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ABSTRACT 16 
 17 
The telencephalon of the mammalian brain comprises multiple regions and circuit pathways that 18 
play adaptive and integrative roles in a variety of brain functions. There is a wide array of 19 
GABAergic neurons in the telencephalon; they play a multitude of circuit functions, and 20 
dysfunction of these neurons has been implicated in diverse brain disorders. In this study, we 21 
conducted a systematic and in-depth analysis of the transcriptomic and spatial organization of 22 
GABAergic neuronal types in all regions of the mouse telencephalon and their developmental 23 
origins. This was accomplished by utilizing 611,423 single-cell transcriptomes from the 24 
comprehensive and high-resolution transcriptomic and spatial cell type atlas for the adult whole 25 
mouse brain we have generated, supplemented with an additional single-cell RNA-sequencing 26 
dataset containing 99,438 high-quality single-cell transcriptomes collected from the pre- and 27 
postnatal developing mouse brain. We present a hierarchically organized adult telencephalic 28 
GABAergic neuronal cell type taxonomy of 7 classes, 52 subclasses, 284 supertypes, and 1,051 29 
clusters, as well as a corresponding developmental taxonomy of 450 clusters across different 30 
ages. Detailed charting efforts reveal extraordinary complexity where relationships among cell 31 
types reflect both spatial locations and developmental origins. Transcriptomically and 32 
developmentally related cell types can often be found in distant and diverse brain regions 33 
indicating that long-distance migration and dispersion is a common characteristic of nearly all 34 
classes of telencephalic GABAergic neurons. Additionally, we find various spatial dimensions of 35 
both discrete and continuous variations among related cell types that are correlated with gene 36 
expression gradients. Lastly, we find that cortical, striatal and some pallidal GABAergic neurons 37 
undergo extensive postnatal diversification, whereas septal and most pallidal GABAergic 38 
neuronal types emerge simultaneously during the embryonic stage with limited postnatal 39 
diversification. Overall, the telencephalic GABAergic cell type taxonomy can serve as a 40 
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foundational reference for molecular, structural and functional studies of cell types and circuits 41 
by the entire community. 42 
 43 
INTRODUCTION 44 
 45 
The telencephalon, the most anterior part of the mammalian brain, comprises several large 46 
structures that are considered as the top-level command centers of the hierarchically organized 47 
brain networks and play integrative roles in information processing and generation of behavior 48 
and cognition. The telencephalon is composed of two major structures, cerebral cortex (as the 49 
shell) and cerebral nuclei (as the core), which arise from pallium and subpallium, respectively, of 50 
the developmental telencephalon. Cerebral cortex consists of isocortex, hippocampal formation, 51 
olfactory areas and cortical subplate, whereas the cerebral nuclei consist of striatum and 52 
pallidum. Within each of these major brain structures, there are multiple functionally specific 53 
regions and subregions (Supplementary Table 1 provides the anatomical ontology from the 54 
Allen Mouse Brain Common Coordinate Framework version 3 (CCFv3)1 with full names and 55 
acronyms of all telencephalic regions), each comprising many cell types.  56 
 57 
In the mouse cerebral cortex (CTX) (Supplementary Table 1), isocortex contains ~35 cortical 58 
areas, including visual, auditory, somatosensory, gustatory, visceral and motor areas, as well as 59 
association areas in the prefrontal, medial and lateral parts. Hippocampal formation (HPF) is 60 
divided into hippocampus (HIP) and retrohippocampal regions (RHP), and the latter is further 61 
divided into medial and lateral entorhinal cortex (ENTm and ENTl), parasubiculum (PAR), 62 
postsubiculum (POST), presubiculum (PRE), subiculum (SUB), prosubiculum (ProS), 63 
hippocampo-amygdalar transition area (HATA) and area prostriata (APr). Olfactory areas (OLF) 64 
contain the entire olfactory sensory pathway, including main and accessary olfactory bulbs 65 
(MOB and AOB), anterior olfactory nucleus (AON), taenia tecta (TT), dorsal peduncular area 66 
(DP), piriform area (PIR), nucleus of the lateral olfactory tract (NLOT), cortical amygdalar area 67 
(COA), piriform-amygdalar area (PAA), and postpiriform transition area (TR). Cortical subplate 68 
(CTXsp) contains claustrum (CLA), endopiriform nucleus (EP), and lateral, basolateral, 69 
basomedial and posterior amygdalar nuclei (LA, BLA, BMA and PA).  70 
 71 
In the mouse cerebral nuclei (CNU) (Supplementary Table 1), striatum (STR) consists of 72 
striatum dorsal region (STRd, also called caudoputamen, CP), striatum ventral region (STRv), 73 
lateral septal complex (LSX), and striatum-like amygdalar nuclei (sAMY). STRv is further 74 
divided into nucleus accumbens (ACB), fundus of striatum (FS), and olfactory tubercle (OT). 75 
LSX is further divided into lateral septal nucleus (LS), septofimbrial nucleus (SF) and 76 
septohippocampal nucleus (SH). And sAMY is further divided into anterior amygdalar area 77 
(AAA), bed nucleus of the accessory olfactory tract (BA), central amygdalar nucleus (CEA), 78 
intercalated amygdalar nucleus (IA), and medial amygdalar nucleus (MEA). Pallidum (PAL) 79 
consists of four subdivisions, with the dorsal region (PALd) containing globus pallidus external 80 
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and internal segments (GPe and GPi), the ventral region (PALv) containing substantia 81 
innominata (SI) and magnocellular nucleus (MA), the medial region (PALm) containing medial 82 
septal nucleus (MS), diagonal band nucleus (NDB) and triangular nucleus of septum (TRS), and 83 
the caudal region (PALc) containing bed nuclei of the stria terminalis (BST) and bed nucleus of 84 
the anterior commissure (BAC).  85 
 86 
From these highly complex regional subdivisions, a general organizing principle of the 87 
telencephalon with several parallel cortico-striato-pallidal circuit pathways has been revealed2. In 88 
a highly simplified view, the dorsal pathway from isocortex to CP to GPe/GPi mediates 89 
sensory/motor functions. On the ventral side, the prefrontal cortex-ACB-PALv and the LA/BLA-90 
CEA-BST pathways mediate affective functions. The hippocampal-septal pathway along the 91 
medial axis mediates learning and cognitive functions. Underlying these complex circuit 92 
networks are an extraordinary array of neuronal cell types. Previous studies have revealed highly 93 
diverse and heterogeneous cellular properties of both glutamatergic and GABAergic neurons in 94 
the telencephalon, which likely contribute critically to the specific functions of different brain 95 
regions. To understand how the variety of brain functions emerge from this complex system, it is 96 
essential to gain comprehensive knowledge about the cell types, their regional/spatial specificity, 97 
and their inter-relatedness. 98 
 99 
Glutamatergic excitatory neurons are the dominant neuronal class of the cerebral cortex and are 100 
generated within the ventricular and subventricular zones of the developing pallium. GABAergic 101 
inhibitory neurons are the dominant neuronal class of the cerebral nuclei and are generated in the 102 
ganglionic eminences of the developing subpallium. GABAergic neurons also migrate to the 103 
pallium and populate all parts of the CTX, intermingling with the glutamatergic neurons. In this 104 
study, we focus on telencephalic GABAergic neurons, which play a plethora of circuit functions. 105 
In CTX, they are mostly local inhibitory interneurons, modulating circuit dynamics, excitation-106 
inhibition balance, and rhythmic activities. In CNU, they are mostly long-range inhibitory 107 
projection neurons and transmit circuit-specific information, though some are local interneurons 108 
as well and others (i.e., cholinergic neurons) play neuromodulatory roles.  109 
 110 
The telencephalic GABAergic neuronal types arise mostly from the five principal progenitor 111 
domains of the subpallium: the medial ganglionic eminence (MGE), the caudal ganglionic 112 
eminence (CGE), the lateral ganglionic eminence (LGE), the embryonic septum, and the 113 
embryonic preoptic area (POA). Most GABAergic cell types are produced during the embryonic 114 
period and migrate along defined routes to disperse throughout the forebrain3–5. Cell fate 115 
specification in the progenitor domains is orchestrated by a combination of transcription factors 116 
and morphogens4–13.  117 
 118 
Leveraging the comprehensive and high-resolution transcriptomic and spatial cell type atlas for 119 
the whole mouse brain we have generated14, supplemented with an additional scRNA-seq dataset 120 
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collected from the pre- and postnatal developing brain, we conducted a systematic and in-depth 121 
analysis of the transcriptomic and spatial organization of GABAergic neuronal types in all 122 
regions of the mouse telencephalon and their developmental origins. We identified an 123 
extraordinarily large set of highly distinct cell types as well as continuous molecular gradients 124 
within and across different regions. These two aspects of the cell type landscape collectively 125 
shape the cellular diversity that underlie the diverse function of the many regions and neural 126 
circuits in the telencephalon. We discovered a comprehensive set of transcription factors (TF) 127 
that define all major subclasses and supertypes of the adult-stage telencephalic GABAergic 128 
neurons. We found strong expression of these TF marker genes in specific regions of the 129 
developing telencephalon, and thus were able to infer the developmental origins of all the 130 
GABAergic neuronal types described here, which had only been partially known before. The 131 
results reveal two prominent features of the telencephalic GABAergic neurons: 1) 132 
transcriptomically and developmentally related cell types are often found in far-apart and distinct 133 
brain regions, suggesting long-distance migration and dispersion is a common characteristic of 134 
nearly all classes of telencephalic GABAergic neurons; 2) cortical and striatal GABAergic 135 
neurons undergo extensive postnatal diversification, whereas septal and most pallidal 136 
GABAergic neuronal type repertoire emerges in an apparent burst in embryonic stage with 137 
limited postnatal diversification.  138 
 139 
RESULTS 140 
 141 
A transcriptomic and spatial atlas of GABAergic neuronal types in the mouse 142 
telencephalon 143 
Previously, we reported the creation of a high-resolution transcriptomic and spatial cell type atlas 144 
covering the entire adult mouse brain based on the combination of single-cell RNA-sequencing 145 
(scRNA-seq) and spatially resolved transcriptomics using MERFISH (Supplementary Table 146 
2)14. We defined a hierarchically organized whole-mouse-brain (WMB) cell type atlas 147 
comprising four nested levels of classification: 34 classes, 338 subclasses, 1,201 supertypes and 148 
5,322 clusters. Neuronal cell types exhibit extraordinary diversity and constitute a large 149 
proportion of the whole brain cell type atlas, including 29 classes (85%), 315 subclasses (93%), 150 
1,156 supertypes (96%) and 5,205 clusters (98%). However, in this previous study we only 151 
described the organization of neuronal cell types across the whole mouse brain at a coarse level 152 
(class – subclass). Here, we conduct a more in-depth analysis and introduce the most complete 153 
to-date taxonomy of all the GABAergic neuronal types in the entire telencephalon, at all levels of 154 
the hierarchy.  155 
 156 
The telencephalic GABAergic neuronal cell type taxonomy, defined as the Subpallium-GABA 157 
neighborhood in the WMB cell atlas14, contains subclasses 39-90 that belong to 7 classes: OB-158 
IMN GABA, CTX-CGE GABA, CTX-MGE GABA, CNU-MGE GABA, CNU-LGE GABA, 159 
LSX GABA, and CNU-HYa GABA (Figure 1). Contained within the total of 52 subclasses, 160 
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there are 284 supertypes and 1,051 clusters, with a total of 611,423 high-quality single-cell 161 
transcriptomes (10x v2: 269,307 cells; 3,567 ± 1,264 genes per cell; 9,328 ± 5,502 UMIs per 162 
cell; 10x v3: 342,116 cells; 5,949 ± 1,625 genes per cell; 26,476 ± 14,943 UMIs per cell) 163 
(Supplementary Table 3). We provide several representations of this atlas for further analysis: a 164 
dendrogram at supertype resolution along with bar graphs displaying various metadata 165 
information (Figure 1a), UMAPs at single-cell resolution colored with different types of 166 
metadata information (Figure 1b-d), and constellation diagrams to depict multi-dimensional 167 
relationships among different subclasses and supertypes (Figure 1e,f).  168 
 169 
As the MERFISH data was registered to the Allen Mouse Brain CCFv3, we could determine the 170 
GABAergic neuronal cell type composition, at the supertype level, for each of the telencephalic 171 
regions (Extended Data Figure 1a). This analysis showed that most supertypes span multiple 172 
neighboring regions, except for supertypes located in LSX and MOB-AOB which are located in 173 
one dominant region. We further used the Gini coefficient and Shannon diversity index to 174 
measure the extent of variation in spatial distribution among supertypes (Extended Data Figure 175 
1a), and both reveal high inequality (that is, highly localized patterns) in spatial distribution of 176 
each neuronal subclass, with the exception of GABAergic neurons in isocortex which are 177 
distributed across most cortical regions.  178 
 179 
As expected, vast majority of the clusters are purely GABAergic types (Figure 1a, 180 
Supplementary Table 3). However, we also identified glutamate-GABA co-releasing types 181 
expressing Slc17a8 in 11 clusters across several subclasses (Figure 1a, Supplementary Table 182 
3), as well as low-grade expression of both Chat and Slc18a3 in several clusters in the 46 Vip 183 
Gaba subclass, though the expression at cluster level did not cross our threshold to label these 184 
clusters as cholinergic. We did identify 11 cholinergic neuron clusters in the 58 PAL-STR Gaba-185 
Chol subclass with complex GABA and/or glutamate co-release patterns (see below), and 2 186 
GABA-cholinergic clusters in the 69 LSX Nkx2-1 Gaba subclass (Figure 1a, Supplementary 187 
Table 3). We also identified 4 GABA-dopamine co-releasing clusters in the 44 OB Dopa-Gaba 188 
subclass (Figure 1a, Supplementary Table 3).  189 
 190 
Furthermore, we have identified 26 neuropeptide genes that are differentially expressed among 191 
the GABAergic types of the telencephalon, many of which had been used as markers for various 192 
cell types in previous studies. Most neuropeptides show very restricted expression patterns, like 193 
Edn1 which is mostly restricted to the 52 Pvalb Gaba subclass, and some are more broadly 194 
expressed, like Penk and Pnoc which are expressed in various subclasses within each of the 195 
GABAergic cell classes (Extended Data Figure 2). Precise association of these neuropeptides 196 
with transcriptomic cell types defined here provides a much-needed link to clarify the 197 
transcriptomic identities of cell populations labeled by individual marker genes, as well as to 198 
