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Abstract 1 

Glioblastomas are aggressive brain tumors with dismal prognosis. One of the main bottlenecks for 2 

developing more effective therapies for glioblastoma stems from their histologic and molecular 3 

heterogeneity, leading to distinct tumor microenvironments and disease phenotypes. Effectively 4 

characterizing these features would improve the clinical management of glioblastoma. Glucose 5 

flux rates through glycolysis and mitochondrial oxidation have been recently shown to 6 

quantitatively depict glioblastoma proliferation in mouse models (GL261 and CT2A tumors) using 7 

dynamic glucose-enhanced (DGE) deuterium spectroscopy. However, the spatial features of tumor 8 

microenvironment phenotypes remain hitherto unresolved. Here, we develop a DGE Deuterium 9 

Metabolic Imaging (DMI) approach for profiling tumor microenvironments through glucose 10 

conversion kinetics. Using a multimodal combination of tumor mouse models, novel strategies for 11 

spectroscopic imaging and noise attenuation, and histopathological correlations, we show that 12 

tumor lactate turnover mirrors phenotype differences between GL261 and CT2A mouse 13 

glioblastoma, whereas recycling of the peritumoral glutamate-glutamine pool is a potential marker 14 

of invasion capacity in pooled cohorts, linked to secondary brain lesions. These findings were 15 

validated by histopathological characterization of each tumor, including cell density and 16 

proliferation, peritumoral invasion and distant migration, and immune cell infiltration. Our study 17 

bodes well for precision neuro-oncology, highlighting the importance of mapping glucose flux 18 

rates to better understand the metabolic heterogeneity of glioblastoma and its links to disease 19 

phenotypes. 20 

 21 
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metabolism. 2 

1. Introduction  3 

Glioblastoma (glioma grade 4 or GBM) are the most aggressive primary brain tumors in adults. 4 

The dismal prognosis of such heterogeneous tumors is mostly attributed to recurrence, associated 5 

with limited response to treatment and an infiltrative pattern that prevents full surgical resection 6 

[1]. Glioblastoma heterogeneity is reflected in the tumor microenvironment, where glioma cells 7 

constantly adapt to their evolving microhabitats, with different biophysical characteristics, 8 

progression stages, and therapy resistance [2]. To sustain active proliferation, cancer cells 9 

exchange metabolic intermediates with their microenvironment [3] and undergo metabolic 10 

reprogramming [4], relying heavily on aerobic glycolysis – upregulation of glucose uptake 11 

concomitant with lactate synthesis, leading to acidification of the tumor microenvironment. While 12 

this so-called Warburg effect [5] favors e.g. invasion [6], metabolic plasticity [7, 8] is becoming 13 

increasingly associated with malignant phenotypes [9]. Namely, mitochondrial oxidation (e.g. 14 

glucose metabolism through the tricarboxylic acid cycle, TCA) is linked with microenvironment 15 

adaptation and tumor progression [10].  16 

The ability to use both glycolysis and mitochondrial oxidation pathways is a critical feature of 17 

GBM, which has been demonstrated from preclinical models to patients [11-13]. More recently, 18 

specific dependencies/proclivities towards those metabolic pathways are beginning to reveal GBM 19 

subtypes with prognostic value in human cell lines and patient-derived cells [14-16]. Importantly, 20 

the latest WHO classification of central nervous system tumors now distinguishes two metabolic 21 

phenotypes of adult GBM based on molecular assessment of a specific TCA cycle mutation 22 

(isocitrate dehydrogenase, IDH), namely into grade 2-4 gliomas (IDH-mut) and grade 4 GBM 23 
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(IDH-wt) [17]. The prognostic value of GBM metabolic phenotypes clearly calls for non-invasive 1 

imaging methodologies capable of resolving the different subtypes, both for diagnosis and for 2 

treatment response monitoring. However, such methods are scarce. 3 

Deuterium metabolic imaging (DMI) has been proposed for mapping active metabolism de 4 

novo in several tumor models [18-24]. While this has also been demonstrated in GBM patients, 5 

with an extensive rationale of the technique and its clinical translation [18], and more recently in 6 

mouse models of patient-derived GBM subtypes [25], mapping glucose metabolic fluxes remains 7 

unaddressed in these tumors due to the poor temporal resolution of DMI; particularly for glucose 8 

mitochondrial oxidation. Leveraging the benefits and risks of denoising methods for MR 9 

spectroscopy [26-28], we recently combined Deuterium Magnetic Resonance Spectroscopy (2H-10 

MRS) [29] with Marcheku-Pastur Principal Component Analysis (MP-PCA) denoising [30] to 11 

propose Dynamic Glucose-Enhanced (DGE) 2H-MRS [31], demonstrating its ability to quantify 12 

glucose fluxes through glycolysis and mitochondrial oxidation pathways in vivo in mouse GBM, 13 

which in turn revealed their proliferation status.  14 

Here, we develop and apply a novel rapid DGE-DMI method to spatially resolve glucose 15 

metabolic flux rates in mouse GBM and reach a temporal resolution compatible with its kinetic 16 

modeling. For this, we adapt two advances of PCA denoising – tensor MPPCA [32, 33] and 17 

threshold PCA denoising [34] – and apply it for regional metabolic assessment of mouse GBM. 18 

First, we validated our novel approach in vivo for its ability to map glucose fluxes through 19 

glycolysis and mitochondrial oxidation in mouse GBM. Then, we investigate the potential of our 20 

new approach for depicting histopathologic differences in two mouse models of glioblastoma, 21 

including microglia/macrophage infiltration, tumor cell proliferation, peritumoral invasion and 22 

migration. For this we used the same allograft mouse models of GBM, induced with CT2A and 23 

GL261 cell lines [35-39], but at more advanced stages of progression [31]. Since DMI is already 24 
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performed in humans, including in glioblastoma patients [18], DGE-DMI could be relevant to 1 

improve the metabolic mapping of the disease. 2 

  3 
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3. Results  1 

MRI assessment of mouse GBM 2 

Multi-parametric MRI provided a detailed characterization of each cohort at endpoint. 3 

Volumetric T2-weighted MRI indicated consistent tumor sizes across CT2A and GL261 cohorts 4 

(58.5±7.2 mm3). GL261 tumors were studied sooner after induction (17±0 vs 30±5 days post-5 

injection, p=0.032), explaining the lower animal weights in this cohort (22.4±0.6 vs 25.7±0.9 g, 6 

p=0.017). DCE T1-weighted MRI indicated higher vascular permeability (0.85±0.11 vs 0.43±0.05 7 

