

1 **The transcriptomic and spatial organization of telencephalic GABAergic neuronal types**

2
3 Cindy T. J. van Velthoven*, Yuan Gao, Michael Kunst, Changkyu Lee, Delissa McMillen, Anish
4 Bhaswanth Chakka, Tamara Casper, Michael Clark, Rushil Chakrabarty, Scott Daniel, Tim
5 Dolbeare, Rebecca Ferrer, Jessica Gloe, Jeff Goldy, Junitta Guzman, Carliana Halterman, Windy
6 Ho, Mike Huang, Katelyn James, Beagan Guy, Trangthanh Pham, Kara Ronellenfitch, Eric D.
7 Thomas, Amy Torkelson, Chelsea M. Pagan, Lauren Kruse, Nick Dee, Lydia Ng, Jack Waters,
8 Kimberly A. Smith, Bosiljka Tasic, Zizhen Yao, and Hongkui Zeng*

9
10 Allen Institute for Brain Science, Seattle, WA, USA

11
12 *Correspondence: Cindy T. J. van Velthoven (cindy.vanelthoven@alleninstitute.org), Hongkui
13 Zeng (hongkuiz@alleninstitute.org).

14
15
16 **ABSTRACT**

17
18 The telencephalon of the mammalian brain comprises multiple regions and circuit pathways that
19 play adaptive and integrative roles in a variety of brain functions. There is a wide array of
20 GABAergic neurons in the telencephalon; they play a multitude of circuit functions, and
21 dysfunction of these neurons has been implicated in diverse brain disorders. In this study, we
22 conducted a systematic and in-depth analysis of the transcriptomic and spatial organization of
23 GABAergic neuronal types in all regions of the mouse telencephalon and their developmental
24 origins. This was accomplished by utilizing 611,423 single-cell transcriptomes from the
25 comprehensive and high-resolution transcriptomic and spatial cell type atlas for the adult whole
26 mouse brain we have generated, supplemented with an additional single-cell RNA-sequencing
27 dataset containing 99,438 high-quality single-cell transcriptomes collected from the pre- and
28 postnatal developing mouse brain. We present a hierarchically organized adult telencephalic
29 GABAergic neuronal cell type taxonomy of 7 classes, 52 subclasses, 284 supertypes, and 1,051
30 clusters, as well as a corresponding developmental taxonomy of 450 clusters across different
31 ages. Detailed charting efforts reveal extraordinary complexity where relationships among cell
32 types reflect both spatial locations and developmental origins. Transcriptomically and
33 developmentally related cell types can often be found in distant and diverse brain regions
34 indicating that long-distance migration and dispersion is a common characteristic of nearly all
35 classes of telencephalic GABAergic neurons. Additionally, we find various spatial dimensions of
36 both discrete and continuous variations among related cell types that are correlated with gene
37 expression gradients. Lastly, we find that cortical, striatal and some pallidal GABAergic neurons
38 undergo extensive postnatal diversification, whereas septal and most pallidal GABAergic
39 neuronal types emerge simultaneously during the embryonic stage with limited postnatal
40 diversification. Overall, the telencephalic GABAergic cell type taxonomy can serve as a

41 foundational reference for molecular, structural and functional studies of cell types and circuits
42 by the entire community.

43

44 INTRODUCTION

45

46 The telencephalon, the most anterior part of the mammalian brain, comprises several large
47 structures that are considered as the top-level command centers of the hierarchically organized
48 brain networks and play integrative roles in information processing and generation of behavior
49 and cognition. The telencephalon is composed of two major structures, cerebral cortex (as the
50 shell) and cerebral nuclei (as the core), which arise from pallium and subpallium, respectively, of
51 the developmental telencephalon. Cerebral cortex consists of isocortex, hippocampal formation,
52 olfactory areas and cortical subplate, whereas the cerebral nuclei consist of striatum and
53 pallidum. Within each of these major brain structures, there are multiple functionally specific
54 regions and subregions (**Supplementary Table 1** provides the anatomical ontology from the
55 Allen Mouse Brain Common Coordinate Framework version 3 (CCFv3)¹ with full names and
56 acronyms of all telencephalic regions), each comprising many cell types.

