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Abstract

Immune checkpoint inhibitors (ICls) have heralded a remarkable shift in cancer care, significantly extending
survival for advanced cancer patients. However, despite their remarkable clinical successes, a substantial
majority of patients fail to achieve a lasting response to ICls. To address this challenge and gain insights into
the complex landscape of the tumor microenvironment (TME), we conducted an extensive analysis using
single-cell RNA sequencing (scRNA; ~216K cells across 39 samples) and single-nucleus transposase-
accessible chromatin sequencing (snATAC; ~43K cells from 15 samples) in a metastatic melanoma cohort.
This systematic approach delineates 14 distinct cell types and 55 cell subtypes, including the identification of
15 transcriptional hallmarks of malignant cells. Through correlation analysis of cell subtype proportions, we
unveiled six distinct clusters associated with varying tumor responses. Particularly intriguing was the
identification of the mature DC enriched in immunoregulatory molecules (mregDC) subtype exhibiting
correlations with naive T and B cells, forming an anti-tumor program that underscores the importance of
multiple immune cell types in mediating anti-tumor immunity. Notably, we found that mregDC abundance
represents a good prognostic predictor of progression-free survival (PFS) in the context of ICI treatment, and
when combined with the TCF7+/- CD8 T cell ratio, it reliably predicts patient PFS across treatments beyond
ICI. We validated our findings using an independent cohort of 274 ICI-treated melanoma samples analyzed
using tissue-level expression. We next compared mregDCs and conventional dendritic cell types 1 and 2
(cDC1 and cDC2) using transcriptome signature, differentiation trajectory, interactome, cytokine milieu, and
epigenome landscape analyses. This comparative analysis shed light on the unique attributes of mregDCs
within the TME. Finally, we investigated cell type/subtype-specific genes, pathways, immune response
enrichment, and ligand-receptor interactions closely associated with the proportions of mregDCs within the
TME. These molecular and cellular insights, with their critical roles in enhancing the immune response against
cancer, offer valuable prospects for predicting the efficacy of ICI regimens, and potentially guiding the selection
of rational combinatorial therapies.

Introduction

Cancer treatment has progressed significantly, moving beyond targeting highly proliferative cells to identifying
precise targets within cancer cells and their specific immune microenvironment. Combination therapies,
whether administered simultaneously or sequentially, are frequently used for increased efficacy in advanced
cancer stages. The emergence of immune checkpoint inhibitors (ICls) approximately a decade ago and their
use in advanced melanoma revolutionized cancer treatment’. Prior to ICls, patients with stage IV melanoma
typically had a median lifespan of 6-9 months. However, with ICls, survival rates extended up to 6 years with
anti-PD-1/anti-CTLA-4 combination therapy, albeit with a higher incidence of severe adverse events?. Despite
these advancements, only a subset of patients, ranging from 45 to 58%, demonstrated objective responses to
individual or combined ICI treatments®. ICI treatments, used as a second-line treatment option, showed
objective responses in only 15 to 30% of patients*. Resistance to targeted therapies and ICls has posed
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challenges to patients' progression-free survival (PFS), underscoring the urgent need for biomarkers to predict
survival benefits across treatments and guide clinical decision-making.

Over the past decade, research in metastatic melanoma has identified several response-associated biological
features, such as tumor mutational burden (TMB) and neoantigen load®, alongside CD8 expression at the
invasive margin®. However, their predictive abilities remain limited. Advancements in single-cell technology
have facilitated a more nuanced understanding of the tumor microenvironment (TME) at single-cell resolution
and its relationship with clinical responses. Initially, Tirosh et al.” employed single-cell RNA sequencing
(scRNA-seq) to analyze 4,645 single cells from 19 metastatic melanoma patients, revealing the multicellular
ecosystem of tumors. Subsequently, Jerby-Arnon et al.> combined 2,987 scRNA-seq profiled cells from 17
newly collected patient tumors with 4,199 cells from Tirosh et al.’, identifying a resistance program expressed
by malignant cells, CDK4/6 signaling, linked to T cell exclusion and immune evasion. In parallel, Sade-
Feldman et al.® profiled transcriptomes of 16,291 individual immune cells from 48 tumor samples of melanoma
patients treated with ICls, establishing a TCF7+/- CD8 T cell ratio associated with response to ICls. More
recently, Zhang et al.® performed scRNA-seq on 63,694 cells from 5 acral and 3 cutaneous melanoma
samples, comparing immune differences between the two melanoma subtypes. However, these studies have
primarily focused on tumor and immune cells, particularly T cells, due to limitations in cell collection and
technology costs.

Dendritic cells (DCs) play a crucial role in coordinating immune responses against tumors, serving as
professional antigen-presenting cells (APCs) since their discovery in 1973"". Categorized into conventional
DCs (cDCs) and plasmacytoid DCs (pDCs), cDCs further split into type 1 (¢cDC1) and type 2 (cDC2) based on
lineage-determining TFs and functions'*™"*. While immature cDCs are essential for immune surveillance, their
maturation is vital for immunogenicity involving antigen processing, presentation, and T-cell co-stimulation'®.
Despite their importance, DC signatures has been obscured in tumor measurements due to its low
abundance'’, until recent single-cell sequencing efforts unveiled their heterogeneity, highlighting a regulatory
signature termed mature DC enriched in immunoregulatory molecules (mregDCs)'®. Although prior studies
associated a higher density of mregDC-like dendritic cells with improved survival in cutaneous melanoma'’,
this state remains poorly characterized in melanoma across different treatments.

To address these gaps, we conducted extensive single-cell profiling of metastatic melanoma samples,
annotating diverse cell types and subtypes in the TME and correlating them with treatment response and
patient survival. Analyzing 215,946 cells across 39 samples, we identified 14 cell types and 55 subtypes,
shedding light on correlated subtypes and prognostic markers beyond immune checkpoint inhibitors (ICls). Of
particular interest were mregDCs, which emerged as survival predictors. We delved into their transcriptome
signatures, epigenome landscape, differentiation trajectory, and cell-cell communication potentials, uncovering
intrinsic and extrinsic molecules associated with mregDC abundance.

Results
Cell types in metastatic melanoma tumor microenvironment

We obtained metastatic melanoma samples from Massachusetts General Hospital, focusing on annotated
cases that had received various primary treatments, predominantly involving ICls. After rigorous quality control,
our analysis centered on 39 scRNA-seq samples, complemented by 15 paired snATAC-seq samples. Out of
the 39 scRNA-seq samples, 31 underwent treatment that included ICI therapy, with 19 of them exclusively
receiving ICI treatment. Key clinical information, such as progression-free survival (PFS), overall survival (OS),
lesional response, treatment details, tissue type, melanoma subtype, sex, age, and time relative to treatment
initiation, is visualized in Figure 1A and listed in Supplementary Table 1.

We conducted data integration for the 39 scRNA-seq samples, implemented dimensionality reduction
techniques, and illustrated the 2D cell embeddings. At the highest level, we distinguished tumor, immune, and
stromal compartments, along with sample IDs, tissues, melanoma subtypes, sex, treatment groups, treatment
state, and lesional responses (Extended Data Fig. 1, Fig. 1B). We identified 14 cell types for the 215,946
cells, including sample-specific tumor cells (further analyzed in the subsequent section), T lymphocytes (i.e.,
CD8 T cells, CD4 T cells, other T cells, and cycling T cells), natural killer (NK) cells, B lymphocytes, myeloid
cells (encompassing monocytes/macrophages, conventional dendritic cells [cDC], plasmacytoid dendritic cells
[pDC], and mast cells), and stromal cells (including endothelial cells, fibroblasts, and keratinocytes; Fig. 1B).
Distinct expression patterns of canonical cell type-specific markers are presented in Figure 1C.
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Our single-cell annotations showed highly consistent cell type annotations with previous studies on metastatic

melanoma, and contributed more cells than all previous studies combined (Supplementary Fig. 1A-D)~"°. We
also confirmed that our cell type markers and cell type annotations remained consistent when jointly analyzing

our data with cells from all previous studies combined (Supplementary Fig. 1E).

Consensus tumor programs and immune cell subtypes in tumor microenvironment

We found that transcriptomic profiles of tumor cells exhibit patient-specific patterns (Extended Data Fig. 1B),
as found in previous studies'®. To correct for these patient specific effects and identify tumor-shared patterns of
intra-tumor heterogeneity (ITH), we assigned tumor cells to 15 distinct meta-programs previously compiled in
Gavish et al.”® encompassing 30,162 high-quality cells with a minimum number of 25 expressed genes in the
meta-program (Fig. 2A, Extended Data Fig. 2A). The predominant gene expression patterns in each meta-
program provide insights into the unique functionalities of different tumor cell subpopulations within a tumor.
These functionalities span various aspects, including cell-cycle phases (G1/S, G2/M, HMG-rich), upregulation
of processes such as epithelial-mesenchymal transition (EMT), hypoxia, interferon and major histocompatibility
complex (MHC) class Il, MYC, protein maturation, respiration, skin pigmentation, stress, translation initiation,
and unfolded protein response (Fig. 2B). Our analysis confirms previously-reported meta-programs'® and also
facilitates correlation of these tumor programs with non-tumor subtypes within the same samples.

For myeloid cells, we classified monocytes into classical (CD14"FCN1*S100A8*S100A9") and non-classical
(CD16'LST1'LILRB2") monocytes; macrophages into M1, M2 and tumor-associated macrophages (TAMs);
and cDCs into cDC type 1 (cDC1), type 2 (¢cDC2) and a mature and migratory subtype (mregDC; Fig. 2C,
Extended Data Fig. 2B). We found that M1 macrophages, which participate in pro-inflammatory responses,
are distinguished by their expression of CXCL9, CXCL10, CD80, FCGR1A, and HLA-DR. In contrast, M2
macrophages, known for their immunosuppressive role, exhibited expression of anti-inflammatory molecules
MSR1, CD163, MRC1, C1Q, SELENOP, and APOE. TAMs were characterized by their expression of VEGFA,
IL-10, TNF, and TGFB1. Further details about the cDC subtypes will be discussed in a subsequent section.

