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Abstract 

Introduction: Genetic susceptibility is a primary factor contributing to etiology of 
late-onset Alzheimer's disease (LOAD). The exact mechanisms and timeline 
through which APOE/PICALM influence brain functions and contribute to LOAD 
remain unidentified. This includes their effects on individuals prior to the 
development of the disease. 

Methods: APOE/PICALM alleles were assessed to determine the genetic risk of 
LOAD in 79 healthy, middle-aged participants who underwent EEG and fMRI 
recordings. The resting-state signal was analyzed to estimate relative spectral 
power, complexity (Higuchi's algorithm), and connectivity (coherence in EEG and 
ICA-based connectivity in fMRI). 

Results: The main findings indicated that individuals at risk for LOAD exhibited 
reduced signal complexity and the so-called “slowing of EEG” which are well-
known EEG markers of AD. Additionally, these individuals showed altered 
functional connectivity in fMRI (within attention related areas). 

Discussion: Risk alleles of APOE/PICALM may affect brain integrity and function 
prior to the onset of the disease 
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Background 

Understanding the early development of LOAD is crucial for its effective 
diagnosis, prevention, and treatment. The apolipoprotein E gene (APOE) is widely 
recognized as the predominant genetic factor influencing LOAD. It has three 
isoforms: ε4, ε3, and ε2. The ε4 increases the risk of developing AD by 4-12 times 
compared to non-carriers [1,2]. In contrast, the ε3 isoform appears to have no effect 
on disease risk, while the ε2 isoform is occasionally associated with a reduced risk 
[3]. Patients with the homozygous ε4 allele typically exhibit an earlier onset of 
disease [4], a phenomenon that is also observed in familial forms of early-onset 
Alzheimer's [5]. Genome-wide association studies (GWAS) have identified 
numerous additional risk genes for Alzheimer's disease (AD), including 42 new loci 
reported in a 2022 study [6]. Among these, the gene encoding phosphatidylinositol 
binding clathrin assembly protein (PICALM) has been repeatedly identified as a 
significant risk factor for AD [6–8]. The PICALM G allele is more prevalent among 
AD patients, whereas the A allele is thought to either decrease the risk of AD or 
have no effect. Furthermore, potential interactions between the APOE and PICALM 
genes have been observed [7]. Some studies suggest that the combined presence of 
these genes influence brain atrophy and diminishes cognitive performance in early 
AD patients [9]. Both genes are also implicated in amyloid pathology, a common 
pathway in the development of AD [10]. They have never been studied together in 
a non-demented population. 

EEG is one of the most promising tools in search for LOAD diagnostic 
markers [11,12], as it has high availability, low cost and non-invasiveness. The 
most common protocol used in AD patients is the “resting-state” protocol, as it is 
brief and does not require participants to engage in any specific task. Most studies 
use eyes-closed condition [13–18], as open eyes resting-state is often characterized 
by a EEG desynchronization in common bands of interests. A number of changes 
in spontaneous EEG has been shown in patients with AD, other dementias and mild 
cognitive impairment (MCI). The most recognized AD hallmark measured with 
EEG is the so-called “slowing of EEG” [16,17,19–21], i.e. increased 
amplitude/power of slow waves as delta (~1-3 Hz) [13,15–17] and theta (~4-7 Hz) 
[13,14,16,17] and decreased amplitude/power of alpha band (~8-12 Hz) [13,15–
17]. Higher frequency (beta, gamma) is rarely reported to be changed across AD 
continuum or has no effect [13–17]. Signal complexity is another frequently used 
EEG measure due to the complex and nonlinear dynamics of brain signals. MCI/AD 
patients have lower signal complexity than healthy controls [20,22,23]. Resting-
state protocol allows also for studying functional connectivity (FC). This can be 
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done using EEG signal, but more robust way is to use functional magnetic 
resonance imaging (fMRI). LOAD tends to be  associated with a reduction in 
functional connectivity in posterior DMN [24–26]. This region was shown to be 
involved in many actions like memory, introspection, mind-wandering, the 
generation of spontaneous thought, the maintenance of the sense of self, and the 
integration of information across different cognitive domains [27]. In fMRI studies, 
functional connectivity is typically measured using either seed-based or ICA 
approaches. ICA was used extensively in rs-fMRI studies on AD or individuals at 
risk with different genetic burden [26,28–32]. As the LOAD etiology is multifaced, 
it is also important to take into account the neuropsychological, health related and 
lifestyle aspect. AD patients are characterized by increased apathy/depression, 
impaired emotional control, or personality changes [33] and other lifestyle and 
health factors are linked to the greater dementia risk [34]. 

Studies indicate that adjusting lifestyle and beginning interventions early in 
the disease process can alter (in some cases) the disease’s progression [11,35,36]. 
Additionally, modern clinical trials targeting potentially disease-modifying 
medications focus on the prodromal phases of AD. Thus, understanding the risk-
genes influence on health and brain is a key challenge in AD research.  

 

Material and methods 

Participants and genetic screening 

We tested 79 non-demented middle-aged adults during the neuroimaging 
phase of our study, which was part of a larger research project [37]. EEG session 
was conducted in the EEG laboratory at the Nencki Institute of Experimental 
Biology PAS (Poland) and MRI/fMRI session in the Bioimaging Research Center, 
Institute of Physiology and Pathology of Hearing (Poland). A larger cohort (N = 
200) underwent genetic screening and completed questionnaires on demographics, 
health, and psychometric assessments. From this cohort, 79 subjects were selected 
based on their genetic scores to form the experimental groups. Exclusion and 
inclusion criteria were already described in the data note article regarding our 
database [37]. AD risk genes, the APOE (rs429358/rs7412) and PICALM 
(rs3851179) alleles were determined using the traditional Sanger sequencing 
protocol, which was outsourced to the certified third party company. The 
participants in the genetic-based research groups were matched based on age, 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 22, 2024. ; https://doi.org/10.1101/2024.06.20.599857doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.20.599857
http://creativecommons.org/licenses/by-nd/4.0/


 
 
4 

 

 

gender, education, and various health factors, particularly those influencing 
dementia risk. The groups were constructed based on APOE/PICALM risk: APOE-
ε4/PICALM GG non-carriers (referred to as “N”), single-risk carriers (APOE-ε4 
carriers without the PICALM risky GG alleles, referred to as “A+P-“), and double-
risk carriers (APOE-ε4 carriers with the PICALM risky GG alleles, referred to as 
“A+P+”). 

Several participants withdrew from the study for reasons such as MRI 
contraindications, and some data were lost due to technical issues. The exact 
number of participants for each experiment is as follows: 

 Health and psychometric tests were completed by all 79 participants (details 
of missing data in various questionnaires are provided in the Results section 
Tab. 1). 

 EEG data: N = 78 participants (N group: 31, A+P- group: 27, A+P+ group: 
20). 

 MRI/fMRI data: N = 69 participants (N group: 27, A+P- group: 24, A+P+ 
group: 18). 

The study was approved by the local bioethics committee (Bioethics 
Committee of the Nicolaus Copernicus University in Toruń functioning at 
Collegium Medicum in Bydgoszcz, Poland). Written informed consent was 
provided by all participants and all participants received cash remuneration. 

