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Abstract: We investigated the interaction of long-term episodic processes with effects of short-term 11 

dynamics of recency. This work takes inspiration from a seminal experimental work involving an odor-12 

in-context association task conducted on rats (Panoz-Brown et al., 2016). In the experimental task, rats 13 

were presented with odor pairs in two arenas serving as old or new contexts for specific odors-items. 14 

Rats were rewarded for selecting the odor that was new to the current context. New odor items were 15 

deliberately presented with higher recency relative to old items, so that episodic memory was put in 16 

conflict with non-episodic recency effects. To study our hypothesis about the major role of synaptic 17 

interplay of long- and short-term plasticity phenomena in explaining rats’ performance in such episodic 18 

memory tasks, we built a computational spiking model consisting of two reciprocally connected 19 

networks that stored contextual and odor information as consolidated and distributed memory patterns 20 

(cell assemblies). We induced context-item coupling between the two networks using Bayesian-Hebbian 21 

plasticity with eligibility traces to account for reward based learning. We first reproduced quantitatively 22 

and explained mechanistically the findings of the experimental study, and further simulated alternative 23 

tasks, e.g. where old odor items were instead encoded with higher recency, thus synergistically 24 

confounding episodic memory with effects of recency. Our model predicted that higher recency of old 25 

items enhances item-in-context memory by boosting the activations of old items resulting in further 26 

enhancement of memory performance. We argue that the model offers a computational framework for 27 

studying behavioral implications of the synaptic underpinning of different memory effects in 28 

experimental episodic memory paradigms. 29 

Keywords: episodic memory; item-in-context memory; Bayesian-Hebbian plasticity; recency; spiking 30 

cortical memory model; attractor dynamics  31 
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Significance Statement  32 

An important aspect of computational modeling is its ability to bridge spatial scales. Our cortical 33 

memory model represents a novel computational attempt to unravel neural and synaptic processes 34 

with mesoscopic manifestations underpinning the complex effects of short-term memory dynamics on 35 

episodic memory recall. We consider the quantitative match with Panoz-Brown et al.'s (2016) 36 

experimental findings, obtained in a detailed spiking network model constrained by available biological 37 

data, a significant step towards bridging the gap between behavioral correlates of episodic memory and 38 

synaptic mechanisms. Our findings and additional predictions on a suite of different episodic memory 39 

tasks invite further experimental examination. 40 

Introduction 41 

Episodic memory refers to an ability to recall past experiences. The uniqueness of these memories lies 42 

in their specific environmental context, as they are memorized in particular spatial locations at a given 43 

time (Yonelinas et al., 2019). Despite the multitude of past experiences, often sharing some contextual 44 

similarity, they can be vividly distinguished due to the specificity of the overall context with its episodic, 45 

typically both spatial and temporal, characteristics. Consequently, we can usually reliably order such 46 

long-term episodic memories in time (Tulving 1972, 1985). It is less clear however how non-episodic 47 

short-term memory phenomena, inevitably accompanying episodic recall scenarios for more recently 48 

encoded memories, affect the episodic memory capability. After all, the contextual binding that 49 

underlies episodic memory should be unique to specific events, experiences with their temporal 50 

footprint. To date, the effect of recency, sometimes confounded with familiarity (Zhang et al., 2023), 51 

has been only sporadically examined in experimental studies concerned with episodic recall. In 52 

consequence, partly due to a reductionist approach to computational modeling of episodic memory 53 

phenomena, there is no emerging hypothesis about the neural and synaptic mechanisms maintaining 54 

the dynamic interaction between long- and short-term memory processes. Panoz-Brown et al.’s (2016) 55 

seminal behavioral study on episodic memory in rats revealed some new vital insights largely owing to 56 

their novel experimental design. Namely, they adapted an odor-span task involving a sequence of 57 

recently experienced, yet overall familiar, odors to an episodic memory test with distinct environmental 58 

contexts – arenas where the odors were presented. Rats were rewarded for selectively responding to 59 

only those odors that were new to any given arena (new-in-context stimuli). To directly contrast recency 60 

and context-dependent (episodic) memory effects, new-in-context odors were typically presented more 61 

recently than odors previously encountered in the given context (old-in-context) prior to pairwise 62 

(“new” vs. “old”) odor Memory Assessment. The task was arranged so that rats to be successful would 63 

have to overcome the short-term memory recency bias of new items and rely on an episodic association 64 

encoded earlier between a given old-in-context odor and the contextual arena. In other words, there 65 

was a competition between the recency of short-term odor memory and long-term episodic item-in-66 

context (odor in an arena) memory binding. Rats turned out to overcome this recency bias and reliably 67 

performed episodic recall to successfully complete the task and claim reward, even for retention 68 

intervals reaching 45 minutes. Inspired by the Panoz-Brown et al.’s (2016) study, we built a 69 
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computational spiking neural network model to investigate neural mechanisms underlying the interplay 70 

between episodic memory and short-term memory effects of recency at a mesoscopic network level. In 71 

other words, our ambition was to provide novel mechanistic insights into these complex and scarcely 72 

examined synergistic memory phenomena by, first, explaining the behavioral results reported by Panoz-73 

Brown et al. (2016) as the emergent network effect of local synaptic plasticity phenomena at varying 74 

time scales and, second, generating testable predictions for behavioral outcomes in modified 75 

experimental paradigms. 76 

Our biologically detailed spiking neural network model consists of two modular attractor memory 77 

networks that store contextual information (2 contexts) and odor items (16 odors), respectively, as 78 

distributed long-term (consolidated and thus familiar) memory patterns. Familiarity reflects recognition 79 

of the embedded items without any retrieval of its associated contextual information (Merkow et al., 80 

2015). We simulated the process of encoding episodic memories in line with the experimental task 81 

design proposed by Panoz-Brown et al. (2016) as associative between-network connections binding 82 

odor and context memory items shaped by a range of synaptic plasticity effects including Hebbian 83 

plasticity, synaptic depression and augmentation as well as intrinsic plasticity (neural excitability) and 84 

spike frequency adaptation. Importantly, we accounted for the reward effect since it was relevant in 85 

the experiments not only as an incentive for rats to perform the task but predominantly as a rapid 86 

learning cue in this complex continual learning paradigm. To that end, we employed eligibility traces in 87 

the framework of our Bayesian-Hebbian synaptic learning rule and upregulated associative plasticity 88 

upon successful odor-in-context recall. We simulated recall as a discriminative process between neural 89 

activities attributed to competing (old vs. new) odor memory patterns presented as a pair of odor 90 

network stimuli in rapid succession with the simultaneous contextual cue active in the background. We 91 

demonstrated how the combination of different synaptic processes contributed to the observed item-92 

in-context memory. We also simulated an alternative version of the original task, where the order of 93 

odor presentation was switched so that old items-in-context were more recently encoded than new 94 

items, to quantify the memory recall enhancement due to the synergistic contribution of episodic and 95 

short-term memory effects. Finally, we tested the resistance of episodic memory to interference by 96 

simulating yet other challenging task variations, introducing additional contextual information (extra 97 

context) or altering the task structure by violating the balanced odor item training scheme (repeating 98 

some items more times than others).  99 

 100 

Results 101 

Considerable experimental effort has been invested in demonstrating episodic memory in rats using 102 

item-in-context paradigms. In such paradigms, rats are trained to recognize items across multiple 103 

contexts (Panoz-Brown et al., 2016; O’Brien & Sutherland, 2007; Lesburguères et al., 2017; Bevins and 104 

Besheer, 2006). A crucial challenge lies in effectively dissociating episodic encoding from short-term 105 

effects, such as recency. Panoz-Brown et al. (2016) devised an item-in-context task that allows these 106 

processes to interact and compete, and thus provide valuable evidence for their implications on episodic 107 
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memory performance in rats. Here we aimed to explain behavioral implications of different memory 108 

phenomena mechanistically in terms of their underlying neural and synaptic basis. We hypothesized 109 

that the interplay of different synaptic plasticity mechanisms at varying time scales is reflected in the 110 

functional connectivity of the learned network (synaptic weights) and manifests itself in the network 111 

activity (firing rates, see Methods), which in turn should help us interpret the memory performance 112 

reported in the behavioral experiment. More broadly, we wanted to address a general question of how 113 

episodic recall is subject to short-term memory phenomena, ubiquitous in real-world scenarios, at the 114 

level of network dynamics driven by synaptic plasticity mechanisms. To this end we employed a 115 

computational model consisting of two inter-connected spiking neural networks storing odor-item and 116 

context-arena memories, respectively. Accordingly, before simulations of the experimental trial blocks, 117 

long-term (well established, consolidated) item and context memory patterns were first embedded by 118 

means of prior Bayesian-Hebbian learning with multiple epochs and a long plasticity time constant. The 119 

resulting within-network attractor projections (within-network connectivity, solid red lines, Fig. 1A) 120 

remained then fixed throughout the simulated task. Contrarily, bidirectional associative connections 121 

between item-context pairs (between-network connectivity, dashed red lines in Fig. 1A) were plastic 122 

during the simulations of the experimental block, i.e. subject to on-line Bayesian-Hebbian learning with 123 

long episodic plasticity time constant and to other known short-term plasticity mechanisms (Erickson et 124 

al., 2010; Lisman, 2017).  125 

In fact, we used the same dual network model that was initially built to propose and assess a Bayesian-126 

