which may have led
613 households to recruit pregnant mothers or newborns from other biological family groups.
614 Fostering could also have served to construct new social kin ties within the community (30),
615 perhaps helping maintain egalitarian relationships.

616

617 Arguably, the most striking set of observations relates to gender roles. Whether the
618 prominent female adult figurines found in Çatalhöyük indeed represented a "Mother
619 Goddess" cult remains a point of contention (1, 2, 4). Still, our findings, including the

620 predominance of the matriline connecting intramural burials and the special burial treatment
621 accorded to subadult females, highlight the role of the maternal lineage in Çatalhöyük
622 society. We do not know whether these practices reflected strict matrilineality or gender
623 status differences (i.e. matriarchy), whether they might have been connected with the
624 apparent egalitarian relationships in Çatalhöyük, or whether other Neolithic settlements of
625 the 7th millennium BCE in Anatolia and the Aegean with similar female figurine symbolism
626 had adopted similar practices. Irrespectively, Çatalhöyük social organisation and symbolism
627 stand in stark contrast with the predominantly male-focused societies that emerged in West
628 Eurasia in subsequent millennia.

629

630

631

632

633 **Data and code availability**

634

635 All FASTQ and BAM files produced in this study have been deposited at the European
636 Nucleotide Archive.

637

638 Code and scripts used in the analyses will be made available at
639 <https://github.com/CompEvoMetu>.

640

641 **Acknowledgements**

642

643 We thank Özgür Taşkent, Sabina Cveček, Eva-Maria Geigl, all members of the CompEvo
644 (METU) group and the NEOMATRIX Collective for helpful discussion and suggestions,
645 Reyhan Yaka and Elif Sürer for assistance, Swapan 'Shop' Mallick and David Reich for
646 sharing Allen Ancient Genome Diversity Project shotgun-sequenced genomes.

647

648 This work was supported by the H2020 ERC Consolidator grant (no. 772390 NEOGENE to
649 M.S), the H2020-WIDESPREAD-05-2020 TWINNING grant (no. 952317 NEOMATRIX to
650 M.S.), TUBITAK of Turkey (no. 117Z229 to M.S.), NSF (no. BCS-1827338 to M.P.). CJK,
651 SDH, and EMJS's participation in this research benefited from the scientific framework of the
652 University of Bordeaux's IdEx (Initiative d'Excellence) 'Investments for the Future' program /
653 GPR (Grands Programmes de Recherche) 'Human Past'.

654

655 Computations were performed on NEOGENE Clusters at Middle East Technical University.

656

657 **Author contributions**

658

659

660 **Supplementary Information**

661

662 This file contains supplementary figures (Figures S1-S37), methods, supplementary results
663 and discussion.

664

665 **Supplementary Tables**

666

667 This file contains supplementary tables (Tables S1-S27).

668

669

670

671

672 **References**

673

674 1. J. Mellaart, *Çatal Hüyük: A Neolithic Town in Anatolia* (McGraw-Hill, 1967).

675 2. M. Gimbutas, *The Living Goddesses* (University of California Press, 2001).

676 3. L. Meskell, Goddesses, Gimbutas and New Age archaeology. *Antiquity* **69**, 74–86 (1995).

677

678 4. C. Nakamura, L. Meskell, Articulate Bodies: Forms and Figures at Çatalhöyük. *J. Archaeol. Method Theory* **16**, 205–230 (2009).

679

680 5. R. A. Bentley, Prehistory of Kinship. *Annu. Rev. Anthropol.* **51**, 137–154 (2022).

681

682 6. A. Mittnik, K. Massy, C. Knipper, F. Wittenborn, R. Friedrich, S. Pfrengle, M. Burri, N. Carlihi-Witjes, H. Deeg, A. Furtwängler, M. Harbeck, K. von Heyking, C. Kociumaka, I. Kucukkalipci, S. Lindauer, S. Metz, A. Staskiewicz, A. Thiel, J. Wahl, W. Haak, E. Pernicka, S. Schiffels, P. W. Stockhammer, J. Krause, Kinship-based social inequality in Bronze Age Europe. *Science* **366**, 731–734 (2019).

683

684 7. C. Fowler, I. Olalde, V. Cummings, I. Armit, L. Büster, S. Cuthbert, N. Rohland, O. Cheronet, R. Pinhasi, D. Reich, A high-resolution picture of kinship practices in an Early Neolithic tomb. *Nature* **601**, 584–587 (2022).