 

Demographics, health, and psychometric assessment 

Participants provided standard demographic information along with details 
about their health status (e.g., diabetes, hypertension, etc.; all measures are 
presented in Tab. 1 in Results section). They were then assessed using a 
comprehensive battery of psychometric tests to evaluate basic characteristics linked 
to increased dementia risk or typically found in dementia patients. These tests 
included: 

 Depression/apathy (measured by Beck's Depression Inventory, BDI) 
 Self-esteem (measured by Rosenberg's Self-Esteem Scale, SES) 
 Stress and stress coping strategies (measured by Mini-Cope Questionnaire) 
 Personality (measured by NEO-FFI Personality Inventory) 
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 Intelligence (measured by Raven's Progressive Matrices – standard/classic 
version, RPM) 

 Memory (measured by California Verbal Learning Test, CVLT) 

Additionally, alcohol use was measured by the Alcohol Use Disorders 
Identification Test (AUDIT; a threshold of ≥ 8 points could indicate unhealthy 
alcohol usage) and handedness by the Edinburgh Handedness Inventory (EHI).  

 

Data acquisition 

Both EEG and fMRI experiments included an eyes-closed resting-state 
condition. To ensure participants were rested, EEG sessions were conducted 
exclusively in the morning and early afternoon. The sessions took place in a 
comfortable room with dim lighting, where participants sat in a comfortable chair 
with armrests and faced a monitor. A researcher supervised the study remotely via 
computer and online LAN camera. Participants were instructed to relax, avoid 
thinking about anything specific, and remain still. EEG was recorded for 6 minutes 
using the extended 10-20 international system for electrode placement (Fig. 1), with 
128 active electrodes (actiCAP, Brain Products, Munich, Germany) on a Brain 
Products EEG system. The online reference was set to FCz. At the end of the 
session, a handheld CapTrak 3D scanner (Brain Products) was used to obtain 
accurate electrode locations. Impedance was kept as low as possible (average 
7.84±3.15 kΩ) through skin rubbing and gel application (Supervisc, extra viscous 
gel). A low-pass filter was set to 280 Hz, and no high-pass or Notch filters were 
used during recording. The sampling rate was 1000 Hz. 
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Figure 1. The experiment employed a setup of 128 electrodes, which were organized into anatomical 
clusters for data analysis, as denoted by the thick black lines: MF – midfrontal, FL – frontal left, FR 
– frontal right, C – central, CTL – central-temporal left, CTR – central-temporal right, PR – parietal 
central, PTL – parietal-temporal left, PTR – parietal-temporal right, OC – occipital central, OL – 
occipital left, and OR – occipital right. Additionally, two midline clusters, not marked in the figure, 
include C – central (comprising FCz, Cz, and neighboring electrodes) and CP – central-parietal 
(comprising CPz, Pz, and neighboring electrodes). 

MRI/fMRI experiments were performed on a 3T Siemens Prisma FIT 
scanner (Siemens Medical Systems, Erlangen, Germany) equipped with a 64-
channel phased-array RF head coil. The acquisition parameters were as follows: 
multi-band (slice acceleration factor = 8) EPI sequence, repetition time (TR) = 0.8 
s, echo time (TE) = 0.038 s, slice thickness = 2 mm, 72 slices, IPAT = 1, FOV = 
216x216 mm, 52° flip angle, voxel size = 2x2x2 mm, and acquisition time (TA) = 
7:30. Each subject underwent two resting-state sequences, one with Anterior-
Posterior encoding phase and the other with Posterior-Anterior encoding phase. 
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Structural T1-weighted 3D MP-Rage images were acquired with the following 
parameters: TR = 2400 ms, TI = 1000 ms, TE = 2.74 ms, 8° flip angle, FOV = 
256x256 mm, voxel size = 0.8x0.8x0.8 mm, and TA = 6:52 minutes. 

 

Data preprocessing 

The EEG data were preprocessed using the EEGLAB toolbox [38] within 
MATLAB 2022a. For each participant, standard electrode positions in EEG data 
files were replaced with individual positions obtained from the CapTrak localizer. 
The data were downsampled to 250 Hz and filtered within the range of 0.1-40 Hz 
using standard filter parameters from the toolbox. Additional files were saved with 
filtering specifically set to 1-40 Hz for subsequent ICA. Channels with excessive 
noise were removed based on the EEGLAB clean raw data algorithm, which utilizes 
criteria such as no-signal/flat line, channel correlation, and line noise, as well as 
through visual inspection. On average, 5.33 channels out of 127 were removed per 
participant, and the removed channels were interpolated. An average reference was 
applied, and the initial reference electrode (FCz) was restored and included in the 
data. The data were segmented into non-overlapping epochs, and those containing 
excessive artifacts were removed using the ASR algorithm (artifact subspace 
reconstruction bad burst correction) and further visual inspection. On average, 2.68 
epochs per participant were removed. ICA was then applied to detect and separate 
components with evident physiological artifacts (e.g., eye-blink, muscle, ECG 
artifacts), resulting in the removal of an average of 5.81 components per participant. 
The data were visually inspected again, and if necessary, additional cleaning of 
epochs was performed, with an average of 1.65 additional epochs removed per 
participant. 

Preprocessing of the MRI/fMRI data was performed using SPM12 
(Wellcome Trust Centre for Neuroimaging, London, UK) and FSL. Functional data 
were first realigned, followed by correction of spatial distortion from the encoding 
phase using FSL's topup function. The structural T1-weighted image was co-
registered with the functional images, segmented, and normalized to the common 
1-mm isometric MNI space. Transformation parameters obtained from this process 
were then applied to the functional images after resampling to a 2-mm isometric 
voxel size. A 6 mm Gaussian kernel (full width half maximum, FWHM) was used 
for spatial smoothing. Functional data were filtered in the 0.008 to 0.09 Hz band 
range and denoised using ArtToolbox, as implemented in CONN [39], with 
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'intermediate settings' (Global-signal z-value < 5; motion < 0.9 mm). Additionally, 
the COMPCOR [40] approach was utilized on white matter and cerebrospinal fluid 
signals to generate nuisance regressors related to physiological artifacts (6 PCA 
components for each mask). 

 

Data analysis 

The analysis of the EEG data was performed using MATLAB. For each 
participant, Welch’s power spectral density estimate was computed at each channel 
with a 4-second window and 50% overlap (pwelch MATLAB function; spectral 
resolution 0.25 Hz). The average power for the delta (0.5-4 Hz), theta (4-7 Hz), 
alpha-1 (7.5-9.5 Hz), and alpha-2 (10-12 Hz) frequency bands was then calculated 
using the bandpower MATLAB function. Relative average band power was 
calculated by dividing the band scores by the total power of the signal in the 1-30 
Hz range. Global relative band powers (average of all 128 electrodes) and regional 
relative band powers (average of selected electrodes) were computed. For regional 
power estimation, electrodes were grouped into 12 anatomical regions of interest 
(ROIs)/clusters: midfrontal (MF), left and right frontal (FL and FR), left and right 
central-temporal (CTL and CTR), left and right parietal-temporal (PTL and PTR), 
and left and right occipital (OL and OR) (Fig. 1). To ensure an approximately 
normal distribution of data for statistical analysis, the results were logit-transformed 
using the function 𝑡𝑡(𝑥𝑥) = 𝑙𝑙𝑙𝑙𝑙𝑙�𝑥𝑥(1 − 𝑥𝑥)� [41].  