57

58 In the mouse cerebral cortex (CTX) (**Supplementary Table 1**), isocortex contains ~35 cortical
59 areas, including visual, auditory, somatosensory, gustatory, visceral and motor areas, as well as
60 association areas in the prefrontal, medial and lateral parts. Hippocampal formation (HPF) is
61 divided into hippocampus (HIP) and retrohippocampal regions (RHP), and the latter is further
62 divided into medial and lateral entorhinal cortex (ENTm and ENTl), parasubiculum (PAR),
63 postsubiculum (POST), presubiculum (PRE), subiculum (SUB), prosubiculum (ProS),
64 hippocampo-amyg达尔 transition area (HATA) and area prostriata (APr). Olfactory areas (OLF)
65 contain the entire olfactory sensory pathway, including main and accessory olfactory bulbs
66 (MOB and AOB), anterior olfactory nucleus (AON), taenia tecta (TT), dorsal peduncular area
67 (DP), piriform area (PIR), nucleus of the lateral olfactory tract (NLOT), cortical amygdalar area
68 (COA), piriform-amyg达尔 area (PAA), and postpiriform transition area (TR). Cortical subplate
69 (CTXsp) contains claustrum (CLA), endopiriform nucleus (EP), and lateral, basolateral,
70 basomedial and posterior amygdalar nuclei (LA, BLA, BMA and PA).

71

72 In the mouse cerebral nuclei (CNU) (**Supplementary Table 1**), striatum (STR) consists of
73 striatum dorsal region (STRd, also called caudoputamen, CP), striatum ventral region (STRv),
74 lateral septal complex (LSX), and striatum-like amygdalar nuclei (sAMY). STRv is further
75 divided into nucleus accumbens (ACB), fundus of striatum (FS), and olfactory tubercle (OT).
76 LSX is further divided into lateral septal nucleus (LS), septofimbrial nucleus (SF) and
77 septohippocampal nucleus (SH). And sAMY is further divided into anterior amygdalar area
78 (AAA), bed nucleus of the accessory olfactory tract (BA), central amygdalar nucleus (CEA),
79 intercalated amygdalar nucleus (IA), and medial amygdalar nucleus (MEA). Pallidum (PAL)
80 consists of four subdivisions, with the dorsal region (PALd) containing globus pallidus external

81 and internal segments (GPe and GPi), the ventral region (PALv) containing substantia
82 innominata (SI) and magnocellular nucleus (MA), the medial region (PALm) containing medial
83 septal nucleus (MS), diagonal band nucleus (NDB) and triangular nucleus of septum (TRS), and
84 the caudal region (PALc) containing bed nuclei of the stria terminalis (BST) and bed nucleus of
85 the anterior commissure (BAC).

86

87 From these highly complex regional subdivisions, a general organizing principle of the
88 telencephalon with several parallel cortico-striato-pallidal circuit pathways has been revealed². In
89 a highly simplified view, the dorsal pathway from isocortex to CP to GPe/GPi mediates
90 sensory/motor functions. On the ventral side, the prefrontal cortex-ACB-PALv and the LA/BLA-
91 CEA-BST pathways mediate affective functions. The hippocampal-septal pathway along the
92 medial axis mediates learning and cognitive functions. Underlying these complex circuit
93 networks are an extraordinary array of neuronal cell types. Previous studies have revealed highly
94 diverse and heterogeneous cellular properties of both glutamatergic and GABAergic neurons in
95 the telencephalon, which likely contribute critically to the specific functions of different brain
96 regions. To understand how the variety of brain functions emerge from this complex system, it is
97 essential to gain comprehensive knowledge about the cell types, their regional/spatial specificity,
98 and their inter-relatedness.