Hebbian hypothesis about synaptic and network mechanisms underlying semantization of episodic 127 

memory, i.e. transformation of episodic memories to more abstract semantic representations 128 

(Chrysanthidis et al., 2022). The model reflects a wide range of biological constraints and operates on 129 

behavioral time scales under constrained network connectivity with plausible postsynaptic potentials, 130 

spiking activities, and other biophysical parameters (see Methods).  131 

 132 

Episodic memory contra recency effects: The control task design (Arrangement 1) 133 

We first used the model to simulate Panoz-Brown et al.’s (2016) base experimental setup, where rats 134 

were exposed to a rapid presentation of several odors across two arenas (A,B) serving as contexts for 135 

odor items (A ➞ B ➞ A, Experiment 1, Fig. 1B; Symbol “➞” indicates a context transition). Our 136 

simulations followed the item-context association protocol adopted from the two-context-transition 137 

task denoted as “Experiment 1” in Panoz-Brown et al.’s (2016) study. It consisted of two main 138 

experimental blocks: Item-Context Encoding and Memory Assessment. In the first block, 8 odor items 139 

were presented in context A , followed by all 16 odor items presented in context B (one context 140 

transition, A ➞ B). So half of the items presented in context B were previously encoded in context A. In 141 

the experiment, odors were always presented in pairs, new- vs. old-in-context items, and rats 142 

responded by selecting one of them as new, which marked an individual trial. In the model, we cued 143 

corresponding memory item patterns in the Item network in short succession (inter-stimulus period of 144 

250 ms, see Methods) to simulate the serial process of first recognising one odor then the other in each 145 
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pair (as a result of sniffing). Simultaneously, we cued the respective memory pattern in the Context 146 

network to account for contextual information, which resulted in cross-network binding of the cell 147 

assemblies representing odor items and contexts via associative Hebbian plasticity.  148 

In the second block, referred to as Memory Assessment, every remaining odor (8 out of 16), new to 149 

context A, was presented in a pair with another randomly selected odor that was considered at the 150 

presentation time as already encoded in that context, i.e. an old-in-context item. To reiterate, in this 151 

original task design proposed by Panoz-Brown et al. (2016) old-in-context items featured lower recency 152 

(Fig. 1B, Arrangement 1, old items were always presented earlier than new items prior to Memory 153 

Assessment block), so that correct retrieval of items had to entirely depend on the contextual 154 

association. Recency might increase the sense of familiarity of an item, thereby potentially confusing 155 

rats. Therefore, in that arrangement, context-dependent episodic memory recall was put into conflict 156 

with the effect of memory recency (Fig. 1B, Arrangement 1). Old- and new-in-context items were cued 157 

only once during the Memory Assessment block. This is in contrast with the aforementioned Item-158 

Context Encoding block where different items could be repeated multiple times and thus old-in-context 159 

items had always higher recency compared to new-in-context items (here: old/new relative the given 160 

context in the Item-Context Encoding block) as the old items were encoded in the same context before 161 

the new item was presented. Odor pairs were different between Item-Context Encoding block and 162 

Memory Assessment, and also randomized across simulations. Accordingly, behavioral data in the 163 

experimental study and simulated data of the model performance here were examined only during the 164 

Memory Assessment block. 165 

In Figure 1C we illustrate an exemplary spike raster of active pyramidal neurons in one of the network 166 

hypercolumns (see Methods) of both the Item and the Context network obtained in a simulation of the 167 

entire experimental session. The bottom of Figure 1C depicts the associative plasticity gain (item-168 

context binding) modulation. It accounts for a reward signal (Fig. 1C, “R”: reward) that in line with the 169 

original experiment follows each successful odor choice (a continual learning scenario). The reward 170 

implementation  uses synaptic eligibility traces and temporarily boosts associative plasticity gain from 171 

the baseline level, κnormal (Table 1), during item presentation to the elevated κreward (Table 1). The odor 172 

choice (old- vs new-in-context) itself was made based on a comparison between average firing rates 173 

elicited by the excitatory units corresponding to the two stimulated (competing) item patterns in each 174 

pair (see Methods). 175 

By tuning stimulus-related parameters (i.e., strength of simulations and background noise excitation) of 176 

our earlier model on item-context episodic memory binding (Chrysanthidis et al., 2022), we obtained 177 

task performance comparable to the original experimental data (Fig. 1D,E; model data: mean=83.21, 178 

SD=3.12, n=143, mean represents the total number of successes across all n-trials [each trial tests one 179 

old-new pair], SD derived from the Bernoulli distributions for the probabilities of successes across all n-180 

trials, n corresponds to simulated old-new pairs during Memory Assessment,  and experimental data: 181 

mean≈80, SD≈6.5, mean reflects the averaged performance of rats in 9 sessions, combining the initial 182 

and terminal sessions,  and SD reflects the averaged standard error of the mean (SEM) across rats for 183 

the combined initial and terminal sessions) for the two-context-transition task (Experiment 1, see 184 
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Panoz-Brown et al., 2016). The high odor item recall performance of the model originates from 185 

considerably stronger network response elicited on average by old- relative to new-in-context items 186 

(Fig. 1F, differences between averages in firing rates induced by pairs of old- vs. new-in-context items, 187 

Δfold-new, are positive, and hence old items elicited stronger response, see Pairwise differences section in 188 

Methods). To gain further insights in ways inaccessible to in-vivo experiments, we examined the 189 

synaptic strength of the within- and between-network connectivity, and neuronal excitability dynamics 190 

(BCPNN bias, see Methods). The high odor recall performance cannot be explained by observations in 191 

the within-network connectivity, as the differences in average within-network connectivity between 192 

pairs of old vs. new items, Δwold-new, drifts towards negative values (Fig. 1G, see Pairwise differences 193 

section in Methods), primarily due to high recency of new items which boosts their connectivity. 194 

Regarding the bias factor, old-in-context items were typically presented more times than new-in-195 

context items, as a consequence of task design, the cell assemblies corresponding to more repetitive 196 

old-in-context items exhibited higher neuronal excitability. The distribution of the differences in average 197 

bias between pairs of old vs. new items, Δbold-new, is positive, and favors old items in Fig. 1H, which partly 198 

contributed to the odor recall performance. Prior to the Memory Assessment block, items that were 199 

presented in context A established an excitatory associative binding (Fig. 1I, top right, EPSPs in middle) 200 

unlike other items, never cued in context A beforehand, were subjected to disynaptic inhibition (Fig. 1I, 201 

top left, IPSPs in bottom, see Methods). During the Memory Assessment block, which was still part of 202 

the continual learning process in context A, items that were initially new to that context became old-in-203 

context items once they were used as a stimulus in the Memory Assessment. Hence, plastic disynaptic 204 

inhibition built during the earlier Item-Context Encoding block was transformed to excitatory binding 205 

(continual learning process) after the odor item was cued in the Memory Assessment block (see 206 

Methods). All in all, the synaptic weights of the associative item-context binding and the bias factor 207 

contributed to the observed difference in firing rates between old vs new items in Figure 1F. 208 

Next we challenged our model by simulating the extended task with three context transitions (A ➞ B 209 

➞ A ➞ Memory Assessment block in context B), as proposed by Panoz-Brown et al. (2016). In their 210 

second experiment (denoted as Experiment 2), 8 out of 16 odors were stimulated in context A (as before 211 

in Experiment 1), followed by 8 odors in context B. After transitioning to context A again, the remaining 212 

8 items not shown in context A yet were presented. The Memory Assessment part of Experiment 2 was 213 

then conducted in context B, unlike in Experiment 1, with new-in-context items presented along with 214 

the previously encoded old-in-context items, as before (Fig. S1, an example of a three-context-transition 215 

task). The same model, i.e. without any further re-tuning, reproduced again quantitatively similar odor 216 

recall performance as in Panoz-Brown et al.’s (2016) Experiment 2 (Fig. 1E; model data: mean=82.35, 217 

SD=3.49, n=119, mean represents the total number of successes across all n-trials, SD derived from the 218 