explore the function of these neuropeptides in specific cell types.  199 
 200 
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GABAergic neuronal types in the olfactory bulb 201 
GABAergic neuronal types in MOB and AOB are thought to be derived from LGE during 202 
development and migrate to the olfactory bulb9. Furthermore, OB GABAergic neurons continue 203 
to be generated in the adult brain through neurogenesis in the subventricular zone (SVZ) and 204 
migration into OB via the rostral migratory stream (RMS)15–17. In the OB-IMN GABA class, we 205 
defined six OB GABAergic subclasses, 39 OB Meis2 Thsd7b Gaba, 40 OB Trdn Gaba, 41 OB-in 206 
Frmd7 Gaba, 42 OB-out Frmd7 Gaba, 43 OB-mi Frmd7 Gaba, and 44 OB Dopa-Gaba, and one 207 
GABAergic immature neuronal subclass, 45 OB-STR-CTX Inh IMN (Extended Data Figure 208 
3).  209 
 210 
Subclass 45 OB-STR-CTX Inh IMN contains immature neurons originating from the 211 
subventricular zone that migrate to the OB (Extended Data Figure 3a-c,k, Extended Data 212 
Figure 4a,b). Within this subclass, 7 supertypes have been defined. Supertypes 166, 168, 171, 213 
and 172 are the most immature based on gene expression, spatial location, and their pseudo-214 
temporal ordering14,18. The other three supertypes seem to be transition types and show similarity 215 
to specific mature subclasses (Extended Data Figure 3a-c). Supertype 170 OB-STR-CTX Inh 216 
IMN_5 forms a transition from immature neurons to subclass 39 OB Meis2 Thsd7b Gaba. 217 
Neurons in this subclass are located mostly in the internal plexiform and mitral (Ipl/Mi), external 218 
plexiform (EPl), and glomerular (Gl) layers (Extended Data Figure 3d,e). Supertype 143 within 219 
the 39 OB Meis2 Thsd7b Gaba subclass are the Calb1-positive Blanes cells19,20 that populate the 220 
Gl (Extended Data Figure 3e). Immature neuron supertype 167 OB-STR-CTX Inh IMN_2 221 
forms a transition to the 41 OB-in Frmd7 Gaba subclass. Neurons in this subclass represent the 222 
granule cells which populate the granule layer (GrO), IPl/Mi, and supertype 150 contains a 223 
subpopulation of neurons that extends into the EPl (Extended Data Figure 3j). Supertype 150 224 
corresponds to a population of glomerular cells that undergoes expansion during periods of 225 
olfactory enrichment and contraction during periods of olfactory deprivation (Extended Data 226 
Figure 4a)21. Lastly, supertype 169 OB-STR-CTX Inh IMN_4 forms a transition from immature 227 
neurons to subclass 42 OB-out Frmd7 Gaba. Neurons in this subclass exclusively populate the Gl 228 
and represent the Calr-positive periglomerular cells (PGC) (Extended Data Figure 3g). 229 
 230 
The 40 OB Trdn Gaba subclass contains the population of Rprm-positive granule cells 231 
(Extended Data Figure 3c,f) that have been identified previously21,22. The 43 OB−mi Frmd7 232 
Gaba subclass represents Pvalb-positive GABAergic OB neurons described by Batisto-Brito et 233 
al.,20 which are postnatally generated neurons populating the EPl (Extended Data Figure 3h). 234 
The glomerular layer of the olfactory bulb signifies the location where sensory input from the 235 
olfactory epithelium is first processed within the CNS and contains a variety of interneuron 236 
populations which can broadly be divided into three categories; Calb1-positive PGC present in 237 
subclass 39, Calr-positive PGC present in subclass 42, and dopaminergic PGC marked by 238 
expression of Slc6a3 and Th present in subclass 44 20,21,23–25 (Extended Data Figure 3c,e,g,i, 239 
Extended Data Figure 4a).  240 
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 241 
GABAergic neuronal types in the cerebral cortex 242 
The cerebral cortex, also known as the pallium, includes four major structures – isocortex, 243 
hippocampal formation (HPF), olfactory areas (OLF) and cortical subplate (CTXsp). The 244 
GABAergic neurons in all these brain structures belong to two classes, CTX-CGE GABA 245 
(Extended Data Figure 5) and CTX-MGE GABA (Figure 2), named after their spatial location 246 
and dominant developmental origins5,12. The current classification is largely consistent with our 247 
previously defined transcriptomic taxonomy of the mouse isocortex and HPF26 as well as the 248 
MET-types in our Patch-seq study in the mouse visual cortex27 (Extended Data Figure 6), and 249 
further extends into the OLF and CTXsp areas.  250 
 251 
In the CTX-CGE GABA class, we defined four subclasses, including three previously defined 252 
ones – 46 Vip Gaba, 47 Sncg Gaba and 49 Lamp5 Gaba26,28, and one newly defined here, 48 253 
RHP-COA Ndnf Gaba (Extended Data Figure 5a-g). The Vip, Sncg and Lamp5 subclasses 254 
correspond to the well-known bipolar, multipolar, neurogliaform and other types of GABAergic 255 
interneurons widely distributed in all areas of isocortex and HPF. Here we find that they are also 256 
present in OLF and CTXsp areas (Extended Data Figure 5c-g). Consistent with previous 257 
findings, most of their clusters and supertypes are shared among all pallial areas, whereas 8 258 
supertypes are predominant in OLF/CTXsp/HPF areas (marked by red dots, Extended Data 259 
Figure 5c). We also identified a set of Vip Gaba clusters that are largely specific to hippocampus 260 
(HIP), including clusters 649, 650, 651, 654, 655, and 659, included in supertypes 179, 181, and 261 
182 respectively (Extended Data Figure 5b-d).  262 
 263 
The newly defined RHP-COA Ndnf Gaba subclass expresses marker genes Ndnf and Ntng1, is 264 
predominantly present in HPF, OLF and CTXsp and exhibits high regional specificity. In this 265 
subclass, supertypes 195 and 198 are mainly found in ENT and RHP respectively, supertype 194 266 
is located in COA, and remaining supertypes are mainly present in HIP (Extended Data Figure 267 
5c,f). The RHP-COA Ndnf Gaba subclass also includes the previously described Meis2-positive 268 
population of GABAergic neurons in supertype 198 (Extended Data Figure 5a-c)26,28. These 269 
Meis2-positive GABAergic neurons reside in the white matter and originate from the embryonic 270 
pallial-subpallial boundary29,30. The cells in 198 supertype are the only cells in the cortical 271 
GABAergic classes that express Meis2 (Extended Data Figure 5c). However, the entire 272 
subclass lacks expression of Prox1 which is found in all other CGE-derived GABAergic neurons 273 
and shares expression of Rspo3 and Ntng1.  274 
 275 
In the CTX-MGE GABA class, we defined four subclasses, including three previously defined 276 
ones26,28, 53 Sst Gaba, 52 Pvalb Gaba and 51 Pvalb chandelier Gaba, and the fourth one, 50 277 
Lamp5 Lhx6 Gaba, which was previously considered as part of the CGE Lamp5 subclass but is 278 
now classified into the MGE class based on its expression of the MGE transcription factor, Lhx6 279 
(Figure 2a-d). The Sst, Pvalb and Pvalb chandelier subclasses correspond to the well-known 280 
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somatostatin, parvalbumin, and chandelier types of GABAergic interneurons widely distributed 281 
in all areas of isocortex and HPF. Here we find that they are also present in OLF and CTXsp 282 
areas (Figure 2d-i). There are two Pvalb chandelier clusters, one widely distributed in all pallial 283 
areas whereas the other is mainly found in HIP. In the Pvalb GABA subclass, individual clusters 284 
display more variable regional preference, with 4 supertypes mainly in isocortex, and 2 285 
supertypes mainly in OLF/CTXsp/HPF out of 9 supertypes in total (Figure 2e). The Sst GABA 286 
subclass is highly diverse, with a total of 19 supertypes and 71 clusters, and variable regional 287 
preference. Seven supertypes are predominant in OLF/CTXsp/HPF areas (marked by red dots, 288 
Figure 2e) whereas the other supertypes are more broadly present in isocortex. Several Pvalb 289 
and Sst supertypes are largely specific to HPF, including 209, 216, 219, 228, and 232 (Figure 290 
2e,h,i). The Lamp5 Lhx6 subclass is predominantly present in HIP, with a small fraction of cells 291 
found in other pallial areas (Figure 2e,f). 292 
 293 
Overall, the organization of GABAergic neurons in the cerebral cortex (pallium) exhibits a clear 294 
segregation of cell types (in both CTX-CGE and CTX-MGE classes) between isocortex (also 295 
known as the neocortex) and the other structures that are considered evolutionarily more ancient, 296 
including HPF, OLF, and CTXsp. We observe a gradual transition between these two parts, with 297 
certain isocortical areas as intermediates, e.g., retrosplenial cortex (RSP). For example, supertype 298 
177 Vip Gaba_5 is mostly located to isocortex and via RSP shows sparse labeling in HIP 299 
(Extended Data Figure 5d).  300 
 301 
MGE-derived GABAergic neuronal types in the cerebral nuclei 302 
GABAergic neurons originating from the MGE show wide-spread distribution. These MGE-303 
derived neurons are divided into two main classes; where the CTX-MGE class located mostly in 304 
pallial areas as described above, the CNU-MGE located mainly in the cerebral nuclei. These two 305 
classes share the expression of Lhx6, a developmental pan-MGE marker. There is a striking 306 
difference in complexity between the two MGE classes. The CNU MGE-derived GABAergic 307 
neurons form clusters that are typically smaller and more heterogeneous than the CTX MGE-308 
derived GABAergic neurons (Figure 2a-d). 309 
 310 
The cerebral nuclei (CNU) are composed of two major structures, striatum (STR) and pallidum 311 
(PAL). Its neuronal population is largely GABAergic. The GABAergic neurons in CNU come 312 
from four classes (Figure 1). The CNU-MGE GABA and CNU-LGE GABA classes contain 313 
striatal and pallidal GABAergic neurons derived from MGE and LGE respectively. The LSX 314 
GABA class contains lateral septum GABAergic neurons derived from the embryonic septum31. 315 
The CNU-HYa GABA class contains GABAergic neurons mainly located in sAMY, PALc and 316 
anterior hypothalamus (Extended Data Figure 1a); these neurons may also be developmentally 317 
originated from LGE, MGE, as well as the embryonic preoptic area (POA).  318 
 319 
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In the CNU-MGE class, we defined 5 subclasses which are 54 STR Prox1 Lhx6 Gaba, 55 STR 320 
Lhx8 Gaba, 56 Sst Chodl Gaba, 57 NDB-SI-MA-STRv Lhx8 Gaba, and 58 PAL-STR Gaba-321 
Chol (Figure 2a-e). These subclasses are mainly located in dorsal and ventral striatum (STRd 322 
and STRv), and dorsal, ventral and medial pallidum (PALd, PALv and PALm). Each subclass is 323 
not specific to a single region but contains neurons from multiple regions (Figure 2j-n). 324 
Although local interneurons make up less than 10% of the striatal neurons, these cells represent a 325 
diverse population (Extended Data Figure , Extanded Data Figure 4d)32,33. The CNU-MGE 326 
types located within the STRd and STRv are likely striatal GABAergic interneurons, including 327 
supertypes 234 STR Prox1 Lhx6 Gaba_2 (Pvalb-positive) and 236 STRv Lhx8 Gaba_1 (Pvalb-328 
negative). Interestingly, the 56 Sst Chodl subclass is a unique subclass that spans both pallium 329 
and subpallium structures, containing neurons in isocortex (supertype 241, the Sst Chodl 330 
cells26,28), CTXsp (supertype 242), STRd/STRv, and PALv/PALc (Figure 2d,e,l, Extended 331 
Data Figure 1a).  332 
 333 
LGE-derived GABAergic neuronal types in the cerebral nuclei 334 
The seven LGE-derived subclasses in the cerebral nuclei are 59 GPe Sox6 Cyp26b1 Gaba, 60 335 
OT D3 Folh1 Gaba, 61 STR D1 Gaba, 62 STR D2 Gaba, 63 STR D1 Sema5a Gaba, 64 STR-336 
PAL Chst9 Gaba, and 65 IA Mgp Gaba (Figures 3). These subclasses resemble the well-known 337 
D1 and D2 type medium spiny neurons (MSN; also known as spiny projection neurons, SPN) in 338 
the striatum, with the 61 STR D1 Gaba and 62 STR D2 Gaba subclasses being the prototype 339 
striatal D1 and D2 cell types and the other subclasses being newly defined homologous cell 340 
types. Among them, subclasses 60, 63 and 64 also express dopamine receptor gene Drd1, and 341 
subclass 60 additionally expresses Drd3 strongly (Extended Data Figure 7a). 342 
 343 
Subclass 60, with its strong expression of Drd3 along with Drd1, is specifically localized in the 344 
islands of Calleja in the OT (Figure 3d, Extended Data Figure 4c,d). Subclasses 63, 64 and 65 345 
collectively form a novel group of GABAergic neuronal types that are like MSNs based on their 346 
gene expression profile but also distinct from them based on their spatial location (Figure 3e-g). 347 
The spatial distribution patterns of many supertypes and clusters in these subclasses are 348 
remarkably unique, widely scattered along the borders between different striatal and pallidal 349 
areas, forming multiple patches or streaks (Figure 3e-g). Subclass 63 STR D1 Sema5a Gaba 350 
contains hybrid MSN D1 neurons that have been described to co-express Drd1a and a shortened 351 
variant of the D2 receptor (Figure 3e, Extended Data Figure 4c)34,35. This group of MSN 352 
resembles so-called exopatch MSN, which are located in the striatal matrix but physiologically 353 
resemble MSN of patches (Extended Data Figure 4d)33,36. Based on their spatial distribution 354 
patterns, we assigned the locations of subclasses 64 STR-PAL Chst9 Gaba and 65 IA Mgp Gaba 355 
to interstitial nucleus of the posterior limb of the anterior commissure (IPAC, described in 356 
Paxinos’s atlas37) or intercalated amygdalar nucleus (IA). Subclass 65 is divided into five 357 
different supertypes which all express Dcx, a migratory neuroblast marker, and markers Ncam1 358 
(PSA-NCAM), Foxp2 and Meis2, indicating that these are immature neurons. In addition to 359 
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Foxp2, these types express Tshz1, which are known markers for the intercalated cells originating 360 
from the Sp8-positive dLGE progenitor population38–40. Interestingly, we observed a relatedness 361 
between subclass 65 IA Mgp Gaba and subclass 39 OB Meis2 Thsd7b Gaba (Figure 1e,f), 362 
suggesting that they may have shared developmental origins. Within subclass 65, supertype 293 363 
stands out in that it is spatially located in the olfactory bulb with sparse labeling in IA (Figure 364 
3g), highlighting the similarity between the intercalated cells and the immature neurons 365 
migrating towards the olfactory bulb. 366 
 367 
We defined 9 supertypes in 61 STR D1 Gaba subclass and 7 supertypes in 62 STR D2 Gaba 368 
subclass. The supertypes and clusters in both subclasses exhibit highly diverse spatial 369 
distribution patterns in STRd and STRv (Figure 3h,i). Some occupy the entire space, while 370 
others are specifically located in medial-lateral, anterior-posterior, and dorsal-ventral 371 
subdomains. Supertype 268 STR D1 Gaba_4 within the 61 STR D1 Gaba subclass is mostly 372 
located in striosomes, while supertype 267 STR D1 Gaba_3 is mostly located in the striatal 373 
matrix (Figure 3h). Similarly, within the 62 STR D2 Gaba subclass, supertype 279 STR D2 374 
Gaba_6 is mostly present in the striosomes, while supertype 277 STR D2 Gaba_4 represents 375 
types in the striatal matrix (Figure 3i).  376 
 377 
We found complex subregional enrichment of cell types in the nucleus accumbens (ACB). 378 
Supertypes 265, 266, 270, 272, and 273 within the 61 STR D1 Gaba subclass and supertypes 275 379 
and 278 within the 62 STR D2 Gaba subclass are mostly restricted to ACB and OT (Figure 380 
3h,i). The ACB can be divided into core and shell subregions41,42. Supertypes 272 STR D1 381 
Gaba_8, 273 STR D1 Gaba_9, and 278 STR D2 Gaba_5 are predominantly located in the core 382 
