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Abstract

Culture-independent approaches are commonly used to characterise the taxonomic 

composition of bacterial communities. Among these approaches, the amplicon-based 

metagenomics relies on specific genetic markers, such as the 16S rRNA gene, while 

the shotgun metagenomics annotates the whole bacterial DNA. Despite the 16S being 

the gold standard marker, studies highlighted its inefficiency in characterising and 

quantifying divergent bacterial groups such as the Candidate Phyla Radiation. On the 

other hand, shotgun metagenomics is highly informative and accurate but it is more 

expensive and requires computational resources and time. In this study, we propose 

RecA as a pan-bacterial genetic marker, particularly suitable for the Candidate Phyla 

Radiation. Indeed, we found that applying a Random Forest machine learning model on 

RecA amino acid sequences provides an accurate and fast taxonomic annotation 

across the whole bacterial tree of life. Ultimately, we produced Forestax, a tool for the 

characterisation and quantification of bacterial communities in metagenomics data, on 

the basis of RecA sequences. The analyses showed that RecA-based metagenomics 

has a taxonomic accuracy comparable to other multi-gene approaches, reinforcing 

RecA as a powerful marker for taxonomic annotation in bacteria. In perspective, RecA 

could be considered as a broad-spectrum marker for amplicon-based studies to 

overcome the limits of 16S rRNA.
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Introduction

The accurate taxonomic identification of bacteria in a biological sample represents a 

long-standing, major challenge in microbiology. With the advent of high-throughput 

sequencing techniques, microbial communities have been commonly described via 

culture-independent procedures. These procedures involve either sequencing a specific 

marker sequence (amplicon metagenomics) or all genomic content (shotgun 

metagenomics) in a biological sample1–3.

In amplicon metagenomics, the bacterial taxonomic composition is determined by 

analysing a marker sequence, with the small subunit of the ribosomal RNA (16S rRNA) 

gene being the most frequently used marker4–6. First proposed by Carl Woese in 1977, 

the 16S rRNA gene (16S) presents evolutionary and genetic features which make it an 

ideal marker: it is present in all bacteria, it is seldom horizontally transferred and it is 

composed by a combination of conserved and variable regions7. In amplicon 

metagenomics, the 16S in a given DNA sample is amplified, sequenced and 

taxonomically annotated using bioinformatic pipelines. This technique is robust, 

standardised and cost-effective, but limits are present. It has a limited discriminatory 

power, in particular in less explored parts of the tree of life, such as the Candidate Phyla 

Radiation (CPR) monophylum8,9. Indeed, CPR bacteria exhibit notably divergent 16S 

sequences, rendering universal 16S rRNA primers less effective and remaining largely 

unseen by amplicon-based studies10–12. Another limit is that the 16S rRNA gene can be 

often found in multiple copies in several bacterial species, severely affecting the relative 

abundance estimates13. During the last ten years, metagenomics based on the 

sequencing of the whole bacterial DNA sample (i.e. shotgun metagenomics) has 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2024. ; https://doi.org/10.1101/2024.06.21.600076doi: bioRxiv preprint 

https://paperpile.com/c/FpOwAD/BCYE+828P+wTe2
https://paperpile.com/c/FpOwAD/G3N3+VVXG+FWZb
https://paperpile.com/c/FpOwAD/cYIr
https://paperpile.com/c/FpOwAD/hv7c+ypcH
https://paperpile.com/c/FpOwAD/YndX+v2hO+NW9l
https://paperpile.com/c/FpOwAD/DVgv
https://doi.org/10.1101/2024.06.21.600076
http://creativecommons.org/licenses/by-nc-nd/4.0/


become increasingly popular to describe complex bacterial communities. Several 

methods have been developed to delineate the taxonomic composition within a 

microbial community starting from genomic data14. A method is to assemble raw reads 

(i.e. the metagenome) and taxonomically assign the obtained contigs against a 

reference sequence database. Since this approach is a computational burden, 

softwares which performs the taxonomic annotation directly from raw reads has been 

proposed15–19. The main advantage of shotgun metagenomics is that it is not affected by 

16S-specific biases like the presence of multiple copies and the primer specificity. On 

the other hand, it is less accessible than amplicon metagenomics, requiring high 

bioinformatic skills, time and computational power.

