

Structure-guided design of a *Plasmodium vivax* Duffy binding protein-based vaccine immunogen

Natalie M. Barber^{1,2,‡}, Tossapol Pholcharee^{1,2,‡}, Amelia M Lias^{1,2}, Doris Quinkert^{1,2}, James Nugent^{1,2}, Lloyd D. W. King^{1,2}, Simon J. Draper^{1,2} and Matthew K. Higgins^{1,2,*}

¹ Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU, Oxford, UK

² Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK

[‡]These authors contributed equally

* Corresponding author: matthew.higgins@bioch.ox.ac.uk

1 **One sentence summary:**

2 Structure-guided design leads to a more effective Duffy-binding protein-based vaccine
3 immunogen to prevent *Plasmodium vivax*.

4 **Abstract**

5 *Plasmodium vivax* remains one of the major causative agents of human malaria and a
6 vaccine is urgently required. It is an obligate intracellular parasites and replication within
7 red blood cells is essential for development of disease and for transmission. The interaction
8 between PvDBP on the parasite surface and the DARC receptor on human reticulocytes is
9 essential for a *Plasmodium vivax* blood stage infection. Human vaccination with the RII
10 region of PvDBP slowed parasite replication, showing that PvDBP is a promising vaccine
11 candidate. However, it did not induce sterile protection, and further development is
12 required to generate a vaccine which protects from clinical malaria. In this study, we
13 develop a vaccine immunogen containing a region of PvDBP-RII, known as subdomain 3,
14 which contains the epitope for a broadly-reactive growth-inhibitory antibody, DB9. We used
15 structure-guided approaches to resurface subdomain 3 such that it folds as an isolated
16 molecule. We show that this engineered subdomain 3 is more stable and more easily
17 produced than PvDBP-RII and induces a more effective growth-inhibitory antibody response.
18 We therefore present an improved PvDBP-based immunogen for use in blood stage vaccines
19 to prevent malaria due to *Plasmodium vivax*.

20 **Introduction**

21 *Plasmodium vivax* is the predominant cause of human malaria outside Africa, leading to
22 around 14.5 million annual cases¹. While it does not receive the same attention as its more
23 deadly relative, *Plasmodium falciparum*, it causes significant human suffering and an
24 effective vaccine is urgently required^{2,3}. The blood stage of the *Plasmodium vivax* life cycle is
25 a promising point of intervention. The symptoms of malaria occur as the parasite invades
26 and replicates within human reticulocytes⁴. In addition, differentiation of blood-stage
27 parasites into gametocytes allows their uptake and development in mosquitos. A vaccine
28 which prevents reticulocyte invasion would therefore prevent the symptoms and
29 transmission of malaria⁵.

30 Reticulocyte invasion requires binding of the *Plasmodium vivax* Duffy binding protein,
31 PvDBP, to the human Duffy antigen/receptor for chemokines, DARC, which is found on the
32 reticulocyte surface⁶. The importance of this interaction in vivax malaria is emphasised by
33 the effect of the Duffy-negative phenotype⁷. This polymorphism in DARC is common
34 through much of Africa, and there is a close geographical correlation between Duffy-
35 negativity and the reduced prevalence of *Plasmodium vivax*². Indeed, knockout of the
36 orthologue, PkDBP α , prevents invasion of Duffy-positive erythrocytes by transgenic
37 *Plasmodium knowlesi*⁸⁻¹⁰. PvDBP is the most developed blood stage vaccine candidate in the
38 quest to prevent vivax malaria.

39 PvDBP has a large modular ectodomain. Within this lies a ~350 amino acid residue Duffy-
40 binding-like domain known as PvDBP-RII, which interacts with the 60 residue DARC
41 ectodomain^{11,12}. Immunisation of mice, rabbits and non-human primates with PvDBP-RII
42 induces inhibitory antibodies that block binding of PvDBP to DARC^{13,14}. In humans, high-
43 titres of naturally-acquired PvDBP-RII-targeting antibodies reduce DARC binding *in vitro* and

44 are associated with decreased risk of *Plasmodium vivax* infection¹⁵, lower parasite densities
45 and reduced risk of clinical malaria^{16,17}. Immunisation of human volunteers with
46 recombinant viral vectors expressing PvDBP-RII induces strain-transcending antibodies
47 which prevent PvDBP-RII from binding to DARC, while human antibodies, from either
48 vaccination or natural infection, inhibit invasion^{9,18}. More recently, human volunteers have
49 been vaccinated with PvDBP-RII, either delivered through a viral vector or as a protein with
50 the Matrix M adjuvant. On challenge with *Plasmodium vivax* parasites, volunteers
51 vaccinated with the protein vaccine showed a reduction in mean parasite multiplication rate
52 of ~50% when compared with unvaccinated controls¹⁹.

53 While human vaccine trials with PvDBP have shown efficacy, they also indicate that the
54 vaccine induced responses from PvDBP-RII are not sufficient to allow sterile protection.
55 These findings encourage a rational, structure-guided approach to the design of improved
56 PvDBP-based immunogens. Structural studies have shown that PvDBP-RII consists of three
57 subdomains, with subdomains 1 and 2 forming a single structural unit and subdomain 3 as a
58 separate unit²⁰. The ectodomain of DARC binds to PvDBP-RII, with the interface centred
59 around a sulphated tyrosine residue²¹ (Figure 1a,b). In *in vitro* studies, DARC binding has
60 been shown to induce PvDBP-RII dimer formation, with the DARC peptide located at the
61 dimerization interface^{22,23}. While there is currently no data to show that dimerization is
62 functionally relevant *in vivo* during invasion, the binding site for DARC and the dimerization
63 surface are both proposed as potential sites to target with vaccine-induced antibodies.
64 Indeed, screening a linear peptide array with non-inhibitory and inhibitory human serum
65 identified peptides which recognise antibodies found specifically in inhibitory serum²⁴ and
66 are located in regions of subdomain 2 involved in PvDBP-RII dimerisation and DARC₁₉₋₃₀
67 binding²³. In contrast, monoclonal antibodies derived from PvDBP-RII-immunised mice
68 which prevent PvDBP-RII from binding to DARC *in vitro*, bind to subdomain 3²⁵.

69 Human neutralising monoclonal antibodies can also target epitopes on different
70 subdomains of PvDBP-RII. One study isolated monoclonal antibodies from a human
71 volunteer from a malaria endemic region, finding that these bind predominantly to
72 subdomain 2 and overlap with the binding site for DARC₁₉₋₃₀ and the proposed dimerization
73 site¹⁸. In contrast, a second study isolated a panel of ten monoclonal antibodies from human
74 volunteers vaccinated with PvDBP-RII, and showed that one of these, DB9, was most
75 effective at neutralising blood stage growth of a sequence diverse set of *Plasmodium vivax*
76 parasites. DB9 binds to the outer surface of subdomain 3, distant from the characterised
77 DARC binding site⁹. This study also showed that antibodies which target subdomain 2 can
78 antagonise the function of subdomain 3 targeting antibodies, leading to the question of
79 whether vaccination with subdomain 3 alone may be desirable⁹. In this study, we test this
80 hypothesis. We use structural insight to design a protein immunogen which contains just
81 subdomain 3 of PvDBP-RII and assess whether this is a better vaccine immunogen than
82 intact PvDBP-RII.

