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Abstract: We investigated the interaction of long-term episodic processes with effects of short-term
dynamics of recency. This work takes inspiration from a seminal experimental work involving an odor-
in-context association task conducted on rats (Panoz-Brown et al., 2016). In the experimental task, rats
were presented with odor pairs in two arenas serving as old or new contexts for specific odors-items.
Rats were rewarded for selecting the odor that was new to the current context. New odor items were
deliberately presented with higher recency relative to old items, so that episodic memory was put in
conflict with non-episodic recency effects. To study our hypothesis about the major role of synaptic
interplay of long- and short-term plasticity phenomena in explaining rats’ performance in such episodic
memory tasks, we built a computational spiking model consisting of two reciprocally connected
networks that stored contextual and odor information as consolidated and distributed memory patterns
(cell assemblies). We induced context-item coupling between the two networks using Bayesian-Hebbian
plasticity with eligibility traces to account for reward based learning. We first reproduced quantitatively
and explained mechanistically the findings of the experimental study, and further simulated alternative
tasks, e.g. where old odor items were instead encoded with higher recency, thus synergistically
confounding episodic memory with effects of recency. Our model predicted that higher recency of old
items enhances item-in-context memory by boosting the activations of old items resulting in further
enhancement of memory performance. We argue that the model offers a computational framework for
studying behavioral implications of the synaptic underpinning of different memory effects in
experimental episodic memory paradigms.

Keywords: episodic memory; item-in-context memory; Bayesian-Hebbian plasticity; recency; spiking
cortical memory model; attractor dynamics
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Significance Statement

An important aspect of computational modeling is its ability to bridge spatial scales. Our cortical
memory model represents a novel computational attempt to unravel neural and synaptic processes
with mesoscopic manifestations underpinning the complex effects of short-term memory dynamics on
episodic memory recall. We consider the quantitative match with Panoz-Brown et al.'s (2016)
experimental findings, obtained in a detailed spiking network model constrained by available biological
data, a significant step towards bridging the gap between behavioral correlates of episodic memory and
synaptic mechanisms. Our findings and additional predictions on a suite of different episodic memory
tasks invite further experimental examination.

Introduction

Episodic memory refers to an ability to recall past experiences. The uniqueness of these memories lies
in their specific environmental context, as they are memorized in particular spatial locations at a given
time (Yonelinas et al., 2019). Despite the multitude of past experiences, often sharing some contextual
similarity, they can be vividly distinguished due to the specificity of the overall context with its episodic,
typically both spatial and temporal, characteristics. Consequently, we can usually reliably order such
long-term episodic memories in time (Tulving 1972, 1985). It is less clear however how non-episodic
short-term memory phenomena, inevitably accompanying episodic recall scenarios for more recently
encoded memories, affect the episodic memory capability. After all, the contextual binding that
underlies episodic memory should be unique to specific events, experiences with their temporal
footprint. To date, the effect of recency, sometimes confounded with familiarity (Zhang et al., 2023),
has been only sporadically examined in experimental studies concerned with episodic recall. In
consequence, partly due to a reductionist approach to computational modeling of episodic memory
phenomena, there is no emerging hypothesis about the neural and synaptic mechanisms maintaining
the dynamic interaction between long- and short-term memory processes. Panoz-Brown et al.’s (2016)
seminal behavioral study on episodic memory in rats revealed some new vital insights largely owing to
their novel experimental design. Namely, they adapted an odor-span task involving a sequence of
recently experienced, yet overall familiar, odors to an episodic memory test with distinct environmental
contexts — arenas where the odors were presented. Rats were rewarded for selectively responding to
only those odors that were new to any given arena (new-in-context stimuli). To directly contrast recency
and context-dependent (episodic) memory effects, new-in-context odors were typically presented more
recently than odors previously encountered in the given context (old-in-context) prior to pairwise
(“new” vs. “old”) odor Memory Assessment. The task was arranged so that rats to be successful would
have to overcome the short-term memory recency bias of new items and rely on an episodic association
encoded earlier between a given old-in-context odor and the contextual arena. In other words, there
was a competition between the recency of short-term odor memory and long-term episodic item-in-
context (odor in an arena) memory binding. Rats turned out to overcome this recency bias and reliably
performed episodic recall to successfully complete the task and claim reward, even for retention
intervals reaching 45 minutes. Inspired by the Panoz-Brown et al.’’s (2016) study, we built a
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70 computational spiking neural network model to investigate neural mechanisms underlying the interplay
71 between episodic memory and short-term memory effects of recency at a mesoscopic network level. In
72 other words, our ambition was to provide novel mechanistic insights into these complex and scarcely
73 examined synergistic memory phenomena by, first, explaining the behavioral results reported by Panoz-
74 Brown et al. (2016) as the emergent network effect of local synaptic plasticity phenomena at varying
75 time scales and, second, generating testable predictions for behavioral outcomes in modified
76 experimental paradigms.

77 Our biologically detailed spiking neural network model consists of two modular attractor memory
78 networks that store contextual information (2 contexts) and odor items (16 odors), respectively, as
79 distributed long-term (consolidated and thus familiar) memory patterns. Familiarity reflects recognition
80 of the embedded items without any retrieval of its associated contextual information (Merkow et al.,
81 2015). We simulated the process of encoding episodic memories in line with the experimental task
82 design proposed by Panoz-Brown et al. (2016) as associative between-network connections binding
83 odor and context memory items shaped by a range of synaptic plasticity effects including Hebbian
84 plasticity, synaptic depression and augmentation as well as intrinsic plasticity (neural excitability) and
85 spike frequency adaptation. Importantly, we accounted for the reward effect since it was relevant in
86 the experiments not only as an incentive for rats to perform the task but predominantly as a rapid
87 learning cue in this complex continual learning paradigm. To that end, we employed eligibility traces in
88 the framework of our Bayesian-Hebbian synaptic learning rule and upregulated associative plasticity
89 upon successful odor-in-context recall. We simulated recall as a discriminative process between neural
90 activities attributed to competing (old vs. new) odor memory patterns presented as a pair of odor
91 network stimuli in rapid succession with the simultaneous contextual cue active in the background. We
92 demonstrated how the combination of different synaptic processes contributed to the observed item-
93 in-context memory. We also simulated an alternative version of the original task, where the order of
94 odor presentation was switched so that old items-in-context were more recently encoded than new
95 items, to quantify the memory recall enhancement due to the synergistic contribution of episodic and
96 short-term memory effects. Finally, we tested the resistance of episodic memory to interference by
97 simulating yet other challenging task variations, introducing additional contextual information (extra
98 context) or altering the task structure by violating the balanced odor item training scheme (repeating
99 some items more times than others).

100

101 Results

102 Considerable experimental effort has been invested in demonstrating episodic memory in rats using
103 item-in-context paradigms. In such paradigms, rats are trained to recognize items across multiple
104 contexts (Panoz-Brown et al., 2016; O’Brien & Sutherland, 2007; Lesburguéres et al., 2017; Bevins and
105 Besheer, 2006). A crucial challenge lies in effectively dissociating episodic encoding from short-term
106 effects, such as recency. Panoz-Brown et al. (2016) devised an item-in-context task that allows these
107 processes to interact and compete, and thus provide valuable evidence for their implications on episodic
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108 memory performance in rats. Here we aimed to explain behavioral implications of different memory
109 phenomena mechanistically in terms of their underlying neural and synaptic basis. We hypothesized
110 that the interplay of different synaptic plasticity mechanisms at varying time scales is reflected in the
111 functional connectivity of the learned network (synaptic weights) and manifests itself in the network
112 activity (firing rates, see Methods), which in turn should help us interpret the memory performance
113 reported in the behavioral experiment. More broadly, we wanted to address a general question of how
114 episodic recall is subject to short-term memory phenomena, ubiquitous in real-world scenarios, at the
115 level of network dynamics driven by synaptic plasticity mechanisms. To this end we employed a
116 computational model consisting of two inter-connected spiking neural networks storing odor-item and
117 context-arena memories, respectively. Accordingly, before simulations of the experimental trial blocks,
118 long-term (well established, consolidated) item and context memory patterns were first embedded by
119 means of prior Bayesian-Hebbian learning with multiple epochs and a long plasticity time constant. The
120 resulting within-network attractor projections (within-network connectivity, solid red lines, Fig. 1A)
121 remained then fixed throughout the simulated task. Contrarily, bidirectional associative connections
122 between item-context pairs (between-network connectivity, dashed red lines in Fig. 1A) were plastic
123 during the simulations of the experimental block, i.e. subject to on-line Bayesian-Hebbian learning with
124 long episodic plasticity time constant and to other known short-term plasticity mechanisms (Erickson et

125 al., 2010; Lisman, 2017).

