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Abstract

Sugarcane (Saccharum spp.) holds significant economic importance in sugar and biofuel 

production. Despite extensive research, understanding highly quantitative traits, such as sucrose 

content, remains challenging due to the complex genomic landscape of the crop. In this study, 

we conducted a multiomic investigation to elucidate the genetic architecture and molecular 

mechanisms governing sucrose accumulation in sugarcane. Using a biparental cross 

(IACSP95-3018 × IACSP93-3046) and a genetically diverse collection of sugarcane genotypes, 

we evaluated the soluble solids (Brix) and sucrose content (POL) across various years and 

environments. Both populations were genotyped using a genotyping-by-sequencing (GBS) 

approach, with single nucleotide polymorphisms (SNPs) identified via bioinformatics pipelines. 

Genotype‒phenotype associations were established using a combination of traditional linear 

mixed-effect models and machine learning algorithms. Furthermore, we conducted an RNA 

sequencing (RNA-Seq) experiment on genotypes exhibiting distinct Brix and POL profiles 

across different developmental stages. Differentially expressed genes (DEGs) potentially 

associated with variations in sucrose accumulation were identified. All findings were integrated 

through a comprehensive gene coexpression network analysis. Strong correlations among the 

evaluated characteristics were observed, with estimates of modest to high heritabilities. By 

leveraging a broad set of SNPs identified for both populations, we identified several SNPs 

potentially linked to phenotypic variance. Our examination of genes close to these markers 

facilitated the association of such SNPs with DEGs in genotypes with contrasting sucrose levels. 

Through the integration of these results with a gene coexpression network, we delineated a set of 

genes potentially involved in the regulatory mechanisms of sucrose accumulation in sugarcane, 

collectively contributing to the definition of this critical phenotype. Our findings constitute a 

significant resource for biotechnology and plant breeding initiatives. Furthermore, our 

genotype‒phenotype association models hold promise for application in genomic selection, 

offering valuable insights into the molecular underpinnings governing sucrose accumulation in 

sugarcane.

Keywords: gene coexpression networks, GWAS, genotyping-by-sequencing, machine learning, 

RNA-Seq, Saccharum spp.
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Introduction

Sugarcane holds significant importance in the global economy, particularly in terms of biofuel 

and sugar production (FAOSTAT 2023). Due to its remarkable capacity for sugar storage, 

sugarcane is the primary global source of sugar (Mirajkar et al. 2019). With the continual rise in 

sugar demand, there is a pressing need for the development of more productive varieties. Central 

to sugarcane breeding programs is the maximization of yield, measured in terms of sugar 

production per area (Cursi et al. 2022). This optimization encompasses resistance to abiotic and 

biotic stressors and several secondary traits, facilitating sugarcane cultivation across diverse 

environmental conditions.

Despite notable advancements in sugarcane varieties, the process of cultivar generation 

through breeding can last up to 12 years (De Morais et al. 2015). Sugarcane breeding typically 

involves three main stages: (i) creating genetic variability through controlled crosses; (ii) 

preliminary selection across numerous experiments with limited replicates; and (iii) advanced 

selection, with an adequate number of replicates and environments to enable precise selection 

(Gazaffi et al. 2015). Given the extensive time and costs associated with field evaluations, the 

integration of molecular-assisted technologies holds promise for accelerating breeding progress 

and increasing genetic gains, particularly regarding sucrose content, an aspect where sugarcane 

breeding progress remains slow (Chen et al. 2019). However, the intricate genomic complexity of 

sugarcane poses a challenge in understanding the genetic architecture underlying sugar 

accumulation and consequently hinders the development of effective molecular breeding efforts.

Modern sugarcane cultivars are derived from crosses between Saccharum officinarum (2n = 

8x = 80, x = 10) (D'Hont et al. 1998) and Saccharum spontaneum (from 2n = 5x = 40 to 16x = 128, 

x = 8) (Panje and Babu 1960), followed by several backcrosses with S. officinarum to increase 

sucrose content (Cuadrado et al. 2004). While S. spontaneum, a wild sugarcane species, exhibits 

high stress resistance, it has a low sucrose content and abundant biomass (Mirajkar et al. 2019). 

Wild sugarcane can store approximately 2% of its fresh weight as sucrose, whereas the 

theoretical storage capacity of cultivated sugarcane can reach 27% (Bull and Glasziou 1963). 

Understanding the genetic mechanisms associated with these contrasting sugar accumulation 

profiles is challenging because of factors such as varying ploidy levels, frequent aneuploidies, and 

substantial cytogenetic complexity (Aono et al. 2021).

The quantitative trait loci (QTLs) associated with sugar-related traits exhibit a highly 

complex genetic architecture (Ming et al. 2002; Costa et al. 2016; Balsalobre et al. 2017), and 
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there is limited information regarding the extent, effect, and genomic regions associated with 

phenotypic variability. This polygenic action encompasses diverse metabolic pathways and 

biological processes, particularly during the maturation phase, which dictates sucrose 

accumulation in mature sugarcane (Datir and Joshi 2016). Sucrose synthesis occurs primarily in 

sugarcane leaves. The sucrose is then transported through the phloem and stored in culms 

(Sachdeva et al. 2011). Its metabolism is regulated by diverse sucrose-synthesizing and 

hydrolyzing enzymes, including sucrose synthase, sucrose phosphate synthase, and invertases 

(Datir and Joshi 2016).

In addition to sucrose metabolism, other metabolic pathways, such as photosynthesis and 

carbon partitioning, influence sucrose accumulation rates in sugarcane (Sachdeva et al. 2011). 

Genes associated with stress responses also play significant roles in the efficiency of this 

mechanism, with notable implications for the regulatory actions of jasmonic acid, abscisic acid, 

ethylene, and gibberellin (Papini-Terzi et al. 2009). Therefore, integrative methodologies present 

considerable potential for dissecting these mechanisms and identifying critical regulatory 

elements involved in sucrose accumulation. Such endeavors are invaluable for biotechnology and 

molecular breeding approaches, especially given that the modification of genes associated with 

sucrose metabolism and transport has not yielded satisfactory outcomes (Qin et al. 2021).

Our study explored the intricate genetic architecture underlying sucrose accumulation in 

sugarcane. Through the integration of diverse omics datasets derived from a range of sugarcane 

genotypes, we not only offer insights into potential genotype-phenotype associations but also 

conduct a thorough exploration of how these associations influence the molecular mechanisms 

of sucrose accumulation. Leveraging a variety of methodologies, including linear mixed-effects 

modeling, machine learning algorithms, and gene coexpression networks, in addition to genomic 

analyses and differential expression gene comparisons, we elucidate crucial mechanisms and 

pivotal regulators governing this multifaceted process.

Material and Methods

Plant Material

Two distinct sugarcane populations were utilized in this study to investigate genotype‒phenotype 

associations. The first population (Pop1) comprised a panel of 97 diverse sugarcane accessions 

(Supplementary Table S1), and the second population (Pop2) consisted of 219 progeny 

genotypes derived from a cross between the elite clone IACSP953018 (female parent) and the 

commercial variety IACSP933046 (male parent). Both populations were developed by the 
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Sugarcane Breeding Program at the Agronomic Institute of Campinas (IAC) in Ribeirão Preto, 

São Paulo, Brazil (4°52′34″ W, 21°12′50″ S). Planting occurred in 2013 for Pop1 and in 2011 for 

Pop2, following a complete block design with 4 blocks for Pop1 and 2 blocks for Pop2. In Pop1, 

three plants per experimental unit were planted in 1.5 m rows, with 0.5 m spacing between the 

plants. In Pop2, the plants were planted in 2 m rows with a spacing of 1.5 m between the plants. 

Additionally, the Pop1 experiment was replicated three times, corresponding to harvest times in 

May, July, and September (Coutinho et al. 2022).

Furthermore, three cultivars were selected for an RNA sequencing (RNA-Seq) 

experiment based on their divergent sugar content profiles. These genotypes were planted with 

three replicates in a field at the Federal University of São Carlos in Araras, São Paulo, Brazil 

(47°23′5″ W, 22°18′41″ S). Specifically, the selected genotypes included (i) IN84-58, a 

representative of S. spontaneum with low soluble solids content (Brix); (ii) the SP80-3280 hybrid, 

characterized by high Brix measurements; and (iii) the hybrid R570, which also exhibits high Brix 

measurements.

Phenotyping

The genotypes from Pop1 and Pop2 were phenotyped for Brix and sucrose content (POL) 

following the methods described in Consecana (2006). For Pop1, evaluations were conducted in 

ratoon cane in 2014 and 2015, with one-year intervals between harvests. For Pop2, evaluations 

were conducted in plant cane in 2012 and in ratoon cane in 2013 and 2014.

Each trait in each population and replication was modeled using the following linear 

mixed-effects model:

𝑌
𝑖𝑗𝑘
= μ + 𝐸

𝑗
+ 𝐵

𝑘
+ 𝐺

𝑖
+ 𝐺𝐸

𝑖𝑗
+ 𝐵𝐸

𝑗𝑘
+ 𝑒

𝑖𝑗𝑘

where  represents the phenotypic measurement of the i-th genotype in the j-th year and k-th 𝑌
𝑖𝑗𝑘

block;  is the overall trait mean;  is the fixed effect of the j-th year;  is the fixed effect of the µ 𝐸
𝑗

𝐵
𝑘

k-th block;  is the random effect of the i-th genotype ( , with  representing the 𝐺
𝑖

𝐺
𝑖
~𝑁 0, α

𝑔
2( ) α

𝑔
2

genetic variance);  is the random effect of the interaction between the i-th genotype and j-th 𝐺𝐸
𝑖𝑗

year;  is the random effect of the interaction between the k-th block and the j-th year; and 𝐵𝐸
𝑗𝑘

 is the residual term ( , with  representing the residual variance). For Pop1, a 𝑒
𝑖𝑗𝑘

𝑒
𝑖𝑗𝑘
~𝑁 0, α

𝑒
2( ) α

𝑒
2

separate model was created for each replication and combined with an additional model:
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𝑌
𝑖𝑗
= μ + 𝐸

𝑗
+ 𝐺

𝑖
+ 𝑒

𝑖𝑗

where  represents the best linear unbiased predictors (BLUPs) for the genetic effects of the 𝑌
𝑖𝑗

i-th genotype in the j-th harvest time;  is the overall mean;  is the fixed effect of the j-th µ 𝐸
𝑗

harvest time;  is the random effect of the i-th genotype; and  is the residual term. To 𝐺
𝑖

𝑒
𝑖𝑗

estimate the variance components and BLUPs, we utilized the R package ASReml-R v4.1.0 

(Butler et al. 2009) employing the restricted maximum likelihood (REML) approach. We assessed 

the significance of fixed effects using Wald tests and the significance of random effects using 

analyses of deviance and likelihood ratio tests (LRTs). Broad-sense heritabilities were estimated 

according to Cullis et al. (2006):

𝐻² = 1 − 𝑃𝐸𝑉

2α
𝑔
2

where  represents the prediction error variance and  represents the estimated genetic 𝑃𝐸𝑉 α
𝑔
2

variance. Additionally, we computed heritabilities based on the ratio of genotypic variance to 

total phenotypic variance.