·10-2/min, p=0.012) and a tendency for larger extracellular volume fractions (0.26±0.03 vs 8 

0.18±0.02, p=0.056) in the GL261 tumors compared to CT2A. However, DCE T1-weighted MRI 9 

was carried out only in 80% of the mice due to time restrictions. This information is detailed in 10 

Table S1, where quantitative assessment of DGE-DMI, DCE-T1 and histologic parameters is 11 

displayed for tumor and peritumor border regions (P-Margin), based on ROI analysis. 12 

 13 

DGE-DMI in mouse GBM 14 

Tumor metabolic assessment was performed with DGE-DMI in CT2A vs GL261 cohorts. No 15 

differences in RF coil quality or magnetic field homogeneity were detectable between the two 16 

cohorts: Q-factor 2H, 175±8 vs 176±9 (p=0.8996), respectively; FWHM 1H (VOI), 29.2±6.6 vs 17 

26.0±4.3 Hz (p=0.3837), respectively. DGE-DMI was used to map the natural abundance semi-18 

heavy water signal (DHO) as well as the dynamic conversion of deuterium-labelled glucose (Glc) 19 

to its downstream products, lactate (Lac) and glutamate-glutamine (Glx) pools, in tumor and 20 

peritumor brain regions (Fig. 1A). Tensor PCA denoising improved the spectral quality compared 21 

to the original data, without any depictable effects in the relative spatial distributions of signal-to-22 
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noise-ratio (SNR, Fig. S1), leading to a consistent and significant ~3-fold SNR increase across all 1 

the subjects (from 6.4±0.1 before denoising to 20.1±0.4 after denoising, Table S1).  2 

 3 

 4 

Fig. 1. Metabolic concentration and flux maps from DGE-DMI in mouse GBM. Example of a CT2A tumor (C1). 5 

A T2-weighted reference image (top-left) displaying the tumor region (dashed lines) and representative peritumor and 6 

tumor voxels (back dots), and respective spectral quantifications (right-side): bottom, raw spectrum (black) with 7 

overlaid estimation (purple); center, individual components for each metabolite peak (black - semi-heavy water, DHO 8 

(black); deuterated glucose, Glc (red); and glucose-derived glutamate-glutamine and lactate, Glx (green) and Lac 9 

(blue)); top, residual. B Time-course de novo concentration maps for each metabolite (mM) following Glc i.v. injection 10 

(red arrow). C Average concentration maps for each metabolite after Glc injection. D Time-course concentration plots 11 

for each metabolite (dots) and respective kinetic fitting (straight lines), displayed for the peritumor and tumor voxels 12 

shown in A (same color codes) and applied to all the voxels to generate glucose flux maps: maximum consumption 13 
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rate (Vmax); and respective individual rates for lactate synthesis (Vlac) and elimination (klac), and glutamate-glutamine 1 

synthesis (Vglx) and elimination (kglx). 2 

 3 

Spectral quantification of DGE-DMI data in each voxel and time point rendered time-course 4 

de novo concentration maps for each metabolite (DHO, Glc, Glx, and Lac), in both GBM cohorts 5 

(Fig 1B). Voxel-wise averaging of DGE-DMI time-course data after Glc injection generated 6 

average metabolic concentration maps for each tumor (Fig. 1C). Thus, Lac concentration was 7 

visually higher in the tumor regions, due to enhanced glycolysis; whereas Glx was more apparent 8 

in the adjacent non/peritumoral areas, consistent with a more prevalent oxidative metabolism in 9 

the normal brain. Kinetic fitting of DGE-DMI time-course concentration maps rendered glucose 10 

flux maps, namely its maximum consumption rate (Vmax) and flux rates through glycolysis (Vlac 11 

and klac) and mitochondrial oxidation (Vglx and kglx) (Fig 1D). Both cohorts displayed higher 12 

glycolytic metabolism in the tumors and more pronounced glucose oxidation in non-tumor regions, 13 

aligned with average concentration maps.  14 

 15 

Histopathology assessment of GBM cohort differences 16 

Histopathological analysis consisted of screening the CT2A and GL261 brain tumors for 17 

morphological features, including qualitative assessment of cell density, hemorrhage, tumor 18 

vessels, necrosis, quantification of peripheral infiltration and quantification of tumor proliferation 19 

index, while blinded to the in vivo MRI/MRS data – Table S2. Thus, tumors were scored 20 

individually for the following stromal-vascular phenotype, as in [31], where: pattern I corresponds 21 

to predominance of small vessels, complete endothelial cell lining and sparse hemorrhages; pattern 22 

II to vasodilation and marked multifocal hemorrhages; pattern III to predominance of necrosis of 23 
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the vascular wall, incomplete endothelial cell lining, vascular leakage, and edematous stroma; and 1 

pattern IV to tumors with absence of clear vascular spaces and edematous stroma.  2 

Stromal-vascular phenotypes reflected the more advanced stages of tumor progression in which 3 

these tumors were collected, as compared to our previous study [31]. Particularly, CT2A (n=5) 4 

presented patterns I to III, whereas all GL261 (n=5) matched pattern IV (Table S1). Moreover, the 5 

increased infiltrative and migratory characteristics of GL261 compared to CT2A tumors were 6 

evident in their irregular tumor borders and higher incidence of secondary brain lesions (Fig 2A). 7 

These findings collectively suggest a more invasive and aggressive pattern of GL261 tumors, 8 

characterized by reduced cell-cell adhesion and enhanced migratory potential compared to CT2A. 9 

Such phenotype differences were reflected in the regional infiltration by microglia/macrophages: 10 

significantly higher at the CT2A peritumoral margin (P-Margin) compared to GL261, and slightly 11 

higher in the tumor region as well (Fig 2B). Further quantitative regional analysis of Tumor-to-P-12 

Margin ROI ratios revealed: (i) 47% lower cell density (p=0.004) and 32% higher cell proliferation 13 

(p=0.026) in GL261 compared to CT2A (Fig 2C, Table S3); and (ii) strong negative correlations 14 

in pooled cohorts between microglia/macrophage infiltration and cellularity (R=-0.91, p=<0.001) 15 

or cell density (R=-0.77, p=0.016), suggesting more circumscribed tumor growth with higher 16 

peripheral/peritumoral infiltration of immune cells.  17 
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 1 

Figure 2 – Histopathologic and immunohistochemical assessment in two mouse models of GBM. A H&E-stained 2 

sections with high magnification to highlight annotations of tumor, infiltrative zones in the tumor margin (blue), and 3 

secondary lesion (red), in CT2A and GL261 tumors (subjects C4 and G4, respectively). B Iba-1 immunostained 4 

sections showing microglia/macrophage (Mgl/Mp) infiltration in CT2A and GL261 tumors: left panels, tumor core 5 