region. Supertype 266 STR D1 Gaba_2 consists of two highly related cell types of which cluster 383 
948 is in the core subdomain and cluster 949 is located in the shell subdomain (Figure 3h). 384 
Similarly, supertype 275 STR D2 contains various clusters of which 973 and 974 are 385 
predominantly located in the core subdomain and the other types are present in the shell 386 
subdomain or OT (Figure 3i). Based on the cell types and their locations the core and shell 387 
regions of ACB can be further divided on a mediolateral and anteroposterior axis. For example, 388 
supertype 272 STR D1 Gaba_8 consists of three different clusters, with cluster 963 located in the 389 
medial-anterior subdomain of the ACB core while cluster 961 in a more lateral-posterior position 390 
(Figure 3h). The same can be seen for ACB core D2 neurons in supertype 278 STR D2 Gaba_5, 391 
with cluster 985 in a medial-anterior position and cluster 983 in a more lateral-posterior position. 392 
Similar distribution of cell types along the different anatomical axes can be observed for the 393 
types in the shell subdomain of ACB. Within the STR D1 Gaba subclass, the shell cell types are 394 
present in supertypes 265 STR D1 Gaba_1 and 270 STR D1 Gaba_7 and occupy medial and 395 
lateral subdomains of shell, respectively. Compared to the lateral types (supertype 270), the 396 
medial types (supertype 265) show higher diversity and distinct distribution along the 397 
anteroposterior axis (Figure 3h). As observed previously, though the cell types are preferentially 398 
located in either core or shell domains of ACB, the cell types occupy overlapping regions33. 399 
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 400 
GABAergic neuronal types in the lateral septum of the cerebral nuclei 401 
The LSX GABA class is located specifically in lateral septal complex (LSX) and is highly 402 
distinct from other CNU GABAergic neuronal types. It can be divided into six subclasses, 67 403 
LSX Sall3 Pax6 Gaba, 68 LSX Otx2 Gaba, 69 LSX Nkx2-1 Gaba, 70 LSX Prdm12 Slit2 Gaba, 404 
71 LSX Prdm12 Zeb2 Gaba, and 72 LSX Sall3 Lmo1 Gaba, but the relationships among these 405 
subclasses are complex and intertwined (Extended Data Figure 8a-c). The LSX subclasses 406 
exhibit partially overlapping spatial distribution patterns within the lateral septum (Extended 407 
Data Figure 8d-j). For example, the 67 LSX Sall3 Pax6 Gaba and 68 LSX Otx2 Gaba 408 
subclasses are both present in rostral (LSr) and ventral (LSv) regions of LSX, with the 68 LSX 409 
Otx2 extending more into dorsal LSX (Extended Data Figure 8d-f). Another example is 410 
subclasses 69 LSX Nkx2-1 Gaba and 70 LSX Prdm12 Slit2 Gaba that have shared presence in 411 
LSr and LSv, with 69 extending more into anterior LSX and 70 extending into posterior LSX 412 
(Extended Data Figure 8d,g,h).  413 
 414 
GABAergic neuronal types in the striatum-like amygdalar nuclei 415 
The CNU-HYa GABA class is highly complex, with 19 subclasses that are predominantly 416 
localized in CNU but also extend into the preoptic area (POA) of the anterior hypothalamus. The 417 
19 subclasses are 66 NDB-SI-ant Prdm12 Gaba, 73 MEA-BST Sox6 Gaba, 74 MEA-BST Lhx6 418 
Sp9 Gaba, 75 MEA-BST Lhx6 Nr2e1 Gaba, 76 MEA-BST Lhx6 Nfib Gaba, 77 CEA-BST Gal 419 
Avp Gaba, 78 SI-MA-ACB Ebf1 Bnc2 Gaba, 79 CEA-BST Six3 Cyp26b1 Gaba, 80 CEA-AAA-420 
BST Six3 Sp9 Gaba, 81 ACB-BST-FS D1 Gaba, 82 CEA-BST Ebf1 Pdyn Gaba, 83 CEA-BST 421 
Rai14 Pdyn Crh Gaba, 84 BST-SI-AAA Six3 Slc22a3 Gaba, 85 SI-MPO-LPO Lhx8 Gaba, 86 422 
MPO-ADP Lhx8 Gaba, 87 MPN-MPO-LPO Lhx6 Zfhx3 Gaba, 88 BST Tac2 Gaba, 89 PVR 423 
Six3 Sox3 Gaba, and 90 BST-MPN Six3 Nrgn Gaba (Extended Data Figure 9). Neurons in this 424 
class are located in specific sAMY and PAL areas, including central amygdalar nucleus (CEA), 425 
anterior amygdalar area (AAA), bed nuclei of the stria terminalis (BST), substantia innominata 426 
(SI), and magnocellular nucleus (MA) (Figure 4a, Extended Data Figure 9d). Each subclass 427 
within the CNU-HYa GABA class is not specific to a single region but contains neurons from 428 
multiple regions. For example, subclass 80 contains neurons from CEA, AAA, and BST (Figure 429 
4a,c, Extended Data Figure 9d). Conversely, each region contains multiple subclasses. For 430 
example, subclasses 74,79, 80, and 82 are co-localized in CEA, AAA, and BST. Subclasses 78 431 
and 84 are co-localized in SI, NDB, and MA.  432 
 433 
BST serves as a hub for processing limbic information and monitoring emotional valence and the 434 
center of a vast connectivity network. Mood and arousal are processed via connections to sAMY, 435 
dorsal raphe, and the ventral tegmental area (VTA). Via connections to the hypothalamus, BST 436 
monitors feeding and drinking signals coming from brainstem. Via connections to lateral septum 437 
and MEA, BST coordinates reproductive and related social behaviors. The diverse connectivity 438 
patterns in which the BST participates appear to be associated with specific cell types. BST, also 439 
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referred to as part of the extended amygdala, is a major output region for neurons in both CEA 440 
and MEA43–45. Our data shows a high transcriptomic similarity of cell types in CEA and BST, 441 
and of cell types in MEA and BST, while these two groups are easily distinguishable by distinct 442 
marker genes (Extended Data Figure 9d). 443 
 444 
Types within subclasses 73, 74, 75, 76, and 88 are mostly located in MEA and/or BST (Figure 445 
1a,e, Figure 4b, Extended Data Figure 9d), and possibly share a similar developmental origin 446 
based on preserved transcription factor expression (see below). The MEA-BST types also show 447 
similarity to subclasses 85, 86, 87, 89 and 90 which are mostly located in POA and are known to 448 
share functions and circuits46–49 (Figure 1e, Extended Data Figure 9d). MEA plays a central 449 
role in regulating social behavior in rodents. It is the location where signals from the OB and 450 
vomeronasal system converge, placing the MEA in a position critical for processing pheromonal 451 
signals that regulate social behavior50,51. For example, subclasses 74, 75, 76 express the MEApd 452 
marker Lhx652,53 and neurons in this region are involved in reproductive behaviours50,53,54. 453 
Supertypes 349 and 351 within subclass 74 MEA-BST Lhx6 Sp9 Gaba express Crhr2 and Ucn3 454 
(Extended Data Figure 2). Cell types expressing these genes have been identified as part of the 455 
behavioral stress response system55. Supertypes 357 to 359 within subclass 76 MEA-BST Lhx6 456 
Nfib Gaba contain the BNSTprTac1/Esr1 cell type that is essential for male social interactions 457 
(Extended data Figure 10a)49. 458 
 459 
Subclasses 77 to 84 are mostly located in CEA, BST, AAA and SI (Extended Data Figure 9d), 460 
are similar to striatal CNU-LGE subclasses (Figure 1e, Figure 4a,c), and possibly share a 461 
similar developmental origin based on preserved transcription factor expression (see below). 462 
CEA is a striatal-like GABAergic structure that contains both GABAergic interneurons and 463 
GABAergic long-range projection neurons and projects to the hypothalamus and brainstem to 464 
initiate fear responses56. Most supertypes in subclass 79 CEA-AAA-BST Six3 Cyp26b1 Gaba 465 
are located in the lateral and capsular part of CEA (CEAl and CEAc), express known MSN 466 
markers Penk, Pax6, Gpr88, and Ppp1r1b34,35,52, and are related to subclass 62 STR D2 Gaba 467 
(Figure 1e,f, Figure 4c, Extended Data Figure 9d). Supertype 371 CEA-AAA-BST Six3 468 
Cyp26b1 Gaba_5, located mostly in CEAc, is closely related to supertypes 274 STR D2 Gaba_1 469 
and 280 STR D2 Gaba71 (Figure 1e,f, Figure 4c). Also based on their spatial location these 470 
supertypes are in close proximity to each other (Figure 3i). Supertype 368 CEA-AAA-BST Six3 471 
Cyp26b1 Gaba_2 corresponds to the previously described CeA Prkcd-Ezr type that is highly 472 
responsive to cued fear conditioning (Extended Data Figure 10b)52. Subclasses 77 CEA-BST 473 
Gal Avp Gaba, 82 CEA-BST Ebf1 Pdyn Gaba and 83 CEA-BST Rai14 Pdyn Crh Gaba are 474 
mainly located in the medial part of CEA (CEAm, Figure 4c).  475 
 476 
As the MERFISH data was registered to the Allen Mouse Brain CCFv3, we could select all 477 
neurons within BST from the MERFISH dataset and apply spatial clustering to identify 478 
subdomains. Cells were clustered on both their gene expression pattern based on the 500 gene 479 
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panel and their spatial location within the neighborhood (see Methods). Using this approach, we 480 
identified unique domains of which several align with previously described anatomical 481 
subdivisions of BST, and these align with the MEA-BST and CEA-BST cell subclasses (Figure 482 
4d). Several subdivisions of BST have been proposed; a mediolateral division based on 483 
cytoarchitecture and input connections from amygdala, an anteroposterior division based on 484 
developmental origin, and a dorsoventral division based on divergent patterns of monoaminergic 485 
innervation43,57–61. MEA projects mostly to posteromedial BST regions43 which is an area where 486 
the MEA-BST subclasses (73-76) are enriched. CEA, on the other hand, mostly projects to 487 
anterolateral regions in BST62 which is where we see enrichment of CEA-BST subclasses (77, 488 
79-83) (Figure 4e-f). 489 
 490 
Long-range GABAergic projection neurons 491 
Most GABAergic neurons in the cerebral cortex are local interneurons, except for a small set of 492 
cell types that have long-range projections (LRP)63–65. The LRP types in the hippocampus (HIP) 493 
are among the best described cortical LRP neurons. Based on expression of genes, including 494 
Chrna4, Pcp4, Nos1 and Htr3a, supertype 179 Vip Gaba_7, located in HIP, is marked as a LRP 495 
population66. The 215 Sst Gaba_2 and 216 Sst Gaba_3 supertypes contain putative LRP neurons 496 
expressing Sst, Npy, and Nos1, and located in OLF/CTXsp regions or HPF regions, respectively 497 
(Figure 2i).  498 
 499 
The previously identified Sst Chodl long-range projecting neurons in cortex27,28,67,68 are closely 500 
related to the local Sst interneurons in CNU, as they all belong to a single subclass, 56 Sst Chodl 501 
Gaba, based on their gene expression profiles (Figure 2a,d,e,l). Supertype 241 Sst Chodl 502 
Gaba_4 contains the cortical Sst Chodl neurons whereas the other 5 supertypes in this class are 503 
mostly located in CNU.  504 
 505 
The 58 PAL-STR Gaba-Chol subclass contains basal forebrain cholinergic neurons (Extended 506 
Data Figure 11). This subclass is divided into 3 supertypes, with supertypes 259 and 260 507 
containing cholinergic neurons. The third one, supertype 261, contains closely related 508 
GABAergic neurons that are mainly located in medial septum (MS) and diagonal band nucleus 509 
(NDB). The cholinergic neurons have cluster-level specificity in their spatial localizations. Those 510 
in supertype 259 are located in MS and NDB (clusters 923-925), substantia innominata (SI) and 511 
NDB (clusters 926 and 928), or GPe and SI (cluster 927) (Extended Data Figure 11b), and thus 512 
are assigned as the cholinergic projection neurons in the basal forebrain. Those in supertype 260 513 
are located in STR (including CP, ACB, OT, etc.) (Extended Data Figure 11c), and thus are 514 
assigned as the striatal cholinergic interneurons. All cholinergic projection neuron clusters in 515 
supertype 259 co-release GABA, some of which also co-release glutamate. On the other hand, 516 
we were surprised to find that none of the striatal cholinergic interneuron clusters in supertype 517 
260 co-release GABA, instead, some of these clusters even co-express glutamate (via transporter 518 
gene Slc17a8) (Extended Data Figure 11e, Supplementary Table 3). Other cholinergic 519 
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neurons in CNU include clusters 1081 and 1084 within the 69 LSX Nkx2-1 Gaba subclass and 520 
307 LSX Nkx2-1 Gaba_2 supertype, which are both GABAergic and cholinergic (Extended 521 
Data Figure 11a,d,e).  522 
 523 
Gene expression gradients within telencephalic brain structures 524 
MGE cortical gradient 525 
During adulthood, CGE-derived GABAergic neurons in the 46 Vip Gaba and 47 Sncg Gaba 526 
subclasses are distributed evenly through either deep or superficial cortical layers and do not 527 
show much of a spatial gene expression gradient (Extended Data Figures 1b, 5c-e). In contrast, 528 
MGE-derived GABAergic neurons adopt their laminar distribution in an ‘‘inside-out’’ manner 529 
that correlates with their birthdate, later-born neurons migrate radially past earlier-born neurons 530 
to populate more superficial layers. Sst-positive GABAergic neurons are among the first types to 531 
diversify and mature and are more abundant in infragranular than in supragranular layers of the 532 
isocortex, while Pvalb-positive GABAergic neurons can be found throughout all layers except 533 
Layer 1 (Figure 2h-i, Extended Data Figure 12a-c). We performed Independent Component 534 
Analysis (ICA) on the Pvalb GABA and Sst GABA classes independently, projected the scRNA-535 
seq result onto the MERFISH data and extracted the top loading genes for the components with 536 
the strongest spatial gradient (see Methods). We identified 20 genes that drive a spatial gradient 537 
along the cortical depth in the Pvalb GABA subclass and 45 genes that drive a spatial gradient in 538 
the Sst GABA subclass (Extended Data Figure 12d-g). Among these genes, there only five 539 
genes that are shared between the subclasses (Gm32647, Il1rapl2, Calb1, Nkain3, and Parm1) 540 
indicating that the observed gradient is unique for each subclass. Among the genes driving the 541 
gene expression gradient there are only 4 genes that are subclass or supertype markers (Rbp4, 542 
Pdyn, Nr2f2, and Plpp4), suggesting that the spatial gene expression gradient is not only driven 543 
by supertype diversity within the subclass. 544 
 545 
Homology and gradients in MSN populations 546 
There exists a strong similarity between STR D1 and STR D2 GABAergic neurons. The 547 
constellation plot shows most similar pairs of STR D1 and STR D2 neurons (Figure 5a, see 548 
Methods). We selected five cluster pairs along the UMAP distribution and examined their 549 
spatial location using the MERFISH data (Figure 5b-f). These closely related STR D1 and STR 550 
D2 clusters share the same spatial locations. Next, we performed Independent Component 551 
Analysis (ICA) on the STR D1 and STR D2 subclasses independently, projected the scRNA-seq 552 
result onto the MERFISH data, and extracted the top common genes among STR D1 and D2 553 
clusters driving the spatial gradient (see Methods, Figure 5g,h). We identified two gene 554 
modules that represent the dorsolateral-to-ventromedial ends of the gradient. For each cell we 555 
calculated the gene module score for each of the two modules and show the scores on both the 556 
UMAP based on single cell RNA-seq and representative MERFISH sections (Extended Data 557 
Figure 7b-i). The results show that a similar spatial gradient drives the dorsolateral-to-558 
ventromedial differences seen in both STR D1 and D2 types. The ventromedial located STR D1 559 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 18, 2024. ; https://doi.org/10.1101/2024.06.18.599583doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.18.599583
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