Bernoulli distributions for the probabilities of successes across all n-trials, n corresponds to simulated 219 

old-new pairs, and experimental data: mean≈84, SD≈5.3, mean reflects the average performance of rats 220 

in 9 sessions, combining the initial and terminal sessions, and SD reflects the average standard error of 221 

the mean (SEM) across rats for the combined initial and terminal sessions).  222 
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Figure 1: Item-in-context memory network model relying on associative episodic binding. A, Graphic 224 

illustration of the Item (green) and Context (blue) networks. Attractor connections (solid red) represent 225 

within-network connectivity across hypercolumns (HCs) in the same network, while associative binding 226 
refers to the plastic connections between Item and Context networks (dashed red). B, Task structure: odors 227 
were presented across two contexts in the simulated episodic memory task. Schematic of the two-context-228 
transition task displaying pairs of new-old odors (depicted as rectangles with unique colors) in a given context 229 

[cf. Fig. 1B in Panoz-Brown et al., (2016)]. Only the new items-in-context were rewarded (✓ symbol in the 230 

schematic denotes reward) when selected (a 50 ms stimulation of the selected odor preceded the reward 231 
phase, representing a final odor sniff before the reward). Once a new item was presented it was considered 232 
as old for the subsequent trials in the given context (as a trial we defined a stimulation of a pair of new- and 233 

old-in-context items). Items were stimulated for the first time in context A, half of the total 16 items were 234 
presented and rewarded in context A. After the context transition all the 16 items were presented in random 235 
pairs in context B. Finally, Memory Assessment was made in context A, where we presented the remaining 236 

half of the items that had not been presented in context A (new items), and paired them randomly with old 237 

items (pairs of odors were different throughout the task). Context representations were constantly activated 238 
while cueing pairs of new-old items for 250 ms each. In the Memory Assessment block, pairs of new-old 239 

items followed the Arrangement 1 (new items were encoded more recently than old ones). Here, we show 240 
only 4 out of 16 items stimulated during the task (blue and yellow items illustrate Arrangement 1). The 241 

presence of the additional items, which are not shown is indicated as “…”. C, Spike raster of pyramidal 242 
neurons in HC1 of the Item and Context networks simulating the episodic memory task described in (B). Item 243 

and context memory patterns are represented by the activation of a unique set of minicolumns (MCs) in their 244 
network. Each item or context was assigned with a unique color. While context representations were 245 

persistently cued we activated new and old items-in-context during trials. Plasticity of the associative binding 246 
between Item and Context networks was modulated during item presentation and rewarded accordingly 247 
(bottom subplot, R symbol in the schematic denotes reward, and X symbol, in red, indicates a failed trial). D-248 

E, The model discriminates between new- and old-in-context items with performance quantitatively 249 

matching Panoz-Brown et al.’s (2016) behavioral results in Experiment 1 (D) and 2 (E), respectively. Error bars 250 
represent SDs derived from the Bernoulli distributions for the probabilities of success (hit) across all trials 251 
(scaled to %), and for original experimental results - data is shown as mean +1 SEM across rats. F, Boxplot of 252 

the differences in average firing rates between pairs of old vs. new items, Δfold-new. G, Distribution of the 253 
differences in average within-network connectivity between pairs of old vs. new items, Δwold-new, (within-254 
network connectivity includes short-term plasticity mechanisms combined with long-term Hebbian 255 

component: AMPA and slower NMDA receptor mediated weights). H, Distribution of the differences in 256 

average intrinsic excitability between pairs of old vs. new items, Δbiasold-new. I, Weight distribution of the 257 
episodic associative binding prior to the Memory Assessment part of the task. The distributions display the 258 
means of the learned synaptic weights (AMPA and slower NMDA receptor mediated weights, see Table 1) 259 
between context A and new (blue), or old (red) items. The inset displays the excitatory and inhibitory 260 

postsynaptic potentials (at a biological plausible range, Wang et al., 2006) of the corresponding weights 261 
distributions, which also account for the multiplicative effect of synaptic augmentation.  262 
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Synergy of episodic memory and recency: An alternative task design (Arrangement 2) 263 

To prevent rats from utilizing any semantic rules concerned with items’ recency, Panoz-Brown et al. 264 

(2016) randomly intermingled Arrangement 1 trial blocks with trials of an alternative structure called 265 

Arrangement 2. In Arrangement 2, the order of the item presentation in the Item-Context Encoding 266 

block prior to the Memory Assessment was switched so that old-in-context items featured higher 267 

recency than the new-in-context items (Fig. 2A, Arrangement 1 vs Arrangement 2). Panoz-Brown et al. 268 

(2016) did not report any experimental results for Arrangement as recency effects might be confounded 269 

with context dependent episodic memory. We nevertheless wanted to provide a qualitative prediction 270 

about the memory performance in the Arrangement 2 task given the synergy of short-term recency and 271 

episodic memory.  272 

The model predicted indeed higher odor recall performance in Arrangement 2 than in Arrangement 1 273 

for both two- (Fig. 2B, Arrangement 1: mean=83.21, SD=3.12, n=143 vs Arrangement 2: mean=93.33, 274 

SD=2.39, n=99; p<0.01, Fisher's exact test), and three-context transitions (Fig. 2C, Arrangement 1: 275 

mean=82.35, SD=3.49, n=119 vs Arrangement 2: mean=92.13, SD=2.85, n=89; p<0.05, Fisher's exact 276 

test). To elucidate the synaptic origins and network correlates of the performance enhancement, we 277 

analyzed key model variables such as spiking activity of excitatory units representing the old- and new-278 

in-context items, synaptic strength of the within- and between-network connectivity, and neuronal 279 

excitability dynamics (BCPNN bias, see Methods). We observed that the differences between the 280 

averages in firing rates induced by old- vs. new-in-context items, Δfold-new, increased significantly in 281 

Arrangement 2 relative Arrangement 1 (Fig. 2D; p<0.01, two-sample t-test, 90 simulated trials [pairs of 282 

odors in the Memory Assessment] in Arrangement 1 and 62 in Arrangement 2, see Pairwise differences 283 

section in Methods), implying the improved capability of the model to discriminate and accurately 284 

identify new-in-context odor items. We partially attributed this to the temporary enhancement in the 285 

strength of the within-network connectivity (Fig. 2F, p<0.05, Mann–Whitney U test, 47 simulated trials 286 

[pairs] in Arrangement 1 and 41 trials in Arrangement 2). As mentioned earlier, the within-network 287 

connectivity was preloaded (long-term memory representations of items and contexts were encoded 288 

prior to the Item-Context Encoding block), so it was short-term synaptic augmentation that rapidly 289 

upregulated the effective synaptic weights. This enhancement was short-lasting, limited by the 290 

augmentation time constant, and thus it could only be effective when the stimulation of a given item in 291 

context B was within a narrow time window relative to the temporal scales of the Memory Assessment 292 

block in context A. Furthermore, we observed a notable increase in the difference between the neuronal 293 

excitability (Δbias) for old- vs. new-in-context items in Arrangement 2 (Fig. 2G, p<0.01, Mann–Whitney 294 

U, 47 simulated trials [pairs] in Arrangement 1 and 41 trials in Arrangement 2). Old-in-context items 295 

were stimulated more often than the new ones as a result of the altered task structure (Fig. 2A). In 296 

Arrangement 2 the final stimulation of an old-in-context item had to take place after the most recent 297 

activation of a new-in-context item even if there were cases that old-in-context items had been 298 

activated before (i.e., strawberry [old, first stimulation] – banana [new, first stimulation] – strawberry 299 

[old, second stimulation]). Therefore, by enforcing Arrangement 2 the intrinsic neural excitability 300 

dynamics of old items was enhanced. It is worth mentioning that modification of the temporal order of 301 
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items between Arrangement 1 and Arrangement 2 did not yield any meaningful change for the 302 

between-network connectivity (Fig. 2E, p>0.05, Mann–Whitney U, 47 simulated trials [pairs] in 303 

Arrangement 1 and 41 trials in Arrangement 2). The between-network connectivity was long lasting 304 

(𝜏p=30 s, Table 1) and resistant to small temporal changes to support episodic retrieval. In general, we 305 

highlight the importance of these long-lasting synaptic traces to perform item-context association tasks, 306 

as we observed that fast Hebbian plasticity with short time synaptic constants (e.g., a time constant 𝜏p 307 

of 5 s was commonly employed in working memory settings by other models) alone could not solve the 308 

task, as the temporal memory traces of previously encoded item-context pairs decayed rapidly.  309 
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Figure 2: A, Structure of the episodic memory task: Arrangement 1 vs. Arrangement 2. In Arrangement 1 (cf. 311 

