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Abstract

Peptidoglycan (PG), a mesh-like structure which is the primary component of the bacterial cell wall, is
crucial to maintain cell integrity and shape. While most bacteria rely on penicillin binding proteins
(PBPs) for crosslinking, some species employ LD-transpeptidases (LDTs). Unlike PBPs, the
essentiality and biological functions of LDTs remain largely unclear. The Hyphomicrobiales order of
the Alphaproteobacteria, known for their polar growth, have PG which is unusually rich in LD-
crosslinks, suggesting that LDTs may play a more significant role in PG synthesis in these bacteria.
Here, we investigated LDTs in the plant pathogen Agrobacterium tumefaciens and found that LD-
transpeptidation, resulting from at least one of 14 putative LDTs present in this bacterium, is essential
for its survival. Notably, a mutant lacking a distinctive group of 7 LDTs which are broadly conserved
among the Hyphomicrobiales exhibited reduced LD-crosslinking and tethering of PG to outer
membrane B-barrel proteins. Consequently, this mutant suffered severe fitness loss and cell shape
rounding, underscoring the critical role played by these Hyphomicrobiales-specific LDTs in
maintaining cell wall integrity and promoting elongation. Tn-sequencing screens further revealed non-
redundant functions for A. tumefaciens LDTs. Specifically, Hyphomicrobiales-specific LDTs exhibited
synthetic genetic interactions with division and cell cycle proteins, and a single LDT from another
group. Additionally, our findings demonstrate that strains lacking all LDTs except one displayed
distinctive phenotypic profiles and genetic interactions. Collectively, our work emphasizes the critical
role of LD-crosslinking in A. tumefaciens cell wall integrity and growth and provides insights into the

functional specialization of these crosslinking activities.
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Introduction

Most bacteria are surrounded by an essential protective mesh-like structure called the peptidoglycan
(PG) or murein sacculus, comprised of glycan chains of repeating -1,4-linked N-acetylglucosamine
(NAG) and N-acetylmuramic acid (NAM) sugars, tethered by peptide crosslinks formed between
adjacent peptide side chains attached to NAM.

During growth, expansion of the sacculus requires the coordinated action of synthetic and degradative
enzymes that catalyze the insertion of new material into the pre-existing structure. The paradigm in
rod-shaped bacteria has been that two protein assemblies target PG biosynthesis at specific times
and locations: the elongasome complex inserts new PG along the lateral sidewall whereas the
divisome operates at mid-cell to enable cell division (1). The canonical machineries for elongation and
division utilize similar protein components, suggesting a shared evolutionary history (2). Specifically,
they involve SEDS (Shape, Elongation, Division, and Sporulation) proteins, such as RodA or FtsW,
which possess glycosyltransferase activity for extending PG glycan strands, and monofunctional or
class B penicillin-binding proteins (bPBP) with DD-transpeptidase activity, such as PBP2 or PBP3, to
crosslink peptides in adjacent glycan strands (3-5). Independently from these complexes, PG
biosynthesis is further supported by bifunctional class A PBPs (aPBPs), enzymes that have both
glycosyltransferase activity and DD-transpeptidase activity (6). In addition to the DD-transpeptidases,
many bacteria encode alternative crosslinking enzymes known as LD-transpeptidases or LDTs (7)
that do not share sequence homology with PBPs. They present a YkuD-like domain (PFAM 03734)
that includes a cysteine as the catalytic nucleophile instead of the conserved serine in PBPs (7).
While PBPs form DD or 4,3 crosslinks between their 4th and 3rd amino acids, D-alanine and meso-
diaminopimelic acid (mDAP) in Gram-negatives, LDTs catalyze the LD or 3,3 type between the L and
D chiral centres of two mDAP residues and can crosslink outer membrane proteins to the PG (Fig.
1A) (8-11). Interestingly, A. tumefaciens does not have any homologues to the new family of VanWw-
domain containing LDTs found in Clostridioides (12).

In most rod-shaped Gram-negative model bacteria like Escherichia coli, the SEDS proteins and
monofunctional DD-transpeptidase are essential component of PG biogenesis while LD-
transpeptidation is dispensable albeit important for a number of processes such as chemical
modification of PG with non-canonical D-amino acids (NCDAA) (8), tethering of outer membrane

proteins to the PG (9, 13), toxin secretion (14), lipopolysaccharide translocation (15) and antibiotic
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resistance (16). However, the absence of the core elongasome components in most polarly growing
rods belonging to Actinobacteria and Hyphomicrobiales (aka, Rhizobiales) (17, 18) highlights this
pervasive model for elongation is not universal. For instance, this is the case for the plant pathogen
Agrobacterium tumefaciens, which lacks RodA and PBP2 proteins and instead depends on PBP1A
for unipolar growth (19). Moreover, in comparison to E. coli, the PG of A. tumefaciens is both highly
crosslinked and enriched for LD crosslinks (17). LD crosslinks account for ~1-5 % of cross links in the
PG of E. coli, while their proportion in A. tumefaciens is roughly 30 % (17, 20). The genome of A.
tumefaciens encodes 14 putative LDTs of which seven are specific to polar-growing species of the
Hyphomicrobiales (21). Furthermore, a subset of A. tumefaciens LDTs localise to the growth pole
during elongation which suggests they could play a role in polar growth (21). However, little is known
about the role LDTs play in cell wall homeostasis and polar growth.