126 In fact, we used the same dual network model that was initially built to propose and assess a Bayesian-
127 Hebbian hypothesis about synaptic and network mechanisms underlying semantization of episodic
128 memory, i.e. transformation of episodic memories to more abstract semantic representations
129 (Chrysanthidis et al., 2022). The model reflects a wide range of biological constraints and operates on
130 behavioral time scales under constrained network connectivity with plausible postsynaptic potentials,
131 spiking activities, and other biophysical parameters (see Methods).

132

133 Episodic memory contra recency effects: The control task design (Arrangement 1)

134 We first used the model to simulate Panoz-Brown et al.’s (2016) base experimental setup, where rats
135 were exposed to a rapid presentation of several odors across two arenas (A,B) serving as contexts for
136 odor items (A = B — A, Experiment 1, Fig. 1B; Symbol “—" indicates a context transition). Our
137 simulations followed the item-context association protocol adopted from the two-context-transition
138 task denoted as “Experiment 1” in Panoz-Brown et al.’s (2016) study. It consisted of two main
139 experimental blocks: Item-Context Encoding and Memory Assessment. In the first block, 8 odor items
140 were presented in context A , followed by all 16 odor items presented in context B (one context
141 transition, A = B). So half of the items presented in context B were previously encoded in context A. In
142 the experiment, odors were always presented in pairs, new- vs. old-in-context items, and rats
143 responded by selecting one of them as new, which marked an individual trial. In the model, we cued
144 corresponding memory item patterns in the Item network in short succession (inter-stimulus period of
145 250 ms, see Methods) to simulate the serial process of first recognising one odor then the other in each
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146 pair (as a result of sniffing). Simultaneously, we cued the respective memory pattern in the Context
147 network to account for contextual information, which resulted in cross-network binding of the cell
148 assemblies representing odor items and contexts via associative Hebbian plasticity.

149 In the second block, referred to as Memory Assessment, every remaining odor (8 out of 16), new to
150 context A, was presented in a pair with another randomly selected odor that was considered at the
151 presentation time as already encoded in that context, i.e. an old-in-context item. To reiterate, in this
152 original task design proposed by Panoz-Brown et al. (2016) old-in-context items featured lower recency
153 (Fig. 1B, Arrangement 1, old items were always presented earlier than new items prior to Memory
154 Assessment block), so that correct retrieval of items had to entirely depend on the contextual
155 association. Recency might increase the sense of familiarity of an item, thereby potentially confusing
156 rats. Therefore, in that arrangement, context-dependent episodic memory recall was put into conflict
157 with the effect of memory recency (Fig. 1B, Arrangement 1). Old- and new-in-context items were cued
158 only once during the Memory Assessment block. This is in contrast with the aforementioned Item-
159 Context Encoding block where different items could be repeated multiple times and thus old-in-context
160 items had always higher recency compared to new-in-context items (here: old/new relative the given
161 context in the Item-Context Encoding block) as the old items were encoded in the same context before
162 the new item was presented. Odor pairs were different between Item-Context Encoding block and
163 Memory Assessment, and also randomized across simulations. Accordingly, behavioral data in the
164 experimental study and simulated data of the model performance here were examined only during the
165 Memory Assessment block.

166 In Figure 1C we illustrate an exemplary spike raster of active pyramidal neurons in one of the network
167 hypercolumns (see Methods) of both the Item and the Context network obtained in a simulation of the
168 entire experimental session. The bottom of Figure 1C depicts the associative plasticity gain (item-
169 context binding) modulation. It accounts for a reward signal (Fig. 1C, “R”: reward) that in line with the
170 original experiment follows each successful odor choice (a continual learning scenario). The reward
171 implementation uses synaptic eligibility traces and temporarily boosts associative plasticity gain from
172 the baseline level, Knormal (Table 1), during item presentation to the elevated Krewara (Table 1). The odor
173 choice (old- vs new-in-context) itself was made based on a comparison between average firing rates
174 elicited by the excitatory units corresponding to the two stimulated (competing) item patterns in each
175 pair (see Methods).

176 By tuning stimulus-related parameters (i.e., strength of simulations and background noise excitation) of
177 our earlier model on item-context episodic memory binding (Chrysanthidis et al., 2022), we obtained
178 task performance comparable to the original experimental data (Fig. 1D,E; model data: mean=83.21,
179 SD=3.12, n=143, mean represents the total number of successes across all n-trials [each trial tests one
180 old-new pair], SD derived from the Bernoulli distributions for the probabilities of successes across all n-
181 trials, n corresponds to simulated old-new pairs during Memory Assessment, and experimental data:
182 mean=80, SD=6.5, mean reflects the averaged performance of rats in 9 sessions, combining the initial
183 and terminal sessions, and SD reflects the averaged standard error of the mean (SEM) across rats for
184 the combined initial and terminal sessions) for the two-context-transition task (Experiment 1, see
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185 Panoz-Brown et al.,, 2016). The high odor item recall performance of the model originates from
186 considerably stronger network response elicited on average by old- relative to new-in-context items
187 (Fig. 1F, differences between averages in firing rates induced by pairs of old- vs. new-in-context items,
188 Afoig-new, are positive, and hence old items elicited stronger response, see Pairwise differences section in
189 Methods). To gain further insights in ways inaccessible to in-vivo experiments, we examined the
190 synaptic strength of the within- and between-network connectivity, and neuronal excitability dynamics
191 (BCPNN bias, see Methods). The high odor recall performance cannot be explained by observations in
192 the within-network connectivity, as the differences in average within-network connectivity between
193 pairs of old vs. new items, Awoianew, drifts towards negative values (Fig. 1G, see Pairwise differences
194 section in Methods), primarily due to high recency of new items which boosts their connectivity.
195 Regarding the bias factor, old-in-context items were typically presented more times than new-in-
196 context items, as a consequence of task design, the cell assemblies corresponding to more repetitive
197 old-in-context items exhibited higher neuronal excitability. The distribution of the differences in average
198 bias between pairs of old vs. new items, Aboig-new, is positive, and favors old items in Fig. 1H, which partly
199 contributed to the odor recall performance. Prior to the Memory Assessment block, items that were
200 presented in context A established an excitatory associative binding (Fig. 11, top right, EPSPs in middle)
201 unlike other items, never cued in context A beforehand, were subjected to disynaptic inhibition (Fig. 1I,
202 top left, IPSPs in bottom, see Methods). During the Memory Assessment block, which was still part of
203 the continual learning process in context A, items that were initially new to that context became old-in-
204 context items once they were used as a stimulus in the Memory Assessment. Hence, plastic disynaptic
205 inhibition built during the earlier Item-Context Encoding block was transformed to excitatory binding
206 (continual learning process) after the odor item was cued in the Memory Assessment block (see
207 Methods). All in all, the synaptic weights of the associative item-context binding and the bias factor
208 contributed to the observed difference in firing rates between old vs new items in Figure 1F.

