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ABSTRACT 27 

Pathogens adapting to the human host and to vaccination-induced immunity may follow parallel 28 

evolutionary paths. Bordetella parapertussis (Bpp) contributes significantly to the burden of 29 

whooping cough (pertussis), shares vaccine antigens with Bordetella pertussis (Bp), and both 30 

pathogens are phylogenetically related and ecological competitors. Bp vaccine antigen-coding 31 

genes have accumulated variation, including pertactin disruptions, after introduction of 32 

acellular vaccines in the 1990s. We aimed to evaluate evolutionary parallelisms in Bpp, even 33 

though pertussis vaccines were designed against Bp. 34 

We investigated the temporal evolution of Bpp sublineages, by sequencing 242 Bpp isolates 35 

collected in France, the USA and Spain between 1937 and 2019, spanning pre-vaccine and two 36 

vaccines eras. 37 

We estimated the evolutionary rate of Bpp at 2.12×10−7 substitutions per site·year-1, with a most 38 

recent common ancestor of all sequenced isolates around year 1877, and found that pertactin 39 

deficiency in Bpp was driven by 18 disruptive mutations, including deletion prn:ΔG-1895 40 

estimated to have occurred around 1998 and observed in 73.8% (149/202) of post-2007 isolates. 41 

In addition, we detected two mutations in the bvgA-fhaB intergenic region (controlling 42 

expression of the master transcriptional regulator BvgA and the filamentous hemagglutinin), 43 

that became fixed in the early 1900s. 44 

Our findings suggest early adaptation of Bpp to humans through modulation of the bvgAS 45 

regulon, and a rapid adaptation through the loss of pertactin expression, representing a late 46 

evolutionary parallelism concomitant with acellular vaccination against whooping cough. 47 

 48 

IMPORTANCE  49 

Vaccination against Bordetella pertussis (Bp) has strongly affected the recent evolution of this 50 

main agent of whooping cough. Whether it may have done so co-incidentally on Bordetella 51 
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parapertussis (Bpp), which is genetically and ecologically very similar to Bp, has not been 52 

described in detail. Our findings show striking evolutionary parallelisms of Bpp with Bp, 53 

including early changes in a critical regulatory region, and strong evidence of adaptation to 54 

vaccine-driven population immunity, even though whooping cough vaccines were not designed 55 

explicitly against Bpp. The rapid populational loss of pertactin in countries where acellular 56 

pertussis vaccines are used may also reduce protection by vaccination against Bpp, the second 57 

agent of whooping cough.  58 
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INTRODUCTION 59 

Public health interventions aiming at controlling specific pathogens may concomitantly 60 

affect non-target human commensal or pathogenic organisms. For example, commensal 61 

bacteria may evolve antimicrobial resistance in response to antimicrobial therapy against 62 

pathogens, a phenomenon called bystander evolution [1] that has far-reaching implications in 63 

microbial ecology and public health [2]. So far, there is little or no evidence of bystander 64 

evolution under vaccination-induced immune pressure. Whooping cough (pertussis) is a human 65 

respiratory disease caused mainly by Bordetella pertussis (Bp). In 2014, >24 million pertussis 66 

cases causing >160,000 deaths in children under 5 years of age were estimated [3]. Bordetella 67 

parapertussis (Bpp) is closely related to Bp and also causes whooping cough, though disease is 68 

typically less severe [4–6] and thus reported much less frequently than Bp infections [7,8]. 69 

Further, Bpp infection is not reportable in many countries, including the USA. The first whole 70 

cell vaccines were already developed using Bp strains when Bpp was first reported in 1938 [5], 71 

and Bpp is still not considered a target of vaccines against whooping cough, which are designed 72 

only from Bp antigens. 73 

While whole cell pertussis vaccines (wPV), produced using Bp strains, remain in use in 74 

most of the global South, acellular pertussis vaccines (aPV) were adopted in the mid-1990s and 75 

2000s by many high-income countries. aPVs contain 1 to 5 Bp antigens: pertussis toxin (PT), 76 

which is always present, combined in most vaccines with filamentous hemagglutinin (FHA), 77 

pertactin (PRN) and/or type 2 and type 3 fimbriae (FIM2 and FIM3). It is well established that 78 

circulating Bp populations, which are human restricted (as is Bpp), have evolved in response to 79 

vaccine-induced immunity. For example, rates of evolution of vaccine antigen-encoding genes 80 

have accelerated since the introduction of aPV, compared to other surface protein genes [9]. 81 