We investigated the potential role of LDTs as main contributors to polar PG biosynthesis in A.
tumefaciens in contrast with the ancillary PG remodelling functions often attributed to these enzymes
in other species (7). Here, we show that A. tumefaciens’ LD-transpeptidases are only partially
redundant and inactivation of all of them is lethal. To the best of our knowledge, this is the first
reported case of a Gram-negative bacterium for which LD-transpeptidation is essential for survival.
We further found that the Hyphomicrobiales-specific LDTs are genetically linked to canonical division
proteins and vital for maintaining cell wall integrity and cell shape. Overall, our observations indicate

that LDTs are important for polar growth and resistance to cell envelope stress in A. tumefaciens.
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95  Results

96  Structural diversity and conservation of A. tumefaciens LDTs

97  The 14 putative LDTs encoded in the A. tumefaciens genome feature a conserved YkuD-domain, but

98 their size, predicted structure and the presence of additional signal and attachment domains varies

99 considerably (Fig. 1B, S1). For instance, while two proteins (Atu2764 and Atu3631) lack a predicted
100 signal peptide, the others have some variations of one (i.e., Sec, TAT, and lipoprotein signal
101 peptides), indicating different mechanisms of membrane anchoring and translocation. Additionally, the
102 YkuD-domain can be situated either at the N-terminus or the C-terminus. To ascertain their degree of
103 conservation we compared LDT homologues amongst approx. 50 Pseudomonadota species with
104 putative LDTs numbering between 0 (e.g., Comamonas testosteroni) and 21 (Bradyrhizobium
105 diazoefficiens) (Fig. S2). Interestingly, among the 6 YkuD-containing proteins (LdtA-F) documented in
106 E. coli (15), only LdtD and the endopeptidase LdtF have counterparts in A. tumefaciens, namely
107  Atul615 and Atull64 for LdtD, and Atu3631 and Atu3332 for LdtF (Fig. S2AB). While some LDTs,
108  such as those mentioned, are widely conserved across Pseudomonadota, seven are predominantly
109 confined to the Hyphomicrobiales and some Rhodobacterales (21). Furthermore, a few lack homologs
110 among the species analyzed (Fig. S2C), implying a distinct evolutionary lineage for these proteins.
111
112 Functional redundancy of LDTs in A. tumefaciens is only partial
113 To investigate the essentiality and function of these proteins, we constructed deletion mutants for
114 each of the 14 LDT genes. None of these individual mutants had any significant defects in growth,
115 morphology, or LD crosslinking (Fig. S3) under standard growth conditions (LB medium + 0.5% NaCl
116 (LB5), 30 °C, aerobic growth), supporting the presumed redundancy of LDTs in A. tumefaciens. To
117  further assess their individual contribution to bacterial fithess we subjected these mutants to a panel
118 of diverse physicochemical challenges and antibiotics that challenge the integrity of the bacterial cell
119 envelope (Fig. 1C, Supplementary Table S5, Fig. S3F, Supplementary File 1). In general, the LDT
120 mutants grew as well as the wild type and were largely unaffected. The mutant in atu0048, encoding a
121 Hyphomicrobiales- and Rhodobacterales-specific LDT, was the most susceptible across the whole
122 panel of growth conditions. The majority of the LDT mutants were more susceptible to faropenem, a
123 carbapenem antibiotic that decreases the abundance of both LD and DD crosslinks (19). Only the

124 mutant in atu2336 (the closest homolog to Atu0048, 50% identity) was unperturbed in the presence of
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125 faropenem. However, this mutant was more susceptible to fosfomycin, an antibiotic that targets
126  precursor synthesis, whereas Aatu0048 was unaffected. Similarly, the LDT mutant strain Aatu3331
127  was insensitive to challenge with 4% EtOH but exhibited the most pronounced response among all 14
128 mutants to D-methionine, a non-canonical D-amino acid that is synthetically lethal in combination with
129 defects in cell wall biosynthesis genes (22). Collectively, the screen shows that despite a high level of
130 redundancy the LDTs show certain functional specialization.

131

132 Hyphomicrobiales-specific LDTs play major roles in shape determination and cell wall integrity
133 Given the substantial redundancy observed among the individual LDTs, we clustered them based on
134  their protein sequence similarity, which led to the identification of three distinct groups (Fig. 2A).
135  Group 1 consists of six LDTs, each exhibiting low identity with one another and differing levels of
136 conservation within the Pseudomonadota. Group 2 consists of a single evolutionarily distinct LDT,
137  At2133. Finally, group 3 includes the seven LDTs exclusive to Hyphomicrobiales and certain
138 Rhodobacterales. To evaluate the impact of the different groups of LDTs on A. tumefaciens fitness
139  and cell wall integrity, we constructed mutant strains in which all the LDTs in each group were
140  deleted. Deletion of group 1 LDT genes (Agr1) did not alter growth when the bacteria were grown in
141  standard (LB5) or hypoosmotic (LB without added NaCl, LBO) growth conditions (Fig. 2B).
142 Conversely, growth of the Agr3 strain was severely impaired, especially under hypoosmotic stress. To
143 further distinguish the contributions of the LDT groups to bacterial survival we subjected the group
144  mutants to the same panel of stresses used earlier (Fig. 2C, Supplementary File 1). Growth of Agr1
145 mutant was mostly unaffected, though there was a small decrease in its relative fithess compared to
146  wild type for many of the conditions tested. Across the panel of conditions, the fitness of the Agr3
147 mutant was severely impaired; in particular, this mutant is highly susceptible to alkaline pH, the
148 presence of D-arginine and many cell wall targeting antibiotics such as cefazolin, ampicillin and
149 carbenicillin. Collectively, these results indicate that the maintenance of cell shape and cell wall
150 homeostasis in A. tumefaciens depends more on group 3 LDTs than on group 1 LDTSs.