and D2 types are marked by expression of genes coding for various neuroactive receptors, like 560 
Grm8, Htr2a, and Cnr (Figure 5g,h). The dorsolateral located STR D1 and D2 types on the 561 
other hand are marked by expression of genes coding for proteins involved in cGMP-PKG 562 
signaling including Csgalnact1, Prkg1, and Slc8a1. 563 
 564 
LSX gradients 565 
LSX is a structure of the basal forebrain that integrates inputs from many cortical and subcortical 566 
regions and transmitting the appropriate signals to downstream hypothalamic and midbrain 567 
nuclei. As such it plays a central role in the regulation of social behaviors like anxiety and 568 
aggression. Most neurons in LSX are GABAergic and contain receptors for a variety of 569 
neuromodulators and neuropeptides (Extended Data Figure 2). The relationships among 570 
subclasses in LSX are complex, show overlapping spatial distribution patterns, and 571 
transcriptomic subclasses or supertypes are not necessarily restricted to a single segment of LSX. 572 
By imputing scRNA-seq data into the MERFISH brain space, we examined the 3D spatial 573 
gradients in LSX more systematically (Extended Data Figure 13). We performed ICA on the 574 
LSX GABA class and projected the scRNA-seq result onto the MERFISH data (see Methods). 575 
For the top five spatial gradients identified, we extracted the genes driving the gradient (gene 576 
modules) and calculated a gene score for each cell based on both the positive and negative genes 577 
in each of the five modules (Extended Data Figure 13). Among the genes in the gene modules 578 
highlighted, we see two subclass markers, Zeb2, and Six3, and just one supertype marker, Foxp2. 579 
Indicating that most genes driving the spatial gradients are crossing subclass and supertype 580 
boundaries (Extended Data Figure 13a). The strongest spatial gradients in LSX represent 581 
dorsoventral or mediolateral gradients but no strong anteroposterior gradient (Extended Data 582 
Figure 13c). Earlier reports already indicated that LSX input domains do not align well with the 583 
molecular organization within LSX but the molecular organization does align with the long 584 
range projections69,70. For example, gene module 3 contains Foxp2 and Ndst4, genes that are 585 
expressed in a subdomain of LSX and neurons in this area have been shown to project to MPO 586 
and LPOA regions in the hypothalamus70,71. Our data shows that cell types are organized along 587 
multidimensional gradients that might align with both input and output domains in LSX. 588 
 589 
Persistent developmental signatures 590 
The telencephalic GABAergic neurons arise mostly from the five principal progenitor domains 591 
of the subpallium and from there migrate to populate various regions of the telencephalon. We 592 
identified a comprehensive set of transcription factor (TF) marker genes defining the adult 593 
neuronal types at class and subclass levels (Figure 6a). To verify that the expression patterns are 594 
consistent with their developmental origin, we collected scRNA-seq data from 3 different 595 
developmental stages, namely E11.5 to E14.5 (n = 74,550), postnatal day 0 (P0, n = 138,613) 596 
and P14 (n = 360,748). These cells were mapped onto the whole mouse brain taxonomy14,72 and 597 
cells belonging to the subpallium GABAergic cell types were selected. This resulted in a 598 
developmental dataset containing 10,259 E11.5 to E14.5 cells, 31,672 P0 cells, and 57,507 P14 599 
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cells (Supplementary Table 4). This data was integrated with the adult P56 subpallium 600 
GABAergic neurons to visualize gene expression patterns across time (Figure 6b). From this 601 
integration we could delineate which progenitor domain gives rise to specific classes and 602 
subclasses in the adult dataset (Figure 6c,d).  603 
 604 
Developmental CGE-MGE 605 
Starting in early development, CGE- and MGE-derived GABAergic neurons that will populate 606 
the CTX and CNU can be identified by their distinct gene expression patterns (Figure 6e, 607 
Extended Data Figure 14a). The spatial specificity of some transcription factors was verified 608 
using the developing mouse ISH atlas73 and the P56 MERFISH dataset (Extended Data Figure 609 
14b). Our MERFISH dataset was generated using a 500-gene probe set. We imputed the scRNA-610 
seq data into the MERFISH data14. By doing so, the imputed spatial expression patten of every 611 
gene in the transcriptome, including TF genes not in the MERFISH probe set, can be visualized 612 
in the MERFISH sections and confirmed by ISH data74 (Extended Data Figure 14b). 613 
 614 
The cortical CGE and MGE-derived GABAergic classes are predominantly located in all regions 615 
of isocortex, OLF, HPF and CTXsp (Extended Data Figure 1a), and are marked by expression 616 
of the developmental TF Maf (Figure 6a, Extended Data Figure 14a). The CTX-CGE GABA 617 
class specifically expresses the developmental TF Nr2f2 and Prox1. MGE gives rise to 618 
GABAergic neurons that populate both cerebral cortex (CTX-MGE GABA class) and striatum 619 
and pallidum (CNU-MGE GABA class). Both classes are marked by expression of Lhx6 and the 620 
CNU-MGE GABA class also specifically expresses Lhx8 (Extended Data Figure 14b).  621 
 622 
As mentioned above, cortical MGE-derived GABAergic neurons adopt their laminar distribution 623 
in an ‘‘inside-out’’ manner that correlates with their birthdate, later-born neurons migrate 624 
radially past earlier-born neurons to populate more superficial layers75,76. For both CGE and 625 
MGE-derived GABAergic neurons we observed an expansion of distinct types that happens 626 
between P0 and P14 (Extended Data Figure 15a-e). Sst-positive GABAergic neurons are 627 
among the first types to emerge and diversify, compared to Pvalb-positive GABAergic 628 
neurons11,77. Cortical Sst-positive GABAergic neurons arrive at their final destination by P5 in 629 
mice but are not yet fully mature at that point78. A recent study showed that select subtypes of 630 
Sst-positive neurons, including Sst-positive LRP, are already present in the embryonic cortex but 631 
several types of Sst-positive interneurons diversify during the postnatal period68. Pvalb-positive 632 
GABAergic neurons exhibit a similar diversification pattern during development. Specifically, 633 
the Pvalb-positive Chandelier cells show early specification while many other subtypes specify 634 
in the early postnatal period79. It is becoming increasingly clear that circuit activity influences 635 
cell (sub)type specification in cortical GABAergic neurons during the early postnatal period80,81. 636 
 637 
In corroboration with previous results, the CTX-MGE GABA subclass 50 Lamp5 Lhx6 Gaba 638 
expresses both Lhx6 and Adarb2, markers for MGE and CGE respectively (Extended Data 639 
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Figure 15f). As stated above, in the current WMB taxonomy this subclass is assigned to the 640 
CTX-MGE class due to expression of the MGE marker Lhx6. Lhx6 and Adarb2, marking MGE- 641 
and CGE-originated inhibitory neurons respectively, are co-enriched in the POA-derived 642 
neurogliaform cells, indicating that the Lamp5 Lhx6 subclass might be POA-derived. From our 643 
developmental data here, we can see that at P0 the Lamp5 Lhx6 subclass is more closely related 644 
to the CTX-MGE class than the CTX-CGE class, but cluster 10087 has signatures from both 645 
CGE and MGE that connects immature CGE and MGE neurons with the Lamp5 Lhx6 subclass 646 
(Extended Data Figure 15b-f). 647 
 648 
Developmental LGE 649 
The OB-IMN GABA and CNU-LGE GABA cell classes both arise from the LGE domain 650 
(Figure 6b-e, Extended Data Figure 16a-c). The OB-IMN GABA class contain cell types 651 
located in the MOB and AOB as well as immature neurons in the SVZ lining the lateral 652 
ventricles (Extended Data Figure 1a). These cells mostly express TFs Sp8, Sp9, and Meis2 653 
(Figure 6e, Extended Data Figure 14a,b). The types within the CNU-LGE GABA class are 654 
predominantly located in STRd and STRv and are marked by expression of Rarb and Foxp2 655 
(Extended Data Figure 14a,b).  656 
 657 
In the adult GABAergic cell type taxonomy, we observed a relatedness between subclass 39 OB 658 
Meis2 Thsd7b Gaba and subclass 65 IA Mgp Gaba from CNU that would suggest that these 659 
subclasses share their developmental origin. Subclass 39, containing the neurons that populate 660 
the Ipl/Mi, EPl, and Gl layers of OB, is sequestered away from most other olfactory bulb cell 661 
types and more closely related to subclass 65 containing immature cells populating the 662 
intercalated amygdalar nucleus (Figure 6d, Extended Data Figure 16b,c). 663 
 664 
Despite their similarity in adulthood, the distinction between 61 STR D1 Gaba and 62 STR D2 665 
Gaba subclasses is established in early development (Extended Data Figure 16a-e). The D1 and 666 
D2 populations appear to arise from different progenitor populations based on expression of 667 
distinct gene sets (Extended Data Figure 16f-j). Genes like Sp9 and Six3 are essential for the 668 
generation of STR D2 neurons, and genes including Isl1 and Ebf1 drive differentiation towards 669 
STR D1 neurons (Extended Data Figure 16f,k-n). Based on the sparse developmental data 670 
collected in this study, it appears that the maturation of the STR D2 neuron population is slower 671 
than that of the STR D1 population. At P0 there is less differentiation into mature D2 supertypes 672 
compared to D1 supertypes. This delay can also be seen by a set of genes that is expressed at 673 
earlier stages in D1 neurons than in D2 neurons (Extended Data Figure 16e,f,o-q). In adulthood 674 
we observed that STR D1 and STR D2 neuronal types that share the same spatial location are 675 
transcriptomically highly similar to each other (Figure 5). The transcriptomic distance between 676 
STR D1 and STR D2 types is greater during development than in adulthood (Extended Data 677 
Figure 16u). There are genes in both D1 and D2 types that are expressed in just one of the types 678 
at early timepoints but in both types at P14 and P56 (Extended Data Figure 16f,r-t). This 679 
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indicates that the two types develop along their own trajectory but when they reach their final 680 
anatomical location their transcriptomes are molded towards their neighboring cells. 681 
 682 
CNU-HYa and LSX 683 
The LSX GABA class is located specifically in lateral septum complex (LSX) and expresses TFs 684 
Zic1, Zic4, Zic5, and Prdm16 (Figure 6e, Extended Data Figure 1a, Extended Data Figures 685 
14a,b, 17d). Lastly, the CNU-HYa GABA class contains cell types present in both CNU, mostly 686 
located in sAMY, PALc, and POA. Cell types in LSX and CNU-HYa are highly diverse and 687 
have multiple embryonic origins. LSX contains a population of Nkx2-1-positive neurons that 688 
might arise from MGE or POA. CNU-HYa cell types located in CEA, AAA, and BST express 689 
Meis2 and Six3, cell types in MEA and certain BST cell types express Lhx6 and Nr2f2, and cell 690 
types located in POA express Zic1 and Zic4 (Extended Data Figure 17d). From the sparse 691 
developmental data we collected it was difficult to precisely link the developmental origin to 692 
each adult subclass (Extended Data Figure 17a-c). Both LSX and CNU-HYa classes show 693 
similar progenitor populations at E11.5-E14.5, which are very distinct from the cell populations 694 
detected at P0. While there is a great expansion of types between P0 and P14 in the cortical 695 
GABAergic cell types, in the LSX GABA and CNU-HYa GABA classes this is not the case. At 696 
P0, we identified nearly all adult cell types within these classes, indicating that cell type 697 
diversification completed before birth similar to what has been described for POA derived 698 
hypothalamic neurons82. 699 
 700 
DISCUSSION 701 
 702 
In this study, we present an extraordinarily complex, high-resolution cell type taxonomy and 703 
atlas of GABAergic neurons in the mouse telencephalon. We have integrated high-quality single 704 
cell RNA-seq data with an adult whole brain MERFISH dataset. This integration allowed us to 705 
analyze the molecular and anatomical organization of GABAergic neurons in detail. We find that 706 
telencephalic GABAergic cell types can be organized in a hierarchical manner where 707 
relationships among cell types reflect both spatial location and developmental origin. We 708 
systematically relate cell types in our taxonomy to the wide variety of previously identified cell 709 
types or populations across all telencephalic regions, and we discover and categorize many new 710 
cell types that were previously unknown or with little information. As such, the telencephalic 711 
GABAergic cell type taxonomy can serve as a foundational reference for molecular, structural 712 
and functional studies of cell types and circuits by the entire community. Furthermore, we gain 713 
additional insights into the organization of these cell types, including multiple dimensions of 714 
continuous variations among related cell types along with correlated gene expression gradients, 715 
long-range migration and dispersion to distinct brain regions of closely related cell types with a 716 
common developmental origin, and a stark contrast in pre- and postnatal diversification between 717 
cortical/striatal/some pallidal and septal/other pallidal/preoptic GABAergic cell types.  718 
 719 
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Telencephalic GABAergic neurons originate from five principal progenitor domains of the 720 
subpallium: MGE, CGE, LGE, the embryonic POA, and the embryonic septum3,5,83. From here 721 
the progenitor cells migrate to distant locations and differentiate to form mature brain structures. 722 
These processes are regulated by morphogen-regulated transcription factor modules. Our 723 
understanding of the TF cascades that specify neuronal cell types during development has 724 
increased greatly11,83–85. Many of the TFs regulating neuronal differentiation during development 725 
are also expressed in mature neurons and we can use the expression of these TFs to infer the 726 
expected developmental origin of neuronal subtypes. More recently, studies have shown that 727 
some of these TFs also play a role in the maintenance of neuronal identity. In invertebrates, the 728 
term “terminal selector gene” has been used to describe genes that not only specify but also 729 
maintain cell type identity86,87 and these terminal selectors often work in specific combinations to 730 
define neuronal subtypes. In mouse, the term “master regulator” has been used to describe the 731 
transcription factor(s) that triggers the gene expression program of a developmental lineage. 732 
Many of these TFs have been identified by the fact that genetic removal during development 733 
results in failure of specific neuronal classes to develop properly. Studies on the role of these 734 
regulators in maintenance of neuronal identity are limited but there is reason to believe these 735 
terminal selector genes exist in mice as well88,89. Our study reveals a large set of persistent TFs in 736 
the telencephalic GABAergic cell types (Figure 6), and their roles in the maintenance of cell 737 
type identity can be tested in future genetic perturbation experiments.  738 
 739 
A nearly universal characteristic of the telencephalic GABAergic neurons is that neurons located 740 
