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Abstract

Psychiatry seeks to unravel brain dysfunction and individual differences in real-world contexts. Naturalistic
stimuli, like movie watching, are increasingly recognized for eliciting complex, context-dependent neural
activity with high ecological validity. Yet, current methods often rely on standard paradigms that average
data across time, limiting the full potential of such stimuli. Here, we present STIM, a Topological Data
Analysis-based framework designed to dynamically track how individuals integrate complex contexts in real
time. Applied to large-sample fMRI data from movie watching, STIM constructs a robust low-dimensional
dynamical landscape that reflects group consensus while probing individual variations at both global
(spanning narratives) and local (within specific narratives) levels. At the global level, individual differences
emerge along a center-periphery gradient in the dynamical landscape, which significantly predicts fluid
intelligence, underscoring the importance of neural adaptability and diversity. At finer scales, local
geometric features correlate with context-specific psychological traits beyond cognition. STIM also captures
developmental changes in the dynamical landscape and reveals abnormalities in conditions such as autism.
These findings demonstrate that STIM leverages the rich information from movie stimuli and fMRI

recordings as neural ‘probes’ to assess individual differences in cognition and mental health.
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Introduction

People live in highly complex social environments, where individual differences are largely reflected in how
we perceive and respond to external stimuli. In extreme cases, such as mental illness, these processes can
diverge significantly from those in healthy individuals, showing distinct cognitive, emotional, and attentional

preferences.

Standard neuroscience experimental paradigms struggle to provide the rich stimuli characteristic of real-life
conditions. Task paradigms, typically highly controlled, are designed to target specific brain circuits(1, 2)
related to particular cognitive or emotional functions. The variability in brain activation patterns between
individuals can predict task performance and corresponding phenotypic traits(3). In contrast, the resting-state
paradigm aims to reveal brain’s intrinsic functional organization, which has demonstrated stable individual
specificity and can predict behavior and task-related activation across multiple domains(4). However, due to
their highly tailored design, tasks often focus on specific functions and require repeated trials to accumulate
brain activation patterns, potentially sacrificing generalizability for specificity. While the task-free resting-state
paradigm offers broader applicability, it could reflect uncontrolled, internal mental states, which are difficult
to measure and susceptible to interference. For instance, previous studies indicate that a significant proportion

of individuals experience reduced alertness or even light sleep during resting-state scans(5, 6).

The emerging naturalistic paradigm, using stimuli like movies, offers a more realistic and holistic approach to
studying individual differences(7). This integrated paradigm combines the strengths of both task-based and
resting-state paradigms, enhancing ecological validity and enabling high-throughput exploration of the brain’s

complex functional systems(8).

However, current computational models for naturalistic stimuli lack the temporal resolution needed to capture
how individual brains integrate context-dependent dynamic content(9).For instance, in a film scene with short,
subtle negative cues, most healthy individuals may follow the main storyline without distraction, while
individuals with depression might focus on the negative cues, leading to distinct subjective experiences.
Notably, commonly used inter-subject correlation (ISC) and other similar approaches, measure the synchrony
between different subjects over an entire duration or sliding time window(10-15), tend to blur transitions
between brain states. State-based approaches such as the Hidden Markov Model (HMM)(16, 17) and Co-

activation Patterns (CAPs)(18) are constrained by the number of brain states they can account for (typically, n
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< 10), making them better suited for resting states and presenting challenges in accurately measuring the brain

representations of rich stimuli.

Recent studies across species suggest that large-scale coordinated neural activity could map to continuous,
latent space trajectories (or flows, manifolds) that supporting ongoing behavior and cognitive function at the
system level(19-22). Inspired by these findings, we hypothesize that the fluctuating main storyline in a movie
acts as an anchor or attractor basin guiding low-dimensional brain latent trajectories that may encode subjective
experiences. These trajectories, likely stable at the group level, may serve as a neural signature of group
consensus. Individual-specific experiences, on the other hand, would appear as divergent latent dynamics,
shaped largely by individual characteristics; for instance, individuals with depressive tendencies may be more

influenced by negative cues.

Here, we introduce STIM (Synchronized Topological Individual Mapper), a Topological Data Analysis (TDA)-
based framework that aligns high-dimensional whole-brain activities across individuals during movie fMRI
into a shared low-dimensional state space, while preserving flexible and unstructured individual brain dynamics.
STIM generates a stable group-average dynamic landscape and quantifies individual-specific deviations from
the group’s latent trajectories across two scales: a global, shape-like topology (spanning narratives) and a local,
cluster-like geometry (within specific narratives). We expect STIM to ‘decode’ individual traits in a context-
dependent manner, which can then be validated through self-reported cognitive and mental health phenotypes
from questionnaires. Specifically, STIM uses the TDA-based Mapper approach to map high-dimensional
datasets as a low-dimensional shape graph to visualize and analyze the topological and geometric information
therein(23). Mapper has been shown to sensitively capture brain state transitions up to ~4-9s faster than
traditional methods, without requiring any annotation or assumptions about the analyzed data and can

maximally retain the full spatiotemporal dynamic information at the individual level(24).

We applied the STIM framework to two large datasets: 170 subjects from the Human Connectome Project
(HCP) and 970 subjects from the Healthy Brain Network (HBN), to examine how brain dynamics during
movie watching relate to individual differences across multiple domains. We found that a stable group-level
dynamical landscape characterizing individual differences could be constructed with as few as 20
participants. Both datasets indicated that global topology (spanning narratives) is significantly associated with
cognitive ability, while local geometry (within specific narratives) explains specific dimensions of mental
health. In most cases, individuals with higher cognitive abilities are more likely to follow the group’s latent

dynamic patterns under more cognitively guided conditions. However, when negative cues within specific
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narratives are present, individuals with context-dependent mental health issues may deviate from group
patterns. Based on the HBN dataset, we further explored the potential of the STIM framework in

characterizing adolescent development and its applications to conditions such as autism.

Results

Mapper captures rapid and complex dynamics during movie-watching in the individual brain.

In multi-task and resting conditions, Mapper is effective in constructing the individual dynamic landscape and
capturing transitions between tasks as well as within spontaneous brain states(25). Extending previous studies,
we expect that the TDA-based Mapper can effectively characterize the topology and dynamics of brain
configurations related to more complex movie stimuli at the individual level, without necessitating any movie

annotations.

Accordingly, we analysed high-quality 7T fMRI data during movie-viewing from the HCP (n=170, 4 runs for
each participant), consisting of concatenated movies covering various themes such as science-fiction (sci-fi),
drama, and nature scenes (details in Supplementary Tab. 1). Using the classic Mapper approach, we generated
a topological landscape at single subject level(26) (Fig. 1a, See Methods). Classic Mapper aims to capture
topological and geometric information, serving as a generalized notion of coordinatization for high-
dimensional data (i.e., brain activity across fMRI scanning). The Mapper begins with a filter function f to
generate a low-dimensional embedding, typically employing nonlinear dimensionality reduction techniques
(such as UMAP(27), t-SNE(28)). This approach is crucial to preserve the ‘nearness’ of data, a desirable
property in manifold learning that helps to mitigate the effects of the ‘curse of dimensionality’. The low-
dimensional filtered data were then encapsulated into overlapping bins, generating a rough image of the data’s
topology. Within each bin, partial clustering was applied to refine the scale, with each cluster forming a node
and the overlaps between nodes forming edges. This process produces a multiresolution image of the data’s
topology and is less sensitive to the choice of metric. Through this processing, the high-dimensional brain

activity data are condensed into a shape graph(23).

Fig.1b displays the topological landscape of global brain dynamics for a representative individual (see more
people in Supplementary Fig.1), that is, a Mapper-generated shape graph. This graph intuitively illustrates
nodes as clusters of whole-brain volumes with high similarity (with size indicating the number of included
time volumes, from 4 to 48 seconds for each node), and nodes sharing overlapping volumes are connected. A

distinctive feature of the Mapper method is its embedding of temporal brain activations into the topological
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structure of the graph, enabling a dynamic, global perspective analysis and visualization of high-dimensional
fMRI data. A video version of Fig.1b, available in Supplementary Mov.1, concurrently showcases the dynamic
trajectory of the shape graph and the corresponding movie content being watched. The color annotations in
Fig.1b represent different movie sources. Interestingly, movies viewed in different runs can form a cohesive
topological landscape, and movies with similar themes tend to exhibit stronger connections, such as dramas
(The Social Network and Ocean’s 11) and nature scenes (Off the Shelf and Northwest Passage), while a theme-
rich movie (Mrs. Meyer’s Clean Day) is dispersed throughout the graph. This suggests that merging multiple

movies can establish a global, rich dynamic landscape.

Moreover, Mapper can provide an interactive, flexible visualization to interpret how the brain traverses its
dynamical landscape during movie-watching, by annotating the shape graph with different types of
information: i) When annotated by time order, it can display the flow and rapidly changing dynamics related
to the viewing context (Fig.1c and Supplementary Mov.1); ii) When annotated by focused semantic topics,
such as volumes with ‘talk’ or without, emerging clustering in the individual shape graph becomes visible
(Fig.1d); iii) When annotated by network activation, the pie-chart notation of nodes represents the weight of

functional networks, revealing interested brain configuration patterns(25) (Fig.le).
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a b Topological landscape of an example individual during movie watching
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Fig 1 Mapper approach captures the individual dynamic topological landscape. (a) A conventional Mapper
pipeline for movie-viewing fMRI analysis is outlined as follows: First, the high-dimensional neuroimaging data are
embedded into a low-dimensional space using a nonlinear filter function f. Here, we chose Uniform Manifold
Approximation and Projection (UMAP). Second, the low-dimensional embedding is mapped (via binning and
clustering) into an overlapping grid, generating a shape graph, where the nodes of the shape graph are determined by
bins, and the edges are determined by the overlap between bins. Within the shape graph, closely connected nodes
correspond to highly similar whole-brain time frames. Lastly, annotations of interest are added to the shape graph at
the volume scale (for example, time flow) or the node scale (for example, node centrality) to further research the
topological relationships among different features and to facilitate their visualization. (b) The HCP dataset includes
various categories of movie stimuli, and 7 of 18 representative clips were used as examples, including sci-fi
(Inception), drama (Ocean’s Eleven, The Social Network), music video with nature scenes (Off the Shelf), romance
(1212), documentary (Mrs. Meyer’s Clean Day), and nature scenes (Northwest Passage) (from left to right). (c, d, e)
Three kinds of Mapper independent information were annotated for illustration, including time order (70 volumes), ‘talk’
semantic label, activation of nine pre-parcellated brain networks.
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STIM framework to capture individual divergence in global topology and local geometry.

While the Mapper approach effectively delineates individual dynamical landscapes, significant challenges
persisted in characterizing the neural signature of consensus at the group level and the divergence specific to
individuals. Also, previous studies focused on non-event-related topological descriptors cannot adequately
accommodate analysis of specific movie content(16, 29, 30). Therefore, we introduce the STIM (Synchronized
Topological Individual Mapper) framework, aiming to construct a group-level dynamical map of consensus
as the reference and quantify individual-specific divergence both in the global topology, corresponding to the
overall viewing experience, and in local geometry, corresponding to the experience of specific plot elements.
STIM presupposes that individual-specific low-dimensional, latent dynamics, encoded by the Mapper shape
graph, reflect subjective experiences during movie viewing, wherein the same stimuli evoke consensus or
divergence across viewers. Thus, STIM was developed to align individuals while preserving and quantifying

individual-specific topological features.