151 In terms of morphology, Agr3 cells appeared noticeably more spherical (wider and longer) compared
152 to the rod-shaped wild type and the Agr1 mutant in both media (Fig. 2D). In contrast to the more
153 dispersed distribution of group 1 LDTs, several group 3 counterparts exhibit polar (Atu0048, Atu0844,

154  Atu0845) or subpolar localization (Atu2336, Atu5196) (Fig. S4). Thus, we hypothesized that the
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155 morphological abnormalities observed in Agr3 mutants might be related to reduced polar synthesis.
156  To monitor PG synthesis, we tracked the incorporation of fluorescent D-amino acids (FDAA) (23, 24).
157  Surprisingly, we observed no changes at the new pole, but detected an increased signal at the old
158 pole (Fig. 2E). This suggests mislocalization and likely defective cell wall synthesis in the Agr3
159 mutant. Indeed, while the abundance of LD crosslinked dimers decreased in both Agr1 and Agr3
160 mutants, the reduction was notably more pronounced in the Agr3, with a decrease of 25% (Fig. 2F,
161 S5). Furthermore, the relative amount of PG (normalized by optical density) decreased 50% in the
162  Agr3 mutant compared to wild type (Fig. 2F).

163  In addition to their role in forming PG crosslinks, LDTs can also catalyze the crosslinking of outer
164  membrane B-barrel proteins (OMPs) to the PG (9). Therefore, considering that the observed PG
165 defects likely contribute to the reduced viability and altered cell shape observed in the Agr3 mutant,
166 we investigated whether these mutants also exhibited impaired attachment of these proteins. To this
167 end, we harvested sacculi and used a quantitative proteomics approach to determine the relative
168  abundance of three OMPs known to be crosslinked to PG in this manner: AopAl, AopA2 and AopB
169 (Atul020, Atul021 and Atull3l, respectively) (9). Although we were unable to detect AopB, the
170  sacculi collected from the Agr3 mutant had a lower abundance of both AopAl and AopA2 compared
171  to the wild type (Fig. 2G). We detected a small increase of both these OMPs in sacculi from the Agr1
172 mutant. Interestingly, although strains with single or combined deletions of aopA2 and aopB grew like
173 the wild type strain and exhibited identical PG profiles (Fig. S6), constructing a AaopAl mutant was
174 not possible, indicating this protein is likely essential.

175 In summary, our findings indicate that while both group 1 and 3 LDTs significantly contribute to
176 maintaining LD-crosslinking in A. tumefaciens, only the Hyphomicrobiales-specific LDTs are
177 indispensable for maintaining cell wall integrity and morphogenesis. These critical functions, which
178 involve not only maintaining LD-crosslinking but also tethering the peptidoglycan to the outer
179 membrane, cannot be sustained in the absence of group 3 LDTs from groups 1 and 2.

180

181 Hyphomicrobiales specific LDTs are genetically linked to cell division factors

182  To reveal the genetic interactions of group 1 and 3 LDTs, we used a transposon insertion sequencing
183 (Tn-seq) screen to assess each gene’s contribution to fitness in these mutant backgrounds. Few

184 insertions resulted in conditional lethality or improved fitness in the Agr1 mutant background (Fig. 3A,


https://doi.org/10.1101/2024.06.21.600065
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.21.600065; this version posted June 23, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

185 Supplementary File 2). Synthetic lethality included transposon insertions into the gene for inner
186 membrane protein cvpA, the PG recycling ABC transporter yej (25), and atu2682, encoding for the
187 Bax Inhibitor-1, a protein that has been associated with membrane homeostasis in the
188  Alphaproteobacteria Brucella suis (26). Insertions that were conditionally beneficial in the Agr1 strain
189 included: the AMP nucleosidase atu1006 and the putative acyl-CoA dehydrogenase atul1310 genes.
190 In the Agr3 mutant, we observed a similar pattern of synthetically beneficial mutations as in the Agr1
191 mutant. However, compared to Agr1, the Agr3 mutant displayed a broader range of synthetically
192 essential genes. These genes included again cvpA and the yej transporter, but also several others
193 related to cell wall biogenesis and division, such as the lytic transglycosylase mitG, the bifunctional
194  PBPs pbpilbl and pbplb2, the DD-carboxypeptidase dac and ftsK2 (Fig. 3BCD, Supplementary File
195  2). Consistently, Agr3 mutant was found to be sensitive to the divisome inhibitor Aztreonam (Fig. 3E).
196  Notably, insertions in the group 1 LDT atull64, E. coli’'s LdtD homolog, were also found to be
197 synthetically lethal in the Agr3 background, emphasizing the unique role of this LDT in preserving cell
198  wall integrity when Hyphomicrobiales LDTs are absent. Additionally, the second most common COG
199 term associated with under-represented insertions was for genes of unknown function (Fig. 3CD,
200 COG category S). This suggests the presence of a pool of additional uncharacterized genes that are
201 likely crucial for maintaining cell envelope biology.

202 Taken together, these results reinforce the idea that group 3 LDTs play a central role in peptidoglycan
203 biogenesis, growth, and shape maintenance in A. tumefaciens. Additionally, they underscore the
204 partial functional divergence of LDTs in this bacterium.