Fig. 1B), the new-in-context item was encoded more recently than the old-in-context item prior to the 312 

Memory Assessment phase. This order was reversed in Arrangement 2. B,C Model performance in new- vs. 313 
old-in-context memory discrimination between Arrangements 1 and 2 for two- and three-context transitions, 314 
respectively. Error bars represent SDs derived from the Bernoulli distributions for the probabilities of success 315 
(hit) across all trials (scaled to %). D, Boxplot of the differences in average firing rates between pairs of old 316 

vs. new items, Δfold-new, in Arrangement 2 (bottom) and in Arrangement 1 (top). The trial-average firing rates 317 
represent the means of evoked spiking frequency during the activation of a given item during a test trial in 318 
the Memory Assessment phase. E, Synaptic connectivity (AMPA and slower NMDA receptor mediated 319 
weights) between Item and Context networks is similar in both arrangements and remains resistant to 320 

changes (i.e., order of item activation) due to encoding with long-term Hebbian plasticity (τp=30 s, Table 1). 321 
F, Distribution of the differences in average within-network connectivity between pairs of old vs. new items, 322 
Δwold-new, for the Arrangement 1 (blue) and Arrangement 2 (orange). G, Distribution of the differences in 323 

average intrinsic excitability between pairs of old vs. new items, Δbiasold-new, for the Arrangement 1 (blue) 324 

and Arrangement 2 (orange). Both within-network connectivity and bias effects of old items within the Item 325 
network are stronger in Arrangement 2 due to recency, thus leading to higher performance as observed in 326 

B. 327 

 328 

 329 

Unbalanced training paradigm with two context transitions 330 

To further exploit the predictive capabilities of the model, we examined the effect of the frequency of 331 

stimulus presentation (multiplicity or repetition of stimuli) as a potential factor modulating the item 332 

familiarity on the item-in-context recall. In particular, we set out to study if the stimulus multiplicity on 333 

top of the recency would synergistically outcompete the episodic memory effect in the old- vs new-in-334 

context item choice, thereby leading to the higher recall error rate. To this end, we resorted to 335 

Arrangement 1 (competition between recency and episodic memory phenomena). However, unlike in 336 

the balanced Experiment 1, we now increased the number of new-in-context odor presentations 337 

resulting in an unbalanced scenario where new items were presented  more frequently (i.e., in Fig. 3A 338 

in the Memory Assessment block, the new-in-context-A item (yellow) had been used twice in the 339 

preceding context B, while the old-in-context-A item (blue) had appeared only once). Surprisingly, our 340 

expectation that the enhanced familiarity due to increased multiplicity along with recency should 341 

outcompete episodic memory and “mislead” the model in the old- vs new-in-context choice during the 342 

Memory Assessment turned out to be false. In fact, we found evidence of comparably high performance 343 

for the unbalanced training task, i.e. reference task: mean=83.21, SD=3.12, n=143 vs unbalanced 344 

training task: mean=83.92, SD=2.83, n=168; p>0.05, Fisher’s exact test. 345 

We next sought to mechanistically explain the comparable performance in the unbalanced task, which 346 

was opposite to our expectation as we predicted lower performance. First, we analyzed the between-347 

network connectivity and found that disynaptic inhibition between context A and the new-in-context 348 

items was strengthened (Fig. 3C, top, p=1.9 x 10-268, Mann-Whitney U-test, 6638 weights from Context 349 
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A to all the new items for the reference task vs. 5382 weights from Context A to all the new items for 350 

the unbalanced task). This effectively resulted in a more negative (inhibitory) association in the 351 

unbalanced training task. There were more opportunities for new-in-context items to be repeated in 352 

context B of the Item-Context Encoding block than in the reference task setup. This strengthened not 353 

only their associative binding with context B but also their dissociation with context A (mediated by 354 

plastic disynaptic inhibition, see Methods). At the same time, associative excitatory binding between 355 

context A and those items that were later considered old-in-context in the Memory Assessment block 356 

became stronger, predominantly due to their less frequent presentation as a stimulus in the competing 357 

context B. Indeed, in the spirit of Bayesian nature of BCPNN learning, a more specific and exclusive 358 

pairing of two memory patterns induces stronger associative binding. The observed changes of the 359 

between-network connectivity (Fig. 3C, bottom, p=7.82 x 10-16, Mann-Whitney U-test, 6725 weights 360 

from Context A to all the old items for the reference task vs. 5464 weights from Context A to all the old 361 

items for the unbalanced task) can explain the reason why the hit rates were not reduced for the 362 

unbalanced training task (Fig. 3B). However, differences in the within-network connectivity and bias still 363 

hurt recall, because new items-in-context featured stronger attractor connectivity (Fig. 3D, enhanced 364 

within-network connectivity of new items in the unbalanced task drove the Δwold-new distribution 365 

towards more negative values, reference vs. unbalanced task: p<0.01, Mann-Whitney U-test, 366 

nReference=47, nUnbalanced=59, see Pairwise differences section in Methods), and boosted neuronal 367 

excitability (bias, Fig. 3E, references vs. unbalanced task: p<0.05, Mann-Whitney U-test, nReference=47, 368 

nUnbalanced=59) compared to the original task design due to the additional stimulus repetitions. These 369 

effects led to a stronger competition between non-episodic and episodic memory effects compared to 370 

the reference task. Still, our simulations showed that episodic memory processes reflected in associative 371 

between-network binding overpowered familiarity and recency effects manifested at the item 372 

representation level. 373 

Collectively, the alterations in context-item binding, reflected in the between-network connectivity 374 

weights and caused by varying multiplicity of item presentations, resulted in maintaining a comparable 375 

high item-in-context memory performance. Due to the important role of the aforementioned disynaptic 376 

inhibition between context A and new-in-context items, we conducted a follow-up experimental 377 

manipulation by severing the disynaptic weights connecting the networks for the unbalanced task. 378 

Subsequent recall rates in the Memory Assessment block showed a dramatic decrease in performance 379 

(Fig. S2, unbalanced task: mean=83.92, SD=2.83, n=168 vs “No disynaptic inhibition” task: mean=16.66, 380 

SD=5.37, n=48; p<0.001, Fisher’s exact test). Similar manipulation (e.g., removal of between-network 381 

disynaptic inhibitory weights) to the reference task leads to poor performance as well.  382 
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 383 

Figure 3: Unbalanced training prediction task. A, Schematic of the unbalanced training task. As in the 384 

reference two-context-transition task (Fig. 1B), half of the items were presented in context A, followed by 385 

the presentation of all the items in context B. The Memory Assessment was conducted in context A by 386 

presenting pairs of new-old items. However, for the unbalanced training task, we stimulated more times the 387 

new-in-context-B items than in the corresponding reference task. B, Average recall performance (hit rate, %) 388 

for the reference and unbalanced prediction task corresponding to Arrangement 1 configuration. SDs derived 389 

from the Bernoulli distributions for the probabilities of success (hit) across all trials (scaled to %).C, 390 

Distributions of associative weights (AMPA and slower NMDA receptor mediated weights, reported prior to 391 

the Memory Assessment phase) from context A to new-in-context-A items (top, disynaptic inhibitory 392 

weights), and from context A to old-in-context-A items (bottom) for the reference and unbalanced training 393 

prediction task. D, Boxplot of the differences in average within-network connectivity between old vs. new 394 

items, Δwold-new, for the reference task with two context transitions (top) and the unbalanced training 395 
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scenario (bottom). E, Boxplot of the differences in average intrinsic excitability (neuronal bias) between pairs 396 

of old vs. new items, Δbold-new, for the reference task with two context transitions and the unbalanced training 397 

scenario. 398 

 399 

Memory interference by an additional episodic context  400 

From the behavioral perspective on episodic memory it is interesting to study the effect of memory 401 

interference by introducing yet another context C (arena) just preceding the Memory Assessment block 402 

(Fig. 4A). Increasing the complexity of the task (extended memory and temporal demands) by 403 

introducing additional contexts is a method often used in item-in-context episodic memory tasks on 404 

rats, and this process typically leads to lower performance scores (Weisz et al., 2012). Our intention was 405 

to make behaviourally relevant predictions about the odor recall performance in a more challenging 406 

setup compared to the reference task, and quantify potential behavioral changes in performance. In 407 

line with previous related behavioral experiments, the recall performance in our extra context task 408 

dropped significantly compared to the reference task (Fig. 4B, reference task: mean=83.21, SD=3.12, 409 

n=143 vs extra context task: mean=70.7, SD=5.02, n=82; p<0.05, Fisher’s exact test). 410 

