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Abstract	
Immune checkpoint inhibitors (ICIs) have heralded a remarkable shift in cancer care, significantly extending 
survival for advanced cancer patients. However, despite their remarkable clinical successes, a substantial 
majority of patients fail to achieve a lasting response to ICIs. To address this challenge and gain insights into 
the complex landscape of the tumor microenvironment (TME), we conducted an extensive analysis using 
single-cell RNA sequencing (scRNA; ~216K cells across 39 samples) and single-nucleus transposase-
accessible chromatin sequencing (snATAC; ~43K cells from 15 samples) in a metastatic melanoma cohort. 
This systematic approach delineates 14 distinct cell types and 55 cell subtypes, including the identification of 
15 transcriptional hallmarks of malignant cells. Through correlation analysis of cell subtype proportions, we 
unveiled six distinct clusters associated with varying tumor responses. Particularly intriguing was the 
identification of the mature DC enriched in immunoregulatory molecules (mregDC) subtype exhibiting 
correlations with naive T and B cells, forming an anti-tumor program that underscores the importance of 
multiple immune cell types in mediating anti-tumor immunity. Notably, we found that mregDC abundance 
represents a good prognostic predictor of progression-free survival (PFS) in the context of ICI treatment, and 
when combined with the TCF7+/- CD8 T cell ratio, it reliably predicts patient PFS across treatments beyond 
ICI. We validated our findings using an independent cohort of 274 ICI-treated melanoma samples analyzed 
using tissue-level expression. We next compared mregDCs and conventional dendritic cell types 1 and 2 
(cDC1 and cDC2) using transcriptome signature, differentiation trajectory, interactome, cytokine milieu, and 
epigenome landscape analyses. This comparative analysis shed light on the unique attributes of mregDCs 
within the TME. Finally, we investigated cell type/subtype-specific genes, pathways, immune response 
enrichment, and ligand-receptor interactions closely associated with the proportions of mregDCs within the 
TME. These molecular and cellular insights, with their critical roles in enhancing the immune response against 
cancer, offer valuable prospects for predicting the efficacy of ICI regimens, and potentially guiding the selection 
of rational combinatorial therapies. 
Introduction	
Cancer treatment has progressed significantly, moving beyond targeting highly proliferative cells to identifying 
precise targets within cancer cells and their specific immune microenvironment. Combination therapies, 
whether administered simultaneously or sequentially, are frequently used for increased efficacy in advanced 
cancer stages. The emergence of immune checkpoint inhibitors (ICIs) approximately a decade ago and their 
use in advanced melanoma revolutionized cancer treatment1. Prior to ICIs, patients with stage IV melanoma 
typically had a median lifespan of 6-9 months. However, with ICIs, survival rates extended up to 6 years with 
anti-PD-1/anti-CTLA-4 combination therapy, albeit with a higher incidence of severe adverse events2. Despite 
these advancements, only a subset of patients, ranging from 45 to 58%, demonstrated objective responses to 
individual or combined ICI treatments3. ICI treatments, used as a second-line treatment option, showed 
objective responses in only 15 to 30% of patients4. Resistance to targeted therapies and ICIs has posed 
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challenges to patients' progression-free survival (PFS), underscoring the urgent need for biomarkers to predict 
survival benefits across treatments and guide clinical decision-making. 
Over the past decade, research in metastatic melanoma has identified several response-associated biological 
features, such as tumor mutational burden (TMB) and neoantigen load5, alongside CD8 expression at the 
invasive margin6. However, their predictive abilities remain limited. Advancements in single-cell technology 
have facilitated a more nuanced understanding of the tumor microenvironment (TME) at single-cell resolution 
and its relationship with clinical responses. Initially, Tirosh et al.7 employed single-cell RNA sequencing 
(scRNA-seq) to analyze 4,645 single cells from 19 metastatic melanoma patients, revealing the multicellular 
ecosystem of tumors. Subsequently, Jerby-Arnon et al.8 combined 2,987 scRNA-seq profiled cells from 17 
newly collected patient tumors with 4,199 cells from Tirosh et al.7, identifying a resistance program expressed 
by malignant cells, CDK4/6 signaling, linked to T cell exclusion and immune evasion. In parallel, Sade-
Feldman et al.9 profiled transcriptomes of 16,291 individual immune cells from 48 tumor samples of melanoma 
patients treated with ICIs, establishing a TCF7+/- CD8 T cell ratio associated with response to ICIs. More 
recently, Zhang et al.10 performed scRNA-seq on 63,694 cells from 5 acral and 3 cutaneous melanoma 
samples, comparing immune differences between the two melanoma subtypes. However, these studies have 
primarily focused on tumor and immune cells, particularly T cells, due to limitations in cell collection and 
technology costs.  
Dendritic cells (DCs) play a crucial role in coordinating immune responses against tumors, serving as 
professional antigen-presenting cells (APCs) since their discovery in 197311. Categorized into conventional 
DCs (cDCs) and plasmacytoid DCs (pDCs), cDCs further split into type 1 (cDC1) and type 2 (cDC2) based on 
lineage-determining TFs and functions12–14. While immature cDCs are essential for immune surveillance, their 
maturation is vital for immunogenicity involving antigen processing, presentation, and T-cell co-stimulation15. 
Despite their importance, DC signatures has been obscured in tumor measurements due to its low 
abundance11, until recent single-cell sequencing efforts unveiled their heterogeneity, highlighting a regulatory 
signature termed mature DC enriched in immunoregulatory molecules (mregDCs)16. Although prior studies 
associated a higher density of mregDC-like dendritic cells with improved survival in cutaneous melanoma17, 
this state remains poorly characterized in melanoma across different treatments. 
To address these gaps, we conducted extensive single-cell profiling of metastatic melanoma samples, 
annotating diverse cell types and subtypes in the TME and correlating them with treatment response and 
patient survival. Analyzing 215,946 cells across 39 samples, we identified 14 cell types and 55 subtypes, 
shedding light on correlated subtypes and prognostic markers beyond immune checkpoint inhibitors (ICIs). Of 
particular interest were mregDCs, which emerged as survival predictors. We delved into their transcriptome 
signatures, epigenome landscape, differentiation trajectory, and cell-cell communication potentials, uncovering 
intrinsic and extrinsic molecules associated with mregDC abundance. 
Results	
Cell	types	in	metastatic	melanoma	tumor	microenvironment	
We obtained metastatic melanoma samples from Massachusetts General Hospital, focusing on annotated 
cases that had received various primary treatments, predominantly involving ICIs. After rigorous quality control, 
our analysis centered on 39 scRNA-seq samples, complemented by 15 paired snATAC-seq samples. Out of 
the 39 scRNA-seq samples, 31 underwent treatment that included ICI therapy, with 19 of them exclusively 
receiving ICI treatment. Key clinical information, such as progression-free survival (PFS), overall survival (OS), 
lesional response, treatment details, tissue type, melanoma subtype, sex, age, and time relative to treatment 
initiation, is visualized in Figure 1A and listed in Supplementary Table 1. 
We conducted data integration for the 39 scRNA-seq samples, implemented dimensionality reduction 
techniques, and illustrated the 2D cell embeddings. At the highest level, we distinguished tumor, immune, and 
stromal compartments, along with sample IDs, tissues, melanoma subtypes, sex, treatment groups, treatment 
state, and lesional responses (Extended Data Fig. 1, Fig. 1B). We identified 14 cell types for the 215,946 
cells, including sample-specific tumor cells (further analyzed in the subsequent section), T lymphocytes (i.e., 
CD8 T cells, CD4 T cells, other T cells, and cycling T cells), natural killer (NK) cells, B lymphocytes, myeloid 
cells (encompassing monocytes/macrophages, conventional dendritic cells [cDC], plasmacytoid dendritic cells 
[pDC], and mast cells), and stromal cells (including endothelial cells, fibroblasts, and keratinocytes; Fig. 1B). 
Distinct expression patterns of canonical cell type-specific markers are presented in Figure 1C. 
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Our single-cell annotations showed highly consistent cell type annotations with previous studies on metastatic 
melanoma, and contributed more cells than all previous studies combined (Supplementary Fig. 1A-D)7–10. We 
also confirmed that our cell type markers and cell type annotations remained consistent when jointly analyzing 
our data with cells from all previous studies combined (Supplementary Fig. 1E). 
Consensus	tumor	programs	and	immune	cell	subtypes	in	tumor	microenvironment 
We found that transcriptomic profiles of tumor cells exhibit patient-specific patterns (Extended Data Fig. 1B), 
as found in previous studies18. To correct for these patient specific effects and identify tumor-shared patterns of 
intra-tumor heterogeneity (ITH), we assigned tumor cells to 15 distinct meta-programs previously compiled in 
Gavish et al.18 encompassing 30,162 high-quality cells with a minimum number of 25 expressed genes in the 
meta-program (Fig. 2A, Extended Data Fig. 2A). The predominant gene expression patterns in each meta-
program provide insights into the unique functionalities of different tumor cell subpopulations within a tumor. 
These functionalities span various aspects, including cell-cycle phases (G1/S, G2/M, HMG-rich), upregulation 
of processes such as epithelial-mesenchymal transition (EMT), hypoxia, interferon and major histocompatibility 
complex (MHC) class II, MYC, protein maturation, respiration, skin pigmentation, stress, translation initiation, 
and unfolded protein response (Fig. 2B). Our analysis confirms previously-reported meta-programs18 and also 
facilitates correlation of these tumor programs with non-tumor subtypes within the same samples. 
For myeloid cells, we classified monocytes into classical (CD14+FCN1+S100A8+S100A9+) and non-classical 
(CD16+LST1+LILRB2+) monocytes; macrophages into M1, M2 and tumor-associated macrophages (TAMs); 
and cDCs into cDC type 1 (cDC1), type 2 (cDC2) and a mature and migratory subtype (mregDC; Fig. 2C, 
Extended Data Fig. 2B). We found that M1 macrophages, which participate in pro-inflammatory responses, 
are distinguished by their expression of CXCL9, CXCL10, CD80, FCGR1A, and HLA-DR. In contrast, M2 
macrophages, known for their immunosuppressive role, exhibited expression of anti-inflammatory molecules 
MSR1, CD163, MRC1, C1Q, SELENOP, and APOE. TAMs were characterized by their expression of VEGFA, 
IL-10, TNF, and TGFB1. Further details about the cDC subtypes will be discussed in a subsequent section. 