For a more intuitive demonstration, we chose the segment from the movie Inception (Fig. 2a, duration: 3
minutes and 46 seconds) as an example, and manually annotated two scene transitions, both of which feature
a significant change from face close-up/dialogue to sci-fi/space folding content (the two sci-fi/space folding
scenes are named ‘city-folding’ and ‘mirror corridor’). Fig. 2b shows shape graphs of three participants
watching Inception, with annotations of movie plots (light green and light purple represent the first close-
up/dialogue and ‘city-folding’, connected by transition-A; deep green and deep purple represent the second
close-up/dialogue and ‘mirror corridor’, connected by transition-B). In the low-dimensional topological space,
two typical individuals (subject-1 and subject-2 in Fig. 2b) were observed to exhibit dynamical consensus
patterns: integrating into two different clusters associated with face close-up/dialogue and sci-fi/space folding,
respectively, and exhibited an ‘expected’ dynamic transition from the face close-up/dialogue topological
region to the sci-fi/space folding topological region. Interestingly, some individuals exhibited ‘unexpected’
transitions towards two distinct topological regions, potentially indicative of their divergence in movie-
viewing experiences (such as subject-3 in Fig.2b). The shared and specific features were plausibly observed
in individual shape graphs (Fig.2b). However, the shape graphs were independent and thus incomparable. To
construct a shared topological space, we concatenated two individuals’ data to provide a higher-dimensional
representation space and built a combinatorial shape graph of subject-1 and subject-3 (Fig. 2c left), which can
represent the synchrony and idiosynchrony: their dynamics cluster at the two face close-up/dialogue and the
‘mirror corridor’; however, subject-3 deviated to another topological region while watching the ‘city-folding’
after transition-A (A full video version is available in Supplementary Mov.2). Therefore, an important

procedure in STIM is to concatenate the high-dimensional brain activities across subjects to align brain
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dynamics and generate a shared low-dimensional topological space using Mapper (see Fig. 2c right).
Furthermore, the shared shape graph can be converted into an adjacency matrix (i.e., temporal connectivity
matrix, TCM)(24), in which elements represent the connectivity strength between the two volumes by shared
nodes. By calculating the TCM of the combinatorial shape graph, we can quantify the topological similarity

between any volumes from different individuals (see Methods for details).

The STIM framework is designed to effectively analyze large-sample movie-viewing data. To characterize
the canonical dynamics as group-level consensus, STIM concatenated the volumes of all movies and all
individuals (for HCP: 2804 volumesx170 subjects, 476,680 volumes) to create a panoramic view of movie-
viewing dynamics. The ‘shared filtering” data were subsequently binned and clustered to derive each subject’s
TCM relative to the group reference, which was generated by averaging embeddings across individuals in a
low-dimensional space (Fig. 2d). STIM then quantified individual divergence by decomposing the individual-

group TCM into two distinct scales (Fig. 2d, see Methods):

i) Global topology similarity: This metric quantifies the overall shape similarity of topological landscapes cut
across movie contents. As an example, Subject-3 might not only deviate in the ‘city-folding’ scene of Inception
but also exhibit lower similarity with the group reference across various movie scenes, indicating a lower
global topology similarity, reflecting broader deviation in brain dynamics under different cinematic contexts.
Global topology similarity is defined as the diagonal value of the TCM (n volumes = 2804 for all HCP
contents). STIM filtered low-dimensional embeddings (or trajectories) showed a more consistent population-
shared shape of global topology than the original time series (Fig. 2e). Furthermore, trajectories of latent
dynamics in the STIM pipeline showed significantly higher consistency than top region of interests (ROIs)
within the visual network (Supplementary Fig. 2), supporting that the latent dynamics of consensus reflects a
global integration of the brain during movie-watching beyond merely sensory input. This global integration
may be linked to subjective experience. For example, in Off the Shelf, the first half presents unguided, non-
narrative natural scenes, followed by a clearly structured story segment. Group clustering associated with the
narrative appeared in low-dimensional space, rather than in visual regions, potentially reflecting shared
subjective experiences (Supplementary Mov.3 and Supplementary Fig.3). Notably, the individual differences
in global topology similarity remained stable even with a small reference sample. For example, when
randomly selecting 15 subjects as the group reference, the average Pearson correlation r across iterations was
0.98 (Fig. 2f). We also constructed a shared topological dynamic space for Inception, where different groups
(with n = 15 per group) exhibited very highly similar transitions and positions over time within the topological

space (Supplementary Mov.4).
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ii) Local geometry similarity: This metric quantifies the local similarity elicited by specific movie contents.
For example, Subject-1 and Subject-3 showed lower similarity in ‘city folding’ content, while forming a
cluster-like structure in the second sci-fi scene (Fig. 2¢, ‘mirror corridor’ in Fig. 2a). Local geometry similarity
is defined as the weighted score of cliques detected by a change point detection algorithm(31) (n clusters =
161 across all HCP movie contents, see Methods). To ensure that the algorithm can capture meaningful movie
transitions, we compared these topological cliques to the manual segmentations based on semantic labels
manually annotated by the HCP dataset (see Methods). We found that the discrepancy between topological
and semantic cliques was significantly smaller compared to a null model (P < 0.0001, Fig. 2g), indicating that
local topological similarity can capture fine-grained, unstructured transitions in movie plots. The deviation
between manually labeled transitions (A and B in Inception) and the detected change points is shown in

Supplementary Fig. 4.


https://doi.org/10.1101/2024.06.20.599966
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.20.599966; this version posted November 17, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

We propose the STIM framework to effectively align different individuals while preserving individual-specific dynamic topology

4 representative scenes manually annotated from the movie ‘Inception’, highlighting the sudden transition
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Fig 2 The STIM (Synchronized Topological Individualized Mapper) framework. (a) We manually labeled two
representative segments from Inception, each with a continuous sequence, featuring face close-up/dialogue in the first
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half and sci-fi/space folding scenes in the second half. (b) We annotated four scenes in the individual shape graphs of
the three subjects chosen as examples. According to our assumption, brain dynamics are clustered during face close-
up/dialogue scenes and sci-fi/space folding scenes at different times. Subject-1 and Subject-2, conforming to the
assumption, respectively formed different clusters, while Subject-3 exhibited an "unexpected" transition. (¢) STIM
framework. The left panel shows the shape graph of alignment for Subject-1 and Subject-3, with annotations of the four
scenes. The right panel illustrates the motivation for alignment: introducing a new subject in high-dimensional Euclidean
space to provide a comparable combination of TRs. In the topological space, the distances between volumes from
different individuals are rescaled through a fuzzy simplicial set (in the context of UMAP). Subsequently, through the
filtering and binning steps, a combinatorial shape graph (aligned shape graph) is generated. Finally, the strength
between volumes is quantified by TCM. A time-flow arrow illustrates the temporal dynamics of the two subjects. (d) Two
scales of topological similarity. Global topological similarity is defined as diagonal of subject-group interact TCM (yellow
line), represents the overall shape similarity. Local topological similarity is defined as weighted sum of elements in a
cluster (orange box), represents deviation in specific movie content. (e) Group consistency across different sample sizes
between STIM and time series: the scatter plot displays the Pearson correlation between two family unrelated groups
with increasing sample sizes, ranging from 5 to 40 subjects, randomly selected. For a fair comparison, each ftrial
randomly selects time series from 3 ROls. ****;: P<0.0001 (f) Stability test of global topology similarity. We changed the
group reference by randomly selecting different small group of individuals. We examined the stability of global topology
similarity across different group sizes. Scatter plots show the Pearson correlation of global topology similarity between
small group references and the whole group reference. (g) An illustration of the ecological validity of topologically self-
organized cliques: The dashed line indicates the error between the topological events segmentation and the semantic
events segmentation, accompanied by a gray null distribution, repeated 10,000 times with 161 events segmentations
randomly divided in each iteration.

The principal gradient of individual differences in the topological landscape explains cognition from a

dual perspective.

Global topology similarity can capture the individual divergence in the shape of the dynamical landscape. We
next explore how this divergence in global topology differs between individuals and over time by integrating
multi-level information, including topological attributes within the landscape, synchronous modes within the
population, brain network configuration, movie contents, and behavioral domains. We performed a principal
component analysis (PCA) on the global topological similarity matrix (170 subjects>2804 volumes) across

time.

Fig.3a highlights the top 5% positive and negative volumes of the weights in the first principal component
(PC1) of the group shape graph, denoted as +VOLs and -VOLs (140 volumes), respectively. At a global level,
-VOLs and +VOLs exhibit a trend from the graph’s center to its periphery. Further, employing betweenness
centrality to measure topological attributes(32), we discovered that + VOLs exhibited significantly lower

betweenness centrality than - VOLs (t=-13.9, P < 0.0001, Fig.3a).

Besides topological attributes, we examined how the + VOLs and - VOLs systematically differed in group
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synchronous modes. We observed a significant divergence in the dynamics of synchrony between +VOLSs and
-VOLs (t=18.1, P<0.0001, Fig.3b). We presented the low-dimensional embeddings of all subjects’ volumes
at two representative volumes for +VOLs and -VOLs (Fig. 3b). +VOLs exhibited an ‘attractor-like’ mode,
where subjects tend to converge (stronger consensus); in contrast, -VOLSs displayed an ‘unconstrained’ mode,
where subjects are more dispersed (weaker consensus). These two modes also exhibited distinct preferences
for movie content. We showcased the top 10 semantic labels where +VOLs and -VOLs differ most
significantly in their relative proportions (Fig. 3c). We found that +VVOLs were more associated with the
human-related scenes, predominantly featuring the top entries such as ‘man’, ‘talk’, and ‘sit’. In contrast, -
VOLs were more aligned with nature scenes compared to +VVOLs, with the top labels being ‘forest’, ‘fog’,

and ‘flower’.

How is the principal gradient interpreted from the perspective of brain network configuration? Previous work
showed a dynamical topographic gradient of resting-state networks(25). Similarly, we annotated the activation
of 9 networks on the group shape graph and qualitatively depicted the network’s domination using pie-chart
proportions (Fig. 3d). We calculated a mixed index of nodes to describe the overall activation variation across
the networks (see Methods). We found that the mixed index for +VVOLs was significantly lower than that for
-VOLs (group-level across time: t=-11.35, P < 0.0001; subject-level across individuals: t=-5.27, P < 0.0001),
suggesting that the network configuration along the principal gradient shifts from uniform activation to the
dominance of one or more networks. Integrating movie content into our analysis, we highlighted six movie
segments aligned with the principal gradient, highlighted by magnified nodes. Four of these segments
belonged to +VOLs (A+, B+, E+, F+ in Fig. 3e) and were associated with social interactions or human
behaviors, engaging networks such as the control network, default mode network, dorsal attention network,
and visual network. The remaining two segments belonged to -VOLs (C-, D- in Fig. 3e), which were linked

to non-human scenes.