The EEG signal complexity was calculated using Higuchi’s fractal 
dimension (HFD) algorithm [42,43], which is renowned for its accurate estimation 
of signal fractal dimension in electrophysiology data and for its computational 
efficiency [44]. Among various algorithms, HFD consistently provides the most 
precise fractal dimension estimations [45,46] and has been effective in 
distinguishing between Alzheimer's disease patients and healthy subjects [23,47]. 
The fractal dimension ranges from 1 to 2, with higher values indicating more 
complex signals. This value depends on the algorithm's tuning parameter, kmax, 
which can be defined using several approaches. We selected kmax using the plateau 
criterion, which has proven efficient for EEG data, though it is not always 
recommended for other data types [48]. This approach, validated for various data 
types [48,49], identifies the best discrimination between predefined groups. To 
determine the appropriate kmax for calculating group difference statistics, we first 
computed the absolute percentage change between average HFD values at 
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consecutive k values to detect the plateau. A threshold of 0.1% was used to find the 
start of the function minima. The first minimum was at kmax = 36, but subsequent 
values exceeded the threshold. The second minimum, at kmax = 62, marked the start 
of the function plateau, where percentage changes remained below 0.1%. Next, we 
calculated the distance metric (pairwise difference) between the three groups over 
the plateau values (from kmax = 62 to kmax = 100). The sum of differences for each 
kmax was then computed. The kmax = 82 corresponded to the largest sum of 
differences among the groups, indicating the point where the groups were most 
distinct from each other.  

EEG connectivity (coherence) was calculated using built-in Fieldtrip [50] 
functions with the mtmfft method (which implements multitaper frequency 
transformation; taper: dpss) on 4-second segments, using the previously described 
bands of interest. Coherence values between two signals range from 0 to 1, with 1 
indicating highly correlated signals. For statistical analysis, we selected a subset of 
electrodes from the standard 10–20 montage, commonly used in studies on AD 
patients [51,52]. However, the graphical results, including connectograms and 
matrix representations, are also displayed in the Supplementary Material for the 
high-density montage with 128 electrodes. 

Functional MRI resting-state analysis was conducted using the CONN 
toolbox (version 21.a) [39]. Group-level ICA was used to identify 21 temporally 
coherent networks from the combined fMRI data of all subjects. The choice of 21 
components is supported by prior research on individuals with various AD-related 
genetic polymorphisms [29], and using around 20 components is considered 
reasonable [25]. The selection of 21 components was further validated through 
visual inspection to ensure the distinctiveness of networks of interest. For subject-
specific dimensionality reduction, a singular value decomposition of the z-score 
normalized BOLD signal was performed, with 64 components applied separately 
for each subject. Group-level analyses were conducted using a General Linear 
Model (GLM) [53]. The CONN software automatically assigned neural networks 
to components using the spatial match to template algorithm, which calculated the 
correlation between each group-level spatial map and CONN's default networks 
with varying levels of spatial correlation coefficient. Although groups were 
matched by age and sex, these variables were included as nuisance regressors due 
to the significant age- and gender-related variability in rs-fMRI data [25]. Changes 
in the default mode network (DMN) are a characteristic feature of Alzheimer's 
disease. Therefore, our primary focus was on this network, and we employed a 
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hypothesis-driven approach to analyze the resting-state fMRI data, specifically 
examining the ICs with the highest correlation coefficient with the DMN. 

 

Statistics 
Most statistical analyses were conducted using R [54] with RStudio [55] and 

custom scripts, with the exception of some neuroimaging statistics computed within 
specific toolboxes/software. Initially, we assessed the linearity between age and the 
dependent variables; since no linearity was assumed, age was not considered a 
covariate for statistics performed in R. For quantitative variables, either a two-way 
ANOVA test (with sex as a fixed factor) or a one-way ANOVA was used after 
verifying the assumptions of the tests. The normality of residuals was first assessed 
using the Shapiro-Wilk test and quantile (Q-Q) plots. Additionally, 
homoscedasticity was tested using Levene’s test (criterion: p < .05). For nominal 
variables, the chi-square test was employed. For ordinal variables and when 
ANOVA assumptions were not met, the non-parametric Kruskal-Wallis test was 
applied. ANOVAs were supplemented by standard post-hoc tests with Tukey 
correction for multiple comparisons. If the ANOVA test with Welch's homogeneity 
correction was used, the Games-Howell post-hoc approach (with Tukey's 
correction) was applied. For the Kruskal-Wallis test, Dunn's post-hoc tests were 
used (with Holm correction). Statistical analysis of EEG coherence results was 
conducted in MATLAB using two-sample t-tests, with coherence calculated within 
the Fieldtrip toolbox. For t-test coherence results, FDR correction was applied using 
the Benjamini & Hochberg method [56] with a custom MATLAB function [57]. 
fMRI data statistics were derived from the SPM12 toolbox. Statistics on fMRI data 
connectivity were conducted at the cluster level, relying on parametric statistics 
derived from Gaussian Random Field theory [53,58]. The results were subjected to 
a thresholding approach involving a voxel-level threshold of p < .001 for cluster 
formation and a familywise corrected cluster-size threshold of p-FDR < .05 [59]. 
Statistical significance was defined as follows: a p-value ≤ .05 was considered 
significant, and a p-value > .05 and ≤ .09 was considered a trend. Where possible, 
all data were presented as mean (M) ± standard deviation (SD). Annotations on the 
figures are as follows: a p-value ≤ .05 is marked with *, < .01 with **, and < .001 
with ***. Trend-level differences are marked with ~ and the exact p-value. 
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Results 
 
Characteristics of the participants 

The study cohort comprised right-handed, middle-aged adults, with an equal 
distribution of females and males, ensuring gender balance in each subgroup (Tab. 
1.). No significant differences between the groups regarding age, education, gender, 
handedness, possible alcohol problems, smoking status, health status were found 
(Tab. 1). Most respondents were generally healthy and were non-smokers. A+P- 
and A+P+ groups have more relatives (parents) with dementia than the N group 
(51.85% & 38.10% versus 25.81%), but there were no statistical differences. 
 
Table 1. Demographic characteristics, health and psychometric tests assessment: descriptive 
statistics and group differences 

 N A+P- A+P+ p-value 
Demographic and health measures 
Age [years; M±SD] 54.77 ± 2.92 55.70 ± 3.27 55.62 ± 3.31 .47 & 
Gender [F/M] 15/16 14/13 10/11 .95 ^ 
Education: secondary [n] 3 (10.71%) 4 (17.39%) 1 (5%) 

.45 ^ Education: partial higher [n] 2 (7.14%) 2 (8.70%) 0 (0%) 
Education: higher  [n] 23 (82.14%) 17 (73.91%) 19 (95%) 

Handedness EHI [M±SD] 
87.85 ± 20.95 86.67 ± 

18.81 
90.16 ± 6.75 .67 & 

AUDIT scores [M±SD] 3.76 ± 3.52 4.19 ± 2.91 3.87 ± 2.09 .61 & 
Smokers [n] 2 (6.45%) 5 (18.52%) 2 (9.52%) 