To facilitate direct comparisons of estimates between populations, BLUP values were 

rescaled to the range of 0–1. Multivariate and descriptive analyses were performed using R 

statistical software v4.1.2 (R Core Team 2013). To assess phenotypic similarities between 

genotypes, we conducted complete linkage hierarchical clustering analysis based on Euclidean 

distances.

Genotyping

The populations were genotyped using a genotyping-by-sequencing (GBS) approach following 

the methodologies outlined by Elshire et al. (2011) and Poland et al. (2012). A total of 94 

individuals from Pop1 and 182 individuals from Pop2, consisting of 180 progeny genotypes and 

their respective parents, were genotyped. In Pop1, genotyping was accomplished utilizing a 

combination of the restriction enzymes PstI and MseI, as described by Pimenta et al. (2021). In 

Pop2, only the enzyme PstI was employed, following the methodology described by Aono et al. 

(2020). Sequencing procedures were performed using the Illumina platform, with the NextSeq 

500 platform utilized for Pop1 and a combination of the GAIIx and NextSeq 500 platforms for 

Pop2.
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Single nucleotide polymorphism (SNP) calling was executed utilizing the TASSEL-GBS 

pipeline (Glaubitz et al. 2014), which was adapted for polyploid species (TASSEL4-POLY, 

Pereira et al. 2018). Read mapping was conducted utilizing the sugarcane genome sequence of 

the cultivar SP70-1143 obtained through methylation filtration (Grativol et al. 2014) and the 

Bowtie2 v2.2.5 tool (Langmead and Salzberg 2012). The selection of the sugarcane genomic 

reference was based on its demonstrated superiority in handling sugarcane GBS data, as 

evidenced by Aono et al. (2020). For subsequent analyses, biallelic SNPs were selected based on 

the following stringent criteria: (i) a minimum depth of 50 reads per individual at a SNP position, 

(ii) a minimum allele frequency of 10%, and (iii) a maximum of 10% missing data. Due to the 

aneuploid nature of the sugarcane genome, SNPs were organized based on allele proportions, 

representing the ratio between the number of reads of the reference allele and the total number 

of reads. The genotypic data were subjected to multivariate analysis using uniform manifold 

approximation and projection (UMAP) for dimension reduction, implemented with the R 

package Umap v0.2.10.0 (McInnes et al. 2018).

RNA Sequencing and Transcriptome Analyses

The culm samples were collected from the +1 internode of the selected genotypes at 

development times of 6, 8, 10, and 12 months. We employed three biological replicates and three 

technical replicates. RNA-Seq libraries were prepared and sequencing was performed on the 

HiSeq 2500 Illumina platform following the protocol described by Hosaka et al. (2021).

Raw sequencing reads were filtered using Trimmomatic v0.39 (Bolger et al. 2014). This 

process involved removing base pairs with quality scores below 3 at the beginning and end of the 

reads, excluding regions with an average quality less than 20 in a window of 4 base pairs, and 

discarding reads shorter than 75 base pairs. The filtered reads were then aligned to the genomic 

references of S. officinarum (GenBank GCA_020631735.1) and S. spontaneum (GenBank 

GCA_022457205.1) using STAR v2.7.3 (Dobin and Gingeras 2015). Each allele was considered 

an independent reference, resulting in 12 alignments per sequencing file—eight for S. officinarum 

and four for S. spontaneum. The aligned reads were sorted based on genomic positions using 

SAMtools v1.12 (Li et al. 2009), and transcriptomes were assembled using Stringtie v2.1.6 (Pertea 

et al. 2015).

To reduce redundancy in the assembled transcriptomes, we utilized CD-HIT (Fu et al. 

2012). First, redundancies within each species were eliminated by combining individual allele 

transcriptomes. Then, the combined transcriptomes of both species were merged to generate the 
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final transcriptome, which was also evaluated with CD-HIT (Fu et al. 2012) for redundancy 

removal. This approach ensured the selection of a single representative transcript for each set of 

sequences, facilitating downstream analyses.

Transcriptome assembly was evaluated using the BUSCO v5.5.0 tool (Simão et al. 2015), 

and the results were compared against those of both the Viridiplantae and Eukaryota databases. 

Transcript annotation was performed utilizing Trinnotate v4.0.1 software (Griffith et al. 2015) 

and the UniProt database (UniProt Consortium 2019).

To obtain gene expression estimates, we utilized Salmon v1.9.0 software (Patro et al. 

2017). Following the quantification of gene expression across samples, we implemented 

additional filtering steps to establish a refined set of gene expression estimates for subsequent 

analyses. Specifically, we computed the gene counts per million (CPM) values using the edgeR 

v3.36.0 package (Robinson et al. 2010), ensuring that only genes with at least three samples 

possessing a minimum of 10 CPMs were retained.

The distribution of RNA-Seq samples was visualized through a scatter plot generated 

from a principal component analysis (PCA) conducted on the gene expression estimates using R 

statistical software v4.1.2 (R Core Team 2013).

Genotype-Phenotype Associations

To identify associations between SNPs and the phenotypic values of Brix and POL, we 

employed two different approaches: a genome-wide association study (GWAS) and machine 

learning techniques (Aono et al. 2022). For the GWAS, we used the R package ASReml-R v4.1.0 

(Butler et al. 2009) with the REML approach. We modeled the BLUPs estimated from the 

previous models ( ) of the i-th individual using a linear mixed-effects model for each k-th SNP:𝑌
𝑖

𝑌
𝑖
= μ + 𝑀

𝑖𝑘
+ 𝑃𝐶1

𝑖
+ 𝑃𝐶2

𝑖
+ 𝐺

𝑖
+ 𝑒

𝑖

where  is the overall mean;  is the fixed effect associated with the allele proportion of the µ 𝑀
𝑖𝑘

k-th SNP of the i-th individual;  and  are fixed effects associated with the first 𝑃𝐶1
𝑖

𝑃𝐶2
𝑖

components of the i-th individual estimated through a principal component analysis (PCA) 

performed with the SNP data (missing values were imputed as the mean of the observed values 

for each SNP);  is the random polygenic effect of the i-th individual ( , with K 𝐺
𝑖

𝐺~𝑁 0, 𝐾α
𝑔
2( )
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representing the genomic relationship matrix and  representing the genetic variance); and  is α
𝑔
2 𝑒

𝑖

the residual term ( , with  representing the residual variance). We also employed 𝑒
𝑖
~𝑁 0, α

𝑒
2( ) α

𝑒
2

the same model to investigate potential associations between SNP markers and phenotypic 

measures within the biparental population (Pop2). However, we opted to exclude the 

contributions of  and  due to the inherent similarities observed among individuals.𝑃𝐶1
𝑖

𝑃𝐶2
𝑖

We calculated the genomic relationship matrix K using the R package AGHmatrix v2.1.0 

(Amadeu et al. 2016) with a fixed ploidy of 10 and allele dosages calculated based on ten intervals 

with a discretization length of 0.1 in the allele proportions. We evaluated the significance of each 

SNP using a Wald test with Bonferroni and false discovery rate (FDR) corrections, setting an 

adjusted Bonferroni p value threshold of 0.05 for considering a SNP associated with a 

phenotype.

As the genomic reference utilized for SNP calling is assembled at the scaffold level 

(Grativol et al. 2014), we employed an additional step to incorporate markers in linkage 

disequilibrium (LD) with the SNPs identified through GWAS. For each SNP associated with the 

traits under investigation, Pearson correlations were conducted with the remaining set of 

markers. We identified potential associations by selecting markers with a minimum absolute 

Pearson correlation coefficient of 0.75 and a significance threshold of p ≤ 0.05. The 

representation of these associations was constructed utilizing a correlation graph generated with 

the R package igraph v1.3.5 (Csardi and Nepusz 2006).

For the machine learning approach, we used feature selection (FS) techniques 

implemented in Python v3.10.12 with the scikit-learn v1.2.2 library (Pedregosa et al. 2011). Each 

SNP represented a feature, and the BLUP value was the target to be predicted. We employed 

three algorithms: gradient tree boosting (GTB), L1-based FS with a linear support vector 

regression system (SVM), and Pearson correlation (with a p value cutoff of 0.05). An SNP was 

considered to have a phenotypic association if it was identified by all three methods 

simultaneously (Aono et al. 2022).

In addition, to evaluate genotype‒phenotype associations identified via FS techniques, we 

compared the predictive performance of genomic prediction models trained using the complete 

set of SNPs against models trained exclusively with FS-selected markers, employing a 

leave–one-out cross-validation methodology. We employed two machine learning algorithms 

implemented in Python v3.10.12 with the scikit-learn v1.2.2 library (Pedregosa et al. 2011) as our 
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modeling approach: support vector regression (SVM) and adaptive boosting (AdaBoost). Model 

accuracies were evaluated using Pearson correlation coefficients and mean squared errors, 

measured considering the observed and predicted phenotypic values.

To elucidate the potential functional implications of the identified mutations, we 

associated all SNPs identified in correlation with Brix or POL measures with potential gene 

sequences retrieved from the assembled transcriptome. Specifically, we conducted an alignment 

of all assembled transcripts with the sugarcane genome sequence of the cultivar SP70-1143 using 

the BLASTn v2.11.0+ tool (Altschul et al. 1990). For each SNP-associated scaffold, we 

considered a maximum of 5 alignments, applying an E-value cutoff of 1e-6.