205

206 Essentiality of LD-transpeptidation in A. tumefaciens is mediated by functionally diverse LDTs
207  The synthetic lethality observed between Agr3 and Tn insertions intro the LDT gene atull64
208 underscored the heightened importance of group 3 LDTs and suggested that LD-transpeptidation
209 might be essential in A. tumefaciens. In this light, certain LDTs appear more important for survival
210 than others. To delve deeper into the functional redundancy of LDTs and ascertain the essential set of
211 LDTs for A. tumefaciens viability, we attempted to engineer a strain devoid of all LDTs (referred to as
212 Al14). To minimize the risk of isolating suppressor mutations, we began combining Agrl and Agr2, as
213 these strains grew similar to the wild type. Subsequently, we deleted group 3 LDT genes sequentially.

214 However, we could only generate a A13 mutant, which, based on the order of deletion, left only the
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215 group 3 LDT Atu3331 intact, leading us to designate this strain as A13 (Atu3331). This result indicates
216 that LD-transpeptidation is vital in A. tumefaciens. Surprisingly, the phenotypes of A13 (Atu3331) were
217  not exacerbated compared to those of the Agr3 mutant, despite lacking several additional LDTs
218 (compare Fig. 2 and Fig. 4ABC). Interestingly, MS-based quantitative proteomics showed that the
219  abundance of Atu3331 was increased 2-fold in the A13 (Atu3331) mutant compared to wild type (Fig.
220 4D, Supplementary File 3). These results indicate that under LD-crosslink deficit, A. tumefaciens can
221 boost the expression of remaining LDTs to maintain homeostasis of LD-crosslinking.

222  To ascertain whether other LDTs alone could maintain A. tumefaciens viability in the absence of their
223 homologs, we created two additional A13 mutants with different group 3 LDTs remaining: specifically,
224  A13 (Atu0048) and A13 (Atu0845). While these alternative A13 mutants were also viable, our initial
225 growth screening indicated important phenotypic differences, including variability in their ability to
226 grow in standard and osmotically challenging conditions (Fig. 4A). Consistent with the growth data,
227 the morphology and LD-crosslinking levels of the A13 (Atu0048) mutant were similar to those of the
228  wild type strain while A13 (Atu0045), and particularly A13 (Atu3331), were more affected (Fig. 4BC,
229  S7). To further investigate the function and degree of redundancy of the three terminal LDTs, we
230 compared the growth phenotypes of these A13 mutants to the wild type strain under the same panel
231 of sub-optimal growth conditions used previously (Fig. 4E, Supplementary File 1). All mutants were
232 more sensitive to acidic pH, cefazolin, ampicillin, carbenicillin, faropenem and chloramphenicol.
233 Individually, A13 (Atu0845) was more sensitive to vancomycin and pH 9 compared to the others, while
234  the growth of A13 (Atu0048) was less affected than the other mutants across many of the conditions,
235 including for example low salt, CuCl, and cefsulodin. These results strengthen our previous
236 conclusions about LDT activities of A. tumefaciens being partially specialized and further demonstrate
237  amajor role for Atu0048 in maintaining the cell wall integrity of this bacterium.

238  To evaluate the essentiality of the final LDT, we used Tn-seq in the A13 (Atu0048) and A13 (Atu3331)
239 mutants (Fig. 4FGH, S8, Supplementary File 2). As expected, our results showed that insertions in
240  the locus of the remaining LDT were highly under-represented in their respective A13 backgrounds,
241 thus confirming that deleting all LDTs is lethal in A. tumefaciens. Notably, the two mutants exhibited
242 important differences: the strain A13 (Atu3331) showed more synthetic interactions than A13
243 (Atu0048) and exhibited a synthetic lethality pattern that resembled that previously observed for the

244  Agr3 mutant (Fig. 4H). These hits included the PG recycling transporter yejBEFyepA, pbplbl and
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pbplb2, mitB and mitG, dac, ftsK2, aopB, cvpA and atu2682 for A13 (Atu3331) and yejFEyepA,
atu2682, and ompA for A13 (Atu0048) (Fig. 4FG). These results further highlight the dominant role of

Atu0048 among A. tumefaciens LDTs in cell wall homeostasis, fitness, and morphogenesis.
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249  Discussion

250 LDTs are present in both Gram-negative and -positive bacteria (11, 27-29); however, their primary
251 function is considered ancillary. In E. coli, LDTs are non-essential, yet they enhance resistance to
252 broad-spectrum B-lactams and reinforce the bacterial cell envelope in response to outer membrane
253  defects (15, 16). Certain species, such as the Actinomycetales and Hyphomicrobiales, exhibit PGs
254  with elevated LD-crosslinking. These species also encode LDTs that play crucial roles in growth and
255  cell shape maintenance (17, 28, 30, 31). Notably, in M. smegmatis, the deletion of all LDTs results in
256 a loss of rod shape in a subpopulation of cells and localized spherical blebbing due to a defect in cell
257  wall rigidity (30).

258 In contrast to Actinomycetales, Hyphomicrobiales grow only from a single pole (17, 23, 32), and
259 encode a high number of putative LDT proteins, with up to 20 predicted LDTs in some species. Also,
260 it is common in members of this group, such as A. tumefaciens, to lack canonical elongation factors
261 e.g.,, MreBCD, RodA, RodZ, and PBP2 (21). Previous studies propose that repurposed cell division
262 components and LDTs could collaborate to promote polar growth in this bacterium. Specifically,
263  canonical cell division proteins FtsZ and FtsA transiently accumulate at the growth pole, while the
264  Hyphomicrobiales-specific LDT Atu0845 exhibits polar localization that correlates with FtsZ activity
265 (21, 33, 34), thus supporting this hypothesis.