209 Next we challenged our model by simulating the extended task with three context transitions (A — B
210 — A — Memory Assessment block in context B), as proposed by Panoz-Brown et al. (2016). In their
211 second experiment (denoted as Experiment 2), 8 out of 16 odors were stimulated in context A (as before
212 in Experiment 1), followed by 8 odors in context B. After transitioning to context A again, the remaining
213 8 items not shown in context A yet were presented. The Memory Assessment part of Experiment 2 was
214 then conducted in context B, unlike in Experiment 1, with new-in-context items presented along with
215 the previously encoded old-in-context items, as before (Fig. S1, an example of a three-context-transition
216 task). The same model, i.e. without any further re-tuning, reproduced again quantitatively similar odor
217 recall performance as in Panoz-Brown et al.’s (2016) Experiment 2 (Fig. 1E; model data: mean=82.35,
218 SD=3.49, n=119, mean represents the total number of successes across all n-trials, SD derived from the
219 Bernoulli distributions for the probabilities of successes across all n-trials, n corresponds to simulated
220 old-new pairs, and experimental data: mean=84, SD=5.3, mean reflects the average performance of rats
221 in 9 sessions, combining the initial and terminal sessions, and SD reflects the average standard error of
222 the mean (SEM) across rats for the combined initial and terminal sessions).
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224 Figure 1: ltem-in-context memory network model relying on associative episodic binding. A, Graphic
225 illustration of the Item (green) and Context (blue) networks. Attractor connections (solid red) represent
226 within-network connectivity across hypercolumns (HCs) in the same network, while associative binding
227 refers to the plastic connections between Item and Context networks (dashed red). B, Task structure: odors
228 were presented across two contexts in the simulated episodic memory task. Schematic of the two-context-
229 transition task displaying pairs of new-old odors (depicted as rectangles with unique colors) in a given context
230 [cf. Fig. 1B in Panoz-Brown et al., (2016)]. Only the new items-in-context were rewarded (v symbol in the
231 schematic denotes reward) when selected (a 50 ms stimulation of the selected odor preceded the reward
232 phase, representing a final odor sniff before the reward). Once a new item was presented it was considered
233 as old for the subsequent trials in the given context (as a trial we defined a stimulation of a pair of new- and
234 old-in-context items). ltems were stimulated for the first time in context A, half of the total 16 items were
235 presented and rewarded in context A. After the context transition all the 16 items were presented in random
236 pairs in context B. Finally, Memory Assessment was made in context A, where we presented the remaining
237 half of the items that had not been presented in context A (new items), and paired them randomly with old
238 items (pairs of odors were different throughout the task). Context representations were constantly activated
239 while cueing pairs of new-old items for 250 ms each. In the Memory Assessment block, pairs of new-old
240 items followed the Arrangement 1 (new items were encoded more recently than old ones). Here, we show
241 only 4 out of 16 items stimulated during the task (blue and yellow items illustrate Arrangement 1). The
242 presence of the additional items, which are not shown is indicated as “...”. C, Spike raster of pyramidal
243 neurons in HC1 of the Item and Context networks simulating the episodic memory task described in (B). Item
244 and context memory patterns are represented by the activation of a unique set of minicolumns (MCs) in their
245 network. Each item or context was assigned with a unique color. While context representations were
246 persistently cued we activated new and old items-in-context during trials. Plasticity of the associative binding
247 between Item and Context networks was modulated during item presentation and rewarded accordingly
248 (bottom subplot, R symbol in the schematic denotes reward, and X symbol, in red, indicates a failed trial). D-
249 E, The model discriminates between new- and old-in-context items with performance quantitatively
250 matching Panoz-Brown et al.’s (2016) behavioral results in Experiment 1 (D) and 2 (E), respectively. Error bars
251 represent SDs derived from the Bernoulli distributions for the probabilities of success (hit) across all trials
252 (scaled to %), and for original experimental results - data is shown as mean +1 SEM across rats. F, Boxplot of
253 the differences in average firing rates between pairs of old vs. new items, Afoid-new. G, Distribution of the
254 differences in average within-network connectivity between pairs of old vs. new items, AWoid-new, (Within-
255 network connectivity includes short-term plasticity mechanisms combined with long-term Hebbian
256 component: AMPA and slower NMDA receptor mediated weights). H, Distribution of the differences in
257 average intrinsic excitability between pairs of old vs. new items, Abiasoig-new. I, Weight distribution of the
258 episodic associative binding prior to the Memory Assessment part of the task. The distributions display the
259 means of the learned synaptic weights (AMPA and slower NMDA receptor mediated weights, see Table 1)
260 between context A and new (blue), or old (red) items. The inset displays the excitatory and inhibitory
261 postsynaptic potentials (at a biological plausible range, Wang et al., 2006) of the corresponding weights
262 distributions, which also account for the multiplicative effect of synaptic augmentation.
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263 Synergy of episodic memory and recency: An alternative task design (Arrangement 2)

264 To prevent rats from utilizing any semantic rules concerned with items’ recency, Panoz-Brown et al.
265 (2016) randomly intermingled Arrangement 1 trial blocks with trials of an alternative structure called
266 Arrangement 2. In Arrangement 2, the order of the item presentation in the Item-Context Encoding
267 block prior to the Memory Assessment was switched so that old-in-context items featured higher
268 recency than the new-in-context items (Fig. 2A, Arrangement 1 vs Arrangement 2). Panoz-Brown et al.
269 (2016) did not report any experimental results for Arrangement as recency effects might be confounded
270 with context dependent episodic memory. We nevertheless wanted to provide a qualitative prediction
271 about the memory performance in the Arrangement 2 task given the synergy of short-term recency and
272 episodic memory.

273 The model predicted indeed higher odor recall performance in Arrangement 2 than in Arrangement 1
274 for both two- (Fig. 2B, Arrangement 1: mean=83.21, SD=3.12, n=143 vs Arrangement 2: mean=93.33,
275 SD=2.39, n=99; p<0.01, Fisher's exact test), and three-context transitions (Fig. 2C, Arrangement 1:
276 mean=82.35, SD=3.49, n=119 vs Arrangement 2: mean=92.13, SD=2.85, n=89; p<0.05, Fisher's exact
277 test). To elucidate the synaptic origins and network correlates of the performance enhancement, we
278 analyzed key model variables such as spiking activity of excitatory units representing the old- and new-
279 in-context items, synaptic strength of the within- and between-network connectivity, and neuronal
280 excitability dynamics (BCPNN bias, see Methods). We observed that the differences between the
281 averages in firing rates induced by old- vs. new-in-context items, Afoi4new, increased significantly in
282 Arrangement 2 relative Arrangement 1 (Fig. 2D; p<0.01, two-sample t-test, 90 simulated trials [pairs of
283 odors in the Memory Assessment] in Arrangement 1 and 62 in Arrangement 2, see Pairwise differences
284 section in Methods), implying the improved capability of the model to discriminate and accurately
285 identify new-in-context odor items. We partially attributed this to the temporary enhancement in the
286 strength of the within-network connectivity (Fig. 2F, p<0.05, Mann—Whitney U test, 47 simulated trials
287 [pairs] in Arrangement 1 and 41 trials in Arrangement 2). As mentioned earlier, the within-network
288 connectivity was preloaded (long-term memory representations of items and contexts were encoded
289 prior to the Item-Context Encoding block), so it was short-term synaptic augmentation that rapidly
290 upregulated the effective synaptic weights. This enhancement was short-lasting, limited by the
291 augmentation time constant, and thus it could only be effective when the stimulation of a given item in
292 context B was within a narrow time window relative to the temporal scales of the Memory Assessment
293 block in context A. Furthermore, we observed a notable increase in the difference between the neuronal
294 excitability (Abias) for old- vs. new-in-context items in Arrangement 2 (Fig. 2G, p<0.01, Mann—Whitney
295 U, 47 simulated trials [pairs] in Arrangement 1 and 41 trials in Arrangement 2). Old-in-context items
296 were stimulated more often than the new ones as a result of the altered task structure (Fig. 2A). In
297 Arrangement 2 the final stimulation of an old-in-context item had to take place after the most recent
298 activation of a new-in-context item even if there were cases that old-in-context items had been
299 activated before (i.e., strawberry [old, first stimulation] — banana [new, first stimulation] — strawberry
300 [old, second stimulation]). Therefore, by enforcing Arrangement 2 the intrinsic neural excitability
301 dynamics of old items was enhanced. It is worth mentioning that modification of the temporal order of
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items between Arrangement 1 and Arrangement 2 did not yield any meaningful change for the
between-network connectivity (Fig. 2E, p>0.05, Mann—Whitney U, 47 simulated trials [pairs] in
Arrangement 1 and 41 trials in Arrangement 2). The between-network connectivity was long lasting
(tp=30s, Table 1) and resistant to small temporal changes to support episodic retrieval. In general, we
highlight the importance of these long-lasting synaptic traces to perform item-context association tasks,
as we observed that fast Hebbian plasticity with short time synaptic constants (e.g., a time constant t,
of 5's was commonly employed in working memory settings by other models) alone could not solve the
task, as the temporal memory traces of previously encoded item-context pairs decayed rapidly.
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311 Figure 2: A, Structure of the episodic memory task: Arrangement 1 vs. Arrangement 2. In Arrangement 1 (cf.
312 Fig. 1B), the new-in-context item was encoded more recently than the old-in-context item prior to the
313 Memory Assessment phase. This order was reversed in Arrangement 2. B,C Model performance in new- vs.
314 old-in-context memory discrimination between Arrangements 1 and 2 for two- and three-context transitions,
315 respectively. Error bars represent SDs derived from the Bernoulli distributions for the probabilities of success
316 (hit) across all trials (scaled to %). D, Boxplot of the differences in average firing rates between pairs of old
317 vs. new items, Afqig-new, in Arrangement 2 (bottom) and in Arrangement 1 (top). The trial-average firing rates
318 represent the means of evoked spiking frequency during the activation of a given item during a test trial in
319 the Memory Assessment phase. E, Synaptic connectivity (AMPA and slower NMDA receptor mediated
320 weights) between Item and Context networks is similar in both arrangements and remains resistant to
321 changes (i.e., order of item activation) due to encoding with long-term Hebbian plasticity (t1,=30 s, Table 1).
322 F, Distribution of the differences in average within-network connectivity between pairs of old vs. new items,
323 AWoig-new, for the Arrangement 1 (blue) and Arrangement 2 (orange). G, Distribution of the differences in
324 average intrinsic excitability between pairs of old vs. new items, Abiasgig-new, for the Arrangement 1 (blue)
325 and Arrangement 2 (orange). Both within-network connectivity and bias effects of old items within the Item
326 network are stronger in Arrangement 2 due to recency, thus leading to higher performance as observed in
327 B.