In the CD8+ T cell compartment, we identified various subtypes, including naive T cells (Tn, CCR7+), effector T 
cells (Teff, GZMA+GZMB+), memory T cells (Tm, CXCR6+), exhausted T cells (Tex), and natural killer T cells 
(NKT, CD8+XCL2+; Fig. 2D and Extended Data Fig. 2C). Among the Teff subset, three clusters exhibited 
moderate to high expression of cytotoxic markers GZMA and GZMB. An early activated Teff subgroup was 
marked by CD69 expression. Notably, HNRNPH1+ Teff displayed elevated levels of long non-coding RNAs 
(lncRNA) including MALAT1, NEAT1, and ribonucleoproteins HNRNPH1 and HNRNPU, implicated in 
regulating T-cell-mediated immune responses, potentially affecting ICI resistance19. Another distinct GZMK+ 
Teff cluster showed high expression of cytotoxicity-related genes, excluding CTLA-4. Within the Tm subset, 
cells were further categorized into effector memory T (Tem) and exhausted memory T (Texme) based on their 
expression of cytotoxic genes (GZMA, GZMB) and the exhaustion marker TOX. While checkpoint molecules 
like PDCD1, LAG3, TIGIT, and CTLA-4 were broadly expressed, detailed differential analysis revealed three 
distinct Tex cell clusters, each exhibiting distinct exhaustion and cytotoxicity profiles. Tex/HS displayed high 
expression of heat shock protein genes and enrichment in heat response-related pathways. The GNLY+ Tex 
cluster was unique for expressing granulysin gene GNLY and calcium-binding proteins S100A10 and 
S100A11. Additionally, the FTL+ Tex cluster exhibited increased expression of FTL and FTH1, encoding 
ferritin subunits. The role of ferritin in T cell function is still being explored, but prior studies have linked FTL 
and FTH1 to immune cell infiltration, particularly in Tregs20.  
We identified six subpopulations of CD4+ T cells, including the commonly observed naive T cells (Tn), memory 
T cells (Tm), regulatory T cells (Tregs), exhausted T cells (Tex), CD69+ early activated T cells (CD69+ T), and 
NKT cells (Fig. 2E, Extended Data Fig. 2D). Notably, Tn cells, identified by their high expression of the naive 
marker CCR7, also exhibited significantly elevated expression of ribosomal genes, indicative of cells in a naive 
or quiescent state21. Tm cells expressed the memory marker CCL5. Tregs, governed by the transcription factor 
(TF) FOXP3, demonstrated elevated levels of co-inhibitory molecules CTLA-4 and TIGIT. Tex cells exhibited 
increased expression of checkpoint molecules, including TOX, CTLA-4, PDCD1, and TIGIT, along with an 
increase in glycolytic metabolism, highlighted by their elevated expression of GAPDH. The activated CD69+ T 
cell phenotype correlated with upregulation of stress-related genes, such as FOS, JUN, and heat shock protein 
(HSP) family genes. Additionally, we identified an NKT subpopulation characterized by its unique expression of 
XCL1, XCL2, KLRD1, and CD4, aligning with an innate lymphoid phenotype. 
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Furthermore, we uncovered a distinct subtype known as double negative NKT cells (DN NKT) among other T 
cells, characterized by the expression of T cell markers excluding CD4 and CD8, alongside NK markers. DN 
NKT cells have been proposed to adopt a pro-inflammatory phenotype, contributing to both innate and 
adaptive immunity22. For B cells, we categorized them into four subtypes: naive, transitional, memory, and 
plasma B cells. Naive B cells were marked by differentiating markers IGHD and IGHM, transitional B cells 
expressed CD93 and TNFRSF13C, memory B cells were identified by the presence of CD27, IGHM, IGHE, 
IGHG1, IGHA1, and IGHD, while (regulatory) plasma B cells expressed markers such as BCL6, IRF4, PRDM1, 
SDC1, TNFRSF17, and XBP1. In addition, we identified two subtypes of fibroblasts: myofibroblasts, expressing 
ACTA2, NDUFA4L2, and MYL9, and inflammatory fibroblasts, marked by the presence of IL6, CXCL12, and 
DPT. 
In summary, our analysis revealed a total of 55 distinct cell subtypes within the 14 primary cell types in our 
cohort (Extended Data Fig. 2E, Supplementary Table 2-4). We later expanded these cell subtype 
annotations to the integrated single-cell atlas, encompassing data from five studies. This comprehensive 
subtyping offers an opportunity to explore correlations between these cell subtypes within the TME. 
Cell	subtype	correlations	reveal	six	modules	with	varied	tumor	responses	
To analyze changes in subtype abundance dynamics within the TME, we calculated the relative proportions of 
cell subtypes in comparison to their respective cell types. Then we conducted correlations between these 
relative proportions across samples, resulting in the recognition of six distinct modules through unsupervised 
hierarchical clustering. We broadly categorized these modules using known functions of certain cell subtypes, 
specifically as having either anti-tumor, pro-tumor, or mixed characteristics (Fig. 2F, Supplementary Table 5). 
In Module 1, correlations indicated a potential anti-tumor effect, with the mregDC subtype showing strong 
associations with CD8 Tn, CD8 HNRNPH1+ Teff, CD4 Tn, CD4 CD69+ T cells, CD4 NKT cells, and naive B 
cells. This module emphasized immune infiltration (Extended Data Fig. 2F). Module 2 exhibited pro-tumor 
characteristics, featuring correlations among CD8 FTL+ Tex cells, CD4 Treg cells, plasma B cells, and two 
tumor meta-programs (MYC and EMT). These associations suggested the suppression of immune functions. 
Module 3 presented mixed effects in terms of tumor response. For example, cDC1 was predominantly anti-
tumor, while M2 macrophages tended to be pro-tumor14. In Module 4, correlations emerged among M1 
macrophages, CD8 Tem cells, and tumor meta-programs related to unfolded protein response, stress, and 
interferon/MHC-II (Extended Data Fig. 2G). These cell subtypes were associated with anti-tumor responses, 
particularly through antigen presentation and inflammation. Module 5 included several exhausted T cell 
subtypes (e.g., CD4 Tex, CD8 Texme, CD8 Tex/HS, and CD8 GNLY+ Tex) and two pro-tumor myeloid cell 
subtypes, cDC2 and TAMs, showing a pro-tumor immune exhaustion signature (Extended Data Fig. 2H). 
Lastly, Module 6 pointed to an anti-tumor effector T cell function, with CD8 GZMK+ Teff, CD4 Tem cells, tumor 
meta-programs related to the cell cycle, and non-classical and classical monocytes (Extended Data Fig. 2I). 
Upon focusing on the samples treated with ICI, we identified the same six modules as in Fig. 2F, albeit in a 
different order (Supplementary Fig. 2A), suggesting conserved cell subtype modules regardless of treatment. 
Expanding our correlation analysis to our integrated single-cell atlas with cell subtype annotations 
(Supplementary Fig. 2B), we still observed five of the six modules, although some module memberships were 
slightly altered or merged (Supplementary Fig. 2C). This variation can be attributed to the diverse cell types 
captured in each study due to different enrichment protocols. Notably, the anti-tumor immune infiltration 
module remained highly conserved, prompting us to explore its biological significance and its potential 
associations with clinical variables or responses. 
Mature	and	migratory	cDC	abundance	associated	with	ICI	response	and	PFS	
To identify cell subtypes with their abundance correlated with lesional response to treatment, we compared cell 
subtype relative proportions between respondering and non-responding tumors. Using all the samples, we 
observed more tumor cells with the stress meta-program, more Tregs, and more plasma B cells in non-
responders (p <0.05, Extended Data Fig. 3A). Tregs and plasma B cells belong to module 2 (pro-tumor 
immune suppression) in the above correlation analysis. We found more inflammatory fibroblasts (p <0.05, 
Extended Data Fig. 3A), more tumor cells with the G2/M cell cycle program, and more CD8 Tn in responders 
(p <0.1, Supplementary Fig. 3A). Tumor cells with the G2/M cell cycle program and CD8 Tn cells belong to 
two anti-tumor modules, modules 6 and 1, suggesting their anti-tumor effects across treatments. When 
focusing on the samples treated with only ICI (combo or anti-PD1), we detected more tumor cells with the 
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respiration tumor meta-program and M2 macrophages in non-responders, and more classical monocytes and 
mregDCs in responders (Fig. 3A). This finding highlights these cell types in mediating ICI-specific effects, and 
shows consistency with the known role of M2 macrophages and classical monocytes mediating anti- and pro-
ICI effects, respectively23. mregDCs, transcriptionally characterized by single-cell studies16,24,25, were reported 
to be more abundant in responsive triple-negative breast cancer patients during anti-PD-1 treatment26, and 
they play an important role in mediating ICI effects in mouse models27. However, the underlying mechanism 
remains incompletely understood. Interestingly, neither cDC1 nor cDC2 was associated with treatment 
response in all the samples or subsets of samples (Supplementary Fig. 3B). mregDC did not show differential 
abundance in samples treated with therapies other than ICI only (Supplementary Fig. 3C). Relative 
proportions of cDC in all cells or all immune cells were not associated with treatment response 
(Supplementary Fig. 3D). In summary, these findings suggest that the relative proportion of cDCs showing 
the mature and regulatory phenotype could affect tumor’s response to ICI. 
Beyond treatment response, we observed significant PFS benefit and marginally significant OS benefit for ICI-
treated samples with high relative proportions of mregDCs (Fig. 3B). Using the same median threshold to 
group samples into mregDC high versus low, we did not observe significant survival benefit for samples with 
other treatments, although mregDC high samples always showed higher survival probability compared to 
mregDC low samples (Extended Fig. 3B,C). None of the other cell subtypes associated with ICI response 
showed stratification of patient’s survival; however, their survival curve splits were consistent with their 
corresponding effect directions for treatment response (Supplementary Fig. 3E). A previous single-cell 
metastatic melanoma study established an association between TCF7+ CD8 T cells and ICI response9. Here, 
we show that mregDC relative proportion is in fact particularly correlated with TCF7+ versus TCF7- CD8 T cell 
ratio (Extended Data Fig. 3D) and confirmed more TCF7+ CD8 T cells in responsive ICI-treated samples 
(Extended Fig. 3E). We also detected significant PFS and marginal OS benefit in ICI-treated samples with 
higher TCF7+ ratio (Extended Fig. 3F). Similar to mregDC relative proportion, TCF7 ratio did not stratify 
patient’s survival in samples with other treatments (Supplementary Fig. 3F). However, when we combined 
these two potential biomarkers, they showed significant survival prediction power in all samples: samples with 
high mregDC proportion and high TCF7+ CD8 ratio had higher survival probability regardless of treatment type 
(Fig. 3C). 
Moreover, we tested the derived mregDC signature (Supplementary Table 3) in a meta-metastatic melanoma 
cohort treated with ICI and with tissue-level RNA-seq data available28. We validated the association between 
mregDC signature scores and patient’s response to ICI (n=274, Fig. 3D). The same mregDC signature score 
split by median showed significant PFS difference and marginal OS difference in this meta-cohort (Fig. 3E). 
Transcriptional	landscape	of	mature	and	migratory	cDCs	
We found that cDCs clustered into three subtypes: cDC1, cDC2 and mregDC (Fig. 4A; Extended Fig. 4A), 
and sought insights in their respective functions. cDC1 was characterized by high expression of canonical 
markers CLEC9A and XCR1, while cDC2 displayed elevated levels of CD1C and FCER1A. mregDC exhibited 
elevated expression of LAMP3, FSCN1, CCL19, and CCR7, consistent with prior findings24,25. Notably, cDC1 
showed significant expression of its lineage-specific TF IRF8 among the three subtypes29. However, IRF4, the 
cDC2 lineage-specific TF, is expressed most prominently in mregDC compared to cDC1 and cDC2 (Fig. 4B). 
cDC1, cDC2 and mregDC scores based on previously reported signatures16 confirmed our classification of the 
three subtypes (Extended Fig. 4B). The majority of published mregDC signatures are confirmed, with 
exceptions in Th2 response genes (Supplementary Fig. 4A,B)16. In contrast to mouse mregDCs, human 
mregDCs express higher levels of CCL22 and BCL2L1, while cDC2 exhibits higher levels of IL4I1, TNFRSF4, 
and STAT6 (Supplementary Fig. 4B). 