The new simulated task puts short-term recency effects in conflict with episodic memory, just as in the 411 

behavioral task with Arrangement 1, though in a more complex and longer item-in-context 412 

configuration facilitated by an extra context C. In particular for this new context C, we cued randomly 8 413 

of the available 16 memory items (see Fig. 4A) following an analogous procedure of presenting items as 414 

in Experiment 1 (i.e., Fig. 1C, 0-15 s). Later, items that had been cued in context C, could be used in the 415 

Memory Assessment block. Given the Arrangement 1 criteria (“new-in-context items should be more 416 

recently encoded than the old items”), we observed that new-in-context-A items (from the perspective 417 

of Memory Assessment) were the items that were mainly activated in the extra context C (latest 418 

presentation before the Memory Assessment block) as opposed to the old-in-context-A items whose 419 

most recent presentation took place in context B (not in context C, Fig. 4A). This was an emerging 420 

outcome of the new task setup combined with Arrangement 1 requirements. Since old items were 421 

rather infrequent in trials belonging to context C as opposed to new items that were activated extra 422 

times in context C, there was a longer temporal distance between the trials of the most recent activation 423 

of a new and its old item pair (higher relative recency between pairs of items, Fig. 4C, reference vs. extra 424 

context task: p<0.001, Mann–Whitney U test, nReference=47, nExtraContext=34). The longer emerging 425 

temporal distance (higher relative recency) between old and new items, led to enhanced within-426 

network connectivity for new-in-context items (Fig. 4D, Δwold-new distribution drifts to more negative 427 

values indicating within-network connectivity enhancement of new items, reference vs. extra context 428 

task: p<0.01, Mann-Whitney U-test, nReference=47, nExtraContext=34, see Pairwise differences section in 429 

Methods). Also, the extra activations of new-in-context items in context C yielded stronger learned 430 

intrinsic excitability (higher multiplicity hypothesized to enhance familiarity in experimental memory 431 

settings) compared to the reference task (Fig. 4E, Δbold-new distribution drifts to negative values, 432 

reference vs. extra context task: p<0.01, Mann-Whitney U-test, nReference=47, nExtraContext=34). The above 433 
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changes in within-network connectivity and intrinsic excitability boosted spiking activity of new items 434 

making it harder for the model to distinguish between new- and old-in-context items (selection was 435 

made based on significant spiking activities differences between old and new items), and hence these 436 

synaptic- and neuronal-level changes may explain the observed performance decline. Last but not least, 437 

we observed a similar disynaptic inhibition trend for the extra context task as in the previous unbalanced 438 

training task (Fig. 3C, top), that is, stronger disynaptic inhibition from context A to all the new-in-439 

context-A items compared to the reference task (Fig. 4F, top, reference vs. extra context task: p=5.32 x 440 

10-8, Mann-Whitney U-test, nReference=6638 weights, nExtraContext=5402 weights). However, the between-441 

network connectivity (associative episodic item-in-context binding) was weaker compared to the 442 

reference task. Even though old items were activated infrequently in the extra context C, still they were 443 

activated more times in other contexts compared to the reference task, and hence this additional 444 

repetition in other contexts can weaken the associative binding as shown in Chrysanthidis et al. (2022) 445 

study (Fig. 4F, bottom, reference vs. extra context task: p=4.7 x 10-13, Mann-Whitney U-test, 446 

nReference=6725 weights from context A to all the old items, nExtraContext=5453 weights from context A to all 447 

the old items). It is worth noting that the majority of old items (in context A) that were cued in context 448 

C followed the stimulation logic of Arrangement 2 (Fig. 2A), i.e. old-in-context items were more recently 449 

encoded than the new ones, and were excluded from the Arrangement 1 analysis.  450 
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 451 

Figure 4: Extra context prediction task. A, Schematic of the extra context task. Introducing an extra context 452 

(blue) in the Item-Coding Encoding block prior to the Memory Assessment block, in which we simulated 453 

randomly half of the 16 items in new-old item pairs. B, Average recall performance (hit rate, %) for the 454 

reference and extra context prediction tasks corresponding to Arrangement 1 configuration. SDs derived 455 

from the Bernoulli distributions for the probabilities of success (hit) across all trials (scaled to %). C, Boxplot 456 

of the differences in average trial-index between pairs of old vs. new items, Δtrialold-new, for the reference 457 

task with two context transitions (top) and the extra context task (bottom). As a trail-index we define the 458 

trial index of the most recent activation of the items (i.e., a new item with trial-index=40 is more recently 459 

encoded compared to an old item with trial-index=30, and their relative recency difference is Δtrialold-new=-460 

10). When an item was activated at the very first trial block, it was assigned with a trial-index=1, and once it 461 

was activated again at a later trial, the trial-index was flexibly updated to correspond to the last activation 462 
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position. The figure shows that the difference in trial-index between old and new items becomes more 463 

negative for the extra context task, thus increasing their relative recency. D, Boxplot of the differences in 464 

average within-network connectivity between pairs of old vs. new items, Δwold-new, for the reference task 465 

with two context transitions (top) and the extra context task (bottom). E, Boxplot of the differences in 466 

average intrinsic excitability (neuronal bias) between pairs of old vs. new items, Δbiasold-new, for the reference 467 

task with two context transitions and the extra context scenario. F, Distributions of associative weights 468 

(reported prior to the Memory Assessment block) between context A and new-in-context-A items (top, 469 

disynaptic inhibitory weights) , and context A and old-in-context-A items (bottom) for the reference and extra 470 

context tasks.  471 

 472 

Reverse training task 473 

In the original reference task (Fig. 1B) new-in-context items were rewarded only once upon selection 474 

since after the reward they were treated as old items, and no further reward was provided even after 475 

another presentation in the same context. Therefore, the overall reward was distributed uniformly 476 

across odors in both contexts in the Item-Context Encoding prior to the Memory Assessment block. By 477 

reversing the reward scheme and utilizing a rule to provide rewards only to old-in-context items, we can 478 

introduce a reward imbalance between items as an old item can be rewarded as many times it is 479 

activated in the context (Fig. 5A).  480 

The reverse training task substantially hurt model performance (Fig. 5B, reference task: mean=83.21, 481 

SD=3.12, n=143 vs. reverse training task: mean=64.28, SD=6.4, n=56; p<0.05, Fisher’s exact test). The 482 

poor memory performance is best explained by the between-network connectivity, which affects item-483 

in-context memory performance, as observed in earlier prediction tasks. The reward imbalance resulted 484 

in varying levels of between-network connectivity strength among old-in-context items, promoting less 485 

robust associative episodic memory binding for some old items (Fig. 5C, difference between the means 486 

of associative weights between reference task and reverse task; cases with more and few odor rewards, 487 

i.e. reference: reward balance, vs reverse training task: reward imbalance; more rewards, p<0.001, 488 

Mann–Whitney U test, nReference=6725, nmore-Rewards=2154, n represents the weights from context A to all 489 

the old items; reference: reward balance, vs reverse training task: reward imbalance; few rewards, 490 

p<0.001, Mann–Whitney U test, nReference=6725, nfew-Rewards=712; and reverse training task: reward 491 

imbalance; more rewards, vs reverse training task: reward imbalance; few rewards, p<0.001, Mann–492 

Whitney U test, nmore-Rewards=2154, nfew-Rewards=712 .  493 

Weak between-network connectivity for old-in-context-A items that were rewarded fewer times 494 

decoupled the Item-Context networks (Fig. 5C). On the other hand, when old items were rewarded 495 

multiple times, their between-network connectivity was strengthened at the cost of other coupled 496 

items (in context A), because learning was continuous throughout the task. Bayesian learning normalizes 497 

and updates weights continuously over estimated presynaptic (Bayesian-prior) as well as postsynaptic 498 

(Bayesian-posterior) spiking activity. We noticed that the reward imbalance in the reverse training task, 499 

particularly for these cases where old items were rewarded less often led to incorrect odor choices.  500 
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 501 

Figure 5: Reverse training prediction task. A, Schematic of the reverse training task. which is similar to the 502 

reference task with the only difference that old items-in-context are rewarded instead of new-in-context 503 

items. B, Average recall performance for the suite of the prediction task. Data is shown for Arrangement 1. 504 

SDs derived from the Bernoulli distributions for the probabilities of success (hit) across all trials (scaled to %). 505 

C, Boxplots of the differences in the between-network connectivity (associative weights, AMPA and slower 506 

NMDA receptor mediated weights, reported prior to the Memory Assessment block) between context A and 507 

old-in-context-A items for the reference task (top), between context A and old-in-context-A items that were 508 

rewarded few times during the reverse training task (middle), and between context A and old-in-context-A 509 

items that were rewarded multiple times during the reverse training task (bottom). Old-in-context-A items 510 

that were rewarded multiple times (i.e., more than two rewards) in the reverse training task featured 511 

stronger synaptic connectivity with context A (bottom) than the corresponding ones rewarded fewer times 512 

in the reverse training task (middle).   513 
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Discussion 514 

