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ABSTRACT

In this work we introduce the Gini Index, commonly used as a measure of statistical dispersion to evaluate
the income inequality within a nation, as an effective and reliable measure of cell specialization. In
particular we use it to evaluate and compare the specialization level of normal and tumor cells according to
their gene expressions. Obtained results reveal how Gini Index is able to capture information associated
with cell specialization, and show that tumor cells, on average, tend to lose their specialization or in other
words their capacity to be the cells they were committed to be, due to cancer.

BACKGROUND

Gini index (Gl) was introduced by the Italian statistician and demographer Corrado Gini in the first decades
of the 1900s [1,2]. It has been commonly used as a measure of statistical dispersion to evaluate the income
inequality within a nation. The general principle is based on the comparison between the portion of
economic resources and the portion of the population that possesses those resources. In other words, Gl
measures in a peculiar way how a distribution of any source of data is far from being a uniform one,
collapsing this information in a number ranging from 0 to 1. Although Gl is a powerful and effective measure
to characterize any sample distribution, it was applied only a few times in a biological research context.
Jiang and colleagues developed GiniClust, a tool that uses Gl in a biological context to characterize rare
cell types in single-cell experiments [3]. Tsoucas and Yuan developed a new tool GiniClust2 that improved
the ability to detect and cluster different cell types in single-cell experiments [4]. Gl was also used to
characterize and identify gene classes according to their expression variability across different cells [5], or
to select genes for normalizing expression profiling data [6].

In this work we introduce the Gl as an effective and reliable measurement of the specialization of cells,
using it to evaluate and compare the specialization level of normal and tumor cells according to their gene
expressions.

RESULTS

The main goal of this paper is to study gene expression specialization through Gl index comparing cancer
and normal cells and reporting different behaviors. We present a global view of Gl values associated with
samples coming from patients with different cancer types (see Table S1) for both normal and tumor cells.
Secondly we analyze and compare for each single patient, normal and tumor Gls, showing through z-score
values they are mostly statistically different. Finally, we study and evaluate for each tumor type statistical
differences between normal and tumor Gl distributions through Wilcoxon tests. We applied paired statistical
tests to compare Gl distributions of normal and tumor coupled samples. We then consider a broader
dataset including all available samples even if not coupled, trivially applying non paired statistical tests.
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Table S2 reports a global view of Gl values for each tumor type. The first column indicates the tumor type,
the second column indicates the number of subjects for which both normal and tumor samples are
available. The other columns show other statistical parameters related to Gl distributions. Gl values are
typically distributed around 0.9, the average in normal samples ranges from 0.907 in BRCA to 0.969 in
LICH while in tumor samples from 0.906 in LUSC until 0.951 in LICH (see Table S2). Figure 1 shows the
comparison between Gl distributions of tumor (orange) and normal (blue) cells for four different cancer
types (see Supplementary File D1 for Gl data of all cancer types): the panels in the green box - on the left
side of the figure - (HNSC and LIHC) clearly show higher GI values for normal samples with respect to
tumor samples. On the other hand the panel in the red box - right side of the figure - (THCA) shows an
opposite behavior with higher values for tumor samples. The central panel in the black box (PRAD) shows
an intermediate case where there is no clear prevalence between tumor and normal samples. Most of the
tumor types typically show Gl values lower in cancer than in normal (see Supplementary Figure SF1 for a
complete view).
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Figure 1: Tumor and normal Gl distributions for 4 different tumor types: HNSC and LIHC (green box), THCA
(red box) and PRAD (black box). The plots show for each of the 4 considered tumor types how many samples
(y-axis), tumor in pink and normal in cyan, have a Gl falling in the corresponding bin (x-axis).

In order to statistically evaluate the significance of this difference at a patient level we compare the
difference between tumor and normal Gls with the difference distribution between artificial gene expression
arrays randomly generated from the actual ones obtaining a z-score value and the corresponding P-value
(see Materials and Methods).

In Table 1, the number and percentage of patients showing a significant positive difference between normal
and cancer cells are reported in column 3 for each tumor type. In the same way, column 4 and 5 report the
numbers and percentages of not significant and significant negative Gl differences respectively. The rows
corresponding to a given tumor type are highlighted in green (red) when the majority of patients shows a
significant positive (negative) difference (P-value < 0.01). In the same Table 1, sf= and == symbols depend
on the statistical significance of the Wilcoxon rank-sum test performed on all the normal and tumor samples
regardless of their pairness (see Material and Methods). A == symbol in case the comparison of normal vs
tumor samples is significant considering an an adjusted p-value<0.01 according to the Bonferroni correction,
and a == symbol in case of the tumor vs normal comparison with the same p-value threshold and
correction. The two analyses lead to, as expected, similar and consistent results even if they provide a
different view at a patient level and at a global level.

Wilcoxon tests are also performed on the Gls distributions of paired samples for each tumor obtaining the
same results except for LUSC and ESCA that are found not significant.

We always refer to the different tumor types with their abbreviations as reported on the Genomics Data
Commons website (see Table S1 for the list of these abbreviations alongside with their extended
description).