Differential expression analysis revealed distinct gene expression profiles and pathways between mregDC and 
cDC1 as well as cDC2. Specifically, mregDC exhibited a higher number of up-regulated genes than down-
regulated genes compared to cDC1 (611 vs. 85, Fig. 4C, Supplementary Table 6). The up-regulated genes 
were enriched in pathways involved in actin cytoskeleton organization, hydrolase activity, cell migration, NF-ⲕB 
signaling, death receptor signaling, protein phosphorylation, cytokine signaling, T-cell costimulation and T-cell 
co-inhibition, aligning with the mature, activated, migratory and immunoregulatory features of mregDC (Fig. 
4D, Supplementary Table 7). When comparing mregDC with cDC2, mregDC showed higher expression of 
305 DEGs and lower expression of 419 genes (Fig. 4E). The up-regulated pathways predominantly related to 
T-cell activation with virus infection, TNFR1 signaling and kinase activity, whereas the down-regulated 
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pathways included immune response to bacterium (Fig. 4F). Based on the observed differences in pathways 
between mregDC and cDC1/cDC2, mregDC likely derives from cDC1, with gene programs associated with 
relevant phenotypes activated.  
Upon comparing the expression patterns of select genes from a prior study30, we noted that many markers 
previously associated with high expression in cDC1 populations were exclusively expressed by mregDCs in 
our cohort. These markers include CCR7 and CCL22 for migration, CD86, CD80, and CD40 for maturation, 
PDL2 and RANK for immunoregulation, and TAPBP for cross-presentation. This finding further strengthens the 
notion that cDC1 cells are a primary source of mregDCs in the human TME (Supplementary Fig. 4C). 
Additionally, there are markers equally expressed by cDC1s and mregDCs, such as IL12B and FLT3. 
To further understand differences between mregDCs and cDC1/cDC2, we performed trajectory analysis31, 
regulon (TF and its targets) inference32, and immune response enrichment33 inference for the three subtypes. 
Trajectory analysis revealed that both cDC1 and cDC2 possess the potential to transition into mregDCs 
(Extended Fig. 4C), consistent with findings from experimental studies using mouse cDCs16. Despite its lower 
expression in mregDC compared to cDC1, IRF8 exhibited the highest regulon specificity score in mregDC, 
indicating its potential role in mediating the transition from cDC1 to mregDC (Extended Fig. 4D). Other top 
regulons included those associated with NF-ⲕB signaling (REL, NFKB1, NFKB2), AP-1 signaling (FOSB, 
JUND, FOSL2), and oxidative stress response (MAFG, NFE2L2). IRF1, another regulon enriched in mregDC, 
has been implicated in driving antitumor immunity in mouse models through its control by NF-κB signaling34. 
Additionally, IKZF1, another enriched regulon in mregDC, is known to regulate DC function in humans35. KLF3 
and KLF6 were also among the top enriched regulons in mregDC. Notably, KLF4, a member of the same 
Krüppel-like factor family, has been reported to promote Th2 cell responses in IRF4-expressing cDCs36. 
Immune response enrichment33 indicated that mregDCs exhibited transcriptional responses to IL1β, TNFα, 
IL12, IFNβ, GM-CSF, TSLP, and IL18, while cDC1 showed enrichment for Leptin, Flt3l, LIF, and IL21 
(Extended Fig. 4E). GM-CSF37 and TSLP38 are known to promote cDC maturation and activation, while Flt3l is 
crucial for cDC precursor development and cDC maintenance39 and IL21 was shown to inhibit DC activation 
and maturation40. Pro-inflammatory cytokines such as IL1β, TNFα, IL12, IFNβ appeared to influence mregDCs 
as well. 
Differential	interactome	between	mature	and	migratory	cDCs	and	other	cDCs	
To examine unique cellular interactions between the three cDC subtypes and other cell populations, we 
conducted cell-cell communication analysis utilizing ligand-receptor co-expression patterns41, revealing 
immune-stimulatory and -regulatory roles of mregDCs in the TME, and the survival and activation signals they 
receive from T cells and other myeloid cells. We annotated interactions with varying inferred activities in 
mregDC compared to other cDCs or those exclusively present in mregDCs (Supplementary Table 8,9). 
Notably, CD8 T-cells, CD4 T-cells, and monocytes/macrophages exhibited the highest number of such 
interactions with cDCs, either as sources or targets (Extended Fig. 4F). For CD8 T-cells, mregDC exhibited 
heightened interactions with CD8 exhausted memory T cells (CD8 Texme), exhausted CD4 T cells (CD4 Tex), 
regulatory T cells (Treg), and M1 macrophages through CD274 (PD-L1) and PDCD1 (PD-1) interactions (Fig. 
4G, Supplementary Fig. 4D). This finding underscores the significance of these interactions in mediating ICI 
response, particularly anti-PD-1 treatment. Specific molecular interactions were exclusive to mregDCs, 
including interaction between the up-regulated CCL19 cytokine in mregDCs and CCR7-expressing CD8 
effector and exhausted T cells, as well as early activated CD4 T cells (CD4 CD69+ T), suggesting potential 
recruitment of these T cells by mregDCs. Additionally, co-immunoregulatory interactions such as TIGIT-PVR, 
PDCD1LG2 (PD-L2)-PDCD1 (PD-1), and CD200-CD200R1 were observed between mregDCs and exhausted 
CD8 T cells with high heat shock gene expression (CD8 Tex/HS), CD4 CD69+ T cells, Tregs, CD8 effector 
memory T cells (CD8 Tem), CD4 NKT cells and M2 macrophages (Fig. 4G, Supplementary Fig. 4D). The 
interaction involving PD-L2 and PD-1 could represent another site of action with anti-PD-1 treatment. Apart 
from co-immunoregulatory signals, we identified interactions between CD70 and CD27 on mregDCs and naive 
and memory CD4 T cells, potentially mediating the co-occurrence of mregDCs and naive CD4 T cells (Fig. 2F). 
We also observed decreased levels of prostaglandin E2 interaction with PTGER2 on memory CD4 T cells (Fig. 
4G), suggesting inhibition of Th2 differentiation for these cells42, aligning with the lower levels of Th2 response 
genes seen in mregDCs (Supplementary Fig. 4B). Additionally, mregDC also up-regulated the interaction of 
RARRES2 (chemerin) and CMKLR1 with non-classical monocytes (Supplementary Fig. 4D), and indeed 
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chemerin has been reported to act as a tumor suppressive cytokine in mouse melanoma models by recruiting 
innate immune cells into the TME43. 
Conversely, TNFSF9 (4-1BBL) and TNFRSF9 (4-1BB) exhibited co-expression among CD8 Tn, CD8 Texme, 
CD8 GNLY+ Tex, and mregDC (Extended Data Fig. 4G). The interaction between CD8 Tn and mregDC is 
particularly noteworthy, given that 4-1BB has been demonstrated to serve as a survival factor in DCs, 
regulating DC immunogenicity and DC-T interaction44. Another ligand-receptor interaction notably up-regulated 
between mregDC and all CD8, CD4, monocyte and macrophage subtypes except CD8 Tex/HS was 
TNFRSF11B and TNFSF10 (TRAIL; Extended Data Fig. 4G, Supplementary Fig. 4E). TNFRSF11B is known 
to compete for TRAIL binding to death-activated receptors, offering a mechanism to prevent apoptosis in the 
presence of TRAIL45. Given the previously observed up-regulation of death receptor signaling in mregDCs, the 
heightened expression of TNFRSF11B could signify another pro-survival strategy for mregDC. Simultaneously, 
TNFSF12 (TWEAK) expressed by CD4 Tregs likely interacted with TNFRSF25 on mregDCs (Extended Data 
Fig. 4G), which was suggested to modulate the innate response and its transition to adaptive Th1 immunity46. 
We also observed an up-regulated co-expression of NRP2 (neuropilin-2) and SEMA3C between classical 
monocytes and mregDCs (Supplementary Fig. 4E). Neuropilin-2 is known to play an essential role in the 
activation of DCs47.  
Epigenomic	landscape	of	mature	and	migratory	cDCs 
For the subset of 15 samples with snATAC-seq data, we performed label transfer48 from the scRNA-seq atlas 
to annotate major cell types in the epigenomic space (Fig. 5A). Given the significance of mregDC in mediating 
ICI response, we isolated cDCs from both scRNA-seq and snATAC-seq data, integrated them into a unified 
UMAP space, and identified cDC subtypes through unbiased clustering and RNA-based annotations (Fig. 5B). 
Using differential accessibility analysis, we found distinct regions between mregDC and cDC1, and mregDC 
and cDC2, with more than double the number of differentially accessible regions (DARs) observed between 
mregDC and cDC2 compared to mregDC and cDC1 (2615 vs. 1186; Fig. 5C, Supplementary Table 10). For 
accessible regions with specific activities in mregDC, cDC1 showed a higher global activity correlation across 
these peaks than cDC2 (Extended Data Fig. 5A). Despite the limited number of cDC1 and mregDC cells in 
the ATAC data, our results suggest a more pronounced epigenomic change between mregDC and cDC2. 
Correspondingly, DARs between mregDC and cDC2 are significantly enriched in more biological processes 
compared to DARs between mregDC and cDC1 (Extended Data Fig. 5B,C, Supplementary Table 11), 
consistent with the diverse biological pathways enriched in DEGs between mregDC and cDC2 observed in our 
RNA data (Fig. 4D,F). The DARs with higher activities in mregDC compared to cDC1 or cDC2 were enriched 
in motifs for all five members of the NF-κB transcription factor family, including RELA, RELB, REL, NFKB1 and 
NFKB2 (Fig. 5D). Although we did not find motifs significantly enriched in DARs with higher activities in cDC1, 
motifs for the C/EBP family of TFs were significantly enriched in DARs showing higher activities in cDC2 (Fig. 
5D). Notably, enhancer accessibility for IL15, FSCN1, and DUSP22—genes crucial for DC functions—were 
identified only in mregDCs (Fig. 5E), indicating potential epigenomic reprogramming during cDC maturation 
and activation. Both FSCN1 and DUSP22 enhancers contain motifs for the NF-κB TF family, highlighting the 
important role of NF-κB signaling in mediating DC maturation. Additionally, we pinpointed enhancers for 
KDM2B, implicated in regulating IL6 expression49; GLS, glutaminase 1, a prognostic biomarker linked to DCs 
and immunotherapy response in breast cancer50; and CCR7, pivotal for DC migration and lymph node homing 
(Extended Data Fig. 5D).  
Molecular	and	cellular	factors	associated	with	mature	and	migratory	cDC	proportions	
Having established an association between mregDC proportion and ICI response, and its predictive value for 
patients' PFS, with the recognition of mregDC as a distinct cDC subtype with unique transcriptional and 
epigenomic signatures, we next shifted our focus to understanding the molecular and cellular determinants 
influencing mregDC proportions within the TME. To achieve this, we stratified the cohort into two groups based 
on mregDC levels: high vs. low, using the median mregDC proportion within cDC as a threshold (a median 
value of 18.5%, consistent with the survival analysis). For each cell type and subtype, we identified cell states 
associated with mregDC proportion and DEGs characterizing the mregDC-associated cell state, while 
adjusting for sample- and cell-level covariates (Fig. 6A). Subsequently, we investigated the enriched biological 
pathways and immune responses based on these DEGs. Additionally, we examined the differential cell-cell 
interactions between high and low mregDC samples using logistic regression models, accounting for sample-
level covariates. 