685

686 8. M. Rivollat, A. B. Rohrlach, H. Ringbauer, A. Childebayeva, F. Mendisco, R. Barquera, A. Szolek, M. Le Roy, H. Colleran, J. Tuke, F. Aron, M.-H. Pemonge, E. Späth, P. Télouk, L. Rey, G. Goude, V. Balter, J. Krause, S. Rottier, M.-F. Deguilloux, W. Haak, Extensive pedigrees reveal the social organization of a Neolithic community. *Nature* **620**, 600–606 (2023).

687

688 9. F. Sánchez-Quinto, H. Malmström, M. Fraser, L. Girdland-Flink, E. M. Svensson, L. G. Simões, R. George, N. Hollfelder, G. Burenhult, G. Noble, K. Britton, S. Talamo, N. Curtis, H. Brzobohata, R. Sumberova, A. Götherström, J. Storå, M. Jakobsson, Megalithic tombs in western and northern Neolithic Europe were linked to a kindred society. *Proc. Natl. Acad. Sci.* **116**, 9469–9474 (2019).

689

690 10. L. M. Cassidy, R. Ó Maoldúin, T. Kador, A. Lynch, C. Jones, P. C. Woodman, E. Murphy, G. Ramsey, M. Dowd, A. Noonan, C. Campbell, E. R. Jones, V. Mattiangeli, D. G. Bradley, A dynastic elite in monumental Neolithic society. *Nature* **582**, 384–388 (2020).

691

692 11. M. Somel, E. Altınışık, Y. Erdal, Ç. Atakuman, F. Ozer, *Intramural Burials in Neolithic Anatolia: What Do They Tell Us about Social Organisation?* (2023).

693

694 12. I. Hodder, *The Leopard's Tale: Revealing the Mysteries of Çatalhöyük* (Thames & Hudson, 2006).

695

696 13. A. Bayliss, F. Brock, S. Farid, I. Hodder, J. Sounthor, R. E. Taylor, Getting to the Bottom of It All: A Bayesian Approach to Dating the Start of Çatalhöyük. *J. World Prehistory* **28**, 1–26 (2015).

697

698 14. I. Kuijt, A. Marciniak, How many people lived in the world's earliest villages? Reconsidering community size and population pressure at Neolithic Çatalhöyük. *J. Anthropol. Archaeol.* **74**, 101573 (2024).

699

700 15. C. Scarre, Ed., *Inhabiting Çatalhöyük: Reports from the 1995–99 Seasons* (British Institute at Ankara, 2005; <https://www.jstor.org/stable/10.18866/j.ctt1pk875f>) vol. 38.

701

702 16. J. Anvari, J. Brady, I. Franz, G. Naumov, D. Orton, O. Sonia, E. Stroud, P. Willett, E. Rosenstock, P. Biehl, “Continuous change: Venturing into the Early Chalcolithic at Çatalhöyük. In *The Archaeology of Anatolia: Recent Discoveries* (Volume 2), edited by Sharon R. Steadman and Gregory McMahon, pp.6-39. Cambridge: Cambridge Scholar Press.” (2017).

703

704 17. D. Orton, J. Anvari, C. Gibson, J. Last, A. Bogaard, E. Rosenstock, P. F. Biehl, A tale of two tells: dating the Çatalhöyük West Mound. *Antiquity* **92**, 620–639 (2018).

705

706 18. A. Bogaard, M. Charles, K. C. Twiss, A. Fairbairn, N. Yalman, D. Filipović, G. A. Demirergi, F. Ertuğ, N. Russell, J. Henecke, Private pantries and celebrated surplus: storing and sharing food at Neolithic Çatalhöyük, Central Anatolia. *Antiquity* **83**, 649–668 (2009).

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726 19. N. Russell, K. Twiss, D. Orton, G. Demirergi, "More on the Çatalhöyük mammal
727 remains" (2012), pp. 213–258.

728 20. I. Hodder, L. Meskell, A "Curious and Sometimes a Trifle Macabre Artistry": Some
729 Aspects of Symbolism in Neolithic Turkey. *Curr. Anthropol.* **52**, 235–263 (2011).

730 21. I. Hodder, C. Cessford, Daily Practice and Social Memory at Çatalhöyük. *Am. Antiq.* **69**,
731 17–40 (2004).

732 22. K. I. (Karen) Wright, Domestication and inequality? Households, corporate groups and
733 food processing tools at Neolithic Çatalhöyük. *J. Anthropol. Archaeol.* **33**, 1–33 (2014).