266  In our study, we found that A. tumefaciens requires at least one LDT for viability. Deleting the
267 Hyphomicrobiales-specific LDTs significantly reduces LD-crosslinking, leading to severe elongation
268 defects and cell rounding. While reduced LD-crosslinking could explain the phenotypes of the Agr3
269 mutant, it is important to note that some LDT homologues also have distinct functions. For instance,
270  among the 6 LDTs in E. coli, LdtD and LdtE specifically form LD-crosslinks (11), while LdtA, LdtB and
271 LdtC are responsible for tethering the outer membrane-anchored Braun’s lipoprotein (Lpp) to the PG
272 (10). Additionally, LdtF functions as an amidase, cleaving off Braun’s Lpp from PG (35). Recently, it
273  was shown that although A. tumefaciens and other related species do not possess Lpp, they do tether
274  their PG to various outer membrane B-barrel proteins (9, 36). In Coxiella burnetii and Brucella abortus
275 this crosslinking is catalysed by LDTs (9, 36). Our results in A. tumefaciens suggest that this activity is
276 catalysed mainly by Hyphomicrobiales-specific LDTs, as the Agr3 mutant exhibits a significant

277  reduction of PG-linked B-barrel proteins.
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278 Our genetic screening revealed that deletion of Hyphomicrobiales-specific LDTs is synthetically lethal
279  with the inactivation of divK and ftskK2, specific components of the coordination of division and
280 development (CDD) pathway. While some CDD genes (e.g., CtrA) are essential, DivK is not. Deletion
281 of divK disrupts FtsZ2 localization, resulting in branched and elongated rod-shaped cells in A.
282 tumefaciens (37). Interestingly, transcription from CtrA activated promoters such as ccrM is increased
283  in divK mutants (38). Since CtrA binding sites have not been identified in A. tumefaciens, we used the
284 consensus hinding sequences of CtrA from closely-related species to identify potential occurrences of
285 the motif upstream of genes across the genome in silico (39-41). Remarkably, the CtrA binding motif is
286  present upstream of group 1 LDT genes atul164, atu1293, atul615, atu3332 and atu3631, in group 2
287  LDT atu2133, and in group 3 atu0048, atu0669 and atu2336, suggesting that expression of some
288  LDTs might be particularly relevant when regulation of the cell cycle is perturbed (Fig. S9).

289 Another intriguing result emerging from the Tn-seq screen was the synthetic lethality between the
290 group 1 LDT Atul164 in the group 3 LDTs. This finding suggests that Atu1164 uniquely contributes to
291 viability when Hyphomicrobiales-specific LDTs are absent. One possible explanation is that certain
292 LDTs are induced to help bacteria cope with stress, such as a weakening of the cell wall due to
293 decreased crosslinking levels. In this line, we observed that A. tumefaciens increased the expression
294 of Atu3331 when all the other 13 LDTs were inactive (i.e., in the A13 (Atu3331) mutant). This
295 observation supports the idea that specific LDTs can be induced under stress conditions to
296 compensate for LD-crosslinking defects. Notably, the ChvG/I pathway in A. tumefaciens modulates
297 several LDTs and OM proteins. (42, 43). Similarly, expression of certain LDTs in other species is
298  controlled by the general or cell envelope stress responses (8, 15). Although varying expression
299 levels can enhance fithess to some extent, the phenotypic differences observed among three distinct
300 A13 LDT mutants—each with a different LDT remaining as the last one—highlight the non-redundant
301 functions of these proteins. It remains to be seen whether LDTs other than those belonging to the
302 Hyphomicrobiales-specific group, particularly those that perform LD-crosslinks but do not tether PG to
303 outer membrane (-barrel proteins, can support cell wall housekeeping functions in A. tumefaciens.
304 Future investigations will focus on dissecting the specific contributions of each LDT to cell envelope
305 integrity, conditional fithess, morphogenesis, and polar growth in A. tumefaciens. Advancing our
306 understanding of the functional specialization of LDTs may yield valuable insights into other polarly

307 growing Hyphomicrobiales species beyond A. tumefaciens, including human pathogens such as
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308 Brucella abortus. These insights could pave the way for novel antibacterial strategies that leverage
309 the unique relevance of these enzymes in the biology of these bacteria.

310
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311  Materials and methods

312 Media and bacterial growth conditions

313  Bacterial strains are listed in Supplementary Table S1.

314 Bacteria were routinely grown in Luria Bertani (LB) broth and agar plates (1.5 % (w/v) agar). When
315  required, antibiotics were added to the culture medium or plates at the following concentrations:
316 kanamycin 300 ug/mL for A. tumefaciens, and 50 ug/mL for E. coli. A. tumefaciens strains were grown
317  at 30 °C, unless otherwise specified. E. coli strains were grown at 37 °C.

318 For growth curves, 100 pl bacterial cultures were grown in triplicate in 96 well plates at 30 °C (unless
319 otherwise indicated), with orbital shaking. Optical density (absorbance at 600 nm, ODgy) was
320 measured every 10 minutes for up to 24 hours in a BioTek Eon Microplate spectrophotometer
321 (BioTek, Winooski, VT, USA). For phenotypic growth screens, growth curves in LB medium
322 supplemented with different compounds and conditions (Supplementary Table S5) were monitored.
323  The relative fitness (%) of the wild type in each condition is calculated as the final maximal OD
324  relative to that in standard lab condition (LB 0.5 % NaCl, pH7, 30 °C). Relative fitness of the mutants
325 is calculated as the final maximal OD relative of the mutant strain relative to the wild type growth in
326  each condition. Data is presented in Supplementary File 1.