Therefore, individual divergence in group consensus can be interpreted as follows: At the +VVOLSs, subjects
engage in ‘attractor-like’ modes, where higher scores indicate greater flexibility in adapting brain
configurations to the diverse cognitive contents (Fig. 3f). At the -VOLs, subjects exhibit ‘unconstrained’
modes linked to nature scenes and mixed network activations, with higher scores suggesting less mind
wandering and greater conformity with the group (Fig. 3g). Interestingly, within +VOLs, individuals who
align more closely with the group consensus (demonstrating higher global topology similarity) have greater
fluid intelligence (Spearman r = 0.30, P < 0.0001, Fig.3h); in contrast, within -VOLs, individuals who diverge

from the group consensus (exhibiting lower global topology similarity) display increased fluid intelligence
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(Spearman r=-0.18, P =0.017, Fig.3i). The results suggest that the principal gradient of individual differences
in global topology explains cognition from a dual perspective: in ‘attractor-like’ modes, stronger dynamic
‘following” to group latent states correlates with better cognition; in ‘unconstrained’ modes, greater

divergence correlates with better cognition.

Next, we calculated a global principal gradient across all volumes (including +VOLs and -VOLS) for each
participant. This gradient is significantly associated with cognitive domains but not with emotional or
personality domains (Supplementary Tab. 3). Fluid intelligence showed the strongest correlation (Spearman r
=0.32, P <0.0001). This effect is comparable to the predictive capacity of static functional connectivity (sFC,
Supplementary Fig.5). To ensure the gradient score as a trait-like marker, we computed principal gradients
across two independent days, resulting in a relatively high correlation (Spearman r = 0.54, P < 0.0001). Lastly,
we examined the contributions of the principal gradient to fluid intelligence at the brain region level in the
population weights. In brief, we calculated the similarity between each ROI and the global topology across
individuals (see Methods for more details). We found that +VVOLs were associated with most brain regions,
spanning the major cortical areas and cerebellum (Fig.3]j), while significantly fewer regions correlated with -

VOLs, involving the default mode network and the control network (Fig.3K).
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the principal gradient of inter-individual global topology similarity exhibits a center-to-periphery mode over time.
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Fig 3 The principal gradient of individual differences in the global topology of the dynamical landscape. (a)
We displayed a group shape graph from averaged embeddings and annotated time points at the extremes of PC1
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(+VOLs and -VOLs). The distribution plot shows the betweenness centrality for +VOLs and -VOLs. (b) Population
dynamics of +VOLs and -VOLs. The distribution plot illustrates the group synchrony for +VOLs and -VOLs. Group
synchrony is defined as the average global topology similarity among individuals, corresponding to the illustration of
attractor-like and unconstrained modes. UMAP embeddings for all individuals at the most extreme volumes are
displayed. (c) Word clouds depict the 15 terms with the largest semantic frequency differences between +VOLs and -
VOLs. (d) Brain network configurations are annotated on the group shape graph, with proportions representing
network activation levels. (e) Across the most extreme time points in +VOLs and -VOLs, we displayed compressed
information of six representative nodes, including network configurations, the mixed index, and corresponding movie
content. (f, g) We illustrated different individual dynamic patterns in +VOLs and -VOLs, where orange lines represent
individuals not following the group, and blue lines represent those following the group. (h, i) Scatter plots show the
correlation between averaged global topology similarity and fluid intelligence for +VOLs and -VOLs. (j, k) The values
demonstrate the contribution of ROls, with the sign indicating the direction of correlation between ROI and PC1 of
global topology. DorsAttn, dorsal attention network; SomMot, somatomotor network; SalVentAttn, salience/ventral
attention network.

Local geometry similarity of individual differences in topological landscape explains mental health

We hypothesize that the local geometry similarity corresponding to topological cliques can explain multi-
dimensional human behaviors in a manner related to the specific movie content. To explore the associations,
we included 59 behavioral measurements, including HCP-defined domains in Cognition, Emotion, Psychiatric
and Life Function (Fig. 4a, Supplementary Tab.2). Based on the STIM framework, we derived 161 modular
topological cliques (average duration = 17.4 seconds) as a range of non-overlapped ‘attractors’ that organized
by brain dynamics and movie contents (Fig. 4b). We anticipated that some of the cliques, particularly those
rich in cognitive, emotional, and well-being content, could act as neural ‘probes’ reflecting corresponding

domains of human behavior (Fig. 4c).

We conducted a partial least squares regression (PLSR) to identify such ‘probe-like’ cliques which are
behavioral relevant, resulting in significant 25 cliques (P < 0.05, after permutation). We next used pairwise
correlation analysis to link specific behavioral domains to these ‘probe-like’ cliques (Fig. 4d, see Method).
Using fluid intelligence as an example, a few topological cliques show significant correlations, especially
‘mirror corridor’, which had a comparable effect size to the global principal gradient (Spearman r=0.35,
P<0.0001, Fig.4d). The Cognition domain was discussed in the previous section. Here, we focus on Emotion
and Psychiatric and Life Function, combined as the mental health domain. Some measurements were reversed
to align as the uniform negative traits for mental health, such as transforming life satisfaction to life
dissatisfaction (see Methods). The local geometry similarity of most cliques negatively correlated with
negative traits, while in a few cliques was positively correlated with the negative traits (Fig. 4e, significance

denoted in the legend, only displaying pairs that are at least marginally significant: P < 0.1). The contribution
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of different mental health dimensions was visualized using a word cloud, where font size linearly represents

the mean significance rank (Fig.4f).

Among these, the most relevant behavior is life dissatisfaction, for which we highlighted the top four most
correlated cliques (Fig.4g).: joyfully discussing gossip while dining with friends (No.58, p =-0.29,
P=0.00012); leisurely rowing a boat (No.57, p= -0.24, P = 0.0013); a lady happily introducing her farm
accompanied by light music (N0.108, p= -0.24, P = 0.0016); making a joke with a smile during a serious
discussion (No.79, p=-0.23, P=0.0028). These scenes, accompanied by joyful facial expressions or relaxed
conversational atmospheres, are positive aspects of life and social interactions. The second correlated
dimension is loneliness, with the top four related cliques being: a single mother with her children remains
silent, their expressions sorrowful, accompanied by sad music (N0.131, p=-0.25, P=0.00099); the next clique,
this single mother with three children seeks help (No0.132, p=-0.22, P=0.0043); in a somber musical setting,
deserted forests and dilapidated buildings are displayed (No.117, p=+0.21, P=0.0063) as well as N0.58 (p=
-0.21, P=0.0063). The scenes associated with loneliness almost invariably involved somber atmospheres and

unhappy expressions.

The findings on life dissatisfaction and loneliness indicate that local brain geometry accounts for individual
differences in areas related to specific, explainable movie content. We next identified cliques most closely
associated with negative traits of mental health, with the representative examples displayed below (Fig.4g;
see Methods; additional details in Supplementary Tab. 4): For DSM (Diagnostic and Statistical Manual of
Mental Disorders) Somatic Complaints, the most related scenes: In the process of Cobb seeing himself being
intimate with his wife, his facial expressions vividly convey the astonishment and pain of losing her (No0.53,
p=-0.25, P=0.00092); accompanied by somber music, an interviewee solemnly shows a photo of his deceased
mother from his pocket (No0.37, p=-0.32, P<0.0001). Both scenes involve intense emotional trauma related
to death, which can elevate psychological distress to physical discomfort(33). Additional cliques-mental
health pairs include: being continuously stared at unkindly by strangers, explaining interindividual ASR (Adult
Self Report) Internalizing Score (N0.47, p=-0.24, P=0.0021); viewing a child blames himself with a negative
face, relating to Sadness (N0.128, p=-0.25, P=0.00088); a montage sequence shows a man and a woman each
lying on their sides in bed, corresponding to the ASR Rule Breaking Behavior Score (N0.103, p= -0.22,
P=0.0040). Exposure to hostile expression tends to relate anger dimension: the main character receives a note
with “udick’ (Anger Hostility, No.70, p=-0.18, P=0.021), and a ‘damn’ word is suddenly used in a dialogue,
provoking an angry response from another character (Anger Affect, No.78, p=-0.19, P=0.013).
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Interestingly, the number of cliques negatively correlated with negative mental health significantly exceeds
those with a positive correlation (Fig. 4e), suggesting that negative traits primarily disrupt individuals’ latent
trajectories toward group consensus during specific movie scenes. We hypothesize that a dual perspective may
also exist in the mental health domain: in a few ‘unconstrained’ modes cliques (such as No.117, the deserted
forests), negative traits may prevent individual divergence, leading to immersion in a negative emotion. To
verify this, we utilized +VOLs and -VOLs from the previous section, analyzing the directional correlation
between individual differences and negative emotions (Fig. 4h). We found that individual differences in
+VOLs are generally negatively correlated with negative traits (t=-8.8, P < 0.0001), whereas -VOLs are
positively correlated with negative traits (t=4.7, P < 0.0001). This suggests that distinct individual dynamic

patterns are linked to negative mental health in ‘attractor-like’ or “‘unconstrained” modes (Fig. 4h).
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Fig 4 The individual differences in the local geometry similarity of the dynamical landscape. (a) Multi-dimensional
behavior traits used for analysis. A total of 59 behavior traits were included. (b) Multi-dimensional local geometry
similarity for 161 cliques, including various movie content. (c) Hypothesis of probe-like cliques: the individual local
geometry similarity of specific clique may relate to corresponding behavior traits. (d) Methodological illustration for
identifying probe-like cliques: PLSR with permutation test was conducted to identify probe-like cliques. An example of a
probe-like clique related to fluid intelligence: characters create a surreal corridor using mirror reflection. (e) Subsequent
analysis focused on negative mental health (some behavior traits were reversed). A heatmap displays significant
correlation levels between probe cliques and negative mental health dimensions, arranged by mean significance. Non-
significant points (P > 0.1) are shown in grey. (f) A weighted word cloud depicting the significance level for various
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negative mental health. (g) Movie contents corresponding to representative cliques significantly associated with mental
health dimensions are presented. The selection includes the four most significantly correlated cliques with loneliness
and life dissatisfaction, along with other representative cliques across all probe-like cliques and mental health
dimensions (excluding loneliness and life dissatisfaction). Cliques N0.108, No.57, N0.128, and No.78 did not pass the
permutation test; nevertheless, we included these pairs because of their interpretive value. P-values denote the raw
Spearman correlations between clique-behavior pairs. The brain configurations of the displayed cliques are shown in
Supplementary Fig.6. (h) Dynamic modes of group dynamics in negative emotions. The distribution diagram illustrates
the direction of Spearman correlation between the topological similarity in +VOLs and -VOLs (i.e., ‘attractor-like’ and
‘unconstrained’ mode in Fig. 3) and individual top 10 negative emotions score. The schematic displays the population
dynamics of the +VOLs and -VOLs with negative emotions.

Using the STIM framework to characterize developmental progress and conditions

We further investigated whether the STIM framework could offer new insights into the developmental
progress and conditions of brain dynamics. To this end, we utilized the Healthy Brain Network (HBN) dataset,
which includes fMRI data from 970 participants aged 5-21, who watched a 10-minute clip of the animated
film Despicable Me. This comedic segment contains numerous instances of social processing. The participants,
presenting a wide array of transdiagnostic conditions (e.g., autism spectrum disorder), provide a
comprehensive context for investigating developmental trajectories and the spectra of mental disorders (Fig.

5a).