Non-synonymous mutations (nsSNP) in PT, PRN, FHA, FIM2 and FIM3 encoding genes, as 82 

well as the promoter region of the PT gene cluster, have occurred and raised in frequency, often 83 
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to fixation in extant Bp populations, compared to the pre-vaccine era [10]. Moreover, the rapid 84 

emergence of PRN-deficient Bp isolates has been observed in countries where aPV vaccination 85 

has been implemented [11,12], resulting from multiple independent mutation events rather than 86 

the spread of a few genotypes. PRN deficiency has reached near-fixation in early aPV-using 87 

countries [10,13], and confers a selective advantage during infection [14,15] that appears higher 88 

under the aPV era [16]. The vaccine-driven evolution of Bp is regarded as a prominent example 89 

of global population-level effects of large-scale vaccination [17,18].  90 

Of the five Bp vaccine antigens, Bpp expresses orthologs of PRN and FHA only, which 91 

are 91.5% and 95.2% identical in their amino acid sequence to their Bp counterparts, 92 

respectively [19,20]. Given that Bpp is phylogenetically related and antigenically similar to Bp, 93 

the possibility exists that Bpp may have also evolved under immune pressure exerted by 94 

vaccination targeting Bp. PRN-deficient Bpp isolates have been observed since 2007 in France 95 

[21], but the emergence of PRN-deficient Bpp is otherwise undescribed.  96 

Bp and Bpp have converged in adapting to their human-restricted niche independently, 97 

both having evolved from the genetically broader species Bordetella bronchiseptica (Bbs), an 98 

ecological generalist observed in multiple animal host species [22,23]. Among other events, the 99 

evolution of Bp has involved gene loss, genomic rearrangements and mutations in the intergenic 100 

region between the genes coding for FHA and the BvgAS 2-component master regulator of 101 

virulence [10,24].  102 

Currently, little is known about the evolution of Bpp, largely because it has been rarely 103 

isolated in culture. The aim of this study was, by gathering a large international collection of 104 

human clinical isolates of Bpp, to define its population structure and evolution and explore 105 

whether signatures of evolution may be driven by pertussis vaccination-induced immunity. 106 

 107 

 108 
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METHODS 109 

Collection of 242 Bordetella parapertussis clinical isolates 110 

We collected a large biological resource dataset of Bpp isolates from three countries. In 111 

France, 119 Bpp isolates were collected at the National Reference Center for Whooping Cough 112 

and Other Bordetella Infections, isolated between 1937 and 2019. Most of these isolates were 113 

collected through the hospital-based pediatric network RENACOQ, which was operated 114 

continuously since 1996 [25,26]. From the USA, 85 Bpp isolates were collected by Centers for 115 

Disease Control and Prevention’s (CDC), being gathered through routine surveillance and 116 

during outbreaks between 1937 and 2017, many of which were sequenced as part of a previous 117 

study [24]. From Spain, 38 isolates were collected from patients attending the hospitals and 118 

primary health care centers according to usual routine diagnostic procedures between 1993 and 119 

2019 in three Spanish regions (Catalonia, Community of Madrid and Castilla-La Mancha). In 120 

addition, 8 publicly available genomes of isolates originating from other countries (Australia, 121 

Japan, UK and Germany) were included. Details about isolates characteristics are provided 122 

in Table S1. 123 

Microbiological characterization, DNA preparation and genomic sequencing 124 

Isolates were grown on Bordet-Gengou agar, antigen characterization was done by 125 

Western blot or ELISA, and DNA preparation and genomic sequencing were performed using 126 

Illumina technology; details are provided in the supplementary material (Supplementary 127 

Method section: Microbiological characterization, DNA preparation and genomic sequencing 128 

paragraphs). 129 

Phylogenetic and gene content analyses 130 

Raw reads were trimmed with Trimmomatic (v. 0.38). Snippy (v. 4.3.6) was used for 131 