At the state of the art, a huge amount of shotgun metagenomics datasets are available 

in public databases, but high-throughput analysis remains computationally challenging. 

Using a single marker gene for metagenomics analysis could reduce the required 

computational power but, unfortunately, the 16S rRNA gene is not efficiently assembled 

in shotgun metagenomics data.

In this study we analysed thousands of bacterial genomes to identify a novel marker 

gene, alternative to 16S, for bacterial taxonomy assignment, with a particular focus on 

Candidate Phyla Radiation. The results highlight that RecA is a very promising target. 

Thus, we developed Forestax, a scalable, user-friendly highly efficient machine 

learning-based tool for bacterial taxonomy assignment in very large datasets, on the 

basis of the RecA sequence. We can not exclude that the same approach/tool could be 

used in the future in RecA-based amplicon metagenomics.
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Methods

Identification of a protein marker for the Candidate Phyla Radiation

Dataset reconstruction

The global Candidate Phyla Radiation (CPR) genomic dataset was composed by all 

“Patescibacteria'' genome assemblies present in both Genome Taxonomy Database 

(GTDB)20 and Bacterial And Viral Bioinformatics Resource Center (BV-BRC) database21. 

Assembly statistics were obtained with assembly-stats 

(https://github.com/sanger-pathogens/assembly-stats) and full 16S sequences were 

extracted using Barrnap (https://github.com/tseemann/barrnap). Gene prediction was 

performed using Prodigal 20,22, adjusting the genetic code from standard code 11 to code 

25 for Gracilibacteria and Absconditabacteria.

Identification of single-copy core protein clusters

To find a single-copy core genetic marker, the global CPR genomic dataset was refined: 

CPR genome assemblies without gaps, without unidentified bases and with a 

fully-assembled 16S sequence were retained in the refined CPR genomic dataset.

The orthology analysis was performed as follows. First, DIAMOND23 was used with a 

sensitive approach (--sensitive) for an all-against-all comparison of protein sequences in 

the refined CPR genomic dataset. Then, a graph of protein sequences was composed 

where two sequences were connected only if the comparison revealed a hit with 

coverage (length of the hit / length of the query sequence) between 0.8 and 1.1 and for 

sequence identity above 70. Then, R library igraph was used to decompose the graph in 
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separate protein clusters. Protein clusters present in at least 90% (409/454) of genomes 

were identified.   

Misassembled and/or partial protein sequences were removed by filtering for sequence 

length outliers. Then, retained sequences were annotated against the COG24 database 

to identify protein clusters which corresponded to single proteins. Protein clusters in 

which at least 98% of sequences were assigned the same COG number were retained 

and, if necessary, filtered from other low-frequency (<= 2%) COGs.

After the filtering steps, the presence of protein clusters in the strains was re-evaluated. 

Protein clusters which were present in at least 90% of genomes (409/454) and in 

multiple copies in less than 1% of genomes (5/454) were retained.

Evaluation of protein markers taxonomical discrimination

Sequences in the retained protein clusters were aligned using Muscle25 and subjected 

to Maximum Likelihood (ML) phylogenetic analysis using FastTree MP25,26, using the 

general time reversible (GTR) model. Phylogenetic trees were manually inspected and 

protein clusters which could discriminate the main CPR groups within the refined CPR 

genomic dataset were considered good candidates. 

The proteins were searched by DIAMOND against the global CPR genomic dataset 

(see the “Dataset reconstruction” section) and the additional protein sequences were 

added to the clusters. 

To include similar protein representatives from non-CPR bacteria, a dataset of non-CPR 

bacteria was downloaded from GTDB. Gene calling was performed by Prodigal and 
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their protein content was screened for the presence of the candidate protein clusters 

using DIAMOND (with the same thresholds used above). 

Finally, all sequences from the candidate protein clusters were realigned and 

re-subjected to the phylogenetic analysis performed above. The best candidate was 

chosen by manual inspection of the phylogenetic tree.