(black arrowhead) and tumor margin (white arrow) relative to the adjacent brain parenchyma; middle and right panels, 6 

depicting more infiltration by microglial/macrophage in CT2A tumors, also with clearer well-demarcated margin 7 

where IBA-1-positive cells are more densely concentrated compared to the more diffuse and irregular infiltration seen 8 

in the GL261 model; GL261 show poorly demarcated tumor border where tumor cells infiltrate the brain parenchyma 9 

(yellow diamonds); center panels, Iba-1 ROI quantification in tumor and peritumoral margin (P-Margin, yellow lines), 10 

and with red mask overlay of Iba-1 positive cells; right panel, quantification of mean Iba-1 positive area in Tumor and 11 

P-Margin regions of CT2A and GL261 cohorts – C2 sample excluded due to peritumoral hemorrhage/vascular ectasia, 12 

which distorted the peritumoral area and impaired proper assessment of peritumoral infiltration. C Ki67 immuno-13 

stained sections with overlaid detection of positive (red) and negative (blue) cells; and high magnification to highlight 14 

annotations of tumor and peritumor border (P-Margin, yellow lines), in CT2A and GL261 tumors (subjects C1 and 15 

G3, respectively); and GBM cohort differences in tumor/P-Margin ratios of cell density and cell proliferation (dots 16 
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representative of average values for each subject).. CT2A vs GL261 (ki67, n= 5 vs 5; Iba-1, n= 4 vs 5): * p<0.05; ** 1 

p<0.01; *** p<0.001; unpaired t-test. Error bars: standard deviation. 2 

 3 

Despite the more advanced stages of tumor progression, the results were largely consistent 4 

with the marked morphological differences between the two models [31]: CT2A with dense, 5 

cohesive and homogeneous cell populations (Fig 2A, left-side); GL261 displaying marked 6 

heterogeneity, with poorly cohesive areas and more infiltrative growth (Fig 2A, right-side). 7 

Quantitative assessment (nuclear counts) further confirmed a nearly 2-fold lower cell density of 8 

GL261 tumors compared to CT2A (4.9 vs 8.2 ·103 cells/µm2, p<0.001) despite their similar 9 

proliferation index (Table S1); and tumor cell density correlated with cell proliferation, strongly 10 

for CT2A (R=0.96, p=0.009) and the same tendency detected for GL261 (R=0.74, p=0.151). 11 

Tumor volume and whole-brain gross assessment of cell density, cell proliferation, and 12 

glucose metabolism also revealed strong inter-subject correlations in both cohorts (Fig. S2): de 13 

novo glutamate-glutamine accumulation decreased with tumor size (R CT2A/ GL261/ pooled: -0.597/ -14 

0.753/ -0.455), consistent with its role as marker of oxidative metabolism in the normal brain; 15 

lactate synthesis rate increased with cellularity (R CT2A/ GL261/ pooled: +0.921/ +0.685/ +0.852), also 16 

aligned with enhanced glycolysis in growing tumors; whereas glucose accumulation reflected cell 17 

proliferation (R CT2A/ GL261/ pooled: +0.469/ +0.528/ +0.440).  18 

 19 

Regional assessment of glucose metabolism in the tumor microenvironment 20 

Initial intra-tumor analysis of DGE-DMI and DCE-T1 maps (pixel-wise correlations in tumor 21 

ROIs) indicate stronger correlations between de novo lactate accumulation (Lac) and vascular 22 

permeability (ktrans) in both cohorts (R between [+0.306 +0.741]), and extracellular space (ve) to 23 
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some extent (R between [-0.084 +0.804]) – both less apparent without tensor PCA denoising (R 1 

between [+0.089 +0.647] and [-0.160 +0.684], respectively) (Fig S3). Such accumulation of lactate 2 

according to local vascular permeability mostly reflected regional differences in glycolytic fluxes 3 

(Vlac: R between [-0.066 +0.510]), rather than lactate elimination rates (klac: R between [-0.643 4 

+0.460]). No additional correlations were detected.  5 

GL261 tumors accumulated significantly less lactate in the core (1.60±0.25 vs 2.91±0.33 mM: 6 

-45%, p=0.013) and peritumor margin regions (0.94±0.09 vs 1.46±0.17 mM: -36%, p=0.025) than 7 

CT2A – Fig 3 A-B, Table S1. Consistently, tumor lactate accumulation correlated with tumor 8 

cellularity in pooled cohorts (R=0.74, p=0.014). Then, lower tumor lactate levels were associated 9 

with higher lactate elimination rate, klac (0.11±0.1 vs 0.06±0.01 mM/min: +94%, p=0.006) – Fig 10 

3B – which in turn correlated inversely with peritumoral margin infiltration of 11 

microglia/macrophages in pooled cohorts (R=-0.73, p=0.027) - Fig 3-C. Further analysis of 12 

Tumor/P-Margin metabolic ratios (Table S3) revealed: (i) +38% glucose (p=0.002) and -17% 13 

lactate (p=0.038) concentrations, and +55% higher lactate consumption rate (p=0.040) in the 14 

GL261 cohort; and (ii) lactate ratios across those regions reflected the respective cell density ratios 15 

in pooled cohorts (R=0.77, p=0.010) – Fig 3-C. Finally, lactate elimination rate correlated 16 

inversely with “tumor age” (time post-induction) in pooled cohorts (R=-0.66, p=0.039), and more 17 

consistently with tumor vascular permeability (ktrans: R=0.78, p=0.022) (Fig 3C), rather than 18 

washout rate (kep: R=0.61, p=0.109).  19 

 20 
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 1 

Figure 3 – Mouse GBM models with different histopathologic phenotypes underlied by regional differences in 2 

lactate metabolism. A Metabolic maps of de novo lactate accumulation (mM) and respective 3 

consumption/elimination rates (mM/min), in tumor and peritumor border regions (P-Margin, delineated by dashed 4 

lines) of CT2A and GL261 tumors (subjects C1 and G3, respectively). B GBM cohort differences in de novo lactate 5 

accumulation (Lac) and consumption/elimination rates (klac). C Strong linear correlations (indicated by the Person 6 

correlation coefficient, R) of: top-left, Tumor lactate consumption/elimination rates with P-Margin infiltration of 7 

microglia/macrophages in pooled cohorts; top-right, Tumor-to-P-Margin ratios of lactate accumulation and cell 8 

density in pooled cohorts; bottom, lactate consumption/elimination rates with (left-side) time post-tumor inoculation 9 

in each cohort, and (right-side) tumor vascular permeability in pooled cohorts. CT2A (n=5) vs GL261 (n=5): * p<0.05; 10 