327 Viability drop assays were done with normalized overnight cultures subjected to serial 10-fold dilution.
328 Five-microliter drops of the dilutions were spotted onto control and Aztreonam 8 pg/mL supplemented
329 LB agar plates and incubated at 30 °C for 24-48 h prior to image acquisition.

330

331  Construction of mutants

332 Plasmids and primers are listed in Supplementary Tables S2 and S3 respectively.

333 For deletion of LDTs the upstream and downstream regions of the gene (about 500-600 bp) were
334 amplified from purified genomic DNA with corresponding gene primers P1 and P2; P3 and P4
335 respectively. The upstream and downstream fragments were combined with corresponding P1 and P4
336 primers and inserted in pNPTS139 (44). The resulting plasmid pNPTS139-(Idt gene number) was
337 confirmed by Sanger sequencing. In-frame deletion was introduced by allele replacement via
338 homologous recombination (45). In short, exconjugants were obtained by conjugation and selected on
339  ATGN plates with kanamycin 300 pg/mL and then subjected to sucrose counter-selection (46).

340
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341  Construction of LDT-sfGFP fusions

342 To construct expression vectors containing LDT-sfGFP, the respective coding sequence was
343 amplified from purified genomic DNA. The amplicons were digested overnight and ligated into cut
344  pSRKKM-Pcym using NEB T4 DNA ligase at 4 °C overnight, to create an expression vector
345 compatible with the depletion strains (47). All expression vectors were verified by Sanger sequencing.
346  All vectors were introduced into A. tumefaciens strains utilizing standard electroporation protocols
347  (45).

348

349 Protein structure analyses

350 Domain architecture was analyzed using Interpro (48).

351  Signal peptide predictions were performed with SignalP 6.0 (49).

352  Structural predictions were obtained from AlphaFold DB, version 2022-11-01 (50, 51). UCSF
353 ChimeraX version 1.7.1 was used for visualization (52). Regions with pLDDT (predicted local distance
354 difference test) lower than 50 have been hidden in the shown models.

355

356  Analysis of LDT homologues

357  Unless otherwise specified, all software options were left default.

358 In order to identify LDT putative orthologues, we ran Orthofinder (version 2.4.0) (53) with non-default
359  options [-M msa -A muscle -T igtree]. The software defines “orthogroups” as genes which share and
360 evolutionary origin. IQTree (version 1.6.12 multicore) (54) was configured to run with non-default
361 options [-nt AUTO -safe -bb 1000 -bnnil. MUSCLE (version 3.8.31) was left default (55).
362 Supplementary Table S4 contains the taxa, assembly versions and other meta data for all protein
363 data files that were used in the analysis. Next, Interproscan (version 5.46-81) was run for all
364 proteomes in Supplementary Table S4 with default parameters using InterPro release 81 (August
365  2020) [--iprlookup] (56). Then, we retrieved hidden markov model (HMM) profiles for YkuD (PF13645)
366  and Ykud2 (PF03734) from the protein family database Pfam (release 33.1) (57). Both models were
367 combined into a single input file and HMMER (version 3.3.1) (58) was run with non-default
368  parameters [--noali]. All results from the Orthofinder, InterPro and HMMER analyses were then

369 combined using a custom python script (Jupyter notebook and Python script: Supplementary Files 4
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370 and 5), counting total number of LDTs per strain and matching orthologs of chosen strains to A.
371  tumefaciens LDTs using Python version 3.8.

372 LDTs were clustered based on their protein sequence similarity by Multiple Sequence Comparison by
373  Log-Expectation (MUSCLE) (55, 59). Identity matrix was built using the percentage of identity from
374  the multisequence alignment.

375

376  CtrA-binding motif analysis

377  CtrA-binding motifs TTAA-N7-TTAA and TTAACCAT (39-41) were used in FIMO (find individual motif
378 occurrences) (60) with the 250 bp upstream of the A. tumefaciens LDT gene promoters. A P-value
379 cutoff of 0.05 was used to establish the A. tumefaciens genes containing the motifs. Sequence logos
380  were generated in R v4.3 using the ggseglogo package (61).

381

382 PG analysis

383 PG isolation and analysis were done as previously described (62-64).

384 Bacterial cells were pelleted by centrifugation (4,000 rpm, 20 min) and boiled in SDS 5% (w/v) for 2 h.
385 Peptidoglycan was obtained by centrifuging for 13 min at 60,000 rpm at 20 °C (TLA100.3 Beckman
386 rotor; OptimaTM Max ultracentrifuge Beckman, Beckman Coulter, California, USA). Pellets were
387 washed 3-4 times by repeated cycles of centrifugation and resuspension in water. The washed pellet
388  was digested with muramidase (Cellosyl 100 ug/mL) for 16 h at 37 °C. Muramidase digestion was
389 heat inactivated and coagulated protein was removed by centrifugation for 15 min at 15,000 rpm. For
390 sample reduction, pH of the samples was first adjusted to pH 8.5-9.0 with borate buffer, and then a
391 freshly prepared NaBH, 2 M solution was added to a final concentration of 10 mg/mL. After 20 min at
392 room temperature, pH of the samples was adjusted to pH 3.5 with phosphoric acid and filtered (0.2
393  pm pore size filters).