In the CD8+ T cell compartment, we identified various subtypes, including naive T cells (Tn, CCR7"), effector T
cells (Teff, GZMA*GZMB"), memory T cells (Tm, CXCR6"), exhausted T cells (Tex), and natural killer T cells
(NKT, CD8*XCL2"; Fig. 2D and Extended Data Fig. 2C). Among the Teff subset, three clusters exhibited
moderate to high expression of cytotoxic markers GZMA and GZMB. An early activated Teff subgroup was
marked by CD69 expression. Notably, HNRNPH1+ Teff displayed elevated levels of long non-coding RNAs
(IncRNA) including MALAT1, NEAT1, and ribonucleoproteins HNRNPH1 and HNRNPU, implicated in
regulating T-cell-mediated immune responses, potentially affecting ICI resistance'®. Another distinct GZMK+
Teff cluster showed high expression of cytotoxicity-related genes, excluding CTLA-4. Within the Tm subset,
cells were further categorized into effector memory T (Tem) and exhausted memory T (Texme) based on their
expression of cytotoxic genes (GZMA, GZMB) and the exhaustion marker TOX. While checkpoint molecules
like PDCD1, LAG3, TIGIT, and CTLA-4 were broadly expressed, detailed differential analysis revealed three
distinct Tex cell clusters, each exhibiting distinct exhaustion and cytotoxicity profiles. Tex/HS displayed high
expression of heat shock protein genes and enrichment in heat response-related pathways. The GNLY+ Tex
cluster was unique for expressing granulysin gene GNLY and calcium-binding proteins S100A10 and
S100A11. Additionally, the FTL+ Tex cluster exhibited increased expression of FTL and FTH1, encoding
ferritin subunits. The role of ferritin in T cell function is still being explored, but prior studies have linked FTL
and FTH1 to immune cell infiltration, particularly in Tregs®.

We identified six subpopulations of CD4" T cells, including the commonly observed naive T cells (Tn), memory
T cells (Tm), regulatory T cells (Tregs), exhausted T cells (Tex), CD69" early activated T cells (CD69" T), and
NKT cells (Fig. 2E, Extended Data Fig. 2D). Notably, Tn cells, identified by their high expression of the naive
marker CCRY7, also exhibited significantly elevated expression of ribosomal genes, indicative of cells in a naive
or quiescent state?'. Tm cells expressed the memory marker CCL5. Tregs, governed by the transcription factor
(TF) FOXP3, demonstrated elevated levels of co-inhibitory molecules CTLA-4 and TIGIT. Tex cells exhibited
increased expression of checkpoint molecules, including TOX, CTLA-4, PDCD1, and TIGIT, along with an
increase in glycolytic metabolism, highlighted by their elevated expression of GAPDH. The activated CD69+ T
cell phenotype correlated with upregulation of stress-related genes, such as FOS, JUN, and heat shock protein
(HSP) family genes. Additionally, we identified an NKT subpopulation characterized by its unique expression of
XCL1, XCL2, KLRD1, and CD4, aligning with an innate lymphoid phenotype.
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Furthermore, we uncovered a distinct subtype known as double negative NKT cells (DN NKT) among other T
cells, characterized by the expression of T cell markers excluding CD4 and CD8, alongside NK markers. DN
NKT cells have been proposed to adopt a pro-inflammatory phenotype, contributing to both innate and
adaptive immunity?2. For B cells, we categorized them into four subtypes: naive, transitional, memory, and
plasma B cells. Naive B cells were marked by differentiating markers IGHD and IGHM, transitional B cells
expressed CD93 and TNFRSF13C, memory B cells were identified by the presence of CD27, IGHM, IGHE,
IGHG1, IGHA1, and IGHD, while (regulatory) plasma B cells expressed markers such as BCL6, IRF4, PRDM1,
SDC1, TNFRSF17, and XBP1. In addition, we identified two subtypes of fibroblasts: myofibroblasts, expressing
ACTAZ2, NDUFA4L2, and MYL9, and inflammatory fibroblasts, marked by the presence of IL6, CXCL12, and
DPT.

In summary, our analysis revealed a total of 55 distinct cell subtypes within the 14 primary cell types in our
cohort (Extended Data Fig. 2E, Supplementary Table 2-4). We later expanded these cell subtype
annotations to the integrated single-cell atlas, encompassing data from five studies. This comprehensive
subtyping offers an opportunity to explore correlations between these cell subtypes within the TME.

Cell subtype correlations reveal six modules with varied tumor responses

To analyze changes in subtype abundance dynamics within the TME, we calculated the relative proportions of
cell subtypes in comparison to their respective cell types. Then we conducted correlations between these
relative proportions across samples, resulting in the recognition of six distinct modules through unsupervised
hierarchical clustering. We broadly categorized these modules using known functions of certain cell subtypes,
specifically as having either anti-tumor, pro-tumor, or mixed characteristics (Fig. 2F, Supplementary Table 5).

In Module 1, correlations indicated a potential anti-tumor effect, with the mregDC subtype showing strong
associations with CD8 Tn, CD8 HNRNPH1+ Teff, CD4 Tn, CD4 CD69+ T cells, CD4 NKT cells, and naive B
cells. This module emphasized immune infiltration (Extended Data Fig. 2F). Module 2 exhibited pro-tumor
characteristics, featuring correlations among CD8 FTL+ Tex cells, CD4 Treg cells, plasma B cells, and two
tumor meta-programs (MYC and EMT). These associations suggested the suppression of immune functions.
Module 3 presented mixed effects in terms of tumor response. For example, cDC1 was predominantly anti-
tumor, while M2 macrophages tended to be pro-tumor'. In Module 4, correlations emerged among M1
macrophages, CD8 Tem cells, and tumor meta-programs related to unfolded protein response, stress, and
interferon/MHC-II (Extended Data Fig. 2G). These cell subtypes were associated with anti-tumor responses,
particularly through antigen presentation and inflammation. Module 5 included several exhausted T cell
subtypes (e.g., CD4 Tex, CD8 Texme, CD8 Tex/HS, and CD8 GNLY+ Tex) and two pro-tumor myeloid cell
subtypes, cDC2 and TAMs, showing a pro-tumor immune exhaustion signature (Extended Data Fig. 2H).
Lastly, Module 6 pointed to an anti-tumor effector T cell function, with CD8 GZMK+ Teff, CD4 Tem cells, tumor
meta-programs related to the cell cycle, and non-classical and classical monocytes (Extended Data Fig. 2I).

Upon focusing on the samples treated with ICI, we identified the same six modules as in Fig. 2F, albeit in a
different order (Supplementary Fig. 2A), suggesting conserved cell subtype modules regardless of treatment.
Expanding our correlation analysis to our integrated single-cell atlas with cell subtype annotations
(Supplementary Fig. 2B), we still observed five of the six modules, although some module memberships were
slightly altered or merged (Supplementary Fig. 2C). This variation can be attributed to the diverse cell types
captured in each study due to different enrichment protocols. Notably, the anti-tumor immune infiltration
module remained highly conserved, prompting us to explore its biological significance and its potential
associations with clinical variables or responses.

Mature and migratory cDC abundance associated with ICI response and PFS

To identify cell subtypes with their abundance correlated with lesional response to treatment, we compared cell
subtype relative proportions between respondering and non-responding tumors. Using all the samples, we
observed more tumor cells with the stress meta-program, more Tregs, and more plasma B cells in non-
responders (p <0.05, Extended Data Fig. 3A). Tregs and plasma B cells belong to module 2 (pro-tumor
immune suppression) in the above correlation analysis. We found more inflammatory fibroblasts (p <0.05,
Extended Data Fig. 3A), more tumor cells with the G2/M cell cycle program, and more CD8 Tn in responders
(p <0.1, Supplementary Fig. 3A). Tumor cells with the G2/M cell cycle program and CD8 Tn cells belong to
two anti-tumor modules, modules 6 and 1, suggesting their anti-tumor effects across treatments. When
focusing on the samples treated with only ICI (combo or anti-PD1), we detected more tumor cells with the
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respiration tumor meta-program and M2 macrophages in non-responders, and more classical monocytes and
mregDCs in responders (Fig. 3A). This finding highlights these cell types in mediating ICl-specific effects, and
shows consistency with the known role of M2 macrophages and classical monocytes mediating anti- and pro-
ICI effects, respectively?. mregDCs, transcriptionally characterized by single-cell studies'®?*%°, were reported
to be more abundant in responsive triple-negative breast cancer patients during anti-PD-1 treatment®, and
they play an important role in mediating ICI effects in mouse models?’. However, the underlying mechanism
remains incompletely understood. Interestingly, neither cDC1 nor cDC2 was associated with treatment
response in all the samples or subsets of samples (Supplementary Fig. 3B). mregDC did not show differential
abundance in samples treated with therapies other than ICI only (Supplementary Fig. 3C). Relative
proportions of cDC in all cells or all immune cells were not associated with treatment response
(Supplementary Fig. 3D). In summary, these findings suggest that the relative proportion of cDCs showing
the mature and regulatory phenotype could affect tumor’s response to ICI.

Beyond treatment response, we observed significant PFS benefit and marginally significant OS benefit for ICI-
treated samples with high relative proportions of mregDCs (Fig. 3B). Using the same median threshold to
group samples into mregDC high versus low, we did not observe significant survival benefit for samples with
other treatments, although mregDC high samples always showed higher survival probability compared to
mregDC low samples (Extended Fig. 3B,C). None of the other cell subtypes associated with ICI response
showed stratification of patient’s survival; however, their survival curve splits were consistent with their
corresponding effect directions for treatment response (Supplementary Fig. 3E). A previous single-cell
metastatic melanoma study established an association between TCF7+ CD8 T cells and ICI response®. Here,
we show that mregDC relative proportion is in fact particularly correlated with TCF7+ versus TCF7- CD8 T cell
ratio (Extended Data Fig. 3D) and confirmed more TCF7+ CD8 T cells in responsive ICl-treated samples
(Extended Fig. 3E). We also detected significant PFS and marginal OS benefit in ICI-treated samples with
higher TCF7+ ratio (Extended Fig. 3F). Similar to mregDC relative proportion, TCF7 ratio did not stratify
patient’s survival in samples with other treatments (Supplementary Fig. 3F). However, when we combined
these two potential biomarkers, they showed significant survival prediction power in all samples: samples with
high mregDC proportion and high TCF7+ CD8 ratio had higher survival probability regardless of treatment type
(Fig. 3C).

Moreover, we tested the derived mregDC signature (Supplementary Table 3) in a meta-metastatic melanoma
cohort treated with ICI and with tissue-level RNA-seq data available®®. We validated the association between
mregDC signature scores and patient’s response to ICI (n=274, Fig. 3D). The same mregDC signature score
split by median showed significant PFS difference and marginal OS difference in this meta-cohort (Fig. 3E).

Transcriptional landscape of mature and migratory cDCs

We found that cDCs clustered into three subtypes: cDC1, cDC2 and mregDC (Fig. 4A; Extended Fig. 4A),
and sought insights in their respective functions. cDC1 was characterized by high expression of canonical
markers CLEC9A and XCR1, while cDC2 displayed elevated levels of CD71C and FCER1A. mregDC exhibited
elevated expression of LAMP3, FSCN1, CCL19, and CCR7, consistent with prior findings®*2°. Notably, cDC1
showed significant expression of its lineage-specific TF IRF8 among the three subtypes®®. However, IRF4, the
cDC2 lineage-specific TF, is expressed most prominently in mregDC compared to cDC1 and cDC2 (Fig. 4B).
cDC1, cDC2 and mregDC scores based on previously reported signatures'® confirmed our classification of the
three subtypes (Extended Fig. 4B). The maijority of published mregDC signatures are confirmed, with
exceptions in Th2 response genes (Supplementary Fig. 4A,B)'°. In contrast to mouse mregDCs, human
mregDCs express higher levels of CCL22 and BCL2L1, while cDC2 exhibits higher levels of IL411, TNFRSF4,
and STATG6 (Supplementary Fig. 4B).