SNP analysis with Bpp strain 12822 (GenBank accession no. BX470249.1) used as reference, 132 

without removing recombinant or repetitive regions. A maximum likelihood analysis based on 133 
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the whole genome SNPs was carried out with IQ-TREE (v. 1.6.10) using 1,000 bootstrap 134 

replicates. The existence of a temporal signal in the genomic data was estimated with TempEst 135 

by a regression analysis between the root-to-tip divergence in the maximum likelihood tree, 136 

and the isolation year (Fig.S1). The software tool BEAST version 1.10.4 [27] was used to infer 137 

the phylogenetic dynamics as detailed in the supplementary material (Supplementary Method 138 

section: Phylogenetic dynamics paragraph). 139 

 We looked for transposases using ISMapper [28] or blastN 140 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi) with IS1001 (BPP0078) and IS1002 (BPP1897) 141 

sequences as  queries. We estimated the pan genome using Roary version 3.13.0 [29] with 142 

default parameters (core genes defined as being present in 95% genomes; without paralogs) 143 

from gff3 archives previously annotated with bakta version1.2.1 [30]. We looked for plasmids 144 

using PlasmidFinder version 2.1.1 [31]. 145 

 146 

Mutations analysis and genotyping 147 

We performed prn gene sequence analysis using blastN 148 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi) with Bpp strain 12822 (NC_002928) gene sequence 149 

as queries. Genotyping of virulence genes was done using the BIGSdb platform 150 

(https://bigsdb.pasteur.fr/bordetella/) using de novo assemblies as previously detailed [32,33].  151 
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RESULTS 152 

Bordetella parapertussis genomic evolution, population structure and time-resolved 153 

phylogeny 154 

We collected 242 Bpp isolates between 1937 and 2019 in France, the USA and Spain, 155 

conducted genomic sequencing and analyzed the data using phylogenetic and population 156 

biology approaches. The number of isolates varied temporally, with a maximum of 32 isolates 157 

collected in 2014 (Fig. 1). Together with the 8 additional public genome sequences, a dataset 158 

of 250 genomic sequences was analyzed.  159 

The average genome size was 4,732,038 bp and the average G+C% was 68.1%. No 160 

plasmid replicons were identified. Using ISMapper, the copy numbers of IS1001 and IS1002, 161 

two mobile elements used for diagnosis of Bpp [34], were determined to be 22 and 9, 162 

respectively, in all isolates except four, which had one or two copies missing. Gene content was 163 

highly conserved among the collection of isolates, indicating minimal gene gain or loss. In total, 164 

5,329 different protein-coding genes were identified. Among these, 3,640 were present in at 165 

least 99% of isolates, and 4,269 in at least 95%. Genes encoding the main virulence factors and 166 

Bvg regulation factors of Bpp (i.e., prn, fhaBCD, dnt, ptlABCDEFGHI, ptxAS12345, ptxP, fim2, 167 

fim3, fimBCD, cyaA, brkA, brkB, bvgA and bvgS) were detected in all isolates except for type 168 

IV secretion system encoding gene ptlD, where a pseudogene was identified in 9 isolates.  169 

Genome-wide nucleotide variation analysis identified 1,994 single nucleotide 170 

polymorphisms (SNP; Table S2). On average, strains differed by 47 pairwise SNPs (ranging 171 

from 1 to 214). Only 2 mutations were located within IS1001 transposases. Of the 1,994 SNPs, 172 

35.7% were phylogenetically informative, i.e., the variation was observed in at least 2 genomes. 173 

Phylogenetic reconstruction (Fig. 2A) uncovered a scaled population structure, within which 174 

four main lineages were defined. Lineage 1 comprised 18 isolates placed on early diverging 175 

branches of the phylogenetic tree. Lineage 2 corresponded to all isolates (n=23 isolates) with 176 
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the mutation G3773A within gene dnt, leading to the A1258V. A SNP common to lineages 1 177 

and 2 was the A425G nucleotide substitution within gene BPP_RS11415, leading to a N142S 178 

change in the corresponding protein. This SNP was absent in isolates from lineages 3 and 4 179 

except for 2 isolates (BBP1_NCBI and B144). Lineage 4 (n=152 isolates) was defined as 180 

comprising isolates with the mutation prn::delG-1895, which occurred shortly before lineage 181 

4’s MRCA in 1998 [95% HPD: 1996-2001] (Fig. 2A). Lineage 3 was defined as comprising 182 

the remaining isolates (i.e., with neither the N142S change – with two exceptions – nor the 183 

prn::delG-1895 mutation). We note that lineages 1 and 2 comprise a previously defined clade 184 

1, whereas lineages 3 and 4 correspond to a previously defined clade 2 [35]. The characteristics 185 

of the 4 lineages in terms of pertactin expression are given in the Supplementary appendix. 186 