in far apart regions of the telencephalon can belong to the same cell type (subclass, supertype, or 741 
even cluster). This suggests that neurons of a common developmental origin can migrate long 742 
distances and reside in highly distinct brain regions. Most supertypes and clusters in the CTX-743 
CGE and CTX-MGE classes, that is, the CGE- and MGE-derived cortical GABAergic 744 
interneurons, are widely distributed in nearly all isocortex, HPF, OLF and CTXsp regions, with 745 
only a small group of supertypes and clusters located selectively in HPF, OLF and/or CTXsp 746 
(Figure 2, Extended Data Figure 5). The CNU-MGE class, containing all striatal GABAergic 747 
interneurons and many pallidal GABAergic neurons, shares transcriptomic similarity and a 748 
common origin from MGE90–92 to the CTX-MGE class which includes the cortical Pvalb-749 
positive and Sst-positive GABAergic interneurons (Figure 2). The OB-IMN class, containing 750 
olfactory bulb GABAergic neurons, developmentally originates in LGE and is transcriptomically 751 
related to the CNU-LGE class which contains the striatal D1 and D2 MSNs and related cell types 752 
(Figure 3, Extended Data Figures 3, 16). The OB-IMN class also contains immature neurons 753 
generated in SVZ through adult neurogenesis and migrating to OB. Lastly, the CNU-HYa class 754 
contains a large set of highly heterogeneous cell types that are widely distributed in sAMY, 755 
medial, ventral and caudal pallium, as well as the hypothalamic preoptic area (Figure 4, 756 
Extended Data Figure 9).  757 
 758 
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At more fine-grained levels, subclass 56 Sst Chodl Gaba in the CNU-MGE class contains both 759 
the cortical Sst-Chodl neurons (as a specific supertype) that are the long-range projection 760 
neurons enriched in deep layers of many cortical areas28,67,93, and the Sst-positive interneurons in 761 
the striatum32,94 (also found in pallidal regions) that have electrophysiological properties similar 762 
to that of MSNs32,95 (Figure 2). As such, the cortical Sst-Chodl neurons are more similar to the 763 
striatal/pallidal Sst -Chodl interneurons than the cortical Sst interneurons. The cholinergic 764 
neurons in the 58 PAL-STR Gaba-Chol subclass, also belonging to the CNU-MGE class, include 765 
the basal forebrain cholinergic projection neurons in multiple pallidal regions as well as the 766 
striatal cholinergic interneurons, with spatial specificity at supertype or cluster level (Figure 2, 767 
Extended Data Figure 11). Lastly, within multiple subclasses in the CNU-HYa class, neurons 768 
belonging to the same supertype can be found in both CEA (part of sAMY) and BST (part of 769 
PALc), or in both MEA (part of sAMY) and BST (Figure 4, Extended Data Figure 9).  770 
 771 
As a consequence of this widespread migration and dispersion, most of the telencephalic regions 772 
(except for LSX and OB) contain a heterogeneous mixture of GABAergic neuronal types 773 
(Extended Data Figure 1) with distinct developmental origins and likely distinct connectivity 774 
and circuit functions. Within the major developmental progenitor domains, several functional 775 
subdomains have been identified that generate different types of GABAergic neurons. For 776 
example, the LGE subventricular zone can be divided into four subdomains along the 777 
dorsoventral axis (pLGE1, 2, 3, and 4). The dorsal domain (dLGE; pLGE1, 2) expresses genes 778 
like Sp8 and Er81 and gives rise to olfactory bulb interneurons and intercalated cells (ITCs) of 779 
the amygdala, and the ventral domain (vLGE; pLGE3, 4) expresses genes like Isl1 and Ebf1 780 
predominantly gives rise to GABAergic medium spiny neurons38,96,97. More recent studies 781 
indicate that the pLGE3 and pLGE4 domains might preferentially generate MSN D2 and MSN 782 
D1 neurons respectively98,99. Similarly, MGE can be divided into five subdomains along the 783 
dorsoventral axis (pMGE1 to 5) and each of these domains generates multiple types of 784 
GABAergic neurons5,100,101. The more ventral part of MGE (pMGE4,5) tends to generate many 785 
GABAergic neurons that populate the striatum and pallidum, while the dorsal part of MGE 786 
(pMGE1-4) generates many of the cortical interneurons5,101,102. Future studies will be needed to 787 
systematically understand the spatial and temporal patterns of the emergence of diverse cell 788 
types within each progenitor domain.  789 
 790 
As the GABAergic neurons reach their final destinations in later stages of development, cell type 791 
identities may be further shaped by local environment, as evidenced by gene expression 792 
gradients and continuous variations in various spatial dimensions across supertypes and clusters 793 
of a specific GABAergic subclass. The MGE-derived cortical Sst- and Pvalb-neurons exhibit 794 
continuous variations from deep to superficial layers (Extended Data Figure 12). The six LSX 795 
subclasses are not spatially segregated but partially overlapping, and they exhibit 796 
multidimensional gradients (Extended Data Figure 13) that might align with their input/output 797 
connections69,70. The most prominent continuous variations we observed are in the striatal D1 798 
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and D2 MSN types (Figure 5). We have identified 5 subclasses of MSN types of which 799 
subclasses 61 STR D1 Gaba and 62 STR D2 Gaba contain the “classical” MSN D1 and MSN D2 800 
neurons that are present in striatum and have defined gene expression profiles, connectivity 801 
patterns, and function33,34,103–106. These two subclasses show a strong correlation along the 802 
dorsolateral-to-ventromedial axis of striatum (Figure 5). We have identified gene modules, 803 
shared between MSN D1 and MSN D2 types, that drive the gene expression gradient along the 804 
dorsolateral-to-ventromedial axis of striatum. Genes involved in cGMP-PKG signaling are 805 
expressed at higher levels in the dorsolateral MSN D1 and D2 types. Downstream effectors of 806 
this signaling pathway play a key role in regulating long-term changes in striatal synaptic 807 
efficacy107–109. On the ventromedial end of the gradient axis genes coding for various neuroactive 808 
receptors are expressed at higher levels of which Cnr1 has been described before 809 
34,110. The dorsolateral-to-ventromedial transcriptional gradient and cell types related to that align 810 
with topographical organization of excitatory striatal afferent projections111,112. 811 
 812 
We have identified distinct cholinergic neuronal types in striatum, pallidum, and lateral septum. 813 
Most telencephalic cholinergic neurons originate from the MGE, embryonic POA, and 814 
embryonic septum113,114. The cholinergic precursors originate from the Nkx2.1-positive domain 815 
and are further specified by combinatorial expression of additional transcription factors5. Lhx6 is 816 
essential for specification and migration of MGE-derived GABAergic interneurons, in both the 817 
cortex and striatum6,115,116 and Lhx8 has been associated with the specification of a cholinergic 818 
phenotype by actively inducing cholinergic properties6. These genes are still expressed in the 819 
cholinergic neurons in adulthood (Extended Data Figure 11e). The cholinergic neurons acquire 820 
different identities based on their time of birth, which occurs between E12 and E16117. Early- and 821 
late-born cholinergic striatal interneurons migrate at different time points and populate different 822 
regions. Absence of Gbx2 has been shown to cause ablation of the entire late-born cholinergic 823 
population118. This late-born population most likely corresponds to supertype 260 PAL-STR 824 
Gaba-Chol_2 which still expresses Gbx2 in adulthood and is located in striatum. A subset of the 825 
striatal cholinergic interneurons in this supertype expresses the Type-3 vesicular glutamate 826 
transporter (VgluT3, Slc17a8; Extended Data Figure 11e) and can mediate glutamatergic 827 
transmission which is required for cholinergic signaling onto fast spiking interneurons (subclass 828 
54 STR Prox1 Lhx6 Gaba) as well as acetylcholine-dependent inhibition of MSNs119,120. While 829 
striatal cholinergic neurons mostly serve as local interneurons, pallidal cholinergic neurons are 830 
mostly sending projections to cortex, hippocampus, and amygdala. These basal forebrain 831 
cholinergic neurons are distributed across a series of nuclei, including MS, NDB, the nucleus 832 
basalis of Meynert (part of SI), and GPe. Several studies have shown that the function of basal 833 
forebrain cholinergic neurons is linked to their topographical organization. For example, the 834 
dorsal parts of PL, ILA, and ACA of isocortex receive projections from medially located SI and 835 
NDB neurons, whereas more ventral parts of prefrontal cortex receive projections from more 836 
laterally located basal forebrain nuclei. Hippocampus and the entorhinal cortex receive the 837 
majority of their cholinergic input from the MS and vNDB cholinergic neurons121,122.  838 
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 839 
Finally, the developmental scRNA-seq data presented in this study reveals an interesting 840 
difference between the MGE/CGE/LGE derived GABAergic neuronal types (in classes CTX-841 
CGE, CTX-MGE, CNU-MGE, CNU-LGE and OB-IMN) and those in the LSX and CNU-HYa 842 
GABAergic classes. The former group of GABAergic types exhibit relatively clear continuity 843 
from E11-14 to P0 to P14 to P56, along with substantial transcriptomic shifts between E11-14 844 
and P0 as well as between P0 and P14 (Extended Data Figures 15, 16), suggesting these cell 845 
types undergo continued and extensive postmitotic and postnatal diversification similar to what 846 
has been described before for cell types in cortex123,124. On the other hand, the latter group of 847 
septal and most pallidal GABAergic types exhibit disjointed transcriptomic changes between 848 
E11-14 and P0, whereas no substantial transcriptomic shifts from P0 to P14 to P56 were 849 
observed (Extended Data Figure 17), suggesting that this cell type repertoire emerges in an 850 
apparent burst in the embryonic stage with limited postnatal diversification, consistent with a 851 
recent study82. This developmental difference between these two groups of GABAergic neuronal 852 
types is intriguing because it is consistent with our previous observation of the dichotomy of cell 853 
type characteristics between the dorsal and ventral parts of the adult brain14.  854 
 855 
In conclusion, our study provides a detailed transcriptomic characterization of GABAergic 856 
neurons in the telencephalon, their spatial locations, and their potential developmental origins. It 857 
highlights both the vast differences and the similarities between spatially distant and not so 858 
distant types of GABAergic neurons. With the current developmental dataset, we could link 859 
adult cell types to their developmental origins, but more detailed molecular investigations will be 860 
needed to fully understand how neurons across different lineages diversify during development. 861 
Moreover, though the spatial organization of transcriptomic types follows a similar logic to the 862 
current knowledge of the circuit organization in the telencephalon, further experiments are 863 
needed to link the transcriptomic types to their projection and connectivity patterns.  864 
 865 
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 1159 
METHODS 1160 
 1161 
Sample collection, data generation, and data analysis for P56 dataset 1162 
Most of methods which apply to the adult P56 10x scRNA and MERFISH datasets used for this 1163 
paper were described before14 and the following methods are either newly introduced or 1164 
modified version for this paper. 1165 
 1166 
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UMAP projection  1167 
We performed PCA based on the imputed gene expression matrix of 4,895 marker genes using 1168 
the 10xv3 reference. We selected the top 100 PCs, then removing one PC with more than 0.7 1169 
correlation with the technical bias vector, defined as log2(gene count) for each cell. We used the 1170 
remaining PCs as input to create 2D and 3D UMAPs125, using parameters nn.neighbors = 25 and 1171 
md = 0.4. 1172 
 1173 
Constellation plot  1174 
To generate the constellation plot, each transcriptomic supertype was represented by a node 1175 
(circle), whose surface area reflected the number of cells within the supertype in log scale. The 1176 
position of nodes was based on the centroid positions of the corresponding supertypes in UMAP 1177 
coordinates. The relationships between nodes were indicated by edges that were calculated as 1178 
follows. For each cell, 15 nearest neighbors in reduced dimension space were determined and 1179 
summarized by supertypes. For each supertype, we then calculated the fraction of nearest 1180 
neighbors that were assigned to other supertypes. The edges connected two nodes in which at 1181 
least one of the nodes had > 5% of nearest neighbors in the connecting node. The width of the 1182 
edge at the node reflected the fraction of nearest neighbors that were assigned to the connecting 1183 
node and was scaled to node size. For all nodes in the plot, we then determined the maximum 1184 
fraction of “outside” neighbors and set this as edge width = 100% of node width. The function 1185 
for creating these plots, plot_constellation, is included in scrattch.bigcat. 1186 
 1187 
Imputation of scRNA-seq data into the MERFISH space 1188 
The MERFISH dataset was collected using only 500 genes. To obtain the spatial distribution of 1189 
all the genes, we projected gene expression of the MERFISH dataset to the 10xv3 scRNA-seq 1190 
dataset using a modified version of the impute_knn_global function in the scrattch.bigcat 1191 
package14,26. We used self-imputed 10xv3 dataset as reference, meaning that the expression of 1192 
each 10xv3 cells was first imputed based on its nearest 15 neighbors in the reduced principal 1193 
component space. This decision was made to ensure that in the following hierarchical imputation 1194 
step, the transitions between major cell types were preserved. The imputation was conducted in 1195 
the order specified by the hierarchy defined by class and subclass. At the root, we imputed the 1196 
expression for all the genes for each MERFISH cell based on the average expression of their 1197 
nearest neighbors from the reference 10xv3 dataset, defined by the cosine similarity using all 500 1198 
MERFISH genes. In each of the following iterations, we selected the node to which each 1199 
MERFISH cell was assigned and imputed only the expression of the DEGs based on pairwise 1200 
comparison for all the clusters under this node. The nearest neighbors for imputation were 1201 
selected from the clusters under this node in the reference dataset, using only the subset of DEGs 1202 
that were present on the MERFISH gene panel. We repeated this procedure until reaching the 1203 
leaf node. This strategy enabled us to preserve the cell type resolution during imputation, making 1204 
it less susceptible to the global platform differences between MERFISH and scRNA-seq.  1205 
 1206 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 18, 2024. ; https://doi.org/10.1101/2024.06.18.599583doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.18.599583
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