.24 ^ 
Former smokers [n] 7 (22.58%) 10 (37.04%) 4 (19.05%) 
Diabetes [n] 0 (0%) 0 (0%) 1 (4.76%) .25 ^ 
Hypertension [n] 6 (19.36%) 9 (33.33%) 5 (23.81%) .47 ^ 
Thyroid [n] 2 (6.67%) 3 (11.11%) 2 (9.52%) .84 ^ 
Other diseases [n] 7 (23.33%) 6 (22.22%) 5 (23.81%) .99 ^ 
Allergies [n] 7 (25.00%) 5 (19.23%) 4 (21.05%) .87 ^ 
BMI [M±SD] 26.70 ± 4.35 27.24 ± 5.48 28.58 ± 5.55 .47 & 
Drugs [n] 19 (61.29%) 17 (62.96%) 8 (38.10%) .17 ^ 
NSAID [n] 7 (22.58%) 11 (40.74%) 5 (23.81%) .26 ^ 
Learning difficulties [n] 4 (13.33%) 3 (12.50%) 1 (5.26%) .65 ^ 
Family history of dementia 
[n] 

8 (25.81%) 14 (51.85%) 8 (38.10%) .19 ^ 

Psychometric tests assessment [M±SD] 
BDI  4.61 ± 4.90 8.70 ± 6.51 6.62 ± 6.98 < .05 & 
SES 33.19 ± 3.99 30.59 ± 4.05 32.29 ± 3.76 < .05 # 
Mini-Cope-1 2.26 ± 0.33 2.06 ± 0.48 2.21 ± 0.49 .18 & 
Mini-Cope-2 0.60 ± 0.43 0.85 ± 0.40 0.74 ± 0.40 .07 # 
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Mini-Cope-3 1.74 ± 0.56 1.60 ± 0.64 1.51 ± 0.71 .48 & 
Mini-Cope-4 1.02 ± 0.39 1.24 ± 0.33 1.07 ± 0.43 .11 & 
Mini-Cope-5 0.52 ± 0.82 0.32 ± 0.72 1.26 ± 1.19 .16 # 
Mini-Cope-6 2.14 ± 0.48 2.09 ± 0.65 2.07 ± 0.73 .93 
Mini-Cope-7 0.86 ± 0.63 0.94 ± 0.70 1.10 ± 0.65 .35 & 
NEO-NEU 14.23 ± 5.91 19.96 ± 9.44 15.62 ± 8.18 < .05 & 
NEO-EXT 27.90 ± 6.65 25.48 ± 7.06 26.05 ± 6.85 .38 # 
NEO-OPE 30.77 ± 5.31 30.82 ± 6.04 31.43 ± 6.08 .91 # 
NEO-AGR 33.58 ± 5.83 30.96 ± 6.60 32.81 ± 6.17 .27 # 
NEO-CON 32.68 ± 6.86 29.33 ± 6.29 30.86 ± 7.65 .19 # 
RAVEN 53.87 ± 3.19 52.11 ± 6.04 53.05 ± 4.08 .73 & 
CVLT-1 61.29 ± 8.86 63.63 ± 8.13 59.76 ± 8.89 .39 & 
CVLT-2 9.39 ± 1.69 9.70 ± 2.02 8.91 ± 1.90 .41 & 
CVLT-3 8.38 ± 1.91 8.41 ± 2.31 7.81 ± 1.85 .36 & 
CVLT-4 12.97 ± 2.65 12.74 ± 2.49 12.86 ± 3.10 .78 & 
CVLT-5 13.42 ± 1.96 13.59 ± 1.65 12.38 ± 2.27 .99 & 
CVLT-6 13.68 ± 2.36 13.33 ± 2.69 13.24 ± 3.24 .95 & 
CVLT-7 13.71 ± 2.02 13.67 ± 2.00 13.38 ± 2.96 .98 & 
CVLT-8 2.94 ± 3.85 4.63 ± 5.51 4.67 ± 4.80 .18 & 
CVLT-9 1.39 ± 1.94 0.85 ± 1.35 1.14 ± 1.49 .33 & 
CVLT-10 1.19 ± 1.87 0.78 ± 1.22 1.43 ± 3.08 .77 & 
CVLT-11 15.32 ± 1.30 15.19 ± 1.24 15.45 ± 0.89 .63 & 
CVLT-12 0.52 ± 1.09 0.44 ± 1.01 1.05 ± 2.09 .41 & 

NOTE. The data is shown for all 79 participants from the neuroimaging phase of the experiment. 
Although not all participants undergone all sessions. The bolded font indicate a significant or trend 
result. Valid percent is shown in the table and missing data are excluded from the calculations. 
General information on missing data: education n = 8, Learning difficulties n = 6. M, mean; SD, 
standard deviation; F, females; M, male; n – number of participants; #, One-way ANOVA; &, 
Kruskal-Wallis test; ^, Chi-square test; Thyroid, the n of participants having any thyroid disease; 
NSAID, the n of participants taking NSAID drugs more than couple of times a year; Family history 
of dementia, the n of participants having one/both parents with dementia. Learning difficulties, the 
n of participants with any learning difficulties. Mini-Cope-1, Active coping subscale; Mini-Cope-2, 
Hopelessness; Mini-Cope-3, Support seeking; Mini-Cope-4, Avoidance behavior; Mini-Cope-5, 
Turning to religion; Mini-Cope-6, Acceptance; Mini-Cope-7, Humor; NEO-NEU, neuroticism 
scale; NEO-EXT, extraversion scale; NEO-OPE, openness scale; NEO-AGR, agreeableness scale; 
NEO-CON, conscientiousness scale; CVLT-1, List A, task 1-5; CVLT-2, List A, task 1; CVLT-3, 
List B; CVLT-4, Short-term delay free recall; CVLT-5, Short-term delay cued recall; CVLT-6, 
Long-term delay free recall; CVLT-7, Long-term delay cued recall; CVLT-8, Perseverations; 
CVLT-9, Intrusion errors, free recall; CVLT-10, Intrusion errors, cued recall; CVLT-11, 
Recognition, total hits; CVLT-12, Recognition, false alarms.  

The psychometric assessments indicated minor differences in 
depression/mood and self-esteem scales (BDI and SES, Tab. 1), with the A+P- 
group scoring worse than the N group (BDI: H(2) = 6.37, p < .05, post-hoc: A+P- 
vs. N p < .05; SES: F(2,76) = 3.17, p < .05, post-hoc: A+P- vs. N p < .05). 
Additionally, the A+P- group showed increased levels of neuroticism (NEO-NEU: 
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H(2) = 6.04, p < .05, post-hoc: A+P- vs. N p < .05) and a tendency towards higher 
scores on the hopelessness scale in a stress coping strategies test (MINI-2 F(2,74) 
= 2.72, p = 0.07, post-hoc: A+P- vs. N p = .06). Given that a larger number of 
participants underwent psychometric testing and provided data on family history of 
dementia and demographics (N = 200 group), comparisons for significant findings 
in the neuroimaging phase groups were further analyzed in the this cohort, including 
the A-P+ group (not present in neuroimaging phase). To maintain consistent group 
structures based on allele assignment, individuals with the APOE-ε2 allele were 
excluded, leaving 174 participants. This resulted in unequal group sizes compared 
to the neuroimaging phase (A+P+ group, N = 21; A+P- group, N = 28; N group, N 
= 76; A-P+ group, N = 49). The extended comparison revealed significant 
differences in family history of dementia (X2(3) = 10.03, p < .05, N = 174, post-
hoc: A+P- vs. N p < .05), with the A+P- group having more first-degree relatives 
with dementia than the N group. No significant differences were observed for BDI, 
SES, and the Mini-Cope-2 scale. Regarding neuroticism, differences were again 
identified (H(3) = 7.72, p = 0.05), but post-hoc tests considering six comparisons 
after introducing the A-P+ group revealed no significant differences after adjusting 
for multiple comparisons. Despite this, the A+P- group consistently had the highest 
neuroticism scores, while the N group had the lowest (A+P-: 20.29±9.42, A-P+: 
20.41±8.77, A+P+: 15.62±8.18, N: 17.31±8.48). 
 