We first focused on the application of STIM in developmental progress. To mitigate the impact of the age
distribution of HBN participants, we used an HCP-trained STIM to compute individual topological landscapes
(see Methods). We initially examined the consistency of brain dynamics (low-dimensional embeddings after
the filter function f) across development. The results showed a significant positive correlation between mean
group consistency and age (Fig.5b), indicating that older individuals tend to achieve a more stable consensus
in their brain dynamics. We also observed that age differences negatively correlate with global topology
similarity between different age-sorted groups (see Methods), suggesting that groups closer in age exhibit

higher similarities in their latent dynamics (Fig.5c).

We then investigated whether developmental differences were associated with specific movie content. Using
the same STIM pipeline, we divided the time volumes into 41 non-overlapping cliques (mean duration = 14.6
seconds). Through manual labeling, we annotated the cliques with over 50% screen time featuring kids or
minions (the small, yellow characters in the movie, as shown in Fig.5d). Subsequently, we generated the
consensus of two extreme age groups (100 subjects for each group) and compared how individuals from

intermediate ages deviated from this consensus as the age gap increased (the other 770 subjects). The lower
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part of Fig. 5e shows specific cliques where individuals deviated from the youngest group consensus (in
orange) or engaged with the oldest group consensus (in blue) (P < 0.05 after FDR correction). Interestingly,
we found that cliques causing individuals to deviate from the youngest consensus, compared to those engaging
with the oldest consensus, featured significantly more scenes with kids or minions when calculated by time
volumes (2 (1) = 28.35, P <0.0001, Fig. 5e), indicating that scenes rich in child characters are more likely to
induce individual experiential differences among younger viewers during movie watching. Fig. 5f summarizes
these observations, illustrating that younger individuals show greater heterogeneity and lower synchrony, with
synchrony increasing progressively with age, especially in cliques featuring kids or minions. This indicates a

marked development in global topology similarity.

We then examined the individual differences in global topology. First, we replicated the main results found in
HCP data. A group-level shape graph was generated and annotated by the PC1 dimension on the global
topological similarity matrix over time (top 5%: +VOLs; bottom 5%: -VOLS) (Fig.5g). Consistent with the
HCP results, +VOLs exhibited significantly higher peripheral presence in the topological landscape (lower
betweenness centrality: t=-4.61, P<0.0001) and an ‘attractor-like’ mode (higher populational synchrony:
t=6.28, P<0.0001) compared to -VOLs. Given the dialogue-rich content of Despicable Me, we selected
listening comprehension scores from the Wechsler Intelligence Scale (WIAT) as the cognitive metric. Across
five equal-sized, non-overlapping age groups (Fig.5h), the principal gradient of global topology similarity
significantly correlates with cognitive function in four groups (group-1: r=0.31, P<0.0001; group-2: r=0.08,
P>0.05; group-3: r=0.15, P=0.032; group-4: r=0.36, P<0.0001; group-5: r=0.26, P=0.00031). In the HCP data,
we observed differences between +VOLs and -VOLs in terms of movie content. However, due to the absence

of natural scenes, we did not observe the significant opposite direction of cognitive correlation in HBN data.

For local geometry similarity, we focused on the paired correlations between cliques and mental health issues.
From behavioral measurements provided by the HBN dataset, we selected seven cognitive dimensions and
twelve psychological health dimensions with complete data, all adjusted to represent negative mental health
outcomes (Supplementary Tab. 2). Using PLSR approach, we identified 14 probe-like cliques for behavioral
correlation analysis. Consistent with the HCP findings, we discovered that specific movie content could
explain the association between local geometry similarity and negative mental health (Fig. 5i). Typically,
cliques associated with social mental problems primarily involve scenes of intense social interactions: three
kids playing and yelling, refusing to go to bed (No.0, p=-0.15, P<0.0001), passing a gun to a bystander and
then flying away (No.37, p=-0.12, P=0.0007), and a minion vocally protesting to Gru while attempting to
escape (No.40, p=-0.13, P=0.0004). Anxiety-related issues appeared linked to scenes depicting negative
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parental reactions, such as a minion’s invitation being sternly rejected by Gru (No.34, p=-0.11, P=0.002).
Emotional problems were potentially linked to extreme emotions: minions suddenly erupting in loud,
prolonged laughter during play (No.18 p=-0.14, P=0.0002). Additionally, across all probe-like cliques, local
geometry similarity was negatively correlated with negative mental health. The average correlation between

+VOLs and negative mental health was significantly negative (t=-5.87, P<0.0001).

Given the rich social interactions in Despicable Me, we explored the potential application of local geometry
in studying autism spectrum disorder (ASD). By conducting PCA on the behavioral measurements associated
with ASD, we divided individuals into four groups based on progressively severe ASD-like symptoms
excluding neurotypical controls (NC) individuals (n=165 for each group). We then compared the local
geometry similarity of these groups with the NC group (n=63) across all probe-like topological cliques. For
further insight, we also compared individuals officially diagnosed with ASD to NC individuals. We annotated
the movie content and dialogue for the three cliques most significantly associated with ASD-specific behaviors.
Interestingly, these cliques were all related to social behaviors (Fig. 5j). As ASD-like symptoms intensified,
the difference in following behaviors compared to NC individuals progressively increased. This pattern
suggests that customized movie scenes could potentially serve as neural ‘probes’ for identifying mental

disorders such as ASD.
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Fig. 5. Application in developmental progress and conditions. (a) Overview of HBN dataset. (b) Point plot showing
group consistency across different ages, indicated by Spearman’s correlation coefficient, with 95% confidence
intervals shown. (c) Scatter plot of age intervals and group global topology similarity. (d) Gray barcode plots display
cliques where ‘kids’ or ‘minions’ appear for over 50% of the screen time, with key characters and times described
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through snapshots and text. Orange barcode plots shows cliques that significantly deviate from the youngest
consensus with increasing age. Blue barcode plots depict cliques significantly engaging into the oldest consensus as
age increases. (e) Ratio of child appearances in cliques shows significant differences in younger individuals and older
individuals. (f) An illustration of developmental characteristics of topological properties. (g) Shape graph of averaging
individuals, with annotations of top 5% and bottom 5% time points of principal gradient. Violin plots show differences
of two parts of time points in betweenness centrality and group synchrony (mean global topology similarity across
individuals). (h) The study population is divided into five age groups, with scatter plots showing the relationship
between age and listening comprehension and topological similarity. (i) Five representative cliques with description
and corresponding mental health. Distribution plot shows the direction of top 5% timepoints in negative mental health.
()) Barcode plots show relationship between all probe-cliques and ASD (symptoms gradient and diagnostic
assessment), with description of top three probe-like cliques.
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Discussion

Naturalistic stimuli can elicit a continuous stream of rich subjective experiences through the adaptive
coordination of neural systems. While watching a film is a collective experience(10, 13, 16), it also includes
individual-specific elements likely determined by the viewer’s cognitive and psychological conditions(34,
35). From a dynamical system perspective, we propose that individual divergence from group consensus is
reflected in system-wide, low-dimensional brain latent dynamics, allowing for the probing of individual
behavioral traits and mental disorders. To this end, we introduce a computational framework, STIM,
designed to quantitatively elucidate the topological landscape of brain activity during naturalistic movie
viewing. The STIM framework can generate a reliable group-level landscape of brain latent state dynamics
and map individualized topological patterns into two distinct scales: global topology and local geometry,
corresponding to individual divergence across and within specific movie cliques, respectively. Applying
STIM to two large movie fMRI datasets, we demonstrated that the combination of rich naturalistic stimuli
with brain recording holds great potential as neural ‘probes’ to measure individual traits in various
behavioral domains. Specifically, global topology describes overall shape similarity and is specifically
related to cognition: individuals who closely follow group dynamics in ‘attractor-like’ modes exhibit higher
fluid intelligence, while those showing more diversity in ‘unconstrained’ modes also exhibit higher fluid
intelligence. At the finer movie clique scale, local geometry explains multi-dimensional mental health traits
beyond cognition. Lastly, we showed that STIM could capture the topological landscape related to
developmental processes, with potential applications in detecting and understanding neurodevelopmental

disorders such as autism.

STIM provides a novel method for analyzing brain states in the field of naturalistic fMRI, applicable to
longer and more complex movie-viewing data. Compared to HMM, CAPs, and similar state-based methods,
the TDA-based Mapper can represent a richer array of brain states during movie viewing. Additionally, it
automatically and flexibly captures rapid transitions, preventing the blurring of distinct brain states, and
provides user-friendly, dynamic visualizations. We observed that using the Mapper technique to construct
low-dimensional topological landscapes independently in different subjects exhibits similar rapid transitions
in response to the same movie content (Fig. 2b). STIM can further align these low-dimensional spaces
across individuals to generate a group template, thereby mapping individual-specific states to behaviors.
Remarkably, this group-level topological landscape and the corresponding patterns of individual differences
can be reliably established with a relatively small sample size (n=15). Thus, a cost-effective approach for

future studies would involve collecting diverse movie clips from a small subset of participants to create a
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rich, group-level topological reference(35). The reference can then be used with plug-and-play movie
segments tailored to various applications, guiding downstream scanning in larger populations. Although
subjective evaluations during movie viewing are lacking, we speculate that STIM primarily captures the
system-wide integration of brain activity during movie watching. This is especially evident considering that
the synchronization of latent embeddings (using UMAP as the filter function) is higher than that original

time series of visual regions, particularly in scenes requiring cognitive processing (Supplementary Fig. 2).

By applying the STIM framework to large-sample movie fMRI datasets, we have, for the first time,
elucidated the individual differences in latent dynamics during watching rich movie contents. In terms of
global shape-like topology, our findings reveal that different naturalistic stimuli elicit either common or
heterogeneous group consensus. Furthermore, individual divergence is specifically correlated with cognitive
abilities, but the direction of this association is context-dependent. The principal divergence in global
topology spans multi-level domains, including topological attributes within the brain’s landscape (e.g., shape
graph), synchronous modes within the population (e.g., interindividual distance), brain configurations (e.g.,
spatial networks), movie contents (e.g., stimuli categories), and individual traits (e.g., behavioral measures).
To enhance interpretability, we decomposed the first component of the global topology metric into two
distinct temporal parts: +VVOLSs, representing top positive contributions, and -VVOLSs, representing top
negative contributions. +VVOLs correspond to more complex scenes, including characters and dialogues,
aligning with our initial hypothesis of stimuli as anchors or attractor basins guiding shared low-dimensional
latent dynamics across individuals. These attractors are distributed in the brain’s landscape periphery and
correspond to multiple network-dominant brain configurations. During movie-watching, individuals whose
landscapes can flexibly ‘follow’ these +VOLs attractor-like states exhibit higher fluid intelligence. Based on
PCA approach, Shine et al demonstrated a common attractor-like space facilitating the execution of multiple
cognitive tasks, with individuals having greater fluid intelligence tending to exhibit more effective flow
through the space(19). We speculate that +VVOLs may be homologous to this attractor-like space from a
dynamical system perspective, but corresponding to more multifaceted, naturalistic cognitive processes. In
contrast, -VOLs, which correspond to more natural scenes, occupy the brain’s landscape center and exhibit
more mixed network configurations. Seemingly similar patterns have been previously noted in the analysis
of dynamic brain states. For instance, Saggar et al. used a TDA-based Mapper to reveal the topological
center in individual landscapes during the resting state, suggesting that the uniform state acts as an
intermediary to modulate transitions between other network-dominant states(25). However, differed from
previous studies, the -VVOLs characterize the overall patterns across the group, thus averaging out the

heterogeneous brain activations of many individuals. At the individual level, -VOLs could still encompass
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numerous network-dominant volumes, but statistically, the mixed network level is significantly smaller than
that of +VOLs. Interestingly, we have discovered for the first time that under specific stimuli (-VOLS),
individuals with more divergent traversals from group-level latent dynamics exhibit higher fluid
intelligence. This finding suggests the importance of spontaneous divergent thinking, similar to mind
wandering, especially when encountering stimuli that lack explicit direction and cognitive load. Considering
that the HBN dataset lacks natural-themed content, the first component of the global topology metric
consistently has positive weights and can reliably explain individual differences in cognitive dimensions

across different age groups.