** p<0.01; unpaired t-test. Tumor (n=5, each cohort) vs P-Margin (n=5, each cohort): # p<0.05; ## p<0.01; paired t-11 

test. Error bars: standard deviation. Bar plot dots representative of average pixel values for each subject. 12 

 13 

Association between glucose metabolism and peritumoral invasion and migration 14 

Finally, we investigated the association between glucose metabolism and phenotypic features 15 

of tumor aggressiveness, namely cell proliferation and tumor cell invasion and migration 16 

associated with secondary brain lesions. Only the more infiltrative GL261 cohort displayed inter-17 
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subject associations between tumor cell proliferation (Ki67+ %) and metabolism, namely inverse 1 

correlations with tumor border/peritumoral glucose oxidation rate (Vglx: R=-0.91, p=0.030) and 2 

glucose-derived glutamate-glutamine elimination rate (kglx: R=-0.99, p<0.001). Regrouping 3 

subjects according to glioma cell invasion and migration concomitant with secondary brain lesions 4 

(presence: C1, G3, G4, G5; vs. absence: C2, C3, C4, C5, G1, G2) revealed lower de novo 5 

glutamate-glutamine levels in peritumor brain regions (Glx: -37%, p=0.013), which were 6 

associated with its higher elimination rate (kglx: +69%, p=0.012) – Fig 4.  7 

 8 

Figure 4 – Peritumoral metabolic changes consistent with recycling of the glutamate-glutamine pool mirror 9 

GBM infiltration and migration leading to secondary brain lesions. A Metabolic maps (Glx) of peritumoral 10 

regions without and with secondary brain lesions (C4 and G4 tumors, respectively). B Histogram distributions of 11 

peritumoral Glx accumulation in pooled GL261 and CT2A cohorts displaying secondary brain lesions (n=4) vs 12 

without (n=6). C Bar plot comparison of mean values , showing significant decreases in peritumoral glutamate-13 

glutamine accumulation (Glx) and increases in its consumption/elimination (kglx) in pooled GL261 and CT2A cohorts 14 

displaying secondary brain lesions (n=4; vs n=6 without): * p<0.05; unpaired t-test. Error bars: standard deviation. 15 

Bar plot dots representative of average pixel values for each subject.  16 
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Discussion  1 

Glioblastomas are aggressive brain tumors with a poor prognosis, largely due to their inter- 2 

and intra-tumor heterogeneity and lack of non-invasive methods to assess it. Here we developed 3 

and applied a DGE-DMI approach capable of generating metabolic concentration maps and flux 4 

rates in two mouse models of glioblastoma, based on unambiguous spectral quantification 5 

according to quality criteria. Our results suggest that glycolytic lactate turnover mirrors phenotype 6 

differences between the two glioblastoma models, whereas recycling of the glucose-derived 7 

glutamate-glutamine pool could underlie glioma cell migration leading to secondary lesions. This 8 

information became more readily available when using the tensor PCA method for spectral 9 

denoising.  10 

Tensor PCA denoising increased spectral SNR by ~3-fold, consistently improving spectral 11 

quality observed in tumor and peritumoral regions without altering the spatiotemporal profiles of 12 

the metabolic concentration maps (Fig S4). While this had no apparent effect on metabolic 13 

concentration maps (Figs S5-6), it significantly improved the kinetic modeling performance (Fig 14 

S7) and rendered better quality metabolic flux maps in CT2A and GL261 cohorts. Thus, 63% 15 

increased pixel detectability enabled capturing more spatial features in the latter without affecting 16 

parameter estimates or introducing group differences (Figs S8-9).  17 

Gross whole brain analysis revealed strong inter-subject correlations in both cohorts, such as 18 

higher lactate synthesis rate with increasing cellularity – consistent with enhanced glycolysis in 19 

growing tumors – whereas intra-tumor pixel-wise analysis suggested lactate accumulation 20 

according to local vascular permeability, mostly associated with regional differences in glycolytic 21 

fluxes. Such pixel-wise analyses might be misleading since de novo lactate diffuses quickly within 22 

tumor extracellular spaces and peritumoral regions [40], with spatiotemporal dynamics not fully 23 
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captured by DGE-DMI. Namely, water diffusion in GL261 tumors in vivo (apparent diffusion 1 

coefficient ~10-3 mm2/s [41, 42]) extends beyond the in-plane voxel area (0.56×0.56 = 0.31 mm2) 2 

during each time frame (12 min). Thus, we focused instead on inter-tumor ROI analysis of glucose 3 

metabolic fluxes, in tumor and peritumoral (border) regions. 4 

Compared to our previous study using the same GBM models [31], larger tumors (59±7 vs 5 

38±3 mm3) display more disrupted stromal-vascular phenotypes (H&E scores: CT2A I-III vs I; 6 

GL261, IV vs I-IV) and weaker cell-cell interactions (lower cohesiveness) (Table S2), associated 7 

with lower vascular permeability (ktrans: 6±1 vs 14±1 103/min) and leading to lower glucose 8 

oxidation rates (Vglx: 0.28±0.06 vs. 0.40±0.08 mM/min), but remarkably similar glycolytic fluxes 9 

(Vlac: 0.59±0.04 vs. 0.55±0.07 mM/min). Thus, glycolysis flux rates are relatively well preserved 10 

across GL261 and CT2A mouse GBM models, regardless of tumor volume and vascular 11 

permeability.  12 

GL261 tumors were examined earlier after induction than CT2A (17±0 vs. 30±5 days, p = 13 

0.032), displaying similar volumes (57±6 vs. 60±14, p = 0.813) but increased vascular 14 

permeability (8.5±1.1 vs 4.3±0.5 103/min: +98%, p=0.001),  more disrupted stromal-vascular 15 

phenotypes and infiltrative growth (5/5 vs 0/5), consistent with significantly lower tumor cell 16 

density (4.9±0.2 vs. 8.2±0.3 10-3 cells/µm2: -40%, p<0.001) and lower peritumoral rim infiltration 17 

of microglia/macrophages (2.1±0.7 vs. 10.0±2.3 %: -77%, p=0.008). Such GBM cohort 18 

differences were markedly reflected in their regional lactate metabolism. Thus, GL261 tumors 19 

accumulated roughly -40% less lactate in tumor and peritumor border regions, associated with 20 