Comparison of Gini indices for each patient through z-score

Samples
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BLCA 19 —-408 (19) 11 (57.9%) 6 (31.6%) 2 (10.5%)
BRCA 113 - 1090 (112) 34 (30.4%) 34 (30.4%) 44 (39.3%)
CHOL 4= 9-36(9) 9 (100%) 0 (0%) 0 (0%)

COAD - 41 — 456 (41) 22 (53.7%) 15 (36.6%) 4 (9.8%)
ESCA 4 11 -161 (8) 6 (75.0%) 2 (25.0%) 0 (0%)

HNSC 4= 44 — 500 (43) 32 (74.4%) 8 (18.6%) 3 (7.0%)

KICH = 24 — 65 (23) 0 (0%) 1 (4.3%) 22 (95.7%)
KIRC 4= 72 -530 (72) 35 (48.6%) 20 (27.8%) 17 (23.6%)
KIRP 32 —288 (31) 9 (29.0%) 9 (29.0%) 13 (41.9%)
LIHC <= 50 — 371 (50) 43 (86.0%) 5(10.0%) 2 (4.0%)

LUAD 59 - 513 (57) 19 (33.3%) 30 (52.6%) 8 (14.1%)
LUSC <= 49 — 501 (49) 19 (38.8%) 23 (46.9%) 7 (14.3%)
PRAD 52 — 495 (52) 9 (17.3%) 27 (51.9%) 16 (30.8%)
READ 10 — 166 (9) 1(11.1%) 8 (88.9%) 0 (0%)

STAD 4= 32 — 375 (27) 18 (66.7%) 9 (33.3%) 0 (0%)

THCA = 58 — 502 (58) 6 (10.3%) 20 (34.5%) 32 (55.2%)
UCEC 35 -543 (23) 7 (30.4%) 5(21.7%) 11 (47.8%)
Table 1: Summary table of the statistical analysis performed on the number of normal-tumor paired samples
(second column) for each of the involved 17 tumor types (first column): (Z-scores) columns 3-5 report the number
of paired samples (and their percentage) for which the p-value, computed considering the z-score of the actual pair
and those of the 1,000 Gini indices on the randomized gene expression profiles, is lower than 0.01. In particular, the
column “positive” reports the number of significant p-values on positive z-scores, and vice-versa for the “negative”
column. Instead, the “not significant” column contains the number of paired samples for which the p-value is not
significant, regardless of the positive or negative sign of their z-scores. Results are coded according to the values
reported under the 3rd, 4th and 5th columns: green if “positive” sample pairs (3rd column) are the majority
(percentage higher than 50%) and red, on the other way around, if “negative” sample pairs (5th column) are the
majority (percentage higher than 50%). (Wilcoxon) the presence/absence of the 4= and == symbols near the tumor
type represents the statistical significance according to the Wilcoxon rank-sum test.

CONCLUSIONS

Gl is able to characterize a distribution evaluating how close it is from a uniform one. It provides
information associated with, but also complementary to, other measures such as the standard deviation or
the entropy. However, it has several advantages such as the direct comparability of any set of data since it
is @ number in the range [0,1]. Moreover, it does not need any kind of assumption as in the case of entropy,
where in most cases, a binning supervised pre-process is necessary. In this view it seems particularly
suitable to be applied in the context of computational biology. To the best of our knowledge, this work is the
first attempt to apply Gl to gene expression in the context of tumors comparing the Gl of normal and tumor
cells. The observed loss of specialization in tumor cells corresponds in our analysis to a lower Gl with
respect to normal cells. This behavior was observed both at a single patient level comparing Gls of coupled
samples (from the same patient) through z-scores analysis and at a global level comparing distributions of
Gls in normal and tumor dataset. Interestingly, despite this being the overall typical behavior, few patients
show an unexpected increase of their Gls. In the same way not all cancer types display this behavior, some
of them show an increase of specialization in tumor cells.

MATERIALS AND METHODS

We focus on the public gene expression (FPKM - Fragments Per Kilobase of transcript per Million mapped
reads) quantification experiments of the TCGA program available on the open-access OpenGDC repository
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[7] for running our analyses. Here, every kind of experimental data and metadata are first extracted from
the Genomic Data Commons portal [8].

In this study, we focus on 17 out of 33 different tumor types available in the OpenGDC database
considering a number of paired normal-tumor samples ranging from a minimum of 9 (ESCA) to a maximum
of 112 (BRCA). The number of samples for each tumor type is reported in Table 1 as well as in Table S2.

For each cancer type and for each patient we compare paired normal and tumor gene expression Gls to
assess whether they are significantly different. The actual difference between normal and tumor Gls is
compared with a distribution of 1,000 artificial Gl differences obtained by randomizing gene expressions of
the two samples (see Section Supplementary Methods SM for details).

At the end of this procedure we obtain a z-score associated with each considered patient assessing how
many standard deviations the actual difference between normal and tumor deviates from the mean of the
randomized Gl difference distribution. A positive z-score is associated with a positive difference so that
normal Gl is significantly greater than tumor GI. In this case normal cells are more specialized than tumor
ones. On the other hand a negative z-score is associated with a negative difference so that normal Gl is
significantly smaller than tumor Gl. The adjusted p-values associated with each z-score are then computed
and a threshold of 0.01 is set to assess the significance of the difference between normal and tumor Gls.

For each cancer type we also compare paired normal and tumor gene expression Gl distributions. To
assess whether they come from the same hypothetical distribution we perform paired Wilcoxon tests.
Bonferroni adjustment is applied for multiple test corrections. We also compare normal and tumor GI
distributions for all available samples taking into account also not paired ones (samples for which only one
condition is available). Unpaired Wilcoxon tests and Bonferroni adjustment are applied in the same way.
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