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Abstract

RNA plays a pivotal role in translating genetic instructions into functional out-
comes, underscoring its importance in biological processes and disease mecha-
nisms. Despite the emergence of numerous deep learning approaches for RNA,
particularly universal RNA language models, there remains a significant lack of
standardized benchmarks to assess the effectiveness of these methods. In this study,
we introduce the first comprehensive RNA benchmark BEACON (BEnchmArk for
COmprehensive RNA Task and Language Models). First, BEACON comprises 13
distinct tasks derived from extensive previous work covering structural analysis,
functional studies, and engineering applications, enabling a comprehensive assess-
ment of the performance of methods on various RNA understanding tasks. Second,
we examine a range of models, including traditional approaches like CNNs, as well
as advanced RNA foundation models based on language models, offering valuable
insights into the task-specific performances of these models. Third, we investigate
the vital RNA language model components from the tokenizer and positional encod-
ing aspects. Notably, our findings emphasize the superiority of single nucleotide
tokenization and the effectiveness of Attention with Linear Biases (ALiBi) over tra-
ditional positional encoding methods. Based on these insights, a simple yet strong
baseline called BEACON-B is proposed, which can achieve outstanding perfor-
mance with limited data and computational resources. The datasets and source code
of our benchmark are available at https://github.com/terry-r123/RNABenchmark.

1 Introduction

RNA plays a vital role in numerous biological processes, including protein synthesis, enzymatic
activities, and gene regulations [16, 47, 73, 56]. Unlike its more famous counterpart DNA, RNA is
not restricted to information storage but actively participates in translating genetic instructions into
functional proteins, modulating gene expression through various mechanisms, and regulating cellular
responses to internal and external stimuli [27]. As a dynamic intermediary between DNA and protein,
RNA governs crucial biological processes, making it a focal point of research in molecular biology
and biomedicine. Consequently, understanding the diverse functions of RNA is crucial to unraveling
the complexities of cellular processes and deciphering the underlying mechanisms of diseases.

Despite its critical importance, understanding the functional roles of RNA poses significant challenges.
Inspired by the success of machine learning in various fields, there have been extensive research
efforts in recent years to apply machine learning approaches to RNA tasks. Initially, traditional
machine learning algorithms such as support vector machine and random forest paved the way for
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predictive modeling in RNA studies [38, 66, 41]. The evolution of deep learning, especially through
Convolutional Neural Networks (CNNs), has enabled more nuanced analyses of RNA sequences and
structures [59, 6, 35]. More recently, pre-trained language models (LM) have revolutionized RNA
research, facilitating more accurate predictions of RNA function and interactions [8, 12, 76]. These
advancements significantly deepen our understanding of RNA’s regulatory roles in cellular processes.
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Figure 1: Overview of BEACON: a: Categorization of the 13 benchmark tasks into classification and
regression at both nucleotide and sequence levels. b: Diverse database distinguished by data size and
source type. c: Visual representations of tasks across Structure, Function, and Engineering. d: List
of baseline models, including naive supervised deep models and advanced RNA language models.
e: Metrics for evaluating model performance in classification and regression tasks, tailored to RNA
analysis specifics.
According to the central dogma of molecular biology [14], genetic information flows unidirectionally
from DNA to RNA and then to protein, or directly from RNA to protein. While established bench-
marks for DNA [29, 44] and protein [51, 75] have significantly aided research in these areas, RNA, a
crucial component of the central dogma, lacks such standardized benchmarks. Therefore existing
RNA models are often evaluated using disparate individual datasets, making it difficult to conduct
fair comparisons between different methods and hindering the development of the field.

To address this gap, we present the first comprehensive RNA benchmark called BEA-
CON (BEnchmArk for COmprehensive RNA Task and Language Models). As shown in Fig. 1,
BEACON contains a curated collection of 13 important RNA-related tasks derived from a com-
prehensive review of RNA-related research papers [18, 35, 13], containing 967k sequences with
lengths ranging from 23 to 1182. These tasks cover sequence-level and nucleotide-level analyses
across three main fields: Structural Analysis focuses on deciphering RNA’s secondary structures
and three-dimensional configurations, essential for its interactions with other molecules and for thera-
peutic design. Functional Studies investigate RNA’s roles in gene regulation and its implications for
disease, which are vital for protein translation and treatment of disease. Engineering Applications
explore RNA’s potential in synthetic biology to enhance its utility in biotechnology and medicine,
exploring how RNA can be utilized to solve complex biological challenges.

In addition, we evaluate a diverse range of models using our benchmark, including traditional models
like CNNs, ResNets, and LSTMs, as well as advanced RNA foundation models like RNA-FM [8]
and UTR-LM [12]. Surprisingly, ResNet and LSTM are proved to be strong baselines, managing
to outperform language models on several tasks. Additionally, pretrained RNA language models
surpassed previous task-specific state-of-the-art (SOTA) performances on 8 out of the 13 tasks,
demonstrating significant potential. Next, we explore the impact of various components in RNA
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language models for the community, with a particular focus on tokenization methods and positional
encodings. We conclude some experimental findings, based on which we further propose a robust yet
efficient baseline, BEACON-B, that incorporates Attention with Linear Biases (ALiBi) and single
nucleotide tokenization, providing an extremely fast and easy-to-use open-source pre-training model
for the community.

Overall, our contributions can be summarized as follows:

• We establish the first comprehensive benchmark for RNA research with 13 diverse tasks,
covering structure, function, and engineering aspects.

• We conduct a thorough evaluation of pre-trained RNA language models, providing insights
into their strengths and limitations across different tasks.

• We investigate the component impacts of RNA language models in depth, and propose
BEACON-B, a simple yet strong baseline, that benefits subsequent research in the field.

2 Related Works

RNA tasks. RNA research is categorized into three primary areas: structure, function, and engi-
neering. Structural tasks, such as predicting secondary structures [18] and contact maps [67], aim to
understand RNA configurations. Functional tasks focus on the biological roles of RNA, including
splice site prediction [35] and non-coding RNA function classification [2]. Engineering tasks involve
designing RNA molecules with specific properties for applications in synthetic biology, such as
discriminating programmable RNA switches [4].

Deep learning methods in RNA tasks. Deep learning has been pivotal in addressing these tasks. For
structural predictions, U-Net [54] has been employed to model secondary structures [25]. In func-
tional studies, methods like SpliceAI utilize dilated convolutions for effective splice detection [35].
For engineering challenges, LSTMs have been used to design programmable RNA switches, demon-
strating their versatility in handling complex sequence data [4]. The development of foundational
RNA models like RNA-FM [8], RNA-BERT [1], RNA-MSM [78], SpliceBERT [10], UTR-LM [12]
and 3UTRBERT [76] represents a significant advancement, capable of tackling multiple RNA-related
tasks by leveraging advanced language modeling techniques. These models promise a broader
understanding of RNA biology. However, they often lack thorough evaluations across different tasks,
highlighting a gap in the systematic assessment of their capabilities. For instance, UTR-LM [12]
only focuses on 5’ UTR function-related tasks. This limitation underscores the need for robust,
cross-disciplinary evaluation approaches to fully explore and utilize the potential of these models in
RNA research.