328

329

330 Unbalanced training paradigm with two context transitions

331 To further exploit the predictive capabilities of the model, we examined the effect of the frequency of
332 stimulus presentation (multiplicity or repetition of stimuli) as a potential factor modulating the item
333 familiarity on the item-in-context recall. In particular, we set out to study if the stimulus multiplicity on
334 top of the recency would synergistically outcompete the episodic memory effect in the old- vs new-in-
335 context item choice, thereby leading to the higher recall error rate. To this end, we resorted to
336 Arrangement 1 (competition between recency and episodic memory phenomena). However, unlike in
337 the balanced Experiment 1, we now increased the number of new-in-context odor presentations
338 resulting in an unbalanced scenario where new items were presented more frequently (i.e., in Fig. 3A
339 in the Memory Assessment block, the new-in-context-A item (yellow) had been used twice in the
340 preceding context B, while the old-in-context-A item (blue) had appeared only once). Surprisingly, our
341 expectation that the enhanced familiarity due to increased multiplicity along with recency should
342 outcompete episodic memory and “mislead” the model in the old- vs new-in-context choice during the
343 Memory Assessment turned out to be false. In fact, we found evidence of comparably high performance
344 for the unbalanced training task, i.e. reference task: mean=83.21, SD=3.12, n=143 vs unbalanced

345 training task: mean=83.92, SD=2.83, n=168; p>0.05, Fisher’s exact test.

346 We next sought to mechanistically explain the comparable performance in the unbalanced task, which
347 was opposite to our expectation as we predicted lower performance. First, we analyzed the between-
348 network connectivity and found that disynaptic inhibition between context A and the new-in-context
349 items was strengthened (Fig. 3C, top, p=1.9 x 102, Mann-Whitney U-test, 6638 weights from Context
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350 A to all the new items for the reference task vs. 5382 weights from Context A to all the new items for
351 the unbalanced task). This effectively resulted in a more negative (inhibitory) association in the
352 unbalanced training task. There were more opportunities for new-in-context items to be repeated in
353 context B of the Item-Context Encoding block than in the reference task setup. This strengthened not
354 only their associative binding with context B but also their dissociation with context A (mediated by
355 plastic disynaptic inhibition, see Methods). At the same time, associative excitatory binding between
356 context A and those items that were later considered old-in-context in the Memory Assessment block
357 became stronger, predominantly due to their less frequent presentation as a stimulus in the competing
358 context B. Indeed, in the spirit of Bayesian nature of BCPNN learning, a more specific and exclusive
359 pairing of two memory patterns induces stronger associative binding. The observed changes of the
360 between-network connectivity (Fig. 3C, bottom, p=7.82 x 10'%, Mann-Whitney U-test, 6725 weights
361 from Context A to all the old items for the reference task vs. 5464 weights from Context A to all the old
362 items for the unbalanced task) can explain the reason why the hit rates were not reduced for the
363 unbalanced training task (Fig. 3B). However, differences in the within-network connectivity and bias still
364 hurt recall, because new items-in-context featured stronger attractor connectivity (Fig. 3D, enhanced
365 within-network connectivity of new items in the unbalanced task drove the Awgignew distribution
366 towards more negative values, reference vs. unbalanced task: p<0.01, Mann-Whitney U-test,
367 NReference=47, Nunbalanced=59, Ssee Pairwise differences section in Methods), and boosted neuronal
368 excitability (bias, Fig. 3E, references vs. unbalanced task: p<0.05, Mann-Whitney U-test, Ngeference=47,
369 Nunbalanced=59) compared to the original task design due to the additional stimulus repetitions. These
370 effects led to a stronger competition between non-episodic and episodic memory effects compared to
371 the reference task. Still, our simulations showed that episodic memory processes reflected in associative
372 between-network binding overpowered familiarity and recency effects manifested at the item
373 representation level.

374 Collectively, the alterations in context-item binding, reflected in the between-network connectivity
375 weights and caused by varying multiplicity of item presentations, resulted in maintaining a comparable
376 high item-in-context memory performance. Due to the important role of the aforementioned disynaptic
377 inhibition between context A and new-in-context items, we conducted a follow-up experimental
378 manipulation by severing the disynaptic weights connecting the networks for the unbalanced task.
379 Subsequent recall rates in the Memory Assessment block showed a dramatic decrease in performance
380 (Fig. S2, unbalanced task: mean=83.92, SD=2.83, n=168 vs “No disynaptic inhibition” task: mean=16.66,
381 SD=5.37, n=48; p<0.001, Fisher’s exact test). Similar manipulation (e.g., removal of between-network
382 disynaptic inhibitory weights) to the reference task leads to poor performance as well.
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Figure 3: Unbalanced training prediction task. A, Schematic of the unbalanced training task. As in the
reference two-context-transition task (Fig. 1B), half of the items were presented in context A, followed by
the presentation of all the items in context B. The Memory Assessment was conducted in context A by
presenting pairs of new-old items. However, for the unbalanced training task, we stimulated more times the
new-in-context-B items than in the corresponding reference task. B, Average recall performance (hit rate, %)
for the reference and unbalanced prediction task corresponding to Arrangement 1 configuration. SDs derived
from the Bernoulli distributions for the probabilities of success (hit) across all trials (scaled to %).C,
Distributions of associative weights (AMPA and slower NMDA receptor mediated weights, reported prior to
the Memory Assessment phase) from context A to new-in-context-A items (top, disynaptic inhibitory
weights), and from context A to old-in-context-A items (bottom) for the reference and unbalanced training
prediction task. D, Boxplot of the differences in average within-network connectivity between old vs. new
items, AWoig-new, for the reference task with two context transitions (top) and the unbalanced training
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396 scenario (bottom). E, Boxplot of the differences in average intrinsic excitability (neuronal bias) between pairs
397 of old vs. new items, Aboig-new, fOr the reference task with two context transitions and the unbalanced training
398 scenario.

399

400 Memory interference by an additional episodic context

401 From the behavioral perspective on episodic memory it is interesting to study the effect of memory
402 interference by introducing yet another context C (arena) just preceding the Memory Assessment block
403 (Fig. 4A). Increasing the complexity of the task (extended memory and temporal demands) by
404 introducing additional contexts is a method often used in item-in-context episodic memory tasks on
405 rats, and this process typically leads to lower performance scores (Weisz et al., 2012). Our intention was
406 to make behaviourally relevant predictions about the odor recall performance in a more challenging
407 setup compared to the reference task, and quantify potential behavioral changes in performance. In
408 line with previous related behavioral experiments, the recall performance in our extra context task
409 dropped significantly compared to the reference task (Fig. 4B, reference task: mean=83.21, SD=3.12,
410 n=143 vs extra context task: mean=70.7, SD=5.02, n=82; p<0.05, Fisher’s exact test).