Analysis of spatial gene expression gradients 1207 
We performed independent component analysis using fastICA126 to decompose the gene 1208 
expression matrix into independent components. These components are then projected onto the 1209 
imputed MERFISH data to determine if the component represents a spatial gene expression 1210 
program. For components that represent a spatial gene expression program the top loading genes 1211 
we selected and visualized on both the UMAP in RNAseq space and on sections in the imputed 1212 
MERFISH space. We evaluated the gene modules in the identified individual components and 1213 
applied UCell127 to assign a “gene module score” based on both positive and negative genes to 1214 
each cell. 1215 
 1216 
Spatial domain clustering 1217 
We used BANKSY128 to perform spatial domain clustering within BST neurons. This algorithm 1218 
implements a feature-augmentation approach to map domains by integrating the transcriptional 1219 
profiles of individual cells with their physical distances and tissue neighborhood context. As the 1220 
MERFISH data was registered to the CCFv3, it allowed us to subset BST neurons from the 1221 
MERFISH data. We used the 8988 BST neurons, their spatial location, and their 500 genes 1222 
expression profile as input for BANKSY.  1223 
 1224 
Assessing concordance of cell type taxomony between the subpallium GABAergic cell type 1225 
atlas and external datasets 1226 
We performed mapping of cells from each external dataset to the 10x v3 whole-brain dataset 1227 
using treeMap function from scrattch.mapping package 1228 
(https://github.com/AllenInstitute/scrattch-mapping)72. The reference cell type taxonomy was 1229 
organized in a hierarchy defined by class and subclass. At each node, top markers were selected 1230 
that best discriminate the clusters belonging to different child nodes. Starting at the root, cells 1231 
were assigned to the closest cluster centroid from all the clusters under the given node based on 1232 
the selected node markers using the cosine similarity metric. This mapping procedure was 1233 
repeated until reaching the leaf nodes. To assess mapping confidence, we subsampled 80% of the 1234 
markers at each node, and repeated the mapping process 100 times. In each bootstrapping step, 1235 
we also computed the cosine similarity of the cell to the mapped the cluster based on the markers 1236 
for all the nodes along the mapping path and calculated the average similarity across all 100 1237 
bootstrapping iterations. This score was used to assess the quality of the mapping. Cells with a 1238 
score above 0.5 were used to generate a confusion matrix showing the proportion of cells jointly 1239 
found between 2 types and their Jaccard similarity score.  1240 
 1241 
Measuring similarity between MSN D1 and D2 clusters  1242 
We computed the nearest neighbors from MSN D1 cells for MSN D2 cells and vice versa using 1243 
cosine similarity metric based on the same marker list, which were used to define the edge 1244 
weights for the constellation plots. To select the most similar pairs between MSN D1 and MSN 1245 
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D2 types, we selected all the pairs with Pearson correlation greater than 0.93 and with at least 1246 
30% of the KNNs from one cluster belonging to the other cluster in the pair.  1247 
 1248 
Developmental scRNA-seq data collection 1249 
Mouse breeding and husbandry 1250 
All experimental procedures related to the use of mice were approved by the Institutional Animal 1251 
Care and Use Committee of the AIBS, in accordance with NIH guidelines. Mice were housed in 1252 
a room with temperature (21–22 °C) and humidity (40–51%) control within the vivarium of the 1253 
AIBS at no more than five adult animals of the same sex per cage. Mice were provided food and 1254 
water ad libitum and were maintained on a regular 14:10 h light:dark cycle. Mice were 1255 
maintained on the C57BL/6 J background. We excluded any mice with anophthalmia or 1256 
microphthalmia. 1257 
 1258 
Mothers of all experimental pups were placed in a fresh cage when embryos were ∼E8. We used 1259 
6 pups to collect 74,550 cells from ages E11.5, E12.5, E13.5, and E14.5. From ages E11.5 and 1260 
E12.5 we collected whole brain tissue and from ages E13.5 and E14.5 we collected cerebrum and 1261 
brain stem (CH-BS). From 6 P0 pups we collected 138,613 cells, and from 6 P14 pups we 1262 
collected 360,748 cells. P0 and P14 cells were collected from both male and female mice across 1263 
6 dissection ROIs: OLF, CTXsp, Isocortex, HPF, CNU, and HY. No statistical methods were 1264 
used to predetermine sample size. All donor animals used for the developmental scRNA-seq data 1265 
generation are listed in Supplementary Table 5. Brain dissections for all groups took place in 1266 
the morning. 1267 
 1268 
Single-cell isolation 1269 
Single cells were isolated following a cell-isolation protocol developed at AIBS129. The brain 1270 
was dissected, submerged in artificial cerebrospinal fluid (ACSF), embedded in 2% agarose, and 1271 
sliced into 350-μm coronal sections on a compresstome (Precisionary Instruments). Block-face 1272 
images were captured during slicing. ROIs were then microdissected from the slices and 1273 
dissociated into single cells. 1274 
 1275 
Dissected tissue pieces were digested with 30 U ml−1 papain (Worthington PAP2) in ACSF for 1276 
30 min at 30 °C. Due to the short incubation period in a dry oven, we set the oven temperature to 1277 
35 °C to compensate for the indirect heat exchange, with a target solution temperature of 30 °C. 1278 
Enzymatic digestion was quenched by exchanging the papain solution three times with 1279 
quenching buffer (ACSF with 1% FBS and 0.2% BSA). Samples were incubated on ice for 5 min 1280 
before trituration. The tissue pieces in the quenching buffer were triturated through a fire-1281 
polished pipette with 600-µm diameter opening approximately 20 times. The tissue pieces were 1282 
allowed to settle and the supernatant, which now contained suspended single cells, was 1283 
transferred to a new tube. Fresh quenching buffer was added to the settled tissue pieces, and 1284 
trituration and supernatant transfer were repeated using 300-µm and 150-µm fire-polished 1285 
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pipettes. The single-cell suspension was passed through a 70-µm filter into a 15-ml conical tube 1286 
with 500 µl of high-BSA buffer (ACSF with 1% FBS and 1% BSA) at the bottom to help 1287 
cushion the cells during centrifugation at 100g in a swinging-bucket centrifuge for 10 min. The 1288 
supernatant was discarded, and the cell pellet was resuspended in the quenching buffer. The 1289 
concentration of the resuspended cells was quantified, and cells were immediately loaded onto 1290 
the 10x Genomics Chromium controller. 1291 
 1292 
cDNA amplification and library construction 1293 
The E11.5 to E14.5 cell suspensions were processed using the Chromium Single Cell 3′ Reagent 1294 
Kit v3 (1000075, 10x Genomics). We followed the manufacturer’s instructions for cell capture, 1295 
barcoding, reverse transcription, cDNA amplification and library construction130. We loaded 1296 
8,283 ± 703 cells per port. We targeted a sequencing depth of 120,000 reads per cell; the actual 1297 
average achieved was 70,324 ± 62,149 reads per cell across 9 libraries. 1298 
 1299 
The P0 cell suspensions were processed using the Chromium Single Cell 3′ Reagent Kit v3.1 1300 
(1000268, 10x Genomics). We followed the manufacturer’s instructions for cell capture, 1301 
barcoding, reverse transcription, cDNA amplification, and library construction131. We loaded 1302 
11,551 ± 1,785 (mean ± s.d.) cells per port. We targeted sequencing depth of 120,000 reads per 1303 
cell; the actual average achieved was 65,069 ± 61,474 (mean ± s.d.) reads per cell across 12 1304 
libraries. 1305 
 1306 
The P14 cell suspensions were processed using the Chromium Next GEM Single Cell 3' HT 1307 
Reagent Kit v3.1 (1000370, 10x Genomics). We followed the manufacturer’s instructions for 1308 
cell capture, barcoding, reverse transcription, cDNA amplification, and library construction. We 1309 
loaded 30,062 ± 15,008 (mean ± s.d.) cells per port. We targeted sequencing depth of 120,000 1310 
reads per cell; the actual average achieved was 46,055 ± 61,941 (mean ± s.d.) reads per cell 1311 
across 12 libraries. 1312 
 1313 
Sequencing data processing and QC 1314 
Processing of 10x Genomics scRNA-seq libraries was performed as described previously26. In 1315 
brief, libraries were sequenced on the Illumina NovaSeq6000, and sequencing reads were aligned 1316 
to the mouse reference transcriptome (M21, GRCm38.p6) using the 10x Genomics CellRanger 1317 
pipeline (version 6.1.1) with default parameters. To remove low-quality cells, we applied similar 1318 
QC analysis and thresholding as described previously14. 1319 
 1320 
Clustering scRNA-seq data 1321 
To assign cell type identity to cells at P14 the cells were mapped onto the WMB taxonomy using 1322 
Hierarchical Approximate Nearest Neighbour (HANN) mapping available in scrattch-mapping 1323 
package72. To improve mapping to the correct lineage, we removed three classes containing 1324 
immature neurons (03 OB-CR Glut, 04 DG-IMN Glut, and 05 OB-IMN GABA) from the adult 1325 
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WMB taxonomy. For cells from P0 time point, we assigned their broad cell types by mapping to 1326 
the nearest cluster centroid in the adjacent older age group, P14, using scrattch.mapping. Cells 1327 
from E11.5 to E14.5 were binned, considered as one time point for further analysis, and mapped 1328 
to the P0 time point. After assigning the broad cell types, iterative clustering was performed 1329 
within assigned subclasses using the scrattch.bigcat package as described before14. Cell type 1330 
annotation of the developmental scRNA-seq dataset is shown in Supplementary Table 4.  1331 
 1332 
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Figure 1. Transcriptomic taxonomy of telencephalic GABAergic neuronal types in the 
mouse. (a) The transcriptomic taxonomy of 285 supertypes organized in a dendrogram (10xv2: n 
= 271,656 cells; 10xv3 n = 343,761 cells). From top down, the bar plots represent subclass, 
major neurotransmitter (NT) type, region distribution of profiled cells, number of RNA-seq cells, 
and number of MERFISH cells per supertype. (b-d) UMAP representation of all cell types 
colored by subclass (b), supertype (c), and dissection region (d). (e) Constellation plot of the 
global relatedness between subclasses. Each subclass is represented by a disk, labeled by the 
subclass ID, and positioned at the subclass centroid in UMAP coordinates shown in panel b. The 
size of the disk corresponds to the number of cells within each subclass, and the edge weights 
correspond to the fraction of shared neighbors (see Methods) between subclasses. (f) 
Constellation plot as in panel e but showing relatedness between supertypes. Each supertype is 
colored by the subclass it belongs to. Bubbles drawn around supertypes outline the major classes. 
(g) Representative MERFISH sections of adult mouse brain across forebrain structures colored
by cell class. Each class is labelled by its ID and shown in the same color in the dendrogram and