83 **Results**

84 **Surface remodelling generates a soluble version of subdomain 3**

85 Subdomain 3 of PvDBP-RII forms an autonomous structural unit, consisting of two long anti-
86 parallel α -helices, along which runs a region of loops and short helices, suggesting that it
87 might be possible to generate a well-expressing version of subdomain 3 which folds
88 correctly (Figure 1a,b). Subdomain 3 packs against subdomain 2 through hydrogen bonds

89 and a small hydrophobic patch. We reasoned that expressing subdomain 3 alone would
90 expose this small hydrophobic patch and might impact its solubility. We therefore designed
91 a version of subdomain 3 in which we resurfaced the hydrophobic patch by replacing
92 hydrophobic residues with hydrophilic alternatives (W392K and V452E) (Figure 1b). In
93 addition, we altered three residues within this interface region to increase their charge
94 (Q388D, R391E and Q449E), with the aim of increasing the solubility of the isolated domain.
95 We name this variant interface and compared it with unaltered subdomain 3.

96 We expressed both interface and subdomain 3 in *E. coli*. Small scale expression trials
97 demonstrated that subdomain 3 expressed in an insoluble form in the *E. coli* pellet, while
98 interface was expressed in a soluble form (Figure 1c). We next purified both proteins. In the
99 case of interface, we purified the soluble component, while subdomain 3 was refolded from
100 inclusion bodies. This yielded 3 mg from each litre of *E. coli* for subdomain 3 and 20 mg per
101 litre for interface. Both purified proteins were monomeric and monodispersed as
102 demonstrated by SEC-MALLS (Figure 1d) and both showed circular dichroism spectra
103 characteristic of α -helical proteins (Figure 1e), with similar thermal stability and with
104 denaturing transitions at $>70^{\circ}\text{C}$. (Extended Data Figure 1). Therefore, while both subdomain
105 3 and interface can be produced from *E. coli* in a folded form, subdomain 3 requires
106 refolding from inclusion bodies. In contrast, surface remodelling allows interface to be
107 produced in a readily scalable form by ensuring that it is expressed as a soluble protein.

108 ***Both interface and subdomain 3 bind to antibody DB9***

109 We next used surface plasmon resonance analysis to assess the binding of interface and
110 subdomain 3 to monoclonal antibody DB9, allowing us to determine whether the epitope is
111 correctly folded. We immobilised DB9 onto the surface of a protein A/G-coated chip and
112 flowed increasing concentrations of PvDBP-RII, subdomain 3 and interface over this chip. All
113 three bound with similar dissociation constants in the nanomolar range, with 2.63 nM for
114 PvDBP-RII, 1.11 nM for subdomain 3 and 2.67 nM for interface (Figure 2a and Extended
115 Data Table 1).

116 To check the conformation of refolded subdomain 3 we determined its structure using x-ray
117 crystallography (Figure 2b and Extended Data Table 2). We prepared Fab fragments from
118 DB9 and mixed with subdomain 3. Crystals formed and the structure was determined by
119 molecular replacement. Alignment of this structure with that of PvDBP-RII bound to DB9
120 showed them to align with a root mean square deviation of 0.43 \AA . A similar approach did
121 not yield crystals of interface, most likely because some of the mutations which generate
122 the interface were involved in forming crystal contacts within the subdomain 3:DB9 crystals.

123 Both interface and subdomain 3 can therefore be generated in a correctly folded form
124 which retain the ability to bind to neutralising antibody DB9.

125 ***Interface and subdomain 3 generate a more potent neutralising antibody response than***
126 ***PvDBP-RII***

127 We next compared the antibody responses induced in rabbits following immunisation of
128 two rabbits with four 20 μg doses of either interface, subdomain 3 or PvDBP-RII. In each
129 case, the immunogens were mixed with Freund's adjuvant and dosing was conducted on
130 days 0, 14, 28, and 42, with sera harvested on day 56.

131 To test the efficacy of these sera at preventing erythrocyte invasion, we used a *Plasmodium*
132 *knowlesi* model. While *Plasmodium vivax* cannot be cultured, transgenic *Plasmodium*
133 *knowlesi* in which the three PkDBP proteins have been replaced with PvDBP from the Sall
134 strain can be studied using *in vitro* growth inhibitory assays¹⁰. When used to analyse a panel
135 of monoclonal antibodies, these transgenic lines gave similar outcomes to an *ex vivo*
136 *Plasmodium vivax* invasion assay⁹.

137 We started by purifying total IgG from the rabbit sera and used ELISA to assess the quantity
138 of PVDBP-RII and subdomain 3 binding IgG in each sample. IgG from rabbits immunised with
139 interface and subdomain 3 showed similar, or greater ELISA reactivity against both ligands
140 than IgG from rabbits immunised with PvDBP-RII (Extended Data Figure 2). We therefore
141 proceeded to assess their efficacy in a growth inhibition assay, studying two-fold dilutions of
142 total IgG purified from sera from a maximum concentration of 10mg/ml. IgG from rabbits
143 immunised with PvDBP-RII produced only 20-30% growth inhibition at 10mg/ml. In contrast,
144 IgG from rabbits immunised with subdomain 3 and interface were substantially more
145 effective, giving 100% growth inhibition at 10mg/ml and with IC₅₀ values of around 5mg/ml
146 (Figure 3a). Therefore subdomain 3 and interface were equivalently effective as vaccine
147 immunogens and both outperformed PvDBP-RII.

148 We next asked whether the better performance of subdomain 3 and interface was due to
149 the induction of a larger titre of PvDBP-targeting antibody (i.e. antibody quantity) or due to
150 a greater proportion of growth-inhibitory antibody (i.e. antibody quality). To answer this, we
151 used calibration-free concentration analysis to assess the quantity of PvDBP-RII specific IgG
152 in each sample. This was done using surface plasmon resonance, with PvDBP-RII conjugated
153 to the chip surface at high density to ensure conditions in which mass transport effects were
154 evident, followed by injection of IgG at two different flow rates. Replotting the growth-
155 inhibition data as a factor of PvDBP-RII-specific IgG showed that the curves for rabbits
156 immunised with all three immunogens were equivalent, albeit with PvDBP-RII not inducing
157 sufficient antibodies to reach 50% growth-inhibition (Figure 3a). Therefore, the quality of
158 antibodies induced by PvDBP-RII, interface and subdomain 3 are all equivalent and the
159 improved performance of both interface and subdomain 3 is due to high quantities of
160 growth-inhibitory antigen specific IgG.