A conceptual prospect of the naturalistic paradigm is to use designed movie fragments to induce rich brain
activation, with the expectation that different fragments can assess various dimensions of behavior or
disease symptoms. This potential has been suggested by previous studies, which showed that certain movie
stimuli (e.g., independent video clips and the presence of faces) can predict sex(36), cognition(7), or
emotion domains(37) to varying degrees. At a finer scale, our results suggest that specific movie scenes can
serve as ‘probes’ to detect corresponding behaviors. This is facilitated by the STIM framework, which can
segment complex movie content into local geometry clusters based on brain latent dynamics. Importantly,
our reported clique-behavior pairs are largely explainable. For instance, the cliques most correlated with life
satisfaction predominantly feature pleasant and peaceful conversations, while the two scenes associated with
anger traits both contain unfriendly language, such as a note with ‘udick’ and a conversation with the word
‘damn’. In the HBN dataset, the contagious laughter of the Minions clique corresponds to individual
differences in the Affective Reactivity Index, a psychological assessment used to measure emotional
reactivity. The clique-behavior explainability highlights that movie scenes can be further strategically
designed to target specific dimensions of mental health(35, 38), reducing the subjectivity of self-report
measures(7, 39). In most cliques, negative mental health issues disrupt individuals from engaging
corresponding group-level latent dynamics; within HCP -VVOLs, scenes of natural, eerie forests show that
individuals with greater divergence from the group tend to have a lower tendency towards negative traits

(i.e., loneliness).

Our results suggest the potential of the STIM framework to detect developmental issues or psychiatric
disorders and inspire intervention strategies. For the same movie stimuli, groups of similar ages exhibit
comparable global topology similarity and become more synchronized within the group as they develop.
Different developmental groups show varying latent dynamics, such as cliques relating to different

characters. Individuals with autism significantly deviate from healthy controls in latent dynamics, especially
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in social scenes. Previous works have suggested that the brain activity of individuals with psychiatric
disorders during naturalistic stimuli shows abnormalities compared to healthy controls(40-42). In the future,
constructing landscape references of healthy groups from different age brackets to naturalistic stimuli as a
normative model may enable real-time observation of individual divergence from demographic-specific
templates using the Mapper visualization advantage. For example, an individual at high risk for autism may
specifically deviate in certain social scenes, such as interactions with parents rather than peers.
Understanding these deviations could potentially help customize behavioral intervention strategies at the

individual level.

We consider several limitations of the current work. First, STIM framework can be improved in several
ways. For filter function, we used UMAP for its ability to preserve topological structure of original data, but
its representational capacity is limited. Trainable deep learning models, such as the recently proposed
CEBRA approach(43), could produce higher performance latent spaces. For binning and clustering, we used
the traditional Mapper approach. However, newer methods like NeuMapper suggest that the binning and
clustering processes can be modified to align with the temporal dynamics of fMRI data(44). Second, our
study is based on whole-brain regions, but for specific subdomains like the emotion domain, selecting key
nodes in emotional circuits as inputs may yield better behavioral correlations(45, 46). Third, the STIM
framework inherently studies brain activity in low-dimensional representations, which cannot resolve cross-
region synchrony. This can be addressed using classical ISC methods. Fourth, the HBN dataset contains a
very small proportion of healthy samples and has a wide age distribution, limiting the construction of
models for classifying healthy controls and patients. Future studies could build age-matched disease cohorts
with movie fMRI to explore the potential for individual-level diagnosis. Fifth, future studies could employ
more convenient data collection methods, such as electroencephalograph (EEG) or

magnetoencephalography (MEG).
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Method

Dataset 1: Human Connectome Project (HCP) dataset

Participants

The movie-watching fMRI (mv-fMRI) data of healthy young subjects was obtained from the HCP
database(47, 48). We analyzed 170 healthy participants who completed the movie-watching sessions
(average age = 29.4 years, SD = 3.3 years; 105 females). Notably, the dataset contained twins and siblings,
hence participants were from 89 unique families. In our validation tests, we mitigated potential biases from
familial relationships. Ethics approval was obtained by the authors of the original studies in accordance with
the Washington University Institutional Review Board (IRB), and the Washington University—University of

Minnesota (WU-Minn HCP) Consortium ensured full informed consent from all participants.

Movie information

For details of the HCP movie protocol, please refer to the Human Connectome Project protocols for 7T
imaging (https://www.humanconnectome.org/hcp-protocols-ya-7t-imaging). Briefly, participants viewed
audiovisual movie clips in 4 runs across two separate sessions, with each run consisting of 4-5 distinct
movie segments. There was a 20-second rest period between clips during which the word “REST” appeared
on the screen. Audio was delivered through Sensimetrics earbuds. In our analysis, we excluded movie
segments shorter than 2 minutes, resulting in 13 clips from various sources including independent films and
Hollywood movies, providing a rich array of naturalistic stimuli. These segments covered multiple genres
such as sci-fi (Inception), drama (Two Men; Social Network; Ocean's Eleven; Home Alone; Erin Brockovich;
Empire Strikes Back), romance (1212), documentary (Welcome To Bridgeville; Mrs Meyers Clean Day;
Pockets), music video (Off The Shelf) and nature scenes (Northwest Passage) (for detailed information on
the movie segments, see Supplementary Tab. 1). To correlate with the real-time viewing experience, we used
manually assigned semantic labels provided by HCP (7T _movie resources/WordNet MOVIE1 CCl.txt,
etc.). These labels identified objects (e.g., road, men, tree) and human actions (e.g., talk, sit, walk) depicted
in the movie scenes, with label frequency aligned to the volumes (i.e., providing an array of labels every

second).

Data acquisition

All movie-watching fMRI data were acquired using a 7 Tesla Siemens Magnetom scanner with a 32-channel

head coil. Among the mv-fMRI scans conducted across four runs, runs 1 and 4 were acquired with anterior-
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to-posterior (AP) phase encoding, while the remaining two runs used posterior-to-anterior (PA) phase
encoding. All mv-fMRI scans were collected using a gradient-echo-planar imaging (EPI) sequence with the
following uniform parameters: repetition time (TR) = 1000 ms, echo time (TE) = 22.2 ms, flip angle =45
degrees, field of view (FOV) =208 x 208 mm (RO x PE), matrix size = 130 x 130 (RO x PE), slice
thickness = 1.6 mm, resulting in 1.6 mm isotropic voxel resolution. Additional scanning parameters included
a multiband factor of 5, an image acceleration factor (iPAT) of 2, partial Fourier sampling of 7/8, echo
spacing of 0.64 ms, and a bandwidth of 1924 Hz/Px. Structural T1-weights (T1w) scans were acquired using
a 3T Siemens Connectome Skyra scanner, with the following parameters: TR=2400ms, TE=2.14m:s,
TI=1000ms, flip angle=8 degrees, FOV=224 x 224 mm, voxel size=0.7mm isotropic, iPAT=2,
bandwidth=210 Hz/Px.

fMRI preprocessing

We initiated our analysis using minimally preprocessed data (Movie Task fMRI 1.6mm Functional
Preprocessed)(49). The HCP minimal processing is a standardized preprocessing pipeline tailored for the
HCP dataset designed to minimize information loss. This includes gradient distortion correction, motion
correction, fieldmap-based EPI distortion correction, EPI to T1w registration, non-linear registration
(FNIRT) into MNI152 space, and intensity normalization. Additionally, we performed nuisance signal
correction by regressing out Friston-24 motion parameters(50), 3 temporal trending parameters (constant,
linear, and quadratic trends), as well as signals from white matter (WMReg.2.nii.gz), cerebrospinal fluid
(CSFReg.2.nii.gz), and the average global signal extracted from the brain mask (brainmask _fs.1.60.nii.gz).
Lastly, a temporal band-pass filter (0.01Hz<f<0.08 Hz) was applied to the data.

Dataset 2: Healthy Brain Network (HBN) dataset

Participants

We utilized the HBN dataset, a large-scale multimodal dataset focusing on the development and mental
health of children and adolescents, collecting neuroimaging and behavioral data from various age groups in
the New York arca(51). Data selection was based on the completeness of imaging and behavioral data,
correctness of preprocessing, anomalies in head motion and synchrony (see below). This resulted in a subset
of 970 participants (ages 5-21, average age = 10.6 years, SD = 3.5 years; 341 females). Among these, 95

individuals had no diagnosis given named as normal control (NC), while the majority were diagnosed with


https://doi.org/10.1101/2024.06.20.599966
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.20.599966; this version posted November 17, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

one or more psychological issues. The Child Mind Institute confirmed that adult participants provided full
informed consent, and minors aged 5-17 gave assent, with their parents completing the full informed
consent. For more details, please refer to:

https://fcon_1000.projects.nitrc.org/indi/cmi_healthy brain_network/index.html.

Movie information

The HBN dataset provides fMRI scans from two different movie segments watched with simultaneous
audio: The Present (3 minutes 21 seconds) and a clip from Despicable Me (10 minutes). ‘The Present’
narrates the story of a boy with an amputation who receives a three-legged puppy from his mom and
eventually warms up to it. The Despicable Me clip recounts various events involving three children and the
supervillain Gru, including Gru tucking the children into bed, discussing plans to steal the moon with Dr.
Nefario, the children being returned to the orphanage, and Gru rocketing into space. Given that The Present
is shorter and lacks dialogue and plot transitions, we chose to analyze only the data from the Despicable Me

clip.
Data acquisition

Structural and functional MRI data were collected from two different sites: the CitiGroup Cornell Brain
Imaging Center (CBIC) using a Siemens 3T Prisma scanner and the Rutgers University Brain Imaging
Center (RUBIC) using a Siemens 3T Tim Trio scanner, both employing a 64-channel head coil with identical
scanning parameters. Mv-fMRI scans were conducted with the following parameters: TR=800ms, TE=30ms,
flip angle=31 degrees, resolution=2.4 mm X 2.4 mm % 2.4 mm, 60 slices, FOV phase=100%, and a multi-
band factor of 6. T1w scans were collected with: TR=2500ms, TE=3.15ms, TI=1060ms, flip angle=8
degrees, resolution=0.8 mm x 0.8 mm x 0.8 mm, 224 slices, and FOV phase=100%. We did not perform
inter-site corrections or analyses during data processing; instead, site information was treated as a covariate

and regressed out in subsequent behavioral analyses.

fMRI preprocessing

Anatomical and functional data preprocessing was conducted using fMRIPrep 20.2.1(52). The T1w image
underwent intensity non-uniformity (INU) correction with N4BiasFieldCorrection, provided by ANTs 2.3.3,
and it was designated as the reference image. This reference T1w image was then skull-stripped using a
Nipype implementation of the antsBrainExtraction.sh script from ANTs, utilizing the OASIS30ANTSs
template for anatomical accuracy. Following this, segmentation of brain tissues—specifically CSF, WM and

GM—was performed on the skull-stripped T1w image using the FAST tool from FSL 5.0.9. The volume was
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spatially normalized to the MNI152NLin2009cAsym standard space through nonlinear registration using

antsRegistration from ANTs 2.3.3, ensuring consistent anatomical alignment across studies.