Random forest model for taxonomic assignment

Pan-bacterial RecA database construction 

All available bacterial genome assemblies were downloaded from GTDB on September 

14, 2023 and gene prediction was performed using Prodigal, adjusting the genetic code 

from standard code 11 to code 25 for Gracilibacteria and Absconditabacteria. Then, 

protein sequences from each genome were compared via DIAMOND (--evalue 0.00001, 

--max-target-seqs 5) to RecA protein sequences from the COG database (COG0468). 

Sequences with mean query coverage and subject coverage between 0.5 and 1.5 were 

retained to create a pan-bacterial RecA protein dataset. Sequences with query 

coverage and subject coverage between 0.95 and 1.05 were marked as complete.

Random Forest Taxa Assignment Models 

The RecA sequences were translated to the compressed Dayhoff(6) alphabet and 

kmers of length 7 were counted using the kmer R library.

Then, six Random Forest prediction models (one for each GTDB taxonomic level) were 

built for taxonomy assignment of the RecA sequences.
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For each model, complete RecA sequences were randomly split in a training dataset 

and a testing dataset with a 7:3 ratio, stratifying on the taxonomic level. Taxa with less 

than 10 representatives were discarded. Probability forests were built on the kmers 

using the “ranger” R library. Each forest was composed of 1000 trees, with 280 

independent variables (kmers) sampled in each tree node.

Random Forest Reliability Models 

To account for the uncertainty of the taxonomic assignment, six additional Random 

Forest models (one for each GTDB taxonomic level) were built to give a reliability score 

to each taxonomic assignment. 

To develop these models, the testing datasets of the taxonomy assignment models 

were sub-split in training and testing datasets (again with a 7:3 ratio, as above).

The probability forests were built on three independent variables: query coverage, 

subject coverage and probability of the taxonomic assignment. Each forest was 

composed of 1000 trees, with one independent variable sampled in each tree node.

Forestax overview and evaluation on mock community samples

Forestax was developed in the following way: the tool takes as inputs either paired-end 

raw reads, (meta)genomic assemblies or protein sequences. It extract putative RecA 

proteins and provide a taxonomic assignment using the Taxa Assignment Models and 

Reliability Models. 
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If the inputs are raw reads, the tool extracts reads belonging to the RecA gene using 

Bowtie against an index composed by the pan-bacterial RecA database (see 

“Pan-bacterial RecA database construction”) and assembles the reads using SPAdes27. 

The tool then proceeds to call the coding sequences using Prodigal and identifies 

putative RecA sequences by DIAMOND against a refined RecA COG database. RecA 

protein sequences are translated to the compressed Dayhoff(6) alphabet and length 7 

k-mers are counted. The Taxa Assignment Models and Reliability Models take the 

matrix as input and predict the taxonomy for each RecA sequence. Assignments with a 

Reliability score < 50/100 are marked as unclassified.

The tool can also operate starting from assembled nucleotide sequences and protein 

sequences.

Relative abundances can be inferred from raw reads using the mean read coverage 

obtained by Bowtie228 and Samtools29. 

To evaluate the tool performance on mock bacterial communities, the raw reads of 22 

mock community samples used in Valencia et al were downloaded from NCBI. The tool 

Forestax was used with the following parameters:

-itype reads -o output_folder -r1 reads_fw.fastq.gz -r2 reads_rv.fastq.gz -cpu 50 –q -tax 

phylum,class,order,family,genus,species.  

The performance of the tool was evaluated at genus and species level using the same 

metrics as Valencia et al30: Sensitivity, False Positive Relative Abundance (FPRA) and 

Aitchison Distance. 

- Sensitivity was calculated as: (number of correctly identified species / the number 

of expected species)*100.
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- FPRA was calculated as: (abundance of false positive species / total 

abundance)*100.

- Aitchison Distance was computed in R with function aDist of library 

“robCompositions”. To deal with zeroes, the multiplicative replacement method 

with delta 0.001 was used.

As done in Valencia et al, for replicate communities, mean and standard deviation 

values were computed. The values obtained for Forestax were merged to the output 

table obtained by Valencia et al. for the other pipelines and plotted in R.

Statistics and Reproducibility 

This study was conducted on bacterial genome assemblies available on NCBI and 

included in the GTDB/BV-BRC databases.