99

100 Glutamatergic excitatory neurons are the dominant neuronal class of the cerebral cortex and are
101 generated within the ventricular and subventricular zones of the developing pallium. GABAergic
102 inhibitory neurons are the dominant neuronal class of the cerebral nuclei and are generated in the
103 ganglionic eminences of the developing subpallium. GABAergic neurons also migrate to the
104 pallium and populate all parts of the CTX, intermingling with the glutamatergic neurons. In this
105 study, we focus on telencephalic GABAergic neurons, which play a plethora of circuit functions.
106 In CTX, they are mostly local inhibitory interneurons, modulating circuit dynamics, excitation-
107 inhibition balance, and rhythmic activities. In CNU, they are mostly long-range inhibitory
108 projection neurons and transmit circuit-specific information, though some are local interneurons
109 as well and others (i.e., cholinergic neurons) play neuromodulatory roles.

110

111 The telencephalic GABAergic neuronal types arise mostly from the five principal progenitor
112 domains of the subpallium: the medial ganglionic eminence (MGE), the caudal ganglionic
113 eminence (CGE), the lateral ganglionic eminence (LGE), the embryonic septum, and the
114 embryonic preoptic area (POA). Most GABAergic cell types are produced during the embryonic
115 period and migrate along defined routes to disperse throughout the forebrain³⁻⁵. Cell fate
116 specification in the progenitor domains is orchestrated by a combination of transcription factors
117 and morphogens⁴⁻¹³.

118

119 Leveraging the comprehensive and high-resolution transcriptomic and spatial cell type atlas for
120 the whole mouse brain we have generated¹⁴, supplemented with an additional scRNA-seq dataset

121 collected from the pre- and postnatal developing brain, we conducted a systematic and in-depth
122 analysis of the transcriptomic and spatial organization of GABAergic neuronal types in all
123 regions of the mouse telencephalon and their developmental origins. We identified an
124 extraordinarily large set of highly distinct cell types as well as continuous molecular gradients
125 within and across different regions. These two aspects of the cell type landscape collectively
126 shape the cellular diversity that underlie the diverse function of the many regions and neural
127 circuits in the telencephalon. We discovered a comprehensive set of transcription factors (TF)
128 that define all major subclasses and supertypes of the adult-stage telencephalic GABAergic
129 neurons. We found strong expression of these TF marker genes in specific regions of the
130 developing telencephalon, and thus were able to infer the developmental origins of all the
131 GABAergic neuronal types described here, which had only been partially known before. The
132 results reveal two prominent features of the telencephalic GABAergic neurons: 1)
133 transcriptomically and developmentally related cell types are often found in far-apart and distinct
134 brain regions, suggesting long-distance migration and dispersion is a common characteristic of
135 nearly all classes of telencephalic GABAergic neurons; 2) cortical and striatal GABAergic
136 neurons undergo extensive postnatal diversification, whereas septal and most pallidal
137 GABAergic neuronal type repertoire emerges in an apparent burst in embryonic stage with
138 limited postnatal diversification.

139

140 RESULTS

141

142 **A transcriptomic and spatial atlas of GABAergic neuronal types in the mouse** 143 **telencephalon**

144 Previously, we reported the creation of a high-resolution transcriptomic and spatial cell type atlas
145 covering the entire adult mouse brain based on the combination of single-cell RNA-sequencing
146 (scRNA-seq) and spatially resolved transcriptomics using MERFISH (**Supplementary Table**
147 **2**)¹⁴. We defined a hierarchically organized whole-mouse-brain (WMB) cell type atlas
148 comprising four nested levels of classification: 34 classes, 338 subclasses, 1,201 supertypes and
149 5,322 clusters. Neuronal cell types exhibit extraordinary diversity and constitute a large
150 proportion of the whole brain cell type atlas, including 29 classes (85%), 315 subclasses (93%),
151 1,156 supertypes (96%) and 5,205 clusters (98%). However, in this previous study we only
152 described the organization of neuronal cell types across the whole mouse brain at a coarse level
153 (class – subclass). Here, we conduct a more in-depth analysis and introduce the most complete
154 to-date taxonomy of all the GABAergic neuronal types in the entire telencephalon, at all levels of
155 the hierarchy.