Benchmarks in molecular biology. While AI for RNA research is a relatively new field and lacks
comprehensive benchmarks, numerous benchmarks have been established for DNA [29, 17, 45]
and protein [51, 75, 48, 26] studies. Grešováet al. proposed Genomic Benchmarks [29], which
includes a collection of genomic sequence classification tasks. Marin et al. constructed BEND [45],
a comprehensive benchmark for DNA, encompassing tasks such as gene finding, enhancer anno-
tation, histone modification, CpG methylation, etc. Notin et al. introduced ProteinGym [48], a
benchmark specifically designed for protein fitness prediction and design, while Gao et al. proposed
ProteinBench [26], focusing on protein design. Additionally, Xu et al. developed PEER [75], a
comprehensive protein benchmark involving function, localization, structure, etc. As AI for RNA
research develops, some preliminary benchmarks in RNA have emerged. RnaBench [57] is the
benchmark for computational RNA modeling, though it only involves tasks related to RNA secondary
structure and RNA design. Many real-life applications, such as RNA-based therapeutics, require
a comprehensive understanding of the functions of ncRNA and mRNA [80]. To address this gap,
we developed BEACON, a comprehensive benchmark for RNA that covers a wide range of tasks
covering structural analysis, functional studies, and engineering applications.

3 Benchmark Tasks

BEACON comprises 13 tasks designed to evaluate RNA models comprehensively, covering structural
analysis, functional studies, and engineering applications . The following sections provide detailed
information, including data statistics, evaluation metrics, and data sources as shown in Tab 1.
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3.1 Structure Prediction

Secondary Structure Prediction (SSP) identifies paired regions (stems) and unpaired regions (loops,
bulges, junctions) within RNA molecules. The target matrix is y ∈ Rl×l indicating whether each
nucleotide pair forms a base pair as part of the RNA’s secondary structure. We adopt the bpRNA-1m
database [18], which contains detailed annotations of over 100,000 single-molecule RNA structures.
The evaluation metric is the F1 score.

Impact: Accurate secondary structure prediction is pivotal for elucidating the structural and
functional dynamics of RNA. By precisely mapping these structures, researchers gain insights
into functional regions and interaction sites, contributing significantly to areas such as drug
discovery and genetic research.

Contact Map Prediction (CMP) identifies pairs of nucleotides in RNA that are in close proximity in
their three-dimensional structures. Each nucleotide pair is associated with a binary label y ∈ {0, 1}
indicating whether they contact (within a distance threshold of 8 Å). Following [67], we utilize a
dataset derived from non-redundant RNA 3D structures documented by [39], and evaluate predictions
using the Top-L precision metric.

Impact: Accurately identifying nucleotide interactions is pivotal for inferring the tertiary struc-
ture of RNA molecules. These predictions enhance our understanding of RNA folding and
function, contributing to advancements in RNA-based therapeutics and biotechnology.

Distance Map Prediction (DMP) estimates the physical distances between pairs of nucleotides
within an RNA molecule. The target distance matrix y ∈ Rl×l records the distance between every
pair of nucleotides within the sequence. The same dataset as the contact map prediction task is used,
with R2 serving as the evaluation metric.

Impact: Inter-nucleotide distance prediction offers detailed spatial information, facilitating the
construction of accurate three-dimensional models by providing distance restraints.

Structural Score Imputation (SSI) predicts missing structural information within RNA molecules,
with each nucleotide assigned with an experimentally derived structural score y ∈ R. The dataset [28]
is derived from icSHAPE sequencing data of the HEK293 cell line, with 30% of nucleotides randomly
masked as null in the training set, and downsampling leading to missing values in 3,095 fragments in
the testing set. The evaluation metric is R2 .

Impact: Accurate structural score imputation provides enhanced and comprehensive structural
information, crucial for the development of RNA-based therapeutics and diagnostics. Improved
structural data enable precise targeting of RNA molecules in disease treatment, potentially
leading to more effective interventions.

3.2 Function Prediction

Splice Site Prediction (SPL) classifies each base within a sequence into one of three categories:
acceptor (a), donor (d), or neither (n), with the categorical label y ∈ {0, 1, 2}. The task uses
Jaganathan’s dataset [35] with Top-k accuracy as the evaluation metric.

Impact: Splice site prediction is crucial for studying gene expression and regulation within bio-
logical systems. Accurate prediction of splice sites helps determine the precise locations within
the genome where splicing occurs, enabling the detection of non-coding genomic variations that
could impact protein synthesis, particularly those resulting in cryptic splicing.

APA Isoform Prediction (APA) predicts the usage ratio of the proximal polyadenylation site (PAS)
in the 3’ untranslated region (3’ UTR) for each variant, recorded in target y ∈ R. We filter 228k
sequences from over 3 million APA reporter gene data from Bogard’s dataset [6], this regression task
assesses the proportion of proximal APA isoforms. The evaluation metric is the R2 value.

Impact: APA is a common gene expression regulation mechanism that generates different
RNA transcripts and protein isoforms by modulating RNA 3’ UTR processing [77]. This
regulatory method can affect gene expression levels and functions, playing a crucial role in
cellular biological processes and development.

Non-coding RNA Function Classification (ncRNA) classifies ncRNA molecules into categories like
microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and small interfering RNAs (siRNAs).
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Table 1: Overview of the 13 benchmark tasks across three major RNA task groups. Nucleotide-
level tasks require labels to have the same length as input sequences. Sequence-level tasks require
nucleotides from one input sequence to share one label. Cls and Reg denote classification and
regression, respectively. MCRMSE means Mean Columnwise Root Mean Squared Error.