Differential expression analysis revealed distinct gene expression profiles and pathways between mregDC and
cDC1 as well as cDC2. Specifically, mregDC exhibited a higher number of up-regulated genes than down-
regulated genes compared to cDC1 (611 vs. 85, Fig. 4C, Supplementary Table 6). The up-regulated genes
were enriched in pathways involved in actin cytoskeleton organization, hydrolase activity, cell migration, NF-kB
signaling, death receptor signaling, protein phosphorylation, cytokine signaling, T-cell costimulation and T-cell
co-inhibition, aligning with the mature, activated, migratory and immunoregulatory features of mregDC (Fig.
4D, Supplementary Table 7). When comparing mregDC with cDC2, mregDC showed higher expression of
305 DEGs and lower expression of 419 genes (Fig. 4E). The up-regulated pathways predominantly related to
T-cell activation with virus infection, TNFR1 signaling and kinase activity, whereas the down-regulated
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pathways included immune response to bacterium (Fig. 4F). Based on the observed differences in pathways
between mregDC and cDC1/cDC2, mregDC likely derives from cDC1, with gene programs associated with
relevant phenotypes activated.

Upon comparing the expression patterns of select genes from a prior study*°, we noted that many markers
previously associated with high expression in cDC1 populations were exclusively expressed by mregDCs in
our cohort. These markers include CCR7 and CCL22 for migration, CD86, CD80, and CD40 for maturation,
PDL2 and RANK for immunoregulation, and TAPBP for cross-presentation. This finding further strengthens the
notion that cDC1 cells are a primary source of mregDCs in the human TME (Supplementary Fig. 4C).
Additionally, there are markers equally expressed by cDC1s and mregDCs, such as IL12B and FLT3.

To further understand differences between mregDCs and cDC1/cDC2, we performed trajectory analysis®',
regulon (TF and its targets) inference?, and immune response enrichment®® inference for the three subtypes.
Trajectory analysis revealed that both cDC1 and cDC2 possess the potential to transition into mregDCs
(Extended Fig. 4C), consistent with findings from experimental studies using mouse cDCs'®. Despite its lower
expression in mregDC compared to cDC1, IRF8 exhibited the highest regulon specificity score in mregDC,
indicating its potential role in mediating the transition from cDC1 to mregDC (Extended Fig. 4D). Other top
regulons included those associated with NF-kB signaling (REL, NFKB1, NFKB2), AP-1 signaling (FOSB,
JUND, FOSL2), and oxidative stress response (MAFG, NFE2L2). IRF1, another regulon enriched in mregDC,
has been implicated in driving antitumor immunity in mouse models through its control by NF-kB signaling*.
Additionally, IKZF1, another enriched regulon in mregDC, is known to regulate DC function in humans®®. KLF3
and KLF6 were also among the top enriched regulons in mregDC. Notably, KLF4, a member of the same
Kriippel-like factor family, has been reported to promote Th2 cell responses in IRF4-expressing cDCs®.
Immune response enrichment® indicated that mregDCs exhibited transcriptional responses to IL1B, TNFa,
IL12, IFNB, GM-CSF, TSLP, and IL18, while cDC1 showed enrichment for Leptin, FIt3l, LIF, and IL21
(Extended Fig. 4E). GM-CSF*" and TSLP?® are known to promote cDC maturation and activation, while FIt3l is
crucial for cDC precursor development and cDC maintenance® and 1L21 was shown to inhibit DC activation
and maturation*. Pro-inflammatory cytokines such as IL1B, TNFa, IL12, IFNB appeared to influence mregDCs
as well.

Differential interactome between mature and migratory cDCs and other cDCs

To examine unique cellular interactions between the three cDC subtypes and other cell populations, we
conducted cell-cell communication analysis utilizing ligand-receptor co-expression patterns*', revealing
immune-stimulatory and -regulatory roles of mregDCs in the TME, and the survival and activation signals they
receive from T cells and other myeloid cells. We annotated interactions with varying inferred activities in
mregDC compared to other cDCs or those exclusively present in mregDCs (Supplementary Table 8,9).
Notably, CD8 T-cells, CD4 T-cells, and monocytes/macrophages exhibited the highest number of such
interactions with cDCs, either as sources or targets (Extended Fig. 4F). For CD8 T-cells, mregDC exhibited
heightened interactions with CD8 exhausted memory T cells (CD8 Texme), exhausted CD4 T cells (CD4 Tex),
regulatory T cells (Treg), and M1 macrophages through CD274 (PD-L1) and PDCD1 (PD-1) interactions (Fig.
4G, Supplementary Fig. 4D). This finding underscores the significance of these interactions in mediating ICI
response, particularly anti-PD-1 treatment. Specific molecular interactions were exclusive to mregDCs,
including interaction between the up-regulated CCL19 cytokine in mregDCs and CCR7-expressing CD8
effector and exhausted T cells, as well as early activated CD4 T cells (CD4 CD69+ T), suggesting potential
recruitment of these T cells by mregDCs. Additionally, co-immunoregulatory interactions such as TIGIT-PVR,
PDCD1LG2 (PD-L2)-PDCD1 (PD-1), and CD200-CD200R1 were observed between mregDCs and exhausted
CD8 T cells with high heat shock gene expression (CD8 Tex/HS), CD4 CD69+ T cells, Tregs, CD8 effector
memory T cells (CD8 Tem), CD4 NKT cells and M2 macrophages (Fig. 4G, Supplementary Fig. 4D). The
interaction involving PD-L2 and PD-1 could represent another site of action with anti-PD-1 treatment. Apart
from co-immunoregulatory signals, we identified interactions between CD70 and CD27 on mregDCs and naive
and memory CD4 T cells, potentially mediating the co-occurrence of mregDCs and naive CD4 T cells (Fig. 2F).
We also observed decreased levels of prostaglandin E2 interaction with PTGER2 on memory CD4 T cells (Fig.
4G), suggesting inhibition of Th2 differentiation for these cells*?, aligning with the lower levels of Th2 response
genes seen in mregDCs (Supplementary Fig. 4B). Additionally, mregDC also up-regulated the interaction of
RARRES2 (chemerin) and CMKLR1 with non-classical monocytes (Supplementary Fig. 4D), and indeed
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chemerin has been reported to act as a tumor suppressive cytokine in mouse melanoma models by recruiting
innate immune cells into the TME*?,

Conversely, TNFSF9 (4-1BBL) and TNFRSF9 (4-1BB) exhibited co-expression among CD8 Tn, CD8 Texme,
CD8 GNLY+ Tex, and mregDC (Extended Data Fig. 4G). The interaction between CD8 Tn and mregDC is
particularly noteworthy, given that 4-1BB has been demonstrated to serve as a survival factor in DCs,
regulating DC immunogenicity and DC-T interaction**. Another ligand-receptor interaction notably up-regulated
between mregDC and all CD8, CD4, monocyte and macrophage subtypes except CD8 Tex/HS was
TNFRSF11B and TNFSF10 (TRAIL; Extended Data Fig. 4G, Supplementary Fig. 4E). TNFRSF11B is known
to compete for TRAIL binding to death-activated receptors, offering a mechanism to prevent apoptosis in the
presence of TRAIL*. Given the previously observed up-regulation of death receptor signaling in mregDCs, the
heightened expression of TNFRSF11B could signify another pro-survival strategy for mregDC. Simultaneously,
TNFSF12 (TWEAK) expressed by CD4 Tregs likely interacted with TNFRSF25 on mregDCs (Extended Data
Fig. 4G), which was suggested to modulate the innate response and its transition to adaptive Th1 immunity*®.
We also observed an up-regulated co-expression of NRP2 (neuropilin-2) and SEMA3C between classical
monocytes and mregDCs (Supplementary Fig. 4E). Neuropilin-2 is known to play an essential role in the
activation of DCs*’.

Epigenomic landscape of mature and migratory cDCs

For the subset of 15 samples with snATAC-seq data, we performed label transfer*® from the scRNA-seq atlas
to annotate major cell types in the epigenomic space (Fig. 5A). Given the significance of mregDC in mediating
ICI response, we isolated cDCs from both scRNA-seq and snATAC-seq data, integrated them into a unified
UMAP space, and identified cDC subtypes through unbiased clustering and RNA-based annotations (Fig. 5B).
Using differential accessibility analysis, we found distinct regions between mregDC and cDC1, and mregDC
and cDC2, with more than double the number of differentially accessible regions (DARs) observed between
mregDC and cDC2 compared to mregDC and cDC1 (2615 vs. 1186; Fig. 5C, Supplementary Table 10). For
accessible regions with specific activities in mregDC, cDC1 showed a higher global activity correlation across
these peaks than cDC2 (Extended Data Fig. 5A). Despite the limited number of cDC1 and mregDC cells in
the ATAC data, our results suggest a more pronounced epigenomic change between mregDC and cDC2.
Correspondingly, DARs between mregDC and cDC2 are significantly enriched in more biological processes
compared to DARs between mregDC and cDC1 (Extended Data Fig. 5B,C, Supplementary Table 11),
consistent with the diverse biological pathways enriched in DEGs between mregDC and cDC2 observed in our
RNA data (Fig. 4D,F). The DARs with higher activities in mregDC compared to cDC1 or cDC2 were enriched
in motifs for all five members of the NF-kB transcription factor family, including RELA, RELB, REL, NFKB1 and
NFKB2 (Fig. 5D). Although we did not find motifs significantly enriched in DARs with higher activities in cDC1,
motifs for the C/EBP family of TFs were significantly enriched in DARs showing higher activities in cDC2 (Fig.
5D). Notably, enhancer accessibility for IL15, FSCN1, and DUSP22—genes crucial for DC functions—were
identified only in mregDCs (Fig. 5E), indicating potential epigenomic reprogramming during cDC maturation
and activation. Both FSCN1 and DUSP22 enhancers contain motifs for the NF-kB TF family, highlighting the
important role of NF-kB signaling in mediating DC maturation. Additionally, we pinpointed enhancers for
KDM2B, implicated in regulating IL6 expression*®; GLS, glutaminase 1, a prognostic biomarker linked to DCs
and immunotherapy response in breast cancer®; and CCR7, pivotal for DC migration and lymph node homing
(Extended Data Fig. 5D).