156

157 The telencephalic GABAergic neuronal cell type taxonomy, defined as the Subpallium-GABA
158 neighborhood in the WMB cell atlas¹⁴, contains subclasses 39-90 that belong to 7 classes: OB-
159 IMN GABA, CTX-CGE GABA, CTX-MGE GABA, CNU-MGE GABA, CNU-LGE GABA,
160 LSX GABA, and CNU-HYa GABA (**Figure 1**). Contained within the total of 52 subclasses,

161 there are 284 supertypes and 1,051 clusters, with a total of 611,423 high-quality single-cell
162 transcriptomes (10x v2: 269,307 cells; $3,567 \pm 1,264$ genes per cell; $9,328 \pm 5,502$ UMIs per
163 cell; 10x v3: 342,116 cells; $5,949 \pm 1,625$ genes per cell; $26,476 \pm 14,943$ UMIs per cell)
164 (**Supplementary Table 3**). We provide several representations of this atlas for further analysis: a
165 dendrogram at supertype resolution along with bar graphs displaying various metadata
166 information (**Figure 1a**), UMAPs at single-cell resolution colored with different types of
167 metadata information (**Figure 1b-d**), and constellation diagrams to depict multi-dimensional
168 relationships among different subclasses and supertypes (**Figure 1e,f**).
169

170 As the MERFISH data was registered to the Allen Mouse Brain CCFv3, we could determine the
171 GABAergic neuronal cell type composition, at the supertype level, for each of the telencephalic
172 regions (**Extended Data Figure 1a**). This analysis showed that most supertypes span multiple
173 neighboring regions, except for supertypes located in LSX and MOB-AOB which are located in
174 one dominant region. We further used the Gini coefficient and Shannon diversity index to
175 measure the extent of variation in spatial distribution among supertypes (**Extended Data Figure**
176 **1a**), and both reveal high inequality (that is, highly localized patterns) in spatial distribution of
177 each neuronal subclass, with the exception of GABAergic neurons in isocortex which are
178 distributed across most cortical regions.
179

180 As expected, vast majority of the clusters are purely GABAergic types (**Figure 1a**,
181 **Supplementary Table 3**). However, we also identified glutamate-GABA co-releasing types
182 expressing *Slc17a8* in 11 clusters across several subclasses (**Figure 1a, Supplementary Table**
183 **3**), as well as low-grade expression of both *Chat* and *Slc18a3* in several clusters in the 46 Vip
184 Gaba subclass, though the expression at cluster level did not cross our threshold to label these
185 clusters as cholinergic. We did identify 11 cholinergic neuron clusters in the 58 PAL-STR Gaba-
186 Chol subclass with complex GABA and/or glutamate co-release patterns (see below), and 2
187 GABA-cholinergic clusters in the 69 LSX Nkx2-1 Gaba subclass (**Figure 1a, Supplementary**
188 **Table 3**). We also identified 4 GABA-dopamine co-releasing clusters in the 44 OB Dopa-Gaba
189 subclass (**Figure 1a, Supplementary Table 3**).
190

191 Furthermore, we have identified 26 neuropeptide genes that are differentially expressed among
192 the GABAergic types of the telencephalon, many of which had been used as markers for various
193 cell types in previous studies. Most neuropeptides show very restricted expression patterns, like
194 *Edn1* which is mostly restricted to the 52 Pvalb Gaba subclass, and some are more broadly
195 expressed, like *Penk* and *Pnoc* which are expressed in various subclasses within each of the
196 GABAergic cell classes (**Extended Data Figure 2**). Precise association of these neuropeptides
197 with transcriptomic cell types defined here provides a much-needed link to clarify the
198 transcriptomic identities of cell populations labeled by individual marker genes, as well as to
199 explore the function of these neuropeptides in specific cell types.
200

201 **GABAergic neuronal types in the olfactory bulb**

202 GABAergic neuronal types in MOB and AOB are thought to be derived from LGE during
203 development and migrate to the olfactory bulb⁹. Furthermore, OB GABAergic neurons continue
204 to be generated in the adult brain through neurogenesis in the subventricular zone (SVZ) and
205 migration into OB via the rostral migratory stream (RMS)^{15–17}. In the OB-IMN GABA class, we
206 defined six OB GABAergic subclasses, 39 OB Meis2 Thsd7b Gaba, 40 OB Trdn Gaba, 41 OB-in
207 Frmd7 Gaba, 42 OB-out Frmd7 Gaba, 43 OB-mi Frmd7 Gaba, and 44 OB Dopa-Gaba, and one
208 GABAergic immature neuronal subclass, 45 OB-STR-CTX Inh IMN (**Extended Data Figure**
209 **3**).