161 The finding that subdomain 3-based immunogens induce IgG of a similar quality to PvDBP-
162 RII led to us to ask whether the growth-inhibitory antibodies induced by PvDBP-RII
163 immunisation all target subdomain 3 or whether there are also growth-inhibitory antibodies
164 targeting other regions of PvDBP-RII. To answer this question, we conducted depletion
165 experiments. Total IgG from rabbits immunised with PvDBP-RII, or from human volunteers
166 immunised with PvDBP-RII as part of a clinical trial, were passed over a column which had
167 been coupled to subdomain 3 protein. The IgG which did not stick to the column
168 (subdomain 3-depleted IgG) and those eluted from the column (subdomain 3-specific IgG)
169 were assessed for the presence of antibodies that bind to subdomain 3 by ELISA, confirming
170 efficient depletion (Extended Data Figure 2). These antibodies were next tested for growth-
171 inhibitory activity, using the transgenic *Plasmodium knowlesi* expressing PvDBP from the Sall
172 variant. Both rabbit (Figure 3b) and human (Figure 3c) subdomain 3-specific IgG showed
173 effective growth inhibition with EC₅₀ values of ~1mg/ml. In contrast, in neither case was
174 growth inhibition observed for subdomain 3 depleted IgG at the maximum concentration
175 that could be achieved. Therefore, all detectable growth-inhibition obtained from either

176 human or rabbit IgG from PvDBP-RII-immunised individuals was due to antibodies binding to
177 subdomain 3.

178 **Conclusions**

179 Controlled human malaria infection of volunteers vaccinated with a protein vaccine
180 consisting of the PvDBP-RII immunogen formulated with Matrix M adjuvant have provided
181 the first evidence that PvDBP-based vaccines can affect the multiplication rate of
182 *Plasmodium vivax* in vaccinated humans¹⁹. Nevertheless, this study also highlights that
183 current vaccines fall short of inducing the levels of immunity required for sterile protection
184 and emphasises the need for improved PvDBP-based vaccine immunogens¹⁹. Here, we
185 attempt to produce such an immunogen using a rational, structure-guided approach.

186 Structure-guided vaccine design often starts with structural studies to reveal how the most
187 effective neutralising, or in this case growth-inhibitory, monoclonal antibodies function. In
188 the case of PvDBP-RII, studies have been conducted of both mouse and human antibodies,
189 resulting in structures of the epitopes of five antibodies^{9,18,21,25}. These studies are much
190 smaller in scope those conducted for other malaria antigens, such as PfRH5 and PfCSP,
191 where hundreds of monoclonal antibodies have been analysed, and the outcomes are less
192 clear. Antibodies that bind to various regions of PvDBP can be growth-inhibitory, including
193 those that target subdomain 2¹⁸, where the DARC binding site²¹ and proposed dimerization
194 interface lie²², or those that target subdomain 3⁹. It is also not clear how each of these
195 growth-inhibitory antibodies functions, with steric hinderance of membrane approach
196 proposed as a possible mechanism for those that target subdomain 3⁹. Despite this, we
197 decided to follow up our finding that the broadly-reactive, growth-inhibitory antibody DB9
198 binds to subdomain 3 of PvDBP-RII⁹ and to design and test subdomain 3 as a vaccine
199 immunogen.

200 Subdomain 3 adopts a discrete three α -helical architecture which interacts with other parts
201 of PvDBP-RII through a small hydrophobic patch. Subdomain 3 alone expresses in an
202 insoluble form in bacteria and required refolding to produce a functional protein. In
203 contrast, resurfacing of the exposed hydrophobic patch, through five amino acid changes,
204 resulted in a soluble, stable, highly expressed subdomain 3 immunogen, which we call
205 interface. In our hands, PvDBP-RII is challenging to express and is often not stable on
206 storage, which may be limiting its effectiveness as an immunogen after formulation with
207 adjuvant or immunisation of human volunteers. In contrast, interface is extremely stable
208 and scalable production is likely to be effective.

209 Side-by-side comparison in a well-established model of growth-inhibition revealed interface
210 to induce more effective growth-inhibitory responses than PvDBP-RII. Indeed, at the
211 maximum concentration of IgG tested, PvDBP-RII was 20-30% effective and interface was
212 100% effective, with an equivalent EC₅₀ around five-fold lower for interface. When we
213 separated antibodies induced using PvDBP-RII into those that did and did not bind to
214 subdomain 3, we found that growth-inhibitory antibodies predominantly bound to
215 subdomain 3. Indeed, when we assessed the growth-inhibitory effect of antibodies induced
216 using PvDBP-RII and interface, as a function of subdomain 3-reactive antibodies, we found
217 that PvDBP-RII and interface performed equivalently. Therefore, to our surprise, the better
218 efficacy of antibodies induced by subdomain 3 was not due to improvement in the quality of
219 the antibody response, through focusing onto a more effective epitope region. Instead, both

220 PvDBP-RII and interface induced predominantly subdomain 3-targeting growth-inhibitory
221 antibodies and interface induced these in greater quantities.

222 In summary, this study uses rational, structure-based immunogen design to produce a novel
223 form of PvDBP which is stable, readily produced and induces a more growth-inhibitory
224 antibody response than previous PvDBP-based immunogens. This is now available for
225 clinical testing as a component of vaccines to prevent *Plasmodium vivax*.

226

227 **Materials and methods**

228 **Expression and purification of PvDBP-RII, subdomain 3 and interface**

229 PvDBP-RII and antibody DB9 were produced as described previously⁹. Gene sequences for
230 PvDBP-RII, subdomain 3 and interface were obtained from GeneArt and were cloned into a
231 modified version of the pET15b vector to provide an N-terminal his-tag followed by a TEV
232 cleavage site. These were expressed in *E. coli* BL21-DE3 cells, induced with 1mM IPTG at OD
233 1.0 and grown overnight at 18°C.

234 Subdomain 3 was found in the insoluble fraction and was purified by refolding. Cells were
235 resuspended in 20mM Tris pH 8.0, 300mM NaCl, 20mM imidazole and broken by sonication.
236 After centrifugation at 50,000g for 30 minutes, the pellet was resuspended in 6M GdnHCl,
237 20mM Tris pH 8, 20mM imidazole, 10mM β-mercaptoethanol by incubation at room
238 temperature for 2 hours before centrifugation at 50,000g for 30 minutes at 4°C. The soluble
239 fraction was incubated with Ni-NTA beads, and the bound material was washed in the 6M
240 GdnHCl, 20mM Tris pH 8, 20mM imidazole, 300μM oxidised glutathione, 3mM reduced
241 glutathione. It was then refolded while attached to the Ni-NTA column with a slow
242 decreasing concentration of GdnHCl, while maintaining other buffer components
243 unchanged, before eluting in 20mM Tris pH 8, 300 mM NaCl, 200mM imidazole. This yielded
244 ~3mg of protein per litre of cells.

245 The sequence of interface is: PDIYEKIREWGRDYVSELPTEVQKLKEKCDGKIAYTDKK
246 VCKVPPCQNACKSYDQWITRKKNEWDELSNKFISVKNAEKVQTAGIVTPYDILKQEL
247 DEFNEVAFENEINKRDGAYIELCVC. Interface was expressed in a soluble form. Cells
248 were lysed as for subdomain 3 and the soluble fraction was applied to a Ni-NTA column.
249 This was washed using 20mM Tris pH 8, 300mM NaCl, 20mM imidazole and the protein was
250 eluted using 20mM Tris pH 8, 300 mM NaCl, 200mM imidazole, yielding around 20mg per
251 litre of cells.