394  Analysis of muropeptides was performed on an ACQUITY Ultra Performance Liquid Chromatography
395 (UPLC) BEH C18 column, 130A, 1.7 um, 2.1 mm x 150 mm (Waters Corporation, USA) and detected
396 at Abs. 204 nm with ACQUITY UPLC UV-visible detector. Muropeptides were separated at 45 °C
397  using a linear gradient from solvent A (formic acid 0.1% (v/v) in water) to solvent B (formic acid 0.1%

398  (v/v) in acetonitrile) in an 18 minutes run with a 0.25 mL/min flow.
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399 Identity of the muropeptides was confirmed by MS and MS/MS analysis, using a Xevo G2-XS Q-tof
400 system (Waters Corporation, USA). The QTOF-MS instrument was operated in positive ion mode.
401 Detection of muropeptides was performed by MSE to allow for the acquisition of precursor and product
402 ion data simultaneously, using the following parameters: capillary voltage at 3.0 kV, source
403 temperature 120 °C, desolvation temperature 350 °C, sample cone voltage 40 V, cone gas flow 100
404 L/h, desolvation gas flow 500 L/h and collision energy (CE): low CE: 6 eV and high CE ramp: 15-40
405 eV. Mass spectra were acquired at a speed of 0.25 s/scan over a range of m/z 100-2000. Data
406 acquisition and processing was performed using UNIFI 1.8.1 software (Waters Corp.).

407 Chromatograms shown are representative of three biological replicates. Relative abundance of
408 individual muropeptides was quantified from the relative area of the corresponding peak compared to
409 the total area of the chromatogram. Unpaired t-test was used to statistically compare muropeptides’
410  abundance.

411

412 Microscopy

413 Stationary phase bacteria were immobilized on 1% (w/v) agarose LB pads. Phase contrast
414 microscopy was performed using a Zeiss Axio Imager Z2 microscope (Zeiss, Oberkochen, Germany)
415 equipped with a Plan-Apochromat 63X phase contrast objective lens and an ORCA-Flash 4.0 LT
416 digital CMOS camera (Hamamatsu Photonics, Shizuoka, Japan), using the Zeiss Zen 2 Blue software
417  [v2.0.0.0]. Measurement of cells length and width was done in Fiji/lmageJ using MicrobeJ plug-in (65,
418  66).

419 For protein localization assays, cells containing plasmids with fluorescent protein fusions were grown
420 at 28 °C in ATGN to exponential phase before imaging on agarose pads. When necessary,
421 expression of plasmid encoded Ldt-sfGFP was induced by the presence of 0.2 mM cumate or 1 mM
422 IPTG for 2 hours prior to imaging. A small volume (~1 pl) of cells in exponential phase (ODgy = 0.4 to
423 0.6) was applied to a 1% ATGN agarose pad as described previously (67). Phase-contrast and
424 epifluorescence microscopy was performed on ~1000 cells across three biological replicates and
425  representative images shown in Fig. S4.

426  For incorporation of FDAA, cells grown overnight at 28 °C in LB medium were diluted to an ODgg of
427 0.2 and allowed to grow until reaching an ODgg, of 0.4 to 0.6. Cells were then labelled with 1 mM

428  fluorescent D-amino acid (FDAA) HCC-amino-D-alanine (HADA) (23) for 5 minutes. Next, cells were
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429 fixed with ethanol to prevent further growth and washed with phosphate buffered saline (PBS). Phase-
430 contrast and epifluorescence microscopy was performed on ~1000 cells (887 WT cells, 1152 Agr1,
431 853 Agr3 cells) across two biological replicates and representative images shown in Fig. 2.
432 Demographs were constructed using Microbed (65). For demographs, cells were arranged from top to
433 bottom according to their cell lengths, and each cell was oriented such that the new pole (defined as
434  the cell pole with the higher fluorescence intensity as determined by HADA incorporation) was
435 oriented to the right. The scale bar for the demographs represents intensity and ranges from 0 to 250
436  arbitrary units (a.u.).

437

438  Transposon insertion sequencing

439 For the identification of synthetically lethal genes in selected A. tumefaciens genetic backgrounds,
440  transposon insertion sequencing (Tn-seq) was performed as described previously (68). In brief, A.
441 tumefaciens 9x10* — 1x10° transposon mutants were generated for each biological replicate of
442  triplicates for wild type, Agrl, Agr3, A13 (Atu3331) and A13 (Atu0048) strains by conjugation of A.
443  tumefaciens with E. coli SM10 APIR carrying the transposon donor plasmid pSC189 (69). Mutant
444 libraries were selected on LB plates containing kanamycin 500 pg/mL and streptomycin 25 pg/mL and
445 pooled genomic DNA fragments were analysed using a MiSeq sequencer (lllumina, San Diego, CA,
446  USA).

447 Insertion sites were identified, and statistical representation of transposon insertions was determined
448 using the ConArtist pipeline (70). Synthetically detrimental and beneficial hits are listed in the
449  Supplementary File 2.

450

451 Proteomic analysis

452 For protein abundance measurements, cells were grown until stationary phase in triplicates, washed
453  with PBS buffer once at 4 °C, and then pelleted at 3000 rpm for 8 min at 4 °C. Pellets were then
454  resuspended in lysis buffer (2% SDS, 250 U/mL benzonase, and 1 mM MgCl, in PBS) and boiled for
455 10 min at 99 °C. Samples were digested using a modified sp3 protocol (71, 72), and peptides were
456  labelled with TMTpro (Thermo Fisher Scientific) as previously described (73). After pooling the

457  samples together, they were fractionated to six fractions with high pH fractionation and injected on an
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458 Orbitrap Q-Exactive Plus (Thermo Fisher Scientific) coupled to liquid chromatography. Details on the
459 run conditions and instrument parameters are described in (74, 75).