Strikingly, a previously described [24] large genomic rearrangement occurred just before the 187 

expansion of lineage 4, in all isolates of which it is observed (Fig. S7). 188 

The proportion of the four lineages varied with time: until the mid-1980s, isolates 189 

mainly belonged to lineage 1; in contrast after 2010, lineage 4 predominated largely (Fig. 2B). 190 

We estimated from the genomic data, the fluctuation of the size of the Bpp population reflected 191 

by our dataset since 1960 (Fig. 2C). The effective population size appeared stable until the mid-192 

1980s, when it began to increase, reaching a maximum in the 2010s. Similar results were 193 

obtained when analyzing separately the isolates collected either in the USA, or in Europe (i.e., 194 

France and Spain), or when considering random subsamples of 90% of isolates (Fig. S2). 195 

A strong temporal signal of SNP accumulation over time was found, with a root-to-tip 196 

genetic divergence versus time of isolation regression parameter R2=0.85 (Fig. S1). Bayesian 197 

analysis estimated the mean evolutionary rate of Bpp as 2.1 x 10-7 substitutions per site·year-1 198 

(95% highest posterior density [HPD]: 1.9x10-7, 2.3 x 10-7 substitutions per site·year-1), 199 

corresponding to 1.02 substitutions per genome·year-1. The most recent common ancestor 200 

(MRCA) of our Bpp dataset was estimated in 1877 [95% HPD: 1865 to 1889]. In turn, the node 201 
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corresponding to the early diversification of lineages 3 and 2 were estimated to have occurred 202 

in 1964 [95% HPD: 1962, 1968] and 1976 [95% HPD: 1974, 1980] respectively, whereas 203 

lineage 4 diversification was estimated to have arisen in 1998 [95% HPD: 1996, 2001] (Fig. 204 

2A). 205 

 206 

Single nucleotide polymorphisms and insertion and deletion (INDEL) events 207 

Of the 1,994 SNPs, 265 were intergenic and 1,729 were intragenic. Among the latter, 208 

659 were synonymous and 1,070 were non-synonymous (Table S2). SNP densities in genes 209 

involved in regulation or coding for hypothetical proteins were statistically higher than the 210 

average (p<0.05), whereas SNP densities were statistically lower than average in genes 211 

involved in virulence or metabolism (p<0.05) (Supplementary material, SNP densities per 212 

functional category paragraph; Table S3).  213 

A total of 69 SNPs were located within virulence-associated genes category (Table S2), 214 

some of which represented landmarks in the evolution of Bpp. First, the lineage-2 defining 215 

A1258V change in the dermonecrotic factor was inferred to have occurred shortly before 1976 216 

[95% HPD: 1974, 1980]. Second, a SNP observed within gene ptlD (leading to a V26M change 217 

in the PtlD pertussis toxin export protein) was a marker for a single phylogenetic branch that 218 

included part of lineage 3 and the entire lineage 4 isolates; this SNP was observed in 183 isolates 219 

(33 of lineage 3 and all of lineage 4) that were collected between 1994 and 2018, and was 220 

estimated to have occurred around 1987 [95% HPD: 1984, 1991]. Additional SNPs were also 221 

observed in toxins (including the dermonecrotic factor) or in other autotransporters than FHA 222 

and pertactin, and in SphB1 (locus tag BPP_RS02120), a serine-protease involved in 223 

proteolysis maturation of FHA. Most of these SNPs were observed in only a few Bpp isolates. 224 

In addition, 18 SNPs were located in genes related to LPS-structural genes and 5 in genes 225 
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involved in LPS modification (Details are provided in the Supplementary Appendix and in 226 

Table S2). 227 

Homoplasic SNPs, i.e., mutations at single positions having occurred in separate 228 

branches, are indicative of strong selective pressure leading to convergent evolution. Only 2 of 229 

the 1,994 SNPs were homoplasic, including a nonsense mutation leading to a stop codon 230 

(Q845Stop) in prn, observed in two isolates from lineages 2 and 3 (see Supplementary Results 231 

section). 232 

Regarding small insertions and deletions, 329 INDEL events (as compared to the 233 

genome sequence of reference isolate 12822) were observed. Only 29 INDEL events were 234 

present in more than 10 isolates; 20 of these were located out of coding regions, and 9 within 235 

them (see INDEL, Table S4). Of these, 7 were inferred to induce frameshifts, including 2 236 

INDELs within the prn gene and one within bscR. Two INDELS were also observed within 237 

fhaB, but only affected 3 and 1 isolate, respectively (Table S4). As described above, the single 238 