Molecular and cellular factors associated with mature and migratory cDC proportions

Having established an association between mregDC proportion and ICI response, and its predictive value for
patients' PFS, with the recognition of mregDC as a distinct cDC subtype with unique transcriptional and
epigenomic signatures, we next shifted our focus to understanding the molecular and cellular determinants
influencing mregDC proportions within the TME. To achieve this, we stratified the cohort into two groups based
on mregDC levels: high vs. low, using the median mregDC proportion within cDC as a threshold (a median
value of 18.5%, consistent with the survival analysis). For each cell type and subtype, we identified cell states
associated with mregDC proportion and DEGs characterizing the mregDC-associated cell state, while
adjusting for sample- and cell-level covariates (Fig. 6A). Subsequently, we investigated the enriched biological
pathways and immune responses based on these DEGs. Additionally, we examined the differential cell-cell
interactions between high and low mregDC samples using logistic regression models, accounting for sample-
level covariates.
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At the cell type level, tumor cells, fibroblasts, and B cells exhibited the highest number of DEGs linked to
mregDC proportions (Fig. 6B). Due to cell subtype heterogeneity, DEGs identified at the cell type level may
reflect varying proportions of cell subtypes within the cell type across the two groups. Indeed, we observed this
for B cells, where the proportion of naive B cells correlated with mregDC proportions, and naive B cells were
the predominant subtype within B cells in terms of abundance (Fig. 2F). However, for tumor cells and
fibroblasts, a significant number of DEGs persisted at the cell subtype level, indicating that subtype-specific
DEGs primarily drove the cell type-level differences (Extended Data Fig. 6A). Interestingly, for the translation
initiation tumor program, correlated with mregDC proportion (Fig. 2F), we identified only 10 DEGs (Extended
Data Fig. 6A), highlighting the model's specificity.

Analyzing the top DEGs for each cell type, we observed upregulation of CCR7 in cDCs among mregDC high
samples, consistent with its role as an mregDC marker (Fig. 6C, Supplementary Table 12). At the cell
subtype level, MHC class Il genes were upregulated in mregDC high samples across various tumor programs,
including HLA-DRB1 in tumor cell cycle G1/S and respiration programs, and HLA-DQAZ2 in tumor interferon
MHC-II program (Extended Data Fig. 6B, Supplementary Table 13), indicating the immunogenic potential of
these tumor programs in mregDC high samples. Notably, melanoma dedifferentiation marker NGFR and drug
resistance marker AXL were upregulated in the tumor cell cycle G2/M program, suggesting potential
interactions with mregDC that remain to be elucidated. In fibroblasts, inflammatory fibroblasts exhibited
upregulation of CCL21, while myofibroblasts upregulated IL24 and CXCL10 in mregDC high samples
(Extended Data Fig. 6C). These cytokines and chemokines possess proinflammatory and anti-tumor
properties, indicating an anti-tumor microenvironment in mregDC high samples.

These cell type-specific DEGs showed enrichment in upregulated ECM pathways in tumor cells and
fibroblasts, and downregulated cell cycle pathways across various cell types including tumor, other T, NK, B,
cDC, and pDC cells (Fig. 6D). Additionally, fibroblasts exhibited downregulation in muscle contraction-related
pathways and the VEGFa VEGFR2 signaling pathway, indicating a shift from myofibroblasts to inflammatory
fibroblasts in mregDC high samples. Subtype-level analysis revealed upregulation of the ECM pathway in the
tumor translation initiation and unfolded protein response programs, while it was downregulated in several
other tumor programs such as tumor interferon/MHC-Il and stress programs (Extended Data Fig. 6D). The
tumor respiration program displayed upregulation in PD-1 signaling and antigen processing and presentation
pathways, suggesting its involvement in anti-PD-1 response and its association with mregDCs. Similarly, the
tumor stress program upregulated PD-1 signaling pathway and additionally showed upregulation in the
costimulation by the CD28 family pathway, indicating its potential to induce robust T cell responses directly.
Inflammatory fibroblasts and myofibroblasts contributed to increased ECM pathway activity at the cell subtype
level, while inflammatory fibroblasts exhibited upregulation of proinflammatory and profibrotic mediators in
mregDC high samples (Extended Data Fig. 6E).

Furthermore, the tumor stress program and inflammatory fibroblasts showed specific cell-cell communications
in mregDC high samples (Supplementary Fig. 5A,B; Supplementary Table 14). The tumor stress program
was predicted to interact with cDC2 via HEBP1 and FPR3, and with M1 macrophage via CD99 and PILRA.
Inflammatory fibroblasts were predicted to interact with cDC2 via HEBP1 and FPR3, and with effector memory
and exhausted memory CD8 T cells, double negative NKT cells, and other T cells via the TNC and integrin
a4b1 complex (Supplementary Fig. 5B). Cathepsin D is known to process HEBP1 to produce F2L, a high-
affinity natural agonist for FPR3°', which is expressed throughout human DC maturation and may regulate DC
trafficking during antigen uptake and processing®. PILRa, encoded by PILRA, controls monocyte mobility by
regulating integrin signaling and inhibiting CD99-CD99 binding®?, while anti-CD99 antibody therapy was shown
to trigger myeloid cell recruitment in vivo®*. a4B1 integrin (also known as very late antigen-4, VLA-4) is
expressed on leukocytes and mediates various cellular functions®, while TNC induces cytokine production via
integrin a4B1%. Overall, the tumor stress program and inflammatory fibroblasts secrete ligands that impact the
functions of cDCs, other myeloid cells, and lymphoid cells in mregDC high samples, potentially contributing to
the transition of cDC1 and cDC2 into mregDCs.

Discussion

We compiled a single-cell atlas of metastatic melanoma from 16 responding and 23 non-responding tumors,
comprising over 200,000 cells across 55 annotated subtypes. Using this atlas, we identified six cellular
programs with correlated subtype proportions, indicating regulatory relationships within the TME. We validated
these cellular programs by integration with four previously published single-cell studies’~'°, demonstrating
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distinct anti-tumor and pro-tumor functions based on known cell subtype characteristics. Notably, we observed
a higher relative proportion of mregDCs in responders compared to non-responders to ICI treatment. This
observation was confirmed in an independent ICI-treated bulk meta-cohort. When combining mregDC
proportion with the TCF7+/- CD8 T cell ratio, we stratified patients’ survival across treatments. Furthermore,
our characterization of mregDCs using scRNA-seq and snATAC-seq data indicates their origin from cDCH1,
driven by intrinsic TFs like IRF8, and extrinsic factors such as pro-inflammatory cytokines (IL13, TNFa, IL12
etc.), along with ECM genes from specific tumor cells and fibroblasts. These factors potentially induce
epigenomic reprogramming of naive cDCs, leading to the adoption of new phenotypes and functions.

We identified specific cellular ligand-receptor co-expressions between mregDCs and T cells and other myeloid
cells, potentially explaining ICI response in mregDC high samples. Our analysis revealed that mregDC
proportions correlated with naive CD8 T, naive CD4 T, and naive B cell proportions in the TME, indicating its
involvement in immune infiltration. At a molecular level, we predicted mregDCs interacting with naive CD4 T
cells via CD70 and CD27, and with naive CD8 T cells via 4-1BB and 4-1BBL. CD27, a T cell costimulatory
molecule, is known to support antigen-specific expansion of naive T cells®’, while CD70 expressed on cDCs
has been shown to promote the development of CD4 T cells producing various effector cytokines®®.
Additionally, the interaction between CD27 on naive CD8+ T cells and CD70 on APCs has been recently
shown to determine T cell memory fate, with CAR-T cells generated with CD27 costimulation showing superior
antitumor efficacy®®. Moreover, 4-1BB, besides its role in DC maturation and pro-survival signaling**®°, has
shown promise in enhancing antitumor immunity in clinical trials by dual targeting and conditional stimulation of
CD40 (inducing DC maturation) and 4-1BB (NCT04083599)°%". These molecular interactions underscore the
intimate relationship between mregDCs and naive T cells, providing additional DC-T targets beyond CD40-
CDA40L. However, the interpretation of these costimulatory signals needs to consider regulatory signals such as
PD-1/PD-L1 and IDO1, which have been shown to affect the proliferation and effectiveness of naive CD8 T
cells and induce the differentiation of naive CD4 T cells into Tregs using in vitro co-culture assays®>°?.
Additionally, our investigation into cell type-specific molecules associated with mregDC proportion in the TME
highlighted the potential regulatory roles of the tumor stress program and inflammatory fibroblast through
transcriptomic and cell-cell communication changes.

The higher proportion of mregDCs observed in ICI-responding tumors, both in the single-cell dataset and a
large ICl-treated bulk meta-cohort, is consistent with the expression of a direct target of anti-PD-1 treatment on
their surface. Studies in mouse models have shown that PD-L1 on cDC1s attenuates T cell activation and
regulates response to ICI?’. Additionally, in a cohort of pembrolizumab-treated breast cancer patients, the
relative frequency of mregDCs positively correlated with T-cell expansion following anti-PD-1 treatment, and
mregDCs supported T-cell function in responders at baseline and during treatment®. Previous findings also
suggested that mregDCs may be associated with better patient outcomes, as confirmed by the presence of
mregDC cell markers associated with improved overall survival in melanoma patients®. Furthermore, the
enrichment of a CCR7+ DC signature (mregDC) has been linked to improved survival in lung cancer,
cutaneous melanoma, breast, and colorectal cancer by analyzing 4,045 human solid tumor transcriptomes
from the TCGA®. In our study, while we did not find mregDC proportion alone as a pan-treatment pro-survival
biomarker, combining mregDC proportion and TCF7+/- CD8 T ratio, a previously reported ICI response
marker®, allowed us to predict patient survival across treatments. Notably, these two cell subtypes were
recently found to be enriched in spatially organized stem-immunity hubs in human lung cancer, associated with
response to immunotherapy®.

Employing both scRNA-seq and snATAC-seq data from a substantial cohort of cDCs within the human
melanoma TME, we meticulously delineated the three subtypes: cDC1, cDC2, and mregDC. Our investigation
unveiled that mregDCs share transcriptional and epigenetic resemblances with cDC1s rather than cDC2s,
suggesting their probable derivation from cDC1, in line with recent pan-cancer insights®’. Moreover, we
pinpointed TFs with heightened activity in mregDCs, notably IRF1, IKZF1, KLF3, and KLF6, urging deeper
exploration of their roles in orchestrating the mature and regulatory phenotype. Our analysis of transcriptional
signatures linked with various cytokines revealed an enrichment of proinflammatory cytokines (IL1B3, TNFa,
IL12, IFNB), alongside cytokines pivotal for DC maturation and activation (GM-CSF, TSLP, IL18) in mregDCs,
aligning with expectations. Additionally, we noted an enrichment of leptin, LIF, and IL21 in cDC1 compared to
mregDC, highlighting cytokines for future investigation. More importantly, we uncovered that transcriptional
alterations in tumor cells and fibroblasts correlated prominently with mregDC proportions in the TME, with both
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cell types upregulating ECM pathways in mregDC high samples. These findings gain significance as ECM
proteins are known to influence DC maturation®. Furthermore, we identified a specific molecular interaction,
HEBP1-FPR3, between tumor cells/fibroblasts and DCs, potentially regulating DC trafficking through ECM>2,

Overall, our study reveals a rich repository of single-cell profiles from human metastatic melanomas, coupled
with extensive clinical data, and underscores the critical role of mregDCs in shaping the TME and their
potential as prognostic markers and therapeutic targets in melanoma treatment.