460 Mass spectrometry raw data was searched against the Agrobacterium fabrum FASTA file
461  (UP000000813 downloaded from UniProt) using the Mascot 2.4 (Matrix Science) search engine and
462  isobarquant (76). Protein abundance changes were determined using limma (77) by comparing
463 mutant samples with wild type controls.

464 For quantification of the relative abundance of the three OMPs known to be crosslinked to PG,
465  AopAl, AopA2 and AopB (Atul020, Atul021 and Atul31ll, respectively), quantitative proteomic
466 analyses were performed on Agrl and Agr3 mutant strains and compared to wild type samples.

467 Changes in the proteome of mutant strain A13 (Atu3331) are shown in Fig 4D and data is provided in
468  Supplementary File 3.

469

470  Statistical analysis

471  All statistical analyses were performed using GraphPad Prism (GraphPad Software, San Diego, CA,
472 US). Student’s unpaired t tests (unpaired, two-tailed) were used to assess statistical significance.
473  Assays were performed with three biological replicates unless otherwise indicated.

474
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Fig 1. Functional role and contribution of L-D transpeptidases to A. tumefaciens fitness (A)
Cartoon depicting the major functions of LDTs; formation of LD crosslinks between PG chains and the
tethering of outer membrane B-barrel proteins to the PG. (B) Predicted signal peptides and protein
domain architecture of the 14 putative LDTs in A. tumefaciens. (C) Heatmap depicting the relative

fithess of LDT deletion mutants (compared to the wild type) assessed during growth across a panel of

conditions.
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730 Fig. 2. Hyphomicrobiales-specific LDTs are necessary for growth, shape maintenance and PG
731  synthesis in A. tumefaciens. (A) Clustering and identity matrix for the 14 LDTs in A. tumefaciens
732  identifies three groups. (B) Growth curves of A. tumefaciens wild type (wt), Agr1 and Agr3 mutants in
733 LB5 (0.5% NacCl) and LBO (0% NaCl) medium. (C) Relative fithess of A. tumefaciens Agr1 and Agr3
734 mutants (compared to wild type) under different conditions. (D) Representative phase contrast images
735 of cultures grown in LB5 and LBO, and violin plots of the length and mean width of A. tumefaciens wt,

736  Agr1 and Agr3 strains grown in LB5. Scale bar: 2 ym. (E) Representative phase contrast and
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737  fluorescence images of cultures (in LB5) treated with the fluorescent D-amino acid (FDAA) HCC-
738 amino-D-alanine (HADA). Scale bar: 2 um. Demographs depicting the incorporation of HADA at a
739 population level are shown. (F) Relative abundance of LD-crosslinked dimers and relative PG amount
740 in A. tumefaciens wt, Agr1 and Agr3 strains grown in LB5. Error bars represent standard deviation. **,
741 p <0.01; *** p <0.001. (G) Abundance of outer membrane B-barrel proteins (relative to wild type)

742 known to be tethered to the PG in A. tumefaciens Agr1 and Agr3 strains grown in LB5.
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Fig. 3. Genetic interactions of group 1 and group 3 LDTs. (A) Volcano plot showing the ratio of

Transposon sequencing (Tn-seq) reads mapped to genes in the A. tumefaciens Agrl mutant strain

and (B) Agr3 mutant strain relative to wild type. Selected genes with synthetically detrimental

(negative log-fold change) and synthetically beneficial (positive log-fold change) Tn insertions are

highlighted. A table with the loci of interest is included. (C) Protein functions (COG functional

classification) of the significantly synthetically detrimental and synthetically beneficial hits from Tn-seq

experiments shown in A and B. (D) Venn diagrams representing the overlap of protein functions

between the significantly synthetically detrimental (left) and synthetically beneficial (right) hits in the A.

tumefaciens Agrl and Agr3 mutant strains. The size of the letter is proportional to the number of

genes within the specific COG functional classification. (E) Serial dilutions (10° to 10°) from overnight
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754 cultures of A. tumefaciens wt, Agr1 and Agr3 strains grown in LB5 spotted onto LB5 agar plates
755  supplemented with Aztreonam 8 ug/mL. Growth on non-supplemented plate (LB5) was used as

756 control.
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Fig. 4. Mutants with a single LD transpeptidase can maintain fitness. (A) Growth curves of A.

tumefaciens wild type (wt) and A13 mutant strains in LB5 (0.5% NacCl) and LBO (0% NaCl) medium.

(B) Representative phase contrast images of A. tumefaciens A13 Idts mutant strains grown in LB5.

Scale bar: 2 um. (C) Relative abundance of LD-crosslinked dimers and relative PG amount in A.

tumefaciens wt and A13 Idts mutant strains grown in LB5. Error bars represent standard deviation. *,

p <0.05; *** p <0.001. (D) Volcano plot depicting the ratio of protein abundance of the A. tumefaciens

A13 (Atu3331) mutant relative to wild type. Proteins shown in red and green have significantly lower

and higher abundance, respectively. (E) Relative fitness of A. tumefaciens A13 Idts mutant strains

(compared to wild type) under different conditions. (F) Volcano plot showing the ratio of Transposon
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sequencing (Tn-Seq) reads mapped to genes in the A. tumefaciens A13 (Atu3331) mutant strain and
(G) A13 (Atu0048) mutant strain relative to wild type. Selected synthetically detrimental and
synthetically beneficial hits are highlighted. A table with the loci of interest is included. (H) Venn
diagrams representing the overlap of synthetically detrimental (top) and synthetically beneficial

(bottom) hits in the A. tumefaciens Agrl, Agr3, A13 (Atu3331) and A13 (Atu0048) mutant strains.
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