G deletion in prn position 1895 (prn::ΔG-1895) was present in 150/152 from lineage4 (for the 239 

H299 and H602, the prn sequence did not allow to confirm the presence of the mutation). 240 

 241 

 Pertactin gene diversity and its multiple disruptions 242 

Only 51 of 250 isolates had a prn nucleotide sequence (locus tag BPP_RS05740) 243 

identical to the reference strain 12822, including all isolates of lineage 1 (n=18 isolates) and 244 

some isolates of lineage 2 (n=8) and lineage 3 (n=25, including the reference). PRN production 245 

was confirmed experimentally for 27 of these 51 isolates (Table S1). 246 

For 192 of the 199 remaining isolates, the prn sequence had a point mutation, frameshift, 247 

or insertion sequence mutation (Table S1). We found a total of 18 distinct mutations. Four 248 

mutations were nonsense SNPs resulting in stop codons, whereas 13 were insertions or 249 

deletions events inferred to lead to prn deficiency (Table S5). These distinct prn mutations 250 
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were scattered in lineages 2, 3 and 4 and one of them (described above) was homoplasic (Fig. 251 

2). Last, prn::ΔG-1895 deletion was by far the most frequently observed mutation, having been 252 

associated with the expansion of lineage 4. PRN production was confirmed experimentally to 253 

be deficient for 125 of the 192 isolates corresponding to all the different types of mutations 254 

(Table S1). Overall, 56.5% (13/23) of lineage 2 isolates, 50.9% (29/57) of lineage 3 isolates 255 

and 98.7% (150/152) of lineage 4 isolates were demonstrated or inferred to be PRN deficient 256 

based on the presence of one of the 18 prn mutations.  257 

Whereas region 1 of PRN is highly variable in Bp [36], almost all Bpp isolates with a 258 

full length gene displayed the same number of repeats in the two repeat regions of prn (4 repeats 259 

in region 1 and 9 in region 2), consistent with previous reports [37,38]. 260 

 261 

SNPs in the fhaB-bvgA intergenic region, and in FHA and functionally related genes 262 

An exceptionally high SNP density was observed in the intergenic region located 263 

between fhaB and bvgA, with six intergenic SNPs (Fig. 3) (Table S3). Whereas four SNPs 264 

located in the phosphorylated BvgA binding site just upstream of fhaB gene (also corresponding 265 

to P3 bvgA promoter) were each observed in a few isolates (all collected after 2004), two SNPs 266 

were largely shared by Bpp isolates, located at position 3,267,769 (G>A) and 3,267,889 (C>T). 267 

Both occurred in an early branch of the phylogeny (Fig. 2), with an MRCA estimated in 1909 268 

(95% HPD: 1899, 1921). These two mutations have been fixed in extant Bpp populations, as 269 

isolates that did not carry these SNPs were not observed after 1958. While the first of these 270 

SNPs is located 23 nucleotides upstream of the -35 box of fhaB, the SNP at position 3,267,889 271 

(C>T) is located within the -35 element of bvgA gene, changing the element from TTCAGAA 272 

to TTGAGAA, clearly suggesting an impact on gene expression (Fig. 3). 273 

FHA production was confirmed experimentally for 145/ 250 isolates of the study, as 274 

evidenced using either Western blots or ELISA (Table S1). We nevertheless observed 11 SNPs 275 
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within the fhaB gene itself (locus tag BPP_RS15295), all being found in only one or a few 276 

isolates (Table S2). Of these, six were non-synonymous, two of which affecting the mature 277 

FHA [31]: one at position 3,261,750 (V1963A), observed in four isolates of lineage 1; and one 278 

at position 3,266,524 (T372A), observed in a single isolate (J324) of lineage 3 (Table S2).  279 

nsSNPs were also observed affecting proteins functionally related to FHA, including 280 

FhaS, FhaJ and SphB1, a serine-protease involved in proteolysis maturation of FHA [39] 281 