Power spectral measures 
The A+P+ group demonstrated higher delta relative power than the N and/or 

A+P- groups both globally (F(2,72) = 4.19, p < .05, post-hoc: A+P- vs. A+P+ p < 
.05, A+P+ vs. N p < .05) and in certain electrode clusters (Fig. 2 and Tab. 2). There 
were no global differences in theta (p = .62), alpha-1 (p = .58), nor alpha-2 (p = .13) 
bands. The A+P+ group exhibited lower relative alpha-2 power in comparison to 
the N group in specific clusters (Fig. 2 and Tab. 2). 

Table 2. Relative power for delta, theta, alpha-1 and alpha-2 bands: statistics, p-value and post-hoc 
details regarding group differences 

Cluster Statistic p-value Post-hoc details 
Delta    
MF 1.21 .31 — 
FL 5.25 & .07 A+P- vs. A+P+ (p = .085) 
FR 5.80 & .055 A+P- vs. A+P+ (p = .057) 
C 3.70  < .05 A+P- vs. A+P+ (p < .05); A+P+ vs. N (p < .05) 
CTL 4.36 & .11 — 
CTR 4.79  < .05 A+P- vs. A+P+ (p < .01); A+P+ vs. N (p < .05) 
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PC 2.51  .09 A+P- vs. A+P+ (p = .09) 

PTL 3.97  < .05 A+P- vs. A+P+ (p = .053);  
A+P+ vs. N (p < .05) 

PTR 5.43  < .01 A+P- vs. A+P+ (p < .01); A+P+ vs. N (p < .05) 
OC 2.90  .06 A+P- vs. A+P+ (p = .09); A+P+ vs. N (p = .09) 
OL 3.11 & .21 — 
OR 4.80  < .05 A+P- vs. A+P+ (p < .05); A+P+ vs. N (p < .05) 
Theta 
MF 0.21 .81 — 
FL 0.85 .43 — 
FR 0.58 .57 — 
C 0.06 .95 — 
CTL 0.72 .49 — 
CTR 0.65 .53 — 
PC 0.44 .65 — 
PTL 0.61 .55 — 
PTR 0.66 .52 — 
OC 0.63 .54 — 
OL 0.52 .60 — 
OR 0.54 .58 — 
Alpha-1    
MF 0.51 # .60 — 
FL 0.69 .51 — 
FR 1.34 .27 — 
C 0.39 # .68 — 
CTL 0.35 .71 — 
CTR 0.81 .45 — 
PC 0.53 .59 — 
PTL 0.35 .70 — 
PTR 0.47 .63 — 
OC 0.65 .53 — 
OL 0.61 .55 — 
OR 0.49 .62 — 
Alpha-2    
MF 1.40 # .25 — 
FL 2.04 & .36  
FR 3.35 & .19 — 
C 1.64 .20 — 
CTL 1.12 .33 — 
CTR 3.09 .052 A+P+ vs. N (p < .05) 
PC 2.70 .07 A+P+ vs. N (p = .08) 
PTL 1.99 .15 — 
PTR 3.27 # <.05 A+P+ vs. N (p < .05) 
OC 3.02 .055 A+P+ vs. N (p = .053) 
OL 2.15 .12 — 
OR 2.70 .07 A+P+ vs. N (p = .06) 

NOTE. p-value: group factor. Post-hoc details are provided only for significant or trend level 
differences. #, one-way ANOVA; &, Kruskal-Wallis test; MF, midfrontal; FL, frontal-left; FR, 
frontal-right; C, central; CTL, central-left; CTR, central-right; PC, posterior-central; PTL, posterior-
left; PTR, posterior-right; OC, occipital-central; OL, occpital-left; OR, occipital-right. 
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Male participants were consistently characterized by higher theta relative 
power than females, both globally (F(1,72) = 5.90, p < .05) and in certain electrode 
clusters (Supplementary Table 2). They were also characterized by lower high alpha 
band power than females in certain clusters (Supplementary Table 2). Additionally, 
there was an interaction between sex and group regarding delta relative power 
(Supplementary Figure 1), indicating that males in the A+P+ group had higher delta 
power than males or females in the N or A+P- groups, both globally (F(2,72) = 
3.17, p < .05, post-hoc: M A+P- vs. M A+P+ p < .01, M A+P+ vs. M N p < .05, M 
A+P+ vs. F N p < .05, F A+P- vs. M A+P+ p = .08) and in specific electrode clusters 
(Supplementary Table 1). A statistically significant interaction was also observed 
between the group and sex factors on lower alpha relative power, both globally 
(F(2,72) = 5.84, p < .01, post-hoc: F A+P- vs. M A+P- p < .05, M A+P- vs. M N p 
< .05, M A+P- vs. F A+P+ p = .07) and in specific electrode clusters 
(Supplementary Figure 1). Female participants from the A+P+ group had lower low 
alpha relative power than males in the A+P- group, and males from the N group 
had lower low alpha relative power compared to males in the A+P- group. 
Additionally, females in the A+P- group exhibited lower low alpha relative power 
than males in the same group.  
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Figure 2. Topographical maps of delta (A, B) and alpha (C, D) relative power: group averages (upper 
rows: A, C) and group differences (lower rows: B, D). Clusters with significant differences (p < .05) 
between the groups are indicated with black circles, while trend-level differences (p < .09) are 
indicated with gray circles. The topographic maps are computed from high-density data, utilizing 
all 128 electrodes. 
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Signal complexity  
The signal complexity results are depicted in Figure 3, showing the average 

global HFD plotted against the tuning parameter kmax. The A+P+ group 
demonstrated significantly lower signal complexity (M ± SD, 1.83 ± 0.04) 
compared to the N group (M ± SD, 1.85 ± 0.03), and showed a trend towards lower 
complexity than the A+P- group (M ± SD, 1.85 ± 0.03) globally (F(2,72) = 5.23, p 
< 0.01, post-hoc: A+P+ vs. N p < .01, A+P+ vs. A+P- p = .07) and in specific 
clusters (Tab. 3 and Fig. 3). Global average HFD in relation to kmax is shown in 
Supplementary Figure 2. 
 