252 All proteins were next dialysed into PBS and cleaved with TEV protease overnight at room
253 temperature. They were then passed through a Ni-NTA column and the flow through was
254 collected. This was concentrated and applied to a Superdex 75 (Cytiva) in 20mM Tris pH 8.0,
255 150mM NaCl.

256

257 **Circular dichroism analysis**

258 Circular dichroism analysis was conducted using a J-815 spectropolarimeter (JASCO, Japan)
259 with an attached Peltier water bath. Proteins were buffer exchanged using PD10 columns
260 into 10mM sodium phosphate pH 7.5, 150mM NaF and were diluted to a final concentration
261 of 0.2mg/ml. Spectra were collected from 190nm to 260nm wavelengths at 25°C and four
262 independent measurements were averaged together to obtain the final curve. To study
263 thermal stability, spectra were collected from 200nm and 250nm wavelengths at 2°C

264 intervals at temperatures from 20°C to 90°C. The ellipticity at 220nm wavelength was
265 plotted against temperate to determine the melting temperature.

266 ***Surface plasmon resonance***

267 Surface plasmon resonance analysis was conducted using a Biacore T200 instrument (GE
268 healthcare) using 20mM HEPES pH 7.4, 150mM NaCl, 0.005% Tween-20. A Biacore chip was
269 prepared by using amine coupling to coat a CM5 chip in protein A/G. Monoclonal antibody
270 DB9 was then captured onto flow path 2, with flow path 1 left as a negative control. To
271 analyse binding of PvDBP-RII, subdomain 3 and interface to DB9, these were then flowed
272 across the chip surface using a two-fold dilution series from a maximum concentration of
273 1μM. Data were analysed using the BIAevaluation software.

274 ***Crystallisation and structure determination***

275 For crystallisation, subdomain 3 and the Fab fragment of DB9 were mixed in a ratio of 1.1:1
276 and were incubated at room temperature for 30 minutes. The mixture was loaded onto a
277 superdex 200 10/30 column, run in 20mM Tris pH 8.0, 50mM NaCl (Cytiva). The protein was
278 concentrated to 11mg/ml and subjected to crystallisation trials. Crystals grew with reservoir
279 solution of 0.2M ammonium acetate, 0.1M sodium acetate pH 4.0, 15% PEG 4000. These
280 were transferred into a cryo-protection solution containing 0.2M ammonium acetate, 0.1M
281 sodium acetate pH 4.0, 15% PEG 4000, 25% glycerol. A dataset was collected to a final
282 resolution of 1.55Å on beamline I03 at Diamond Light Source. Molecular replacement was
283 conducted in Phaser²⁶ using the previous structure of the Fab fragment of DB9 bound to
284 PvDBP-RII (PDB:6R2S)⁹ as a search model, after trimming to leave the DB9 Fab fragment
285 bound to subdomain 3 with loops removed. Modelling building was conducted in coot²⁷ and
286 refinement in buster²⁸.

287 ***Immunisation of rabbits***

288 Before immunization, all protein constructs underwent endotoxin removal using Pierce
289 High-capacity endotoxin removal resin (ThermoFisher Scientific). Subsequently, the
290 constructs were dispatched to GenScript (Oxford, UK) for rabbit immunization.
291 Intramuscular immunization was performed on two rabbits with 20 μg of PvDBP-RII,
292 subdomain 3 or interface, each administered with Freund's adjuvant. The dosing regimen
293 consisted of four doses administered at two-week intervals. Serum samples were collected
294 from all rabbits two weeks after the final dose.

295

296 ***Measurement of binding by ELISA***

297 Qualitative IgG binding ELISAs were carried out by coating PvDBP-RII or subdomain 3 on
298 Maxisorp flat-bottom 96-well ELISA plates (Nunc) at 2 μg/mL in 50 μL at 4 °C overnight.
299 Plates were then washed twice with PBS and 0.05% Tween 20 (PBS/T) and blocked with 200
300 μL of Blocker™ Casein (Thermo Fischer Scientific) for 1 h. Next, wells were incubated with 10
301 μg/mL of sera for approximately 1 hr at 20 °C then washed 4 times with PBS/T before the
302 addition of 50 μL of 1:1000 dilution of goat anti-rabbit gamma-chain alkaline phosphatase-
303 conjugated secondary antibody (Sigma-Aldrich) for 1 hr at 20 °C. Wells were then washed 6
304 times with PBS/T and developed with 100 μL of p-nitrophenyl phosphate substrate at 1
305 mg/mL (Sigma-Aldrich) and optical density read at 405 nm (OD₄₀₅) using a Model 550
306 Microplate Reader (Bio-Rad, UK).

307 **Assays of growth inhibitory activity using *Plasmodium knowlesi* lines**

308 ***In vitro* parasite culture and synchronisation.** Human RBC-adapted parasites were
309 maintained in culture as previously described²⁹. Briefly, parasites were grown at 2 %
310 haematocrit in O+ human RBC, which were prepared twice monthly. Culture medium
311 contained 10 % heat-inactivated pooled human serum mixed with RPMI 1640 supplemented
312 with 25 mM HEPES, 35 µM hypoxanthine, 2 mM L-glutamine and 20 µg/mL gentamycin.
313 Parasite cultures were synchronised at trophozoite/schizont stage by magnetic separation
314 (MACS LS columns, Miltenyi Biotech).

315 ***In vitro* assay of Growth Inhibitory Activity.** The assay was adapted from the protocol of the
316 International GIA Reference Centre at NIH, USA³⁰. Synchronised trophozoites were adjusted
317 to 1.5 % parasitaemia, and 20 µl aliquots were pipetted into 96-well flat/half area tissue
318 culture cluster plates (Appleton Woods). 20 µl test antibody or controls were added in
319 duplicate or triplicate test wells over a concentration range (usually; 1, 0.5, 0.25, 0.125,
320 0.0625, 0.0312, 0.015 and 0.0075 mg/ml) and incubated for one erythrocytic parasite cycle
321 (26-30 h). Parasitaemia was measured using the lactate dehydrogenase (pLDH) activity assay
322 following standard protocols³¹. Percentage GIA was calculated as below;

323 % GIA = 100 – 100 (Sample A₆₅₀ – Uninfected RBC A₆₅₀)/(Infected ControlA₆₅₀ – Uninfected
324 RBC A₆₅₀)

325 An anti-DARC VHH camelid nanobody³², a kind gift from Dr Olivier Bertrand (INSERM,
326 France) was included in the test plate as a positive control in every assay (at a final
327 concentration of 6, 3 or 1.5 µg/mL) and an anti-*Ebolavirus* glycoprotein-reactive human IgG1
328 mAb as a negative isotype control.

329 The human serum sample came from a healthy UK adult vaccinated with a PvDBP-RII
330 protein/adjuvant in the VAC079 clinical trial. The trial was conducted at the University of
331 Oxford and received ethical approval from UK National Health Service Research Ethics
332 Services and regulatory approval from the UK Medicines and Healthcare products
333 Regulatory Agency¹⁹.