Limitations of study

In this study, our samples displayed significant clinical heterogeneity, including variations in treatment types
and stages. While we attempted to address these variations computationally, a larger single-cell cohort would
enhance the robustness of molecular and cellular correlates with patient responses and survival benefits. For
communication analysis, integrating orthogonal data types like imaging and experimental approaches such as
in vitro co-culturing systems and in vivo tracer methods would be invaluable in substantiating the predicted cell
crosstalk.
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Figure Legends

Figure 1. Characterization of cells in human metastatic melanoma tumors. A, Demographic summary of
the 39 samples included in this study. Pfs, progression-free survival; os, overall survival; NR, non-responder;
R, responder. B, Uniform manifold approximation and projection (UMAP) embedding of all the cells from the 39
samples, after quality control, with each color representing a cell type. C, Dotplot showing average normalized
expression and percent normalized expression of marker genes across cell types.

Figure 2. Cell subtypes and their relative proportion correlations in the tumor microenvironment. A,
UMAP embedding of tumor cells annotated with meta-programs according to Gavish et al. B, Heatmap of the
top marker genes for each of the identified tumor meta-programs. C-E, UMAP embedding of myeloid cell
subtypes (C), CD8 T-cell subtypes (D), and CD4 T-cell subtypes (E). The cell subtypes known for their anti-
tumor functions were delineated with dotted outlines. F, Heatmap illustrating correlation coefficients among the
relative proportions of cell subtypes in relation to their corresponding cell types across all study samples. We
identified clusters/modules by segmenting the hierarchical clustering tree at the red line and assigned
annotations based on the known functions of the cell subtypes within each cluster or module.

Figure 3. Mature and regulatory cDCs associated with ICI response and patient survival. A, Boxplots
comparing relative proportions of four subtypes between ICI non-responders and responders. Each dot
represents a sample, with its color corresponding to the type of ICI and its shape corresponding to the
melanoma subtype. B, Survival plots for samples only treated with ICl and split by the median value of
mregDC relative proportion. C, Survival plots for all samples and split by the median values of both mregDC
relative proportion and TCF7+ CD8 T ratio. D, Boxplot comparing mregDC signature scores, calculated using
ssGSEA, between non-responders and responders in 274 ICl-treated bulk RNA-seq samples. E, Survival plots
for the 274 bulk RNA-seq samples split by the median value of their mregDC scores. P values for boxplots
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were calculated using the Wilcoxon Rank Sum test. P values for survival plots were calculated using the Log
Rank Sum test. NR, non-responder; R, responder; combo, anti-PD-1+anti-CTLA-4; PFS, progression free
survival; OS, overall survival.

Figure 4. Transcriptional landscape and interactome of cDC subtypes. A, UMAP embedding of cDCs
colored by the subtypes. B, Violin plots of canonical marker genes for cDC1, cDC2 and mregDC. C,E, Volcano
plots showing differentially expressed genes (DEGs) between mregDC and cDC1 (C) and between mregDC
and cDC2 (E). An adjusted P value of 0.001 was used to call significant DEGs. Examples of genes with
mregDC-specific enhancers were colored in green, which were mentioned in Figure 5. D,F, Networks of
enriched terms for DEGs up- or down-regulated in mregDC compared to cDC1 (D) or cDC2 (F). G, Dotplots
illustrating inferred cell-cell communications by CellPhoneDB*' either with differential activities between
mregDC and other cDC or exclusively detected in mregDC. The left and right panels plotted interactions with
cDC expressing ligands and CD8 or CD4 T-cell expressing receptors, respectively. P values for volcano plots
and dotplots were calculated using the Wilcoxon Rank Sum test.

Figure 5. Epigenomic landscape of cDC subtypes using snATAC-seq data. A, UMAP embedding of
snATAC-seq cells with cell type labels transferred from scRNA-seq data. B, Co-embedding of cDCs from
scRNA-seq and snATAC-seq data, with colors corresponding to assays (left) or subtypes (right). C,
Differentially accessible regions between mregDC and cDC1 (top), and mregDC and cDC2 (bottom). The p
value cutoff is 0.01. D, Motifs enriched in differentially accessible regions between mregDC and cDC1 (left),
and mregDC and cDC2 (right). Significantly enriched motifs were marked with an asterisk (adjusted p-value
<=0.05). E, Track plots comparing normalized number of reads across cDC subtypes underlying enhancers
associated with genes important for cDC functions. mDC is short for mregDC in some figure panels due to
space constraints. A peak is colored orange if it contains motifs for members of the NF-kB transcription factor
family.

Figure 6. Cell type-specific molecular factors associated with mregDC proportions. A, lllustration of
sample splitting, model used, and downstream analyses performed to identify cell type-specific molecules
associated with mregDC proportion. B, Bar plots showing the number of cell type-specific differentially
expressed genes (DEGs) significantly upregulated or downregulated in mregDC high samples, detected by a
linear mixed model. C, Aggregated volcano plots across cell types showing DEGs passing the adjusted P
value threshold in red and the rest of genes in gray. The top three genes with large average log2 fold changes
in both directions are labeled. D, Dot plots illustrating the top three pathways enriched by the up and
downregulated DEGs for each cell type. The pathway names were colored by biological themes.

Extended Data Figure 1. Visualization of the scRNA-seq atlas. Uniform manifold approximation and
projection (UMAP) embedding of all the cells from the 39 samples, after quality control, with each color
representing a compartment (A), a sample (B), a melanoma subtype (C), a treatment group (D), and patient’s
response to treatment (E). ICI, immune checkpoint inhibitor; ICI combo, anti-PD1 plus anti-CTLA4; NR, non-
responder; R, responder.

Extended Data Figure 2. Cell subtype markers and pairwise correlations between certain cell subtypes.
A, On the left, UMAP embedding of all the tumor cells. Each color represents either a specific tumor meta-
program or cells that did not pass the quality control in this analysis. On the right, violin plots displaying the
number of genes per cell, categorized by their inclusion in different tumor meta-programs or unannotated cells.
B-D, Dotplot showing average expression and percent expression of marker genes for the myeloid cell
subtypes (B), CD8 T-cell subtypes (C), and CD4 T-cell subtypes (D). F-l, Scatterplots depicting the pairwise
correlations between two cell subtypes within module 1 (F), module 2 (G), module 3 (H), and module 4 (1).
Each data point represents a sample, distinguished by shape representing melanoma subtype and color
indicating the treatment group. Pearson correlation coefficients and p-values are provided within each plot.

Extended Data Figure 3. Cell subtype association with ICI response and patient survival. A, Boxplots
comparing relative proportions of selected cell subtypes between ICI non-responders and responders. Each
dot represents a sample, with its color corresponding to the treatment group and its shape corresponding to
the melanoma subtype. B and C, Survival plots for samples treated with ICI (B) or all samples (C) and split by
the median value of mregDC relative proportion. D, Scatterplot correlating mregDC relative proportion and
TCF7+ CD8 T ratio using all samples. Each dot corresponds to a sample and is colored by treatment
response. E, Boxplot comparing TFC7+ versus TCF7- CD8 T cell ratio between ICI non-responders and
responders. F, Survival plots for samples treated with ICI only and split by the median value of TCF7+ versus -
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CD8 T cell ratio. P values for boxplots were calculated using the Wilcoxon Rank Sum test. P values for survival
plots were calculated using the Log Rank Sum test. R-square and P values for scatterplots were calculated
using the Pearson Correlation test. NR, non-responder; R, responder; combo, anti-PD-1+anti-CTLA-4; PFS,
progression free survival; OS, overall survival.

Extended Data Figure 4. Additional transcriptional characterization and cell-cell communication of cDC
subtypes. A, UMAP embedding of cDCs colored by sample. B, Scatterplot showing cDC1, cDC2 and mregDC
scores per cell based on the marker genes reported in Maier et al. C, CytoTrace stream embedding overlaid on
UMAP showing converging transition paths from cDC1 and cDC2 to mregDC. Arrows show state transition
directions. D, Scatterplot of mregDC regulon specificity scores inferred by SCENIC. Top 20 regulons are
highlighted. E, Barplot showing cytokines with transcriptional signatures enriched in mregDC relative to cDCH1,
based on Cui et al*®. F, Bar plots showing the number of differential or exclusive interactions by cell type, with
the top panel corresponding to cDC as source and the bottom panel cDC as target. The bars are colored by
the subtypes in each cell type. G, Dotplots illustrating inferred cell-cell communications either with differential
activities between mregDC and other cDC or exclusively detected in mregDC. The left and right panels plotted
interactions with cDC expressing receptors and CD8 or CD4 T-cell expressing ligands, respectively. P values
for dotplots were calculated using the Wilcoxon Rank Sum test.

Extended Data Figure 5. Additional epigenomic analysis results for cDC subtypes. A, Overall activity
correlation across accessible regions specific to mregDC in cDC1 and cDC2. B,C, Gene ontology (GO)
networks showing the GO terms enriched by the differentially accessible regions (DARs) between mregDC and
cDC1 (B), and mregDC and cDC2 (C). The enrichment analysis was carried out using the GREAT program®.
D, Track plots comparing normalized number of reads across cDC subtypes underlying enhancers associated
with genes important for cDC functions. mDC is short for mregDC in some figure panels due to space
constraints. A peak is colored orange if it contains motifs for members of the NF-kB transcription factor family.

Extended Figure 6. Cell subtype-specific molecular factors associated with mregDC proportions. A, Bar
plots showing the number of cell subtype-specific differentially expressed genes (DEGs) significantly
upregulated or downregulated in mregDC high samples, detected by a linear mixed model. B,C, Aggregated
volcano plots across tumor programs (B) or fibroblast subtypes (C) showing DEGs passing the adjusted P
value threshold in red and the rest of genes in gray. The top three and ten genes with large average log2 fold
changes in both directions are labeled, respectively. D,E, Dot plots illustrating the top three pathways enriched
by the up and downregulated DEGs for each tumor program (D) or fibroblast subtype (E). The pathway names
were in bold if discussed in the text.

Materials and Methods

Patient cohorts for single-cell analysis

The metastatic melanoma samples for this study were obtained from Massachusetts General Hospital by
G.M.B. under the DF-HCC protocol 11-181 (Pl: G.M.B.). Our study focused on annotated metastatic tumors
treated with ICls, targeted inhibitors, other immune therapies, or their combinations as primary treatment.
Patient age, progression-free survival (PFS), and overall survival (OS) were calculated from the treatment start
date. Lesional response was assessed using RECIST 1.1 criteria.