(Table S2; detailed in supplementary appendix). 282 

 283 

DISCUSSION 284 

Acellular vaccines against B. pertussis (Bp) are in use since more than 20 years in 285 

multiple countries including the USA, France and Spain. Here, we addressed the question of 286 

the possible impact that large-scale whooping cough vaccination might have exerted on the 287 

second agent of whooping cough, B. parapertussis (Bpp), even though this organism was not 288 

the explicit target of the vaccine. Because Bpp expresses two antigens, FHA and pertactin, that 289 

are closely related orthologs of Bp vaccine antigens and are part of the bvgAS virulence regulon, 290 

changes in these proteins may have important consequences on the current epidemiology and 291 

pathogenesis of Bpp infections.  292 

By taking advantage of a unique dataset of human isolates collected over 83 years in 293 

three different countries, we also address the broader biological questions of the genomic 294 

diversity, population structure and genome-scale evolution of the so-far elusive Bpp, and the 295 

possible evolutionary parallelisms that this pathogen might show with Bp, its close relative and 296 

ecological competitor. Our data reveal, over time, the successive replacement of Bpp 297 

subpopulations by more recently emerged ones. By considering four deep Bpp phylogenetic 298 

lineages, we showed how their relative proportions have shifted: whereas lineage 1 was 299 

predominant before 1990, lineage 4 became the most frequent since 2010, now being nearly 300 
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exclusive. This temporal replacement pattern is reminiscent of the disappearance of ancient 301 

lineages of Bp, which were replaced among extant infectious isolates by more recently evolved 302 

sublineages [10]. This scaled phylogenetic structure pattern is also typically encountered in 303 

human viruses evolving to escape previously built host immunity by antigenic drift, such as 304 

Influenza virus [40] or more recently SARS-CoV-2 [41]. The expansion of lineage 4, 305 

characterized by a genomic rearrangement and the lack of PRN production, coincides with the 306 

peak detected in the effective population size analysis, around the year 2010, suggesting that 307 

isolates from lineage 4 may have a better fitness in the three surveyed countries using acellular 308 

vaccines. The evolution of Bpp by successive lineage replacement might be driven by a 309 

combination of its ongoing adaptation to humans, natural immunity built in human populations 310 

as a result of infection, ecological interactions with Bp [42,43] and possibly also by vaccination-311 

induced immunity, which we discuss below. 312 

The Bpp population genomics data also revealed a regular pattern of SNP accumulation 313 

over time, enabling us to estimate the mutation rate of Bpp at 2.1x10-7 substitutions per 314 

site·year-1. This rate is remarkably similar to the one estimated within the main branch of Bp 315 

(2.24x10-7 substitutions per site·year-1) [10], consistent with the shared recent ancestry and 316 

similar ecology of these two pathogens, which both evolved from their progenitor genomic 317 

species B. bronchiseptica [10,22,33]. Remarkably, the estimated most recent common ancestor 318 

of human Bpp, around year 1877, is more recent by only a few decades than the main Bp branch, 319 

which was estimated to have emerged between years 1790 and 1810 [10]. The crowding and 320 

promiscuity that increased rapidly during the industrial revolution in the 19th century represents 321 

a possible driver of the expansions of Bpp and Bp in the populations of developed countries. 322 

Clearly, our sample (mainly from three Northern hemisphere countries) may miss deeper 323 

branching isolates that could be circulating elsewhere or have become extremely rare, similar 324 

to the exceptionally rare deep lineage of Bp [10]. Note that ovine Bpp isolates, which were 325 
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seldom reported and for which only a single genomic sequence is available [37,44,45], were 326 

not considered in this study because they belong to a separate evolutionary lineage [22] and 327 

hence would not affect the above temporal analyses and conclusions. 328 

FHA is one of the components of most (but not all) current aPVs, and BvgA is the main 329 

regulator of virulence genes in Bbs and Bp. The bvgA-fhaB intergenic region was shown to have 330 

undergone extensive evolution in Bp [10], which may impact not only the expression of both 331 

genes, but also those of the bvgAS regulon [46]. Here we report several mutations located in the 332 

orthologous intergenic region of Bpp. One of these mutations (in position 3,267,792 in Fig. 3 333 

or 155 in Fig. S3) is at the exact same position as a mutation observed in Bp [10,34]. Although 334 

six SNPs were observed in the bvgA-fhaB intergenic region of Bpp, two of these occurred early 335 

in the evolutionary history of this pathogen (estimated around 1909) and became fixed in Bpp. 336 