Random Forest models were developed using the “ranger” R library and dividing the 

data in a training dataset and a testing dataset, stratifying on taxonomic groups.  

Data analysis was performed using R. Plots, box plots, histograms and bar charts were 

produced using the ggplot and ggpubr R libraries.

The non-parametric Mann-Whitney U test was used to compare the distribution of 

continuous variables in independent samples.
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Results

Protein marker selection.

To identify a strong protein marker for the profiling of bacteria belonging to the 

Candidate Phyla Radiation (CPR), we created a global CPR dataset of 3971 genomes 

marked as “Patescibacteria” in the Genome Taxonomy Database (GTDB) 

(Supplementary Table S1).

We performed a custom orthology analysis on a refined CPR dataset of 454 high-quality 

genomes, combining a very strict sequence clustering analysis, COG annotation and 

phylogenetic analysis to extract single-copy core orthologous groups without close 

paralogs (see the Methods section). The protein clustering analysis identified nine 

suitable protein clusters and COG annotation revealed that these protein clusters 

corresponded to proteins involved in core cellular functions (Supplementary Table S2). 

We excluded protein clusters which showed clear signals of paralogy and we performed 

a phylogenetic analysis to identify a target which could well discriminate the main 

lineages in the CPR. Two protein clusters were considered suitable (Cluster 2 and 

Cluster 19, Figure S1) and they were searched in the global CPR dataset. Furthermore, 

we composed an additional dataset of 1251 bacterial genomes belonging to 145 

non-CPR orders and searched the protein clusters within these genomes, to test 

whether the potential protein markers could distinguish CPR bacteria from other groups. 

As shown in Figure 1, the phylogenetic tree of Cluster 2, annotated as RecA protein, 

was strongly coherent with the CPR evolutionary history and distinguished the main 

lineages within the group. Thus, the RecA protein was chosen as the best candidate.
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To test if this marker could be used for a broader taxonomic profiling in the bacterial 

domain, we created a pan-bacterial RecA protein dataset.

First, we extracted the RecA protein from a dataset of 309,845 bacterial genome 

assemblies found in the Genome Taxonomy Database (GTDB). We found a total of 

316,029 putative RecA proteins: only 8,386/309,845 genomes (2.7%) did not have a 

RecA sequence, whereas 287,835/309,845 genomes (92.9%) had one putative RecA 

sequence and 13,624/309,845 genomes (4.4%) had more than one sequence. On the 

basis of the hit coverage, we distinguished the protein sequences into 260,504 

complete sequences and 55,525 partial/misassembled sequences (see Methods).

Across bacterial diversity, the RecA protein was found in 58,228/61,614 species 

(94.5%). This frequency increases to 11,681/11,740 species (99.5%) when excluding 

species represented by less than three genomes. Among the 59 species lacking RecA, 

we highlight the presence of obligate endosymbionts with reduced genomes such as 

Buchnera aphidicola and Sulcia muelleri.

All information on the RecA pan-bacterial dataset can be found in Supplementary Table 

S3. 

Models training and validation.

To develop a taxonomy classification model from the pan-bacterial RecA protein 

dataset, we trained and tested six Random Forest models, one for each GTDB 

taxonomic level, on 260,504 complete RecA sequences. From now on, we will refer to 

these random forest models as the Taxa Assignment Models. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2024. ; https://doi.org/10.1101/2024.06.21.600076doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.21.600076
http://creativecommons.org/licenses/by-nc-nd/4.0/


The Taxa Assignment Models analyse the kmer composition of the RecA protein 

sequence and return a probability score matrix of its bacterial taxon (see Methods). The 

taxon with the highest score is assigned.

First, we evaluated how well the models performed on ~70,000 complete RecA 

sequences. For each taxonomic level, we annotate two metrics: the percentage of 

correctly assigned sequences and the percentage of well assigned taxa. We considered 

a taxon well assigned if at least 90% of sequences in the taxa were correctly assigned.