Based on the alignments obtained, we performed gene ontology (GO) enrichment 

analyses using the R package topGO v2.46.0 (Alexa and Rahnenführer 2009). We established an 

FDR-adjusted p value threshold of 0.05 to determine the significance of GO term enrichment. 

All enriched GO categories were summarized using the Revigo tool (Supek et al. 2011).

Differential Gene Expression and Coexpression Networks

The identification of differentially expressed genes (DEGs) was conducted using the filtered 

gene set and the R package DESeq2 v1.34.0 (Love et al. 2014). To identify genes potentially 

associated with differences in sugar accumulation profiles, we compared the gene expression 

profiles of the IN84-58 genotype (low sugar accumulation) with those of the hybrids SP80-3280 

and R570 (high sugar accumulation) considering the developmental time point as a factor in a 

model fitted according to a factorial design. Additionally, these sets of DEGs were intersected 

with contrasts performed on developmental time points of SP80-3280 and R570 gene expression 

estimates. An FDR-adjusted p value threshold of 0.05 and a log2-fold change of 1.5 were applied 

to define DEGs.

GO enrichment analysis was conducted using the R package topGO v2.46.0 (Alexa and 

Rahnenführer 2009), with an FDR-adjusted p value cutoff of 0.05. All enriched GO categories 

were summarized using the Revigo tool (Supek et al. 2011).

Using gene expression estimates organized in transcripts per million (TPM), we 

constructed a gene coexpression network employing the weighted gene coexpression network 

analysis (WGCNA) method implemented in the R package WGCNA v1.72.1 (Langfelder and 

Horvath 2008). Initially, we determined the soft power parameter (β) by selecting the value that 

resulted in a minimum R² of 0.8 and maximum mean connectivity, ensuring that the network 
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approximated a scale-free topology. Subsequently, based on Pearson correlation coefficients and 

the estimated β, we computed an adjacency matrix, which was then used to define a dissimilarity 

matrix derived from a calculated topological overlap matrix. Finally, average-linkage hierarchical 

clustering was applied to the dissimilarity matrix, and adaptive branch pruning was performed to 

identify modules of coexpressed genes.

GO module enrichment analysis was performed using the R package topGO v2.46.0 

(Alexa and Rahnenführer 2009) with an FDR-adjusted p value cutoff of 0.05.

Multiomics Analyses

To integrate the findings from various analyses, we conducted a comprehensive investigation 

using a gene coexpression network model. Initially, we examined each network module based on 

the following criteria: (i) the number of genes associated with GWAS/LD results, (ii) the number 

of genes associated with FS results, and (iii) the number of DEGs identified in intersection 

contrasts.

Based on these criteria, we selected groups of coexpressed genes and constructed specific 

gene coexpression networks for the IN84-58, SP80-3280, and R570 genotypes using the highest 

reciprocal rank (HRR) approach (Mutwil et al. 2010). We utilized gene expression estimates 

organized in TPMs for genes within these groups and generated a Pearson correlation coefficient 

matrix. Subsequently, we constructed the network by considering the 30 strongest absolute 

correlations (minimum R Pearson correlation of 0.7) and modeling a graph using the R package 

igraph v1.3.5 (Csardi and Nepusz 2006). Furthermore, we evaluated the network architecture 

using different centrality measures for each gene, including degree, Kleinberg’s hub score, and 

betweenness.

Results

Phenotyping and Genotyping

Brix and POL were analyzed through linear mixed effects models to comprehensively assess 

variance components and estimate the genetic contributions of the evaluated phenotypes 

(Supplementary Table S2). Notably, substantial correlations were detected between these traits in 

both populations studied, with Pearson correlation coefficients of 0.95 for the 97 sugarcane 

accessions (Pop1) and 0.9 for the 219 progeny genotypes resulting from the biparental cross 

(Pop2). Upon employing BLUP estimates (Supplementary Table S3), the correlation coefficient 

in Pop1 decreased to approximately 0.9, but in Pop2, it increased to approximately 0.93 (Fig. 1a 
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and b). This divergence in correlations highlights potential environmental influences that may 

have been captured by the preceding correlation analyses.

Fig. 1. Distribution of genotypic data and best linear unbiased predictions (BLUPs) for soluble 

solids content (Brix) and sucrose content (POL) in two evaluated populations: Pop1, consisting 

of a panel of 97 sugarcane accessions; and Pop2, comprising 219 progeny genotypes derived 

from a biparental cross. Scatter plots illustrating associations between Brix and POL are depicted 

for Pop1 (a) and Pop2 (b), along with dendrograms illustrating clustering profiles for each 

population. Additionally, uniform manifold approximation and projection (UMAP) analyses are 

presented for Pop1 (c) and Pop2 (d) based on SNP data. Individuals are colored according to a 

hierarchical clustering analysis of the phenotypic measures. Genomic relationship matrices are 

provided for Pop1 (e) and Pop2 (f), indicating the genetic relationships within each population.

Estimates of broad-sense heritability using variance ratios were greater in Pop1, with 

values ranging from approximately 0.89 for Brix in experimental unit 2 to approximately 0.97 for 
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POL in experimental unit 3. Heritability estimates obtained through Cullis’ method (Cullis et al. 

2006) were consistent with the values observed for the ratios, differing by approximately 1%. In 

contrast, Pop2 exhibited lower estimates (~0.36 for Brix and ~0.37 for POL). The higher 

estimates in Pop1 can be attributed to the more pronounced phenotypic variation among 

individuals in the panel, as Pop1 includes commercial sugarcane cultivars from Brazilian breeding 

programs as well as S. spontaneum and S. robustum accessions, representing traditional energy cane 

clones. Remarkably, the highest estimates of genetic effects for Brix and POL were observed for 

IACCTC059552, a modern sugarcane hybrid, and the lowest were recorded for IACBIO275, an 

energy cane clone (Supplementary Table S3).

The genetic differences observed in the populations and models were found to be 

statistically significant (Supplementary Table S2). In the biparental population (Pop2), clear 

evidence of heterosis was observed, with a significant proportion of progeny genotypes 

exhibiting estimates larger than those of the most productive parent (21 individuals for Brix and 

26 for POL). There were no significant interactions detected between genetic and year effects.

Hierarchical clustering analysis of the phenotypic measures from both populations 

revealed a distinct separation of genotypes into two groups, colored in green and red in Fig. 1a 

and b. By contrasting the Brix and POL measures between these groups, statistically significant 

differences were identified through t tests. The p values for Brix in Pop1 and Pop2 were 1.19e-13 

and < 2.2e-16, respectively, and for POL in Pop1 and Pop2, the p values were 3.014e-07 and < 

2.2e-16, respectively.

The sequencing of the GBS libraries generated a substantial amount of data, with 

863,889,004 reads for Pop1 and 1,103,163,250 reads for Pop2. Subsequent analysis using the 

TASSEL-POLY pipeline identified 874,597 and 137,757 SNPs for Pop1 and Pop2, respectively. 

To ensure data reliability, rigorous filtering criteria were applied, resulting in a final set of 16,166 

SNPs for Pop1 and 2,178 SNPs for Pop2 (Supplementary Tables S4 and S5).

Multivariate analysis (Fig. 1c and d) did not reveal any distinct patterns correlating 

genotypes with phenotypes, suggesting challenges in elucidating the genetic architecture 

underlying the observed traits. In Pop2, the absence of genotypic clusters was consistent with 

expectations due to the crossing nature of the genotypes. Conversely, in Pop1, a discernible 

pattern emerged, possibly indicating a subgroup of individuals with closer genetic relatedness, 

although this pattern did not correspond to any observed associations with sugar-related 
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phenotypes. Similar patterns were also observed in the genomic relationship matrices (Fig. 1e 

and f), further supporting the existence of a distinct subgroup within Pop1.

Transcriptome Assembly and Gene Expression Estimates

The RNA-Seq experiment generated a substantial dataset consisting of 1,240,508,982 paired-end 

sequencing reads, each with a length of 100 base pairs. The mean number of reads per sample 

was 11,486,194.28 (Supplementary Table S6). Following stringent filtering procedures, 

1,046,816,212 paired-end sequencing reads were retained, accounting for approximately 84.39% 

of the initial reads.

Subsequently, the filtered reads were aligned to the genomes of S. spontaneum and S. 

officinarum and assembled at the allele level, facilitating independent assemblies for each species 

allele. The transcript quantities assembled for each allele of S. spontaneum were as follows: A) 

53,826, B) 53,524, C) 52,249, and D) 52,569. For S. officinarum, the quantities were A) 55,272, B) 

53,563, C) 53,809, D) 50,945, E) 49,668, F) 46,037, G) 44,220, and H) 39,048.

To minimize redundancy and streamline the dataset, the transcripts assembled per allele 

in each species were combined, and CD-HIT software was utilized. This process resulted in the 

generation of 138,774 transcripts for S. spontaneum and 201,646 transcripts for S. officinarum. 

Subsequently, by combining these two transcriptomes and applying CD-HIT, a final 

comprehensive transcriptome comprising 291,959 transcripts was obtained. This integrated 

approach not only established a comprehensive transcriptome reference for both species but also 

facilitated the determination of the origin of each gene, enabling further evolutionary inferences 

to be made.

The transcriptome assembly strategy generated transcripts with sizes ranging from 99 to 

16,513 base pairs, with 291,615 transcripts (~99.88%) presenting sizes greater than 200 

nucleotides (the transcript N50 length was 1,765 bp). A comparison of these transcripts with the 

Eukaryota and Viridiplantae databases using BUSCO software revealed that 99.6% (86.3% of 

duplicated associations) and 99.7% (83.5% of duplicated associations) of the sequences were 

complete, respectively. Due to the use of allele-specific genome references for assembly, we 

expected a high percentage of duplications to be observed.

We identified a set of 46,098 genes by selecting those with at least three samples 

presenting 10 CPMs, and these genes were subsequently used for further analyses. Gene 

annotations were obtained through comparisons with the UniProt database, resulting in 
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successful alignment of all genes with UniProt proteins. This facilitated the retrieval of diverse 

annotations for functional analyses. Specifically, 37,196 genes (~80.69%) were found to 

correspond to GO terms. Analysis of the gene expression data using PCA revealed a distinct 

dispersion pattern across samples, effectively separating the genotypes (Fig. 2a). Notably, the 

IN84-58 genotype, representing S. spontaneum, exhibited more pronounced differences than the 

other genotypes.