334 **Calibration-free concentration analysis (CFCA)**

335 Calibration-free concentration analysis (CFCA) was conducted using a Biacore T200
336 instrument with a Biacore Biotin CAPture sensor chip (Cytiva) following established
337 procedures³³. Prior to experimentation, all antigen and total IgG samples were buffer
338 exchanged into HBS EP+ running buffer (10 mM HEPES pH 7.4, 150 mM NaCl, 0.3 mM EDTA,
339 and 0.05% Tween-20) utilizing Zeba Spin desalting columns (ThermoFisher Scientific). Biotin
340 CAPture reagent was immobilized on the chip at a flow rate of 2 µl/min for 120 s on two
341 flow paths. Subsequently, 10 µg/ml of biotinylated PvDBP-RII was captured on the sensor at
342 a flow rate of 2 µl/min for 600 s, ensuring > 2000 response units (RU) of antigen on the flow
343 cell. These parameters were optimized to saturate the sensor chip completely, thus
344 achieving mass transport effects. Following antigen capture, a stabilization period of 600 s
345 was maintained at the same flow rate. For flow path 2, 1 mg/ml of total IgG sample, the
346 concentration determined using absorbance at 280 nm, was passed over the antigen-coated
347 sensor at a flow rate of 5 µl/min for 36 s to measure the initial rate of antigen-specific
348 binding, while flow path 1 served as a negative control. Chip regeneration was performed
349 using the manufacturer's supplied regeneration reagent (diluted 1:2 in HBS EP+). Each
350 sample was analyzed twice, once with a total IgG sample flow rate of 5 µl/min and again at

351 100 μ l/min, as CFCA analysis requires measuring initial rates of antigen-specific binding at
352 slow and fast flow rates.

353 Data analysis was conducted using the Biacore T200 analysis software with the CFCA
354 analysis function. Measurements with initial binding rates between 0.3 – 15 RU/s and QC
355 (quality control) values > 0.13, indicating sufficient mass transport limitation, were selected,
356 following the recommendations of the manufacturer. The binding model assumed a
357 molecular weight of 150 kDa for IgG, and the diffusion coefficient of IgG at 20 °C in HBS EP+
358 was set at 4.8×10^{-11} m²/s, as previously determined³³.

359 **Acknowledgements**

360 This work was funded by a Wellcome Investigator Award (20797/Z/20/Z) to MKH. NMB was
361 funded by the Wellcome-funded PhD program in Cellular Structural Biology. TP was funded
362 by a Skaggs-Oxford graduate scholarship. The authors would like to thank David Staunton for
363 support with biophysics data collection and Dr Ed Lowe and the beamline scientists at
364 Diamond I03 for support with crystallographic data collection. We thank Rob Moon for the
365 *Plasmodium knowlesi* strains. We also thank Mimi Hou, Angela Minassian and Chetan Chitnis
366 for provision of the VAC079 clinical trial serum.

367 **Conflicts of interest**

369 NMB, TP and MKH are inventors on a patent application related to the work presented here.

370 **Data availability**

371 Data within graphs (source data) and uncropped gel and blot images are included with this
372 submission. The crystal structure is deposited in the Protein Data Bank with an accession code
373 of 9EZE.

374 **References**

- 375 1. Battle, K.E. et al. Mapping the global endemicity and clinical burden of *Plasmodium*
376 *vivax*, 2000-17: a spatial and temporal modelling study. *Lancet* **394**, 332-343 (2019).
- 377 2. Howes, R.E. et al. *Plasmodium vivax* Transmission in Africa. *PLoS Negl Trop Dis* **9**,
378 e0004222 (2015).
- 379 3. Price, R.N., Douglas, N.M. & Anstey, N.M. New developments in *Plasmodium vivax*
380 malaria: severe disease and the rise of chloroquine resistance. *Curr Opin Infect Dis*
381 **22**, 430-5 (2009).
- 382 4. Flannery, E.L., Markus, M.B. & Vaughan, A.M. *Plasmodium vivax*. *Trends Parasitol* **35**,
383 583-584 (2019).
- 384 5. De, S.L., Ntumngia, F.B., Nicholas, J. & Adams, J.H. Progress towards the
385 development of a *P. vivax* vaccine. *Expert Rev Vaccines* **20**, 97-112 (2021).
- 386 6. Horuk, R. et al. A receptor for the malarial parasite *Plasmodium vivax*: the
387 erythrocyte chemokine receptor. *Science* **261**, 1182-4 (1993).
- 388 7. Miller, L.H., Mason, S.J., Clyde, D.F. & McGinniss, M.H. The resistance factor to
389 *Plasmodium vivax* in blacks. The Duffy-blood-group genotype, FyFy. *N Engl J Med*
390 **295**, 302-4 (1976).
- 391 8. Singh, A.P. et al. Targeted deletion of *Plasmodium knowlesi* Duffy binding protein
392 confirms its role in junction formation during invasion. *Mol Microbiol* **55**, 1925-34
393 (2005).

394 9. Rawlinson, T.A. et al. Structural basis for inhibition of *Plasmodium vivax* invasion by a
395 broadly neutralizing vaccine-induced human antibody. *Nat Microbiol* **4**, 1497-1507
396 (2019).

397 10. Mohring, F. et al. Rapid and iterative genome editing in the malaria parasite
398 *Plasmodium knowlesi* provides new tools for *P. vivax* research. *Elife* **8**(2019).

399 11. Chitnis, C.E. & Sharma, A. Targeting the *Plasmodium vivax* Duffy-binding protein.
400 *Trends Parasitol* **24**, 29-34 (2008).

401 12. Chitnis, C.E. & Miller, L.H. Identification of the erythrocyte binding domains of
402 *Plasmodium vivax* and *Plasmodium knowlesi* proteins involved in erythrocyte
403 invasion. *J Exp Med* **180**, 497-506 (1994).

404 13. de Cassan, S.C. et al. Preclinical Assessment of Viral Vectored and Protein Vaccines
405 Targeting the Duffy-Binding Protein Region II of *Plasmodium Vivax*. *Front Immunol* **6**,
406 348 (2015).

407 14. Moreno, A. et al. Preclinical assessment of the receptor-binding domain of
408 *Plasmodium vivax* Duffy-binding protein as a vaccine candidate in rhesus macaques.
409 *Vaccine* **26**, 4338-44 (2008).

410 15. Cole-Tobian, J.L. et al. Strain-specific duffy binding protein antibodies correlate with
411 protection against infection with homologous compared to heterologous
412 *plasmodium vivax* strains in Papua New Guinean children. *Infect Immun* **77**, 4009-17
413 (2009).

414 16. King, C.L. et al. Naturally acquired Duffy-binding protein-specific binding inhibitory
415 antibodies confer protection from blood-stage *Plasmodium vivax* infection. *Proc Natl
416 Acad Sci U S A* **105**, 8363-8 (2008).