RNA Task #Train/Validation/Test Metric Task Type RNA Level Max/Mean Length Source/Venue
Structure

SSP 10,814/1,300/1,305 F1 Multi-label Cls Nucleotide 499/133.8 bpRNA/NAR [18]
CMP 188/23/80 Top L Precision Multi-label Cls Nucleotide 960/110.3 RNAcontact/BIOINF [39]
DMP 188/23/80 R2 Reg Nucleotide 960/110.3 RNAcontact/BIOINF [39]
SSI 14,049/1,756/3,095 R2 Reg Nucleotide 100/100 StructureImpute/NMI [28]

Function
SPL 144,628/18,078/16,505 Top-k ACC Multi-class Cls Nucleotide 100/100 SpliceAI/Cell [35]
APA 145,463/33,170/49,755 R2 Reg Sequence 186/186 APARENT/Cell [6]

ncRNA 5,679/650/2,400 ACC Multi-class Cls Sequence 1182/158.4 Noorul’s/NMI [2]
Modif 304,661/3,599/1,200 AUC Multi-label Cls Sequence 101/101 MultiRM/NC [63]
MRL 76,319/7,600/7,600 R2 Reg Sequence 100/61.5 Optimus/NBT [59]

Engineering
VDP 2,155/245/629 MCRMSE Multi-label Reg Nucleotide 130/118.5 OpenVaccine/NMI [71]
PRS 73,227/9,153/9,154 R2 Multi-label Reg Sequence 148/148 Angenent-Mari‘s/NC [3]

CRI-On 1,453/207/416 Spearman Corr Reg Sequence 23/23 DeepCRISPR/GB [13]
CRI-Off 14,223/2,032/4,064 Spearman Corr Reg Sequence 23/23 DeepCRISPR/GB [13]

Each molecule is assigned a categorical label y ∈ {0, 1, ..., 12} to denote its function. The dataset [2,
24] comprises contributions from GENCODE, circBase, and Rfam, encompassing various ncRNAs.
Accuracy (ACC) at the sequence level is the evaluation metric.

Impact: Classifying ncRNA functions is crucial for understanding their diverse roles in gene
regulation and cellular processes. Accurate classification enhances our knowledge of regulatory
networks and aids in elucidating disease mechanisms. This contributes to identifying new
biomarkers and therapeutic targets, advancing molecular biology research, and improving
disease diagnosis and treatment.

Modification Prediction (Modif) predicts twelve widely occurring types of RNA modifications from
a given RNA sequence, indicated by a categorical label y ∈ {0, 1, ..., 11}. We adopt Song’s dataset
that contains 20 epi-transcriptome profiles for 12 different types of RNA modifications obtained from
15 base-resolution technologies, where over 300,000 sites were collected and divided into training,
validation, and test sets. We use AUC as the metric.

Impact: Post-transcriptional RNA modifications enhance the structural and functional diversity
of RNA molecules, impacting all stages of RNA life [22]. Due to the complex and diverse
characteristics of RNA sequences, different modifications may correspond to distinct sequence
features. Accurately identifying RNA modification sites is crucial for understanding the functions
and regulatory mechanisms of various RNAs.

Mean Ribosome Loading (MRL) predicts the MRL value for a given sequence, with target y ∈ R
representing the level of mRNA translation activity into proteins. Data from Reid’s dataset [59] of
91,519 5’ UTR sequences and their variants are used to calculate the MRL for each sequence. The
model’s performance is evaluated using the R2 value.

Impact: MRL refers to the average ribosome load on a specific mRNA sequence under given
conditions, indicating the translation efficiency of ribosomes on that mRNA. Modulating the
features and structures of the 5’ UTR sequence can influence ribosome loading on mRNA,
thereby regulating protein expression levels [40, 7].

3.3 Engineering Prediction

Vaccine Degradation Prediction (VDP) forecasts the stability and shelf life of vaccines under
different environmental conditions. For each nucleotide, the three properties are recorded in target
y ∈ R3. We use data from the "Stanford OpenVaccine" [71] competition on Kaggle and the RNA
design platform Eterna, which includes detailed measurements for 6,043 diverse RNA constructs.
The evaluation metric is the Mean Columnwise Root Mean Squared Error (MCRMSE).

Impact: Accurate predictions of vaccine degradation under different environmental conditions
are crucial for optimizing storage and transportation protocols, ensuring vaccines remain potent
until administration. Enhanced degradation predictions are particularly beneficial for distributing
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vaccines in challenging environments, such as resource-limited settings, by providing guidelines
to maintain vaccine stability and efficacy.

Programmable RNA Switches (PRS) involves identifying synthetic RNA molecules that can alter
their conformation and function in response to specific signals. The target y ∈ R3 records the ON,
OFF and ON/OFF states activity given an RNA sequence. The dataset, analyzed by Angenent-
Mari [3] , includes 91,534 toehold switches in vivo, covering 23 viral genomes and 906 human
transcription factors, with GFP signal intensity measurements indicating ON and OFF states activity
levels [4]. The R2 metric evaluates the effectiveness of these switches.

Impact: Programmable RNA switches provide precise control of gene expression and cellular
functions, serving as powerful tools for investigating biological processes [64, 46]. In therapeutic
applications, these switches hold promise for developing targeted and personalized treatments by
responding to disease-specific signals, offering innovative approaches to medical intervention.

CRISPR On-Target Prediction (CRI-On) evaluates the efficiency of single-guide RNAs (sgRNAs)
directed by Cas proteins in gene editing within specific target sites. Each sgRNA’s knockout efficacy
is quantified and presented as target y ∈ R. The dataset [13] comprises approximately 15,000
sgRNAs targeting 1,071 genes across four different cell lines, with performance evaluated using the
Weighted Spearman correlation coefficient.

Impact: CRISPR-Cas technology has transformed genetic engineering with significant enhance-
ments in genome editing accuracy and safety. Effective on-target predictions are essential for
designing sgRNAs that precisely modify genetic sequences without affecting unintended regions,
thus improving therapeutic outcomes and research accuracy [74, 33].

CRISPR Off-Target Prediction (CRI-Off) assesses the likelihood and frequency of CRISPR-
induced mutations at unintended genomic locations. The efficacy of sgRNA specificity is quantified
using a target y ∈ R, capturing the frequency of off-target cleavage. The evaluation dataset [13]
contains data for about 160,000 potential off-target sites across 30 sgRNAs in various cell types, with
the Weighted Spearman correlation coefficient serving as the metric.

Impact: Precision in off-target predictions is critical for advancing CRISPR technology by
reducing unintended genetic modifications, which can lead to harmful effects. Accurate off-
target analysis helps refine sgRNA designs, enhancing the safety and efficacy of CRISPR
applications in clinical settings and research.

4 Models

We consider three types of baseline models in our benchmark, including naive supervised models,
pre-trained language models, and the proposed BEACON-B. We give the details in the following part
and summarize them in Tab. 2.

Naive Supervised Models. We utilize three widely-used sequence encoders: CNN [62], ResNet [51],
and LSTM [51]. We mainly follow the design choices described in [75], employing 2 layers for CNN,
8 resblocks for ResNet, and 3 Bi-LSTM layers for LSTM, with 5.4M, 11M, and 26.7M parameters,
respectively.

Pre-trained Language Models. We evaluate the performance of several language models, including
RNA-FM [8], RNABERT [1], RNA-MSM [78], SpliceBERT [10], 3UTRBERT [76], and UTR-
LM [12]. These models vary significantly in size, ranging from 0.48M to 99.52M parameters, and
are pre-trained on diverse RNA data sources including ncRNA, pre-mRNA, mRNA-3’UTR, and
mRNA-5’UTR. For consistency, we choose to fine-tune them using identical settings.