411 The new simulated task puts short-term recency effects in conflict with episodic memory, just as in the
412 behavioral task with Arrangement 1, though in a more complex and longer item-in-context
413 configuration facilitated by an extra context C. In particular for this new context C, we cued randomly 8
414 of the available 16 memory items (see Fig. 4A) following an analogous procedure of presenting items as
415 in Experiment 1 (i.e., Fig. 1C, 0-15 s). Later, items that had been cued in context C, could be used in the
416 Memory Assessment block. Given the Arrangement 1 criteria (“new-in-context items should be more
417 recently encoded than the old items”), we observed that new-in-context-A items (from the perspective
418 of Memory Assessment) were the items that were mainly activated in the extra context C (latest
419 presentation before the Memory Assessment block) as opposed to the old-in-context-A items whose
420 most recent presentation took place in context B (not in context C, Fig. 4A). This was an emerging
421 outcome of the new task setup combined with Arrangement 1 requirements. Since old items were
422 rather infrequent in trials belonging to context C as opposed to new items that were activated extra
423 times in context C, there was a longer temporal distance between the trials of the most recent activation
424 of a new and its old item pair (higher relative recency between pairs of items, Fig. 4C, reference vs. extra
425 context task: p<0.001, Mann—-Whitney U test, Ngreference=47, Nextracontext=34). The longer emerging
426 temporal distance (higher relative recency) between old and new items, led to enhanced within-
427 network connectivity for new-in-context items (Fig. 4D, AWoig-new distribution drifts to more negative
428 values indicating within-network connectivity enhancement of new items, reference vs. extra context
429 task: p<0.01, Mann-Whitney U-test, Ngreference=47, Nextracontext=34, see Pairwise differences section in
430 Methods). Also, the extra activations of new-in-context items in context C yielded stronger learned
431 intrinsic excitability (higher multiplicity hypothesized to enhance familiarity in experimental memory
432 settings) compared to the reference task (Fig. 4E, Aboanew distribution drifts to negative values,
433 reference vs. extra context task: p<0.01, Mann-Whitney U-test, Ngeference=47, Nextracontext=34). The above
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434 changes in within-network connectivity and intrinsic excitability boosted spiking activity of new items
435 making it harder for the model to distinguish between new- and old-in-context items (selection was
436 made based on significant spiking activities differences between old and new items), and hence these
437 synaptic- and neuronal-level changes may explain the observed performance decline. Last but not least,
438 we observed a similar disynaptic inhibition trend for the extra context task as in the previous unbalanced
439 training task (Fig. 3C, top), that is, stronger disynaptic inhibition from context A to all the new-in-
440 context-A items compared to the reference task (Fig. 4F, top, reference vs. extra context task: p=5.32 x
441 108, Mann-Whitney U-test, Nreference=6638 weights, Nextracontet=5402 weights). However, the between-
442 network connectivity (associative episodic item-in-context binding) was weaker compared to the
443 reference task. Even though old items were activated infrequently in the extra context C, still they were
444 activated more times in other contexts compared to the reference task, and hence this additional
445 repetition in other contexts can weaken the associative binding as shown in Chrysanthidis et al. (2022)
446 study (Fig. 4F, bottom, reference vs. extra context task: p=4.7 x 10, Mann-Whitney U-test,
447 NReference=6725 weights from context A to all the old items, Nextracontext=5453 weights from context A to all
448 the old items). It is worth noting that the majority of old items (in context A) that were cued in context
449 C followed the stimulation logic of Arrangement 2 (Fig. 2A), i.e. old-in-context items were more recently
450 encoded than the new ones, and were excluded from the Arrangement 1 analysis.
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Figure 4: Extra context prediction task. A, Schematic of the extra context task. Introducing an extra context
(blue) in the ltem-Coding Encoding block prior to the Memory Assessment block, in which we simulated
randomly half of the 16 items in new-old item pairs. B, Average recall performance (hit rate, %) for the
reference and extra context prediction tasks corresponding to Arrangement 1 configuration. SDs derived
from the Bernoulli distributions for the probabilities of success (hit) across all trials (scaled to %). C, Boxplot
of the differences in average trial-index between pairs of old vs. new items, Atrialoig-new, for the reference
task with two context transitions (top) and the extra context task (bottom). As a trail-index we define the
trial index of the most recent activation of the items (i.e., a new item with trial-index=40 is more recently
encoded compared to an old item with trial-index=30, and their relative recency difference is Atrialoig-new=-
10). When an item was activated at the very first trial block, it was assigned with a trial-index=1, and once it
was activated again at a later trial, the trial-index was flexibly updated to correspond to the last activation
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463 position. The figure shows that the difference in trial-index between old and new items becomes more
464 negative for the extra context task, thus increasing their relative recency. D, Boxplot of the differences in
465 average within-network connectivity between pairs of old vs. new items, Awoid-new, for the reference task
466 with two context transitions (top) and the extra context task (bottom). E, Boxplot of the differences in
467 average intrinsic excitability (neuronal bias) between pairs of old vs. new items, Abiasoid-new, for the reference
468 task with two context transitions and the extra context scenario. F, Distributions of associative weights
469 (reported prior to the Memory Assessment block) between context A and new-in-context-A items (top,
470 disynapticinhibitory weights) , and context A and old-in-context-A items (bottom) for the reference and extra
471 context tasks.

472

473 Reverse training task

474 In the original reference task (Fig. 1B) new-in-context items were rewarded only once upon selection
475 since after the reward they were treated as old items, and no further reward was provided even after
476 another presentation in the same context. Therefore, the overall reward was distributed uniformly
477 across odors in both contexts in the Item-Context Encoding prior to the Memory Assessment block. By
478 reversing the reward scheme and utilizing a rule to provide rewards only to old-in-context items, we can
479 introduce a reward imbalance between items as an old item can be rewarded as many times it is
480 activated in the context (Fig. 5A).

481 The reverse training task substantially hurt model performance (Fig. 5B, reference task: mean=83.21,
482 SD=3.12, n=143 vs. reverse training task: mean=64.28, SD=6.4, n=56; p<0.05, Fisher’s exact test). The
483 poor memory performance is best explained by the between-network connectivity, which affects item-
484 in-context memory performance, as observed in earlier prediction tasks. The reward imbalance resulted
485 in varying levels of between-network connectivity strength among old-in-context items, promoting less
486 robust associative episodic memory binding for some old items (Fig. 5C, difference between the means
487 of associative weights between reference task and reverse task; cases with more and few odor rewards,
488 i.e. reference: reward balance, vs reverse training task: reward imbalance; more rewards, p<0.001,
489 Mann—Whitney U test, Ngeference=6725, Nmore-rewards=2154, N represents the weights from context A to all
490 the old items; reference: reward balance, vs reverse training task: reward imbalance; few rewards,
491 p<0.001, Mann—-Whitney U test, Npeference=6725, Nfew-rewaras=712; and reverse training task: reward
492 imbalance; more rewards, vs reverse training task: reward imbalance; few rewards, p<0.001, Mann—
493 Whitney U test, Nmore-rewards=2154, Nfew-Rewards=712 .

494 Weak between-network connectivity for old-in-context-A items that were rewarded fewer times
495 decoupled the Item-Context networks (Fig. 5C). On the other hand, when old items were rewarded
496 multiple times, their between-network connectivity was strengthened at the cost of other coupled
497 items (in context A), because learning was continuous throughout the task. Bayesian learning normalizes
498 and updates weights continuously over estimated presynaptic (Bayesian-prior) as well as postsynaptic
499 (Bayesian-posterior) spiking activity. We noticed that the reward imbalance in the reverse training task,
500 particularly for these cases where old items were rewarded less often led to incorrect odor choices.

18


https://doi.org/10.1101/2024.06.21.598805
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.21.598805; this version posted June 27, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A Item-Context Encoding Asl\g:;?xnt

Context A Context B Context A

/?

YA | | J | | > 1
looo | I |ooo . loool I l Iooo|i jooo 000 | g I joco

| | | | 1

new, high recency

. old, low recency

Reference task - balanced rewards

-5 0 5
Reverse task - few rewards

vy
@

XXX

-5 0 5

Context A— old items binding
I
s

Q

(&) *

c ) X

D ﬁ 2 Reverse task - more rewards

-

o © TN

u— > @© e J

(] O+

x x

-5 0 5

5 Weights, nS
502 Figure 5: Reverse training prediction task. A, Schematic of the reverse training task. which is similar to the
503 reference task with the only difference that old items-in-context are rewarded instead of new-in-context
504 items. B, Average recall performance for the suite of the prediction task. Data is shown for Arrangement 1.
505 SDs derived from the Bernoulli distributions for the probabilities of success (hit) across all trials (scaled to %).
506 C, Boxplots of the differences in the between-network connectivity (associative weights, AMPA and slower
507 NMDA receptor mediated weights, reported prior to the Memory Assessment block) between context A and
508 old-in-context-A items for the reference task (top), between context A and old-in-context-A items that were
509 rewarded few times during the reverse training task (middle), and between context A and old-in-context-A
510 items that were rewarded multiple times during the reverse training task (bottom). Old-in-context-A items
511 that were rewarded multiple times (i.e., more than two rewards) in the reverse training task featured
512 stronger synaptic connectivity with context A (bottom) than the corresponding ones rewarded fewer times

513 in the reverse training task (middle).
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514 Discussion

515 Testing episodic memory is important to elucidate the mechanisms that could interfere with, enhance
516 or impact this memory system. While there is a wealth of research on the behavioral manifestations of
517 this type of memory (Wilson et al., 2013; Lesburguéres et al., 2017; Kanatsou et al., 2016), especially in
518 rats using item-in-context paradigms, little is known about the underlying neural mechanisms that
519 govern their interactions, and how these learning effects with different temporal characteristics
520 interplay at a network level. In a pivotal experimental task on episodic memory by Panoz-Brown et al.
521 (2016), rats demonstrated high accuracy in solving an item-in-context task, indicating their reliance on
522 episodic memory. Motivated by this item-in-context episodic task, we constructed a computational
523 spiking neural network model to explore the neural mechanisms that govern the intricate interplay
524 between episodic and short-term recency memory effects at a mesoscopic network level. We attributed
525 Panoz-Brown et al.’s (2016) behavioral findings to emergent network dynamics resulting from local
526 synaptic plasticity phenomena operating across various timescales. Our objective was to offer
527 mechanistic insights into these computationally underexplored synergistic memory phenomena. It
528 should be noted that in our computational study we deliberately and consistently referred to the short-
529 term memory phenomena of interest as recency rather than familiarity, used originally by Panoz-Brown
530 et al. (2016). We consider recency as a more precise term than familiarity even if the latter has been
531 linked to the general notion of memory strength affected among others by stimulus recency (Yonelinas

532 et al., 2010).

533

534 Model predictions and experimental data

535 Our dual network model successfully matched empirical observations of item-in-context memory in rats
536 (Fig. 1D, E), as reported by Panoz-Brown et al. (2016). Notably, this was achieved while maintaining
537 biologically constrained network connectivity, postsynaptic potential amplitudes, and firing rates
538 compatible with mesoscale recordings from cortex and earlier models. We also generated predictions
539 regarding behavioral outcomes in three modified task paradigms, which could be examined in a follow-
540 up experimental study. In particular, we sought to explore a wider scope of recency effects in episodic
541 memory retrieval.