417 17. Nicolete, V.C., Frischmann, S., Barbosa, S., King, C.L. & Ferreira, M.U. Naturally
418 Acquired Binding-Inhibitory Antibodies to *Plasmodium vivax* Duffy Binding Protein
419 and Clinical Immunity to Malaria in Rural Amazonians. *J Infect Dis* **214**, 1539-1546
420 (2016).

421 18. Urusova, D. et al. Structural basis for neutralization of *Plasmodium vivax* by naturally
422 acquired human antibodies that target DBP. *Nat Microbiol* **4**, 1486-1496 (2019).

423 19. Hou, M.M. et al. Vaccination with *Plasmodium vivax* Duffy-binding protein inhibits
424 parasite growth during controlled human malaria infection. *Sci Transl Med* **15**,
425 eadf1782 (2023).

426 20. Singh, S.K., Hora, R., Belrhali, H., Chitnis, C.E. & Sharma, A. Structural basis for Duffy
427 recognition by the malaria parasite Duffy-binding-like domain. *Nature* **439**, 741-4
428 (2006).

429 21. Moskovitz, R. et al. Structural basis for DARC binding in reticulocyte invasion by
430 *Plasmodium vivax*. *Nat Commun* **14**, 3637 (2023).

431 22. Batchelor, J.D., Zahm, J.A. & Tolia, N.H. Dimerization of *Plasmodium vivax* DBP is
432 induced upon receptor binding and drives recognition of DARC. *Nat Struct Mol Biol*
433 **18**, 908-14 (2011).

434 23. Batchelor, J.D. et al. Red blood cell invasion by *Plasmodium vivax*: structural basis for
435 DBP engagement of DARC. *PLoS Pathog* **10**, e1003869 (2014).

436 24. Chootong, P. et al. Mapping epitopes of the *Plasmodium vivax* Duffy binding protein
437 with naturally acquired inhibitory antibodies. *Infect Immun* **78**, 1089-95 (2010).

438 25. Chen, E. et al. Broadly neutralizing epitopes in the *Plasmodium vivax* vaccine
439 candidate Duffy Binding Protein. *Proc Natl Acad Sci U S A* **113**, 6277-82 (2016).

440 26. McCoy, A.J. et al. Phaser crystallographic software. *J Appl Crystallogr* **40**, 658-674
441 (2007).

442 27. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of
443 Coot. *Acta Crystallogr D Biol Crystallogr* **66**, 486-501 (2010).

444 28. Bricogne G., B.E., Brandl M., Flensburg C., Keller P., P. W. and Roversi P, Sharff A.,
445 Smart O.S., Vonrhein C. 'BUSTER version 2.10.4'. *Cambridge, United Kingdom: Global*
446 *Phasing Ltd.* (2017).

447 29. Moon, R.W. et al. Adaptation of the genetically tractable malaria pathogen
448 Plasmodium knowlesi to continuous culture in human erythrocytes. *Proc Natl Acad*
449 *Sci U S A* **110**, 531-6 (2013).

450 30. Miura, K. et al. Anti-apical-membrane-antigen-1 antibody is more effective than anti-
451 42-kilodalton-merozoite-surface-protein-1 antibody in inhibiting plasmodium
452 falciparum growth, as determined by the in vitro growth inhibition assay. *Clin*
453 *Vaccine Immunol* **16**, 963-8 (2009).

454 31. Kennedy, M.C. et al. In vitro studies with recombinant Plasmodium falciparum apical
455 membrane antigen 1 (AMA1): production and activity of an AMA1 vaccine and
456 generation of a multiallelic response. *Infect Immun* **70**, 6948-60 (2002).

457 32. Smolarek, D. et al. A recombinant dromedary antibody fragment (VHH or nanobody)
458 directed against human Duffy antigen receptor for chemokines. *Cell Mol Life Sci* **67**,
459 3371-87 (2010).

460 33. Payne, R.O. et al. Human vaccination against Plasmodium vivax Duffy-binding protein
461 induces strain-transcending antibodies. *JCI Insight* **2**(2017).