Baseline RNA LM and BEACON-B . We conduct ablation studies on two key aspects of RNA LM:
1) tokenization methods including Single Nucleotide (Single), Byte-Pair Encodings (BPE) [61, 79],
Overlapping K-mer (K-mer, we use 6mer for experiments) [76, 36] and Non-overlapping K-mer
(Non-overlap) [17] 2) positional encodings including Absolute Positional Encodings (APE) [21],
Attention with Linear Biases (ALiBi) [50] and Rotary Positional Encodings (RoPE) [65]. The findings
indicate that single nucleotide tokenization outperforms both K-mer, BPE, and Non-overlap, and
ALiBi shows advantages over both RoPE and APE. Consequently, we propose a robust yet efficient
BEACON baseline (BEACON-B) that incorporates single nucleotide tokenization and ALiBi as
positional encodings, based on the BERT backbone.
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Table 2: Detailed specifications and pre-training data of RNA language models analyzed in the study.

RNA Foundation Model Number of
Parameters (M)

Max
Token length Pre-trained Data Tokenizer Positional

Encoding
RNA-FM [8] 99.52 1024 Multispecies ncRNA [68] Single APE

RNABERT [1] 0.48 440 Human ncRNA [68] Single APE
RNA-MSM [78] 95.92 1024 Homologous sequences [37, 9] Single APE

SpliceBERT-H510 [10] 19.45 510 Human pre-mRNA [30] Single APE
SpliceBERT-MS510 [10] 19.45 510 Multispecies pre-mRNA [30] Single APE
SpliceBERT-MS1024 [10] 19.72 1024 Multispecies pre-mRNA [30] Single APE

UTR-LM-MRL [12] 1.21 1026 Multispecies 5’UTR [15, 58, 7] Single RoPE
UTR-LM-TE&EL [12] 1.21 1026 Multispecies 5’UTR [15, 58, 7] Single RoPE
3UTRBERT-3mer [76] 86.14 512 Human 3’UTR [32] K-mer APE
3UTRBERT-4mer [76] 86.53 512 Human 3’UTR [32] K-mer APE
3UTRBERT-5mer [76] 88.45 512 Human 3’UTR [32] K-mer APE
3UTRBERT-6mer [76] 98.05 512 Human 3’UTR [32] K-mer APE

5 Results

5.1 Training setups

To ensure a fair comparison, we fully fine-tune all the BERT-like RNA foundation models including
RNA-FM, RNABERT, RNA-MSM, SpliceBERT, 3UTRBERT, UTR-LM and BEACON-B under the
same training settings. For simple supervised methods (CNN, ResNet and LSTM) and baseline RNA
LM, we train them from scratch using similar training settings. For each model, we search for its
learning rate from 1e-5 to 5e-3. All experiments are repeated with three random seeds, and we report
the average performance alongside sample standard deviations. More details are in Appendix A.1.

5.2 Task Pipeline

Our approach incorporates three pipelines for different types of tasks in the BEACON. In nucleotide-
level tasks, due to the complexity of outputs in structural tasks, we further categorize the tasks of
Secondary Structure, Contact Map, and Distance Map into a more detailed nucleotide-nucleotide
level prediction.

Sequence Level Prediction For sequence-level tasks, we apply an attentive weighted sum of all
nucleotides for naive supervised models and use the [CLS] token from language models. Both
representations are processed through an MLP layer to derive the sequence-level predictions.

Nucleotide Level Prediction For tasks requiring resolution at the nucleotide level, individual
representations for each nucleotide are processed through a Multilayer Perceptron (MLP) to generate
nucleotide-level predictions. Specifically, the representation for a nucleotide are calculated by
averaging the representations of all tokens that cover it, as illustrated in Appendix Fig. 2.

Nucleotide-Nucleotide Relation Prediction To analyze relationships between nucleotides, we
compute a self outer product of the nucleotide representations to form a matrix that cotains the
pairwise interactions between nucleotides. This matrix is then passed through a simple Resnet to get
the final output.

5.3 Benchmark results

In Tab 3, we report the benchmark results for popular and opensource methods, including literature
SOTAs, naive supervised models and existing RNA language models.

ResNet and LSTM are strong naive supervised models. ResNet, which has only been trained on
downstream tasks, can outperform most if not all language models on some tasks. LSTM outperforms
the other Naive supervised Models on 9 out of 13 tasks, and the performance is better by a large
margin on many tasks.

Pre-trained RNA language models have good potential for RNA understanding. It outperforms
the previous task-specific SOTA on 8 out of 13 tasks, demonstrating that the additional unsupervised
pre-training brings a lot of gains. However, there is still a long way to go on individual tasks, such as
contact map prediction and distance map prediction in the structural task, vaccine degradation rate
prediction in the engineering task, and CRISPR on- and off-target prediction. Of course, the previous
SOTA method used additional features such as secondary structure, but it shows that there is still a
lot of room for improvement in the RNA language model.

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2024. ; https://doi.org/10.1101/2024.06.22.600190doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.22.600190
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 3: Benchmark results across various 13 RNA tasks. We use four color scales of blue to denote
the first, second, third and fourth best performance among naive supervised models and pre-trained
RNA LMs. Mean (std) is reported for each experiment.

Task SSP CMP DMP SSI SPL APA NcRNA Modif MRL VDP PRS CRI-On CRI-Off

Metric F1 (%) P@L (%) R2 (%) R2 (%) ACC@K (%) R2 (%) ACC (%) AUC (%) R2 (%) MCRMSE↓ R2 (%) SC (%) SC (%)

Literature SOTA

UFold [25] RNACon [67] SS+Seq [8] StructImp [28] SpliceAI [35] APARENT [6] GCN [55] MultiRM [63] Optimus [59] NAttn [53] MLP-O [3] SSC [74] DeepCRI [13]Literature

SOTA 65.4 66 68.75 37.2 32.18(0.64) 50.82(7.00) 85.73 84 78 0.263 55.67 44.1 12.6

Naive supervised Model

CNN 49.95(0.82) 43.89(5.53) 27.76(5.00) 34.36(0.12) 8.43(0.38) 50.93(0.17) 88.62(0.71) 70.87(0.40) 74.13(0.58) 0.361(0.003) 45.40(0.66) 29.69(2.52) 11.40(0.10)

ResNet 57.26(3.14) 59.59(0.68) 30.26(1.81) 37.74(0.16) 21.15(1.56) 56.45(0.94) 88.33(1.22) 71.03(0.32) 74.34(0.22) 0.349(0.003) 55.21(0.28) 28.55(2.42) 11.50(0.22)

LSTM 58.61(0.21) 40.41(1.67) 44.77(0.47) 35.44(1.13) 36.66(1.83) 67.03(0.86) 88.78(0.10) 94.83(0.31) 83.94(0.08) 0.329(0.002) 55.45(0.71) 26.83(1.32) 8.60(0.13)