Fig. 2. Gene expression analyses. (a) Principal component analysis (PCA) showing gene 

expression patterns across developmental time points (6, 8, 10, and 12 months old) for the 

IN84-58, SP80-3280, and R570 genotypes. (b) Identification of differentially expressed genes 

(DEGs) through intergenotype comparisons. (c) Heatmap illustrating the expression profiles of 

the final set of 853 DEGs selected for analysis.

Genotype-Phenotype Associations
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In our study aimed at identifying genotype‒phenotype associations, we initially employed a linear 

mixed-effects model to conduct the GWAS analysis (Table 1). Consistent with our expectations, 

the analysis revealed a greater number of associations in Pop1 than in Pop2, which was attributed 

to the greater genetic variability observed within Pop1. Specifically, in Pop1, we identified 7 

SNPs significantly associated with Brix measures and 6 SNPs significantly associated with POL. 

Notably, 5 SNPs exhibited simultaneous associations with both phenotypes, which aligns with 

the anticipated outcome due to the pronounced correlation between Brix and POL (Fig. 1a). 

Conversely, fewer associations were observed in Pop2, with only 1 SNP associated with Brix and 

another 1 associated with POL. Subsequent examination of the allelic proportion profiles of 

these SNPs in comparison to the phenotypic measurements revealed a consistent distribution 

pattern (Fig. 3a and b), supporting the validity of the observed associations.

Table 1. Genome-wide association study (GWAS) results for soluble solids content (Brix) and 

sucrose content (POL) across two distinct populations: Pop1, comprising a panel of 97 

sugarcane accessions; and Pop2, consisting of 219 progeny genotypes derived from a cross 

between the elite clone IACSP953018 (female parent) and the commercial variety IACSP933046 

(male parent). Adjusted p values were calculated using both Bonferroni and false discovery rate 

(FDR) corrections. SNPs with Bonferroni-adjusted p values ≤ 0.05 were deemed to be 

significantly associated.

Population Trait SNP P value FDR Bonferroni

Pop1 Brix scaffold16204|size3850_210_A/T 2.88E-09 4.66E-05 4.66E-05

scaffold15773|size3862_73_C/A 8.18E-08 0.0006490370472 0.001322046039

scaffold838968|size239_40_G/A 1.20E-07 0.0006490370472 0.001947111141

scaffold15773|size3862_75_C/T 1.67E-07 0.000673431525 0.0026937261

scaffold112357|size2063_1835_C/A 5.35E-07 0.00172989985 0.00864949925

scaffold32047|size2236_111_G/T 1.80E-06 0.004842866611 0.02905719966

scaffold103083|size2070_1963_G/T 2.83E-06 0.006542895698 0.04580026989

POL scaffold16204|size3850_210_A/T 1.16E-09 1.88E-05 1.88E-05

scaffold838968|size239_40_G/A 2.32E-08 0.000187183688 0.0003743673761

scaffold15773|size3862_73_C/A 1.18E-07 0.0005698556482 0.00190506238

scaffold15773|size3862_75_C/T 1.41E-07 0.0005698556482 0.002279422593

scaffold32047|size2236_111_G/T 2.19E-06 0.007079909011 0.03539954505

scaffold56428|size2092_1858_A/G 2.81E-06 0.007208389401 0.04544528141
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Pop2 Brix scaffold625903|size288_43_C/A 1.42E-05 0.008841259904 0.03098643235

POL scaffold5479|size4842_156_C/T 2.10E-05 0.03007418539 0.04568349979

Fig. 3. Allelic proportions of single nucleotide polymorphisms (SNPs) identified through a 

genome-wide association study (GWAS) related to soluble solids content (Brix) and sucrose 

content (POL) in two populations: Pop1, comprising a panel of 97 sugarcane accessions (a); and 

Pop2, consisting of 219 progeny genotypes derived from a cross between the elite clone 

IACSP953018 (female parent) and the commercial variety IACSP933046 (male parent) (b). 

Linkage disequilibrium (LD) networks for Pop1 (c) and Pop2 (d) constructed based on the 
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associations of SNPs identified through GWAS with the remaining markers in the dataset. SNPs 

were selected using feature selection (FS) techniques, including gradient tree boosting (GTB), 

L1-based FS employing linear support vector regression (SVM), and Pearson correlations (with a 

p value threshold of 0.05), in Pop1 (e) and Pop2 (f).

Among the 10 SNPs identified, we retrieved annotations for only 4 SNPs 

(Supplementary Table S7). Among these SNPs, 2 were simultaneously associated with the Brix 

and POL traits in Pop1: an SNP at position 210 on scaffold16204 and an SNP at position 111 on 

scaffold32047. These SNPs corresponded to 5 genes annotated for anion transporters 

(gene_32017, gene_34208, gene_34382, gene_38431, and gene_39421) and 5 genes annotated 

for the protein FAR1 (gene_11104, gene_4861, gene_5373, gene_6529, and gene_8883). 

Another SNP associated with POL in Pop1 was located at position 1858 on scaffold56428 and 

annotated for 2 genes encoding serine/threonine-protein kinases (gene_34982 and gene_43850). 

The final annotated SNP was found in Pop2. It was located at position 156 on scaffold5479 and 

was associated with 2 genes encoding pentatricopeptide repeat-containing proteins (gene_32532 

and gene_51857).

Of these 14 genes identified, 8 were exclusively found in S. officinarum (gene_32017, 

gene_34208, gene_38431, gene_39421, gene_11104, gene_4861, gene_5373, and gene_32532), 3 

were found in both species (gene_34382, gene_6529, and gene_43850), and 3 were exclusively 

found in S. spontaneum (gene_8883, gene_51857, and gene_34982). Notably, most of the genes 

found in regions associated with contrasting sugar accumulation profiles are from the S. 

officinarum genome.

Regarding the GO terms associated with these GWAS-identified markers, we recovered a 

total of 27 GO terms (Supplementary Table S8). The most prominent GO terms were 

“regulation of transcription, DNA-templated” in the biological process category, “nucleus” in 

the cellular component category, and “zinc ion binding” in the molecular function category, and 

all of these terms were associated with 9 genes. These results indicate the potential role of these 

genes in the genetic regulation associated with differences in Brix and POL measurements.

Given that the genomic reference used lacked chromosome-level assembly, we 

implemented an alternative strategy to identify LD associations with the markers identified 

through GWAS. Utilizing pairwise Pearson correlations among allelic proportions, we identified 

71 additional markers (Fig. 3c and d; Supplementary Table S9). Notably, only one marker was 

detected for Pop2, and this marker was specifically associated with the POL phenotypic trait. 
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Conversely, the remaining 70 markers were correlated with GWAS-defined SNPs within Pop1. 

Of particular interest, 68 out of the 70 associations in Pop1 were associated with a single SNP 

(position 210 on scaffold16204), which was organized into smaller clusters across different 

scaffolds. For instance, SNPs located at positions 1216, 1265, 1268, 1270, 1271, and 1272 on 

scaffold 24635 exhibited correlations of approximately 0.8 with GWAS-defined SNPs. Similarly, 

SNPs located at positions 157, 166, 169, 173, and 199 on scaffold 562126 displayed correlations 

of approximately -0.8 with GWAS-defined SNPs. Such patterns suggest the presence of a 

coherent cluster of markers within the same QTL region, which may not have been adequately 

captured due to limitations in the genomic reference utilized.

We identified 75 additional genes associated with the LD markers (Supplementary Table 

S7). Interestingly, we observed no overlap between the genes identified through GWAS and LD 

analysis. However, we found annotations related to members of the kinase family in both sets of 

genes. Additionally, our analysis revealed novel annotations for various genes, including those 

encoding the E3 ubiquitin-protein ligase, the photosynthetic NDH subunit of subcomplex B3, 

the cleavage stimulation factor, and several transcription factors, such as MYB36, MYB87, 

RAX1, RAX2, and RAX3.

Through an evaluation of the GO terms associated with the genes surrounding the 

LD-associated markers, we identified a total of 197 terms (Supplementary Table S8). Prominent 

among the cellular components was the nucleus, which was associated with 28 genes. The most 

conspicuous molecular function was ATP binding, which was linked to 17 genes, and the 

prominent biological process was embryo sac development, which was correlated with 15 genes. 

Furthermore, several other noteworthy terms emerged, such as gene silencing by RNA, the 

cellular response to glucose stimulus, the regulation of glucose-mediated signaling pathway, the 

regulation of gene expression, carbohydrate transport, and the cellulose catabolic process.

By conducting an enrichment analysis combining GO terms associated with the GWAS 

and LD results, we identified 16 enriched biological process terms and 8 enriched molecular 

function terms (Supplementary Table S10). Our analysis highlighted regulatory processes such as 

the regulation of glucose-mediated signaling pathways, embryonic development, the negative 

regulation of DNA-templated transcription, and the positive regulation of abscisic acid-activated 

signaling pathways.

Moreover, by employing the established FS techniques, we successfully identified 

potential genotype‒phenotype associations (Supplementary Table S11; Fig. 3e and f). By applying 
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a consensus approach involving the selection of markers identified by all three evaluated 

algorithms, we identified a total of 67 and 83 markers associated with the Brix and POL traits, 

respectively, in Pop1, with 15 overlapping SNPs. In Pop2, we identified a total of 82 markers 

associated with both the Brix and POL phenotypes, with an intersection of 15 SNPs. While no 

overlapping SNPs were observed between the populations, there were evident intersections 

among the FS methods for both phenotypic traits (Table 2).

Table 2. Single nucleotide polymorphisms (SNPs) associated with soluble solids content (Brix) 

and sucrose content (POL) were identified through the following feature selection strategies: 

gradient tree boosting (GTB), L1-based FS employing linear support vector regression (SVM), 

and Pearson correlation (with a p value threshold of 0.05). The populations employed were 

Pop1, consisting of a panel of 97 sugarcane accessions, and Pop2, consisting of 219 progeny 

genotypes derived from a cross between the elite clone IACSP953018 (female parent) and the 

commercial variety IACSP933046 (male parent).