As visualised in Figure 2a, the models were able to assign the correct taxon down to the 

species level for 51,199/56,895 sequences (90%), with 1,138/1,583 species (72%) well 

assigned evenly across 132 bacterial orders. As shown in Figure 2b and Table 1, the 

models assigned the correct genus for 70,556/71,283 sequences (99%), with 

1,332/1,438 genera (93%) well assigned. At higher taxonomic levels, the models 

assigned the correct taxon to approximately 99.8% of the sequences, while the number 

of well assigned taxa was 632/673 (94%) at the family level, 326/367 at the order level 

(88.9%), 111/149 at the class level (74.5%) and 50/72 at the phylum level (69.5%). 

Within the Candidate Phyla Radiation, the assignment models could identify as 

Patescibacteria (the GTDB phylum corresponding to the CPR) 653/656 RecA 

sequences (99.5%). The main lineages in the CPR were distinguished correctly at the 

class for 648/655 sequences (98.9%), with 8/10 classes (80%) well predicted, and at 

the correct order for 518/526 sequences (98.5%), with 30/31 orders well assigned.

The percentage of RecA sequences assigned to the correct taxon was related to the 

number of sequences available for that taxon, indicating a higher model/marker 

accuracy for more represented bacteria (Figure S2).
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Training and testing reliability models for partial/misassembled RecA sequences

As stated above, the inclusion in the dataset of partial/misassembled RecA sequences 

(i.e.sequences annotated as RecA against the COG database with unusually high or 

low coverage) significantly increases the number of single-copy RecA sequences found 

in the pan-bacterial genome dataset (Figure S3a). Thus, the models were also tested on 

a dataset of misassembled/partial RecA sequences. As shown in Figure S3b, the 

inclusion of these sequences in the analysis significantly reduced the assignment 

accuracy at all taxonomic levels. At the genus level, only 25,280/39,512 (64%) of partial 

sequences were assigned to the correct genus and only 2,940/21,682 (13.56%) of the 

partial sequences were assigned correctly at the species level. Overall, model accuracy 

was below 90% at all taxonomic levels: all the results for complete and partial 

sequences are summarised in Table 1 and Supplementary Table S4.

We analysed the model results and determined that wrong assignments could be 

distinguished from correct assignments on the basis of the protein coverage values and 

on the basis of the probability given to the assignment by the Taxa Assignment Model 

(Mann-Whitney U Test, p < 0.01, Figure S4). Thus, we trained six additional random 

forest models (one for each taxonomic level) to assess the reliability of the Taxa 

Assignment Models on the basis of these parameters. From now on, we will refer to 

these models as the Reliability Models. The Reliability Models were trained and tested 

on datasets including complete sequences and partial/misassembled sequences, 

providing to each assignment a score between 0 and 100. Taxonomic assignments with 

a low probability of being correct (i.e. score < 50/100) were labelled as unclassified. As 
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shown in Figure 2c, at the species level the Reliability model was imprecise (i.e. a 

wrong assignment considered likely/a right assignment considered unlikely) for 

939/23,574 sequences (4%) and precise for 22,635/23,574 sequences (96%): 

6,662/23,574 sequences (28.3%) are recognised as unclassified and 15,973/23,574 

sequences (67%) are correctly assigned. At the genus level, the model is imprecise for 

372/32,867 sequences (1.1%) and it is precise for 32,495/32,867 sequences (98.9%): 

4,270/32,867 sequences (12.9%) are recognised as unclassified and 28,597/32,867 

sequences (86%) are correctly assigned. 

Within the Candidate Phyla Radiation, at the class level the model is imprecise for 

28/843 sequences (3,3%) and at is precise for 815/843 sequences (96.7%): 46/843 

sequences (5.5%) are unclassified and 769/843 are correctly assigned (91.2%). At the 

order level, the model is imprecise for 26/724 sequences (3.6%) and it is precise for 

698/724 sequences (96.4%): 61/724 sequences (8.4%) are unclassified and 637/724 

(88.0%) are correctly assigned. 

Overall, the inclusion of the Reliability Models in the analysis significantly reduced the 

rate of wrong assignments. The results of the Reliability models for all taxonomic levels 

are summarised in Table 1 and Supplementary Table S5.