For each subject, a reference volume and its skull-stripped version were generated. The BOLD reference
was aligned (co-registered) to the anatomical T1w reference using the FLIRT tool from FSL 5.0.9. Motion
correction was applied, and the data were resampled and normalized to the standard space
(MNI152NLin2009cAsym). Metrics such as Framewise Displacement (FD), CSF, WM, and global signal

were calculated. Noise reduction on the BOLD signals was performed using the CompCor method.

Similar to the preprocessing of HCP, we performed nuisance signal correction by regressing out Friston-24
motion parameters, three temporal parameters (constant, linear, and quadratic trends), as well as signals
from WM, CSF, and the global signal. Lastly, a temporal band-pass filter (0.008Hz<f<0.15 Hz) was applied
to the data. After data processing, 1,227 subjects had complete imaging data (or were correctly
preprocessed) along with basic information (age, gender, disease diagnosis). Considering the propensity for
greater head movement in children and adolescents, we excluded 159 individuals with excessive head
motion (mean FD > Imm). We also examined the average head motion in each fMRI run from the HCP
database (Movement RelativeRMS mean.txt). We did not exclude any subjects from the HCP dataset
because none of the runs showed a mean FD exceeding 0.5 mm. We also removed 98 individuals whose data
exhibited abnormal synchrony (average Pearson correlation with the group mean < 0.1 across 271 ROlIs,
whereas the lowest in HCP is 0.12). We suspect these individuals were not engaged in the movie-watching

task (Supplementary Fig. 7)
Extraction of whole-brain time series

Consistent with our prior work(53), we selected 271 predefined regions of interest (ROIs) spanning the
entire brain. We obtained 200 cortical regions from the Schaefer atlas(54), 54 subcortical regions from the
Melbourne atlas 7T version scale III (3T version scale IV for HBN)(55), and 17 cerebellar networks from
the Buckner atlas(56). Among the cortical ROIs, seven different networks were assigned based on previous
work(54), including the visual network (for short: Visual), somatomotor network (SomMot), dorsal attention
network (DorsAttn), ventral attention network (SalVentAttn), limbic network (Limbic), frontoparietal
control network (Control), and default mode network (Default). The subcortical and cerebellar ROIs were
treated as a whole, without further network subdivision. Considering the hemodynamic response delay, we
shifted all time-series signals from movie-viewing by 5 seconds to correspond to 5 TRs in HCP(57). As the
HBN movie-viewing protocol does not include resting periods before and after the movie, and thus does not

allow for temporal shifts in the time series, we compensated by delaying the alignment of movie-related
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labels with the BOLD time series by 5 seconds (equivalent to 6 TRs).
Classic Mapper

We utilized the Mapper pipeline developed by Veen et al(58) and Geniesse et al(26). to generate the shape
graphs. The classic Mapper pipeline includes the following steps: 1) Dimensionality reduction (Filtering):
The high-dimensional data are embedded into a lower dimension (d=3) using a filter function. We chose
UMAP (n neighbors = 25) to preserve the topological features of the data, utilizing PCA for initialization
to maintain global structural integrity. ii) Overlapping binning: This stage involves overlapping three-
dimensional binning to encapsulate data points, with a resolution parameter (#bins) set to 12, resulting in a
total of 12 X 12 X 12 = 1728 bins, and a 50% overlap between bins. iii) Partial clustering: Within each
bin, partial clustering groups data points into nodes based on the original high-dimensional information. We
utilized density-based spatial clustering of applications with noise (DBSCAN) (59), which does not require a
predetermined number of clusters. 4) Shape graph generation: The Mapper approach treats each cluster
within the bins as a node (containing multiple volumes). Overlapping bins cause some nodes to contain

identical volumes, thereby generating edges between nodes.

Taking individual shape graphs shown in Fig. 1b and 2b as example, the input data consisted of parcellated
time series for each participant; for Fig. 1b, we used 7 movie clips with dimensions of 1439 volumes X

271 ROIs, and for Fig. 2b, the Inception clip with dimensions of 226 volumes X 271 ROIs. The Mapper
pipeline outputs a graph object. The shape graphs can be annotated with various meta-information, such as
nodal degrees, network configuration, and other relevant metrics, enabling a comprehensive understanding

of the brain latent dynamics.

STIM framework

Building on the classic Mapper, we introduce the STIM framework to analyze individual differences in brain
latent dynamics during naturalistic movie watching. The STIM framework posits a group consensus of latent
dynamics, akin to the ‘Anna Karenina model’ (derived from Tolstoy’s opening line: “All happy families are
alike; each unhappy family is unhappy in its own way”), and quantifies each individual’s dynamic trajectory
deviations from the group consensus(13). Practically, STIM integrates whole-brain spatiotemporal activity
from multiple participants, unfolding and aligning individual latent dynamics to establish a group-level
reference as a proxy of consensus. By comparing the global and local topological differences between

individual subjects and the consensus, STIM provides two distinct metrics of individual differences: global
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topology and local geometry similarities.

We applied a joint dimensionality reduction approach to achieve group-level low-dimensional dynamics. For
HCP data, we stacked the whole-brain time series data of all individuals (dimensions: from 170 subjects X
2804 volumes X 271 ROIs to 476680 X 271 ROIs) and performed dimensionality reduction along the
ROI axis, thereby creating an aligned low-dimensional space. From this, we extracted each individual’s low-
dimensional embedding (dimensions: 2804 volumes X 3) and standardized the embedding by z-score
normalization across volumes. The low-dimensional embeddings were then averaged to the group-level
dynamics of consensus. We tested three common dimensionality reduction methods (or named filter f
functions): PCA, t-SNE, and UMAP. By comparing the consistency of group-level dynamics across different
participants, we finally selected UMARP as the filter function f (Supplementary Fig. 8). In the STIM
framework, we then integrate individual and group-level low-dimensional dynamics (dimensions: (2804 +
2804) volumes X 3), to proceed with the TDA-based Mapper steps, which include Overlapping binning,
Partial clustering, and Shape graph generation. Considering the HCP movie stimuli contain richer themes,
we incorporated HCP data to generate 3-dimensional UMAP trajectories when constructing low-dimensional

representations for HBN.
Temporal connectivity matrix

As described above, we aligned the complex latent dynamics of different participants within a shared
topological space, generating a comprehensive Mapper shape graph. Each node in the shape graph contains a
set of time points considered similar. Following the previous work(24), we quantified the topological
similarity between time points by utilizing the clustering relationships within nodes and the connections
between nodes, resulting in a Temporal Connectivity Matrix (TCM, denoted by T). Element T;; within T

quantifies the connectivity strength between time frames VOL; and VOL;.

The connectivity strength, Tjj, is calculated as the ratio of the cardinality of the intersection set of nodes
shared between time frames VOL; and VOL; relative to the maximum cardinality of the intersection of
nodes involving VOL; and any other time frame VOL, across the entire dataset. Symbolically, this is

expressed as:

viny)
Tij = max
petl 2} [V; V|
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where ‘|-|” indicates the cardinality of a set, V; and V; are the sets of nodes involving with time frames VOL;
and VOL;, respectively, and the denominator is the maximum cardinality obtained by the unite of V; with

every other set 1}, across all time points p.

The resulting matrix T is symmetrized by:

T+TT

TCM =

This matrix provides a measure of topological similarity on a fine temporal scale. Notably, topological
similarity is a discrete measure, therefore, we use Spearman rank correlation for subsequent association

analyses.

In the classic Mapper, the TCM computed for a single subject is dimensioned as n volumes X n volumes.
In STIM, which integrates group dynamics, the resulting TCM dimensions expand to 2n volumes X
2n volumes. From this, we extract the intersecting matrix to measure topological similarity between different

individuals (Supplementary Fig. 9).

Individual divergence

Features were extracted from the TCM across multiple scales. Taking HCP as an example, at the global scale,
we extracted the diagonal of the TCM, defined as global topology similarity (dimensions: 170 subjects X
2804 volumes ). This metric quantifies the overall shape differences between individual and group
trajectories. In the STIM framework, due to discontinuous overlapping bins, global topology similarity is
discrete value. This discrete, or ‘fuzzy’, metric is potentially appropriate for the analysis of biological signals,
which are inherently imprecise. Within the context of movie viewing, we consider global topology similarity

could reflect the extent to which an individual’s subjective experience aligns with the group consensus.

At the local scale, the TCM matrix visually exhibits a modular structure, suggesting that this low-dimensional
representation can serve as a basis for temporal segmentation. A standard change point detection algorithm,
pruned exact linear time (PELT)(31), was employed to segment the TCM matrix based on group-averaged
dynamics. Notably, we excluded the 50% subjects whose data demonstrated lower similarity during the
averaging process, to ensure that the segments were not influenced by outliers. The parameters for PELT were
selected using a data-driven approach, with the evaluation metric being the degree of clustering modularity,

as proposed by Busch, E.L., et al(60). Specifically, we chose the PELT parameters that resulted in the
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maximum ‘within- versus between-event difference score’, or in other words, the highest boundary sharpness.
Using PELT algorithm, we identified 161 non-overlapped cliques in the HCP data (mean duration=16.2s,
SD=9.0) and 41 non-overlapped cliques in the HBN data (mean duration=13.7s, SD=7.0). Clique
segmentation information was mapped back onto individual TCMs, from which submatrices corresponding to
distinct cliques were extracted. These submatrices were then combined with the group average clique through
a weighted summation to compute the local geometry similarity for individuals within specific cliques. Local
geometry similarity reflects an individual’s alignment with the group consensus for specific movie content.
Compared to the sliding window approach, this method avoids averaging distinctly different time points

together.

HCP provided a manually labeled annotations for each second, which can be interpreted as subjective
understanding for movie scenes. For example, a classic annotation can be [‘man’, ‘run’, ‘road’, ‘sky’].
Utilizing these semantic labels, we calculated a semantic temporal connectivity matrix (semantic-TCM),
where the elements T;; represent the proportion of overlapping word entries between semantic vectors T;
and T;. The semantic-TCM was then input into the PELT algorithm to segment it into non-overlapping
semantic cliques. Subsequently, we computed the minimized linear error between segments of topological
cliques and segments of semantic cliques using a standard algorithm for solving the linear assignment
problem(61). For example, the minimized error between segment [5,14,21] with segment [4,15,20] is 3. For
statistical testing, we generated a null model by randomly segmenting the temporal axis with the same

number of segments and repeating this process 10,000 times.

Robustness of STIM framework

We performed two additional analyses to ensure the robustness of the STIM framework:

1) Robustness of group-level dynamics: We randomly sampled two independent groups of participants
and comparing their averaged group-level dynamics. To enable a fair comparison, time series data
were also derived from three randomly selected ROIs. The individuals in two sampled groups had no
familial relationships. We generated UMAP low-dimensional embeddings of group references
ranging from 5 to 40 individuals and found that the group reference consistency, measured by
Pearson correlation, was significantly higher than that of the original time series (Fig. 2e). Moreover,
we found that for most movies (8 out of 13), the group consistency of whole-brain latent dynamics

was significantly higher than that achieved using even the top three synchronized ROIs in the visual
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network (Supplementary Fig. 2).