+94% higher lactate elimination rate rather than glycolytic rate differences in tumor regions, as 21 

could be assumed solely based on metabolic concentration maps.  22 
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Tumor vs peritumor border analyses further suggest that lactate metabolism reflects regional 1 

histologic differences: lactate accumulation mirrors cell density gradients between and across the 2 

two cohorts; whereas lactate consumption/elimination rate coarsely reflects cohort differences in 3 

cell proliferation, and inversely correlates with peritumoral infiltration by microglia/macrophages 4 

across both cohorts. This is consistent with GL261’s lower cell density and cohesiveness, more 5 

disrupted stromal-vascular phenotypes, and infiltrative growth pattern at the peritumor margin 6 

area, where less immune cell infiltration is detected and relatively lower cell division is expected 7 

[43]. Altogether, our results suggest increased lactate consumption rate (active recycling) in 8 

GL261 tumors with higher vascular permeability, e.g. as a metabolic substrate for oxidative 9 

metabolism [44] promoting GBM cell survival and invasion [45], aligned with the higher 10 

respiration buffer capacity and more efficient metabolic plasticity of GL261 cells than CT2A [31]. 11 

While, lactate shuttling within the tumor microenvironment is also reported in other tumor types, 12 

between cancer cells [46] and between cancer and stromal cells [47, 48], it should be noted that 13 

oxidative phosphorylation inefficiency has been extensively documented in cancer cells, including 14 

GBM [49], largely associated with hypoxic niches and in agreement with our measurements of 15 

lower glucose oxidation rate (Vglx) in tumor vs. peritumoral regions. 16 

The lower glucose oxidation rates measured in this study compared with smaller, better 17 

perfused tumors [31], are in good agreement with our previous data indicating quick adaptation of 18 

this pathway flux according to oxygen availability in the tumor microenvironment [31]. Under 19 

such physiological conditions – underlying more advanced progression stages, reflected in more 20 

disrupted stromal-vascular phenotypes – tumor glucose oxidation rate was not associated with cell 21 

proliferation index, consistent with previous observations [31]. Instead, tumor cell proliferation 22 

was inversely correlated with tumor border/peritumoral glucose oxidation rate and glucose-derived 23 

glutamate-glutamine elimination rate in more infiltrative GL261 tumors; but not in CT2A. This 24 
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observation is consistent to some extent with GL261 cells’ and tumor’s ability to modulate 1 

mitochondrial metabolism according to their microenvironment (e.g. oxygen availability [31]), 2 

which is likely to occur during their progression from more circumscribed/local cell proliferation 3 

towards more disrupted stromal-vascular phenotypes, associated with significantly lower peri-4 

tumoral immune cell infiltration and higher tumor invasion compared to CT2A.  5 

Notably, glucose-derived glutamate-glutamine displayed -37% lower levels and +69% higher 6 

elimination rate in peritumor regions of mouse brains bearing secondary GBM lesions (respective 7 

primary tumors displaying +146% increased glucose oxidation rate, detectable only with tensor 8 

PCA denoising – Fig S10). This could be associated with glutamate-glutamine-driven 9 

mitochondrial metabolism, through the TCA cycle coupled with oxidative phosphorylation (more 10 

prevalent in the normal brain) and/or via substrate level phosphorylation for ATP synthesis – 11 

glutaminolysis (as reported in glioma cells, e.g. CT2A [50]). While patient-derived xenografts and 12 

de novo models would be more suited to recapitulate human GBM heterogeneity and infiltration 13 

features, and genetic manipulation of glycolysis and mitochondrial oxidation pathways could be 14 

relevant to ascertain DGE-DMI sensitivity for their quantification, our observations are well 15 

aligned with the pivotal role of mitochondrial metabolism in cancer cells with higher motile 16 

potential, as reported in human GBM [51] and in mouse and human breast cancer cell lines [52, 17 

53]. Particularly, the dynamics of glutamate shuttling underlying neuronal-glioma cell 18 

communication and promoting GBM infiltration, are increasingly reported by the emerging field 19 

of cancer neuroscience [54]. Therefore, our results suggest that glucose mitochondrial metabolism 20 

mirrors GBM progression in mouse GL261 and CT2A models: more prevalent in smaller, well 21 

perfused tumors, where glucose oxidation rate correlates with tumor cell proliferation [31]; lower 22 

in larger, more poorly perfused tumors, where recycling of the glutamate-glutamine pool may 23 

reflect a phenotype associated with secondary brain lesions. 24 
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Despite the excellent performance of tensor PCA denoising – 3-fold increase in SNR, 1 

approaching the original/raw values obtained previously with single-voxel 2H-MRS data 2 

(SNR~20, [31]) – no further improvements in SNR could be achieved by free induction decay 3 

(FID) averaging within the tumor ROI (Fig S11). Therefore, further DGE-DMI preclinical studies 4 

aimed at detecting and quantifying relatively weak signals, such as tumor glutamate-glutamine, 5 

and/or increase the nominal spatial resolution to better correlate those metabolic results with 6 

histology findings (e.g in the tumor margin), should improve basal SNR with higher magnetic field 7 

strengths, more sensitive RF coils, and advanced DMI pulse sequences [55]). In the kinetic model, 8 

the extracellular volume fraction was fixed to ensure model stability, as previously demonstrated 9 

using the tumor average across all subjects [31]. This approximation may not fully reflect the intra- 10 

and inter-tumor heterogeneity of this parameter in both cohorts, and may not be representative of 11 

its peritumoral regions. Still, we opted for this approach, rather than pixel-wise adjustments 12 

according to DGE-T1 extracellular volume fraction maps, given (i) the relative insensitivity of the 13 

model to the actual extracellular volume fraction value used [31], also verified in the present study 14 

(Fig S12); and particularly, because (ii) we did not have DCE-T1 data for the full cohort, thus it 15 

was not feasible to perform individual corrections, which in any case would ultimately be prone 16 

to error at tumor periphery/border regions, where exact delimitations are typically debatable. 17 

Finally, our results are indicative of higher microglia/macrophage infiltration in CT2A than GL261 18 

tumors, which is inconsistent with another study reporting higher immunogenicity of GL261 19 

tumors than CT2A for microglia and macrophage populations [56]. Such discrepancy could be 20 

related to methodologic differences between the two studies, namely the endpoint-guided 21 

assessment of tumor growth (bioluminescence vs MRI, more precise volumetric estimations) and 22 

tumor stage (GL261 at 23-28 vs 16-18 days post-injection, i.e. less time for immune cell to 23 

infiltration in our case), presence/absence of a cell transformation step (GFP-Fluc engineered vs 24 
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we used original cell lines), or perhaps media conditioning effects during cell culture due to the 1 

different formulations used (DMEM vs RPMI). 2 

Our results clearly highlight the importance of mapping pathway fluxes alongside de novo 3 

concentrations to improve the characterization of the complex and dynamic heterogeneity of GBM 4 

metabolism. This may be determinant for the longitudinal assessment of GBM progression, with 5 

end-point validation; and/or treatment-response, to help selecting among new therapeutic 6 

modalities targeting GBM metabolism [57, 58] or monitoring the efficacy of novel immunotherapy 7 

approaches [59] beyond conventional chemoradiotherapy [25]. Importantly, DGE-MRI has 8 

already been demonstrated in glioma patients with i.v. administration of glucose using Chemical 9 