210

211 Subclass 45 OB-STR-CTX Inh IMN contains immature neurons originating from the
212 subventricular zone that migrate to the OB (**Extended Data Figure 3a-c,k, Extended Data**
213 **Figure 4a,b**). Within this subclass, 7 supertypes have been defined. Supertypes 166, 168, 171,
214 and 172 are the most immature based on gene expression, spatial location, and their pseudo-
215 temporal ordering^{14,18}. The other three supertypes seem to be transition types and show similarity
216 to specific mature subclasses (**Extended Data Figure 3a-c**). Supertype 170 OB-STR-CTX Inh
217 IMN_5 forms a transition from immature neurons to subclass 39 OB Meis2 Thsd7b Gaba.
218 Neurons in this subclass are located mostly in the internal plexiform and mitral (Ipl/Mi), external
219 plexiform (EPI), and glomerular (Gl) layers (**Extended Data Figure 3d,e**). Supertype 143 within
220 the 39 OB Meis2 Thsd7b Gaba subclass are the *Calb1*-positive Blanes cells^{19,20} that populate the
221 Gl (**Extended Data Figure 3e**). Immature neuron supertype 167 OB-STR-CTX Inh IMN_2
222 forms a transition to the 41 OB-in Frmd7 Gaba subclass. Neurons in this subclass represent the
223 granule cells which populate the granule layer (GrO), Ipl/Mi, and supertype 150 contains a
224 subpopulation of neurons that extends into the EPI (**Extended Data Figure 3j**). Supertype 150
225 corresponds to a population of glomerular cells that undergoes expansion during periods of
226 olfactory enrichment and contraction during periods of olfactory deprivation (**Extended Data**
227 **Figure 4a**)²¹. Lastly, supertype 169 OB-STR-CTX Inh IMN_4 forms a transition from immature
228 neurons to subclass 42 OB-out Frmd7 Gaba. Neurons in this subclass exclusively populate the Gl
229 and represent the *Calr*-positive periglomerular cells (PGC) (**Extended Data Figure 3g**).
230

231

232 The 40 OB Trdn Gaba subclass contains the population of *Rprm*-positive granule cells
233 (**Extended Data Figure 3c,f**) that have been identified previously^{21,22}. The 43 OB-mi Frmd7
234 Gaba subclass represents *Pvalb*-positive GABAergic OB neurons described by Batisto-Brito et
235 al.,²⁰ which are postnatally generated neurons populating the EPI (**Extended Data Figure 3h**).
236 The glomerular layer of the olfactory bulb signifies the location where sensory input from the
237 olfactory epithelium is first processed within the CNS and contains a variety of interneuron
238 populations which can broadly be divided into three categories; *Calb1*-positive PGC present in
239 subclass 39, *Calr*-positive PGC present in subclass 42, and dopaminergic PGC marked by
240 expression of *Slc6a3* and *Th* present in subclass 44^{20,21,23–25} (**Extended Data Figure 3c,e,g,i,**
Extended Data Figure 4a).

241

242 GABAergic neuronal types in the cerebral cortex

243 The cerebral cortex, also known as the pallium, includes four major structures – isocortex,
244 hippocampal formation (HPF), olfactory areas (OLF) and cortical subplate (CTXsp). The
245 GABAergic neurons in all these brain structures belong to two classes, CTX-CGE GABA
246 (**Extended Data Figure 5**) and CTX-MGE GABA (**Figure 2**), named after their spatial location
247 and dominant developmental origins^{5,12}. The current classification is largely consistent with our
248 previously defined transcriptomic taxonomy of the mouse isocortex and HPF²⁶ as well as the
249 MET-types in our Patch-seq study in the mouse visual cortex²⁷ (**Extended Data Figure 6**), and
250 further extends into the OLF and CTXsp areas.