Testing episodic memory is important to elucidate the mechanisms that could interfere with, enhance 515 

or impact this memory system. While there is a wealth of research on the behavioral manifestations of 516 

this type of memory (Wilson et al., 2013; Lesburguères et al., 2017; Kanatsou et al., 2016), especially in 517 

rats using item-in-context paradigms, little is known about the underlying neural mechanisms that 518 

govern their interactions, and how these learning effects with different temporal characteristics 519 

interplay at a network level. In a pivotal experimental task on episodic memory by Panoz-Brown et al. 520 

(2016), rats demonstrated high accuracy in solving an item-in-context task, indicating their reliance on 521 

episodic memory. Motivated by this item-in-context episodic task, we constructed a computational 522 

spiking neural network model to explore the neural mechanisms that govern the intricate interplay 523 

between episodic and short-term recency memory effects at a mesoscopic network level. We attributed 524 

Panoz-Brown et al.’s (2016) behavioral findings to emergent network dynamics resulting from local 525 

synaptic plasticity phenomena operating across various timescales. Our objective was to offer 526 

mechanistic insights into these computationally underexplored synergistic memory phenomena. It 527 

should be noted that in our computational study we deliberately and consistently referred to the short-528 

term memory phenomena of interest as recency rather than familiarity, used originally by Panoz-Brown 529 

et al. (2016). We consider recency as a more precise term than familiarity even if the latter has been 530 

linked to the general notion of memory strength affected among others by stimulus recency (Yonelinas 531 

et al., 2010). 532 

 533 

Model predictions and experimental data 534 

Our dual network model successfully matched empirical observations of item-in-context memory in rats 535 

(Fig. 1D, E), as reported by Panoz-Brown et al. (2016). Notably, this was achieved while maintaining 536 

biologically constrained network connectivity, postsynaptic potential amplitudes, and firing rates 537 

compatible with mesoscale recordings from cortex and earlier models. We also generated predictions 538 

regarding behavioral outcomes in three modified task paradigms, which could be examined in a follow-539 

up experimental study. In particular, we sought to explore a wider scope of recency effects in episodic 540 

memory retrieval.  541 

In our first simulated prediction task we switched the order of odor presentation such that old items-542 

in-context were more recently encoded than new items. We then quantified the increase in memory 543 

recall performance due to the synergistic contribution of episodic and short-term memory effects of 544 

recency. Our findings align with similar experiments in rats that focus on the potential impact of recency 545 

on the Object-in-Context (OIC) task (Tam et al., 2015). In that experimental study rats first freely 546 

explored an object-i in a visual context-X, and then explored another object-j in context-Y. During a 547 

subsequent memory test phase the rats were supposed to choose between object-i or object-j either in 548 

context-X or context-Y. The data revealed evidence of enhanced performance when the two items were 549 

tested in context-Y (compared to context-X). A contributing factor could be that object-j was more 550 
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recently encoded than object-i, resulting in a relatively stronger memory trace for object-j compared to 551 

object-i at the time of the test. Their reasoning aligns with our mechanistic explanation as we observed 552 

strengthened memory traces for recently encoded items (see Fig. 2F). 553 

Our third prediction task with an additional third context could be related to Weisz et al.’s (2012) 554 

experiments aimed at examining the impact of memory and time overload on the capacity to recognize 555 

new-in-context items. In their experimental protocol rats first freely explored in an open field two non-556 

identical items in different visual contexts labeled as A, B, and C for 5 minutes each. The subsequent 557 

test session took place in one of the arenas (A, B, or C) with two copies of the same object, where only 558 

one matched the original spatial location. To receive a reward rats had to identify the new combination 559 

of context-object-place with the specific arrangement of the objects. The rats were first tested using 560 

two contexts (A, B) and later, in a separate trial, an additional context C was introduced (A, B, C) 561 

expanding the complexity of the task. The data shows higher recognition of new-in-context objects for 562 

the two context scenario (A, B) compared to the three context scenario (A, B, C) evidencing less recall 563 

with increasing requirements. We saw a similar decrease in memory performance in our simulation task, 564 

when we increased the number of contexts from two to three. 565 

 566 

BCPNN vs. STDP discussion 567 

Our model uses the Bayesian-Hebbian associative learning rule (BCPNN) while there are other 568 

associative Hebbian-like learning rules more commonly used in computational studies, e.g. spike-timing 569 

dependent plasticity (STDP) (Ren et al., 2010; Rossum et al., 2000). We cannot exclude that an 570 

alternative learning rule like STDP may, in principle, mechanistically explain item-in-context memory. 571 

However, the key strength of our BCPNN rule lies in the intrinsic regulation of spiking activity through 572 

synaptic learning of long-lasting disynaptic inhibition (via double bouquet cells which may play an 573 

important role in shaping neural activity and circuitry, DeFelipe et al., 2006; Krimer et al., 2005; Kelsom 574 

and Lu, 2013; Chrysanthidis et al., 2019), and contrasts with known issues of network stability and 575 

robustness with STDP. Indeed, in the absence of disynaptic inhibition our network fails to solve the task 576 

as a result of emerging instabilities (Fig. 3B). STDP predominantly operates on the millisecond scale and 577 

even if synapses were depotentiated they would not represent any meaningful learned long-term 578 

disynaptic inhibitory component. We do not exclude that a similar model relying on STDP-tuned 579 

connectivity that also includes disynaptic inhibition could perform well. However, in the classical STDP 580 

models disynaptic inhibition is rarely integrated. 581 

 582 

Related Models of episodic memory 583 

Various computational models, notably dual-process models, have investigated the processes of 584 

familiarity and recollection (Wixted, 2007), sometimes within the framework of a single memory trace 585 

(Greve et al., 2009). Our research diverges from conceptualizing recency solely as a familiarity process 586 
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to examine the impact of short-term dynamics on recall. On the whole, computational models of 587 

episodic memory remain relatively scarce (Norman and O’Reilly, 2003, Brea et al., 2023), often 588 

integrating abstract or non-spiking representations. Furthermore, the subset of models specifically 589 

addressing the interplay between short-term dynamics and episodic memory is even more limited. 590 

Notably, a recent model showed that selectively encoding episodic memories at the end of an event led 591 

to better subsequent prediction performance (Lu et al., 2022). Furthermore, in more dated 592 

investigations, temporal context models in the domain of episodic memory have demonstrated a broad 593 

spectrum of recall phenomena including recency and contiguity effects observed across immediate, 594 

delayed, and continuous distractor-free recall scenarios (Sederberg et al., 2008). 595 

 596 

Conclusion 597 

One key strength of computational modeling is that it can bridge spatial scales, from behavior and 598 

whole-brain dynamics to single-cell activity and thus explain more data. Our detailed spiking model 599 

bridges these perspectives and represents a novel computational attempt to connect neural and 600 

synaptic processes with mesoscopic manifestations underpinning complex effects of short-term 601 

memory dynamics on episodic memory recall, and item-in-context memory, in particular. We have 602 

shown a quantitative match with Panoz-Brown et al.’s (2016) experimental findings obtained in a 603 

detailed spiking network model, constrained by available biological data (constrained network 604 

connectivity with neurobiologically plausible postsynaptic potentials, firing rates, and other 605 

parameters). We consider this to be a significant step towards bridging the gap between behavioral 606 

correlates of complex episodic memory phenomena and the underlying synaptic mechanisms.   607 
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Methods 608 

Neuron and synapse model 609 

We use adaptive exponential integrate-and-fire point model neurons, which feature spike frequency 610 

adaptation, enriching neural dynamics and spike patterns, especially for the pyramidal cells (Brette and 611 

Gerstner, 2005). This neuron model is an effective model of cortical neuronal activity, reproducing a 612 

wide variety of electrophysiological properties, and offers a good phenomenological description of 613 

typical neural firing behavior, but it is limited in predicting the precise time course of the subthreshold 614 

membrane voltage during and after a spike or the underlying biophysical causes of electrical activity 615 

(Gerstner and Naud, 2009). We slightly modified it for compatibility with the BCPNN synapse model 616 

(Tully et al., 2014) by integrating an intrinsic excitability current. 617 

Development of the membrane potential Vm and the adaptation current Iw is described by the following 618 

equations:  619 

 620 

                                                                                                                                                             621                     (1) 

 622       

                       623 

            624                                   (2) 