bubbles in the constellation plot.
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Figure 2. MGE-derived GABAergic cell types in the cerebral cortex and cerebral nuclei. (a-
c) UMAP representation of all MGE clusters colored by subclass (a), supertype (b), or broad 
brain region (c). (d) Constellation plot of MGE clusters using UMAP coordinates shown in b. 
Nodes are colored by supertype and grouped in bubbles by subclass. Lines around the bubbles 
denote the class the nodes belong to. (e) Dendrogram of MGE supertypes followed by bar graphs 
showing major neurotransmitter type, region distribution of profiled cells, dominant region, and 
number of cells within supertype, followed by dot plot showing marker gene expression in each 
supertype from the 10xv3 dataset. The dominant region was assigned if more than 70% of cells 
are from the OLF-HPF-CTXsp regions. For the gene expression dot plot, dot size and color 
indicate proportion of expressing cells and average expression level in each supertype, 
respectively. (f-n) Representative MERFISH sections showing the location of supertypes in 
MGE subclasses 50 Lamp5 Lhx6 Gaba (f), 51 Pvalb chandelier Gaba (g), 52 Pvalb Gaba (h), 53 
Sst Gaba (i), 54 STR Prox1 Lhx6 Gaba (j), 55 STRv Lhx8 Gaba (k), 56 Sst Chodl Gaba (l), 57 
NDB−SI−MA−STRv Lhx8 Gaba (m), 58 PAL−STR Gaba−Chol (n). Cells are colored and 
labelled by supertype.  
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Figure 3. LGE-derived GABAergic cell types of the cerebral nuclei. (a) UMAP 
representation of all LGE clusters colored by supertype. (b) Constellation plot of LGE clusters 
using UMAP coordinates shown in a. Nodes are colored by supertype and grouped in bubbles by 
subclass. (c-g) Representative MERFISH sections showing the location of LGE subclasses, 58 
GPe Sox6 Cyp26b1 Gaba (c), 60 OT D3 Folh1 Gaba (d), 63 STR D1 Sema5a Gaba (e), 64 
STR−PAL Chst9 Gaba (f), 65 IA Mgp Gaba (g). Cells are colored and labelled by supertype. (h-
i) Representative MERFISH sections showing the location of CNU-LGE subclasses, 61 STR D1 
Gaba (h) and 62 STR D1 Gaba (i). Each box contains one supertype and cells are labelled and 
colored by cluster to highlight the diversity. 
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Figure 4. Organization of GABAergic neuronal types across striatum-like amygdalar 
nuclei and bed nuclei of the stria terminalis. (a) Representative MERFISH sections showing 
the location of subclasses belonging to the CNU-HYa neuronal class. Cells are colored by the 
subclass they belong to and labelled by its ID. (b-c) Representative MERFISH sections showing 
the locations of cells belonging to the MEA-BST subclasses (b) and CEA-BST subclasses (c). 
Each row shows one subclass, and cells are colored and labelled by supertype identity. For each 
subclass the location in both MEA and BST (b) or CEA and BST (c) are shown, indicating the 
existence of the same cell types in these locations. (d-f) Spatial domain clustering within BST 
neurons using Banksy. The alluvial plot (d) shows the relation between subclasses present in 
BST and the spatial domains. Representative MERFISH images show the location of the spatial 
domains, with cells colored by spatial domain identity (e) and the area covered by each domain 
(f). 
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van Velthoven Figure 5
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Figure 5. Gene signatures defining shared gradients in D1 and D2 medium spiny neurons. 
(a) Constellation plot of clusters showing the pairs of most similar clusters between 61 STR D1
Gaba and 62 STR D2 Gaba subclasses. Clusters are represented by a disk colored by cluster,
labeled by cluster ID, and disks with a colored border are highlighted exemplars in panels b to f.
(b-f) Representative MERFISH sections showing five examples of STR D1 and STR D2 pairs
from panel a, and their spatial distribution patterns. Sections are colored by cluster identity. (g-h)
Gene expression dot plots of two major gene modules driving the spatial gradient among STR
D1 (g) and STR D2 (h) clusters. Dot size and color indicate proportion of expressing cells and
average expression level in each cluster, respectively. Underneath the dot plot a violin plot of the
medial-lateral (x) coordinate for each MERFISH cell per cluster is shown.
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Figure 6. Transcription factor expression in telencephalic GABAergic neurons. (a) The 
supertype dendrogram from Figure 1, followed by a heatmap showing the expression of key 
transcription factors in each supertype in the taxonomy tree. (b-e) UMAP representation of all 
cell types across the developmental time course, E11.5-E14.5, P0, P14, and P56, colored by age 
(b), class (c), P56 subclass (d), and major developmental lineage gene markers (e).  
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Extended Data Figure 1. GABAergic neuronal type composition in different regions of the 
telencephalon. (a) Heatmap showing the proportion of cells in each broad region of the 
telencephalon per GABAergic supertype. (b) Heatmap showing the proportion of cells in each 
supertype from 06 CTX-CGE GABA and 07 CTX-MGE GABA classes in each cortical layer 
and substructure of the hippocampal formation.  
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Extended Data Figure 2. Neuropeptide gene expression in telencephalic GABAergic 
neuronal types. (a-e) Dot plot showing gene expression level of differentially expressed 
neuropeptides in each cluster across classes 6 CTX-CGE GABA and 7 CTX-MGE GABA (a), 8 
CNU-MGE GABA and 9 CNU-LGE GABA (b), 5 OB-IMN GABA (c), 10 LSX GABA (d), and 
11 CNU-HYa GABA (e). Dot size and color indicate proportion of expressing cells and average 
expression level in each cluster, respectively. 
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Extended Data Figure 3. GABAergic and immature neuronal cell types of olfactory bulbs. 
UMAP representation of GABAergic and immature neuronal types in olfactory bulbs colored by 
supertype (a). (b) Constellation plot of OB-IMN GABA clusters using UMAP coordinates 
shown in b. Nodes are colored by supertype and grouped in bubbles by subclass. (c) Dendrogram 
of OB-IMN GABA supertypes followed by bar graphs showing major neurotransmitter type and 
region distribution of profiled cells, followed by dot plot showing marker gene expression in 
each supertype from the 10xv3 dataset. Dot size and color indicate proportion of expressing cells 
and average expression level in each supertype, respectively. (d) Schematic drawing of 
anatomical structure in MOB (left) and AOB (right). Abbreviations: RMS, rostral migratory 
stream; GrO, granular layer; IPl, internal plexiform layer; Mi, mitral layer; EPl, external 
plexiform layer; Gl, glomerular layer. (e-k) Representative MERFISH sections showing the 
location of OB subclasses 39 MOB Meis2 Gaba (e), 40 OB Trdn Gaba (f), 42 OB-out Frmd7 
Gaba (g), 43 OB-mi Frmd7 Gaba (h), 44 OB Dopa-Gaba (i), 41OB-in Frmd7 Gaba (j), and 45 
OB-STR-CTX Inh IMN (k). Cells are colored and labelled by supertype.  
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Extended Data Figure 4. Correspondence between the current transcriptomic taxonomy of 
OB-IMN GABA and CNU-LGE GABA classes and previously published ones. 
Correspondence was determined by mapping cells from previously published datasets to the 
current taxonomy as described before26. (a,b) Mapping of Tepe et al., 201821 (a) and Cebrian-
Silla et al., 202118 (b) to the OB-IMN GABA class. (c,d) Mapping of Stanley et al., 202034 (c) 
and Chen et al., 202133 (d) to the CNU-LGE GABA class. 
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Extended Data Figure 5. CGE-derived GABAergic neuronal types in the cerebral cortex. 
(a) UMAP representation of all CGE clusters colored by supertype. (b) Constellation plot of
CGE clusters using UMAP coordinates shown in a. Nodes are colored by supertype and grouped
in bubbles by subclass. (c) Dendrogram of CGE supertypes followed by bar graphs showing
major neurotransmitter type, region distribution of profiled cells, dominant region, and number
of cells within supertype, followed by dot plot showing marker gene expression in each
supertype from the 10xv3 dataset. The dominant region was assigned if more than 70% of cells
are from the assigned region. For the gene expression dot plot, dot size and color indicate
proportion of expressing cells and average expression level in each supertype, respectively. (d-g)
Representative MERFISH sections showing the location of supertypes in CGE subclasses 46 Vip
Gaba (d), 47 Sncg Gaba (e), 48 RHP-COA Ndnf Gaba (f), and 49 Lamp5 Gaba (g). Cells are
colored and labelled by supertype.
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Extended Data Figure 6. Correspondence of CGE and MGE GABAergic neuronal types 
with previously published cell-type taxonomies. (a-b) CGE (a) and MGE (b) GABAergic cell 
types identified in this study are compared to cell types in CTX-HPF study26 and VISp Patch-seq 
study27. Size of the dots corresponds to the number of overlapping cells in corresponding 
taxonomies. Columns are separated by supertypes, and rows are separated manually based on 
subclass in corresponding dataset. 
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Extended Data Figure 7. LGE-derived GABAergic cell types of the cerebral nuclei. (a) 
Dendrogram of CNU-LGE supertypes followed by bar graphs showing major neurotransmitter 
type and region distribution of profiled cells, followed by dot plot showing marker gene 
expression in each supertype from the 10xv3 dataset. Dot size and color indicate proportion of 
expressing cells and average expression level in each supertype, respectively. (b-i) Based on the 
gene modules (blue and purple) identified in Figure 5g-h, a cumulative gene score was 
calculated using UCell. UMAPs showing CNU-LGE GABAergic neurons (b,c,f,g), and 
representative MERFISH sections (d,e,h,i) colored by blue gene module score for STR D1 (b,d) 
and STR D2 (c,e) types or colored by purple gene module score for STR D1 (f,h) and STR D2 
(g,i) types. 
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Extended Data Figure 8. GABAergic cell types of the lateral septum. (a-b) UMAP 
representation of all LSX clusters colored by subclass (a) or supertype (b). (c) Constellation plot 
of LSX clusters using UMAP coordinates shown in b. Nodes are colored by supertype and 
grouped in bubbles by subclass. (d) Dendrogram of LSX supertypes followed by tiles showing 
major neurotransmitter type, followed by a heatmap showing the region distribution of profiled 
cells, then followed by dot plot showing marker gene expression in each supertype from the 
10xv3 dataset. Dot size and color indicate proportion of expressing cells and average expression 
level in each supertype, respectively. (e-j) Representative MERFISH sections showing the 
location of the LSX subclasses 67 LSX Sall3 Pax6 Gaba (e), 68 LSX Otx2 Gaba (f), 69 LSX 
Nkx2-1 Gaba (g), 70 LSX Prdm12 ve Gaba (h), 71 LSX Prdm12 do Gaba (i), and 72 LSX Sall3 
Lmo1 Gaba (j). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 18, 2024. ; https://doi.org/10.1101/2024.06.18.599583doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.18.599583
http://creativecommons.org/licenses/by-nc-nd/4.0/