Single-cell RNA-sequencing and preprocessing
We enzymatically digested and dissociated fresh tumor samples according to tissue dissociation kit protocols

using the gentleMACS™ Dissociator (Miltenyi). Dissociated tissues were filtered, centrifuged, and the isolated
cells were resuspended in 0.1% BSA in PBS and immediately processed for the generation of single-cell RNA
(scRNA) libraries using the droplet-based RNA sequencing technology. Briefly, 5000-6000 cells were profiled
per sample using the Chromium Single Cell 3' RNA reagent kit v3 (three samples were processed using kit v2)
according to the 10X Genomics protocol. The generated cDNA libraries were indexed, pooled, and sequenced
in batches using the NovaSeq 6000 S2 system and reagent kits (100 cycles; lllumina). We received the
sequences, mapped the reads against the GRCh38 human reference genome, and quantified the read counts
using Cell Ranger pipeline version 3.1.0 (10x Genomics).

Single-nucleus ATAC-sequencing and preprocessing
We performed snATAC-seq using the Chromium single cell ATAC v1 chemistry from 10x Genomics with the

target of 5000 nuclei per sample. Then the libraries were profiled using the Novaseq S2 (lllumina) technology.
We aligned and quantified the libraries using the 10X cellranger-atac-2.0.0 pipeline.
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Single-cell RNA-seq data analysis
Quality control, dimensionality reduction, clustering and cell type annotation: We used CellBender’ to

remove ambient RNA in each sequencing library and called multiplets using Scrublet”’. We then used standard
pre-processing workflow from Seurat (v4)'? to prepare the scRNA-seq dataset. Single cells with <200 genes
or >6000 genes or >10% of reads mapping to the mitochondrial genome were removed. Data normalization
and scaling was performed using SCTransform*, to adjust for sequencing depth and remove mitochondrial
mapping percentage as a confounding variable. We then merged the libraries and performed principal
component analysis (PCA) using the genes detected in all samples. After obtaining the low-dimensional
embeddings, we performed Uniform Manifold Approximation and Projection (UMAP) on the top 40 principal
components to visualize the dataset. We then constructed a k Nearest Neighbor (kNN) Graph in the top 40
principal components space and clustered cells using the Louvain algorithm. In all the datasets, we used the
default parameter k = 20 and resolution parameter ranging from 0.2 to 1.4 and proceeded with the lowest
resolution that sufficiently highlighted the biological differences between clusters. We annotated each cluster
using known cell-type specific markers. To identify proliferating cells, we used the CellCycleScoring function to
calculate the S phase score and G2M phase score for each cell. To identify tumor cells, we used inferCNV
(https://github.com/broadinstitute/inferCNV) to infer copy number alterations from potential tumor clusters in
comparison to normal cell clusters.

Cell type-specific subclustering: A cell type of interest was subsetted from the object containing all cells
from the 39 samples, which passed quality control metrics described in the previous method section using the
subset function. We then ran SCTransform?*® on the raw counts of the subset, with the default “v2
regularization” and the “vars_to_regress” parameter equal to the percentage of mitochondrial genes. After
applying SCTransform, PCA was applied on the scaled data. Next, to ensure integration of cells by cell
subtypes rather than by the technical variation across samples, we used Harmony’?, an algorithm that projects
cells into a shared embedding in which cells group by cell states rather than dataset-specific conditions,
different samples in our case. Finally, non-linear dimensionality reduction was applied with UMAP, using the
first 30 dimensions from the reduction from Harmony, to visualize the cells in 2D.

Cell subtype annotation: The identification of subtypes for each cell type was determined by two approaches:
1) a priori knowledge of specific markers for subtypes revealed in the literature, and 2) graph and/or density-
based clustering algorithms to cluster groups of cells of the same cell type followed by identification of
differentiating markers among clusters. Both approaches were used concurrently to find the best partitions of
subtypes, as detailed below: 1) Using known markers for specific subtypes: Through extensive literature
search, markers distinguishing cell subtypes were visualized using the Seurat function FeaturePlot to identify
patterns of the expression of certain markers for the differentiation and assignment of subtypes. 2) Applying
clustering methods to delineate subtypes: Clustering methods were applied to determine subtypes within cell
type subsets and could be of either of the following methods: a) The FindClusters function in Seurat identified
clusters of cells by constructing a shared nearest neighbor (SNN) graph from k-nearest neighbors (kNN). Then
the modularity function was optimized using the Louvain algorithm, which finds non-overlapping clusters from
networks to determine the clusters. The default parameters were kept while varying the resolution to match the
expected number of subtypes within the cell type (higher resolution = more clusters). b) Density-Based Spatial
Clustering of Applications with Noise (DBScan), is a density-based clustering algorithm that uses an
embedding of points (in our case the UMAP projection) to cluster points by how close or far they are from one
another. The R package dbscan was used to find clusters, in which the “eps” parameter was set to the radius
of neighboring points and the "MinPts” parameter, which specified the threshold for the minimum number of
neighbors within the radius. By assigning points by these parameters, clusters as well as outlier points were
found by the algorithm. 3) Validation of subtypes through differential gene expression analysis: Clusters could
be compared against each other by finding DEGs between one or more clusters. We used FindMarkers to
identify DEGs among the various clusters to verify that the clusters differentially express the known markers of
interest from literature or discover markers to confirm the presence of a subtype. This was applied when the
marker expression was not very apparent merely by observation through FeaturePlot. Once clusters were
determined, the subtype annotations were integrated back into the original object containing all cells from the
39 samples. Cells that passed quality control metrics but did not cluster with any annotated subtypes were
found using dbscan. Outlier cells were discarded from the finalized object.
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Subtyping of malignant cells: We used a different approach, as described in Gavish et al.’®, to uncover
“meta-programs” of tumor cells, with each uniquely describing a distinct cellular state through a gene set. Each
cell was assigned to the meta-program for which its sum of gene activities for the specific meta-program’s
genes was the maximum among all meta-programs tested and meeting defined constraints. Overall, a
minimum score of 0.03 was enforced to yield 60.1% of tumor cells that would be assigned to a meta-program
(to roughly match the threshold of 56.4% used by Gavish et al.'®). After assignment, cells that did not reach the
threshold for any of the meta-programs (default score for assignment = 1) or did not have the minimum number
of genes to test for any meta-program (default number of genes = 25) were assigned as NA. The code to run
the meta-program distribution is at

https://github.com/tiroshlab/3ca/blob/main/ITH hallmarks/MPs_distribution/MP_distribution.R.

Cell subtype proportion correlation analysis: Cell type and subtype abundances were calculated by
sample. Relative subtype proportion was calculated by dividing the abundances of a subtype by its
corresponding cell type. Given an input proportion by patient sample matrix, Pearson correlation was
calculated for every pair of subtype proportions across samples using the Python corr function from

the pandas library. Correlations of proportions where the cell type was not present in a sample were excluded
from the analysis, as it would lead to a “division by 0” error. Groups of similar correlations were clustered
together for the generation of the correlation matrices by measuring the distances between correlations and
making clusters based on the distances, which was executed using the linkage and fcluster functions in the
SciPy package in a wrapper developed by Yegelwel (https://wil.yegelwel.com/cluster-correlation-matrix/). After
visual inspection of the correlation matrices, correlation plots highlighting the relationship between pairs of
highly correlated subtypes were generated with an associated p-value to determine the probability of the result,
assuming that the correlation coefficient was truly 0.

Cell subtype proportion by response analysis: To evaluate subtype proportions stratified by responding
and non-responding tumors, we generated boxplots to visualize the distributions and measured the difference
in distributions using the Wilcoxon rank sum test. This test was computed by the wrapper function wilcox.test in
R and using a two-sided alternative (no prior information determining which distribution would be higher) to
determine whether the distribution of a certain subtype proportion was different between samples in the
response or non-response groups. We also performed multiple analyses evaluating the distribution of

subtype proportions on the different treatment group cohorts of samples from all treatments, samples treated
with ICI, ICl-only treated samples, and samples treated with anti-PD1. P-values were labeled if it was less than
0.1, but we still evaluated significance based on a p-value less than 0.05.

Kaplan Meier survival analysis: For our analysis, survival curves between two groups of samples were
compared, and their differences were evaluated for significance using the log-rank sum test. Kaplan Meier
survival curves were generated in R using the libraries survival and ggsurvfit. The function Surv from survival
combined the survival data and corresponding censored data, which was used as the response variable of the
formula survfit2 model from ggsurvfit. The survival data was stratified by the proportions we evaluated survival
by, which was passed as binarized values according to the chosen cutoff value with which to group samples.
Log-rank testing was performed for each survival analysis, and p-values were calculated between the different
groups using the internal function add_pvalue in ggsurvfit.

DEG and pathway analysis of cDC subtypes: To perform differential gene expression analysis comparing
mregDC to the other cDC subtypes in a pairwise fashion, we applied FindMarkers on the SCTransform
normalized gene expression of the cDC scRNA-seq subset and compared the subsets of mregDC and ¢cDC1

or mregDC and cDC2 using a Wilcoxon rank sum test. A log fold change threshold of 0.01 was used, and the
minimum percentage of cells with the detected gene was set to 10%. DEGs were selected using an adjusted p-
value (Bonferroni method by default) of 0.001. We used Metascape’™ to identify the enrichment of pathway
networks for the DEGs.

Trajectory, regulatory network and immune response inference for cDC subtypes: We leveraged the
CytoTraceKernel function in the python package Cellrank to infer the CytoTrace pseudotime’. We analyzed
the activated regulatory networks in cCD1, cDC2, and mregDC subtypes with SCENIC®?. Starting with the raw
count matrix as input, we used GRNBoost2 to find regulatory networks, which are sets of genes co-expressed
with transcription factors (TFs). To remove false positives and indirect targets, we pruned the networks using
RcisTarget, which identifies direct-binding targets with motif enrichment of the correspondent upstream
regulator. Finally, we used AUCell to compute the regulon activity score (RAS) in each cell based on the
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ranked expression value of genes in the regulon. To select regulons specific to mregDCs, we calculated the
regulon specificity score, which reflects the entropy of RAS in cells across cDC subpopulations, for each
detected regulon. The regulon specificity score ranges from 0 to 1, with a higher value indicating more
specificity of the regulon. We then used the Immune Response Enrichment Analysis (IREA) tool to find
enriched cytokine expression in mregDCs relative to cDC1s and cDC2s. We used DEGs between mregDCs
relative to cDC1s and cDC2s as defined above (Supplementary Table 6). Then, the upregulated and
downregulated DEGs were separately input into IREA, with “MigDC”, “cDC1” or “cDC2” selected as the cell
type and score chosen as the method. We combined the outputs from both sets of DEGs, negating the
enrichment score of the downregulated DEGs, and then filtering for significance (adjusted p-value <=0.05). We
removed cytokines that were determined to be significantly expressed in both the upregulated and
downregulated DEGs.