Forestax tool evaluation on shotgun metagenomics data

Once we had validated the RecA protein sequence as a marker for bacterial taxonomy, 

we developed a tool called Forestax, which takes as inputs either paired-end raw reads, 

(meta)genomic assemblies or protein sequences, extract putative RecA proteins and 

provide a taxonomic assignment using the Taxa Assignment Models and Reliability 
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Models. If raw reads are available, the tool can also infer relative abundances using the 

mean read coverage. Each step performed by the tool is described more thoroughly in 

the Methods (section “Forestax overview and evaluation on mock community samples”).

To assess whether our approach could be used on shotgun metagenomics data, we 

used the tool to define bacterial relative abundances for 22 mock community samples. 

These samples were included in a recent paper evaluating the performance of 

taxonomy classification pipelines30, thus we compared our results to a set of commonly 

used pipelines using the same metrics (Sensitivity, False Positive Relative Abundance 

and Aitchison Distance). 

Aitchison distances (AD) were used to assess the tool's ability to predict relative 

abundances. At the genus level, AD values ranged from 8.26 (on the Bmock12 sample) 

to 21.72 (on the NIST-EG sample), while at the species level, values ranged from 10.24 

(NIST-MIX-A) to 24.34 (Tourlosse). 

False Positive Relative Abundances (FPRA) were used to quantify the wrong taxonomic 

assignments. At the genus level, FPRA values ranged from 0% (Bmok12, NIST-MIX-A, 

NIST-MIX-D, Tourlosse) to 28.33% (NIST-MIX-C); at the species level, values ranged 

from 0% (NIST-MIX-A, NIST-MIX-B, NIST-MIX-D, Amis-HiLo) to 42.84% (Bmock12).

Sensitivity values were used to quantify the right taxonomic assignments; at the genus 

level values ranged from 89.47% (Tourlousse) to 27.27% (NIST-MIX-A,NIST-MIX-B); at 

the species level, values ranged from 57.89% (Tourlousse) to 18.18% (NIST-MIX-C).

As shown in Figure 3, AD, FPRA and sensitivity values are coherent with other 

pipelines, especially when low-frequency taxa (with relative abundance < 2%) were not 

taken into account. All metrics are available in Supplementary Table S6.
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Discussion

The 16S rRNA gene (16S) is the most commonly used marker to define bacterial 

taxonomy. Despite being an effective and widely used marker, recent studies based on 

shotgun metagenomic sequencing have observed that several microbial groups evade 

16S surveys8,9. These groups could constitute up to 25% of microbial diversity 11 , with a 

main contributor being the Candidate Phyla Radiation (CPR)12. Moreover, the 16S is 

often found in multiple copies in the bacterial genome31–33 and can often be 

misassembled in whole genome sequencing (WGS) data.

For this reason, the first aim of this study was to identify a valid alternative genetic 

marker to identify and quantify the main groups of the Candidate Phyla Radiation. 

Performing orthology and phylogenetic analyses on a genomic dataset of CPR 

genomes, we identified the RecA protein as a valid target. RecA is present in almost all 

CPR strains, mostly found in single copy and phylogenetically coherent with the CPR 

evolutionary history: these features suggest that the protein is conserved within the 

CPR and the gene is not affected by horizontal gene transfer. These features are 

coherent with the fact that RecA is an essential enzyme involved in core cellular 

functions such as DNA repair and homologous recombination34.

Starting from this result and following up on other studies proposing RecA/recA as a 

suitable taxonomy marker for specific bacterial groups 35–39, we expanded our analysis 

to all bacterial diversity. We created a pan-bacterial database of ~300,000 RecA protein 

sequences and trained machine-learning models to predict the bacterial taxon on the 

basis of the sequence amino acid composition (“Taxa Assignment Models”). The models 
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produced accurate predictions, indicating that RecA is indeed a valid taxonomic marker 

across the bacterial tree of life, able to distinguish bacterial genera and species.

There are two major drawbacks in using a single target and machine-learning for 

taxonomic assignment. Indeed, assignments could be compromised if the target 

sequence is incomplete/misassembled or if it belongs to a category (taxon) that is not 

known by the classifier. To deal with these issues, we trained additional models to 

assign a reliability score for each assignment (“Reliability Models”). Combining Taxa 

Assignment Models and Reliability Models allowed us to tackle these limits by placing 

sequences with low assignment reliability in the “Unclassified” category. 