251

252 In the CTX-CGE GABA class, we defined four subclasses, including three previously defined
253 ones – 46 Vip Gaba, 47 Sncg Gaba and 49 Lamp5 Gaba^{26,28}, and one newly defined here, 48
254 RHP-COA Ndnf Gaba (**Extended Data Figure 5a-g**). The Vip, Sncg and Lamp5 subclasses
255 correspond to the well-known bipolar, multipolar, neurogliaform and other types of GABAergic
256 interneurons widely distributed in all areas of isocortex and HPF. Here we find that they are also
257 present in OLF and CTXsp areas (**Extended Data Figure 5c-g**). Consistent with previous
258 findings, most of their clusters and supertypes are shared among all pallial areas, whereas 8
259 supertypes are predominant in OLF/CTXsp/HPF areas (marked by red dots, **Extended Data**
260 **Figure 5c**). We also identified a set of Vip Gaba clusters that are largely specific to hippocampus
261 (HIP), including clusters 649, 650, 651, 654, 655, and 659, included in supertypes 179, 181, and
262 182 respectively (**Extended Data Figure 5b-d**).

263

264 The newly defined RHP-COA Ndnf Gaba subclass expresses marker genes *Ndnf* and *Ntng1*, is
265 predominantly present in HPF, OLF and CTXsp and exhibits high regional specificity. In this
266 subclass, supertypes 195 and 198 are mainly found in ENT and RHP respectively, supertype 194
267 is located in COA, and remaining supertypes are mainly present in HIP (**Extended Data Figure**
268 **5c,f**). The RHP-COA Ndnf Gaba subclass also includes the previously described *Meis2*-positive
269 population of GABAergic neurons in supertype 198 (**Extended Data Figure 5a-c**)^{26,28}. These
270 *Meis2*-positive GABAergic neurons reside in the white matter and originate from the embryonic
271 pallial-subpallial boundary^{29,30}. The cells in 198 supertype are the only cells in the cortical
272 GABAergic classes that express *Meis2* (**Extended Data Figure 5c**). However, the entire
273 subclass lacks expression of *Prox1* which is found in all other CGE-derived GABAergic neurons
274 and shares expression of *Rspo3* and *Ntng1*.

275

276 In the CTX-MGE GABA class, we defined four subclasses, including three previously defined
277 ones^{26,28}, 53 Sst Gaba, 52 Pvalb Gaba and 51 Pvalb chandelier Gaba, and the fourth one, 50
278 Lamp5 Lhx6 Gaba, which was previously considered as part of the CGE Lamp5 subclass but is
279 now classified into the MGE class based on its expression of the MGE transcription factor, *Lhx6*
280 (**Figure 2a-d**). The Sst, Pvalb and Pvalb chandelier subclasses correspond to the well-known

281 somatostatin, parvalbumin, and chandelier types of GABAergic interneurons widely distributed
282 in all areas of isocortex and HPF. Here we find that they are also present in OLF and CTXsp
283 areas (**Figure 2d-i**). There are two Pvalb chandelier clusters, one widely distributed in all pallial
284 areas whereas the other is mainly found in HIP. In the Pvalb GABA subclass, individual clusters
285 display more variable regional preference, with 4 supertypes mainly in isocortex, and 2
286 supertypes mainly in OLF/CTXsp/HPF out of 9 supertypes in total (**Figure 2e**). The Sst GABA
287 subclass is highly diverse, with a total of 19 supertypes and 71 clusters, and variable regional
288 preference. Seven supertypes are predominant in OLF/CTXsp/HPF areas (marked by red dots,
289 **Figure 2e**) whereas the other supertypes are more broadly present in isocortex. Several Pvalb
290 and Sst supertypes are largely specific to HPF, including 209, 216, 219, 228, and 232 (**Figure**
291 **2e,h,i**). The Lamp5 Lhx6 subclass is predominantly present in HIP, with a small fraction of cells
292 found in other pallial areas (**Figure 2e,f**).