Table 3. HFD values. Descriptive statistics and group differences 

Clusters Group (M ± SD values) p-value Statistic Post-hoc details 
 A+P+ A+P- N    

MF 1.82 ± 
0.04 

1.84 ± 
0.03 

1.84 ± 
0.03 .08 5.00 & A+P+ vs. N (p < .08) 

FL 1.81 ± 
0.05 

1.83 ± 
0.04 

1.84 ± 
0.04 < .05 4.36 A+P+ vs. N (p < .05) 

FR 1.81 ± 
0.05 

1.84 ± 
0.03 

1.84 ± 
0.03 < .05 4.70 A+P+ vs. N (p < .05) 

C 1.82 ± 
0.04 

1.84 ± 
0.03 

1.83 ± 
0.03 < .05 4.44 A+P+ vs. N (p < .05);  

A+P+ vs. A+P- (p = .09) 

CTL 1.83 ± 
0.04 

1.85 ± 
0.03 

1.86 ± 
0.03 < .05 4.69 A+P+ vs. N (p < .01) 

CTR 1.83 ± 
0.05 

1.85 ± 
0.03 

1.86 ± 
0.03 < .01 5.13 A+P+ vs. N (p < .01);  

A+P+ vs. A+P- (p < .09) 

PC 1.82 ± 
0.04 

1.83 ± 
0.03 

1.84 ± 
0.03 .10 — — 

PTL 1.84 ± 
0.04 

1.86 ± 
0.02 

1.86 ± 
0.02 < .05 4.70 A+P+ vs. N (p < .01);  

A+P+ vs. A+P- (p < .09) 

PTR 1.84 ± 
0.04 

1.86 ± 
0.02 

1.86 ± 
0.02 .08  3.43 # A+P+ vs. N (p = .053); 

A+P+ vs. A+P- (p = .06) 

OC 1.83 ± 
0.04 

1.85 ± 
0.03 

1.85 ± 
0.03 .10 — — 

OL 1.85 ± 
0.03 

1.85 ± 
0.03 

1.86 ± 
0.03 .13 — — 

OR 1.84 ± 
0.03 

1.86 ± 
0.03 

1.86 ± 
0.03 .09  2.5 # A+P+ vs. N (p = .09) 

NOTE. The bolded font indicate a significant or trend result. p-value is shown for Group factor. #, 
One-way ANOVA; &, Kruskal-Wallis test; MF, midfrontal; FL, frontal-left; FR, frontal-right; C, 
central; CTL, central-left; CTR, central-right; PC, posterior-central; PTL, posterior-left; PTR, 
posterior-right; OC, occipital-central; OL, occpital-left; OR, occipital-right. 

Moreover, sex had a significant impact on HFD values, with males 
displaying reduced signal complexity both globally (F(1,72) = 4.08, p < .05) and in 
certain electrode clusters (Supplementary Table 2) (CTR cluster: F(1,72) = 5.46, p 
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< .05; PTL: F(1,72) = 6.81, p < .05; and a trend level in the C cluster: F(1,72) = 
3.69, p = 0.06). An interaction between sex and group factors was found in clusters 
summarized in Supplementary Table 4: FL and FR and at a trend level (p = .06) in 
the CTR cluster and globally. These findings mirrored the main results for the group 
factor alone, with females/males from the A+P+ group exhibiting the lowest HFD 
values compared to females/males from the A+P- and N groups (which had the 
highest values). 
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Figure 3. Average Higuchi's Fractal Dimension. Differences between the groups on kmax = 82. 
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Connectivity 

The analysis of EEG connectivity, measured by the coherence of frequency 
components (bands), identified subtle patterns indicating some differences between 
the groups at the p-uncorrected level. In the delta band, the A+P+ group displayed 
greater coherence compared to the A+P- and N groups. Furthermore, the A+P- 
group showed reduced theta coherence relative to the N group. Both the A+P+ (low 
and high alpha) and A+P- (low alpha) groups exhibited (mostly) decreased 
coherence in the alpha band compared to the N group (as depicted in Supplementary 
Figure 3, with uncorrected p-values below the alpha .05 level). However, it is 
crucial to highlight that none of these associations remained significant after 
applying the false discovery rate (FDR) correction. Additionally, Supplementary 
Figure 4 shows coherence results using a high-density montage with all 128 
electrodes, including connectograms and difference matrix representations for a 
thorough depiction of global connectivity. 

The analysis of fMRI ICA-based connectivity revealed some subtle 
differences between the studied groups. The correlation of 21 estimated 
components with known networks is detailed in Supplementary Table 5, showing 
the best three matching components: IC 11 (r = .38), IC 5 (r = .34), and IC 20 (r = 
0.11). Their representations are shown in Supplementary Figure 5. While IC 5 and 
IC 11 clearly depict posterior parts of the DMN, IC 20 shows mixed areas, which 
is explained by only an r = .11 correlation coefficient with the DMN. Additionally, 
IC 20 includes signals from the cerebrospinal fluid (CSF) and ventricular regions 
(cyan color). As indicated by the correlation coefficients, these components do not 
perfectly align with traditional DMN areas and also include other, nearby regions. 
Two DMN related components (IC 11 and IC 5) were selected for further group 
comparisons. 

The A+P- group exhibited significantly lower network strength in a cluster 
in the right temporo-occipital part of the middle temporal gyrus (toMTG, IC11) 
compared to the N group (Tab 4. And Fig. 4). This effect was significant at p-FDR 
< .01. No significant differences were found in IC 5 between the groups. 
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Table 4. Spatial cluster (location, size, and anatomical alignment) associated with IC 11, 
highlighting significant difference between the groups 

Group 
comparison  

IC 
Cluster  
(x, y, z) 

k p-FDR < Label 

% of voxels in 
the cluster 
covering % of 
labeled area 

A+P- – N 11 62, -44, 6 141 .01 toMTG r 98% / 12% 

NOTE. r, right; k, cluster size; toMTG, middle temporal gyrus temporo-occipital part. 

 

 
Figure 4. Network strength/connectivity differences were noted between the A+P- and N groups for 
IC 11. The color corresponds to the direction of the difference and obtained t-value. The images 
were visualized using the CONN toolbox, with t-values adjusted to fit the cortical structure on a 
glass ICBM template brain surface display, presented in lateral and medial views.  

 

Discussion 

We examined EEG and fMRI resting-state data from healthy middle-aged 
individuals with various alleles of the Alzheimer's disease risk genes APOE and 
PICALM. The groups were demographically balanced, and we discovered that risk 
carriers exhibit some AD hallmarks in domains directly (EEG, fMRI) and indirectly 
(psychometric evaluation) associated with brain functioning.  

The entire cohort consisted of well-functioning individuals from major 
urban areas who were professionally active and had a high level of education. The 
groups performed equally well on both the intelligence test (RAVEN) and the 
California Verbal Learning Test (CVLT) which assesses verbal learning and 
memory. Previously reported CVLT results for healthy but much older APOE 
carriers showed that they either did not differ from no-risk groups [60] or exhibited 
a higher frequency of recall intrusion errors [61]. Despite the lack of clear cognitive 
impairment, the subjects displayed group differences in specific psychological 
characteristics. Participants with a single risk factor (A+P-) declared worse 
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psychological well-being compared to the no-risk group. They exhibited lower self-
esteem, higher scores on the BDI scale (related to depression and lowered mood), 
heightened levels of neuroticism, and a tendency to use less effective stress coping 
strategies. It is well established that factors such as depression, lowered mood, and 
neuroticism act as risk factors for Alzheimer's disease and may interact with APOE 
in provoking the disease [2,61–64]. The BDI scores differentiated the groups, 
although the average scores were within the normal range. Prolonged stress, which 
can cause these psychological symptoms, is also described as a risk factor [63]. 
Specifically, midlife stress is associated with the development of dementia in later 
life [65]. Notably, these differences were significant primarily for the cohort that 
underwent neuroimaging testing. However, for the entire cohort of 200 individuals 
recruited for genetic screening, statistical significance was achieved only for 
neuroticism.  