734 23. B. Boz, L. Hager, "Living above the Dead: Intramural Burial practices at Çatalhöyük"
735 (2013), pp. 413–440.

736 24. S. Haddow, C. Knüsel, Skull Retrieval and Secondary Burial Practices in the Neolithic
737 Near East: Recent Insights from Çatalhöyük, Turkey. *Bioarchaeology Int.* **1**, 52–71
738 (2017).

739 25. C. Knüsel, M. Milella, B. Betz, I. Dori, E. Garofalo, B. Glencross, S. Haddow, M.
740 Ledger, E. Anastasiou, P. Mitchell, J. Pearson, M. Pilloud, C. Ruff, J. Sadvari, B.
741 Tibbetts, C. Larsen, "Bioarchaeology at neolithic Çatalhöyük: Indicators of health, well-
742 being and lifeway in their social context" (2021), pp. 315–56.

743 26. S. Haddow, E. Schotsmans, M. Milella, M. Pilloud, B. Tibbetts, C. Knüsel, "Çatalhöyük
744 funerary practices I - body treatment and deposition" (2021), pp. 281–314.

745 27. C. S. Larsen, C. J. Knüsel, S. D. Haddow, M. A. Pilloud, M. Milella, J. W. Sadvari, J.
746 Pearson, C. B. Ruff, E. M. Garofalo, E. Bocaäge, B. J. Betz, I. Dori, B. Glencross,
747 Bioarchaeology of Neolithic Çatalhöyük reveals fundamental transitions in health,
748 mobility, and lifestyle in early farmers. *Proc. Natl. Acad. Sci.* **116**, 12615–12623 (2019).

749 28. L. Fibiger, T. Ahlström, C. Meyer, M. Smith, Conflict, violence, and warfare among early
750 farmers in Northwestern Europe. *Proc. Natl. Acad. Sci.* **120**, e2209481119 (2023).

751 29. J. Pearson, J. Evans, A. Lamb, D. Baird, I. Hodder, A. Marciniak, C. S. Larsen, C. J.
752 Knüsel, S. D. Haddow, M. A. Pilloud, A. Bogaard, A. Fairbairn, J.-H. Plug, C.
753 Mazzucato, G. Mustafaoğlu, M. Feldman, M. Somel, E. Fernández-Domínguez, Mobility
754 and kinship in the world's first village societies. *Proc. Natl. Acad. Sci.* **120**,
755 e2209480119 (2023).

756 30. M. A. Pilloud, C. S. Larsen, "Official" and "practical" kin: Inferring social and community
757 structure from dental phenotype at Neolithic Çatalhöyük, Turkey. *Am. J. Phys.
758 Anthropol.* **145**, 519–530 (2011).

759 31. R. Yaka, I. Mapelli, D. Kaptan, A. Doğu, M. Chyleński, Ö. D. Erdal, D. Koptekin, K. B.
760 Vural, A. Bayliss, C. Mazzucato, E. Fer, S. S. Çokoğlu, V. K. Lagerholm, M.
761 Krzewińska, C. Karamurat, H. C. Gemici, A. Sevkar, N. D. Dağtaş, G. M. Kılınç, D.
762 Adams, A. R. Munters, E. Sağlıcan, M. Milella, E. M. J. Schotsmans, E. Yurtman, M.
763 Çetin, S. Yorulmaz, N. E. Altınışık, A. Ghalichi, A. Juras, C. C. Bilgin, T. Günther, J.
764 Storå, M. Jakobsson, M. de Kleijn, G. Mustafaoğlu, A. Fairbairn, J. Pearson, İ. Togan,
765 N. Kayacan, A. Marciniak, C. S. Larsen, I. Hodder, Ç. Atakuman, M. Pilloud, E. Sürer,
766 F. Gerritsen, R. Özbal, D. Baird, Y. S. Erdal, G. Duru, M. Özbaşaran, S. D. Haddow, C.
767 J. Knüsel, A. Götherström, F. Özer, M. Somel, Variable kinship patterns in Neolithic
768 Anatolia revealed by ancient genomes. *Curr. Biol.* **31**, 2455–2468.e18 (2021).

769 32. A. Fairbairn, D. Martinoli, A. Butler, G. Hillman, Wild plant seed storage at Neolithic
770 Çatalhöyük East, Turkey. *Veg. Hist. Archaeobotany* **16**, 467–479 (2007).