 625 

Equation 1 describes the dynamics of the membrane potential Vm including an exponential voltage 626 

dependent activation term. A leak current is driven by the leak reversal potential EL through the 627 

conductance gL over the neural surface with a capacity Cm. Additionally, Vt is the spiking threshold, and 628 

∆T shapes the spike slope factor. After spike generation, membrane potential is reset to Vr. Spike 629 

emission upregulates the adaptation current by b, which recovers with time constant τIw (Table 1). To 630 

simplify the model, we have removed subthreshold adaptation, which is part of some AdEx models. 631 

Besides a specific external input current Iext, model neurons receive synaptic currents Isynj from 632 

conductance based glutamatergic and GABA-ergic synapses. Glutamatergic synapses feature both 633 

AMPA/NMDA receptor gated channels with fast and slow conductance decay dynamics, respectively. 634 

Current contributions for synapses are described as follows: 635 

  636      

            637                    (3) 

 638 

The glutamatergic synapses are also subject to synaptic depression and augmentation with a decay 639 

factor τD and τA, respectively (Table 1), following the Tsodyks-Markram formalism (Tsodyks and 640 

Markram, 1997). We have chosen those time-constants from the plausible range of computational fits 641 
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made on the basis of electrophysiological recordings of cortical pyramidal cells (Wang et al., 2006). The 642 

utilization factor u represents the fraction of available resources used up by each transmitted spike (a 643 

proxy of synaptic release probability), whereas x tracks the fraction of resources that remain available 644 

due to transmitter depletion (synaptic depression): 645 

 646 

                                                         647               (4) 

 648 

                                                                                                                   649                                (5) 

 650 

 651 
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Spike-based BCPNN plasticity 652 

We implement synaptic plasticity of glutamatergic synapses using the BCPNN learning rule (Lansner and 653 

Ekeberg, 1989; Wahlgren and Lansner, 2001; Tully et al., 2014). BCPNN is derived from Bayes rule, 654 

assuming a postsynaptic neuron employs some form of probabilistic inference to decide whether to 655 

emit a spike or not. Despite that it accounts for the basic Bayesian inference, it is considered more 656 

complex than the standard STDP learning rule (Caporale and Dan, 2008), and as such it reproduces the 657 

main features of STDP plasticity. In a previous study, we demonstrated that with BCPNN synaptic 658 

plasticity, but not with standard Hebbian STDP, the model can reproduce traces of semantization as a 659 

result of learning (Chrysanthidis et al., 2022). Therefore, in our effort to explore the interplay of episodic 660 

memory with recency effects we utilize the BCPNN learning rule.  661 

The BCPNN synapse continuously updates three synaptic biophysically plausible local memory traces, 662 

Pi, Pj and Pij, implemented as exponentially moving averages (EMAs) of pre-, post- and co-activation, 663 

from which the Bayesian bias and weights are calculated. EMAs prioritize recent patterns, so that newly 664 

learned patterns gradually replace old memories. Specifically, learning implements exponential filters, 665 

Z, E, and P, of spiking activity with a hierarchy of time constants, 𝜏Z, 𝜏e, and 𝜏p, respectively. Due to their 666 

temporal integrative nature they are referred to as synaptic (local memory) traces.  667 

To begin with, BCPNN receives a binary sequence of pre- and postsynaptic spiking events (Si, Sj) to 668 

calculate the traces Zi and Zj: 669 

 670 

                                                                671                                        (6) 

 672 

 673 

fmax denotes the maximal neuronal spike rate, ε is the lowest attainable probability estimate, tspike 674 

denotes the spike duration while 𝜏Zi=𝜏Zj are the presynaptic and postsynaptic time constants, 675 

respectively (𝜏Z =𝜏AMPA
 =5 ms for AMPA, and 𝜏Z =𝜏NMDA

 =100 ms for NMDA components, Table 1). 676 

E and P traces are then estimated from the Z traces as follows: 677 
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 678 

 679                                                                                                                                                                                                            

 680      (7) 

                                     681        

 682                        

 683      (8)                         

 684 

 685 

 686 

The parameter κ adjusts the learning rate, reflecting the action of endogenous modulators of learning 687 

efficacy (i.e., activation of a D1R-like receptor). Setting κ=0 freezes the network’s weights and biases, 688 

though in our simulations the learning rate remains constant (𝜅𝑛𝑜𝑟𝑚𝑎𝑙=0.3) during encoding. However, 689 

to account for the experimental paradigm we trigger a transient increase of plasticity to simulate the 690 

impact of a reward signal on the memory system by implementing eligibility traces (see Eq. 7) and 691 

upregulating the associative plasticity gain (κreward=1) upon successful execution of the task by the 692 

model.  693 

Finally, Pi, Pj and Pij are used to calculate intrinsic excitability βj and synaptic weights wij with a scaling 694 

factor βgain and 𝑤𝑔𝑎𝑖𝑛
𝑠𝑦𝑛

 respectively (Table 1): 695 

 696 

                                                697                 (9)    

 698 

BCPNN is a Hebbian-like learning rule, neurons that are coactive are coupled with excitatory 699 

connectivity. However, neurons that do not fire together in a certain time window feature low 700 

coactivation traces (Pij), and based on Equation 9, the final weight update will produce negative 701 

conductance. The negative binding is interpreted as disynaptic inhibition mediated by dendritic 702 

targeting regular spiking non-pyramidal (RSNP) cells such as double bouquet cells (DBCs) (Chrysanthidis 703 

et al., 2019). 704 

 705 

Two-network architecture and connectivity  706 

The network model features two reciprocally connected networks, the so-called Item and Context 707 

networks. For simplicity, we assume that Item and Context networks are located at a substantial 708 

distance accounting for the reduced between-network connection probabilities (Table 2). Each network 709 
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follows a cortical architecture with modular structure compatible with previous spiking 710 

implementations of attractor memory networks (Lansner, 2009; Tully et al., 2014, 2016; Lundqvist et 711 

al., 2011; Fiebig and Lansner, 2017; Chrysanthidis et al., 2019; Fiebig et al., 2020), and is best understood 712 

as a subsampled cortical layer 2/3 patch with nested hypercolumns (HCs) and minicolumns (MCs; Fig. 713 

5A). Both networks span a regular spaced grid of 9 HCs (Table 2), each with a diameter of 500 µm 714 

(Mountcastle, 1997). In our model, items are embedded in the Item network and context information 715 

in the Context network as internal well consolidated long-term memory representations (cell 716 

assemblies), supported with within-network weights (within-network connectivity) derived using prior 717 

BCPNN long-term learning (Fig. 5B,C). Consequently, these weights were resistant to changes during 718 

associative learning of projections between item and context networks (see Results section). Our item 719 

and context memory representations are distributed and non-overlapping, i.e. with a single distinct 720 

pattern-specific (encoding) MC per HC. This results in a sparse neocortical type of activity patterns 721 

(Barth & Poulet 2012). It should be noted that the model tolerates a marginal overlap between different 722 

memory patterns, i.e. shared encoding minicolumns (data not shown). Each minicolumn is composed 723 

of 30 pyramidal cells (representing the extent of layer 2/3) with shared selectivity, forming a functional 724 

(not strictly anatomical) column. In total, the 18 HCs (16 MCs each) of the model contain 8640 excitatory 725 

and 1152 inhibitory cells, significantly downsampling the number of MCs per HC (∼100 MCs per HC in 726 

biological cortex). Within each HC there are 480 pyramidal cells and 120 basket cells, and hence our 727 

model does match in-vivo observations of 4:1 ratio of excitatory to inhibitory cells (Zaitsev and Lewis, 728 

2013). Our model also accounts for another type of inhibition - namely, disynaptic inhibition mediated 729 

via dendritic targeting double bouquet and/or bipolar cells. As a result, a sizable fraction of the total 730 

inhibition (i.e. all the “learned" inhibition) is modeled implicitly via learned negative weights rather than 731 

explicitly via inhibitory cells. The high degree of recurrent connectivity within (Thomson et al., 2002; 732 

Yoshimura and Callaway, 2005) and between MCs links coactive MCs into larger cell assemblies (Eyal et 733 

al., 2018; Binzegger et al., 2009; Muir et al., 2011; Stettler et al., 2002). Long-range bidirectional 734 

between-network connections (item-context bindings or associative connections) are plastic (shown in 735 

Fig. 5A only for MC1 in HC1 of the Context network), binding items and contextual information 736 

(Ranganath, 2010). On average, recurrent connectivity establishes 100 active plastic synapses onto each 737 

pyramidal cell from other pyramidals with the same selectivity, due to a sparse between-network 738 

connectivity (cpPPA) and denser local connectivity (cpPP, cpPPL; connection probability refers to the 739 

probability that there is a connection between a randomly selected pair of neurons from given 740 

populations; in Fig. 6A connection probabilities are only shown for MC1 in HC1 of the Context network). 741 