In double risk carriers (A+P+ group), EEG resting state was characterized 
by two of the most noticeable and sensitive markers of AD: a shift of the power 
spectrum to lower frequencies (known as “slowing of the EEG”) and decreased 
signal complexity. EEG “slowing” was evidenced by higher delta and lower alpha 
relative power, while a lower Higuchi fractal dimension indicated reduced signal 
complexity. These two measures, complexity and EEG dynamics, are strongly 
related [66] and correspond to the capacity for information processing (i.e., less 
complex signal = lower capacity), which changes due to neurodegeneration as well 
as during natural stages of brain development, maturation, and aging. Additionally, 
the impact of common genetic variations (e.g., APOE gene) on cognitive/brain 
functioning increases with aging [67]. EEG abnormalities in normal aging also 
include changes in spectral content, such as decreased power in delta, theta, and 
alpha peak frequencies [13] and decline in complexity (significantly affecting 
central-parietal areas, especially right-shifted clusters) [47]. In MCI patients, 
research has shown a small increase in the power of delta and theta bands in 
temporal areas [13]. Upper alpha, but not lower alpha power, was distinguishable 
among controls and AD patients in another study [15]. AD patients with APOE risk 
have stronger EEG “slowing” than carriers of neutral APOE alleles [4,68], although 
one study showed opposite results [69]. Power perturbations within the temporal 
and parietal areas are especially sensitive indicators for distinguishing Alzheimer's 
disease patients from healthy controls [18]. A reduction in complexity in AD 
patients is clearly noticeable, particularly affecting the temporal-occipital regions 
[47]. The EEG “slowing” marker is believed to be associated with neuronal loss, 
axonal pathology, and cholinergic deficits, which affect functional connections in 
the cortex [20]. Decreased signal complexity is also related to either neuronal loss 
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or neurotransmitter deficiencies, such as acetylcholine [20]. Atrophy in cholinergic 
neurons may be the primary source of EEG “slowing,” as these neurons are most 
affected by AD. The cholinergic hypothesis of AD and memory dysfunction in the 
elderly was proposed over 50 years ago [20,70,71]. The cholinergic system 
regulates various aspects of brain function—cognition, locomotion, attention, sleep, 
arousal, and sensory processing—by modulating neuronal activity via acetylcholine 
receptors. Cholinergic drugs tend to reverse EEG “slowing,” supporting this 
hypothesis [20,72]. Anticholinergic drugs (e.g., scopolamine), which block the 
stimulation of post-synaptic receptors, cause EEG “slowing” [20,72,73]. APOE-ε4 
positive AD patients are characterized by more severe cholinergic deficits than 
patients with a neutral APOE genotype [74]. 

In our study, the groups did not exhibit significant differences in 
connectivity, as measured by EEG coherence at the FDR-corrected level. However, 
on the uncorrected level, they showed subtle trends in the same direction as reported 
among AD patients: decrease in alpha coherence in the at-risk (A+P+ or A+P-) 
groups compared to the N group, and increased delta coherence in the at-risk A+P+ 
group compared to the A+P- and N groups. A recent systematic review showed that 
in 24 out of 34 studies comparing AD patients to healthy controls, AD patients had 
significantly decreased coherence within the alpha band [75]. The results for 
coherence in lower frequencies (< 7 Hz) were less consistent and less frequently 
significant [75]. Generally, alpha coherence tends to be decreased in AD patients 
[13], while delta and theta coherences tend to be increased compared to matching 
controls [13].  

Using an ICA-based approach, we identified small yet significant 
differences in fMRI connectivity. This analysis primarily focused on independent 
components linked to the DMN, which is often impaired in Alzheimer's disease 
patients [25,76]. The A+P- group (compared to the N group) exhibited significantly 
reduced network strength in a cluster encompassing the right temporo-occipital part 
of the middle temporal gyrus. Although the MTG is not traditionally considered a 
core component of the DMN, numerous studies demonstrate its involvement within 
the posterior DMN and discuss DMN role in semantic cognition [77–79]. 
Additionally, the medial temporal lobe is recognized as one of the first regions 
affected by Alzheimer's disease, showing early signs of atrophy and the presence 
of neurofibrillary tangles [80,81]. Network changes in APOE risk-carries (without 
amyloid burden) were previously reported in the literature [31,82]. Certain studies 
have revealed decreased connectivity within the posterior DMN in older APOE-ε4 
carriers (70-89 years old) compared to non-carriers [83], while no effect was 
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observed in middle-aged adults [32]. Research has consistently indicated decreased 
connectivity within the posterior DMN in individuals with MCI and Alzheimer's 
disease patients, while recently showing increased connectivity within the frontal 
parts of the DMN [25,76]. The causes of network changes are still unclear; it is 
unknown whether they are related to amyloid deposition, whether they represent a 
compensatory mechanism in response to amyloid atrophy and toxicity, or to what 
extent they are influenced by genetic factors [25]. Atrophy and hypometabolism are 
known to be partially responsible for observable network changes in amyloid-
positive individuals [84]. The concept of network-based functional compensation 
suggests that alterations in the brain's functional architecture, influenced by genes 
such as APOE and PICALM, may enable the brain to adapt and compensate for 
changes or disruptions in specific brain regions or networks.  

In summary, our findings reinforce previous research and suggest that 
APOE and PICALM shape the functional architecture of the resting brain even in 
the absence of dementia. Future research should prioritize studying non-demented 
risk carriers throughout their lifespan to understand the impact of these genetic 
variations on aging and to uncover the biological mechanisms underlying their 
association with neurodegenerative diseases. Early detection of Alzheimer's should 
employ multimodal approaches that consider genetic burden (such as the APOE and 
PICALM risks in our study), and additionally some or all markers like: blood-based 
biomarkers, MRI/fMRI/EEG abnormalities, cognitive performance, health, 
lifestyle, demographic factors, and neuropsychological assessments. Together, 
these markers may help identify individuals at risk of developing dementia in the 
future, allowing for potential early and successful interventions. 
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Supplementary Material 

 

Supplementary Figure 1. A graphical summary illustrating the interaction between group and sex 
factors in the EEG power spectrum results: delta relative power (A) and low alpha relative power 
(B). An upward arrow signifies higher power for the first reported group, and a downward arrow 
signifies lower power. The topographic maps indicate the locations of clusters with significant and 
near-significant effects. Clusters with significant differences (p < 0.05) are marked with black 
circles, while trend-level differences (p < 0.09) are marked with gray circles 

 

Supplementary Table 1. Relative power within the delta band: statistical values and post-hoc 
information related to sex*group interaction differences that are either significant or indicate a 
trend 

Cluster Statistic p-value Post-hoc details 

C 3.41 < .05 M(A+P-) vs. M(A+P+) p < .01; M(A+P+) vs. F(N) p < .05;  
M(A+P+) vs. M(N) p = .06 

PTL 3.25 < .05 
F(A+P-) vs. M(A+P+) p < .05; M(A+P-) vs. M(A+P+) p < .05; 
F(A+P+) vs. M(A+P+) (p < .05); M(A+P+) vs. F(N) p < .01;  
M(A+P+) vs. M(N) p < .05 

PTR 3.16 < .05 
F(A+P-) vs. M(A+P+) p < .01; M(A+P-) vs. M(A+P+) p < .01; 
M(A+P+) vs. F(N) p < .01; M(A+P+) vs. M(N) p < .05;  
F(A+P+) vs. M(A+P+) p = .06 

Trend level differences 

CTR 2.88 .06 M(A+P-) vs. M(A+P+) p < .05; M(A+P+) vs. F(N) p < .01; 
M(A+P+) vs. M(N) p < .05; F(A+P-) vs. M(A+P+) p = .09 

OR 3.05 .054 F(A+P-) vs. M(A+P+) p < .05; M(A+P-) vs. M(A+P+) p < .01; 
M(A+P+) vs. F(N) p < .01; M(A+P+) vs. M(N) p = .09 
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NOTE. M, males; F, females; C, central; CTR, central-right; PTL, posterior-left; PTR, posterior-
right; OR, occipital-right. 