These two mutations predate largely pertussis vaccination and may have been selected for 337 

adaptation to humans, which were recent novel hosts for Bpp at that time, or in reaction to 338 

natural infection-driven immunity. The high SNP density in the bvgA-fhaB intergenic region in 339 

both Bp and Bpp suggests a central role of this critical regulatory region in evolutionary 340 

adaptation to the human niche, as both pathogens diverged from their ecological generalist 341 

progenitor species B. bronchiseptica. Whether and how these two ancestral Bpp intergenic 342 

mutations have impacted the levels of fhaB expression, bvgA expression, or both, thus stands 343 

out as a central question to decipher the adaptive trajectory of Bpp. 344 

The four other bvgA-fhaB intergenic SNPs are located in the phosphorylated BvgA 345 

binding site of the fhaB promoter [10,46], also suggests a functional impact of these mutations, 346 

but as these were observed in only a few isolates, they may reflect a transient selective 347 

advantage, perhaps in patients with atypical anti-FHA immunity. Further non-synonymous 348 

genetic variation in fhaB and functionally related genes was observed (supplementary 349 

Appendix). Mutations in the coding sequence of fhaB may reflect the fine-tuning of FHA 350 
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protein interaction with its receptor, even though none were located in the FHA-RGD motif. 351 

Several mutations also occurred in Bp within the gene encoding FHA [10,16]. We confirmed 352 

FHA production experimentally in all (145/250) tested Bpp, and as FHA-negative Bp are 353 

exceptional too [25], this protein seems to exert an essential role in the biology of both agents 354 

of whooping cough. Overall, these observations point to a particular role of FHA and related 355 

functions in Bpp biology, as in Bp [47].   356 

Regarding the effect of whooping cough vaccination on Bpp, our work uncovers a 357 

number of genetic signatures of evolution in the genes coding for the two Bp vaccine antigens 358 

which are expressed by Bpp. As Bpp produces neither pertussis toxin, due to several mutations 359 

within the promoter sequences of the synthesis gene cluster [19,48], nor the fimbriae FIM2 and 360 

FIM3 proteins (even though their genes are present and undisrupted in Bpp genomes) [20,34], 361 

the lack of evidence for selection in these other antigens acts as an interesting control. No SNP 362 

was observed within fimbriae genes: neither within fimABCD structural genes nor within fimX 363 

or fimN genes, which code for other fimbriae subunits. This lack of variation is consistent with 364 

the lack of expression of these genes in Bpp [20], which implies an absence of positive selection 365 

to optimize interactions with host receptors and to escape immunity. Similarly, as pertussis 366 

toxin is also not produced by Bpp, the mutations we observed may be considered as contributing 367 

further to the gene decay of the pertussis toxin gene cluster. 368 

In Bp, pertactin deficiency is a major recent evolutionary phenomenon, shown to be 369 

driven mainly by acellular vaccine (aPV)-induced immunity [12,39,49]. But so far, the genetic 370 

evolution of pertactin expression in Bpp has been little documented [36,50]. Our data provide 371 

strong evidence for the evolution of this antigen being driven by acellular pertussis vaccines 372 

too. First, we observed a population shift towards pertactin deficiency in Bpp, which has started 373 

just after the roll-out of aPVs. Second, besides the prominent prn::ΔG-1895 mutation, 17 other 374 

pertactin deficiency mutations were identified, and all were dated between 2005 and 2018. This 375 
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convergent pattern of gene disruption after the introduction of aPV strongly supports the view 376 

that pertactin expression by Bpp is disadvantageous in aPV countries. Data from three countries 377 

that use wPV instead of aPV further support this hypothesis, as no pertactin-deficient was 378 

observed in Bpp isolates collected between 1998 and 2015 [35,51,52]. Although more Bpp 379 

sampling would strengthen the trend we observed, the pertactin-deficient population increase 380 

seems to be even faster in Bpp than observed for Bp (Fig. S5), as almost all Bpp, but only 50% 381 

to 90% Bp, depending on country, are now deficient [53,54].  382 

Thus, even though pertussis vaccines were designed against Bp, the main whooping 383 

cough agent, our genomic analyses indicate that Bpp has indeed been affected by pertussis 384 

vaccination. Although the phylogenetic proximity and shared antigens of Bp and Bpp makes 385 

the ‘bystander’ status of Bpp questionable, our work uncovers a clear evolutionary impact of 386 

vaccination on an organism that was not the explicit target of the vaccine. In the strict sense, 387 

this work thus demonstrates a bystander impact of vaccination on a non-target organism.  388 

Vaccination against Bp has been considered to have low, or even no, efficacy against 389 