Pretrained RNA Language Model

RNA-FM 68.50(0.54) 47.56(6.73) 51.45(0.51) 42.36(0.24) 34.84(0.87) 70.32(0.97) 96.81(0.061) 94.98(0.042) 79.47(0.47) 0.347(0.003) 55.98(0.09) 31.62(1.16) 2.49(1.56)

RNABERT 57.27(0.30) 45.21(10.87) 48.19(0.64) 31.62(0.64) 0.18(0.18) 57.66(2.11) 68.95(7.285) 82.82(19.09) 29.79(20.15) 0.378(0.003) 54.60(0.23) 29.77(3.98) 4.27(1.05)

RNA-MSM 57.98(0.47) 57.26(15.38) 37.49(4.10) 39.22(0.23) 38.33(0.76) 70.40(1.12) 84.85(0.266) 94.89(0.14) 83.48(0.18) 0.330(0.001) 56.94(0.38) 34.92(1.99) 3.85(0.99)

Splice-H510 64.93(0.84) 45.80(6.03) 55.56(1.00) 38.91(0.07) 44.80(1.93) 58.65(2.34) 95.92(0.666) 62.57(1.92) 83.49(0.47) 0.321(0.000) 54.90(3.45) 26.61(1.30) 4.00(1.13)

Splice-MS510 43.24(28.64) 52.64(7.56) 10.27(0.20) 38.58(0.50) 50.55(0.49) 52.46(17.36) 95.87(0.364) 55.87(5.25) 84.98(0.28) 0.315(0.003) 50.98(7.46) 27.13(0.27) 3.49(2.12)

Splice-MS1024 68.26(0.20) 47.32(3.16) 55.89(0.48) 39.22(0.02) 48.52(0.49) 60.03(3.42) 96.05(0.777) 53.45(6.25) 67.15(30.54) 0.313(0.000) 57.72(0.45) 27.59(4.61) 5.00(0.71)

UTR-LM-MRL 59.71(0.30) 45.51(23.51) 55.21(2.91) 39.52(0.36) 36.20(1.84) 64.99(4.90) 89.97(0.617) 56.41(2.90) 77.78(6.03) 0.325(0.002) 57.28(0.10) 28.49(1.37) 4.28(0.15)

UTR-LM-TE&EL 59.57(0.20) 60.32(7.27) 54.94(2.54) 40.15(0.11) 37.35(5.48) 72.09(0.82) 81.33(8.551) 59.70(10.52) 82.50(1.45) 0.319(0.001) 53.37(3.54) 32.49(4.14) 2.91(1.18)

UTRBERT-3mer 60.37(0.47) 51.03(21.48) 50.95(0.44) 34.31(0.00) 44.24(0.53) 69.52(4.56) 92.88(0.379) 95.14(0.11) 83.89(0.13) 0.337(0.002) 56.83(0.26) 29.92(1.95) 4.48(1.12)

UTRBERT-4mer 59.41(0.45) 44.91(27.56) 47.77(2.08) 33.22(0.00) 42.04(0.53) 72.71(0.85) 94.32(0.946) 95.10(0.12) 82.90(0.75) 0.341(0.002) 56.43(0.67) 23.20(1.10) 3.11(1.10)

UTRBERT-5mer 47.92(8.75) 44.71(7.64) 48.67(1.70) 31.27(0.00) 39.19(0.37) 72.70(1.77) 93.04(0.367) 94.78(0.07) 75.64(4.70) 0.343(0.001) 57.16(0.08) 25.74(0.00) 3.93(0.24)

UTRBERT-6mer 38.56(28.76) 51.56(20.30) 50.02(1.05) 29.93(0.17) 38.58(2.72) 71.17(2.30) 93.12(0.168) 95.08(0.17) 83.60(0.39) 0.340(0.001) 57.14(0.12) 28.60(1.55) 4.90(0.57)

Our BEACON-B

BEACON-B 64.18(0.44) 60.81(1.70) 56.28(0.41) 38.78(0.18) 37.43(1.43) 70.59(0.91) 94.63(0.16) 94.74(0.20) 72.29(0.28) 0.320(0.001) 54.67(0.36) 26.01(1.81) 4.42(0.33)

BEACON-B512 58.75(3.72) 61.20(2.11) 56.82(0.63) 39.13(0.08) 37.24(1.09) 72.00(0.17) 94.99(0.21) 94.92(0.07) 72.35(0.28) 0.320(0.001) 55.20(0.26) 28.17(1.81) 3.82(1.04)

SpliceBERT and RNA-FM are superior models for various tasks. Both SpliceBERT-MS1024
and RNA-FM got first place in 3 out of 13 tasks, and had top performances in other tasks as well,
showing they have learned rich patterns and evolution knowledge from multi-species RNA sequences.

Pre-training of specific RNA attributes will result in a gain on tasks with corresponding
attributes. First, when specific RNA attributes are included in the pre-training it brings gains to the
downstream tasks corresponding to the attributes. For example, RNA-FM pre-trained with non-coding
RNA achieves the best performance in non-coding RNA family prediction, SpliceBERT pre-trained
on pre-mRNA learns information about potential shear mRNAs for the best shear site prediction,
and 3UTRBERT uses sequences from the 3’UTR region to learn 3’UTR function worked best in the
prediction of APA isoforms in the 3’UTR functional region, and similarly, the pre-trained UTR-LM
in the 5’UTR region worked well in the prediction of ribosome loading in the 5’UTR association.
Second, specific attributes also give gains for having other RNA attributes, for example, 3UTRBERT,
although pre-trained on 3’UTR sequences, also gained on the prediction of 5’UTR function.

Table 4: Performance of baseline RNA LMs with different tokenizers and positional encodings.

Task SSP CMP DMP SSI SPL APA NcRNA Modif MRL VDP PRS CRI-On CRI-Off

Metric F1 (%) P@L (%) R2 (%) R2 (%) ACC@K (%) R2 (%) ACC (%) AUC (%) R2 (%) MCRMSE↓ R2 (%) SC (%) SC (%)

Baseline RNA LM Analysis

Non-overlap-APE 12.58(0.08) 41.60(5.34) 44.66(0.59) 10.36(0.57) 0.00(0.00) 58.49(0.75) 82.04(0.18) 79.07(20.82) 34.56(2.79) 0.640(0.000) 51.95(0.15) 21.64(3.85) 8.33(0.90)

Non-overlap-ALiBi 5.58(0.49) 57.49(32.45) 37.44(2.69) 10.84(1.13) 0.00(0.00) 57.92(0.36) 80.55(1.38) 60.56(9.00) 37.75(1.07) 0.640(0.000) 49.17(0.17) 14.85(4.09) 7.95(0.20)

Non-overlap-RoPE 4.50(0.16) 27.47(22.17) 38.68(0.39) 10.38(0.94) 0.00(0.00) 46.14(0.62) 76.76(0.44) 67.12(0.25) 24.13(18.27) 0.640(0.000) 31.76(0.04) 15.76(2.07) 8.43(0.22)