Exchange Saturation Transfer (glucoCEST) and relaxation-based methods [60, 61], to map the 10 

spatiotemporal kinetics of glucose accumulation rather than quantifying its downstream metabolic 11 

fluxes through glycolysis and mitochondrial oxidation, as we did. The latter could potentially 12 

benefit from an improved kinetic model simultaneously assessing cerebral glucose and oxygen 13 

metabolism, as recently demonstrated in the rat brain with a combination of 2H and 17O MR 14 

spectroscopy [62]. Moreover, DMI has been demonstrated on a 9.4T clinical MRI scanner [63], 15 

benefiting from the higher sensitivity in the much larger human brain compared to mice: 200 cm3 16 

[64] and 415 mm3 [65], respectively. 17 

In summary, we report a DGE-DMI method for quantitative mapping of glycolysis and 18 

mitochondrial oxidation fluxes in mouse GBM, highlighting its importance for metabolic 19 

characterization and potential for in vivo GBM phenotyping in different models and progression 20 

stages. In large mouse GBM tumors, lactate metabolism underlies model-specific features, 21 

consistent with faster turnover in more disrupted stromal-vascular phenotypes and mirroring intra-22 

tumor gradients of cell density and proliferation, whereas recycling of the glutamate-glutamine 23 

pool may reflect a phenotype associated with secondary brain lesions. Tensor PCA denoising 24 
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significantly improved spectral signal-to-noise, which helped reveal such associations between 1 

regional glucose metabolism and phenotypic features of intra- and inter-tumor heterogeneity. 2 

DGE-DMI is potentially translatable to high-field clinical MRI scanners for precision neuro-3 

oncology imaging. 4 

 5 

  6 
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Materials and Methods 1 

 2 

Animals and cell lines 3 

All animal experiments were pre-approved by the competent institutional as well as national 4 

authorities, and carried out strictly adhering to European Directive 2010/63. A total of n=10 5 

C57BL/6j male mice were used in this study, bred at the Champalimaud Foundation Vivarium, 6 

and housed with ad libitum access to food and water and 12h light cycles. GL261 mouse glioma 7 

cells were obtained from the Tumor Bank Repository at the National Cancer Institute (Frederick 8 

MD, USA). CT2A mouse glioma cells were kindly provided by Prof. Thomas Seyfried at Boston 9 

College (Boston MA, USA). Both cell lines were grown in RPMI-1640 culture medium 10 

supplemented with 2.0 g/l Sodium Bicarbonate, 0.285 g/l L-glutamine, 10% Fetal Bovine Serum 11 

(Gibco) and 1% Penicillin-Streptomycin solution. The cell lines tested negative for mycoplasma 12 

contamination using the IMPACT Mouse FELASA 1 test (Idexx-BioResearch, Ludwigsburg, 13 

Germany). 14 

 15 

Glioma models 16 

Tumors were induced in previously described [66]. Briefly, intracranial stereotactic injection 17 

of 1 x105 GL261 or CT2A cells was performed in the caudate nucleus (n=5 and n=5 mice, 18 

respectively); analgesia (Meloxicam 1.0 mg/Kg s.c.) was administered 30 min before the 19 

procedure. Mice were anesthetized with isoflurane (1.5-2.0% in air) and immobilized on a 20 

stereotactic holder (Kopf Instruments, Tujunga/CA, USA) where they were warmed on a heating 21 

pad at 37 ºC, while body temperature was monitored with a rectal probe (WPI ATC-2000, Hitchin, 22 

UK). The head was shaved with a small trimmer, cleaned with iodopovidone, and the skull exposed 23 
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through an anterior-posterior incision in the midline with a scalpel. A 1 mm hole was drilled in the 1 

skull using a micro-driller, 0.1 mm posterior to the bregma and 2.32 mm lateral to the midline. 2 

The tumor cells (1x105 in 4 μL PBS) were inoculated 2.35 mm below the cortical surface using a 3 

10 µL Hamilton syringe (Hamilton, Reno NV, USA) connected to an automatic push-pull 4 

microinjector (WPI SmartouchTM, Sarasota FL, USA), by advancing the 26G needle 3.85 mm from 5 

the surface of the skull (~1mm skull-to-brain surface distance), pulling it back 0.5 mm, and 6 

injecting at 2 μL/min rate. The syringe was gently removed 2 min after the injection had finished, 7 

the skin sutured with surgical thread (5/0 braided silk, Ethicon, San Lorenzo Puerto Rico) and 8 

wiped with iodopovidone. During recovery from anesthesia, animals were kept warm on a heating 9 

pad and given an opioid analgesic (Buprenorphine 0.05 mg/Kg s.c.) before returning to their cage. 10 

Meloxicam analgesia was repeatedly administered at 24- and 48-hours post-surgery. 11 

 12 

In vivo Studies 13 

Longitudinal MRI 14 

GBM-bearing mice were imaged every 5-7 days on a 1 Tesla Icon MRI scanner (Bruker 15 

BioSpin, Ettlingen, Germany; running ParaVision 6.0.1 software), to measure tumor volumes. For 16 

this, each mouse was placed in the animal holder under anesthesia (1-2 % isoflurane in 31% O2), 17 

heated with a recirculating water blanket, and monitored for rectal temperature (36-37 ºC) and 18 

breathing (60-90 BPM). Tumor volume was measured with T2-weighted 1H-MRI (RARE 19 

sequence, ×8 acceleration factor, repetition time TR = 2500 ms, echo time TE = 84 ms, 8 averages, 20 

1 mm slice thickness, and 160×160 µm2 in-plane resolution), acquired in two orientations (coronal 21 

and axial). Each session lasted up to 30 min/animal.  22 

End-point MRI and DMI 23 
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GBM-bearing mice with tumors ≥35 mm3 (longitudinal MRI assessment) were scanned on a 1 

9.4T BioSpec MRI scanner (Bruker BioSpin, Ettlingen, Germany; running under ParaVision 2 

6.0.1), using a 2H/1H transmit-receive surface coilset customized for the mouse brain (NeosBiotec, 3 