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At the cell type level, tumor cells, fibroblasts, and B cells exhibited the highest number of DEGs linked to 
mregDC proportions (Fig. 6B). Due to cell subtype heterogeneity, DEGs identified at the cell type level may 
reflect varying proportions of cell subtypes within the cell type across the two groups. Indeed, we observed this 
for B cells, where the proportion of naive B cells correlated with mregDC proportions, and naive B cells were 
the predominant subtype within B cells in terms of abundance (Fig. 2F). However, for tumor cells and 
fibroblasts, a significant number of DEGs persisted at the cell subtype level, indicating that subtype-specific 
DEGs primarily drove the cell type-level differences (Extended Data Fig. 6A). Interestingly, for the translation 
initiation tumor program, correlated with mregDC proportion (Fig. 2F), we identified only 10 DEGs (Extended 
Data Fig. 6A), highlighting the model's specificity. 
Analyzing the top DEGs for each cell type, we observed upregulation of CCR7 in cDCs among mregDC high 
samples, consistent with its role as an mregDC marker (Fig. 6C, Supplementary Table 12). At the cell 
subtype level, MHC class II genes were upregulated in mregDC high samples across various tumor programs, 
including HLA-DRB1 in tumor cell cycle G1/S and respiration programs, and HLA-DQA2 in tumor interferon 
MHC-II program (Extended Data Fig. 6B, Supplementary Table 13), indicating the immunogenic potential of 
these tumor programs in mregDC high samples. Notably, melanoma dedifferentiation marker NGFR and drug 
resistance marker AXL were upregulated in the tumor cell cycle G2/M program, suggesting potential 
interactions with mregDC that remain to be elucidated. In fibroblasts, inflammatory fibroblasts exhibited 
upregulation of CCL21, while myofibroblasts upregulated IL24 and CXCL10 in mregDC high samples 
(Extended Data Fig. 6C). These cytokines and chemokines possess proinflammatory and anti-tumor 
properties, indicating an anti-tumor microenvironment in mregDC high samples. 
These cell type-specific DEGs showed enrichment in upregulated ECM pathways in tumor cells and 
fibroblasts, and downregulated cell cycle pathways across various cell types including tumor, other T, NK, B, 
cDC, and pDC cells (Fig. 6D). Additionally, fibroblasts exhibited downregulation in muscle contraction-related 
pathways and the VEGFα VEGFR2 signaling pathway, indicating a shift from myofibroblasts to inflammatory 
fibroblasts in mregDC high samples. Subtype-level analysis revealed upregulation of the ECM pathway in the 
tumor translation initiation and unfolded protein response programs, while it was downregulated in several 
other tumor programs such as tumor interferon/MHC-II and stress programs (Extended Data Fig. 6D). The 
tumor respiration program displayed upregulation in PD-1 signaling and antigen processing and presentation 
pathways, suggesting its involvement in anti-PD-1 response and its association with mregDCs. Similarly, the 
tumor stress program upregulated PD-1 signaling pathway and additionally showed upregulation in the 
costimulation by the CD28 family pathway, indicating its potential to induce robust T cell responses directly. 
Inflammatory fibroblasts and myofibroblasts contributed to increased ECM pathway activity at the cell subtype 
level, while inflammatory fibroblasts exhibited upregulation of proinflammatory and profibrotic mediators in 
mregDC high samples (Extended Data Fig. 6E). 
Furthermore, the tumor stress program and inflammatory fibroblasts showed specific cell-cell communications 
in mregDC high samples (Supplementary Fig. 5A,B; Supplementary Table 14). The tumor stress program 
was predicted to interact with cDC2 via HEBP1 and FPR3, and with M1 macrophage via CD99 and PILRA. 
Inflammatory fibroblasts were predicted to interact with cDC2 via HEBP1 and FPR3, and with effector memory 
and exhausted memory CD8 T cells, double negative NKT cells, and other T cells via the TNC and integrin 
a4b1 complex (Supplementary Fig. 5B). Cathepsin D is known to process HEBP1 to produce F2L, a high-
affinity natural agonist for FPR351, which is expressed throughout human DC maturation and may regulate DC 
trafficking during antigen uptake and processing52. PILRα, encoded by PILRA, controls monocyte mobility by 
regulating integrin signaling and inhibiting CD99-CD99 binding53, while anti-CD99 antibody therapy was shown 
to trigger myeloid cell recruitment in vivo54. α4β1 integrin (also known as very late antigen-4, VLA-4) is 
expressed on leukocytes and mediates various cellular functions55, while TNC induces cytokine production via 
integrin α4β156. Overall, the tumor stress program and inflammatory fibroblasts secrete ligands that impact the 
functions of cDCs, other myeloid cells, and lymphoid cells in mregDC high samples, potentially contributing to 
the transition of cDC1 and cDC2 into mregDCs.  
Discussion	
We compiled a single-cell atlas of metastatic melanoma from 16 responding and 23 non-responding tumors, 
comprising over 200,000 cells across 55 annotated subtypes. Using this atlas, we identified six cellular 
programs with correlated subtype proportions, indicating regulatory relationships within the TME. We validated 
these cellular programs by integration with four previously published single-cell studies7–10, demonstrating 
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distinct anti-tumor and pro-tumor functions based on known cell subtype characteristics. Notably, we observed 
a higher relative proportion of mregDCs in responders compared to non-responders to ICI treatment. This 
observation was confirmed in an independent ICI-treated bulk meta-cohort. When combining mregDC 
proportion with the TCF7+/- CD8 T cell ratio, we stratified patients’ survival across treatments. Furthermore, 
our characterization of mregDCs using scRNA-seq and snATAC-seq data indicates their origin from cDC1, 
driven by intrinsic TFs like IRF8, and extrinsic factors such as pro-inflammatory cytokines (IL1β, TNFα, IL12 
etc.), along with ECM genes from specific tumor cells and fibroblasts. These factors potentially induce 
epigenomic reprogramming of naive cDCs, leading to the adoption of new phenotypes and functions.  
We identified specific cellular ligand-receptor co-expressions between mregDCs and T cells and other myeloid 
cells, potentially explaining ICI response in mregDC high samples. Our analysis revealed that mregDC 
proportions correlated with naive CD8 T, naive CD4 T, and naive B cell proportions in the TME, indicating its 
involvement in immune infiltration. At a molecular level, we predicted mregDCs interacting with naive CD4 T 
cells via CD70 and CD27, and with naive CD8 T cells via 4-1BB and 4-1BBL. CD27, a T cell costimulatory 
molecule, is known to support antigen-specific expansion of naive T cells57, while CD70 expressed on cDCs 
has been shown to promote the development of CD4 T cells producing various effector cytokines58. 
Additionally, the interaction between CD27 on naive CD8+ T cells and CD70 on APCs has been recently 
shown to determine T cell memory fate, with CAR-T cells generated with CD27 costimulation showing superior 
antitumor efficacy59. Moreover, 4-1BB, besides its role in DC maturation and pro-survival signaling44,60, has 
shown promise in enhancing antitumor immunity in clinical trials by dual targeting and conditional stimulation of 
CD40 (inducing DC maturation) and 4-1BB (NCT04083599)61. These molecular interactions underscore the 
intimate relationship between mregDCs and naive T cells, providing additional DC-T targets beyond CD40-
CD40L. However, the interpretation of these costimulatory signals needs to consider regulatory signals such as 
PD-1/PD-L1 and IDO1, which have been shown to affect the proliferation and effectiveness of naive CD8 T 
cells and induce the differentiation of naive CD4 T cells into Tregs using in vitro co-culture assays62,63. 
Additionally, our investigation into cell type-specific molecules associated with mregDC proportion in the TME 
highlighted the potential regulatory roles of the tumor stress program and inflammatory fibroblast through 
transcriptomic and cell-cell communication changes. 
The higher proportion of mregDCs observed in ICI-responding tumors, both in the single-cell dataset and a 
large ICI-treated bulk meta-cohort, is consistent with the expression of a direct target of anti-PD-1 treatment on 
their surface. Studies in mouse models have shown that PD-L1 on cDC1s attenuates T cell activation and 
regulates response to ICI27. Additionally, in a cohort of pembrolizumab-treated breast cancer patients, the 
relative frequency of mregDCs positively correlated with T-cell expansion following anti-PD-1 treatment, and 
mregDCs supported T-cell function in responders at baseline and during treatment26. Previous findings also 
suggested that mregDCs may be associated with better patient outcomes, as confirmed by the presence of 
mregDC cell markers associated with improved overall survival in melanoma patients64. Furthermore, the 
enrichment of a CCR7+ DC signature (mregDC) has been linked to improved survival in lung cancer, 
cutaneous melanoma, breast, and colorectal cancer by analyzing 4,045 human solid tumor transcriptomes 
from the TCGA65. In our study, while we did not find mregDC proportion alone as a pan-treatment pro-survival 
biomarker, combining mregDC proportion and TCF7+/- CD8 T ratio, a previously reported ICI response 
marker9, allowed us to predict patient survival across treatments. Notably, these two cell subtypes were 
recently found to be enriched in spatially organized stem-immunity hubs in human lung cancer, associated with 
response to immunotherapy66. 
Employing both scRNA-seq and snATAC-seq data from a substantial cohort of cDCs within the human 
melanoma TME, we meticulously delineated the three subtypes: cDC1, cDC2, and mregDC. Our investigation 
unveiled that mregDCs share transcriptional and epigenetic resemblances with cDC1s rather than cDC2s, 
suggesting their probable derivation from cDC1, in line with recent pan-cancer insights67. Moreover, we 
pinpointed TFs with heightened activity in mregDCs, notably IRF1, IKZF1, KLF3, and KLF6, urging deeper 
exploration of their roles in orchestrating the mature and regulatory phenotype. Our analysis of transcriptional 
signatures linked with various cytokines revealed an enrichment of proinflammatory cytokines (IL1β, TNFα, 
IL12, IFNβ), alongside cytokines pivotal for DC maturation and activation (GM-CSF, TSLP, IL18) in mregDCs, 
aligning with expectations. Additionally, we noted an enrichment of leptin, LIF, and IL21 in cDC1 compared to 
mregDC, highlighting cytokines for future investigation. More importantly, we uncovered that transcriptional 
alterations in tumor cells and fibroblasts correlated prominently with mregDC proportions in the TME, with both 
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cell types upregulating ECM pathways in mregDC high samples. These findings gain significance as ECM 
proteins are known to influence DC maturation68. Furthermore, we identified a specific molecular interaction, 
HEBP1-FPR3, between tumor cells/fibroblasts and DCs, potentially regulating DC trafficking through ECM52. 
Overall, our study reveals a rich repository of single-cell profiles from human metastatic melanomas, coupled 
with extensive clinical data, and underscores the critical role of mregDCs in shaping the TME and their 
potential as prognostic markers and therapeutic targets in melanoma treatment. 