BPE-APE 6.30(0.51) 49.48(3.75) 41.56(0.16) 20.79(0.95) 0.00(0.00) 65.75(1.16) 80.76(0.95) 67.67(0.28) 48.67(1.45) 0.641(0.001) 29.75(0.08) 16.16(2.77) 5.78(1.50)

BPE-ALiBi 6.34(0.85) 59.17(18.04) 37.58(1.10) 25.23(1.67) 0.00(0.00) 69.03(1.05) 81.36(0.43) 63.95(4.77) 45.78(5.49) 0.642(0.001) 31.45(0.79) 16.13(3.84) 6.40(1.44)

BPE-RoPE 6.32(0.38) 51.31(23.54) 37.01(0.47) 21.96(1.13) 0.00(0.00) 50.91(1.27) 75.74(1.10) 62.89(4.01) 45.87(1.53) 0.642(0.001) 19.69(0.10) 16.46(1.75) 6.63(0.73)

Single-APE 48.23(0.26) 70.85(8.03) 48.22(0.69) 24.38(12.80) 0.18(0.00) 56.35(2.65) 84.81(0.74) 93.51(0.24) 1.45(0.22)↓ 0.376(0.003) 55.22(0.38) 35.51(0.63) 5.66(0.20)

Single-ALiBi 49.78(0.34) 49.70(1.05) 42.62(6.15) 38.84(1.01) 28.27(0.91) 66.15(2.92) 88.18(0.57) 73.62(14.68) 69.04(5.30) 0.347(0.002) 51.68(0.50) 22.27(0.22) 5.66(0.87)

Single-RoPE 39.20(0.82) 51.64(0.38) 15.72(3.01) 10.15(0.07) 0.00(0.00) 33.34(1.17) 38.71(2.50) 65.05(0.64) 1.36(0.22)↓ 0.462(0.000) 14.59(0.20) 21.11(0.08) 4.89(0.09)

6mer-APE 16.24(0.54) 55.65(23.35) 43.21(0.83) 12.24(0.90) 13.92(0.86) 52.59(6.86) 87.63(0.91) 91.71(0.93) 67.75(0.89) 0.420(0.009) 51.39(0.46) 9.99(2.58) 4.21(1.08)

6mer-ALiBi 13.99(0.35) 28.45(9.44) 39.48(2.99) 11.49(0.39) 22.82(0.83) 58.93(0.09) 87.49(0.86) 60.82(2.72) 69.01(1.04) 0.417(0.001) 48.26(0.44) 9.70(4.31) 4.64(0.88)

6mer-RoPE 22.18(0.90) 37.95(9.18) 36.93(1.02) 12.89(0.41) 7.46(0.65) 45.71(0.30) 86.55(0.62) 64.41(5.70) 66.38(0.90) 0.435(0.005) 35.17(0.46) 9.91(2.12) 5.53(1.03)

5.4 Component Analysis of RNA language models

In Tab 4 , we study the language model component effect from tokenizer and positional encoding.

The single nucleotide tokenizer is a powerful tool for RNA language models. As shown in Tab 11,
it achieves the best performance on 11 out of 13 tasks, significantly outperforming other tokenizers.
BPE and non-overlapping tokenizers are generally ineffective at the nucleotide level, as they lose
precision from overlapping. Similarly, the 6mer approach adds local information before the individual
tokens, potentially introducing redundancy. We argue that the single nucleotide tokenizer can learn
global information, including surrounding context, through self-attention mechanisms. Thus, using
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the single nucleotide tokenizer is sufficient, and future work should focus on designing interpretable
tokenizers based on single nucleotide units [69, 42].

ALiBi is better for RNA sequences understanding. For tasks involving shorter sequences, the
specific advantages of RoPE or other complex encoding schemes may not be fully realized. RoPE,
which is highly effective in long sequences due to its rotational component that maintains relative
positioning across long distances, might not provide significant benefits over simpler methods like
ALiBi in shorter sequences. Moreover, ALiBi linearly biases the attention scores based on relative
positions, which helps the model better generalize across different sequence lengths.

Table 5: Comparison of GPU days and the number of tasks (total: 13) where BEACON-B demon-
strates performance superiority over other methods.

Model
BEACON

-B

BEACON

-B512
RNA-FM

SpliceBERT

-H510

SpliceBERT

-MS510

SpliceBERT

-MS1024

UTRBERT

-3mer

UTRBERT

-4mer

UTRBERT

-5mer

UTRBERT

-6mer

# GPU Days 1.3*8=10.4 0.895*4=3.58 30*8=240 7*8=56 7*8=56 7*8+3*4=68 38*4=152 38*4=152 38*4=152 38*4=152

# Tasks where BEACON-B Performs Better - - 6 6 8 5 7 8 8 6

# Tasks where BEACON-B512 Performs Better - - 6 8 9 6 6 7 8 7

5.5 BEACON-B: an Efficient Baseline for RNA Language Models

Based on the above analysis of the different components of the RNA language model, combined with
the Tab 4, we use the single nucleotide tokenizer, ALiBi as the positional encoding, and pre-train
on filtered human ncRNA sequences from RNACentral [68]. We propose the low-resource and
cost-effective BEACON-B (pre-trained on 1026 length seqs) and BEACON-B512 (pre-trained on 512
length seqs and FlashAttn [20]) as a baseline to provide an extremely fast and easy to use open-source
pre-training model for subsequent researchers.

Although with very small GPU days (days * GPUs) as the cost of pre-training, BEACON-B can
even outperform SOTA pre-trained RNA LMs on some tasks such as contact map prediction and
distance map prediction. Compared with other models that also report pre-training resources,
BEACON-B and BEACON-B512 can match or even surpass existing RNA language models in
one-to-one comparisons on almost half of the tasks listed in Tab 3 and Tab 5, despite being pre-
trained with significantly fewer resources. This demonstrates that the insights we obtain from the
important components in analysing the RNA language model are vital and that biological motifs
and configurations on limited RNA data can be fully explored by utilising such a combination of
components in a good way.

6 Conclusions

Summary. In this work, we present BEACON, the first comprehensive RNA benchmark, which
encompasses 13 diverse tasks spanning structural analysis, functional studies, and engineering
applications. BEACON aims to address the critical gap in standardized evaluation for RNA models.
We assess various models, from traditional approaches like CNNs to advanced RNA foundation
models, providing insights into their task-specific performances. Additionally, we analysis the
vital components of RNA LM from tokenization and positional encoding. Building upon this, we
propose BEACON-B , an efficient baseline that incorporates single nucleotide tokenization and
ALiBi. BEACON’s standardized evaluation framework and the insights provided into RNA modeling
components are expected to significantly advance RNA research, facilitating the development of
more sophisticated models and enhancing our understanding of RNA’s diverse roles in biology.