Pamplona, Spain), as described before [31]. Before each experiment, GBM-bearing mice fasted 4-4 

6h, were weighed, and cannulated in the tail vein with a catheter connected to a home-built 3-way 5 

injection system filled with: 6,6′-2H2-glucose (1.6M in saline); Gd-DOTA (25 mM in saline); and 6 

with heparinized saline (10 U/mL). Mice were placed on the animal holder under anesthesia (as in 7 

2.3.1). Coilset quality factors (Q) for 1H and 2H channels were estimated in the scanner for each 8 

sample based on the ratio of the resonance frequency (400.34 and 61.45 MHz, for protons and 9 

deuterium, respectively) to its bandwidth (full width at half-minimum of the wobbling curve 10 

during the initial tuning adjustments): 175±8 and 200±12, respectively. Mice were imaged first 11 

with T2-weighted 1H-MRI (RARE sequence, x8 acceleration factor, 3000 ms TR, 40 ms TE; 2 12 

averages, 1 mm slice thickness, 70 µm in-plane resolution) in two orientations (coronal and axial). 13 

Then, the magnetic field homogeneity was optimized over the tumor region based on the water 14 

peak with 1H-MRS (STEAM localization: 6x6x3 mm volume of interest, i.e. 108 µL) using 15 

localized 1st and 2nd order shimming with the MapShim Bruker macro, leading to full widths at 16 

half-maximum (FWHM) of 28±5 Hz. 17 

DMI was performed using a slice-FID chemical-shift imaging pulse sequence, with 175 ms 18 

TR, 256 spectral points sampled over a 1749 Hz window, and Shinnar-Le Roux RF pulse [67, 68] 19 

(0.42ms, 10kHz) with 55º flip angle, to excite a brain slice including the tumor: 18×18 mm field-20 

of-view, and 2.27 mm slice thickness. After RF pulse calibration (using the natural abundance 21 

semi-heavy water peak, DHO), DGE-DMI data were acquired for 2h23min (768 repetitions), with 22 

i.v. bolus of 6,6′-2H2-glucose (2 mg/g, 4 µL/g injected over 30 s; Euroisotop, St Aubin Cedex, 23 

France). Data were sampled with an 8×8 matrix and 4-fold Fourier interpolated [69], rendering a 24 
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560 µm in-plane resolution. A reference T2-weighted image was additionally acquired with 1 

matching field-of-view and slice thickness, and 70 µm in-plane resolution. 2 

Finally, animals underwent DCE T1-weighted 1H-MRI (FLASH sequence, 8º flip-angle, 16ms 3 

TR, 4 averages, 150 repetitions, 1 slice with 140 µm in-plane resolution and 2.27 mm thickness, 4 

FOV size and position matching the DGE-DMI experiment), with i.v. bolus injection of Gd-DOTA 5 

(0.1 mmol/Kg, injected over 30 s; Guerbet, Villepinte, France). Animals were then sacrificed, 6 

brains were removed, washed in PBS, and immersed in 4% PFA.  7 

 8 

MRI/DMI Processing 9 

T2-weighted 1H-MRI  10 

T2-weighted MRI data were processed in ImageJ 1.53a (Rasband, W.S., ImageJ, U. S. National 11 

Institutes of Health, Bethesda, Maryland, USA, https://imagej.nih.gov/ij/, 1997-2018). For each 12 

animal, the tumor region was manually delineated on each slice, and the sum of the areas multiplied 13 

by the slice thickness to estimate the volume, which was averaged across the two orientations 14 

acquired (coronal and axial).  15 

 16 

DGE-DMI 17 

DGE-DMI data were processed in MATLAB® R2018b (Natick, Massachusetts: The 18 

MathWorks Inc.) and jMRUI 6.0b [70]. Each dataset was averaged to 12 min temporal resolution 19 

and noise regions outside the brain, as well as the olfactory bulb and cerebellum, were discarded, 20 

rendering a 4D spectral-spatial-temporal matrix of 256×32×32×12 points. After automated phase-21 

correction of each spectrum, the 4D matrix was denoised with  a tensor PCA denoising approach 22 
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[32]. For this, a [8 8 8] window and tensor structure [1 2:3 4] were used for patch processing the 1 

spectral, spatial, and temporal dimensions with, whereas the a priori average standard deviation 2 

of the noise in each spectrum (calculated σ2) was used to avoid deleterious effects of spatially-3 

correlated noise [34]. Then, these denoised spectra were analyzed voxel-wise by individual peak 4 

fitting with AMARES (similarly to the single-spectrum analysis reported previously in [52]), using 5 

a basis set for DHO (4.76 ppm: short- and long-T2 fractions [18]) and deuterium-labelled: glucose 6 

(Glc, 3.81 ppm), glutamate-glutamine (Glx, 2.36 ppm), and lactate (Lac, 1.31 ppm); relative 7 

linewidths referenced to the estimated short-T2 fraction of DHO, according to the respective T2 8 

relaxation times reported by de Feyter et al [18]. The natural abundance DHO peak (DHOi) was 9 

further used to select and quantify both original and denoised spectra: SNRDHOi >3.5 and 13.88 10 

mM reference (assuming 80 % water content in the brain and 0.03 % natural abundance of DHO), 11 

respectively. Metabolite concentrations (CRLB<50%; otherwise discarded) were corrected for T1 12 

and labeling-loss effects, according to the values reported by de Feyter et al (T1, ms: DHO, 320; 13 

Glc, 64; Glx, 146; Lac, 297) [18] and de Graaf et al (number of magnetically equivalent deuterons: 14 

DHO, 1; Glc, 2; Glx, 1.2; Lac, 1.7) [71], respectively. Thus, the concentration of each metabolite 15 

(m) at each time point was estimated as (Eq 1): 16 

𝐶𝑜𝑛𝑐𝑚 =
𝐴𝑟𝑒𝑎𝑚−𝐴𝑟𝑒𝑎0𝑚

𝑑𝑚
×

𝐶𝐷𝐻𝑂

𝐶𝑚
×

𝑑𝐷𝐻𝑂

𝐴𝑟𝑒𝑎0𝐷𝐻𝑂
× 𝐶𝑜𝑛𝑐𝑟𝑒𝑓    (Eq 1) 17 

Area = peak area; Area0 = average peak area before injection; d = number of magnetically 18 

equivalent deuterons corrected for labelling-loss effects; C = T1 correction factor (1-exp(-TR/T1)); 19 

and Concref = reference DHO concentration.  20 

The time-course changes of 2H-labelled metabolite (Glc, Glx and Lac) concentrations were 21 

fitted using a modified version of the kinetic model reported by Kreis et al [19], to estimate the 22 
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maximum rate of Glc consumption (total, Vmax) for Glx synthesis (mitochondrial oxidation, Vglx) 1 

and Lac synthesis (glycolysis, Vlac), and the confidence intervals for all estimated parameters:  2 