771 33. T. Carter, S. Dubernet, R. King, F.-X. Le Bourdonnec, M. Milić, G. Poupeau, M. S.
772 Shackley, Eastern Anatolian obsidians at Çatalhöyük and the reconfiguration of
773 regional interaction in the Early Ceramic Neolithic. *Antiquity* **82**, 900–909 (2008).

774 34. A. J. Nazaroff, A. Baysal, Y. Çiftçi, The Importance of Chert in Central Anatolia:
775 Lessons from the Neolithic Assemblage at Çatalhöyük, Turkey. *Geoarchaeology* **28**,
776 340–362 (2013).

777 35. D. Koptekin, E. Yüncü, R. Rodríguez-Varela, N. E. Altınışık, N. Psonis, N. Kashuba, S.
778 Yorulmaz, R. George, D. D. Kazancı, D. Kaptan, K. Gürün, K. B. Vural, H. C. Gemici,
779 D. Vassou, E. Daskalaki, C. Karamurat, V. K. Lagerholm, Ö. D. Erdal, E. Kirdök, A.
780 Marangoni, A. Schachner, H. Üstündağ, R. Shengelia, L. Bitadze, M. Elashvili, E.

781 Stravopodi, M. Özbaşaran, G. Duru, A. Nafplioti, C. B. Rose, T. Gencer, G. Darbyshire,
782 A. Gavashelishvili, K. Pitskhelauri, Ö. Çevik, O. Vuruşkan, N. Kyparissi-Apostolika, A.
783 M. Büyükkarakaya, U. Oğuzhanoglu, S. Günel, E. Tabakaki, A. Aliev, A. Ibrahimov, V.
784 Shadlinski, A. Sampson, G. M. Kılınç, Ç. Atakuman, A. Stamatakis, N. Poulakakis, Y.
785 S. Erdal, P. Pavlidis, J. Storå, F. Özer, A. Götherström, M. Somel, Spatial and temporal
786 heterogeneity in human mobility patterns in Holocene Southwest Asia and the East
787 Mediterranean. *Curr. Biol.* **33**, 41-57.e15 (2023).

788 36. H. Ringbauer, Y. Huang, A. Akbari, S. Mallick, I. Olalde, N. Patterson, D. Reich,
789 Accurate detection of identity-by-descent segments in human ancient DNA. *Nat.*
790 *Genet.*, 1-9 (2023).

791 37. F. Marlowe, Hunter-Gatherers and Human Evolution. *Evol. Anthropol. Issues News*
792 *Rev.* **14**, 54-67 (2005).

793 38. R. A. Bentley, P. Bickle, L. Fibiger, G. M. Nowell, C. W. Dale, R. E. M. Hedges, J.
794 Hamilton, J. Wahl, M. Francken, G. Grupe, E. Lenneis, M. Teschler-Nicola, R.-M.
795 Arbogast, D. Hofmann, A. Whittle, Community differentiation and kinship among
796 Europe's first farmers. *Proc. Natl. Acad. Sci.* **109**, 9326-9330 (2012).

797 39. A. Szécsényi-Nagy, G. Brandt, W. Haak, V. Keerl, J. Jakucs, S. Möller-Rieker, K.
798 Köhler, B. G. Mende, K. Oross, T. Marton, A. Osztás, V. Kiss, M. Fecher, G. Pálfi, E.
799 Molnár, K. Sebők, A. Czene, T. Paluch, M. Šlaus, M. Novak, N. Pećina-Šlaus, B. Ősz,
800 V. Voicsek, K. Somogyi, G. Tóth, B. Kromer, E. Bánffy, K. W. Alt, Tracing the genetic
801 origin of Europe's first farmers reveals insights into their social organization. *Proc. R.*
802 *Soc. B Biol. Sci.* **282**, 20150339 (2015).