Limitation & future work. Despite the comprehensiveness of BEACON, it has some limitations for
future work. While BEACON includes 13 diverse RNA-related tasks, it may not cover all aspects
of RNA biology, necessitating the inclusion of additional tasks and datasets in future versions. The
influence of pre-training datasets and hyperparameters on model performance also needs further
systematic exploration to optimize configurations for specific RNA tasks. Although BEACON-B
serves as an efficient baseline, there is potential for developing more advanced models that leverage
RNA’s unique structural characteristics. Additionally, BEACON primarily evaluates predictive
accuracy, suggesting the need to incorporate metrics like interpretability, computational efficiency,
and robustness for a more holistic assessment. Addressing these limitations and exploring new
directions will not only advance RNA research but also deepen our understanding of its indispensable
roles in genetic regulation, disease pathogenesis, and therapeutic development.
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A Appendix / supplemental material

Optionally include supplemental material (complete proofs, additional experiments and plots) in the
appendix. All such materials SHOULD be included in the main submission.

Overlapping Kmer:

“ATCTGC”     “TCTGCG”     “CTGCGT”

BPE/Non-overlapping Kmer:

“ATCTG”       “CGT”  

“A”  “T”  “C”  “T”  “G”  “C”  “G”  “T”

Single Nucleotide:

 “A”  “T”  “C”  “T”  “G”  “C”  “G”  “T”

“A”  “T”  “C”  “T”  “G”  “C”  “G”  “T” “A”  “T”  “C”  “T”  “G”  “C”  “G”  “T”Nucleotide Level: 

Token Level: 

Figure 2: Derivation of nucleotide-level representations. In single nucleotide tokenization, a token
directly corresponds to a nucleotide, thus the representations are identical. For overlapping Kmer
tokenization, the nucleotide representation is the averaged representation of tokens covering it. In
Byte-Pair Encoding (BPE) and non-overlapping K-mer tokenization, the representation is derived
from the token covering it.

A.1 Experimental settings for tasks

A.1.1 Most of the tasks

Most of the tasks are trained using the same training settings shown in the Tab 6. These tasks include
structural score imputation, splice site prediction, APA isoform prediction, non-coding RNA function
classification, modification prediction, programmable RNA switches, CRISPR on-target prediction
and CRISPR off-target prediction.

Table 6: Configuration settings for most of the tasks training

config value
optimizer AdamW
optimizer epsilon 1e-8
optimizer momentum β1, β2 = 0.9, 0.999
weight decay 0.01
learning rate sch. linear decay
learning rate [1e-5,5e-3]
warmup steps 50
epochs 30
batch size 32
gradient accumulation 1
dtype float16

In particular, for the structural score imputation task, the input is the sequence accompanied by
structural scores. The sequence is fed to the model and undergoes the transformation to the nucleotide-
level representation. We concatenates it with the MLP-passed structural scores, and then use the
regression header to get imputation scores.

For CRISPR off-target, the input is two sequences including sgRNA and target sequences. We feed
them through the same model separately, then concat them together. Finally, we use the regression
header to get the predicted value of off-target.

A.1.2 Vaccine degradation prediction task

Vaccine degradation prediction is trained using the settings shown in the Tab 7.
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Table 7: Configuration settings for vaccine degradation prediction training

config value
optimizer AdamW
optimizer epsilon 1e-8
optimizer momentum β1, β2 = 0.9, 0.999
weight decay 0.01
learning rate sch. linear decay
learning rate [1e-5,5e-3]
warmup steps 50
epochs 100
batch size 32
gradient accumulation 1
dtype float16

A.1.3 Nucleotide-nucleotide level tasks

Nucleotide-nucleotide level tasks are trained using the settings shown in the Tab 8. In addition, the
representation also follows Fig 2

Table 8: Configuration settings for nucleotide-nucleotide level tasks training

config value
optimizer Adam
optimizer epsilon 1e-8
optimizer momentum β1, β2 = 0.9, 0.999
learning rate sch. cosine decay
learning rate [1e-5,5e-3]
warmup epochs 1
epochs 100
batch size 1
gradient accumulation 8
dtype float16

A.2 Methods in Benchmark

All pre-trained benchmarked methods use a Masked Language Modeling (MLM) objective.

In the MLM task, a sequence is provided as input, with 15% of its tokens randomly masked. The
entire masked sequence is then processed by the model, which is tasked with predicting the original
tokens. This approach is analogous to the Cloze task in traditional language modeling.

• 15% of the tokens in the sequence are masked.

• In 80% of the cases, the masked tokens are replaced by a special <mask> token.

• In 10% of the cases, the masked tokens are substituted with a random token different from
the original.

• In the remaining 10% of cases, the masked tokens remain unchanged.

A.2.1 RNABERT

Training Objectives RNABERT was pre-trained with two objectives: masked language modeling
(MLM) and structural alignment learning (SAL).

For SAL, the model learns to predict the structural alignment between two RNA sequences. It
achieves this by being trained to predict the alignment score of RNA sequence pairs using the
Needleman-Wunsch algorithm.
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Training Data The RNABERT model was pre-trained using a subset of 76,237 human ncRNA
sequences from RNAcentral. The dataset was preprocessed by applying 10 different masking patterns
to the 76,237 sequences, resulting in a final dataset comprising 762,370 sequences.

A.2.2 RNA-FM

Training Data The RNA-FM model was pre-trained using data from RNAcentral. To ensure
the dataset was non-redundant, RNA-FM applied CD-HIT (CD-HIT-EST) with a cut-off at 100%
sequence identity, resulting in a final dataset containing 23.7 million unique RNA sequences.

A.2.3 RNA-MSM

Unlike other methods, RNA-MSM utilizes homologous sequences as input to provide additional
evolutionary information, similar to MSATransformer [52].

To ensure fairness, homologous sequences were not included in the input during evaluation.

Training Data RNA-MSM was pre-trained using data from Rfam, which includes homologous
sequences. To prevent potential overfitting in structural inference, RNA-MSM excluded families with
experimentally determined structures, such as ribosomal RNAs, transfer RNAs, and small nuclear
RNAs. The final dataset comprises 3,932 RNA families, with a median of 2,184 MSA sequences
per family. To augment the number of homologous sequences, RNA-MSM employed an automated
pipeline, RNAcmap3 [11], for homolog search and sequence alignment.

A.2.4 SpliceBERT

Training Data The SpliceBERT model was pre-trained using messenger RNA precursor sequences
obtained from the UCSC Genome Browser.

SpliceBERT gathered reference genomes and gene annotations from the UCSC Genome Browser for
72 vertebrate species. Bedtools getfasta was used to extract pre-mRNA sequences from the reference
genomes based on these gene annotations. The resulting pre-mRNA sequences were then utilized for
pre-training SpliceBERT. The pre-training dataset comprises 2 million pre-mRNA sequences, with a
total length of 65 billion nucleotides.

A.2.5 3UTRBERT

Training Data The 3UTRBERT model was pre-trained using human mRNA transcript sequences
obtained from GENCODE.