293

294 Overall, the organization of GABAergic neurons in the cerebral cortex (pallium) exhibits a clear
295 segregation of cell types (in both CTX-CGE and CTX-MGE classes) between isocortex (also
296 known as the neocortex) and the other structures that are considered evolutionarily more ancient,
297 including HPF, OLF, and CTXsp. We observe a gradual transition between these two parts, with
298 certain isocortical areas as intermediates, e.g., retrosplenial cortex (RSP). For example, supertype
299 177 Vip Gaba_5 is mostly located to isocortex and via RSP shows sparse labeling in HIP
300 (**Extended Data Figure 5d**).

301

302 **MGE-derived GABAergic neuronal types in the cerebral nuclei**

303 GABAergic neurons originating from the MGE show wide-spread distribution. These MGE-
304 derived neurons are divided into two main classes; where the CTX-MGE class located mostly in
305 pallial areas as described above, the CNU-MGE located mainly in the cerebral nuclei. These two
306 classes share the expression of *Lhx6*, a developmental pan-MGE marker. There is a striking
307 difference in complexity between the two MGE classes. The CNU MGE-derived GABAergic
308 neurons form clusters that are typically smaller and more heterogeneous than the CTX MGE-
309 derived GABAergic neurons (**Figure 2a-d**).

310

311 The cerebral nuclei (CNU) are composed of two major structures, striatum (STR) and pallidum
312 (PAL). Its neuronal population is largely GABAergic. The GABAergic neurons in CNU come
313 from four classes (**Figure 1**). The CNU-MGE GABA and CNU-LGE GABA classes contain
314 striatal and pallidal GABAergic neurons derived from MGE and LGE respectively. The LSX
315 GABA class contains lateral septum GABAergic neurons derived from the embryonic septum³¹.
316 The CNU-HYa GABA class contains GABAergic neurons mainly located in sAMY, PALc and
317 anterior hypothalamus (**Extended Data Figure 1a**); these neurons may also be developmentally
318 originated from LGE, MGE, as well as the embryonic preoptic area (POA).
319

320 In the CNU-MGE class, we defined 5 subclasses which are 54 STR Prox1 Lhx6 Gaba, 55 STR
321 Lhx8 Gaba, 56 Sst Chodl Gaba, 57 NDB-SI-MA-STRv Lhx8 Gaba, and 58 PAL-STR Gaba-
322 Chol (**Figure 2a-e**). These subclasses are mainly located in dorsal and ventral striatum (STRd
323 and STRv), and dorsal, ventral and medial pallidum (PALd, PALv and PALm). Each subclass is
324 not specific to a single region but contains neurons from multiple regions (**Figure 2j-n**).
325 Although local interneurons make up less than 10% of the striatal neurons, these cells represent a
326 diverse population (**Extended Data Figure , Extended Data Figure 4d**)^{32,33}. The CNU-MGE
327 types located within the STRd and STRv are likely striatal GABAergic interneurons, including
328 supertypes 234 STR Prox1 Lhx6 Gaba_2 (*Pvalb*-positive) and 236 STRv Lhx8 Gaba_1 (*Pvalb*-
329 negative). Interestingly, the 56 Sst Chodl subclass is a unique subclass that spans both pallium
330 and subpallium structures, containing neurons in isocortex (supertype 241, the Sst Chodl
331 cells^{26,28}), CTXsp (supertype 242), STRd/STRv, and PALv/PALc (**Figure 2d,e,l, Extended**
332 **Data Figure 1a**).
333