Population Trait Brix POL Intersection (Brix and POL)

Pop1 GTB 193 193 25

SVR 6,362 6,307 5,632

Pearson 1,716 6,899 1,280

Intersection (GTB, SVR, 

and Pearson)

67 83 15

Pop2 GTB 176 176 50

SVR 837 851 662

Pearson 307 289 205

Intersection (GTB, SVR, 

and Pearson)

82 82 31

To evaluate the impact of FS-selected SNPs on the phenotypic variation of Brix and 

POL, we employed a genomic prediction approach. Specifically, we assessed the predictive 

accuracies of these SNPs for Brix and POL and compared them with those obtained using the 

entire marker set. Employing a leave-one-out cross-validation methodology, we observed 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 19, 2024. ; https://doi.org/10.1101/2024.06.18.599623doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.18.599623
http://creativecommons.org/licenses/by-nc-nd/4.0/


21

significant improvements in prediction accuracies with the FS-selected SNP set (Table 3). When 

utilizing the complete SNP set, the Pearson correlation coefficients between the observed and 

predicted values ranged from approximately 0.326 to 0.592 in Pop1 and from approximately 

0.249 to 0.763 in Pop2. These accuracies were substantially enhanced upon subsetting the SNP 

dataset, yielding values ranging from approximately 0.760 to 0.811 in Pop1 and from 

approximately 0.661 to 0.846 in Pop2.

Table 3. Performance evaluation of machine learning algorithms (support vector regression 

(SVR) and adaptive boosting (AdaBoost)) for predicting soluble solids content (Brix) and sucrose 

content (POL) using genotype data. The performances of utilizing the entire SNP dataset (All) 

and employing feature selection (FS) are compared.

Pop Algorithm Brix POL

Pearson R 

Correlation 

Coefficient

Mean Squared 

Error

Pearson R 

Correlation 

Coefficient

Mean Squared 

Error

All FS All FS All FS All FS

Pop1 SVR 0.546 0.806 0.036 0.017 0.592 0.760 0.023 0.015

AdaBoost 0.326 0.786 0.042 0.024 0.547 0.811 0.023 0.013

Pop2 SVR 0.763 0.835 0.020 0.010 0.748 0.846 0.016 0.008

AdaBoost 0.253 0.668 0.031 0.021 0.249 0.661 0.023 0.016

We observed overlaps between findings from FS and GWAS coupled with LD analysis. 

For Brix in Pop1, we identified two SNPs by both approaches: one located in scaffold15773 at 

position 73, and one in scaffold112357 at position 1835. In Pop2, the markers identified by 

GWAS were also identified through FS. Remarkably, we further detected two additional markers 

situated within the same scaffolds identified by GWAS but not highlighted by LD tests. We 

speculate that these associations went unnoticed previously due to the rigorous parameters 

applied in our investigation. These SNPs were associated with both Brix and POL traits in Pop1, 

with one located in scaffold838968 at position 30 (identified at position 40 by GWAS) and one in 

scaffold15773 at position 3490 (reported at positions 73 and 75 by GWAS). These findings 

underscore the complementary nature of the methodologies employed in our study, reinforcing 

the validity of our results.
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From the 238 SNPs identified using FS, we recovered 441 genes (Supplementary Table 

S7). Notably, when comparing these findings with those of GWAS and LD analyses, we 

observed that only two genes, namely, gene_32532 and gene_51857, were shared. Remarkably, 

these genes both encode pentatricopeptide repeat-containing proteins and were found to be 

associated with a SNP (position 156 on scaffold5479) identified by both methodologies.

With respect to GO terms, we identified 632 terms associated with the analyzed genes 

(Supplementary Table S8). The predominant GO term for the cellular component category was 

'nucleus', which was associated with 168 genes. For the molecular function category, 'ATP 

binding' was the most prominent term and was linked to 89 genes. In terms of biological 

processes, 'protein transport' was associated with 30 genes. The second most prevalent biological 

process was 'regulation of transcription, DNA-templated', which was associated with 27 genes. 

This finding, in conjunction with the prevalence of ATP binding functions, aligns well with the 

findings from GWAS and LD analyses.

Furthermore, our analysis revealed insights into carbohydrate-related biological 

processes. We observed associations with carbohydrate homeostasis (3 genes), the carbohydrate 

metabolic process (2 genes), and carbohydrate transport (2 genes). This underscores the potential 

of our approach to identify genes involved in the broader mechanisms of sugar production and 

storage in sugarcane.

By conducting an enrichment analysis of these genes, we identified 34 GO terms 

enriched for molecular functions and 39 terms for biological processes (Supplementary Table 

S10). Among the enriched biological processes, the negative regulation of the transforming 

growth factor beta receptor signaling pathway, glutathione catabolic process, endoplasmic 

reticulum membrane fusion, and regulation of phosphate transport were the most significantly 

enriched processes.

Differential Expression Analyses

To identify DEGs between IN84-58 (the S. spontaneum-representative genotype) and the hybrids 

SP80-3280 and R570, we developed a gene expression model incorporating development time 

and genotype as factors. We then compared gene expression levels across genotypes. Our 

analysis revealed a total of 19,511 DEGs (8,630 upregulated in IN84-58 and 10,881 upregulated 

in SP80-3280) and 20,869 DEGs (9,338 upregulated in IN84-58 and 11,531 upregulated in R570) 

when comparing IN84-58 with SP80-3280 (Supplementary Table S12) and R570 (Supplementary 
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Table S13), respectively. Although the differences were not pronounced, the majority of DEGs 

were downregulated in IN84-58.

To potentially identify DEGs associated with variations in sugar accumulation profiles, 

we conducted a comparative analysis of the developmental times of the SP80-3280 and R570 

genotypes. Specifically, we examined gene expression patterns between 6 and 8 months, 8 and 10 

months, and 10 and 12 months for both the SP80-3280 (Supplementary Table S14) and R570 

(Supplementary Table S15) genotypes. This comparison aimed to elucidate alterations in 

sugarcane development possibly linked to processes involved in the interplay between growth 

and sugar accumulation processes. Our observations revealed distinct profiles between the two 

genotypes. SP80-3280 exhibited more pronounced differences toward the later stages of 

development (10 to 12 months), and R570 displayed greater disparities during the earlier stages 

(6 to 8 months) (Table 4).

Table 4. Differentially expressed genes (DEGs) identified through comparisons of development 

times between the SP80-3280 and R570 genotypes.

Condition 1 Condition 2 Number of 

DEGs

Upregulated in 

Condition 1

Downregulated in 

Condition 1

SP80-3280

(6 months old)

SP80-3280

(8 months old)

985 593 392

SP80-3280

(8 months old)

SP80-3280

(10 months old)

465 89 376

SP80-3280

(10 months old)

SP80-3280

(12 months old)

4,746 1,157 3,589

R570

(6 months old)

R570

(8 months old)

2,250 569 1,681

R570

(8 months old)

R570

(10 months old)

2,070 122 1,948

R570

(10 months old)

R570

(12 months old)

1,174 753 421

The total numbers of DEGs identified in the developmental time comparisons between 

sugarcane varieties SP80-3280 and R570 were 5,559 and 4,936, respectively. Subsequently, we 

intersected these sets with the DEGs identified from the expression differences between 
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IN84-58 and both SP80-3280 and R570. This analysis revealed 2,649 DEGs for SP80-3280 and 

2,468 for R570. To further refine the DEG candidates for investigation alongside the 

genotype-phenotype associations, we intersected these two sets, resulting in a final set of 853 

DEGs. Employing this strategy allowed us to pinpoint a group of DEGs exhibiting differences 

at various development times between SP80-3280 and R570 and between these two genotypes 

and IN84-58 (Fig. 2b, Supplementary Table S16). Visualization of the expression patterns of 

these genes via a heatmap illustrates their contrasting profiles (Fig. 2c).

Our investigation revealed associations between genes identified as DEGs and findings 

from the other approaches employed (GWAS, LD and FS). Specifically, gene_34382, annotated 

as an anion transporter, was linked to a SNP identified through a GWAS for Brix and POL traits 

in Pop1, located at position 210 on scaffold16204. Additionally, gene_71279 and gene_86546, 

both associated with the transcription factors MYB36, MYB87, RAX1, RAX2, and RAX3, were 

correlated with LD associations according to GWAS results at position 53 on scaffold196356. 

Furthermore, gene_10640 (encoding Flavanone 3-dioxygenase 2, Gibberellin 3-beta-dioxygenase 

1, and Jasmonate-induced oxygenase), gene_33300 (encoding Flavanone 3-dioxygenase 2 and 

Jasmonate-induced oxygenase), and gene_52053 (encoding Flavanone 3-dioxygenase 2, 

Jasmonate-induced oxygenase, and Leucoanthocyanidin dioxygenase) were associated with the 

SNP at position 50 on scaffold108823 according to the FS approach.

In addition, although not directly linked to the same set of genes, we identified shared 

annotations between the DEGs and the genotype-phenotype associations. Notably, the FAR1 

protein exhibited associations with gene_8664, a DEG identified in our study, and with 

gene_11104, gene_4861, gene_5373, gene_6529, and gene_8883, all of which were linked to a 

SNP associated with Brix and POL traits (located at position 111 on scaffold32047) according to 

the GWAS. Similarly, the E3 ubiquitin-protein ligase showed associations with several DEGs, 

including gene_96766, gene_99723, gene_112869, gene_25927, gene_31683, gene_76160, and 

gene_99050, all of which were associated with a SNP detected within the LD set. Furthermore, 

beta-glucosidase was associated with various DEGs and with gene_50226, which is a gene linked 

to an LD result (a SNP at position 300 on scaffold413444).

Furthermore, we identified 48 enriched biological process GO terms (Supplementary 

Table S17). These terms encompass various biological functions, such as defense response (e.g., 

ethylene-activated signaling pathway, defense response to fungus, response to heat, and response 

to jasmonic acid), plant development (e.g., gibberellin biosynthetic process and cell wall 

macromolecule catabolic process), and regulatory processes (e.g., regulation of DNA-templated 
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transcription and induction of programmed cell death). Moreover, we identified 36 distinct 

enriched molecular function GO terms. Notably, these terms included UDP-glucose 4-epimerase 

activity and 9-cis-epoxycarotenoid dioxygenase activity. These molecular functions play pivotal 

roles in processes associated with sucrose accumulation and plant metabolism.