Cell-cell communication for cDC subtypes: To infer cell-cell communication, we used CellPhoneDB*', which
takes in single-cell transcriptomic data and compares gene expression values to a database of ligand-receptor

interactions to statistically test the significance of those interactions. We performed CellPhoneDB analysis to
find ligand-receptor pairs between the cDC subtypes (mregDC, cDC1 and cDC2) and all other subtypes
existing in our dataset. To preserve the integrity of true interactions, CellPhoneDB was run by sample (38
times independently for each sample in our scRNA-seq dataset). A log-normalized RNA count matrix of the
sample and the list of subtype annotations for each cell were given as inputs to the program. Using the
statistical analysis method of CellPhoneDB (Method 2), interactions between subtypes were obtained and
compared to a null distribution generated by random shuffling of the cell types into clusters. The method is
sped up via a geometric sketching procedure’. All parameters were set to the default. We used the output of
the significant_means field, which provided an average mean value for an interaction between two partners of
two cell subtypes if the interaction was significant; otherwise, the mean was equal to 0. We then looked into the
interactions between the cDC subtypes and the other cell types. With our interest being in mregDCs, we had
two goals: 1) to find interactions that existed only between the mregDC subtype and non-cDC cell types and
not between cDC1 or cDC2 and non-cDC cell types; and 2) find cDC to non-cDC interactions that were
differentially expressed between the cDC subsets. Several thresholds were applied for each analysis: 1)
Exclusive interactions were only considered if the mregDC to other non-cDC subtype interaction was
significant in at least 3 samples. 2) To evaluate differentially expressed interactions, the Wilcoxon rank sum
test was applied for the same ligand-receptor interactions expressed by cDC1, cDC2, and mregDCs. Wilcoxon
rank sum p-value <0.05 was used to call the differential. This analysis was performed separately when
evaluating interactions when the ligand was expressed on cDCs (cDCs as the source) or when the receptor
was expressed on cDCs (cDCs as the target).

Single-nucleus ATAC-seq data analysis
Quality control, clustering and dimensionality reduction: For quality control, we kept cells with peak region

fragments between 5000 to 20,000 nucleotides, transcription start site enrichment score > 4, and percent
reads in peaks > 20%. We quantified the activity of each gene in the genome using the GeneActivity function in
Signac’’, which sums the fragments in the gene body coordinates including 2 kb upstream region, according to
Ensembl annotation EnsDb.Hsapiens.v86. For dimensionality reduction, we performed term frequency inverse
document frequency (TF-IDF) normalization and singular value decomposition (SVD) on the peak-by-cell
matrix. To visualize the dataset in 2-dimensions, we performed UMAP using the top 50 components and used
graph-based clustering to find clusters. With a combination of known markers and label transfer from scRNA-
seq data, we assigned cell labels to each snATAC-sequenced cell.

Transfer of scRNA-seq annotations: Given our fully annotated scRNA-seq object of cell types and subtypes
of the 39 samples derived from the methods described above, we found anchors between the RNA object and
the object of the 15 matching snATAC-seq samples. Label transfer was first performed at the cell-type level
and performed a second time to label subtypes within each cell type-specific subset. First, gene activity scores
derived above were compared to scRNA-seq gene expression counts via canonical correlation analysis (CCA)
using the FindTransferAnchors function with the reduction parameter set to "cca" and the first 2000 variable
features used from the scRNA-seq dataset. The resulting anchors found were used to predict cell type (or
subtype) labels for each cell in the snATAC-seq dataset using the TransferData function, with the reference
data parameter set to the scRNA-seq cell types or subtypes and weight reduction set to the latent semantic
indexing (LSI) projection of the shnATAC-seq data. Predicted labels were assigned to each cell and visualized
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on the UMAP of the 15 snATAC-seq samples. For subtype label transfer, we repeated the data normalization
and dimensionality reduction steps mentioned above for each subsetted cell type.

RNA and ATAC co-embedding for cDCs: After subsetting cDCs from both snATAC-seq and scRNA-seq
datasets, we used FindIntegrationAnchors in Signac’’ to identify co-varying components of the snATAC-seq
and scRNA-seq datasets. Then we leveraged CCA to co-embed cells from both the transcriptomic and
epigenomic space using the identified canonical ‘basis’ vectors. The co-embedding in shared lower-
dimensional space maximizes correlation between the two datasets, thus allowing joint analysis and cell-typing
of scRNA-seq and snATAC-seq datasets. We re-assigned the snATAC-seq cells with cDC subpopulation
labels from their mutual nearest scRNA-seq neighbors in the shared space, compared with the cell subtype
label transfer results derived above, and decided on the final subtype labeling of snATAC cells based on
consensus and marker gene activities.

Differential accessible region analysis for cDCs: DARs were identified in a similar fashion to DEGs. Using
normalized values of the peaks of cDCs in our snATAC-seq data, DARs were found using FindMarkers, again
comparing the identity classes of mregDC and cDC1 or mregDC and cDC2. Logistic regression was used to
identify DARs, as it corrects for the sequencing depth by incorporating the total number of fragments as a
latent variable. A log fold change threshold of 0.01 was used, with a minimum percentage of the same peaks
detected in both classes set to 5% to increase sensitivity relative to DEG analysis because of the sparse
nature of ATAC data. DARs were labeled with the closest gene to the region using the ClosestFeatures
function in Seurat. DARs were selected using an unadjusted p-value of 0.01 due to a lack of signal using
adjusted p-values. Thus, interpretations of DARs are not conclusive and merit further investigation and
validation.

Global correlation, pathway and motif enrichment analyses for cDCs: To compute cell type similarities to
migDCs, we first calculated the average peak accessibility for each cell type of each peak accessible in
migDCs. Then, we calculated the pearson correlation of the average peak accessibility between the cell type
and migDCs. To investigate cis-regulatory regions, we used the Genomic Regions Enrichment of Annotations
Tool (GREAT)®. We input significantly upregulated and downregulated regions independently into GREAT,
yielding GO biological processes. For processes identified to be enriched in both upregulated and
downregulated regions of the same comparison, the processes were removed. Significant GO biological
processes were visualized using clusterProfiler’® and enrichplot’. To investigate differentially accessible motifs
between cDCs, we added motif information using JASPAR2022 and BSgenome.Hsapiens.UCSC.hg38. Then,
we computed the per-cell motif activity score using Signac’s implementation of chromVAR. We used
FindMarkers in the chromVAR assay to find the resulting differentially accessible motifs.

Integration with previous single-cell studies
Tirosh et al.’”, Jerby-Arnon et al.® and Sade-Feldman et al.® had gene count matrices given in transcripts per

million (TPM). Zhang et al."® provided a raw count matrix. We assumed that merging log normalized TPM and
raw count matrices would capture the differences in relative expression and the variation of gene expression
would be preserved, which was proven to be true. As each count matrix in their available data format from
each study was converted into a Seurat object, we performed integration feature selection with
SelectintegrationFeatures and anchor discovery using log normalization and canonical correlation analysis
(CCA) reduction with FindIntegrationAnchors. After obtaining the set of anchors, we integrated the five objects
using IntegrateData. For label transfer, another set of anchors were found from our study’s object as the
reference and applied to a subset of the integrated object corresponding to the four studies as the query using
PCA reduction of the reference. Predicted cell types and subtypes of the scRNA-seq of the four studies were
predicted in a similar fashion to the label transfer of cell types and subtypes from scRNA-seq to snATAC-seq
as described above. Subtypes were found after the annotation of cell types. For the construction of the final
UMAP of the integrated object of all studies, the default assay was set to “integrated” and then scaled using
the function ScaleData. PCA was applied using the variable features of the integrated object, and RunUMAP
was executed on the first 30 PCs of the PCA reduction. No further batch correction was needed as cells from
different studies were well integrated and cell types were clearly separated on the UMAP embedding.

Identification of cell states and DEGs associated with mregDC proportions

Algorithm: When performing DEG analysis between samples, we aim to explore which cell state is associated
with the mregDC groups and what DEGs characterize this cell state. Existing methods for detecting DEGs,
such as pseudo-bulk and mixed models, assume homogeneous populations when comparing subtypes and
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treating all cells from one sample equally. Hence, the analysis still operates at a sample level and does not
leverage the between-cell heterogeneity available in the scRNA-seq data. Our assumption is that, instead of
the whole cell population in a group, mregDC proportion affects certain binary cell states in a cell type, e.g.,
exhaustion, activation, apoptosis, etc, and we aim to extract the mregDC-associated cell states and identify the
DEGs in these cell states. To address this, we performed the DEG analysis in two steps, 1) identify cell states
associated with the mregDC groups, 2) identify DEGs for this cell state. In Step 1, we developed a factorization
algorithm to find the binary variable that explains the most variability of the count matrix with the adjustment for
the covariates and sample-level heterogeneity under a Negative Binomial mixed model as in NEBULA .
Conceptually similar to the top principle component, this identified binary variable is the major cell state of the
cell type. Our algorithm also returned the uncertainty of the estimation of the cell state and this uncertainty was
used in the following steps to conduct valid testing for DEGs. In Step2, we then performed an association test
between the extracted cell state and the mregDC groups in each cell type or subtype to identify the mregDC-
associated state using a logistic mixed model. For those mregDC-associated states, we obtained their DEGs
using the Negative Binomial mixed model implemented in NEBULA® and further took into account the
uncertainty in the cell state estimation. We predict that this algorithm would find the cell states that drove the
difference observed between the mregDC high group and the mregDC low group if mregDC is the major
underlying factor driving the differential expression and the DEGs would be the potential regulators of the
mregDC phenotype, especially at the cell-type level.

Model building: The model takes in two pieces of data: first, the raw gene by count matrix of the samples, and
second, the metadata associated with each sample, which is used as the design matrix. First, we compiled the
raw count matrices of all samples, which were subsetted by cell type or cell subtype. Then we created the
design matrix, which included the mregDC group variable, which was 0 for an mregDC low sample
(mregDC/cDC < 0.185) or 1 for an mregDC high sample (mregDC/cDC > 0.185). The design matrix also
included the sample-level variables to account for. We selected the sample level variables of age, sex, tissue
of biopsy (skin, lymph, other), treatment state (pre, on, post), and treatment group (other, with ICI, ICI only,
anti-PD1) and the cell-level variables of mitochondrial gene percentage and ribosomal gene percentage.
Sample or cell-level variables for which all cells in the subset had the same value were removed from the
design matrix prior to running NEBULA. The offset was set to the number of counts of RNA, i.e., the total

number of molecules detected within a cell. NEBULA®® was first run for each cell type and subtype to estimate

the overdispersions, in which the count matrix, offset term, and design matrix were inputs to the model. Then,
given the overdispersions, a factorization algorithm for the top binary factor was run for each cell type. We
used the factors called from this step as the major cell states for cell subtypes and tested its association with
the mregDC group. For mregDC-associated cell states, we used NEBULA® again to obtain the DEGs
associated with these states.