Limitations	of	study	
In this study, our samples displayed significant clinical heterogeneity, including variations in treatment types 
and stages. While we attempted to address these variations computationally, a larger single-cell cohort would 
enhance the robustness of molecular and cellular correlates with patient responses and survival benefits. For 
communication analysis, integrating orthogonal data types like imaging and experimental approaches such as 
in vitro co-culturing systems and in vivo tracer methods would be invaluable in substantiating the predicted cell 
crosstalk. 
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Figure	Legends	
Figure 1. Characterization of cells in human metastatic melanoma tumors. A, Demographic summary of 
the 39 samples included in this study. Pfs, progression-free survival; os, overall survival; NR, non-responder; 
R, responder. B, Uniform manifold approximation and projection (UMAP) embedding of all the cells from the 39 
samples, after quality control, with each color representing a cell type. C, Dotplot showing average normalized 
expression and percent normalized expression of marker genes across cell types. 
Figure 2. Cell subtypes and their relative proportion correlations in the tumor microenvironment. A, 
UMAP embedding of tumor cells annotated with meta-programs according to Gavish et al. B, Heatmap of the 
top marker genes for each of the identified tumor meta-programs. C-E, UMAP embedding of myeloid cell 
subtypes (C), CD8 T-cell subtypes (D), and CD4 T-cell subtypes (E). The cell subtypes known for their anti-
tumor functions were delineated with dotted outlines. F, Heatmap illustrating correlation coefficients among the 
relative proportions of cell subtypes in relation to their corresponding cell types across all study samples. We 
identified clusters/modules by segmenting the hierarchical clustering tree at the red line and assigned 
annotations based on the known functions of the cell subtypes within each cluster or module. 
Figure 3. Mature and regulatory cDCs associated with ICI response and patient survival. A, Boxplots 
comparing relative proportions of four subtypes between ICI non-responders and responders. Each dot 
represents a sample, with its color corresponding to the type of ICI and its shape corresponding to the 
melanoma subtype. B, Survival plots for samples only treated with ICI and split by the median value of 
mregDC relative proportion. C, Survival plots for all samples and split by the median values of both mregDC 
relative proportion and TCF7+ CD8 T ratio. D, Boxplot comparing mregDC signature scores, calculated using 
ssGSEA, between non-responders and responders in 274 ICI-treated bulk RNA-seq samples. E, Survival plots 
for the 274 bulk RNA-seq samples split by the median value of their mregDC scores. P values for boxplots 
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were calculated using the Wilcoxon Rank Sum test. P values for survival plots were calculated using the Log 
Rank Sum test. NR, non-responder; R, responder; combo, anti-PD-1+anti-CTLA-4; PFS, progression free 
survival; OS, overall survival. 
Figure 4. Transcriptional landscape and interactome of cDC subtypes. A, UMAP embedding of cDCs 
colored by the subtypes. B, Violin plots of canonical marker genes for cDC1, cDC2 and mregDC. C,E, Volcano 
plots showing differentially expressed genes (DEGs) between mregDC and cDC1 (C) and between mregDC 
and cDC2 (E). An adjusted P value of 0.001 was used to call significant DEGs. Examples of genes with 
mregDC-specific enhancers were colored in green, which were mentioned in Figure 5. D,F, Networks of 
enriched terms for DEGs up- or down-regulated in mregDC compared to cDC1 (D) or cDC2 (F). G, Dotplots 
illustrating inferred cell-cell communications by CellPhoneDB41 either with differential activities between 
mregDC and other cDC or exclusively detected in mregDC. The left and right panels plotted interactions with 
cDC expressing ligands and CD8 or CD4 T-cell expressing receptors, respectively. P values for volcano plots 
and dotplots were calculated using the Wilcoxon Rank Sum test. 
Figure 5. Epigenomic landscape of cDC subtypes using snATAC-seq data. A, UMAP embedding of 
snATAC-seq cells with cell type labels transferred from scRNA-seq data. B, Co-embedding of cDCs from 
scRNA-seq and snATAC-seq data, with colors corresponding to assays (left) or subtypes (right). C, 
Differentially accessible regions between mregDC and cDC1 (top), and mregDC and cDC2 (bottom). The p 
value cutoff is 0.01. D, Motifs enriched in differentially accessible regions between mregDC and cDC1 (left), 
and mregDC and cDC2 (right). Significantly enriched motifs were marked with an asterisk (adjusted p-value 
<=0.05). E, Track plots comparing normalized number of reads across cDC subtypes underlying enhancers 
associated with genes important for cDC functions. mDC is short for mregDC in some figure panels due to 
space constraints. A peak is colored orange if it contains motifs for members of the NF-κB transcription factor 
family.  
Figure 6. Cell type-specific molecular factors associated with mregDC proportions. A, Illustration of 
sample splitting, model used, and downstream analyses performed to identify cell type-specific molecules 
associated with mregDC proportion. B, Bar plots showing the number of cell type-specific differentially 
expressed genes (DEGs) significantly upregulated or downregulated in mregDC high samples, detected by a 
linear mixed model. C, Aggregated volcano plots across cell types showing DEGs passing the adjusted P 
value threshold in red and the rest of genes in gray. The top three genes with large average log2 fold changes 
in both directions are labeled. D, Dot plots illustrating the top three pathways enriched by the up and 
downregulated DEGs for each cell type. The pathway names were colored by biological themes. 
Extended Data Figure 1. Visualization of the scRNA-seq atlas. Uniform manifold approximation and 
projection (UMAP) embedding of all the cells from the 39 samples, after quality control, with each color 
representing a compartment (A), a sample (B), a melanoma subtype (C), a treatment group (D), and patient’s 
response to treatment (E). ICI, immune checkpoint inhibitor; ICI combo, anti-PD1 plus anti-CTLA4; NR, non-
responder; R, responder. 
Extended Data Figure 2. Cell subtype markers and pairwise correlations between certain cell subtypes. 
A, On the left, UMAP embedding of all the tumor cells. Each color represents either a specific tumor meta-
program or cells that did not pass the quality control in this analysis. On the right, violin plots displaying the 
number of genes per cell, categorized by their inclusion in different tumor meta-programs or unannotated cells. 
B-D, Dotplot showing average expression and percent expression of marker genes for the myeloid cell 
subtypes (B), CD8 T-cell subtypes (C), and CD4 T-cell subtypes (D). F-I, Scatterplots depicting the pairwise 
correlations between two cell subtypes within module 1 (F), module 2 (G), module 3 (H), and module 4 (I). 
Each data point represents a sample, distinguished by shape representing melanoma subtype and color 
indicating the treatment group. Pearson correlation coefficients and p-values are provided within each plot. 
Extended Data Figure 3. Cell subtype association with ICI response and patient survival. A, Boxplots 
comparing relative proportions of selected cell subtypes between ICI non-responders and responders. Each 
dot represents a sample, with its color corresponding to the treatment group and its shape corresponding to 
the melanoma subtype. B and C, Survival plots for samples treated with ICI (B) or all samples (C) and split by 
the median value of mregDC relative proportion. D, Scatterplot correlating mregDC relative proportion and 
TCF7+ CD8 T ratio using all samples. Each dot corresponds to a sample and is colored by treatment 
response. E, Boxplot comparing TFC7+ versus TCF7- CD8 T cell ratio between ICI non-responders and 
responders. F, Survival plots for samples treated with ICI only and split by the median value of TCF7+ versus - 
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CD8 T cell ratio. P values for boxplots were calculated using the Wilcoxon Rank Sum test. P values for survival 
plots were calculated using the Log Rank Sum test. R-square and P values for scatterplots were calculated 
using the Pearson Correlation test. NR, non-responder; R, responder; combo, anti-PD-1+anti-CTLA-4; PFS, 
progression free survival; OS, overall survival. 
Extended Data Figure 4. Additional transcriptional characterization and cell-cell communication of cDC 
subtypes. A, UMAP embedding of cDCs colored by sample. B, Scatterplot showing cDC1, cDC2 and mregDC 
scores per cell based on the marker genes reported in Maier et al. C, CytoTrace stream embedding overlaid on 
UMAP showing converging transition paths from cDC1 and cDC2 to mregDC. Arrows show state transition 
directions. D, Scatterplot of mregDC regulon specificity scores inferred by SCENIC. Top 20 regulons are 
highlighted. E, Barplot showing cytokines with transcriptional signatures enriched in mregDC relative to cDC1, 
based on Cui et al33. F, Bar plots showing the number of differential or exclusive interactions by cell type, with 
the top panel corresponding to cDC as source and the bottom panel cDC as target. The bars are colored by 
the subtypes in each cell type. G, Dotplots illustrating inferred cell-cell communications either with differential 
activities between mregDC and other cDC or exclusively detected in mregDC. The left and right panels plotted 
interactions with cDC expressing receptors and CD8 or CD4 T-cell expressing ligands, respectively. P values 
for dotplots were calculated using the Wilcoxon Rank Sum test. 
Extended Data Figure 5. Additional epigenomic analysis results for cDC subtypes. A, Overall activity 
correlation across accessible regions specific to mregDC in cDC1 and cDC2. B,C, Gene ontology (GO) 
networks showing the GO terms enriched by the differentially accessible regions (DARs) between mregDC and 
cDC1 (B), and mregDC and cDC2 (C). The enrichment analysis was carried out using the GREAT program69. 
D, Track plots comparing normalized number of reads across cDC subtypes underlying enhancers associated 
with genes important for cDC functions. mDC is short for mregDC in some figure panels due to space 
constraints. A peak is colored orange if it contains motifs for members of the NF-κB transcription factor family. 
Extended Figure 6. Cell subtype-specific molecular factors associated with mregDC proportions. A, Bar 
plots showing the number of cell subtype-specific differentially expressed genes (DEGs) significantly 
upregulated or downregulated in mregDC high samples, detected by a linear mixed model. B,C, Aggregated 
volcano plots across tumor programs (B) or fibroblast subtypes (C) showing DEGs passing the adjusted P 
value threshold in red and the rest of genes in gray. The top three and ten genes with large average log2 fold 
changes in both directions are labeled, respectively. D,E, Dot plots illustrating the top three pathways enriched 
by the up and downregulated DEGs for each tumor program (D) or fibroblast subtype (E). The pathway names 
were in bold if discussed in the text. 
Materials	and	Methods	
Patient	cohorts	for	single-cell	analysis	
The metastatic melanoma samples for this study were obtained from Massachusetts General Hospital by 
G.M.B. under the DF-HCC protocol 11-181 (PI: G.M.B.). Our study focused on annotated metastatic tumors 
treated with ICIs, targeted inhibitors, other immune therapies, or their combinations as primary treatment. 
Patient age, progression-free survival (PFS), and overall survival (OS) were calculated from the treatment start 
date. Lesional response was assessed using RECIST 1.1 criteria. 
Single-cell	RNA-sequencing	and	preprocessing	
We enzymatically digested and dissociated fresh tumor samples according to tissue dissociation kit protocols 
using the gentleMACS™ Dissociator (Miltenyi). Dissociated tissues were filtered, centrifuged, and the isolated 
cells were resuspended in 0.1% BSA in PBS and immediately processed for the generation of single-cell RNA 
(scRNA) libraries using the droplet-based RNA sequencing technology. Briefly, 5000-6000 cells were profiled 
per sample using the Chromium Single Cell 3’ RNA reagent kit v3 (three samples were processed using kit v2) 
according to the 10X Genomics protocol. The generated cDNA libraries were indexed, pooled, and sequenced 
in batches using the NovaSeq 6000 S2 system and reagent kits (100 cycles; Illumina). We received the 
sequences, mapped the reads against the GRCh38 human reference genome, and quantified the read counts 
using Cell Ranger pipeline version 3.1.0 (10x Genomics). 