66

73

74

75

76

77

78

79

80

81

82
83

84

85

86

87
88

89

90

295

296
297

298

337

338

339340
341

342

343
344

345

346

347

348

349

350

351

352

353

354

355

356

357

358
359

360
361

362

363

364

365

366

367

368

369

370

371

372373

374

375

376

377

378

379

380

381

382383

384385

386

387

388

389390

391

392

393 394

395

396 397

398

399400 401
402

403

404
405

406

407

408
409 410

411
412

413

414

415
416

417

418

419

420
421

422

423
424

425

426

Supertype
size

100

1000

40

20

10

Fraction of 
edges to node 

295
296 297

298

337

338

339
340341 342

343

344

345

346

347

348

349

350
351

352

353

354

355

356

357

358 359

360 361

362

363

364

365
366

367

368

369

370

371

372373

374

375

376
377

378

379

380

381
382383

384385

386

387
388

389
390

391

392
393

394

395

396
397

398

399

400

401
402

403

404405

406

407 408
409

410

411

412

413

414

415

416

417
418

419

420 421

422
423

424

425

426

75

76

74

73

79
80

85

87

86

89

82

81

78

90
88

8366

o o o o o o o o o o o o o o o o o o o

v

0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

08 0
0
0
0
0

0

0
0
0
0
0

0
0
0
0
0
0
05 0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
05 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

02 0
0
0
06 0
0

0
0

0
0
0
0

0

0
6 07 0

0
0
0
0

6 0
0
0
0
0
0

Sytl4
Htr1b
Nr4a2
Rspo1

Tmem215
Hmx2

Myo5b
Fezf1

Kcnmb2
Kitl
Ttn

Pgm5
Ptger3

Rorb
Gm20646

Lamp5
Crhbp
Palmd
Cdh23

Ano1
Nup62cl
Megf10
Slc10a4
Ppp1r1b

Gpr88
Pax6
Penk

Gm13481
Gpr83
Gbx1
Gbx2
Dgkk

Ndst4
Lhx8
Pthlh

Slc22a3
Crh

Impg1
Rai14

Popdc3
Vdr

Col23a1
Kcnj5
Ano2
Asb4
Ebf3

Slc17a8
Syndig1l

Sox1
Zfp503
Klhl14

Tll1
C1ql3
C1ql1
Glis3

Adora2a
Tshz1
Glp1r
Inka2

Pde11a
Adm
Eya4
Tacr3

Ezr
Mafb

Cyp26b1
Six3

Sema3d
Bnc2

Avp
Gal
Npy

Tmem163
Npas1

Dnah10
Bmpr1b

Kcng2
Alkal2
Sox5

Tmem132c
Stac

Calcr
Satb1
Satb2
Itgbl1

Sst
Wls

Syt6
Greb1

Sp9
Frem3

Lhx6
St18
Vcan

Dach1
Cyp19a1

Gpr149
Nr2e1
Nxph2

Ifi27l2a
Nfix

Sox6
B130024G19Rik

Nfia
Gm39185

Plpp4
Zeb2

Nts
Lmo7

Zic1
Meis2

Y

066 082080079078077076075 085 086 087 088 089 090

89 67
5

96
9

98
7

86
5

80
5

85
9

72
2 97 26
7

27
8

60
6

68
6

50
7

62
7

79
7

86
8 89 62
0

52
6

o

o

5

25

50

75

0

25

50

75

Extended Data Fig. 9

a

b

c

d

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 18, 2024. ; https://doi.org/10.1101/2024.06.18.599583doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.18.599583
http://creativecommons.org/licenses/by-nc-nd/4.0/


Extended Data Figure 9. GABAergic cell types of the CNU and anterior hypothalamus 
(HYa). (a-b) UMAP representation of all CNU-HYa clusters colored by subclass (a) or 
supertype (b). (c) Constellation plot of CNU-HYa supertypes using UMAP coordinates shown in 
b. Nodes are colored by supertype and grouped in bubbles by subclass. (d) Dendrogram of CNU-
HYa supertypes followed by tiles showing major neurotransmitter type, followed by a heatmap
showing the region distribution of profiled cells, then followed by dot plot showing marker gene
expression in each supertype from the 10xv3 dataset. Dot size and color indicate proportion of
expressing cells and average expression level in each supertype, respectively.
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Extended Data Figure 10. Correspondence between the current transcriptomic taxonomy 
of the CNU-HYa class and previously published ones. Correspondence was determined by 
mapping cells from previously published datasets to the current taxonomy as described before. 
(a-b) Mapping of Knoedler et al., 2022 (a) and Hochgerner et al., 2023 (b) to supertypes in the 
CNU-HYa class or the entire telencephalic GABAergic taxonomy. 
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Extended Data Figure 11. Distribution of basal forebrain cholinergic neurons. (a) UMAP 
representation of all telencephalic GABAergic neurons as in Figure 1b-d, cells in background 
are colored classes that contain cholinergic neurons and foreground cells are colored by 
supertype. The insert shows the cholinergic neurons belonging to the CNU GABA class colored 
by cluster. (b-d) Representative MERFISH sections showing cholinergic neurons colored by 
cluster for supertypes 259 PAL-STR Gaba-Chol_1 (b), 260 PAL-STR Gaba-Chol_2 (c), and 307 
LSX Nkx2-1 Gaba_2 (d). (e) Dot plot showing marker gene expression in each cholinergic 
cluster from the 10xv3 dataset. Dot size and color indicate proportion of expressing cells and 
average expression level in each cluster, respectively.  
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Extended Data Figure 12. Laminar distribution of MGE GABAergic neurons in cortex and 
hippocampal formation. (a) Heatmap showing the proportion of cells in each layer or region of 
the isocortex and HPF for supertypes in the MGE-CTX GABA class. (b,c) Representative 
MERFISH sections showing the distribution of neurons across cortex and hippocampal 
formation in select supertypes from subclasses 42 Pvalb Gaba (b) and 43 Sst Gaba (c). (d,e) Dot 
plot showing expression level of genes driving the gene expression gradient along the cortical 
depth for supertypes (ordered from superficial to deep) within the Pval Gaba (d) and Sst Gaba (e) 
subclasses. Dot size and color indicate proportion of expressing cells and average expression 
level in each supertype, respectively. (f, g) Representative examples of genes that drive the 
laminar gene expression gradient, plotted on the same MERFISH section as in panels b and c, 
shown for the 42 Pvalb Gaba (f) and 43 Sst Gaba (g) subclasses. 
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a b c

Extended Data Figure 13. Spatial gradients in LSX. (a) Heatmap showing expression of 
genes that drive the spatial gradients among subclasses in LSX. Top five gene modules 
containing genes that are both up- and down-regulated along the spatial gradients. We calculated 
the gene signature score for these modules for every cell and colored the scRNA-seq UMAP 
representation (b) and representative MERFISH sections (c) by gene score. 
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Extended Data Figure 14. Transcription factor expression marking developmental lineages. 
(a) UMAP representation of all cells across E11-E14, P0, P14 and P56 time points colored by
expression level of major lineage marker genes. The colored dots next to each gene name show
the classes that express that gene. (b) Representative MERFISH sections showing expression of
key transcription factors in GABAergic neurons. Genes marked with parentheses show expected
spatial gene expression pattern based on imputed data (see Methods).
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Extended Data Figure 15. Developmental trajectory of CGE- and MGE-derived neurons. 
(a-c) UMAP representation of all neurons at E11.5-E14.5, P0, and P14 that will form the 06 
CTX-CGE GABA, 07 CTX-MGE GABA, and 08 CNU-MGE GABA classes colored by age (a), 
class (b), or subclass (c). (d,e) Constellation plots showing all clusters using UMAP coordinates. 
Nodes are colored by subclass (d), or proportion of age group (e). (f) UMAPs showing 
expression of genes that link the Lamp5 Lhx6 subclass to both CGE and MGE origins.  
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Extended Data Figure 16. Developmental trajectory of CNU LGE-derived neurons. (a-b) 
UMAP representation of all neurons at E11.5-E14.5, P0, and P14 that are derived from LGE and 
will populate the OB-IMN and CNU-LGE classes. UMAPs are colored by age (a) or subclass 
(b). (c) Constellation plot showing all developmental clusters using UMAP coordinates from 
panel a. Nodes are colored by supertype and bubbles behind constellation are colored by 
subclass. (d-e) UMAP representation of all neurons at E11.5-E14.5, P0, and P14 that will form 
the CNU-LGE class. UMAPs are colored by subclass (d) or age (e). (f) Heatmap showing 
differentially expressed genes in the STR D1 and STR D2 lineages across time. Twelve gene 
modules were identified that show various modes of expression along and between subclasses 
over time. (g-j) Gene module scores marking different stages along the maturation path of D1 
and D2 neurons. Gene modules 2 and 1 highlight immature STR D1 (g) and immature STR D2 
(h) neurons respectively, while gene modules 12 and 8 mark mature STR D1 (i) and mature STR
D2 (j) neurons respectively. (k-n) UMAP representation like in panels d-e colored by major
lineage markers. (o-q) Gene module 6 contains genes highlighting the delayed maturation of
STR D2 vs STR D1 neurons (o), such as two exemplar genes Hs6st2 (p) and Pam (q). (r-t) Gene
module 7 contains genes whose expressions converge along the maturation trajectory of STR D1
and STR D2 neurons (r), such as two exemplar genes Tnr (s) and Arid5b (t). (u) Violin plot
showing the transcriptomic distance between STR D1 and STR D2 subclass transcriptomes
across the time course.
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Extended Data Figure 17. Developmental trajectory of LSX and CNU-HYa GABAergic 
neurons. (a-c) UMAP representation of all neurons at E11.5-E14.5, P0, and P14 that will form 
the 10 LSX GABA and 11 CNU-HYa GABA classes colored by class (a), subclass (b), and age 
(c). (d) UMAP representation as in panels a-c colored by expression level of subclass marker 
genes. The colored dots next to each gene name show the subclasses expressing that gene. 
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Supplementary Table 1. Allen Mouse Brain Common Coordinate Framework version 3 
(CCFv3) regional ontology. Regions outside telencephalon are greyed out. Adopted from Wang 
et al, 2020.   

Supplementary Table 2. MERFISH 500-gene panel used in Vizgen MERSCOPE platform 
to generate the whole mouse brain MERFISH dataset.  

Supplementary Table 3. Cell type taxonomy of GABAergic neuronal types in the 
telencephalon. This taxonomy was defined as the Subpallium-GABA neighborhood in the 
whole mouse brain cell type atlas in Yao et al, 2023. Detailed information for telencephalic 
GABAergic clusters, including membership at different levels (supertype, subclass, class, and 
division), NT type, NT type combo, major NT marker genes, major neuropeptides, top and 
combo marker genes, main dissection region, manual anatomical annotation, number of 10x v2 
and 10x v3 cells, fraction of male and female cells, and accession numbers to cell types. 

Supplementary Table 4. Developmental cell type taxonomy of GABAergic neuronal types 
in the telencephalon. Detailed information for developmental GABAergic clusters, including 
membership at different levels (supertype, subclass, and class), number of cells from each age 
group, and top marker genes. 

Supplementary Table 5. Donor information of the Developmental scRNA-seq dataset. All 
donors used to generate the developmental scRNA-seq data in this study are listed, with 
associated metadata including sex, age, genotype, etc. From one donor multiple regions could be 
dissected.   
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