Pathway analysis for identified DEGs: We used the fGSEA (fast gene set enrichment analysis) package in
R. We narrowed down the gene set of canonical pathways to test enrichment, which was downloaded from
https://www.gsea-msigdb.org/gsea/msigdb/human/collections.jsp. The list of all genes (significant and not
significant) with their associated log fold change values were used as input to fgsea, setting the pathways to
the downloaded canonical pathway gene set and testing for positively and negatively enriched pathways
(scoreType parameter = ‘std’ for standard). Given the output of pathways, we identified main pathways, which
are pathways that are independent from each other, using the function collapsePathways and an adjusted p-
value less than 0.05 using the Benjamini-Hochberg correction, which was the default. The top pathways with
the highest enrichment scores and adjusted p-value < 0.05 were visualized using aPEAR (Advanced Pathway
Enrichment Analysis Representation)®!, a separate package in R that can generate enrichment networks from
pathways that are similar to each other. All the canonical pathways generated from the cell type or subtype
subsets were used as input, together with their adjusted p-values, normalized enrichment score, the number of
genes in the pathway, and the list of genes in the pathway. Using a similarity metric to cluster redundant
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pathways, aPEAR assigns a general name for the clusters of pathways using the PageRank algorithm?®'. All
default parameters were used in the clustering and visualization of the pathways.

Bulk RNA-seq meta-cohort data analysis
To determine whether or not a signature of mregDCs is able to stratify an independent cohort of 274 ICI-

treated patients with metastatic melanoma and with RNA-seq data®®, we used ssGSEA to score the mregDC
signature (387 genes positively define mregDCs, Supplementary Table 3) in the bulk RNA-seq data set, and
then performed response comparisons and survival analysis the same as described in the scRNA-seq section.

Data availability
The original data are available at GEO (GSEXXXXXX). The processed data are available on Zenodo (URL).
Code availability

All codes that are necessary to reproduce all the results in the paper are implemented in Python and R and are
publicly available at GitHub (https://github.com/KellisLab/scCancer).

Supplemental information

Supplementary Figure 1. A five-study metastatic melanoma single-cell atlas. We integrated our single-cell
dataset with four published single-cell datasets (Tirosh et al., Jerby-Arnon et al., Sade-Feldman et al., and
Zhang et al.). Uniform manifold approximation and projection (UMAP) embedding of all the cells from the five
studies (n=352,966 cells), with each color representing a study (A), a cell type (B), and a sample (C). D,
Distribution of cells by cell types across different studies. E, Dotplot showing average expression and percent
expression of marker genes across all the cells from the five studies.

Supplementary Figure 2. Cell subtype proportion correlations for subset or additional samples. A,C,
Heatmap illustrating correlation coefficients among the relative proportions of cell subtypes in relation to their
corresponding cell types across samples treated with ICI (A), or samples from the five studies (C). We
identified clusters/modules by segmenting the hierarchical clustering tree at the red line and assigned
annotations based on the modules discovered in Fig. 2F. B, UMAP embedding of all the cells from the five
studies, with each color representing a subtype as annotated in this study.

Supplementary Figure 3. Cell subtype association with treatment response and patient survival. A-D,
Boxplots comparing relative proportions of selected cell subtypes (A), cDC1 and cDC2 (B), and mregDC (C),
and proportions of cDC out of all cells or immune cells (D) between non-responders and responders for all
samples. Each dot represents a sample, with its color corresponding to the treatment group and its shape
corresponding to the melanoma subtype. E-F, Survival plots for ICI-only samples split by selected subtype
relative proportions (E) or samples treated with ICI and all samples split by TCF7+ CD8 T cell ratio (F). P
values for boxplots were calculated using the Wilcoxon Rank Sum test. P values for survival plots were
calculated using the Log Rank Sum test. NR, non-responder; R, responder; combo, anti-PD-1+anti-CTLA-4;
PFS, progression free survival; OS, overall survival.

Supplementary Figure 4. Expression patterns of markers reported in other studies and additional cell-
cell communication across cDC subtypes. A, Heatmap plotting expressions of marker genes reported in
Maier et al. in mregDC, cDC1 and cDC2. B, Dotplots showing expression patterns of genes grouped by
biological processes, as reported in Maier et al., across cDC subtypes. C, Heatmap illustrating average
expression of genes for cDC1, cDC2 and mregDC. Gene groups were obtained from Broz et al. D,E, Dotplots
illustrating inferred cell-cell communications either with differential activities between mregDC and other cDC or
exclusively detected in mregDC, with cDC expressing ligands (D) or receptors (E) and monocyte/macrophage
subtypes expressing receptors (D) or ligands (E), respectively. P values for dotplots were calculated using the
Wilcoxon Rank Sum test.

Supplementary Figure 5. Cell-cell communications with differential activities associated with mregDC
proportions. A,B, Networks depicting cell-cell interactions, inferred by using CellPhoneDB*', with differential
activities (co-expression patterns) in mregDC high samples vs. mregDC low samples. Nodes represent cell
types (A) or subtypes (B). Node sizes correspond to the number of cells in the cell type/subtype within the
cohort (mregDC high or low). Edge weights are equal to the number of interactions between each pair of cell
types/subtypes.

Supplementary Table 1. Sample demographics and quality control measures. See Fig. 1 and Extended
Data Fig. 1.
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Supplementary Table 2. Cell type markers in reference to all the other cells. See Fig. 1.

Supplementary Table 3. Non-tumor cell subtype markers in reference to all the other cells. See Fig. 2
and Extended Data Fig. 2.

Supplementary Table 4. Tumor program markers in reference to the other tumor programs. See Fig. 2.

Supplementary Table 5. Abundance of cell types and subtypes and subtype proportions at the sample
level. See Fig. 2,3, Extended Data Fig. 2,3, and Supplementary Fig. 2,3.

Supplementary Table 6. Differentially expressed genes between mregDC and other cDCs. See Fig. 4.

Supplementary Table 7. Pathways enriched in differentially expressed genes between mregDC and
other cDCs. See Fig. 4.

Supplementary Table 8. Inferred cell-cell communication with differential activities or exclusively
detected in mregDC compared to other cDCs with cDC as source. See Fig. 4, Extended Data Fig. 4, and
Supplementary Fig. 4.

Supplementary Table 9. Inferred cell-cell communication with differential activities or exclusively
detected in mregDC compared to other cDCs with cDC as target. See Fig. 4, Extended Data Fig. 4, and
Supplementary Fig. 4.

Supplementary Table 10. Differentially accessible regions between mregDC and other cDCs. See Fig. 5
and Extended Data Fig. 5.

Supplementary Table 11. Motifs enriched in differentially accessible regions between mregDC and
other cDCs. See Fig. 5 and Extended Data Fig. 5.

Supplementary Table 12. Cell type-specific differentially expressed genes between mregDC high and
low samples. See Fig. 6.

Supplementary Table 13. Cell subtype-specific differentially expressed genes between mregDC high
and low samples. See Extended Fig. 6.

Supplementary Table 14. Cell-cell communications showing differential activities between mregDC
high and low samples. See Supplementary Fig. 5.
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Figure 1. Characterization of cells in human metastatic melanoma tumors. A, Demographic summary of

the 39 samples included in this study. Pfs, progression-free survival; os, overa

| survival, NR, non-responder;

R, responder. B, Uniform manifold approximation and projection (UMAP) embedding of all the cells from the
39 samples, after quality control, with each color representing a cell type. C, Dotplot showing average
normalized expression and percent normalized expression of marker genes across cell types.
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Figure 2. Cell subtypes and their relative proportion correlations in the tumor microenvironment. A,
UMAP embedding of tumor cells annotated with meta-programs according to Gavish et al. B, Heatmap of the
top marker genes for each of the identified tumor meta-programs. C-E, UMAP embedding of myeloid cell
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Figure 3. Mature and regulatory cDCs associated with ICl response and patient survival. A, Boxplots
comparing relative proportions of four subtypes between ICl non-responders and responders. Each dot
represents a sample, with its color corresponding to the type of ICl and its shape corresponding to the mela-
noma subtype. B, Survival plots for samples only treated with ICI and split by the median value of mregDC
relative proportion. C, Survival plots for all samples and split by the median values of both mregDC relative
proportion and TCF7+ CD8 T ratio. D, Boxplot comparing mregDC signature scores, calculated using
ssGSEA, between non-responders and responders in 274 |Cl-treated bulk RNA-seq samples. E, Survival
plots for the 274 bulk RNA-seq samples split by the median value of their mregDC scores. P values for box-
plots were calculated using the Wilcoxon Rank Sum test. P values for survival plots were calculated using the
Log Rank Sum test. NR, non-responder; R, responder; combo, anti-PD-1+anti-CTLA-4; PFS, progression free
survival; OS, overall survival.
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Figure 4. Transcriptional landscape and interactome of cDC subtypes. A, UMAP embedding of cDCs
colored by the subtypes. B, Violin plots of canonical marker genes for cDC1, cDC2 and mregDC. C,E, Volca-
no plots showing differentially expressed genes (DEGs) between mregDC and cDC1 (C) and between
mregDC and cDC2 (E). An adjusted P value of 0.001 was used to call significant DEGs. Examples of genes
with mregDC-specific enhancers were colored in green, which were mentioned in Figure 5. D,F, Networks of
enriched terms for DEGs up- or down-regulated in mregDC compared to cDC1 (D) or cDC2 (F). G, Dotplots
illustrating inferred cell-cell communications by CellPhoneDB41 either with differential activities between
mregDC and other cDC or exclusively detected in mregDC. The left and right panels plotted interactions with
cDC expressing ligands and CD8 or CD4 T-cell expressing receptors, respectively. P values for volcano
plots and dotplots were calculated using the Wilcoxon Rank Sum test.
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Figure 5. Epigenomic landscape of cDC subtypes using shATAC-seq data. A, UMAP embedding of
snATAC-seq cells with cell type labels transferred from scRNA-seq data. B, Co-embedding of cDCs from
scRNA-seq and snATAC-seq data, with colors corresponding to assays (left) or subtypes (right). C, Differen-
tially accessible regions between mregDC and cDC1 (top), and mregDC and cDC2 (bottom). The p value
cutoff is 0.01. D, Motifs enriched in differentially accessible regions between mregDC and cDC1 (left), and
mregDC and cDC2 (right). Significantly enriched motifs were marked with an asterisk (adjusted p-value
<=0.05). E, Track plots comparing normalized number of reads across cDC subtypes underlying enhancers
associated with genes important for cDC functions. mDC is short for mregDC in some figure panels due to
space constraints. A peak is colored orange if it contains motifs for members of the NF-kB transcription factor

family.
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