Single-nucleus	ATAC-sequencing	and	preprocessing	
We performed snATAC-seq using the Chromium single cell ATAC v1 chemistry from 10x Genomics with the 
target of 5000 nuclei per sample. Then the libraries were profiled using the Novaseq S2 (Illumina) technology. 
We aligned and quantified the libraries using the 10X cellranger-atac-2.0.0 pipeline.  
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Single-cell	RNA-seq	data	analysis	
Quality control, dimensionality reduction, clustering and cell type annotation: We used CellBender70 to 
remove ambient RNA in each sequencing library and called multiplets using Scrublet71. We then used standard 
pre-processing workflow from Seurat (v4)72 to prepare the scRNA-seq dataset. Single cells with <200 genes 
or >6000 genes or  >10% of reads mapping to the mitochondrial genome were removed. Data normalization 
and scaling was performed using SCTransform48, to adjust for sequencing depth and remove mitochondrial 
mapping percentage as a confounding variable. We then merged the libraries and performed principal 
component analysis (PCA) using the genes detected in all samples. After obtaining the low-dimensional 
embeddings, we performed Uniform Manifold Approximation and Projection (UMAP) on the top 40 principal 
components to visualize the dataset. We then constructed a k Nearest Neighbor (kNN) Graph in the top 40 
principal components space and clustered cells using the Louvain algorithm. In all the datasets, we used the 
default parameter k = 20 and resolution parameter ranging from 0.2 to 1.4 and proceeded with the lowest 
resolution that sufficiently highlighted the biological differences between clusters. We annotated each cluster 
using known cell-type specific markers. To identify proliferating cells, we used the CellCycleScoring function to 
calculate the S phase score and G2M phase score for each cell. To identify tumor cells, we used inferCNV 
(https://github.com/broadinstitute/inferCNV) to infer copy number alterations from potential tumor clusters in 
comparison to normal cell clusters. 
Cell type-specific subclustering: A cell type of interest was subsetted from the object containing all cells 
from the 39 samples, which passed quality control metrics described in the previous method section using the 
subset function. We then ran SCTransform48 on the raw counts of the subset, with the default “v2 
regularization” and the “vars_to_regress” parameter equal to the percentage of mitochondrial genes. After 
applying SCTransform, PCA was applied on the scaled data. Next, to ensure integration of cells by cell 
subtypes rather than by the technical variation across samples, we used Harmony73, an algorithm that projects 
cells into a shared embedding in which cells group by cell states rather than dataset-specific conditions, 
different samples in our case. Finally, non-linear dimensionality reduction was applied with UMAP, using the 
first 30 dimensions from the reduction from Harmony, to visualize the cells in 2D. 
Cell subtype annotation: The identification of subtypes for each cell type was determined by two approaches: 
1) a priori knowledge of specific markers for subtypes revealed in the literature, and 2) graph and/or density-
based clustering algorithms to cluster groups of cells of the same cell type followed by identification of 
differentiating markers among clusters. Both approaches were used concurrently to find the best partitions of 
subtypes, as detailed below: 1) Using known markers for specific subtypes: Through extensive literature 
search, markers distinguishing cell subtypes were visualized using the Seurat function FeaturePlot to identify 
patterns of the expression of certain markers for the differentiation and assignment of subtypes. 2) Applying 
clustering methods to delineate subtypes: Clustering methods were applied to determine subtypes within cell 
type subsets and could be of either of the following methods: a) The FindClusters function in Seurat identified 
clusters of cells by constructing a shared nearest neighbor (SNN) graph from k-nearest neighbors (kNN). Then 
the modularity function was optimized using the Louvain algorithm, which finds non-overlapping clusters from 
networks to determine the clusters. The default parameters were kept while varying the resolution to match the 
expected number of subtypes within the cell type (higher resolution = more clusters). b) Density-Based Spatial 
Clustering of Applications with Noise (DBScan), is a density-based clustering algorithm that uses an 
embedding of points (in our case the UMAP projection) to cluster points by how close or far they are from one 
another. The R package dbscan was used to find clusters, in which the “eps” parameter was set to the radius 
of neighboring points and the "MinPts” parameter, which specified the threshold for the minimum number of 
neighbors within the radius. By assigning points by these parameters, clusters as well as outlier points were 
found by the algorithm. 3) Validation of subtypes through differential gene expression analysis: Clusters could 
be compared against each other by finding DEGs between one or more clusters. We used FindMarkers to 
identify DEGs among the various clusters to verify that the clusters differentially express the known markers of 
interest from literature or discover markers to confirm the presence of a subtype. This was applied when the 
marker expression was not very apparent merely by observation through FeaturePlot. Once clusters were 
determined, the subtype annotations were integrated back into the original object containing all cells from the 
39 samples. Cells that passed quality control metrics but did not cluster with any annotated subtypes were 
found using dbscan. Outlier cells were discarded from the finalized object.  
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Subtyping of malignant cells: We used a different approach, as described in Gavish et al.18, to uncover 
“meta-programs'' of tumor cells, with each uniquely describing a distinct cellular state through a gene set. Each 
cell was assigned to the meta-program for which its sum of gene activities for the specific meta-program’s 
genes was the maximum among all meta-programs tested and meeting defined constraints. Overall, a 
minimum score of 0.03 was enforced to yield 60.1% of tumor cells that would be assigned to a meta-program 
(to roughly match the threshold of 56.4% used by Gavish et al.18). After assignment, cells that did not reach the 
threshold for any of the meta-programs (default score for assignment = 1) or did not have the minimum number 
of genes to test for any meta-program (default number of genes = 25) were assigned as NA. The code to run 
the meta-program distribution is at 
https://github.com/tiroshlab/3ca/blob/main/ITH_hallmarks/MPs_distribution/MP_distribution.R. 
Cell subtype proportion correlation analysis: Cell type and subtype abundances were calculated by 
sample. Relative subtype proportion was calculated by dividing the abundances of a subtype by its 
corresponding cell type. Given an input proportion by patient sample matrix, Pearson correlation was 
calculated for every pair of subtype proportions across samples using the Python corr function from 
the pandas library. Correlations of proportions where the cell type was not present in a sample were excluded 
from the analysis, as it would lead to a “division by 0” error. Groups of similar correlations were clustered 
together for the generation of the correlation matrices by measuring the distances between correlations and 
making clusters based on the distances, which was executed using the linkage and fcluster functions in the 
SciPy package in a wrapper developed by Yegelwel (https://wil.yegelwel.com/cluster-correlation-matrix/). After 
visual inspection of the correlation matrices, correlation plots highlighting the relationship between pairs of 
highly correlated subtypes were generated with an associated p-value to determine the probability of the result, 
assuming that the correlation coefficient was truly 0. 
Cell subtype proportion by response analysis: To evaluate subtype proportions stratified by responding 
and non-responding tumors, we generated boxplots to visualize the distributions and measured the difference 
in distributions using the Wilcoxon rank sum test. This test was computed by the wrapper function wilcox.test in 
R and using a two-sided alternative (no prior information determining which distribution would be higher) to 
determine whether the distribution of a certain subtype proportion was different between samples in the 
response or non-response groups. We also performed multiple analyses evaluating the distribution of 
subtype proportions on the different treatment group cohorts of samples from all treatments, samples treated 
with ICI, ICI-only treated samples, and samples treated with anti-PD1. P-values were labeled if it was less than 
0.1, but we still evaluated significance based on a p-value less than 0.05. 
Kaplan Meier survival analysis: For our analysis, survival curves between two groups of samples were 
compared, and their differences were evaluated for significance using the log-rank sum test. Kaplan Meier 
survival curves were generated in R using the libraries survival and ggsurvfit. The function Surv from survival 
combined the survival data and corresponding censored data, which was used as the response variable of the 
formula survfit2 model from ggsurvfit. The survival data was stratified by the proportions we evaluated survival 
by, which was passed as binarized values according to the chosen cutoff value with which to group samples. 
Log-rank testing was performed for each survival analysis, and p-values were calculated between the different 
groups using the internal function add_pvalue in ggsurvfit. 
DEG and pathway analysis of cDC subtypes: To perform differential gene expression analysis comparing 
mregDC to the other cDC subtypes in a pairwise fashion, we applied FindMarkers on the SCTransform 
normalized gene expression of the cDC scRNA-seq subset and compared the subsets of mregDC and cDC1 
or mregDC and cDC2 using a Wilcoxon rank sum test. A log fold change threshold of 0.01 was used, and the 
minimum percentage of cells with the detected gene was set to 10%. DEGs were selected using an adjusted p-
value (Bonferroni method by default) of 0.001. We used Metascape74 to identify the enrichment of pathway 
networks for the DEGs. 
Trajectory, regulatory network and immune response inference for cDC subtypes: We leveraged the 
CytoTraceKernel function in the python package Cellrank to infer the CytoTrace pseudotime75. We analyzed 
the activated regulatory networks in cCD1, cDC2, and mregDC subtypes with SCENIC32. Starting with the raw 
count matrix as input, we used GRNBoost2 to find regulatory networks, which are sets of genes co-expressed 
with transcription factors (TFs). To remove false positives and indirect targets, we pruned the networks using 
RcisTarget, which identifies direct-binding targets with motif enrichment of the correspondent upstream 
regulator. Finally, we used AUCell to compute the regulon activity score (RAS) in each cell based on the 
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ranked expression value of genes in the regulon. To select regulons specific to mregDCs, we calculated the 
regulon specificity score, which reflects the entropy of RAS in cells across cDC subpopulations, for each 
detected regulon. The regulon specificity score ranges from 0 to 1, with a higher value indicating more 
specificity of the regulon. We then used the Immune Response Enrichment Analysis (IREA) tool to find 
enriched cytokine expression in mregDCs relative to cDC1s and cDC2s. We used DEGs between mregDCs 
relative to cDC1s and cDC2s as defined above (Supplementary Table 6). Then, the upregulated and 
downregulated DEGs were separately input into IREA, with “MigDC”, “cDC1” or “cDC2” selected as the cell 
type and score chosen as the method. We combined the outputs from both sets of DEGs, negating the 
enrichment score of the downregulated DEGs, and then filtering for significance (adjusted p-value <=0.05). We 
removed cytokines that were determined to be significantly expressed in both the upregulated and 
downregulated DEGs.  