We implemented these models in a tool called Forestax, which, starting from reads, 

assemblies, overall protein content or already selected RecA protein sequences, 

automatically detects and/or estimates relative abundances of bacterial taxa.

Finally, the analysis of 22 mock communities with Forestax tool produced very few 

wrong assignments (i.e. low False Positive Relative Abundances) and estimated the 

bacterial relative abundances with metrics comparable to other commonly used 

pipelines based on whole genomic content or several target genes. The results were 

particularly robust for taxa with frequencies > 2% in the sample.

The 16S rRNA has been proposed as a marker gene before the genomic era. Despite 

the incredible success of its application, some limits have emerged with time. In this 

study we highlight that RecA is a powerful taxonomic marker in bacteria and we 

produced a fast tool suitable for screenings and large studies. Here, we show that the 

RecA protein sequence is a reliable marker for characterising bacteria up to the genus 

level, but uncertainties at the species level could be resolved using the nucleotide 
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sequences. Moreover, being a single-copy conserved marker, the use of RecA could be 

suitable both for large shotgun metagenomics studies and for amplicon-based 

metagenomics. In the future, RecA could be a valid alternative marker to the 16S, 

combining a high sensitivity with low laboratory/informatic difficulties.
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Captions

Figure 1. ML phylogenetic tree of protein Cluster 2, annotated as RecA protein. The 

coloured ring around the tree indicates the taxonomic class origin of the RecA sequence 

from the Candidate Phyla Radiation, according to the Genome Taxonomy Database. 

Branches are coloured according to the main RecA lineages highlighted by the tree 

topology.   

Figure 2. a) Phylogenetic tree (obtained from the Genome Taxonomy Database) with 

branches coloured on the basis of the frequency of well-assigned species (>90% of 

sequences assigned to the correct species) across 132 bacterial orders. Taxonomic 

assignments were performed on complete RecA sequences. Internal nodes are 

coloured by the mean value of the orders within the node. b) Bar plots showing 

frequencies of complete RecA sequences assigned to the correct taxon at each 

taxonomic level for all bacteria. c) Bar plots showing frequencies of complete RecA 

sequences assigned to the correct taxon at each taxonomic level for groups within the 

Candidate Phyla Radiation (CPR). d) Bar plots showing frequencies of complete and 

partial/misassembled RecA sequences assigned to the correct taxon at each taxonomic 

level for all bacteria. e) Bar plots showing frequencies of complete and 

partial/misassembled RecA sequences assigned to the correct taxon at each taxonomic 

level for groups within the Candidate Phyla Radiation (CPR). The coloured portion of 

the bar plot indicates correct taxonomic assignments, while the transparent portion of 

the bar plot indicates unclassified sequences (i.e. sequences which could not be 

confidently assigned to a taxon). Since lower taxonomic levels within the CPR are not 
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well-defined, assignments of RecA sequences belonging to CPR bacteria were 

analysed to the order level.

Figure 3. a) Boxplots showing the mean Aitchison distances between the true relative 

abundances in simulated microbial communities and the relative abundances estimated 

by different pipelines. The metrics for Forestax were computed at genus and species 

level, also removing low-abundance taxa (<2%) from the analysis. Statistically 

significant differences (Mann-Whitney U test, p < 0.05) are indicated by an asterisk (*).

b) Boxplots showing the mean False Positive Relative Abundance (sum of all false 

positive relative abundances) estimated for simulated microbial communities by different 

pipelines. The metrics for Forestax were computed at genus and species level, also 

removing low-abundance taxa (<2%) from the analysis. Statistically significant 

differences (Mann-Whitney U test, p < 0.05) are indicated by an asterisk (*).

c) Boxplots showing the mean Sensitivity (percentage of true positive species) for 

simulated microbial communities by different pipelines. The metrics for Forestax were 

computed at genus and species level, also removing low-abundance taxa (<2%) from 

the analysis. Statistically significant differences (Mann-Whitney U test, p < 0.05) are 

indicated by an asterisk (*).