The model yields biologically plausible excitatory postsynaptic potentials (EPSPs) for connections within 742 

HCs (0.72 ± 0.085 mV), measured at resting potential EL (Thomson et al., 2002). Densely recurrent non-743 

specific monosynaptic feedback inhibition mediated by fast spiking inhibitory cells (Kirkcaldie, 2012) 744 

implements a local winner-take-all structure (Binzegger et al., 2009) amongst the functional columns. 745 

Inhibitory postsynaptic potentials (IPSPs) have an amplitude of -1.160 mV (±0.003) measured at -60 mV 746 

(Thomson et al., 2002). These bidirectional connections between basket and pyramidal cells within the 747 

local HCs are drawn with a 70% connection probability. Notably, double bouquet cells shown in Figure 748 

6A, are not explicitly simulated, but their effect is nonetheless expressed by the BCPNN rule. A recent 749 
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study based on a similar single-network architecture (i.e. with the same modular organization, 750 

microcircuitry, conductance-based AdEx neuron model, cell count per MC and HC) demonstrated that 751 

learned mono-synaptic inhibition between competing attractors is functionally equivalent to the 752 

disynaptic inhibition mediated by double bouquet and basket cells (Chrysanthidis et al., 2019). 753 

Therefore, BCPNN describes the effect of not-explicitly simulated double-bouquet cells (DBCs) by 754 

replacing disynaptic inhibition with negative connections (GABA reversal potential) between cell 755 

assemblies that do not share the same pattern selectivity. Also, other network models with negative 756 

synaptic weights have been shown to be functionally equivalent to ones with both excitatory and 757 

inhibitory neurons with only positive weights (Parisien et al., 2008). Parameters characterizing other 758 

neural and synaptic properties including BCPNN can be found in Table 1. 759 

Figure 6B shows the weight distributions of embedded distributed cell assemblies, representing 760 

different memories stored in the Item and Context networks. Attractor projections can be further 761 

categorized into strong local recurrent connectivity within HCs, and slightly weaker long-range 762 

excitatory projections across HCs (Fig. 6C). 763 

 764 

 765 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2024. ; https://doi.org/10.1101/2024.06.21.598805doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.21.598805
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

29 

 766 

Figure 6: Network architecture and connectivity of the Item (green) and Context (blue) networks. A, The 767 
model represents a subsampled modular cortical layer 2/3 patch consisting of minicolumns (MCs) nested in 768 

hypercolumns (HCs). Both networks contain 9 HCs, each comprising 16 MCs. We preload abstract long-term 769 

memories of item and context representations into the respective network, in the form of distributed cell 770 

assemblies with weights establishing corresponding attractors. Associative plastic connections bind items 771 
with contexts. The network features lateral inhibition via basket cells (purple and blue lines) resulting in a 772 
soft winner-take-all dynamics. Competition between attractor memories arises from this local feedback 773 

inhibition together with disynaptic inhibition between HCs. B, Weight distribution of plastic synapses 774 

targeting pyramidal cells. We show the fast AMPA weight components here, but the simulation also includes 775 

slower NMDA weight components. C, Weight matrix between attractors and competing MCs across two 776 
sampled HCs. The matrix displays the mean of the weight distribution between a presynaptic (MCpre) and 777 

postsynaptic minicolumn (MCpost), within the same or different HC (black cross separates grid into blocks of 778 
HCs, only two of which are shown here). Recurrent attractor connections within the same HC are stronger 779 
(main diagonal, dark red) compared to attractor connections between HCs (off-diagonals, orange). Negative 780 

pyramidal-pyramidal weights (blue) between competing MCs amounts to disynaptic inhibition mediated by 781 

double bouquet cells.  782 
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Axonal conduction delays 783 

Conduction delays (tij) between a presynaptic neuron i and a postsynaptic neuron j are calculated based 784 

on their Euclidean distance, d, and a conduction velocity V (Eq. 10). Delays are randomly drawn from a 785 

normal distribution with a mean according to distance and conduction velocity, with a relative SD of 786 

30% of the mean in order to account for individual arborization differences, and varying conduction 787 

speed as a result of axonal thickness and myelination. In addition, a minimal delay of 1.5 ms (𝑡𝑚𝑖𝑛
𝑠𝑦𝑛

, Table 788 

2) is added to reflect synaptic delays due to effects that are not explicitly modeled, e.g. diffusion of 789 

neurotransmitters over the synaptic cleft, dendritic branching, thickness of the cortical sheet and the 790 

spatial extent of columns (Thomson et al., 2002). Associative between-network projections have a ten-791 

fold faster conduction speed than those within each network, reflecting axonal myelination. 792 

 793 

                      794                                                 (10) 

 795 

Stimulation Protocol 796 

Noise input to pyramidal cells is a zero-mean noise, generated by two independent Poisson generators 797 

with opposing driving potentials. Pyramidal cells coding for specific items and contexts are stimulated 798 

with an additional specific excitation during encoding and cued recall (all parameters in Table 2). 799 

 800 

New- vs old-in-context memory discrimination  801 

Our model discriminates old- vs. new-in-context items based on a comparison of the firing rates in the 802 

Item network during stimulation of items in given contexts. New-in-context items were selected if the 803 

corresponding trial-average firing rates were 15% lower than the pair-matched old-in-context items. 804 

First, we determined a decision threshold high enough to show significant differences between trial-805 

average firing rates, and then we tuned the model (i.e., strength of activations-cues and background 806 

excitation - noise) to match the reported behavioral results of an item-in-context memory task. By 807 

changing this decision threshold, we can retune the strength of the cues and noise, or even modify other 808 

parameters (i.e., boost between-network connectivity) to produce comparable results, so the decision 809 

threshold by itself is not critical. While the action selection following the recollection (old item-in-810 

context) was intriguing, it has been out of the scope of this particular study to detail it further.  811 
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Pairwise differences 812 

To show changes in firing rates (f), within- and between-network connectivity (w), and bias (b), we 813 

calculate the corresponding differences in the averages between pairs of old and new items, Δfold-new, 814 

Δwold-new, Δbold-new, respectively. 815 

 816 

Code accessibility 817 

We use the NEST simulator (Gewaltig and Diesmann, 2007), and a custom-built Bayesian-Hebbian  818 

learning rule module (BCPNN) in NEST (Tully et al., 2014) running on an HPE Cray EX supercomputer. 819 

The spike-based BCPNN learning rule implementation is freely available online at Zenodo 820 

(https://doi.org/10.5281/zenodo.5101626). The spiking neural network model is based on an earlier 821 

work readily accessible on ModelDB (https://modeldb.science/257610). 822 
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Figure S1: Graphical schematic of the three-context-transition task displaying pairs of new-old odors 999 

(depicted as rectangles with unique colors) in a given context. Odors were presented across two contexts in 1000 

the simulated episodic memory task, and only the new items-in-context were rewarded (R symbol in the 1001 
schematic denotes reward, and X symbol, in red, indicates a failed trial) when selected (a 50 ms stimulation 1002 
of the selected odor preceded the reward phase, representing a final odor sniff before the reward). Once a 1003 
new item was presented it was considered as old for the subsequent trials in the given context (as a trial we 1004 

defined a stimulation of a pair of new- and old-in-context items). Items were stimulated for the first time in 1005 
context A, half of the total 16 items were presented and rewarded in context A. After the context transition 1006 

half of the 16 items were presented in random pairs in context B. After one more context transition, we 1007 
activated in context A the remaining 8 items that were not previously presented in that context. Finally, 1008 

Memory Assessment was made in context B, where we presented the remaining half of the items that had 1009 
not been presented in context B, and paired them randomly with old items (pairs of odors were different 1010 

throughout the task). Context representations were constantly activated while cueing pairs of new-old items 1011 

for 250 ms each. In the Memory Assessment block, pairs of new-old items followed the Arrangement 1 1012 

criterion (new items were encoded more recently than the old ones). While context representations were 1013 
persistently cued we activated new and old items-in-context during trials. Plasticity rate of the associative 1014 

binding between Item and Context networks was modulated during item presentation and rewarded 1015 

accordingly (bottom subplot). 1016 

 1017 
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Figure S2: Average recall performance (hit rate, %) for the unbalanced and “No disynaptic inhibition” 1019 

prediction tasks corresponding to Arrangement 1 configuration. For the No disynaptic inhibition task, the 1020 
inhibitory weights between networks were disabled, and thus the Context network did not suppress new 1021 
items during Memory Assessment. SDs derived from the Bernoulli distributions for the probabilities of 1022 

success (hit) across all trials (scaled to %). 1023 
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