462

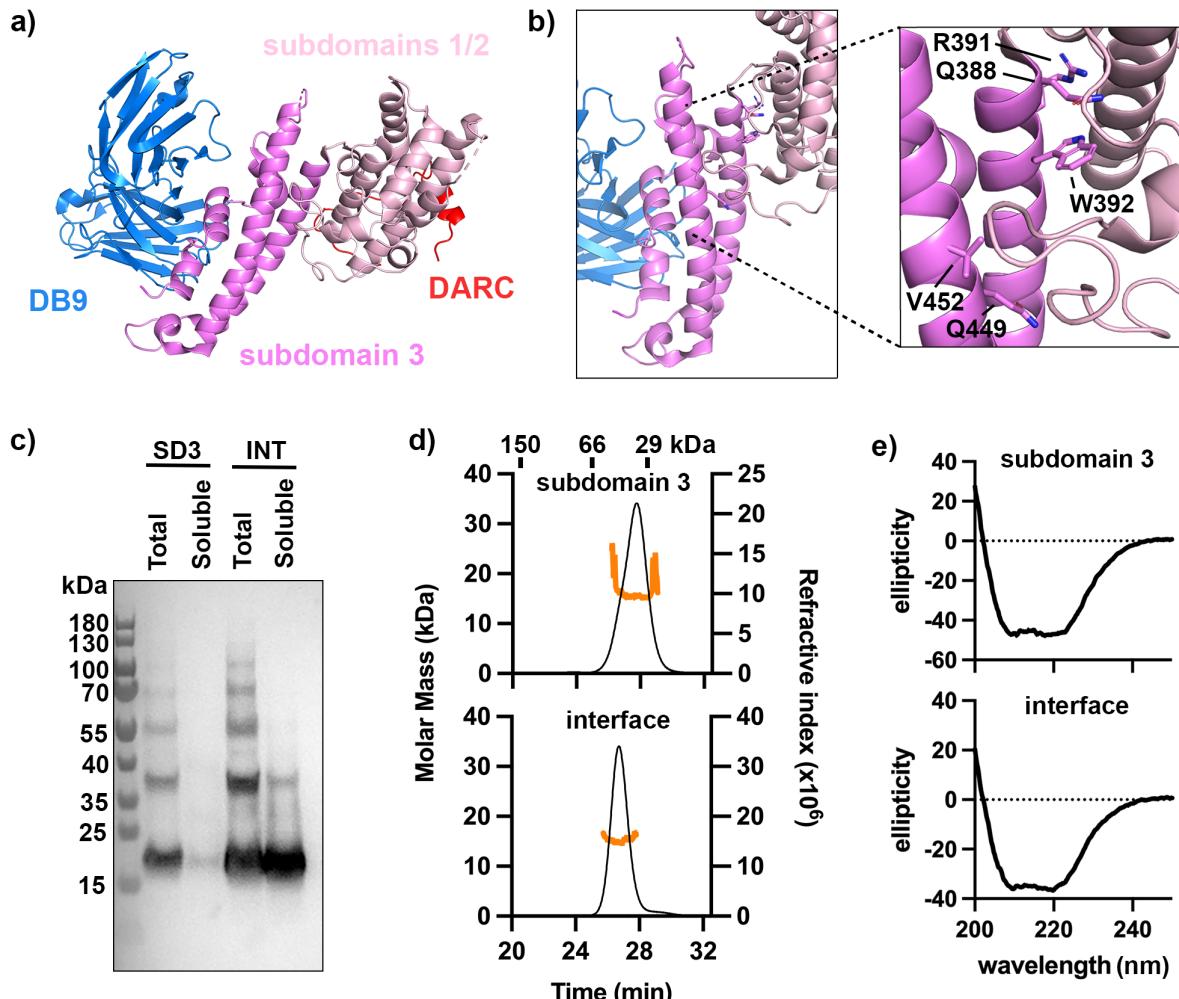
463

464

465

466

467


468

469

470

471

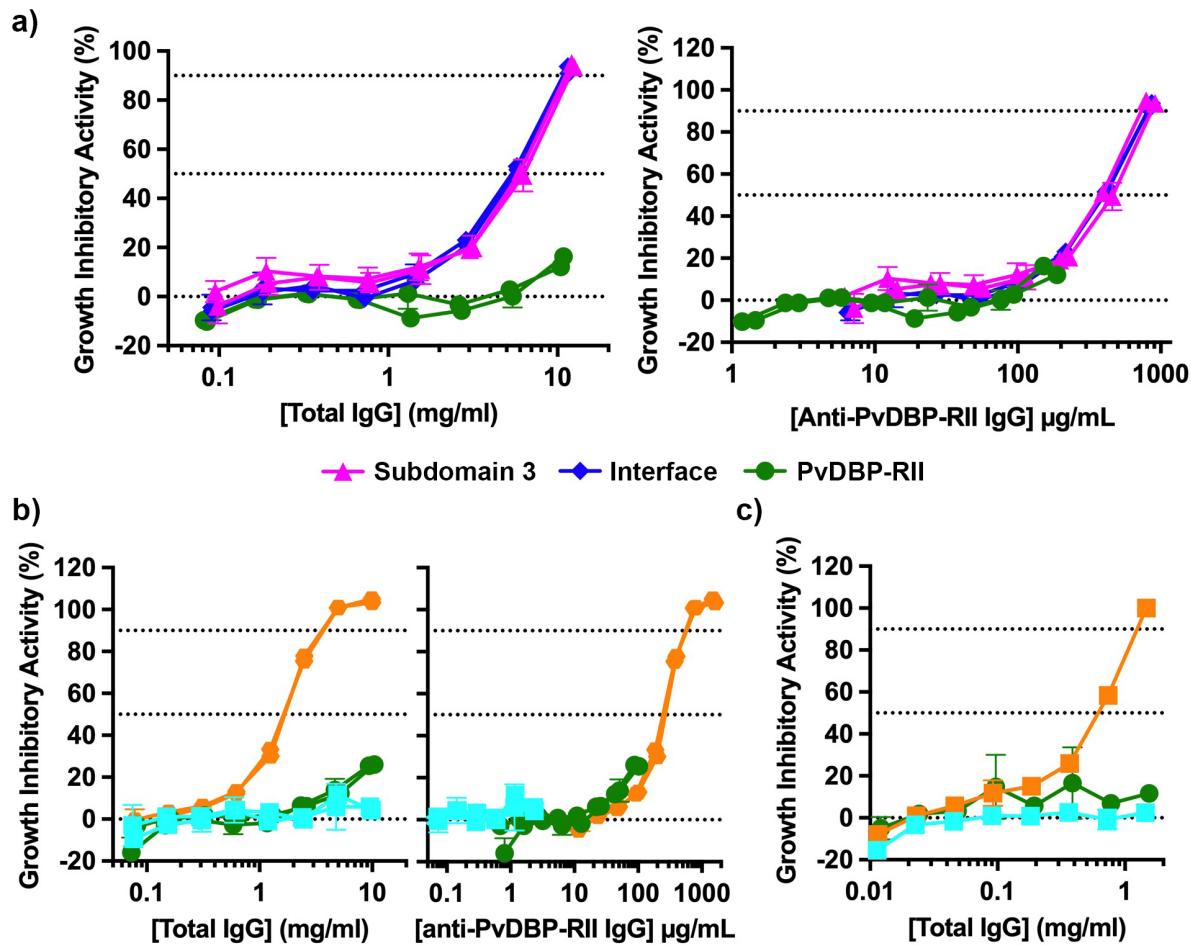
472

473
474

475 **Figure 1: Design of stable variants of PvDBP subdomain 3**

476 a) A composite model of PvDBP-RII with subdomain 3 in pink and subdomains 1 and 2 in
477 light pink. A peptide from DARC is shown in red. The variable domains of inhibitory antibody
478 DB9 are shown in blue. This is derived from a composite of PDB codes 6R2S and 8A44,
479 aligned on PvDBP-RII. b) A close-up of subdomain 3 of PvDBP-RII, showing the five residues
480 which contact subdomain 2 and are mutated in the interface protein. c) A Western blot
481 showing expression of subdomain 3 (SD3) and interface (INT) in *E. coli*. In each case, Total is
482 whole lysed cells while Soluble is whole lysed cells centrifuged with the supernatant loaded
483 onto the blot. d) Analysis by SEC-MALS of subdomain 3 and interface. In each case the black
484 line shows the absorbance for the sample analysed on a Superdex 75 column while the
485 orange line shows the mass determined by light scattering. e) Analysis by circular dichroism
486 of subdomain 3 and interface proteins showing a predominantly α -helical fold.