Cell-cell communication for cDC subtypes: To infer cell-cell communication, we used CellPhoneDB41, which 
takes in single-cell transcriptomic data and compares gene expression values to a database of ligand-receptor 
interactions to statistically test the significance of those interactions. We performed CellPhoneDB analysis to 
find ligand-receptor pairs between the cDC subtypes (mregDC, cDC1 and cDC2) and all other subtypes 
existing in our dataset. To preserve the integrity of true interactions, CellPhoneDB was run by sample (38 
times independently for each sample in our scRNA-seq dataset). A log-normalized RNA count matrix of the 
sample and the list of subtype annotations for each cell were given as inputs to the program. Using the 
statistical analysis method of CellPhoneDB (Method 2), interactions between subtypes were obtained and 
compared to a null distribution generated by random shuffling of the cell types into clusters. The method is 
sped up via a geometric sketching procedure76. All parameters were set to the default. We used the output of 
the significant_means field, which provided an average mean value for an interaction between two partners of 
two cell subtypes if the interaction was significant; otherwise, the mean was equal to 0. We then looked into the 
interactions between the cDC subtypes and the other cell types. With our interest being in mregDCs, we had 
two goals: 1) to find interactions that existed only between the mregDC subtype and non-cDC cell types and 
not between cDC1 or cDC2 and non-cDC cell types; and 2) find cDC to non-cDC interactions that were 
differentially expressed between the cDC subsets. Several thresholds were applied for each analysis: 1) 
Exclusive interactions were only considered if the mregDC to other non-cDC subtype interaction was 
significant in at least 3 samples. 2) To evaluate differentially expressed interactions, the Wilcoxon rank sum 
test was applied for the same ligand-receptor interactions expressed by cDC1, cDC2, and mregDCs. Wilcoxon 
rank sum p-value <0.05 was used to call the differential. This analysis was performed separately when 
evaluating interactions when the ligand was expressed on cDCs (cDCs as the source) or when the receptor 
was expressed on cDCs (cDCs as the target). 
Single-nucleus	ATAC-seq	data	analysis	
Quality control, clustering and dimensionality reduction: For quality control, we kept cells with peak region 
fragments between 5000 to 20,000 nucleotides, transcription start site enrichment score > 4, and percent 
reads in peaks > 20%. We quantified the activity of each gene in the genome using the GeneActivity function in 
Signac77, which sums the fragments in the gene body coordinates including 2 kb upstream region, according to 
Ensembl annotation EnsDb.Hsapiens.v86. For dimensionality reduction, we performed term frequency inverse 
document frequency (TF-IDF) normalization and singular value decomposition (SVD) on the peak-by-cell 
matrix. To visualize the dataset in 2-dimensions, we performed UMAP using the top 50 components and used 
graph-based clustering to find clusters. With a combination of known markers and label transfer from scRNA-
seq data, we assigned cell labels to each snATAC-sequenced cell. 
Transfer of scRNA-seq annotations: Given our fully annotated scRNA-seq object of cell types and subtypes 
of the 39 samples derived from the methods described above, we found anchors between the RNA object and 
the object of the 15 matching snATAC-seq samples. Label transfer was first performed at the cell-type level 
and performed a second time to label subtypes within each cell type-specific subset. First, gene activity scores 
derived above were compared to scRNA-seq gene expression counts via canonical correlation analysis (CCA) 
using the FindTransferAnchors function with the reduction parameter set to "cca'' and the first 2000 variable 
features used from the scRNA-seq dataset. The resulting anchors found were used to predict cell type (or 
subtype) labels for each cell in the snATAC-seq dataset using the TransferData function, with the reference 
data parameter set to the scRNA-seq cell types or subtypes and weight reduction set to the latent semantic 
indexing (LSI) projection of the snATAC-seq data. Predicted labels were assigned to each cell and visualized 
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on the UMAP of the 15 snATAC-seq samples. For subtype label transfer, we repeated the data normalization 
and dimensionality reduction steps mentioned above for each subsetted cell type. 
RNA and ATAC co-embedding for cDCs: After subsetting cDCs from both snATAC-seq and scRNA-seq 
datasets, we used FindIntegrationAnchors in Signac77 to identify co-varying components of the snATAC-seq 
and scRNA-seq datasets. Then we leveraged CCA to co-embed cells from both the transcriptomic and 
epigenomic space using the identified canonical ‘basis’ vectors. The co-embedding in shared lower-
dimensional space maximizes correlation between the two datasets, thus allowing joint analysis and cell-typing 
of scRNA-seq and snATAC-seq datasets. We re-assigned the snATAC-seq cells with cDC subpopulation 
labels from their mutual nearest scRNA-seq neighbors in the shared space, compared with the cell subtype 
label transfer results derived above, and decided on the final subtype labeling of snATAC cells based on 
consensus and marker gene activities.  
Differential accessible region analysis for cDCs: DARs were identified in a similar fashion to DEGs. Using 
normalized values of the peaks of cDCs in our snATAC-seq data, DARs were found using FindMarkers, again 
comparing the identity classes of mregDC and cDC1 or mregDC and cDC2. Logistic regression was used to 
identify DARs, as it corrects for the sequencing depth by incorporating the total number of fragments as a 
latent variable. A log fold change threshold of 0.01 was used, with a minimum percentage of the same peaks 
detected in both classes set to 5% to increase sensitivity relative to DEG analysis because of the sparse 
nature of ATAC data. DARs were labeled with the closest gene to the region using the ClosestFeatures 
function in Seurat. DARs were selected using an unadjusted p-value of 0.01 due to a lack of signal using 
adjusted p-values. Thus, interpretations of DARs are not conclusive and merit further investigation and 
validation. 
Global correlation, pathway and motif enrichment analyses for cDCs: To compute cell type similarities to 
migDCs, we first calculated the average peak accessibility for each cell type of each peak accessible in 
migDCs. Then, we calculated the pearson correlation of the average peak accessibility between the cell type 
and migDCs. To investigate cis-regulatory regions, we used the Genomic Regions Enrichment of Annotations 
Tool (GREAT)69. We input significantly upregulated and downregulated regions independently into GREAT, 
yielding GO biological processes. For processes identified to be enriched in both upregulated and 
downregulated regions of the same comparison, the processes were removed. Significant GO biological 
processes were visualized using clusterProfiler78 and enrichplot79. To investigate differentially accessible motifs 
between cDCs, we added motif information using JASPAR2022 and BSgenome.Hsapiens.UCSC.hg38. Then, 
we computed the per-cell motif activity score using Signac’s implementation of chromVAR. We used 
FindMarkers in the chromVAR assay to find the resulting differentially accessible motifs.  
Integration	with	previous	single-cell	studies 
Tirosh et al.7, Jerby-Arnon et al.8 and Sade-Feldman et al.9 had gene count matrices given in transcripts per 
million (TPM). Zhang et al.10 provided a raw count matrix. We assumed that merging log normalized TPM and 
raw count matrices would capture the differences in relative expression and the variation of gene expression 
would be preserved, which was proven to be true. As each count matrix in their available data format from 
each study was converted into a Seurat object, we performed integration feature selection with 
SelectIntegrationFeatures and anchor discovery using log normalization and canonical correlation analysis 
(CCA) reduction with FindIntegrationAnchors. After obtaining the set of anchors, we integrated the five objects 
using IntegrateData. For label transfer, another set of anchors were found from our study’s object as the 
reference and applied to a subset of the integrated object corresponding to the four studies as the query using 
PCA reduction of the reference. Predicted cell types and subtypes of the scRNA-seq of the four studies were 
predicted in a similar fashion to the label transfer of cell types and subtypes from scRNA-seq to snATAC-seq 
as described above. Subtypes were found after the annotation of cell types. For the construction of the final 
UMAP of the integrated object of all studies, the default assay was set to “integrated” and then scaled using 
the function ScaleData. PCA was applied using the variable features of the integrated object, and RunUMAP 
was executed on the first 30 PCs of the PCA reduction. No further  batch correction was needed as cells from 
different studies were well integrated and cell types were clearly separated on the UMAP embedding. 
Identification	of		cell	states	and	DEGs	associated	with	mregDC	proportions	
Algorithm: When performing DEG analysis between samples, we aim to explore which cell state is associated 
with the mregDC groups and what DEGs characterize this cell state. Existing methods for detecting DEGs, 
such as pseudo-bulk and mixed models, assume homogeneous populations when comparing subtypes and 
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treating all cells from one sample equally. Hence, the analysis still operates at a sample level and does not 
leverage the between-cell heterogeneity available in the scRNA-seq data. Our assumption is that, instead of 
the whole cell population in a group, mregDC proportion affects certain binary cell states in a cell type, e.g., 
exhaustion, activation, apoptosis, etc, and we aim to extract the mregDC-associated cell states and identify the 
DEGs in these cell states. To address this, we performed the DEG analysis in two steps, 1) identify cell states 
associated with the mregDC groups, 2) identify DEGs for this cell state. In Step 1, we developed a factorization 
algorithm to find the binary variable that explains the most variability of the count matrix with the adjustment for 
the covariates and sample-level heterogeneity under a Negative Binomial mixed model as in NEBULA 80. 
Conceptually similar to the top principle component, this identified binary variable is the major cell state of the 
cell type. Our algorithm also returned the uncertainty of the estimation of the cell state and this uncertainty was 
used in the following steps to conduct valid testing for DEGs. In Step2, we then performed an association test 
between the extracted cell state and the mregDC groups in each cell type or subtype to identify the mregDC-
associated state using a logistic mixed model. For those mregDC-associated states, we obtained their DEGs 
using the Negative Binomial mixed model implemented in NEBULA80 and further took into account the 
uncertainty in the cell state estimation. We predict that this algorithm would find the cell states that drove the 
difference observed between the mregDC high group and the mregDC low group if mregDC is the major 
underlying factor driving the differential expression and the DEGs would be the potential regulators of the 
mregDC phenotype, especially at the cell-type level.  

Model building: The model takes in two pieces of data: first, the raw gene by count matrix of the samples, and 
second, the metadata associated with each sample, which is used as the design matrix. First, we compiled the 
raw count matrices of all samples, which were subsetted by cell type or cell subtype. Then we created the 
design matrix, which included the mregDC group variable, which was 0 for an mregDC low sample 
(mregDC/cDC ≤ 0.185) or 1 for an mregDC high sample (mregDC/cDC > 0.185). The design matrix also 
included the sample-level variables to account for. We selected the sample level variables of age, sex, tissue 
of biopsy (skin, lymph, other), treatment state (pre, on, post), and treatment group (other, with ICI, ICI only, 
anti-PD1) and the cell-level variables of mitochondrial gene percentage and ribosomal gene percentage. 
Sample or cell-level variables for which all cells in the subset had the same value were removed from the 
design matrix prior to running NEBULA. The offset was set to the number of counts of RNA, i.e., the total 
number of molecules detected within a cell. NEBULA80 was first run for each cell type and subtype to estimate 
the overdispersions, in which the count matrix, offset term, and design matrix were inputs to the model. Then, 
given the overdispersions, a factorization algorithm for the top binary factor was run for each cell type. We 
used the factors called from this step as the major cell states for cell subtypes and tested its association with 
the mregDC group. For mregDC-associated cell states, we used NEBULA80 again to obtain the DEGs 
associated with these states.  