𝑉𝑚𝑎𝑥 = 𝑉𝑙𝑎𝑐 + 𝑉𝑔𝑙𝑥      (Eq 2) 3 

The coupled differential equations describing the concentration kinetics of each metabolite were: 4 

𝑑[𝐺𝑙𝑐]

𝑑𝑡
= 𝑘𝑔 (𝐶𝑝 −

[𝐺𝑙𝑐]

𝑣
) − 𝑓 (

𝑉𝑚𝑎𝑥[𝐺𝑙𝑐]

𝑓.𝑣.𝑘𝑚+[𝐺𝑙𝑐]
)    (Eq 3) 5 

𝑑[𝐿𝑎𝑐]

𝑑𝑡
=

𝑓𝑉𝑙𝑎𝑐[𝐺𝑙𝑐]

𝑓.𝑣.𝑘𝑚+[𝐺𝑙𝑐]
− 𝑘𝑙𝑎𝑐[𝐿𝑎𝑐]     (Eq 4) 6 

𝑑[𝐺𝑙𝑥]

𝑑𝑡
=

𝑓𝑉𝑔𝑙𝑥[𝐺𝑙𝑐]

𝑓.𝑣.𝑘𝑚+[𝐺𝑙𝑐]
− 𝑘𝑔𝑙𝑥[𝐺𝑙𝑥]     (Eq 5) 7 

where: kg, apparent rate constant of glucose transfer between blood and tumor (min−1); kglx, 8 

apparent rate constant of Glx elimination (min−1); klac, apparent rate constant of lactate elimination 9 

(min−1); 𝐶𝑝 = 𝑎1 ∙ 𝑒
−𝑘𝑝∙𝑡, Glc concentration in plasma (mM); a1, the Glc concentration after the 10 

bolus injection (mM); and kp, the effective rate constant of labeled glucose transfer to tissue 11 

(min−1). As reported previously [31], the following parameters were fixed: fraction of deuterium 12 

enrichment (f), at 0.6 [19]; constant for glucose uptake (km), at 10 mM [72, 73]; and the 13 

extravascular-extracellular volume fraction (v), at 0.22 – average estimation from DCE-T1-14 

weighted MRI analysis (Table S1). All the other parameters were fitted without any restrictions 15 

to their range.  16 

 17 

DCE T1-weighted MRI  18 

DCE T1-weighted MRI data were processed with DCE@urLab [74], as before [31]. First, ROIs 19 

were manually delineated for each tumor and the time-course data was fitted with the Extended 20 

Tofts 2-compartment model [75], to derive the volume transfer constant between plasma and tumor 21 
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extravascular-extracellular space (ktrans), the washout rate between extravascular-extracellular 1 

space and plasma (kep), and the extravascular-extracellular volume fraction (ve). Then, each dataset 2 

was reprocessed by down-sampling the original in-plane resolution to match the DGE-DMI 3 

experiment (0.56×0.56×2.27 mm3), and fitting the time-course data pixel-wise with the Extended 4 

Tofts 2-compartment model to derive ktrans, kep, and ve maps (pixels with root-mean square error 5 

>0.005 discarded). 6 

 7 

Histopathology and Immunohistochemistry 8 

Whole brains fixed in 4% PFA were embedded in paraffin and sectioned at 30 different levels 9 

on the horizontal plane, spanning the whole tumor area. 4 µm sections were stained with H&E 10 

(Sigma-Aldrich, St. Louis MO, USA), digitized (Nanozoomer, Hamamatsu, Japan), and analyzed 11 

by an experimental pathologist blinded to experimental groups, according to previously 12 

established criteria [31]. Then, QuPath v0.4.3 built-in tools [76] were used to highlight different 13 

tumor regions: Tumor ROIs, corresponding to the bulk tumor, were delineated first with “create 14 

threshold” and then manually corrected; P-Margin ROIs, including areas of peritumoral 15 

infiltration, were delineated with “expand annotations” by expanding 100 µm the tumor margin 16 

toward the adjacent brain parenchyma; Infiltrative ROIs, corresponding to specific infiltrative 17 

regions, were manually annotated. Between 3 to 6 sections of each tumor were also immunostained 18 

for Ki67 (mouse anti-ki67, BD, San Jose CA, USA; blocking reagent, M.O.M ImmPRESS kit, 19 

Vector Laboratories, Burlingame CA, USA; liquid DAB+, Dako North America Inc, Carpinteria 20 

CA, USA), digitized (Nanozoomer, Hamamatsu, Japan), and analyzed with QuPath built-in tools 21 

[76] for Tumor and P-Margin ROIs, defined as detailed above. Thus, Ki67+/- cells were counted 22 

semi-automatically to determine the total number of cells, the cell density, and the proliferation 23 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2024. ; https://doi.org/10.1101/2024.06.23.600246doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.23.600246
http://creativecommons.org/licenses/by/4.0/


29 

 

index (% Ki67+ cells) as the average across slices for each ROI, and respective Tumor/P-Margin 1 

ratios. This procedure was repeated for each animal. In addition, one histologic section 2 

corresponding to each DGE-DMI slice was immunostained for Iba-1 (rabbit anti-Iba-1, Fujifilm 3 

Wako PCC, Osaka, Japan; NovolinkTM Polymer, Leica Biosystems, UK; liquid DAB+, Dako 4 

North America Inc, Carpinteria CA, USA), digitalized (Philips UFS v1.8.6614 slide scanner) and 5 

analyzed in QuPath. Tumor region and peritumoral margin regions were automatically annotated 6 

as outlined above, and Iba-1 positive staining was quantified across all annotations using the 7 

threshold tools, adjusted for each slide to account for variations in staining intensity, to calculate 8 

the percentage of Iba-1 positive area: (Iba-1+ area / total annotation area) * 100. 9 

Statistical analyses 10 

Data were analyzed in MATLAB® R2018b (Natick, Massachusetts: The MathWorks Inc.) 11 

using the two-tailed Student’s t-test, either unpaired (comparing different animal cohorts) or paired 12 

(comparing the same animal cohort in different conditions). Differences at the 95% confidence 13 

level (p=0.05) were considered statistically significant. Correlation analyses were carried out with 14 

the Pearson R coefficient. Error bars indicate standard deviation unless indicated otherwise.  15 
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