2) Robustness of individual difference: we calculated the global topology using group-level dynamics
based on smaller groups of subjects and compared it to that using all subjects. We found that with a
smaller sample size ( n subjects = 15), the Pearson correlation of individual differences to the
group reference formed from all subjects (n subjects = 170) averaged 0.98 across multiple

samplings (Fig. 2f).

Parameter selection and perturbation analysis

Similar to the method used by Saggar et al.(24) to determine the Mapper parameters, we optimize the
resolution parameter by maximizing the topological individual differences. Specifically, we computed the
standard deviation of global topology and local geometry across individuals, to reflect how different
resolution parameter span the individual differences effectively. Ranging from fuzzy resolution (n bins = 4)
to fine-grained resolution (n bins = 20), we select the resolution parameter n bins = 12 for maintaining
top standard deviation and high resolution. Supplementary Tab. 5 shows the standard deviation across

different resolution parameters.

Previous work(24) has demonstrated the robustness of the Mapper approach to parameter perturbations.
Once again, we tested the impact of a wide range of Mapper parameters on the main outcomes of individual
differences using HCP data. We varied the resolution parameter, calculating the Pearson correlation of global
topology (as well as local geometry) between perturbated resolution and selected resolution (n bins = 12).
The results indicate that under most parameter settings, the topological properties and the outcomes related

to individual differences remain stable (Supplementary Fig. 10).

Further, utilizing the criteria proposed by Hasegan et al.(62), we examined the validation of Mapper shape
graph. Briefly, a valid Mapper shape graph needs: 1) cover most of the input data (coverage beta [ >
70%); 2) captures more than trivial autocorrelation dynamics (non-autocorrelated nodes a > 15%, with
autocorrelation threshold 7 = 11); 3) has a non-trivial structure (pairwise distances entropy S > 2). Here,
we computed these three criteria in HCP group shape graph (8 = 99.64%, a = 87.61%, S = 2.12),

ensuring the effectiveness of the generated shape graph.

Behavioral items selection
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We hypothesize that the global geometric similarity corresponding to topological cliques is related to
participants’ cognitive or comprehension abilities, while local geometric similarity can explain multi-
dimensional human behaviors in a manner related to specific movie content. To test this hypothesis, we

utilized behavioral questionnaires from the HCP and the HBN datasets.

HCP Dataset. In the HCP dataset, we included 59 behavioral measurements spanning multiple domains,
including cognition, emotion, psychiatric, and life Function. The specific domains incorporated into our
analysis are detailed in Supplementary Tab. 2. Given our hypothesis that understanding movie content
primarily relies on abilities such as problem-solving, logical reasoning, and pattern recognition, we chose
Fluid Intelligence as the key cognitive measure for our study, rather than crystallized intelligence or
executive function. Fluid Intelligence was assessed using a shortened version of Raven’s Progressive

Matrices, specifically the A table, developed by Gur and colleagues(63).

For subjective emotional and psychological health measurements, we selected self-report questionnaires from
the Emotion domain and Life Function (Achenbach Adult Self-Report, Syndrome Scales, and DSM-Oriented
Scale). We did not include task-based measurements (for example emotion recognition) or psychiatric history
because self-report questionnaires and life function metrics more subjective, matching our ‘consensus and
divergence’ hypothesis. For clarity, we inverted the scores for positive items in emotional and psychological
tests, including life satisfaction (LifeSatisf” Unadj), meaning and purpose (MeanPurp_Unadj), positive affect
(PosAffect_Unadj), friendship (Friendship Unadj), emotional support (EmotSupp Unadj), instrumental
support (InstruSupp Unadj), and self-efficacy (SelfEff Unadj), ensuring consistency in the direction of

negative emotions and psychological health expressions.

HBN Dataset. In the HBN data, we firstly aimed to replicate the assessment of cognition and mental health
issues similar to the HCP. Beyond HCP, the HBN recruited children and adolescents aged 5-21 and provided
clinical diagnostic labels for mental disorders, this allowed us to further explore specific issues related to
adolescent mental health development and disorders. HBN participants exhibited a variety of transdiagnostic
conditions (e.g., autism spectrum disorder), providing a comprehensive context for studying developmental

trajectories and the spectra of mental disorders.

Specifically, in the cognitive dimension, given the lack of a direct measure of fluid intelligence in the HBN
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and the dialogue-based nature of movie content, we chose the listening comprehension subtest
(WIAT _LC Stnd) to evaluate cognitive comprehension abilities. For results of other cognitive behavioral

tests provided in the HBN dataset, please refer to the Supplementary Tab. 3.

For mental health, self-report scales were used to assess subjective emotional experiences and mental health
status, with data adjusted to reflect negative outcomes. We focused on participants older than 8 years, due to
the instability of mental health issues in very young subjects(51), and excluded questionnaires with fewer
than 500 responses. This resulted in the identification of 12 mental health-related items (Supplementary Tab.
2).

For the analysis of autism spectrum disorder (ASD), we first classified each participant as either ‘Disorders’
(n=662) or ‘No Diagnosis’ (n=63) based on the clinical diagnostic information from the HBN sample. We
then identified the ASD group from the ‘Disorders’ subjects in two ways: 1) groups with increasingly severe
ASD-like symptoms: We computed an indicator to estimate the severity of ASD-like symptoms.
Specifically, we conducted a principal component analysis on behavioral measures related to ASD, including
the Autism Spectrum Screening Questionnaire, Social Communication Questionnaire, Social
Responsiveness Scale, and Repetitive Behavior Scale. We used the first principal component (explained
71.6% of the total variance) as the main indicator of ASD-like symptoms and divided individuals into four
equal-sized subgroups based on the severity of these symptoms (n=165 per group). 2) Autism diagnosis
group: We used diagnostic labels to classify subjects into the Autism diagnosis group. Notably, the Autism
diagnosis group is a subset of the ASD-like symptoms group. By comparing differences between the Autism
diagnosis group and the ASD-like symptoms group with the ‘“No Diagnosis’ group, we aimed to provide

insights into the potential application of biomarkers in the development process of Autism.

Individual difference in global topology

We conducted PCA on the global topology similarity of individuals (HCP data: 170 subjects X
2804 volumes) along temporal volumes. The top 5% positive volumes are referred to as +VOLs, and the
bottom 5% negative volumes as -VOLs. In the HBN data, we divided participants into five equally sized age
groups (the age range of five groups are: [5-8, 8-9, 9-11, 11-14, 14-21], dimensions : 5 X 194 subjects X
750 volumes) and then conducted PCA to calculate the PC1 for each group separately, avoiding the effects

resulting from systemic changes during development.
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Betweenness centrality

We applied the betweenness centrality from graph theory to estimate the topological attributes of the shape
graph. Betweenness centrality measures a node’s role in facilitating information flow within the network by
quantifying its presence on the shortest paths between other nodes(32).

Mathematically, the betweenness centrality Cgz(v) for anode v is defined as:

Cg(v) = Z GSt—(v)

o
stoet St

where oy, is the total number of shortest paths from node s to node t and oy (v) represents the number
of those paths that pass through v. This measure sums the fraction of all shortest paths that pass through a
given node across all pairs of nodes. Due to the potential overlap of volumes across nodes in the shape graph,
we calculated the average betweenness centrality of these nodes to determine their corresponding volumes’

centrality.
Group synchronous modes

We averaged the global topology similarity across all individuals to identify the population synchrony at
different volumes. The synchrony in +VOLs was significantly higher than in -VOLs, indicating two distinct
synchronous modes. Additionally, in the HCP data, we observed a linear positive correlation between volumes
population synchrony and the weights of PC1 (Pearson » = 0.48, P < 0.0001). The consistency between
individual difference gradient (PC1 of global topology) and synchronous modes indicates that individuals who

‘follow’ the group consensus tend to do so consistently across different volumes.
Network configuration

Adapting methods from Saggar et al. on resting-state networks, we examined network configurations in mv-
fMRI(25). The network configuration is determined by the overall activation pattern within a shape graph
node, visualized in Mapper as the proportion of a pie chart for each node. Specifically, we normalized whole-
brain activities in each volume, and calculated the values for nine networks (Yeo 7 network(54), subcortical

region(55), and cerebellum(56)). To determine whether a dominant network configuration exists within nodes,

we calculated a node’s network mixed index as 1+2D , where S.D. represents the standard deviation of the

activation levels across different networks. A higher network mixed index signifies more uniform activation

across networks. In the visualization of the Mapper shape graph (Fig. 3d, e), the proportions in the pie chart
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for the network only include the positive values after normalization.

Network contribution to global individual differences

The contribution of each ROI to global topology similarity was separately analyzed for +VOLs and -VOLs.
Taking +VOLs as an example, we first concatenated the time series data of +VOLs (the dimension:
170 subjects X 271 ROIs X 140 volumes). For each ROI, we computed the Pearson correlation between
the subject and group averaged time series (denoted as ROI similarity, the dimension: 170 subjects X
271 ROIs). For each ROI, we calculated the Pearson correlation between ROI similarity (the dimension:
170 subjects x 1) and the averaged global topology similarity of +VOLs (the dimension: 170 subjects X

1). This measure represents the ROI’s contribution to the individual divergence observed in +VOLs.

Selection of probe-like cliques

Considering the high-dimensional nature of both cliques and behavioral dimensions, we adopted a two-stage
approach to identify statistically significant pairs: 1) Identification of statistically significant cliques with
behavior: We performed PCA on 59 behavioral items, using top 5 PCs that explained 49.6% of the total
variance in HCP data (71% in HBN data). Subsequently, we used Partial Least Squares Regression (PLSR) to
estimate the linear relationship between individual local geometry similarities (dimension: 170 subjects X 1)
and behavioral PCs (dimension: 170 subjects X 5). We then selected cliques that demonstrated statistical
significance in permutation tests (P < 0.05, n = 10,000 permutations), with each permutation involving a
shuffle of subject IDs across local geometry similarities. 2) Behavioral correlation analysis: we calculated the
Spearman correlation between individual local topological similarities and single behavioral items, controlling

for age and gender as covariates. This step measures how specific cliques explain specific behaviors.

Cliques-Mental health pair wise analysis

After identifying probe-like cliques and their pairwise relationships with specific behaviors, we analyzed the
behavioral dimensions of mental health. We assessed the ‘gradient’ under the mental health dimension by
averaging the significance of probe-like cliques. The derived weights for different behaviors were visualized

using a word cloud (Fig.4f).


https://doi.org/10.1101/2024.06.20.599966
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.20.599966; this version posted November 17, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

In presentation focusing on clique-mental health pairs, we first concentrated on the two behaviors with the
highest weights—Iloneliness and life dissatisfaction. We highlighted the four cliques most significantly
associated with each of these behaviors. The displayed P-values are the raw Spearman correlation P-values
between each behavior and the local geometry similarity of the respective cliques. Among all probe-like
cliques, we displayed the other representative clique-behavior pairs; for a complete list, please refer to
Supplementary Tab. 4. Notably, we also displayed some significant clique-behavior pairs that did not pass the

permutation test, including No.57, No.108, No.78, and No.128.