542 In our first simulated prediction task we switched the order of odor presentation such that old items-
543 in-context were more recently encoded than new items. We then quantified the increase in memory
544 recall performance due to the synergistic contribution of episodic and short-term memory effects of
545 recency. Our findings align with similar experiments in rats that focus on the potential impact of recency
546 on the Object-in-Context (OIC) task (Tam et al., 2015). In that experimental study rats first freely
547 explored an object-i in a visual context-X, and then explored another object-j in context-Y. During a
548 subsequent memory test phase the rats were supposed to choose between object-i or object-j either in
549 context-X or context-Y. The data revealed evidence of enhanced performance when the two items were
550 tested in context-Y (compared to context-X). A contributing factor could be that object-j was more
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551 recently encoded than object-i, resulting in a relatively stronger memory trace for object-j compared to
552 object-i at the time of the test. Their reasoning aligns with our mechanistic explanation as we observed
553 strengthened memory traces for recently encoded items (see Fig. 2F).

554 Our third prediction task with an additional third context could be related to Weisz et al.’s (2012)
555 experiments aimed at examining the impact of memory and time overload on the capacity to recognize
556 new-in-context items. In their experimental protocol rats first freely explored in an open field two non-
557 identical items in different visual contexts labeled as A, B, and C for 5 minutes each. The subsequent
558 test session took place in one of the arenas (A, B, or C) with two copies of the same object, where only
559 one matched the original spatial location. To receive a reward rats had to identify the new combination
560 of context-object-place with the specific arrangement of the objects. The rats were first tested using
561 two contexts (A, B) and later, in a separate trial, an additional context C was introduced (A, B, C)
562 expanding the complexity of the task. The data shows higher recognition of new-in-context objects for
563 the two context scenario (A, B) compared to the three context scenario (A, B, C) evidencing less recall
564 with increasing requirements. We saw a similar decrease in memory performance in our simulation task,
565 when we increased the number of contexts from two to three.

566

567 BCPNN vs. STDP discussion

568 Our model uses the Bayesian-Hebbian associative learning rule (BCPNN) while there are other
569 associative Hebbian-like learning rules more commonly used in computational studies, e.g. spike-timing
570 dependent plasticity (STDP) (Ren et al.,, 2010; Rossum et al., 2000). We cannot exclude that an
571 alternative learning rule like STDP may, in principle, mechanistically explain item-in-context memory.
572 However, the key strength of our BCPNN rule lies in the intrinsic regulation of spiking activity through
573 synaptic learning of long-lasting disynaptic inhibition (via double bouquet cells which may play an
574 important role in shaping neural activity and circuitry, DeFelipe et al., 2006; Krimer et al., 2005; Kelsom
575 and Lu, 2013; Chrysanthidis et al., 2019), and contrasts with known issues of network stability and
576 robustness with STDP. Indeed, in the absence of disynaptic inhibition our network fails to solve the task
577 as a result of emerging instabilities (Fig. 3B). STDP predominantly operates on the millisecond scale and
578 even if synapses were depotentiated they would not represent any meaningful learned long-term
579 disynaptic inhibitory component. We do not exclude that a similar model relying on STDP-tuned
580 connectivity that also includes disynaptic inhibition could perform well. However, in the classical STDP
581 models disynaptic inhibition is rarely integrated.

582

583 Related Models of episodic memory

584 Various computational models, notably dual-process models, have investigated the processes of
585 familiarity and recollection (Wixted, 2007), sometimes within the framework of a single memory trace
586 (Greve et al., 2009). Our research diverges from conceptualizing recency solely as a familiarity process
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587 to examine the impact of short-term dynamics on recall. On the whole, computational models of
588 episodic memory remain relatively scarce (Norman and O’Reilly, 2003, Brea et al., 2023), often
589 integrating abstract or non-spiking representations. Furthermore, the subset of models specifically
590 addressing the interplay between short-term dynamics and episodic memory is even more limited.
591 Notably, a recent model showed that selectively encoding episodic memories at the end of an event led
592 to better subsequent prediction performance (Lu et al.,, 2022). Furthermore, in more dated
593 investigations, temporal context models in the domain of episodic memory have demonstrated a broad
594 spectrum of recall phenomena including recency and contiguity effects observed across immediate,
595 delayed, and continuous distractor-free recall scenarios (Sederberg et al., 2008).

596

597 Conclusion

598 One key strength of computational modeling is that it can bridge spatial scales, from behavior and
599 whole-brain dynamics to single-cell activity and thus explain more data. Our detailed spiking model
600 bridges these perspectives and represents a novel computational attempt to connect neural and
601 synaptic processes with mesoscopic manifestations underpinning complex effects of short-term
602 memory dynamics on episodic memory recall, and item-in-context memory, in particular. We have
603 shown a quantitative match with Panoz-Brown et al.’s (2016) experimental findings obtained in a
604 detailed spiking network model, constrained by available biological data (constrained network
605 connectivity with neurobiologically plausible postsynaptic potentials, firing rates, and other
606 parameters). We consider this to be a significant step towards bridging the gap between behavioral
607 correlates of complex episodic memory phenomena and the underlying synaptic mechanisms.
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608 Methods

609 Neuron and synapse model
610 We use adaptive exponential integrate-and-fire point model neurons, which feature spike frequency
611 adaptation, enriching neural dynamics and spike patterns, especially for the pyramidal cells (Brette and
612 Gerstner, 2005). This neuron model is an effective model of cortical neuronal activity, reproducing a
613 wide variety of electrophysiological properties, and offers a good phenomenological description of
614 typical neural firing behavior, but it is limited in predicting the precise time course of the subthreshold
615 membrane voltage during and after a spike or the underlying biophysical causes of electrical activity
616 (Gerstner and Naud, 2009). We slightly modified it for compatibility with the BCPNN synapse model
617 (Tully et al., 2014) by integrating an intrinsic excitability current.
618 Development of the membrane potential V,,and the adaptation current /yis described by the following
619 equations:
620
v . Ym-Vy

621 Cm dfm =—gUVm—EL)+gLATe & _Iw"‘fexl"‘lsyn (1)
622

dly, —1y
624 = Y L bS(r 1, (2)

dl’ -I':[.n. 4 ( "P)
625
626 Equation 1 describes the dynamics of the membrane potential V,, including an exponential voltage
627 dependent activation term. A leak current is driven by the leak reversal potential E; through the
628 conductance g; over the neural surface with a capacity C,. Additionally, V:is the spiking threshold, and
629 At shapes the spike slope factor. After spike generation, membrane potential is reset to V,. Spike
630 emission upregulates the adaptation current by b, which recovers with time constant t,, (Table 1). To
631 simplify the model, we have removed subthreshold adaptation, which is part of some AdEx models.
632 Besides a specific external input current lex, model neurons receive synaptic currents /s, from
633 conductance based glutamatergic and GABA-ergic synapses. Glutamatergic synapses feature both
634 AMPA/NMDA receptor gated channels with fast and slow conductance decay dynamics, respectively.
635 Current contributions for synapses are described as follows:
636

syng MPA NM D, GAB
637 Lign ;=) Y 85 (O m—E5") =M (0)+ MO (0)+ 174 (r) (3)

svn 1

638
639 The glutamatergic synapses are also subject to synaptic depression and augmentation with a decay
640 factor 1 and ta, respectively (Table 1), following the Tsodyks-Markram formalism (Tsodyks and
641 Markram, 1997). We have chosen those time-constants from the plausible range of computational fits
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made on the basis of electrophysiological recordings of cortical pyramidal cells (Wang et al., 2006). The
utilization factor u represents the fraction of available resources used up by each transmitted spike (a
proxy of synaptic release probability), whereas x tracks the fraction of resources that remain available
due to transmitter depletion (synaptic depression):

du. . TP .
) i i
— = —— 4+ Ul —u;) Yy 8(t—1' —1t;;
7 o ( UJ; ( s u} (4)
de..  1—x,, .
ij_ !j_Li,r__ 5[!—f{ — i 5
dr T u; sp IJ} ( )
Table 1: Neuron model and synaptic parameters
Neuron model parameter Symbol Value BCPNN parameter Symbol Value
i AMPA
Adaptation current b 86 pA + BCPNN AMPA gain wgam 0.33nS
' NMDA
Adaptation decay time constant T, 280ms  + BCPNN NMDA gain wgam 0.03 nS
Membrane capacitance C‘m 280 pF ' BCPNN bias current gain Bgai‘n 40 pA
Leak reversal potential E;_, -70.6 mV | BCPNN lowest spiking rate fmi'n 0.2 Hz
Leak conductance 9, 14 nS 1 BCPNN highest spiking rate fmax 25Hz
Upstroke slope factor ﬂ‘r 3mV . BCPNN lowest probability I3 0.0026
Spike threshold Vr -55mV P trace time constant T, 30s
Spike reset potential V‘r -60 mV E E trace time constant L. 500 ms
! AMPA
Refractory period T-rgf 5ms i AMPA Z trace time constant T, 5 ms
' NMDA
+ NMDA Z trace time constant Tz 100 ms
' Regular plasticity K ormal 0.3
+ Modulated plasticity K eward 1
Receptor parameter Symbol Value Short-term plasticity parameter Symbol Value
AMPA synaptic time constant M 5ms  Utilization factor U 0.2
NMDA : i )
NMDA synaptic time constant T 100 ms i Augmentation decay time constant T 5s
GABA synaptic time constant TGASA 5ms E Depression decay time constant T, 280 ms
AMPA reversal potential EAMPA 0mV i
NMDA reversal potential ENMDA omVv i
GABA reversal potential EGASA 75mv
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652 Spike-based BCPNN plasticity