Table 1. Table summarising the percentage of correct taxonomic annotations obtained 

by the machine learning models on RecA protein sequences. 
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Non-CPR Bacteria

Candidate division WWE3

Doudnabacteria

Microgenomatia (OP11)

Saccharibacteria (TM7)

ABY1

Paceibacteria + Andersenbacteria

Gracilibacteria (GN02) + Absconditabacteria (SR1)
+ Dojkabacteria

GTDB Patescibacteria class

c__Paceibacteria

c__Microgenomatia

c__ABY1

c__Saccharimonadia

c__Gracilibacteria

c__WWE3

c__Dojkabacteria

c__JAEDAM01

c__Doudnabacteria

c__UBA1384

c__Andersenbacteria

c__Kazan-3B-28

c__CPR2

c__CPR3

c__4484-211

c__CPR2_A

c__JABMPQ01

c__JACMRA01

c__CG2-30-54-11

c__JACPGU01

c__SOKK01

c__GCA-2792135

c__JAHJAL01

c__SICC01
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o__Treponematales

o__Borreliales

o__Brachyspirales

o__Leptospirales

o__Fusobacteriales

o__Campylobacterales

o__Synergistales

o__Petrotogales

o__SG8−24

o__UBA9983_A

o__2−02−FULL−40−12

o__UBA9983

o__UBA101185

o__Curtissbacterales

o__UBA1400

o__GWA2−44−7

o__CAIUCS01

o__Phormidesmiales

o__Cyanobacteriales

o__PCC−6307

o__Gastranaerophilales

o__Thermoactinomycetales

o__Bacillales_A

o__Bacillales_D

o__Bacillales_H

o__Bacillales

o__Bacillales_B

o__Lactobacillales

o__Staphylococcales

o__Acholeplasmatales

o__RFN20

o__Erysipelotrichales

o__Mycoplasmatales

o__Haloplasmatales_A

o__Exiguobacterales

o__Brevibacillales

o__Paenibacillales

o__Halanaerobiales

o__Thermoanaerobacterales

o__Caldicellulosiruptorales

o__Clostridiales

o__Eubacteriales

o__Tissierellales

o__Peptostreptococcales

o__Christensenellales

o__Oscillospirales

o__Acetivibrionales

o__Lachnospirales

o__Syntrophomonadales

o__Moorellales

o__Acidaminococcales

o__Veillonellales

o__Thermomicrobiales

o__Dehalococcoidales

o__UBA3495

o__Anaerolineales

o__Deinococcales

o__Acidimicrobiales

o__Nanopelagicales

o__Mycobacteriales

o__Propionibacteriales

o__Actinomycetales

o__Coriobacteriales

o__F11

o__Opitutales

o__Pedosphaerales

o__Verrucomicrobiales

o__Chlamydiales

o__Cloacimonadales

o__Marinisomatales

o__SCGC−AAA003−L08

o__UBA8477

o__Chlorobiales

o__Balneolales

o__Rhodothermales

o__CAILMK01

o__Chitinophagales

o__Sphingobacteriales

o__Bacteroidales

o__Flavobacteriales

o__UBA10030

o__Ignavibacteriales

o__Holophagales

o__Acidobacteriales

o__Bryobacterales

o__Nitrospinales

o__Nitrospirales

o__Geobacterales

o__Desulfobulbales

o__Desulfobacterales

o__Syntrophales

o__Myxococcales

o__Polyangiales

o__Leptospirillales

o__Burkholderiales

o__SAR86

o__Cardiobacteriales

o__Thiomicrospirales

o__PS1

o__Piscirickettsiales

o__Pseudomonadales

o__Enterobacterales

o__Francisellales

o__Coxiellales

o__Legionellales

o__GCF−002020875

o__Methylococcales

o__Ectothiorhodospirales

o__HK1

o__Nitrosococcales

o__Chromatiales

o__Steroidobacterales

o__Arenicellales

o__Xanthomonadales

o__Acidithiobacillales

o__Caulobacterales

o__Rhodobacterales

o__Rhizobiales

o__Sphingomonadales

o__SMXQ01

o__Rhodospirillales

o__Acetobacterales

o__Azospirillales

o__TMED2

o__Puniceispirillales

o__Paracaedibacterales

o__UBA9655

o__Rickettsiales

o__Pelagibacterales

o__Rhizobiales_A

o__SAR324

o__UBA796

Frequency of well−assigned species
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