487
488
489
490
491
492
493

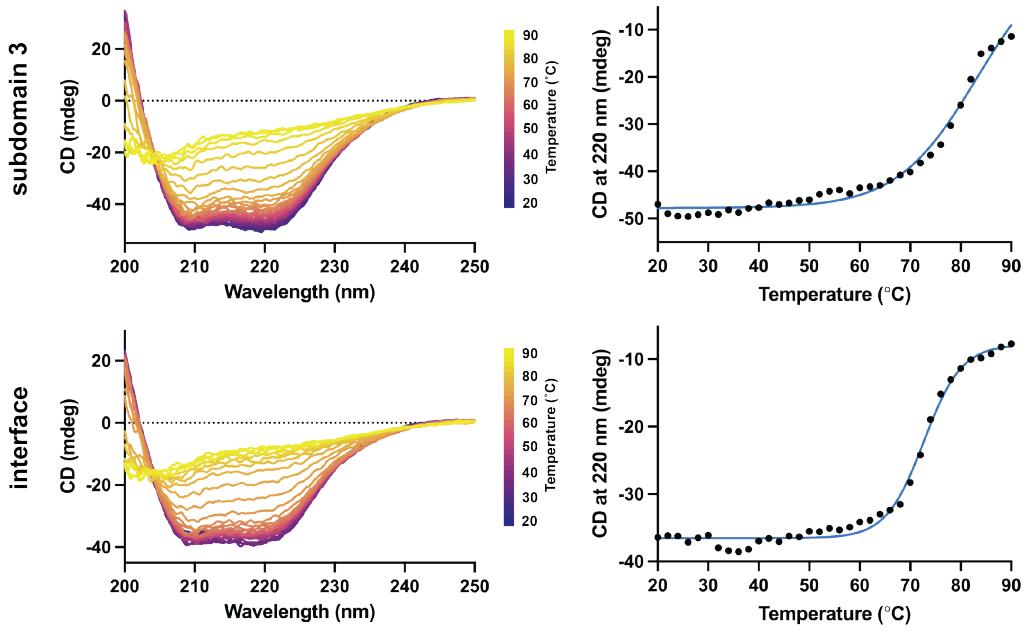


496 **Figure 2: Subdomain 3 and interface bind antibody DB9**

497 **a)** Analysis by surface plasmon resonance of the binding of PvDBP-RII, subdomain 3 and
498 interface to immobilised monoclonal antibody DB9. Each set of curves shows a 2-fold
499 dilution series from a maximum concentration of $1\mu\text{M}$. **b)** The structure of subdomain 3
500 (bright pink) in complex with the Fab fragment of antibody DB9 (blue). **c)** An overlay of the
501 structure of subdomain 3 bound to the Fab fragment of DB9 with that of PvDBP-RII (with
502 subdomain 3 in pink and subdomains 1 and 2 in light pink) bound to the Fab fragment of
503 DB9 (dark blue).

504
505
506
507

508
509

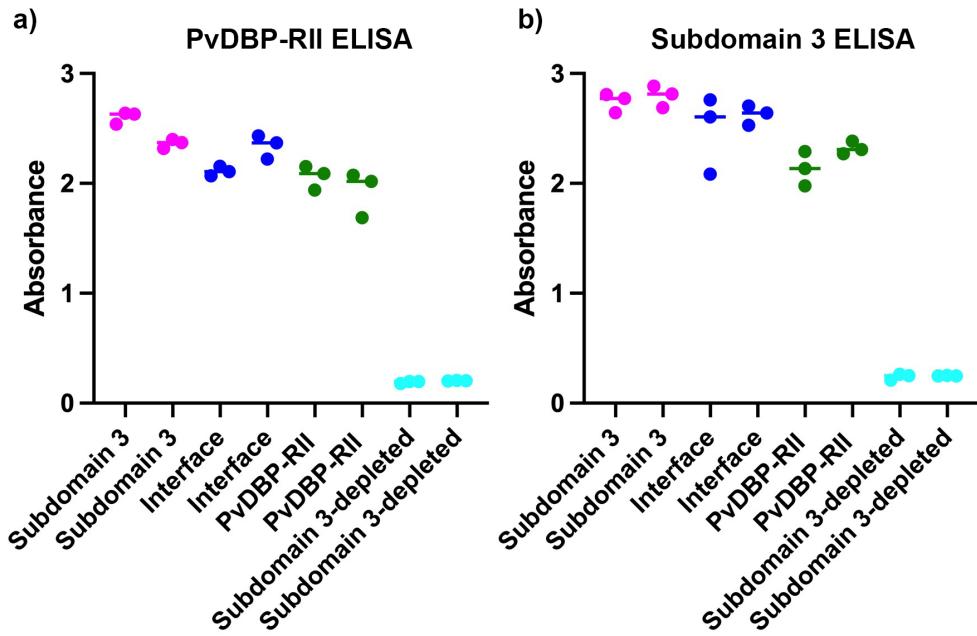

510

511

512 **Figure 3: Subdomain 3-based immunogens are more effective than PvDBP-RII**

513 a) Growth inhibitory activity for different concentrations of IgG induced in rabbits through
514 immunisation with subdomain 3 (pink), interface (blue) and PvDBP-RII (green), tested
515 against a *Plasmodium knowlesi* strain in which the PkDBPs have been deleted and replaced
516 with PvDBP from the Sall strain of *Plasmodium vivax*. The left show growth inhibitory
517 activity measured against total IgG concentration while the right panel show the same data
518 corrected for the specific quantity of PvDBP-RII specific IgG. Each sample was studied with
519 three technical replicates and these are representative data from n=2. b) Total IgG (green),
520 purified from rabbits immunised with PvDBP-RII, was separated using a column displaying
521 subdomain 3 into subdomain 3-specific IgG (orange) and IgG depleted of antibodies binding
522 subdomain 3 (pale blue). Their growth inhibitory activity was measured against *Plasmodium*
523 *knowlesi* expressing PvDBP from the Sall strain. The left-panel shows the inhibitory activity
524 as a factor of total IgG for each sample, which the right-hand panel is corrected for IgG
525 specific for PvDBP-RII. c) An equivalent depletion experiment conducted for a human serum
526 sample from a volunteer vaccinated with PvDBP-RII.

527



528

529 **Extended Data Figure 1: Thermal melts of subdomain and interface.**

530 Left: the thermal melt curves between wavelengths 200 and 250 nm, at temperatures from
531 20°C to 90°C. Right: The thermal denaturation of the alpha-helical protein was measured at
532 220 nm to estimate the melting temperature (T_m).

533

534

535

536 **Extended Data Figure 2: ELISA measurements for purified IgG**

537 ELISA was used to measure the binding of IgG from immunised rabbits against immobilised
538 **a)** PvDBP-RII and **b)** Subdomain 3. In each case, we studied two rabbits immunised with
539 Subdomain 3, with interface or with PvDBP. Each sample was studied with three technical
540 replicates. We also depleted subdomain 3-binding antibodies from the PvDBP-RII IgG,
541 yielding the subdomain 3-depleted IgG.

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564 ***Extended Data Table 1: kinetic parameters measured by surface plasmon resonance***
565 ***analysis for binding to monoclonal antibody DB9***

	$k_{on} (M^{-1} s^{-1})$	$k_{off} (s^{-1})$	$K_D (nM)$
PvDBP-RII	6.94×10^5	9.76×10^{-4}	2.63
Subdomain 3	1.55×10^6	1.72×10^{-3}	1.11
interface	1.04×10^6	2.77×10^{-3}	2.67

566
567

568 **Extended Data 2: crystallographic statistics**

569

Data collection	
Space group	P2 ₁ 2 ₁ 2 ₁
Cell dimensions:	
a, b, c (Å)	76.43, 126.19, 129.86
α , β , γ (°)	90.00, 90.00, 90.00
Resolution (Å)	90.50 – 1.55 (1.605-1.55)
Total observations	1178345 (112071)
Total unique	180370 (17671)
R _{pim}	2.36 (30.77)
CC _{1/2}	0.999 (0.58)
I/σ(I)	14.77 (1.96)
Completeness (%)	98.30 (95.67)
Multiplicity	6.5 (6.3)
Wilson B factor (Å ²)	21.4
Refinement	
Number of reflections	178875
R _{work} / R _{free}	20.4 / 22.3
Average B factor (Å ²)	30.0
Number of residues:	
Amino acid residues	1107
Waters	978
RMSZ deviations	
Bond lengths	0.011
Bond angles	1.12
Ramachandran plot	
Favoured (%)	98.1
Allowed (%)	1.9
Outliers (%)	0.0

570

571

572

573