Bpp [55–57]. The strong evidence provided here of aVP vaccination driving pertactin 390 

deficiency in the populations of Bpp, indeed suggests a cross-protection of aPV pertussis 391 

vaccines on Bpp isolates that produce pertactin [12], which we hypothesize to exert the selective 392 

disadvantage we observed in the three aVP vaccinated populations that we surveyed. An 393 

important implication is that, as extant isolates of Bpp now rarely produce pertactin, cross-394 

protection against Bpp from whooping cough vaccines may have weakened significantly in the 395 

last 20 years. This evolution leaves only FHA as an aVP vaccine antigen expressed by Bpp, 396 

against which the bactericidal activity of antibodies is weak [49]. Future improved whooping 397 

cough vaccines could benefit from comprising Bp-Bpp cross-reacting antigens explicitly, such 398 

as the adenylate cyclase [58] or conserved antigens identified through immune-informatics 399 

[59], or could incorporate Bpp-specific antigens, such as the O-antigen [60]. 400 
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In conclusion, our study provides important novel insights into the past evolutionary 401 

dynamics of Bpp and uncovers a remarkable picture of parallel evolution between the 402 

adaptation of Bpp and Bp populations to humans, including their timing of emergence, rate of 403 

evolution, successive lineage replacement, early adaptation to the human niche, and vaccine-404 

driven evolution. These parallelisms illuminate how two distinct pathogens that have evolved 405 

from a single common ancestral species, have adapted to the human host and later in response 406 

to vaccination-induced immunity. The deep evolutionary picture we uncovered for Bpp, 407 

highlights the bystander effect of pertussis vaccination against Bpp as the latest example of the 408 

evolutionary parallelism between the two agents of whooping cough. 409 
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Figure legends 489 

 490 

Fig. 1. Number of B. parapertussis isolates collected per year according to country of 491 

origin. 492 

This figure includes the 242 collected isolates and 8 isolates for which genomic sequences were 493 

publicly available. The data is broken down per year except for the first three bars; Blue: France; 494 

Pink: USA; Green: Spain; Grey: others. Dark colors represent PRN-positive (PRN+) isolates 495 

and lighter colors PRN-negative (PRN-) isolates (as verified experimentally for France and 496 

Spain; and as deduced from genomic sequences for the USA and public sequences from other 497 

countries).  498 

 499 

Fig. 2. Time-scaled phylogeny of Bordetella parapertussis 500 

Panel A: Bayesian phylogenetic reconstruction of 250 B. parapertussis isolates collected 501 

between 1937 and 2019. The phylogenetic tree was built using BEAST (strict clock and 502 

Bayesian Skygrid model) from whole-genome SNPs (compared to the reference strain 12822, 503 

GenBank accession no. BX470249.1). The reference strain belongs to lineage 3 and its position 504 

is indicated by a black rhombus symbol. The two black stars indicate the two lineage 3 isolates 505 

with the N142S change (see text). The country of origin of the isolates is represented with 506 

colored circles at the tree leaves. Pertactin (PRN) production status, with the three most frequent 507 

(>2%) prn mutations associated to non-PRN production, are indicated by the two columns on 508 

the right of the tree leaves (see color key; see Table S1 for complete information; missing data 509 

are represented in white). Panel B: Bayesian Skygrid plot showing temporal changes in 510 

effective population size of B. parapertussis populations since 1960 (black line) with 95% 511 

confidence intervals (discontinuous lines). Panel C: proportions of B. parapertussis lineages 512 
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according to three time periods (before 1990, 1990-2009 and 2010-2019). PRN, pertactin; 513 

MRCA, most recent common ancestor; UK, United Kingdom; USA, United States of America. 514 

 515 

Fig. 3. Mutations located in the intergenic region between fhaB and bvgA.  516 

Panel A: Circular phylogenic tree based on SNPs, rooted on isolate Bpp63.34. The four 517 

lineages are represented with colored branches as in Figure 2. Lineage 1: light red; Lineage 2: 518 

light blue; Lineage 3: light green; Lineage 4: light orange. Mutations observed within the fhaB-519 

bvgA intergenic region are indicated by circles on tree branches and labelled with their 520 

nucleotide position in the genome. Panel B: Precise localization of the observed mutations 521 

(highlighted with color background as in panel A) within the intergenic sequence. The minus 522 

10 and minus 35 motives upstream of both genes, the +1 transcription start site of fhaB, and the 523 

BvgA binding motif (from 3267789 to 3267804), are indicated in bold. 524 

  525 
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