3UTRBERT collected 108,573 unique human mRNA transcripts from GENCODE, utilizing only
the longest transcript for each gene in the pre-training process. To avoid codon constraints in the
CDS region and to reduce the complexity of the full mRNA transcripts, only the 3’ untranslated
regions (3’UTRs) of the mRNA transcripts were used. The average length of the 3’UTRs was
1,227 nucleotides, with a median length of 631 nucleotides. Each 3’UTR sequence was divided into
non-overlapping patches of 510 nucleotides, with the remaining sequences padded to the same length.

A.2.6 UTR-LM

Training Objectives In addition to MLM pre-training, UTR-LM employs two additional supervised
objectives: Secondary Structure (SS) and Minimum Free Energy (MFE).

Both secondary structure and the MFE value are calculated using ViennaRNA [43]. To prevent
information leakage, UTR-LM calculates the secondary structure loss only on the masked positions.
The output embedding of the cls token is used by UTR-LM to regress the MFE value.

Training Data The UTR-LM model was pre-trained using 5’ UTR sequences sourced from three
origins: the Ensembl database, synthetic libraries from Sample et al. [60], and endogenous human 5’
UTR data analyzed by Cao et al. [7].

The preprocessing of 5’ UTR sequences for UTR-LM involved a 4-step pipeline: First, all coding
sequence (CDS) and non-5’ UTR fragments were removed from the raw sequences. Second, duplicate
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sequences were identified and removed. Third, the sequences were truncated to fit within a range of
30 to 1022 base pairs. Finally, incorrect and low-quality sequences were filtered out.

A.2.7 BEACON-B

Training Data We filter 523,934 human ncRNA sequences from the total ncRNA in the RNACentral
database [68] as pre-training data. BEACON-B and BEACON-B512 use normal BERT-base [21]
architecture with 12 layers.

The pre-training configs of BEACON-B and BEACON-B512 are shown as Tab 9 and Tab 10

Table 9: Configuration settings for the BEACON-B pre-training

config value
optimizer AdamW
optimizer epsilon 1e-6
optimizer momentum β1, β2 = 0.9, 0.98
weight decay 0.01
learning rate sch. linear decay
learning rate 2e-4
warmup steps 10000
steps 80000
batch size 256
gradient accumulation 2
dtype float16
length 1026
pertaining data RNACentral Human ncRNA

Table 10: Configuration settings for the BEACON-B512 pre-training

config value
optimizer AdamW
optimizer epsilon 1e-6
optimizer momentum β1, β2 = 0.9, 0.98
weight decay 0.01
learning rate sch. linear decay
learning rate 2e-4
warmup steps 10000
steps 80000
batch size 512
gradient accumulation 1
dtype float16
length 512
pertaining data RNACentral Human ncRNA
attention FlashAttention

A.3 Computational Resources

We fine-tune or train each model from scratch on one task using one NVIDIA A100 40g GPU. We
pre-train the simple BEACON-B on 8 A100 GPUs of 80GB for 1.3 days and BEACON-B512 on 4
A100 GPUs of 80GB for 0.895 days.

A.4 Additional results

For the experiments 4 on component analysis of the baseline RNA language model, we further
counted the number of top performances for different tokenizers and positional encoding as shown in
Tab 11. The effectiveness of Single nucleotide tokenizer and ALiBi can be demonstrated directly.
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Table 11: The number of Top2 performance among different tokenizers and positional encodings

Rank Tokenizer Positional encoding
Single 6mer Non-overlap BPE APE ALiBi RoPE

1st 11 0 1 1 5 7 1
2nd 1 6 3 3 8 5 0

A.5 Broader Societary Impacts

This work is dedicated to establishing a robust and versatile benchmark for RNA-related tasks, enhanc-
ing the understanding of RNA sequences across diverse applications. Our benchmark, encompassing
a variety of RNA tasks, aims to rigorously evaluate the efficacy of different RNA representation
covering structural analysis, functional studies, and engineering applications. By doing so, it provides
a critical assessment of their potential utility in real-world scenarios, thereby laying a foundational
framework for applying deep learning in fields such as medical research and genetics.

However, it is also important to acknowledge the dual-use nature of any powerful technology,
including those developed from our benchmark. For instance, the enhanced ability to manipulate
RNA sequences might be misused, such as in the creation of adverse viral agents. Moving forward, it
is crucial to address these risks. We will develop and implement guidelines for the ethical and safe
use of our benchmark in the future, ensuring that it contributes positively to society and does not
enable harmful applications.

A.6 Assets

A.6.1 Software and Libraries

The open-source software, and corresponding licenses are presented in Tab. 12. The data, licenses
and corresponding URL are presented in Tab. 13.

Table 12: Software used in this work

Asset License

FlashAttention [20, 19] BSD-3-Clause
Pytorch [5] BSD-3-Clause
Pytorch Lightning [23] Apache-2.0
Huggingface [72] Apache-2.0
Scikit-Learn [49] BSD-3-Clause
Numpy [31] BSD-3-Clause
Matplotlib [34] Matplotlib License
Seaborn [70] Apache-2.0

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2024. ; https://doi.org/10.1101/2024.06.22.600190doi: bioRxiv preprint 

https://matplotlib.org/stable/project/license.html
https://doi.org/10.1101/2024.06.22.600190
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 13: Dataset used in this work

Dataset Sub-dataset License URL

bpRNA-1M

https://bprna.cg
rb.oregonstate.e
du/about.php

CRW - https://crw-site
.chemistry.gatec
h.edu

tmRDB Research Purpose Only https://rth.dk/r
esources/rnp/tmR
DB/

SRPDB Research Purpose Only https://rth.dk/r
esources/rnp/SRP
DB/

tRNADB
Rnase P Public Domain
RFam CC0 1.0 https://rfam.org
PDB CC0 1.0 https://www.rcsb

.org
RNAcontact Public Domain https://yanglab.

qd.sdu.edu.cn/RN
Acontact/

StructImpute MIT & Non Commerical https://figshare
.com/articles/da
taset/A_deep_lea
rning_method_for
_recovering_miss
ing_signals_in_t
ranscriptome-wi
de_RNA_structure
_profiles_from_p
robing_experimen
ts/16606850

SpliceAI GPLv3 https://github.c
om/illumina/Spli
ceAI

APARNET MIT https://github.c
om/johli/aparent

ncRNA Apache 2.0 https://github.c
om/bioinformatic
s-sannio/ncrna-
deep

MultiRM MIT
Optimus GEO https://www.ncbi

.nlm.nih.gov/geo
/query/acc.cgi?a
cc=GSE114002

OpenVaccine Non Commerical https://www.kagg
le.com/competiti
ons/stanford-co
vid-vaccine/data

ProgrammableRNAswitches GEO https://www.ncbi
.nlm.nih.gov/geo
/query/acc.cgi?a
cc=GSE149225

DeepCRISPR Apache 2.0
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