Supplementary Table 2. Relative power within the theta and higher alpha band and HFD: 
statistical values and post-hoc information related to the sex factor 

Cluster Theta  
(Statistic) 

Theta  
(p-value) 

Alpha-2 
(Statistic) 

Alpha-2  
(p-value) 

HFD 
(Statistic) 

HFD  
(p-value) 

MF 4.01 < .05 — — — — 
FL 4.73 < .05 — — 0.02 .88 
FR 4.04 < .05 — —  .21 
C 5.21 < .05 3.19 .08 3.69 .06 
CTL 4.13 < .05 4.89 < .05 0.87 .36 
CTR 6.10 < .05 4.00 < .05 5.46 < .05 
PC 3.56 .06 1.53 .22 2.65 .11 
PTL 5.90 < .05 4.47 < .05 6.81 < .05 
PTR 5.65 < .05 — — — — 
OC 4.99 < .05 6.10 < .05 2.87 .10 
OL 10.48 < .01 8.45 < .01 8.03 < .01 
OR 8.10 < .01 8.48 < .01 — — 

NOTE. MF, midfrontal; FL, frontal-left; FR, frontal-right; C, central; CTL, central-left; CTR, 
central-right; PC, posterior-central; PTL, posterior-left; PTR, posterior-right; OC, occipital-central; 
OL, occpital-left; OR, occipital-right. 

 

Supplementary Table 3. Relative power within the lower alpha band: statistical values and post-
hoc information related to sex*group interaction differences that are either significant or indicate a 
trend 

Cluster Statistic p-value Post-hoc details 
FL 5.76 < .01 F(A+P-) vs. M(A+P-) p < .05; M(A+P-) vs. M(N) p < .05 
FR 5.65 < .01 F(A+P-) vs. M(A+P-) p < .05; M(A+P-) vs. F(A+P+) p < 

.05; M(A+P-) vs. M(N) (p < .05 
CTL 5.75 < .01 F(A+P-) vs. M(A+P-) p < .05; M(A+P-) vs. M(N) p < .05 
CTR 5.44 < .01 F(A+P-) vs. M(A+P-) p < .05; M(A+P-) vs. F(A+P+) p < 

.05; M(A+P-) vs. M(N) p < .05 
PC 5.93 < .01 F(A+P-) vs. M(A+P-) p < .05; M(A+P-) vs. M(N) p < .05 
PTL 5.96 < .01 F(A+P-) vs. M(A+P-) p < .05; M(A+P-) vs. M(N) p = .07 
PTR 5.00 < .01 F(A+P-) vs. M(A+P-) p < .05; M(A+P-) vs. F(A+P+) p = 

.09; M(A+P-) vs. M(N) p = .08 
OC 5.29 < .01 F(A+P-) vs. M(A+P-) p = .07; M(A+P-) vs. F(A+P+) p < 

.05; M(A+P-) vs. M(N) p = .08 
OL 5.11 < .01 M(A+P-) vs. F(A+P+) p = .07 
OR 5.76 < .01 F(A+P-) vs. M(A+P-) p = .07; M(A+P-) vs. M(N) p < .05 

NOTE. M, males; F, females; FL, frontal-left; FR, frontal-right; CTL, central-left; CTR, central-
right; PC, posterior-central; PTL, posterior-left; PTR, posterior-right; OC, occipital-central; OL, 
occpital-left; OR, occipital-right. 
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Supplementary Table 4. Statistical values and post-hoc information related to sex*group 
interaction in HFD analysis, highlighting significant or trend-level results 

Cluster p-value Statistic Post-hoc details 

FL < .01 5.41 M(N) > M(A+P+)  p < .001; M(A+P+) < M(A+P-) p < .05; 
F(A+P+) > M(A+P+) p = .06; F(N) > M(A+P+) p < .05 

FR < .01 5.03 
F(N) > M(A+P+) p < .05; M(N) > M(A+P+) p < .001; 
F(A+P+) > M(A+P+) p < .05; M(A+P+) < F(A+P-) p < .01; 
M(A+P+) < M(A+P-) p < .05 

Trend level differences 

Global .06 2.92 
F(N) > M(A+P+) p < .01; M(N) > M(A+P+) p < .01; 
F(A+P+) > M(A+P+) p < .05; M(A+P+) < F(A+P-) (p < 
.01) 

CTR .06 2.97 
F(N) > M(A+P+) p < .01; M(N) > M(A+P+) p < .01; 
F(A+P+) > M(A+P+) (p < .05); M(A+P+) < F(A+P-) (p < 
.01); M(A+P+) < M(A+P-) p = .07 

NOTE. M, males; F, females; FL, frontal-left; FR, frontal-right; CTR, central-right. 

 

 

Supplementary Figure 2. Dependence of Higuchi’s Fractal Dimension value on the parameter kmax. 
The dotted line indicates the start of HFD stability, and the black line indicates the kmax selected for 
the between-group comparison of the HFD measure 
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Supplementary Figure 3. Differences in connectivity, measured by coherence, were analyzed across 
the 19 electrodes in the classical 10-20 montage for each frequency band. Red lines represent higher 
coherence for the first group compared to the second group (e.g., A+P+ versus N), while blue lines 
represent lower coherence. The image displays only significant t-test results (Fieldtip) between the 
electrodes, but none of these retained significance after FDR correction. 
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Supplementary Figure 4. EEG connectivity (coherence) using a high-density montage with all 128 
electrodes. Connectograms for each group are shown, with distinct frequency bands in panels 
labeled as A, E, C, and F in the graphs. Matrix representations highlighting group differences are 
displayed in graphs B, D, G, and H. Graph I serves as a legend, detailing electrode placement in all 
plots, arranged according to previously defined clusters. 
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Supplementary Table 5. Mapping of the 21 Independent Components to neural networks 

Neural network Independent component No and its correlation 
coefficient with the given network  

Default Mode Network 11 (r=0.38), 5 (r=0.34), 20 (r=0.11) 
Sensorimotor Network 21 (r=0.46), 16 (r=0.43), 19 (r=0.24) 
Visual Network 12 (r=0.56), 15 (r=0.41), 13 (r=0.25) 
Salience Network 2 (r=0.35), 10 (r=0.10), 14 (r=0.08) 
Dorsal Attention Network 19 (r=0.38), 10 (r=0.27), 13 (r=0.10) 
Fronto-Parietal Network 6 (r=0.20), 17 (r=0.17), 4 (r=0.14) 
Language Network 3 (r=0.39), 8 (r=0.21), 10 (r=0.11) 
Cerebellar Network 1 (r=0.37), 18 (r=0.34), 17 (r=0.20) 

 
 

 
 
Supplementary Figure 5. The representation of IC 5, IC 11, and IC 20 – components with the highest 
correlation coefficients with the Default Mode Network (DMN). Retrieved from the CONN toolbox. 
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