803 40. P. Gelabert, P. Bickle, D. Hofmann, M. Teschler-Nicola, A. Anders, X. Huang, I. Olalde,
804 R. Fournier, H. Ringbauer, A. Akbari, O. Cheronet, I. Lazaridis, N.
805 Broomandkhoshbacht, D. M. Fernandes, K. Buttinger, K. Callan, F. Candilio, G. Bravo,
806 E. Curtis, M. Ferry, D. Keating, S. Freilich, A. Kearns, É. Harney, A. M. Lawson, K.
807 Mandl, M. Michel, V. Oberreiter, J. Oppenheimer, S. Sawyer, C. Schattke, K. T.
808 Ozdogan, M. Hämmerle, L. Qiu, N. Workman, F. Zalzala, S. Mallick, M. Mah, A. Micco,
809 F. Pieler, J. Pavuk, C. Lazar, T. Paluch, M. K. Škrivanko, M. Šlaus, Ž. Bedić, F.
810 Novotny, L. D. Szabó, O. Cserpák-Laczi, T. Hága, Z. Hajdú, P. Mirea, E. G. Nagy, Z. M.
811 Virág, A. M. Horváth, L. A. Horváth, K. T. Biró, L. Domboróczki, T. Szeniczey, J.
812 Jakucs, M. Szelekovszky, F. Zoltán, S. Sztáncsuj, K. Tóth, P. Csengeri, I. Pap, R.
813 Patay, A. Putica, B. Vasov, B. Havasi, K. Sebők, P. Raczký, G. Lovász, Z. Tvardý, N.
814 Rohland, M. Novak, M. Ruttakay, D. Boric, J. Dani, M. Kuhlwilm, P. F. Palamara, T.
815 Hajdu, R. Pinhasi, D. Reich, Social and genetic diversity among the first farmers of
816 Central Europe. *bioRxiv* [Preprint] (2023). <https://doi.org/10.1101/2023.07.07.548126>.

817 41. V. Hrnčíř, P. Duda, G. Šaffa, P. Květina, J. Zrzavý, Identifying post-marital residence
818 patterns in prehistory: A phylogenetic comparative analysis of dwelling size. *PLOS*
819 *ONE* **15**, e0229363 (2020).

820 42. N. E. Altınışık, D. D. Kazancı, A. Aydoğan, H. C. Gemici, Ö. D. Erdal, S. Sarıaltun, K. B.
821 Vural, D. Koptekin, K. Gürün, E. Sağlıcan, D. Fernandes, G. Çakan, M. M. Koruyucu, V.
822 K. Lagerholm, C. Karamurat, M. Özkan, G. M. Kılınç, A. Sevkar, E. Sürer, A.
823 Götherström, Ç. Atakuman, Y. S. Erdal, F. Özer, A. Erim Özdoğan, M. Somel, A
824 genomic snapshot of demographic and cultural dynamism in Upper Mesopotamia
825 during the Neolithic Transition. *Sci. Adv.* **8**, eab03609 (2022).

826 43. J. Yellen, H. Harpending, Hunter-gatherer populations and archaeological inference.
827 *World Archaeol.* **4**, 244-253 (1972).

828 44. R. S. Walker, D. H. Bailey, Marrying kin in small-scale societies. *Am. J. Hum. Biol. Off.*
829 *J. Hum. Biol. Counc.* **26**, 384-388 (2014).

830 45. F. C. Ceballos, K. Gürün, N. E. Altınışık, H. C. Gemici, C. Karamurat, D. Koptekin, K. B.
831 Vural, I. Mapelli, E. Sağlıcan, E. Sürer, Y. S. Erdal, A. Götherström, F. Özer, Ç.
832 Atakuman, M. Somel, Human inbreeding has decreased in time through the Holocene.
833 *Curr. Biol.* **31**, 3925-3934.e8 (2021).

834 46. H. Ringbauer, J. Novembre, M. Steinrücken, Parental relatedness through time
835 revealed by runs of homozygosity in ancient DNA. *Nat. Commun.* **12**, 5425 (2021).

836 47. E. Schildkrout, The Fostering of Children in Urban Ghana: Problems of Ethnographic
837 Analysis in a Multi-Cultural Context. *Urban Anthropol.* **2**, 048–073 (1973).

838 48. J. B. Silk, Adoption and Fosterage in Human Societies: Adaptations or Enigmas? *Cult.*
839 *Anthropol.* **2**, 39–49 (1987).

840 49. E. Alber, Denying biological parenthood: fosterage in Northern Benin. *Ethnos* **68**, 487–
841 506 (2003).

842 50. E. Berman, Holding On: Adoption, Kinship Tensions, and Pregnancy in the Marshall
843 Islands. *Am. Anthropol.* **116**, 578–590 (2014).

844 51. M. Chyleński, E. Ehler, M. Somel, R. Yaka, M. Nska, M. Dabert, A. Juras, A. Marciniak,
845 Ancient Mitochondrial Genomes Reveal the Absence of Maternal Kinship in the Burials
846 of Çatalhöyük People and Their Genetic Affinities. *Genes* **10** (2019).

847 52. C. Mazzucato, Socio-Material Archaeological Networks at Çatalhöyük a Community
848 Detection Approach. *Front. Digit. Humanit.* **6** (2019).