Dual directions of dynamics modes

To further investigate how negative mental health affects individual divergence, we examined if the correlation
direction differed between ‘attractor-like’ modes and ‘unconstrained’ modes. We extracted the global topology
similarity (170 subjects X 2804 volumes) in +VOLs and -VOLSs (n volumes = 140), resulting in ‘attractor-
like” and ‘unconstrained’ modes for individual topological scores (2 X 170 subjects X 140 volumes). We
then selected the top 10 negative mental health behavioral metrics (170 subjects X 10 behaviors), based on
the weights shown in the word cloud (Fig.4f), including life satisfaction, loneliness, ASR somatic problems,
ASR internalizing, perceived rejection, DSM somatization, sadness, perceived stress, DSM anxiety, and anger
hostility. Subsequently, we computed the Spearman correlation between global topology similarity and
negative behaviors (for +VOLs or -VOLs, the dimension is 140 volumes X 10 behaviors). Finally, we
performed a one-sample t-test with a mean of zero on the average Spearman correlations for +VOLs and -

VOLs (dimension: 140 volumes X 1, Fig. 4h).

Developmental analysis

In the development-related analysis (Fig. 5b-h), we utilized the shared low-dimensional space (UMAP) trained
from HCP data and independently transformed individuals from the HBN data. We opted not to apply
dimensionality reduction directly on the HBN dataset due to the following considerations: (i) The age
distribution is highly skewed, particularly with a concentration of participants between the ages of 8 and 10,
which could introduce bias into the shared topological space. (ii) Distinct latent dynamic patterns may emerge
at different developmental stages, and applying joint dimensionality reduction could obscure the unique

characteristics specific to each age group.

To assess the consistency of low-dimensional dynamics across developmental stages, we used one-year
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intervals as the unit of analysis. For each interval, we calculated the Spearman correlation of low-dimensional
embeddings between two independent, non-overlapping samples (15 subjects per group). Fig.5b displays the
mean values along with the 95% confidence intervals for the consistency, based on 1000 iterations of random
sampling within each interval. Further, we explored developmental patterns of different group consensus
(Fig.5c). Considering the uneven distribution of participants across different age groups, we grouped
participants into 10 non-overlapping groups of equal size (10 X 97subjects) to ensure a balanced analysis.
For consensus analysis, we first calculated the consensus within each group using the STIM framework. Then,
we computed and averaged the global topology similarity for each pair of groups. Age difference indicates the

intervals between two groups, for example the age difference between group-1 and group-3 is 2.

To analyze the divergence in specific movie content across developmental stages, we established reference
groups at the two extremes: the youngest and the oldest age groups, each comprising 100 individuals. We then
calculated the correlation between the local geometry similarity of the remaining individuals and their age,
using these two reference groups for comparison. We identified cliques specific to developmental stages, with
a significance determined at a threshold of P < 0.05, adjusted for false discovery rate (FDR). Subsequently,
we manually annotated those cliques prominently featuring scenes with children or minions (constituting over
50% of screen time). A chi-square test was then performed to determine whether scenes prominently featuring

kids or minions significantly contribute to developmental divergence.

Behavioral association analysis in HBN

For global topology analysis, we divided the participants into five equal-sized groups, ensuring independence
in the result. We then calculated the global topology for each participant within these groups
(5 X 194subjects X 750 volumes). Subsequently, we computed the Spearman correlation between the
principal gradient of the global topology similarity (5 X 194subjects ) and WIAT LC Stnd (5 X
194subjects).

To explore the relationship between local geometry properties and mental health, we implemented two
adjustments: (i) considering that psychological issues may not have fully manifested in younger children, we
focused our analysis on participants aged above 8 years(51), comprising a total of 725 subjects; (ii) to enhance
the dynamic specificity of the HBN dataset, we utilized data from both the HCP and a representative subset
of the HBN dataset within the STIM framework to fit a hybrid topological space (results presented in Fig. 5i-

7). To mitigate the effects of age imbalance, participants were evenly distributed across 10 age groups. The
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selection of representative HBN time series involved choosing the five volumes with the highest Pearson
correlation within each age group at each time point, yielding a dataset with dimensions of 50 x 271 ROIs %
750 volumes. These time series were compiled from multiple individuals, rather than being derived from a
single individual source. While clique segmentation was uniform across the individuals, group references were
calculated separately for each of the five equal-sized groups based on age (5 X 145subjects). We
standardized the local geometry of individuals within each group and aggregated the data (725subjects X
41cliques). Following the same process as the HCP data analysis, we performed permutation tests on different
cliques to identify probe-like cliques (14 cliques) and their paired behavior. Due to the limited number of
probe-like cliques identified, we highlighted the top five clique-behavior pairs. Details of all probe-like cliques

and their corresponding behaviors with the highest weights are included in Supplementary Tab. 4.

Unlike the HCP data, the fMRI data for HBN were collected from two different sites. Therefore, in all
correlation analyses of global topology and local geometry, we controlled for confounding variables by

regressing out age, gender, and site information from both the behavioral and topological metrics.

Statistically testing

To assess statistical significance in our analysis, we adopted the following approach: At the global level, we
directly calculated the Spearman correlation between the first principal component of global similarity and
various behaviors. Consequently, we conducted FDR cross-validation on 59 trait-like behaviors provided by
HCP (Supplementary Tab. 3). In the HBN data, we applied a similar correction for multiple comparisons
across different total score items (Supplementary Tab. 3). At the local level, we analyzed the statistical
significance between overall behaviors and local geometry. To this end, we generated a null distribution by
randomizing local geometry (i.e., shuffling participant IDs) to assess statistical significance. This was done

by performing 10,000 random permutations.

Data availability

The HCP dataset (including neural imaging data, movie stimuli, behavioral measurements and semantic
labels) is available at: https://www.humanconnectome.org/study/hcp-young-adult/data-releases. The HBN
dataset (including neural imaging data and behavioral measurements) is available at:

https://fcon_1000.projects.nitrc.org/indi/cmi_healthy brain network/Data.html.
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Code availability

The minimal preprocess pipeline of HCP dataset is freely available at: https://github.com/Washington-
University/HCPpipelines. The preprocess of HBN dataset was carried out in fMRIPrep version 20.2.1.
fMRIPrep is freely available at: https://github.com/nipreps/fmriprep. Mapper approach was conducted by
UAMP version 0.5.3, Kepler Mapper version 1.2.0, and DyNeuSR version 0.3.10. Kepler Mapper is freely
available at: https://github.com/scikit-tda/kepler-mapper. UAMP is freely available at:
https://github.com/Imcinnes/umap. DyNeuSR is freely available at:

https://github.com/braindynamicslab/dyneusr. STIM is available at: https://github.com/JunxingXian/STIM.
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Fig. S1: Shape graphs of two participants. (a) Two individual shape graphs annotated with movie clips. (b) Two

individual shape graphs annotated with brain configuration. (¢) Two individual shape graphs annotated with ‘talk’
semantic label.
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Fig. S2: Group synchrony of UMAP embeddings and top visual ROIs. The violin plot illustrates the group
synchrony across different movies, comparing UMAP low-dimensional embeddings with the time series of the top
three ROIs from the visual network. These top three ROIs were selected based on the highest mean Pearson
correlation across all subjects. Synchrony was calculated using the Pearson correlation between two groups, with
each group consisting of 15 randomly selected participants, repeated over 100 permutations. The square notation
indicates that the UMAP embeddings exhibit significantly higher synchrony compared to the time series data. UMAP
embeddings display varying group synchrony across different movie clips, while the time series from the visual
network show relatively stable group synchrony. This suggests that the low-dimensional embeddings capture a more
personalized cognitive experience of whole-brain integration, rather than merely reflecting visual sensory inputs.
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A dog picks up the flower from the ground and gives it to a girl, who wears it on her
head while riding a bicycle. The flower falls again and is picked up by another person.

Fig. S3: Low-dimensional embeddings integrate subjective experience during movie viewing. To further explore
how low-dimensional embeddings of whole-brain dynamics represent subjective experience, we selected a
representative clip "Off the Shelf" that contains both non-narrative natural scenes and structured story segments. (a)
The synchrony rank of whole-brain UMAP embeddings and visual network time-series. Synchrony rank is the rank of
the averaged Euclidean distance between all subjects and the group across the entire 13 movie clips. (b) Snapshots
and text descriptions of the most unconstrained scene (bottom 5%) in "Off the Shelf," featuring a close-up of a flower.
(c) Snapshots and text descriptions of the attractor-like scene (top 5%) in "Off the Shelf," featuring narrative scenes
and metaphors.
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Fig. S4: Individual deviation of jumps in Inception. This figure displays the deviation of segmentations at jump-A
(64 seconds) and jump-B (157 seconds) across all subjects. For example, a subject with a deviation of 2 seconds in
jump-A means the clique segmentation of this subject includes 66 seconds.
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Fig. S5: PC1 of global topology captures considerable variance of individual fluid cognition. We computed the
Pearson correlation between the time series of different ROls for each subject, generating a static functional
connectome (sFC, dimension: 271R0Is x 271R0Is). Time series from different movie sessions were concatenated.
From this, we extracted the upper triangular matrix as features (dimension: 170 subjects X 36856 featrues). An
ordinary least squares linear regression model was employed to predict fluid cognition from the sFC, using 5-fold
cross-validation. The distribution shown represents the Spearman correlation from 500 different trials, with the mean
result marked by a red dotted line. The green dotted line indicates the Spearman correlation between the principal
gradient of global topology and fluid cognition. The r-value for global topology is comparable to that of the sFC (P =
0.14), suggesting that PC1 of global topology, a one-dimensional topological measurement, captures a considerable
portion of the variance in individual fluid cognition.
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Fig. S6: Group network configuration of local geometry. The figure displays the location on the group shape graph
of probe-like cliques, showcasing the topological similarity between different cliques. Brain activation maps are z-
scored and shown at a threshold of z=1.0 for each probe-like clique.
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Fig. S7: HBN data shows a non-normal distribution of Individual synchrony to group. We examined the
individual synchrony to the group in two datasets. The group reference was generated by averaging the time series of
all subjects. For each subject, we calculated the Pearson correlation between their time series and the group
reference across ROls. The average of these correlations was used as the measure of individual synchrony.
Compared to the HCP data, the HBN data exhibits a non-normal distribution. Left: Distribution of individual synchrony
for HCP data. Right: Distribution of individual synchrony for HBN data.
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Fig. S8: Group synchrony under three different filter functions. The plot shows group synchrony for different
movies using three distinct dimensionality reduction techniques: UMAP (blue points), t-SNE (green points), and PCA
(orange points). Both UMAP and t-SNE were initialized with PCA. Three filter functions reduce the data to three
dimensions. Synchrony was computed as the Pearson correlation between two groups, with each group consisting of
15 randomly selected participants, repeated over 100 permutations.
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Fig. S9: An illustration of intersecting TCM. The illustration shows the intersecting TCM within the STIM framework
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(in green), highlighting the differences between unaligned and aligned states. The intersecting TCM is used for

downstream analysis.
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Fig. S10: Mapper parameter perturbation test in local geometry. The box plot displays the consistency in local
geometry across different resolution parameters, ranging from 4 to 20 (with 12 selected as the reference).
Consistency is computed as the Pearson correlation between the test parameter and the reference parameter

(resolution = 12).
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