Pathway analysis for identified DEGs: We used the fGSEA (fast gene set enrichment analysis) package in 
R. We narrowed down the gene set of canonical pathways to test enrichment, which was downloaded from 
https://www.gsea-msigdb.org/gsea/msigdb/human/collections.jsp. The list of all genes (significant and not 
significant) with their associated log fold change values were used as input to fgsea, setting the pathways to 
the downloaded canonical pathway gene set and testing for positively and negatively enriched pathways 
(scoreType parameter = ‘std’ for standard). Given the output of pathways, we identified main pathways, which 
are pathways that are independent from each other, using the function collapsePathways and an adjusted p-
value less than 0.05 using the Benjamini-Hochberg correction, which was the default. The top pathways with 
the highest enrichment scores and adjusted p-value < 0.05 were visualized using aPEAR (Advanced Pathway 
Enrichment Analysis Representation)81, a separate package in R that can generate enrichment networks from 
pathways that are similar to each other. All the canonical pathways generated from the cell type or subtype 
subsets were used as input, together with their adjusted p-values, normalized enrichment score, the number of 
genes in the pathway, and the list of genes in the pathway. Using a similarity metric to cluster redundant 
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pathways, aPEAR assigns a general name for the clusters of pathways using the PageRank algorithm81. All 
default parameters were used in the clustering and visualization of the pathways. 
Bulk	RNA-seq	meta-cohort	data	analysis	
To determine whether or not a signature of mregDCs is able to stratify an independent cohort of 274 ICI-
treated patients with metastatic melanoma and with RNA-seq data28, we used ssGSEA to score the mregDC 
signature (387 genes positively define mregDCs, Supplementary Table 3) in the bulk RNA-seq data set, and 
then performed response comparisons and survival analysis the same as described in the scRNA-seq section. 
Data	availability	
The original data are available at GEO (GSEXXXXXX). The processed data are available on Zenodo (URL). 
Code	availability	
All codes that are necessary to reproduce all the results in the paper are implemented in Python and R and are 
publicly available at GitHub (https://github.com/KellisLab/scCancer). 
Supplemental	information	
Supplementary Figure 1. A five-study metastatic melanoma single-cell atlas. We integrated our single-cell 
dataset with four published single-cell datasets (Tirosh et al., Jerby-Arnon et al., Sade-Feldman et al., and 
Zhang et al.). Uniform manifold approximation and projection (UMAP) embedding of all the cells from the five 
studies (n=352,966 cells), with each color representing a study (A), a cell type (B), and a sample (C). D, 
Distribution of cells by cell types across different studies. E, Dotplot showing average expression and percent 
expression of marker genes across all the cells from the five studies. 
Supplementary Figure 2. Cell subtype proportion correlations for subset or additional samples. A,C, 
Heatmap illustrating correlation coefficients among the relative proportions of cell subtypes in relation to their 
corresponding cell types across samples treated with ICI (A), or samples from the five studies (C). We 
identified clusters/modules by segmenting the hierarchical clustering tree at the red line and assigned 
annotations based on the modules discovered in Fig. 2F. B, UMAP embedding of all the cells from the five 
studies, with each color representing a subtype as annotated in this study. 
Supplementary Figure 3. Cell subtype association with treatment response and patient survival. A-D, 
Boxplots comparing relative proportions of selected cell subtypes (A), cDC1 and cDC2 (B), and mregDC (C), 
and proportions of cDC out of all cells or immune cells (D) between non-responders and responders for all 
samples. Each dot represents a sample, with its color corresponding to the treatment group and its shape 
corresponding to the melanoma subtype. E-F, Survival plots for ICI-only samples split by selected subtype 
relative proportions (E) or samples treated with ICI and all samples split by TCF7+ CD8 T cell ratio (F). P 
values for boxplots were calculated using the Wilcoxon Rank Sum test. P values for survival plots were 
calculated using the Log Rank Sum test. NR, non-responder; R, responder; combo, anti-PD-1+anti-CTLA-4; 
PFS, progression free survival; OS, overall survival. 
Supplementary Figure 4. Expression patterns of markers reported in other studies and additional cell-
cell communication across cDC subtypes. A, Heatmap plotting expressions of marker genes reported in 
Maier et al. in mregDC, cDC1 and cDC2. B, Dotplots showing expression patterns of genes grouped by 
biological processes, as reported in Maier et al., across cDC subtypes. C, Heatmap illustrating average 
expression of genes for cDC1, cDC2 and mregDC. Gene groups were obtained from Broz et al. D,E, Dotplots 
illustrating inferred cell-cell communications either with differential activities between mregDC and other cDC or 
exclusively detected in mregDC, with cDC expressing ligands (D) or receptors (E) and monocyte/macrophage 
subtypes expressing receptors (D) or ligands (E), respectively. P values for dotplots were calculated using the 
Wilcoxon Rank Sum test. 
Supplementary Figure 5. Cell-cell communications with differential activities associated with mregDC 
proportions. A,B, Networks depicting cell-cell interactions, inferred by using CellPhoneDB41, with differential 
activities (co-expression patterns) in mregDC high samples vs. mregDC low samples. Nodes represent cell 
types (A) or subtypes (B). Node sizes correspond to the number of cells in the cell type/subtype within the 
cohort (mregDC high or low). Edge weights are equal to the number of interactions between each pair of cell 
types/subtypes.      
Supplementary Table 1. Sample demographics and quality control measures. See Fig. 1 and Extended 
Data Fig. 1. 
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Supplementary Table 2. Cell type markers in reference to all the other cells. See Fig. 1. 
Supplementary Table 3. Non-tumor cell subtype markers in reference to all the other cells. See Fig. 2 
and Extended Data Fig. 2. 
Supplementary Table 4. Tumor program markers in reference to the other tumor programs. See Fig. 2. 
Supplementary Table 5. Abundance of cell types and subtypes and subtype proportions at the sample 
level. See Fig. 2,3, Extended Data Fig. 2,3, and Supplementary Fig. 2,3. 
Supplementary Table 6. Differentially expressed genes between mregDC and other cDCs. See Fig. 4. 
Supplementary Table 7. Pathways enriched in differentially expressed genes between mregDC and 
other cDCs. See Fig. 4. 
Supplementary Table 8. Inferred cell-cell communication with differential activities or exclusively 
detected in mregDC compared to other cDCs with cDC as source. See Fig. 4, Extended Data Fig. 4, and 
Supplementary Fig. 4. 
Supplementary Table 9. Inferred cell-cell communication with differential activities or exclusively 
detected in mregDC compared to other cDCs with cDC as target. See Fig. 4, Extended Data Fig. 4, and 
Supplementary Fig. 4. 
Supplementary Table 10. Differentially accessible regions between mregDC and other cDCs. See Fig. 5 
and Extended Data Fig. 5. 
Supplementary Table 11. Motifs enriched in differentially accessible regions between mregDC and 
other cDCs. See Fig. 5 and Extended Data Fig. 5. 
Supplementary Table 12. Cell type-specific differentially expressed genes between mregDC high and 
low samples. See Fig. 6. 
Supplementary Table 13. Cell subtype-specific differentially expressed genes between mregDC high 
and low samples. See Extended Fig. 6. 
Supplementary Table 14. Cell-cell communications showing differential activities between mregDC 
high and low samples. See Supplementary Fig. 5. 
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Figure 1. Characterization of cells in human metastatic melanoma tumors. A, Demographic summary of 
the 39 samples included in this study. Pfs, progression-free survival; os, overall survival; NR, non-responder; 
R, responder. B, Uniform manifold approximation and projection (UMAP) embedding of all the cells from the 
39 samples, after quality control, with each color representing a cell type. C, Dotplot showing average 
normalized expression and percent normalized expression of marker genes across cell types.
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Figure 2. Cell subtypes and their relative proportion correlations in the tumor microenvironment. A, 
UMAP embedding of tumor cells annotated with meta-programs according to Gavish et al. B, Heatmap of the 
top marker genes for each of the identified tumor meta-programs. C-E, UMAP embedding of myeloid cell 
subtypes (C), CD8 T-cell subtypes (D), and CD4 T-cell subtypes (E). The cell subtypes known for their 
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Figure 3. Mature and regulatory cDCs associated with ICI response and patient survival. A, Boxplots 
comparing relative proportions of four subtypes between ICI non-responders and responders. Each dot 
represents a sample, with its color corresponding to the type of ICI and its shape corresponding to the mela-
noma subtype. B, Survival plots for samples only treated with ICI and split by the median value of mregDC 
relative proportion. C, Survival plots for all samples and split by the median values of both mregDC relative 
proportion and TCF7+ CD8 T ratio. D, Boxplot comparing mregDC signature scores, calculated using 
ssGSEA, between non-responders and responders in 274 ICI-treated bulk RNA-seq samples. E, Survival 
plots for the 274 bulk RNA-seq samples split by the median value of their mregDC scores. P values for box-
plots were calculated using the Wilcoxon Rank Sum test. P values for survival plots were calculated using the 
Log Rank Sum test. NR, non-responder; R, responder; combo, anti-PD-1+anti-CTLA-4; PFS, progression free 
survival; OS, overall survival.
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Figure 4. Transcriptional landscape and interactome of cDC subtypes. A, UMAP embedding of cDCs 
colored by the subtypes. B, Violin plots of canonical marker genes for cDC1, cDC2 and mregDC. C,E, Volca-
no plots showing differentially expressed genes (DEGs) between mregDC and cDC1 (C) and between 
mregDC and cDC2 (E). An adjusted P value of 0.001 was used to call significant DEGs. Examples of genes 
with mregDC-specific enhancers were colored in green, which were mentioned in Figure 5. D,F, Networks of 
enriched terms for DEGs up- or down-regulated in mregDC compared to cDC1 (D) or cDC2 (F). G, Dotplots 
illustrating inferred cell-cell communications by CellPhoneDB41 either with differential activities between 
mregDC and other cDC or exclusively detected in mregDC. The left and right panels plotted interactions with 
cDC expressing ligands and CD8 or CD4 T-cell expressing receptors, respectively. P values for volcano 
plots and dotplots were calculated using the Wilcoxon Rank Sum test.
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Figure 5. Epigenomic landscape of cDC subtypes using snATAC-seq data. A, UMAP embedding of 
snATAC-seq cells with cell type labels transferred from scRNA-seq data. B, Co-embedding of cDCs from 
scRNA-seq and snATAC-seq data, with colors corresponding to assays (left) or subtypes (right). C, Differen-
tially accessible regions between mregDC and cDC1 (top), and mregDC and cDC2 (bottom). The p value 
cutoff is 0.01. D, Motifs enriched in differentially accessible regions between mregDC and cDC1 (left), and 
mregDC and cDC2 (right). Significantly enriched motifs were marked with an asterisk (adjusted p-value 
<=0.05). E, Track plots comparing normalized number of reads across cDC subtypes underlying enhancers 
associated with genes important for cDC functions. mDC is short for mregDC in some figure panels due to 
space constraints. A peak is colored orange if it contains motifs for members of the NF-κB transcription factor 
family. 
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Figure 6. Cell type-specific molecu-
lar factors associated with mregDC 
proportions. A, Illustration of sample 
splitting, model used, and downstream 
analyses performed to identify cell 
type-specific molecules associated 
with mregDC proportion. B, Bar plots 
showing the number of cell type-spe-
cific differentially expressed genes 
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model. C, Aggregated volcano plots 
across cell types showing DEGs pass-
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Extended Data Figure 1.
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Extended Data Figure 2.
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Extended Data Figure 3. 
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Extended Figure 4.
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Extended Figure 6.
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Supplementary Figure 1.
A.
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D.

Reference: 
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Supplementary Figure 2.
A. Correlations of cell subtype/cell type proportions in samples treated with ICI
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Supplementary Figure 3.
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Supplementary Figure 4.
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Supplementary Figure 5.
A.

B. 83 interactions with high activities in mregDC high samples
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