653 We implement synaptic plasticity of glutamatergic synapses using the BCPNN learning rule (Lansner and
654 Ekeberg, 1989; Wahlgren and Lansner, 2001; Tully et al., 2014). BCPNN is derived from Bayes rule,
655 assuming a postsynaptic neuron employs some form of probabilistic inference to decide whether to
656 emit a spike or not. Despite that it accounts for the basic Bayesian inference, it is considered more
657 complex than the standard STDP learning rule (Caporale and Dan, 2008), and as such it reproduces the
658 main features of STDP plasticity. In a previous study, we demonstrated that with BCPNN synaptic
659 plasticity, but not with standard Hebbian STDP, the model can reproduce traces of semantization as a
660 result of learning (Chrysanthidis et al., 2022). Therefore, in our effort to explore the interplay of episodic
661 memory with recency effects we utilize the BCPNN learning rule.
662 The BCPNN synapse continuously updates three synaptic biophysically plausible local memory traces,
663 P;, Piand Pj, implemented as exponentially moving averages (EMAs) of pre-, post- and co-activation,
664 from which the Bayesian bias and weights are calculated. EMAs prioritize recent patterns, so that newly
665 learned patterns gradually replace old memories. Specifically, learning implements exponential filters,
666 Z, E, and P, of spiking activity with a hierarchy of time constants, 7z, T, and t,, respectively. Due to their
667 temporal integrative nature they are referred to as synaptic (local memory) traces.
668 To begin with, BCPNN receives a binary sequence of pre- and postsynaptic spiking events (S, S;) to
669 calculate the traces Z;and Z;:
670 iz s;

Ty— = ————Z;+¢&
671 L dt f maxt spike (6)
672 T % = L —Zi+e

5 dt fmaxfspike !

673
674 fmax denotes the maximal neuronal spike rate, € is the lowest attainable probability estimate, tspike
675 denotes the spike duration while tz-77; are the presynaptic and postsynaptic time constants,
676 respectively (tz=t"MPA=5 ms for AMPA, and 7;=1"MPA=100 ms for NMDA components, Table 1).
677 E and P traces are then estimated from the Z traces as follows:
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678
679 dE; j dE;;
680 e =Zi—Ei, =" =24—F, w—"=72Z—Ej (7)
681 ‘

dP; .
682 T = K(Ei—Pi)
683 a, (8)
684 Ty = K(Ej— Pj)
685 T . ..

\ o= = K(EiE; — Py)

686
687 The parameter k adjusts the learning rate, reflecting the action of endogenous modulators of learning
688 efficacy (i.e., activation of a D1R-like receptor). Setting k=0 freezes the network’s weights and biases,
689 though in our simulations the learning rate remains constant (k;;maq:=0.3) during encoding. However,
690 to account for the experimental paradigm we trigger a transient increase of plasticity to simulate the
691 impact of a reward signal on the memory system by implementing eligibility traces (see Eq. 7) and
692 upregulating the associative plasticity gain (Krewars=1) upon successful execution of the task by the
693 model.
694 Finally, P;, P;and Pjare used to calculate intrinsic excitability 8;and synaptic weights wj with a scaling
695 factor B4qin and W;Z& respectively (Table 1):
o wij =w log Py

| gain > D. .
697 P;P; (9)
s Bi = Ban loz(P)
699 BCPNN is a Hebbian-like learning rule, neurons that are coactive are coupled with excitatory
700 connectivity. However, neurons that do not fire together in a certain time window feature low
701 coactivation traces (Pj), and based on Equation 9, the final weight update will produce negative
702 conductance. The negative binding is interpreted as disynaptic inhibition mediated by dendritic

703 targeting regular spiking non-pyramidal (RSNP) cells such as double bouquet cells (DBCs) (Chrysanthidis
704 et al., 2019).

705

706 Two-network architecture and connectivity

707 The network model features two reciprocally connected networks, the so-called Item and Context
708 networks. For simplicity, we assume that Item and Context networks are located at a substantial
709 distance accounting for the reduced between-network connection probabilities (Table 2). Each network
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710 follows a cortical architecture with modular structure compatible with previous spiking
711 implementations of attractor memory networks (Lansner, 2009; Tully et al., 2014, 2016; Lundqvist et
712 al., 2011; Fiebig and Lansner, 2017; Chrysanthidis et al., 2019; Fiebig et al., 2020), and is best understood
713 as a subsampled cortical layer 2/3 patch with nested hypercolumns (HCs) and minicolumns (MCs; Fig.
714 5A). Both networks span a regular spaced grid of 9 HCs (Table 2), each with a diameter of 500 um
715 (Mountcastle, 1997). In our model, items are embedded in the Item network and context information
716 in the Context network as internal well consolidated long-term memory representations (cell
717 assemblies), supported with within-network weights (within-network connectivity) derived using prior
718 BCPNN long-term learning (Fig. 5B,C). Consequently, these weights were resistant to changes during
719 associative learning of projections between item and context networks (see Results section). Our item
720 and context memory representations are distributed and non-overlapping, i.e. with a single distinct
721 pattern-specific (encoding) MC per HC. This results in a sparse neocortical type of activity patterns
722 (Barth & Poulet 2012). It should be noted that the model tolerates a marginal overlap between different
723 memory patterns, i.e. shared encoding minicolumns (data not shown). Each minicolumn is composed
724 of 30 pyramidal cells (representing the extent of layer 2/3) with shared selectivity, forming a functional
725 (not strictly anatomical) column. In total, the 18 HCs (16 MCs each) of the model contain 8640 excitatory
726 and 1152 inhibitory cells, significantly downsampling the number of MCs per HC (~100 MCs per HC in
727 biological cortex). Within each HC there are 480 pyramidal cells and 120 basket cells, and hence our
728 model does match in-vivo observations of 4:1 ratio of excitatory to inhibitory cells (Zaitsev and Lewis,
729 2013). Our model also accounts for another type of inhibition - namely, disynaptic inhibition mediated
730 via dendritic targeting double bouquet and/or bipolar cells. As a result, a sizable fraction of the total
731 inhibition (i.e. all the “learned" inhibition) is modeled implicitly via learned negative weights rather than
732 explicitly via inhibitory cells. The high degree of recurrent connectivity within (Thomson et al., 2002;
733 Yoshimura and Callaway, 2005) and between MCs links coactive MCs into larger cell assemblies (Eyal et
734 al.,, 2018; Binzegger et al., 2009; Muir et al., 2011; Stettler et al., 2002). Long-range bidirectional
735 between-network connections (item-context bindings or associative connections) are plastic (shown in
736 Fig. 5A only for MC1 in HC1 of the Context network), binding items and contextual information
737 (Ranganath, 2010). On average, recurrent connectivity establishes 100 active plastic synapses onto each
738 pyramidal cell from other pyramidals with the same selectivity, due to a sparse between-network
739 connectivity (cpera) and denser local connectivity (cpee, Cprei; connection probability refers to the
740 probability that there is a connection between a randomly selected pair of neurons from given
741 populations; in Fig. 6A connection probabilities are only shown for MC1 in HC1 of the Context network).
742 The model yields biologically plausible excitatory postsynaptic potentials (EPSPs) for connections within
743 HCs (0.72 £ 0.085 mV), measured at resting potential £, (Thomson et al., 2002). Densely recurrent non-
744 specific monosynaptic feedback inhibition mediated by fast spiking inhibitory cells (Kirkcaldie, 2012)
745 implements a local winner-take-all structure (Binzegger et al., 2009) amongst the functional columns.
746 Inhibitory postsynaptic potentials (IPSPs) have an amplitude of -1.160 mV (+0.003) measured at -60 mV
747 (Thomson et al., 2002). These bidirectional connections between basket and pyramidal cells within the
748 local HCs are drawn with a 70% connection probability. Notably, double bouquet cells shown in Figure
749 6A, are not explicitly simulated, but their effect is nonetheless expressed by the BCPNN rule. A recent
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750 study based on a similar single-network architecture (i.e. with the same modular organization,
751 microcircuitry, conductance-based AdEx neuron model, cell count per MC and HC) demonstrated that
752 learned mono-synaptic inhibition between competing attractors is functionally equivalent to the