Gene Coexpression Networks

To comprehensively integrate our findings, we constructed a gene coexpression network 

employing RNA-Seq gene expression estimates and the WGCNA methodology. Utilizing 

Pearson correlation coefficients, we computed a gene expression correlation matrix, 

subsequently fitting the network into a scale-free topology with a β power of 6, yielding an R² 

value of ~0.808 and a mean connectivity of ~992.082. By employing hierarchical clustering, we 

delineated 250 distinct modules within the network (Supplementary Table S18), ranging from a 

minimum of 50 genes in group 249 to a maximum of 1,345 genes in group 0. The average gene 

count per module was approximately 184.40, with a median of 128.5 and a standard deviation of 

approximately 177.33.

In our investigation, each network group was analyzed for the presence of genes 

associated with GWAS/LD, FS, or DEGs (Supplementary Table S19). Our findings revealed that 

64 groups harbored at least one gene associated with GWAS/LD, 155 groups harbored at least 

one gene associated with FS, and 146 groups harbored at least one DEG. Notably, 32 groups 

were concurrently associated with all three approaches. By focusing on these 32 groups and 

computing the median number of genes per group associated with GWAS/LD, FS, and DEGs, 

we identified 1, 3, and 8 genes, respectively. We identified and focused our subsequent analysis 

on groups meeting or surpassing these thresholds, leading to the selection of 8 groups (labeled 0, 

2, 9, 12, 15, 18, 36, and 63) for in-depth investigation (4,939 genes).

We performed a GO enrichment evaluation of each of these groups (Supplementary 

Table S20). Only group 0 presented one biological process term (photosynthesis, light harvesting 

in photosystem I) enriched according to the established criteria. In relation to molecular function 

GO terms, group 0 presented three enriched terms (metal ion binding, DNA-binding 

transcription factor activity, and chlorophyll binding), and group 12 presented two enriched 

terms (naringenin 3-dioxygenase activity and ATP binding).

Using less stringent criteria (nonadjusted p value of 0.01), we identified additional 

significant terms associated with sucrose metabolism and related processes. In group 0, the 

sucrose biosynthetic process (p = 0.00765) and sucrose-phosphate synthase activity (p = 
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0.00961) were enriched. In group 12, terms related to the response to sucrose (p = 0.00072) and 

sucrose transport (p = 0.0045) were significantly enriched. Similarly, in group 15, terms related to 

carbohydrate transport (p = 0.00436), carbohydrate binding (p = 0.00174), and sucrose 

alpha-glucosidase activity (p = 0.0094) were significantly enriched. In group 18, sucrose transport 

(p = 0.00165) and sucrose alpha-glucosidase activity (p = 0.00607) were enriched. Additionally, in 

group 36, sucrose 1F-fructosyltransferase activity (p = 0.00041) was enriched, and in group 63, 

carbohydrate metabolic processes (p = 0.00258) were enriched.

These findings suggest that, in comparison to other network modules, individual groups 

within the identified clusters do not exhibit distinct or pronounced specific roles. This lack of 

specificity arises from the broad impact of their functions across plant metabolism, as many 

processes performed by these groups are also integral to other modules. However, when all 

genes within these groups were aggregated and a comprehensive enrichment analysis was 

conducted (Supplementary Table S21), the enrichment of more biological processes emerged. 

These enriched processes included the regulation of DNA-templated transcription and positive 

regulation of the salicylic acid-mediated signaling pathway. These findings imply that the 

collective action of genes within these groups may exert influence over a range of processes 

executed by the selected network clusters.

Finally, by leveraging the genes identified within these 8 groups and employing the HRR 

approach, we constructed three distinct gene coexpression networks: (i) a network tailored to the 

expression data of the hybrid R570 (Fig. 4a); (ii) a network for the hybrid SP80-3280 (Fig. 4b); 

and (iii) a network specific to the IN84-58 genotype (Fig. 4c). Considering a total of 4,939 genes, 

network (i) comprised 2,051 genes and 5,078 edges (with 55 genes having more than 25 

connections), network (ii) comprised 2,370 genes and 5,467 edges (with 53 genes having more 

than 25 connections), and network (iii) comprised 2,791 genes and 7,963 edges (with 112 genes 

having more than 25 connections). The reduction in gene count is attributed to the HRR 

methodology, which selectively retains the most robust associations.
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Fig. 4. Specific gene coexpression networks modeled using subgroups selected from the original 

network constructed with the entire set of genes, separated according to (a) sugarcane hybrid 

R70, (b) hybrid SP80-3280, and (c) IN84-58, a representative genotype of S. spontaneum. (d) Gene 

Ontology (GO) categories associated with biological processes within these selected groups.

This disparity underscores the distinct structural characteristics of the networks, with 

network (iii) exhibiting a more condensed architecture than networks (i) and (ii). This 

discrepancy potentially signifies the distinct manners in which the biological functions correlated 

with these genes are coordinated in each genotype (Fig. 4d), including carbohydrate metabolic 

processes, carbohydrate transport, and regulation of carbohydrate metabolism. These processes 

hold significant relevance in the investigation of sucrose accumulation in sugarcane.

Furthermore, given the broad spectrum of biological processes associated with these 

genes (Fig. 4d) and their potential relevance to sugar accumulation in sugarcane, we examined the 

gene interactions within each network using centrality measures to pinpoint key genes 

orchestrating these mechanisms. For each network, we assessed centrality measures, including 
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degree, hub score, and betweenness. A comparison of the network for R570 (Supplementary 

Table S22), the network for SP80-3280 (Supplementary Table S23), and the network for IN84-58 

(Supplementary Table S24) revealed notable disparities in the distribution of gene connections 

and the identification of pivotal genes driving network structure (Table 5). This observation 

underscores the distinct regulatory pathways that may lead to the activation of common 

biological processes in different genotypes.

Table 5. Centrality evaluations for specific gene coexpression networks modeled using the 

highest reciprocal rank (HRR) approach and the genotypes R570, SP80-3280, and IN84-58.

Network Statistic Degree Kleinberg’s Hub 

Score

Betweenness

R570 Minimum 1 0 0

Maximum 61 1 ~176011.76

Mean 4.061 0.0255393 5349.1

Median 2 0.0043837 395.2

Standard Deviation 6.063621 0.06725531 14,058.07

Top 3 Nonannotated gene 

(value of 61); 

bifunctional 

aspartokinase/homoser

ine dehydrogenase 1 

(value of 50); and zinc 

finger FYVE 

domain-containing 

protein 26 (value of 50)

Bifunctional 

aspartokinase/homoser

ine dehydrogenase 1 

(value of 1); GEL 

complex subunit OPTI 

(value of ~0.97); and 

nonannotated gene 

(value of ~0.95)

Nonannotated gene 

(value of ~176,011.76); 

nonannotated gene 

(value of ~161,517.31); 

and protein translation 

factor SUI1(value of 

~145,158.23)

SP80-3280 Minimum 1 0 0

Maximum 62 1 ~184,912.91

Mean 4.614 0.062281 4,841.1

Median 2 0.022610 526.8

Standard Deviation 6.294851 0.09964838 12,779.9
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Top 3 Large ribosomal 

subunit protein eL18 

(value of 62); 

transcription factor 

BTF3/basic 

transcription factor 3 

(value of 55); and 

Calcium/calmodulin-re

gulated receptor-like 

kinase 1 (value of 46)

Senescence associated 

gene 20 (value of 1); 

Large ribosomal 

subunit protein eL18 

(value of ~0.99); and 

nonannotated gene 

(value of ~0.94)

Transcription factor 

BTF3/basic 

transcription factor 3 

(value of ~184,912.91); 

large ribosomal subunit 

protein eL18 (value of 

~166,457.51); and 

Calcium/calmodulin-re

gulated receptor-like 

kinase 1 (value of 

~113,026.88)

IN84-58 Minimum 1 0 0

Maximum 51 1 ~171,446.33

Mean 5.706 0.060052 5033.2

Median 3 0.024053 644.1

Standard Deviation 7.503239 0.09622554 11,460.91

Top 3 Adagio protein (value 

of 51); glutathione 

S-transferase (value of 

49); and nonannotated 

gene (value of 48)

Acyl-coenzyme A 

thioesterase 13 (value 

of 1); cinnamoyl-CoA 

reductase 1 (value of 

~0.97); and auxin 

response factor (value 

of ~0.90)

Kinetochore-associated 

protein KNL-2 (value 

of ~171,446.33); 

formin-like protein 

(value of ~90,953.78); 

and protein Weak 

Chloroplast Movement 

Under Blue Light (value 

of ~85,236.03)

Discussion

Strategies for Dealing with Sugarcane Genetic Complexity

In our study, we employed various innovative strategies to overcome the genomic intricacies of 

sugarcane in order to investigate the molecular basis of the most relevant trait of this crop. One 

of the primary obstacles encountered when investigating sugarcane polymorphisms are 

aneuploidies, which manifest as variable numbers of alleles per chromosome and distinct 

genomic regions harboring different allele copy numbers within the same chromosome (Zhang 

et al. 2018; Aono et al. 2021).
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Traditionally, addressing such complexity has involved either simplifying SNP markers by 

assuming fixed ploidy (Fickett et al. 2019; Yang et al. 2020; Pimenta et al. 2021; Wang et al. 

2023a; Zhang et al. 2023) or estimating specific ploidy levels for individual markers (Balsalobre et 

al. 2017; Batista et al. 2022). However, in our study, rather than disregarding allele variations, we 

opted to represent SNPs not as dosages but as allele proportions. This approach allowed us to 

retain a significant number of markers that would otherwise have been discarded due to the low 

statistical power of the dosage estimation process (Aono et al. 2020).

In recent years, there have been notable advancements in sugarcane genomics, with the 

emergence of several genomic references, including those tailored for allele specificity (Zhang et 

al. 2018; Bao et al. 2024; Healey et al. 2024). Although these resources have significantly 

enhanced sugarcane genomic studies, accurately aligning short sequencing reads to these 

references and inferring correct allele dosages remains a challenge. The sugarcane genome is 

characterized by a high degree of duplication, leading to a substantial proportion of reads being 

mapped in duplicate across its genome. The conventional approach to address this issue involves 

excluding duplicate mapped reads, which, unfortunately, results in a significant reduction in the 

number of generated SNPs (Gardiner et al. 2016).