849 53. I. Kuijt, N. Goring-Morris, Foraging, Farming, and Social Complexity in the Pre-Pottery
850 Neolithic of the Southern Levant: A Review and Synthesis. *J. World Prehistory* **16**, 361–
851 440 (2002).

852 54. J. Pearson, A. Lamb, J. Evans, (with contributions by, C. Engel, N. Russell, M. Sömel,
853 W. V. Neer, W. Wouters), “Multi-isotope evidence of diet (carbon and nitrogen) and
854 mobility (strontium) at Neolithic Çatalhöyük” in *Peopling the Landscape of Çatalhöyük.*
855 *Reports from the 2009–2017 Seasons. Monograph 53. Çatalhöyük Research Project*
856 *Series Volume 13* (British Institute at Ankara, 2021), pp. 241–268.

857 55. M. Pruvost, R. Schwarz, V. Bessa Correia, S. Champlot, T. Grange, E.-M. Geigl, DNA
858 diagenesis and palaeogenetic analysis: Critical assessment and methodological
859 progress. *Palaeogeogr. Palaeoclimatol. Palaeoecol.* **266**, 211–219 (2008).

860 56. S. D. Haddow, C. Mazzucato, S. Mangaloğlu-Votruba, B. Yağcı, T. Booth, E. M. J.
861 Schotsmans, C. J. Knüsel, Scratching the surface? A histotaphonomic study of human
862 remains at Neolithic Çatalhöyük. *Archaeol. Anthropol. Sci.* **15**, 74 (2023).

863 57. M. A. Pilloud, S. D. Haddow, C. J. Knüsel, C. S. Larsen, A bioarchaeological and
864 forensic re-assessment of vulture defleshing and mortuary practices at Neolithic
865 Çatalhöyük. *J. Archaeol. Sci. Rep.* **10**, 735–743 (2016).

866 58. M. Vasic, M. Siebrecht, C. Tsoraki, R. Veropoulidou, “Beads and pendants in life and
867 death: insights into the production, use and deposition of ornamental technologies at
868 Çatalhöyük” (2021), pp. 215–246.

869 59. E. M. J. Schotsmans, G. Busacca, S. C. Lin, M. Vasić, A. M. Lingle, R. Veropoulidou,
870 C. Mazzucato, B. Tibbetts, S. D. Haddow, M. Somel, F. Toksoy-Köksal, C. J. Knüsel,
871 M. Milella, New insights on commemoration of the dead through mortuary and
872 architectural use of pigments at Neolithic Çatalhöyük, Turkey. *Sci. Rep.* **12**, 4055
873 (2022).

874 60. F. W. Marlowe, Marital Residence among Foragers. *Curr. Anthropol.* **45**, 277–284
875 (2004).

876 61. C. Ember, What We Know and What We Don't Know About Variation in Social
877 Organization: Melvin Ember's Approach to the Study of Kinship. *Cross-Cult. Res. -*
878 *CROSS-CULT RES* **45**, 16–36 (2011).

879 62. M. Sikora, A. Seguin-Orlando, V. C. Sousa, A. Albrechtsen, T. Korneliussen, A. Ko, S.
880 Rasmussen, I. Dupanloup, P. R. Nigst, M. D. Bosch, G. Renaud, M. E. Allentoft, A.
881 Margaryan, S. V. Vasilyev, E. V. Veselovskaya, S. B. Borutskaya, T. Deviese, D.
882 Comeskey, T. Higham, A. Manica, R. Foley, D. J. Meltzer, R. Nielsen, L. Excoffier, M.
883 Mirazon Lahr, L. Orlando, E. Willerslev, Ancient genomes show social and reproductive
884 behavior of early Upper Paleolithic foragers. *Science* **358**, 659–662 (2017).

885 63. L. G. Simões, R. Peyroteo-Stjerna, G. Marchand, C. Bernhardsson, A. Vialet, D.
886 Chetty, E. Alaçamli, H. Edlund, D. Bouquin, C. Dina, N. Garmond, T. Günther, M.
887 Jakobsson, Genomic ancestry and social dynamics of the last hunter-gatherers of
888 Atlantic France. *Proc. Natl. Acad. Sci.* **121**, e2310545121 (2024).

889 64. B. S. Düring, A. Marciniak, Households and communities in the central Anatolian
890 Neolithic. *Archaeol. Dialogues* **12**, 165–187 (2005).

891 65. I. Hodder, *Peopling the Landscape of Çatalhöyük: Reports from the 2009-2017*
892 *Seasons* (British Institute at Ankara, 2021).