753 disynaptic inhibition mediated by double bouquet and basket cells (Chrysanthidis et al., 2019).
754 Therefore, BCPNN describes the effect of not-explicitly simulated double-bouquet cells (DBCs) by

755 replacing disynaptic inhibition with negative connections (GABA reversal potential) between cell
756 assemblies that do not share the same pattern selectivity. Also, other network models with negative
757 synaptic weights have been shown to be functionally equivalent to ones with both excitatory and
758 inhibitory neurons with only positive weights (Parisien et al., 2008). Parameters characterizing other
759 neural and synaptic properties including BCPNN can be found in Table 1.
760 Figure 6B shows the weight distributions of embedded distributed cell assemblies, representing
761 different memories stored in the Item and Context networks. Attractor projections can be further
762 categorized into strong local recurrent connectivity within HCs, and slightly weaker long-range
763 excitatory projections across HCs (Fig. 6C).
764
Table 2: Network layout, connectivity and stimulation protocol
Layout Symbol Value Connectivity Symbol Value Stimulation Symbo  Value
' ' . PYR
Cortical patch size Cpg 15x1.5 mmj Axonal conduction speed v 0.2 m/si Background noise PYR Thg 470 Hz
H N BA
Simulated HCs (each network) "¢ 9 5 Myelinated axonal speed mepz 2m/s E Background noise BA r:,g 0 Hz
; syn E PYR
Simulated MCs (each network) "¢ 144 ' Minimal synaptic delay min 1.5ms ' Background conductance ar,, +1.5nS
e ; ) 5
Simulated MCs per HC e 16 ! Hypercolumn diameter HC 0.5 mm; Stimulation duration otim 250 ms
! ITEM !
No. of items Mrem 16 (from 16); Distance between networks CONTEXT 10 mm ; Stimulation rate T stim 340 Hz
No. of contexts Meontexr 2 (from 16) 3 PYR-PYR recurrent cp CPpp 0.2 E Stimulation before reward  fo.. 50 ms
PYR—-L23 3 E . lati d
Layer 2/3 pyramidal per MC Ty 30 + PYR-PYR long-range cp CPppr 0.2 : Stimulation conductance g +1.5nS
Basket ; E
Basket cells per MC Myc 4 ! PYR-PYR associative cp CPppy 0.04 ! Interstimulusinterval Tmm 250 ms
TOTAL 3 E
MC grid size (Item + Context) MC 18 x 16 ! PYR-BA cp, BA-PYR cp CPppPgp 07 !
! PYR-BA cc Ipp 3ns
' BA-PYR cc Igp 7ns !

PYR, Pyramidal cell; BA, Basket cell.

cp, connection probability; cc, connection conductance.
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Figure 6: Network architecture and connectivity of the Item (green) and Context (blue) networks. A, The
model represents a subsampled modular cortical layer 2/3 patch consisting of minicolumns (MCs) nested in
hypercolumns (HCs). Both networks contain 9 HCs, each comprising 16 MCs. We preload abstract long-term
memories of item and context representations into the respective network, in the form of distributed cell
assemblies with weights establishing corresponding attractors. Associative plastic connections bind items
with contexts. The network features lateral inhibition via basket cells (purple and blue lines) resulting in a
soft winner-take-all dynamics. Competition between attractor memories arises from this local feedback
inhibition together with disynaptic inhibition between HCs. B, Weight distribution of plastic synapses
targeting pyramidal cells. We show the fast AMPA weight components here, but the simulation also includes
slower NMDA weight components. C, Weight matrix between attractors and competing MCs across two
sampled HCs. The matrix displays the mean of the weight distribution between a presynaptic (MCpre) and
postsynaptic minicolumn (MCpost), within the same or different HC (black cross separates grid into blocks of
HCs, only two of which are shown here). Recurrent attractor connections within the same HC are stronger
(main diagonal, dark red) compared to attractor connections between HCs (off-diagonals, orange). Negative
pyramidal-pyramidal weights (blue) between competing MCs amounts to disynaptic inhibition mediated by
double bouquet cells.
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783 Axonal conduction delays
784 Conduction delays (t;) between a presynaptic neuron j and a postsynaptic neuron j are calculated based
785 on their Euclidean distance, d, and a conduction velocity V (Eq. 10). Delays are randomly drawn from a
786 normal distribution with a mean according to distance and conduction velocity, with a relative SD of
787 30% of the mean in order to account for individual arborization differences, and varying conduction
788 speed as a result of axonal thickness and myelination. In addition, a minimal delay of 1.5 ms (tgi?l, Table
789 2) is added to reflect synaptic delays due to effects that are not explicitly modeled, e.g. diffusion of
790 neurotransmitters over the synaptic cleft, dendritic branching, thickness of the cortical sheet and the
791 spatial extent of columns (Thomson et al., 2002). Associative between-network projections have a ten-
792 fold faster conduction speed than those within each network, reflecting axonal myelination.
793

—_ d syn oo N 3071
794 lij = Vv Ftpins  tij ~ N (i, 301;5) (10)
795
796 Stimulation Protocol
797 Noise input to pyramidal cells is a zero-mean noise, generated by two independent Poisson generators
798 with opposing driving potentials. Pyramidal cells coding for specific items and contexts are stimulated
799 with an additional specific excitation during encoding and cued recall (all parameters in Table 2).
800
801 New- vs old-in-context memory discrimination
802 Our model discriminates old- vs. new-in-context items based on a comparison of the firing rates in the
803 Item network during stimulation of items in given contexts. New-in-context items were selected if the
804 corresponding trial-average firing rates were 15% lower than the pair-matched old-in-context items.
805 First, we determined a decision threshold high enough to show significant differences between trial-
806 average firing rates, and then we tuned the model (i.e., strength of activations-cues and background
807 excitation - noise) to match the reported behavioral results of an item-in-context memory task. By
808 changing this decision threshold, we can retune the strength of the cues and noise, or even modify other
809 parameters (i.e., boost between-network connectivity) to produce comparable results, so the decision
810 threshold by itself is not critical. While the action selection following the recollection (old item-in-
811 context) was intriguing, it has been out of the scope of this particular study to detail it further.
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812 Pairwise differences

813 To show changes in firing rates (f), within- and between-network connectivity (w), and bias (b), we
814 calculate the corresponding differences in the averages between pairs of old and new items, Afoig-new,
815 AWoig-new, Aboid-new, respectively.

816

817 Code accessibility

818 We use the NEST simulator (Gewaltig and Diesmann, 2007), and a custom-built Bayesian-Hebbian
819 learning rule module (BCPNN) in NEST (Tully et al., 2014) running on an HPE Cray EX supercomputer.
820 The spike-based BCPNN learning rule implementation is freely available online at Zenodo
821 (https://doi.org/10.5281/zen0do.5101626). The spiking neural network model is based on an earlier

822 work readily accessible on ModelDB (https://modeldb.science/257610).
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Figure S1: Graphical schematic of the three-context-transition task displaying pairs of new-old odors
(depicted as rectangles with unique colors) in a given context. Odors were presented across two contexts in
the simulated episodic memory task, and only the new items-in-context were rewarded (R symbol in the
schematic denotes reward, and X symbol, in red, indicates a failed trial) when selected (a 50 ms stimulation
of the selected odor preceded the reward phase, representing a final odor sniff before the reward). Once a
new item was presented it was considered as old for the subsequent trials in the given context (as a trial we
defined a stimulation of a pair of new- and old-in-context items). ltems were stimulated for the first time in
context A, half of the total 16 items were presented and rewarded in context A. After the context transition
half of the 16 items were presented in random pairs in context B. After one more context transition, we
activated in context A the remaining 8 items that were not previously presented in that context. Finally,
Memory Assessment was made in context B, where we presented the remaining half of the items that had
not been presented in context B, and paired them randomly with old items (pairs of odors were different
throughout the task). Context representations were constantly activated while cueing pairs of new-old items
for 250 ms each. In the Memory Assessment block, pairs of new-old items followed the Arrangement 1
criterion (new items were encoded more recently than the old ones). While context representations were
persistently cued we activated new and old items-in-context during trials. Plasticity rate of the associative
binding between Item and Context networks was modulated during item presentation and rewarded
accordingly (bottom subplot).
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1019 Figure S2: Average recall performance (hit rate, %) for the unbalanced and “No disynaptic inhibition”
1020 prediction tasks corresponding to Arrangement 1 configuration. For the No disynaptic inhibition task, the
1021 inhibitory weights between networks were disabled, and thus the Context network did not suppress new
1022 items during Memory Assessment. SDs derived from the Bernoulli distributions for the probabilities of
1023 success (hit) across all trials (scaled to %).
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