However, Aono et al. (2020) demonstrated that this reduction can be circumvented by 

utilizing a sugarcane methyl-filtered reference (Grativol et al. 2014), which is compatible with the 

GBS approach employed. Thus, we chose to utilize this reference for SNP calling, thereby 

overcoming the reduction in SNP numbers observed with other genomic references. 

Furthermore, to indirectly associate our findings with the genomic references of S. officinarum 

and S. spontaneum, we conducted comparative alignments between RNA-Seq-based assembled 

genes and the methyl-filtered genome scaffolds. By employing this strategy, we not only 

increased the number of markers but also enhanced the likelihood of identifying associations 

with QTL regions.

Our approach to addressing the complexity of sugarcane genetics diverged from 

traditional QTL mapping methods based on linkage analyses. Instead, we employed marker‒trait 

association tests in Pop2. The current methodologies available for handling polyploid species via 

linkage analysis do not adequately address the nuances of sugarcane genetics (Mollinari et al. 

2020). The construction of linkage maps in sugarcane typically yields numerous unsaturated 

linkage groups characterized by substantial intermarker distances (Costa et al. 2016; Balsalobre et 

al. 2017; Yang et al. 2018; You et al. 2019; Wang et al. 2022b; Wang et al. 2022b, 2023a). As a 

consequence, many markers are excluded from the analysis, thereby limiting the pool of SNPs 
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available for QTL identification. Moreover, we leveraged machine learning approaches to 

enhance the reliability of our findings. Through the integration of data from two distinct 

populations and the utilization of diverse methodological strategies, we strengthened the 

robustness of our inferences.

The exploration of genotype‒phenotype relationships in sugarcane, in conjunction with 

other omics approaches, is still in its early stages. Only a limited number of studies have 

investigated these associations within a multiomic framework (Li et al. 2023; Pimenta et al. 2023). 

We believe that integrating such methodologies has greatly enhanced our ability to infer the 

underlying biological mechanisms governing sucrose accumulation in sugarcane. Although the 

fundamental mechanisms of sucrose metabolism are widely acknowledged (Sachdeva et al. 2011; 

Datir and Joshi 2016), the factors contributing to enhanced sucrose accumulation remain 

incompletely understood. Consequently, integrating the findings from various omics analyses, 

particularly through coexpression analysis, has provided a comprehensive and valuable dataset.

Novel Insights into Sugarcane Sucrose Accumulation

Sugarcane is the crop with the greatest capacity for sucrose storage (Qin et al. 2021). 

Consequently, breeding programs for sugarcane have prioritized the development of varieties 

with optimized sucrose storage capabilities. Variations in sucrose content within sugarcane 

varieties are attributed to a complex interplay of polygenic effects, diverse biological processes 

and environmental effects (Khan et al. 2023). Previous GWASs have elucidated the association 

of sucrose accumulation with polymorphisms located near different genes. These genes 

encompass annotations mostly related to plant growth, development (Racedo et al. 2016; Fickett 

et al. 2019; Wang et al. 2023b), and responses to both biotic and abiotic stresses (Wang et al. 

2023b; Zhang et al. 2023). In our GWAS analysis, although we found noteworthy similarities 

with previous studies, particularly regarding the involvement of phosphatases, kinases, and 

ubiquitin-like proteins (Fickett et al. 2019; Wang et al. 2023b; Zhang et al. 2023), we were able to 

expand upon these findings.

The involvement of sucrose signaling pathways in regulating various growth and 

developmental processes is widely recognized in the literature (Papini-Terzi et al. 2009; Chen et 

al. 2019). Moreover, the intricate interplay between sucrose and plant hormones, such as abscisic 

acid, salicylic acid, jasmonic acid, and ethylene, underscores the multifaceted nature of the 

association between sucrose and stress responses. Sucrose serves as an energy source to cope 
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with stress, and at different levels, it plays pivotal roles in regulating the expression of 

stress-responsive genes (Khan et al. 2023).

Our investigation, supported by the literature, underscores the synergistic mechanism 

wherein sucrose levels impact stress response and growth dynamics. Notably, for Pop1, we 

identified GWAS-associated SNPs surrounding genes annotated for anion transporters, FAR1 

proteins, and serine/threonine-protein kinases. These genes play pivotal roles in balancing 

growth and stress responses (Zheng et al. 2010; Ramesh et al. 2015; Liu et al. 2019; Jiang et al. 

2022) and have potential implications for carbohydrate synthesis (Ma et al. 2017; Luo et al. 2020; 

Liu et al. 2022). Furthermore, our GWAS of Pop2 revealed a gene annotated for a 

pentatricopeptide repeat-containing (PPR) protein, which has also been implicated in both plant 

development and stress response pathways (Liu et al. 2017; Pimenta et al. 2023). Moreover, PPR 

proteins are implicated in the modulation of gene expression in organelles and play crucial roles 

in plant embryogenesis (Cushing et al. 2005; Yin et al. 2013), potentially accounting for the 

observed enrichment of GO terms associated with embryonic development.

Although the use of the sugarcane methyl-filtered genome reference enabled us to detect 

a significantly greater number of SNPs, the assessment of LD decay patterns was hindered by the 

fragmented nature of this assembly. Nevertheless, broadening the analysis to include LD 

associations with GWAS-identified markers across the entire SNP set, irrespective of their 

scaffold location, allowed us to retrieve a more extensive set of genes, thereby facilitating more 

comprehensive inferences.

Consistent with our GWAS findings, we also identified additional genes associated with 

stress responses in the LD associations. These include E3 ubiquitin-protein ligase (Shu and Yang 

2017), calcineurin B-like protein 10 (Su et al. 2020), RING finger protein 141 (Han et al. 2022), 

abscisic acid 8'-hydroxylase 2 (Umezawa et al. 2006), DEAD-box ATP-dependent RNA helicase 

25 (Kim et al. 2008), and peroxisomal biogenesis factor 3 (Hu et al. 2012). Notably, several 

stress-responsive genes are associated with sucrose accumulation, potentially leading to changes 

in carbon allocation and photosynthetic activities (Verma et al. 2019; Qin et al. 2021).

Additionally, through LD expansion, we successfully identified key players involved in 

sucrose synthesis and accumulation. Our analysis revealed genes associated with crucial 

processes, including bZIP transcription factor, beta-glucosidase, and thioredoxin-like protein 

genes. The bZIP transcription factor has previously been recognized as a negative regulator of 

cold and drought responses in rice (Liu et al. 2012). It also plays a significant role in various 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 19, 2024. ; https://doi.org/10.1101/2024.06.18.599623doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.18.599623
http://creativecommons.org/licenses/by-nc-nd/4.0/


33

carbohydrate-associated processes, highlighting the intricate relationship between stress 

responses and growth dynamics. Moreover, in addition to its involvement in starch regulation in 

rice (Wang et al. 2013a), bZIP has been implicated in sucrose synthesis, transport, and 

metabolism (Ma et al. 2019; Stein and Granot 2019), and its role has already been investigated in 

sugarcane (Wang et al. 2022a).

Furthermore, the beta-glucosidase protein has been linked to sucrose synthesis and 

accumulation (Khan et al. 2023), potentially exerting a negative influence on sucrose 

accumulation (Qin et al. 2021). Last, thioredoxin (TRX) proteins are associated with trehalose 

synthesis (Khan et al. 2023), which has been shown to impact sucrose metabolism (De Oliveira 

et al. 2022). TRX proteins play a pivotal role in modulating chloroplast functions to maintain 

equilibrium in photosynthetic reactions through redox regulation (Nikkanen and Rintamäki 

2019). Consequently, these proteins are intricately linked to carbohydrate metabolism and 

responses to oxidative stress. Moreover, TRX has previously been identified as a regulator of 

carbon-nitrogen partitioning in tobacco (Ancín et al. 2021). Overexpression of TRX leads to the 

accumulation of nitrogen-related metabolites while decreasing carbon-related metabolites.

Even with the LD approach employed alongside GWAS results, we did not identify a 

significant number of genes directly regulating sucrose metabolism, such as sucrose-synthesizing 

and hydrolyzing enzymes (Datir and Joshi 2016). The lack of further associations related to 

sucrose metabolism, including sucrose synthase, sucrose phosphate synthase, and invertases, may 

be attributed to various factors. First, the genes identified through GWAS and LD analyses might 

exert an indirect influence on these processes, triggering mechanisms that ultimately impact the 

efficiency of sucrose accumulation through pathways yet to be elucidated, thus warranting 

further investigation. This is particularly noteworthy in light of previous unsuccessful endeavors 

to manipulate genes directly linked to sucrose transport and metabolism (Qin et al. 2021).

Moreover, the reduced number of individuals employed in Pop1 for GWAS might have 

influenced our findings. Although the sucrose content profiles of the selected individuals 

exhibited high variability, as evidenced by the high heritability estimates of 0.89 and 0.9 for Brix 

and POL, respectively, increasing the number of genotypes could enhance the observed results. 

This expansion could facilitate the identification of additional associations, potentially capturing 

effects with reduced impact on phenotypic variance and lower allele frequencies (Korte and 

Farlow 2013).

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 19, 2024. ; https://doi.org/10.1101/2024.06.18.599623doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.18.599623
http://creativecommons.org/licenses/by-nc-nd/4.0/


34

Additionally, the use of GBS has limited our ability to sample various genomic regions 

for evaluation. Although GBS has the potential to identify a significant number of markers 

associated with QTLs (Elshire et al. 2011), its coverage of the entire genome is incomplete. 

Coupled with our employment of a fragmented genomic reference, several regions of the 

sugarcane genome remained unassessed. Therefore, the utilization of scalable and high-quality 

long-read sequencing holds great promise for advancing sugarcane genomics, particularly for 

enabling proper application of the current allele-specific genomic references (Zhang et al. 2018; 

Bao et al. 2024; Healey et al. 2024).

When evaluating the enriched GO terms associated with the GWAS and LD results, it 

was possible to observe molecular functions and biological processes primarily pertaining to 

regulatory activities, such as kinase activity, intracellular transport, and functions related to RNA 

and DNA processing. Specifically, certain terms are associated with sugar metabolism and the 

hormone abscisic acid (ABA), which plays a pivotal role in plant metabolism, particularly in 

response to abiotic stress. Previous investigations conducted on sugarcane have indicated a 

potential overlap between sugar and ABA-related processes. This overlap arises from the capacity 

of ABA to regulate a set of genes associated with sucrose metabolism (Papini-Terzi et al. 2009).

In addition to the findings obtained from GWAS, we employed machine learning 

approaches, a strategy that has proven effective in uncovering genotype‒phenotype associations 

(Aono et al. 2020; Pimenta et al. 2021, 2023). Through this integrative approach, we present a 

comprehensive analysis that extends beyond conventional GWAS findings. This enables us to 

uncover a wider set of metabolic pathways that may be associated with genes implicated in 

sucrose accumulation.

Our analysis revealed an expanded repertoire of enriched GO terms in the FS results, 

reflecting a diverse range of regulatory and nonspecific processes. These include posttranslational 

modifications in proteins, DNA and organelle processing, embryonic development, transport, 

and nutrient responses. Notably, processes related to growth, hormone signaling, stress 

responses, and lipid metabolism were also indicated. To date, there has been no direct association 

between these processes and sugar metabolism documented in the literature. However, it is 

plausible that, similar to the mechanism associated with ABA, these processes may exert an 

indirect influence on this process.

When comparing different genotypes, the observed DEGs were implicated in a broad 

array of biological processes. Thus, when comparing the IN84-58 S. spontaneum genotype with 
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the SP80-3280 and R570 hybrid genotypes, subset selection was necessary to identify potential 

associations with sucrose accumulation profiles. Although sucrose synthesis primarily occurs in 

sugarcane leaves, sucrose is transported through the phloem to culms, where it is utilized for 

plant growth and development or is stored (Mason et al. 2020). When the plant reaches 

maturation, sugars are directed toward storage, accompanied by the activation of specific 

mechanisms, resulting in changes in accumulation efficiency within the culms (Wang et al. 

2013b).

Thus, we selected DEGs between S. spontaneum and the hybrids only if they were also 

detected during contrasting developmental stages. This decision stems from the fact that the 

gene expression patterns in sugarcane tissues are significantly influenced by the developmental 

stage (Wang et al. 2013b; Chen et al. 2019). In addition to developmental differences, there are 

also genotype-specific DEGs (Papini-Terzi et al. 2009). As our focus did not include the specific 

mechanisms of R570 and SP80-3280, we opted for an intersection between the results obtained 

from both comparisons, thereby enhancing the reliability of associating such expression changes 

with sucrose accumulation.

The intersection of the DEG sets led to the identification of 853 genes, revealing 

intriguing insights. Notably, these genes are associated with biological processes that overlap with 

those identified through GWAS and FS-selected markers. Regulatory mechanisms involving 

protein modifications, transcription factors, responses to oxidative stress, anion transport, and 

DNA/RNA processing were indicated. Additionally, these genes play roles in the response to 

both biotic and abiotic stresses, with implications for ethylene and gibberellin regulation. 

Furthermore, associations with sugar catabolism were discerned. This convergence of 

mechanisms across multiple omics layers underscores the interconnectedness of biological 

processes and the potential for integrated analyses to increase our comprehension of complex 

traits.

As anticipated, our analysis revealed genes that exhibited both differential expression and 

associations with phenotype‒genotype relationships. Among these genes, the only gene that 

overlapped with GWAS findings was annotated as an anion transporter, reinforcing the potential 

involvement of its activity in sucrose accumulation. With respect to genes associated with 

FS-selected markers, we identified one gene encoding the transcription factor MYB36, which has 

been previously implicated in plant growth and stress response (Monje-Rueda et al. 2023). 

Additionally, we detected a gene annotated for jasmonate-induced oxygenase, known for its role 
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in suppressing plant immunity (Caarls et al. 2017), providing further insights into the molecular 

mechanisms underlying disease susceptibility in high Brix genotypes.

Additionally, we also found common annotations between the set of DEGs and the 

GWAS results. Although they do not correspond to the same genes, it is clear that the same 

biological mechanisms are associated with phenotypic variability favoring sucrose accumulation 

and differential gene expression in different sugar content genotypes. The regulatory roles of the 

FAR1 protein, E3 ubiquitin-protein ligase, and beta-glucosidase warrant further attention 

because they are implicated in carbohydrate synthesis and potentially influence the balance 

between sucrose accumulation and the defense response (Ma et al. 2017; Shu and Yang 2017; Liu 

et al. 2019; Qin et al. 2021; Khan et al. 2023).

While only a limited number of genes were consistently identified across all approaches 

and datasets, there is a clear consensus emerging regarding the biological processes and 

mechanisms influenced by these selected genes. To consolidate our findings, we constructed a 

gene coexpression network. Specifically, our analysis enabled us to delineate eight distinct gene 

groups within the network comprising DEGs as well as genes exhibiting significant associations 

with SNPs linked to divergent sucrose accumulation levels, as identified through GWAS and FS.

Based on the premise that the selected genes are correlated with sucrose accumulation, 

we hypothesize that the most significant differences in the impact of these genes on sucrose 

accumulation are attributable to their interactions. Therefore, investigating these interactions 

might provide valuable insights into key genes that could serve as focal points for more extensive 

investigations. Thus, we constructed specific gene coexpression networks, differentiating 

between the gene expression profiles of hybrids and the S. spontaneum genotype.

The network constructed for S. spontaneum gene expression exhibited approximately 50% 

more connections than the hybrid genotype networks. This suggests that a greater number of 

gene interactions are necessary for S. spontaneum to perform the same biological processes as the 

hybrids. We believe that the simpler network structure observed in the hybrids signifies more 

efficient regulation of the processes related to sucrose accumulation through gene interactions. 

However, external factors, such as stressors, can easily influence gene interactions in the hybrid 

networks. In contrast, gene communication in S. spontaneum is less susceptible to disruption, 

consistent with the inherent resistance of this species to different types of biotic and abiotic 

stresses.
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While conducting a comprehensive analysis of all network components could provide 

valuable insights into sucrose accumulation, our study prioritized key network elements. We 

achieved this by evaluating specific centrality measures, aiming to correlate node influence with 

the biological implications of gene roles, thus enabling meaningful inferences (Wang et al. 2022c). 

Furthermore, by comparing genes with high centrality measures across the networks modeled, 

we can infer differences in the regulatory mechanisms governed by the gene sets within these 

networks.

Starting with evaluations of degree, which measures the importance of a gene based on 

the number of connections it possesses, and Kleinberg’s hub score, which incorporates gene 

proximity to other network nodes into the assessment, it becomes evident that genes exhibiting 

increased centralities in the hybrid networks are more closely associated with the regulation of 

fundamental cellular processes crucial for plant growth, including amino acid biosynthesis, signal 

transduction, gene expression regulation, and protein synthesis. Conversely, in the S. spontaneum 

network, these genes appear to be involved in a broader array of mechanisms, potentially 

including roles in stress-response signaling pathways, as indicated by glutathione S-transferase 

(Vaish et al. 2020), adagio protein (Bulgakov et al. 2017), auxin response factor (Li et al. 2016), 

acyl-coenzyme A thioesterase (Kalinger et al. 2020), and cinnamoyl-CoA reductase 1 (Park et al. 

2017). These findings support our observation regarding the association of this network 

architecture with the effective response of S. spontaneum to various types of stress.

Betweenness centrality exhibited an opposite pattern. In the networks modeled for the 

hybrids, genes with high betweenness were mostly associated with protein synthesis and gene 

expression regulation, including the protein translation factor SUI1 (Li et al. 2022), the 

transcription factor BTF3 (Pruthvi et al. 2017), and the calcium/calmodulin-regulated 

receptor-like kinase 1 (Yuan et al. 2022). In contrast, the network modeled for S. spontaneum had 

genes with high betweenness primarily associated with cellular structure and division, such as the 

kinetochore-associated protein KNL-2 (Zuo et al. 2022) and formin-like protein (Kollárová et al. 

2021). A high betweenness measure indicates that a gene permeates many gene associations, 

potentially facilitating the flow of interactions within the network. This suggests that in S. 

spontaneum, gene associations favor the maintenance of cellular architecture integrity. Conversely, 

in hybrid networks, these genes are more involved in signal transduction.

Remarkably, the observed network dynamics suggest that gene communication within 

the gene set associated with S. spontaneum is predominantly associated with plant immunity. In 

contrast, in the hybrid networks, we observed indications of a more nuanced interplay, potentially 
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influenced by external factors. These findings highlight the intricate regulatory networks 

underlying sucrose accumulation, revealing distinct regulatory strategies adopted by different 

genotypes in response to environmental stimuli.

Conclusion

Sugar production is the primary focus of sugarcane breeding, and this process is governed by 

complex interactions among polygenic effects and diverse biological processes. Unraveling the 

genotype‒phenotype associations that significantly increases sucrose content presents a great 

challenge but holds immense value for sugarcane breeding. Despite these efforts, the 

development of varieties optimized for this trait remains limited. Genetic modifications targeting 

genes specific to sucrose metabolism have not yielded the desired outcomes. Thus, 

comprehensive investigations spanning a broad set of mechanisms are essential for identifying 

promising targets.

In our study, we adopted an integrative approach to examine sugarcane genetics. By 

combining GWAS, machine learning algorithms, and differential expression analyses, we 

identified key factors involved in sucrose accumulation that warrant attention. Notably, a 

jasmonate-induced oxygenase was identified as a DEG associated with significant findings from 

our GWAS. The mutation observed near this gene, known for its role in suppressing plant 

immunity, appears to favor sugar accumulation. Additionally, the role of the beta-glucosidase 

protein was noteworthy, with annotations found in genes proximal to GWAS hits and DEGs. 

Given its negative impact on sucrose accumulation, this enzyme is a promising target for 

biotechnological investigations.

Moreover, we integrated all genes associated with our findings across analyses and 

datasets into a comprehensive gene coexpression network, providing a foundation for future 

genetic studies. Contrasts between specific gene coexpression networks constructed for S. 

spontaneum and sugarcane hybrids revealed differences in gene associations linked to sugar 

accumulation. We hypothesize that the simpler network structure observed in hybrids may 

indicate a more efficient process, albeit potentially more susceptible to external influences such 

as stressors. Conversely, the more cohesive network observed in S. spontaneum may be associated 

with enhanced plant immunity.
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