334 **LGE-derived GABAergic neuronal types in the cerebral nuclei**

335 The seven LGE-derived subclasses in the cerebral nuclei are 59 GPe Sox6 Cyp26b1 Gaba, 60
336 OT D3 Folh1 Gaba, 61 STR D1 Gaba, 62 STR D2 Gaba, 63 STR D1 Sema5a Gaba, 64 STR-
337 PAL Chst9 Gaba, and 65 IA Mgp Gaba (**Figures 3**). These subclasses resemble the well-known
338 D1 and D2 type medium spiny neurons (MSN; also known as spiny projection neurons, SPN) in
339 the striatum, with the 61 STR D1 Gaba and 62 STR D2 Gaba subclasses being the prototype
340 striatal D1 and D2 cell types and the other subclasses being newly defined homologous cell
341 types. Among them, subclasses 60, 63 and 64 also express dopamine receptor gene *Drd1*, and
342 subclass 60 additionally expresses *Drd3* strongly (**Extended Data Figure 7a**).
343

344 Subclass 60, with its strong expression of *Drd3* along with *Drd1*, is specifically localized in the
345 islands of Calleja in the OT (**Figure 3d, Extended Data Figure 4c,d**). Subclasses 63, 64 and 65
346 collectively form a novel group of GABAergic neuronal types that are like MSNs based on their
347 gene expression profile but also distinct from them based on their spatial location (**Figure 3e-g**).
348 The spatial distribution patterns of many supertypes and clusters in these subclasses are
349 remarkably unique, widely scattered along the borders between different striatal and pallidal
350 areas, forming multiple patches or streaks (**Figure 3e-g**). Subclass 63 STR D1 Sema5a Gaba
351 contains hybrid MSN D1 neurons that have been described to co-express *Drd1a* and a shortened
352 variant of the D2 receptor (**Figure 3e, Extended Data Figure 4c**)^{34,35}. This group of MSN
353 resembles so-called exopatch MSN, which are located in the striatal matrix but physiologically
354 resemble MSN of patches (**Extended Data Figure 4d**)^{33,36}. Based on their spatial distribution
355 patterns, we assigned the locations of subclasses 64 STR-PAL Chst9 Gaba and 65 IA Mgp Gaba
356 to interstitial nucleus of the posterior limb of the anterior commissure (IPAC, described in
357 Paxinos's atlas³⁷) or intercalated amygdalar nucleus (IA). Subclass 65 is divided into five
358 different supertypes which all express *Dcx*, a migratory neuroblast marker, and markers *Ncam1*
359 (*PSA-NCAM*), *Foxp2* and *Meis2*, indicating that these are immature neurons. In addition to

360 *Foxp2*, these types express *Tshz1*, which are known markers for the intercalated cells originating
361 from the *Sp8*-positive dLGE progenitor population³⁸⁻⁴⁰. Interestingly, we observed a relatedness
362 between subclass 65 IA Mgp Gaba and subclass 39 OB Meis2 Thsd7b Gaba (**Figure 1e,f**),
363 suggesting that they may have shared developmental origins. Within subclass 65, supertype 293
364 stands out in that it is spatially located in the olfactory bulb with sparse labeling in IA (**Figure**
365 **3g**), highlighting the similarity between the intercalated cells and the immature neurons
366 migrating towards the olfactory bulb.

367

368 We defined 9 supertypes in 61 STR D1 Gaba subclass and 7 supertypes in 62 STR D2 Gaba
369 subclass. The supertypes and clusters in both subclasses exhibit highly diverse spatial
370 distribution patterns in STRd and STRv (**Figure 3h,i**). Some occupy the entire space, while
371 others are specifically located in medial-lateral, anterior-posterior, and dorsal-ventral
372 subdomains. Supertype 268 STR D1 Gaba_4 within the 61 STR D1 Gaba subclass is mostly
373 located in striosomes, while supertype 267 STR D1 Gaba_3 is mostly located in the striatal
374 matrix (**Figure 3h**). Similarly, within the 62 STR D2 Gaba subclass, supertype 279 STR D2
375 Gaba_6 is mostly present in the striosomes, while supertype 277 STR D2 Gaba_4 represents
376 types in the striatal matrix (**Figure 3i**).

377

378 We found complex subregional enrichment of cell types in the nucleus accumbens (ACB).
379 Supertypes 265, 266, 270, 272, and 273 within the 61 STR D1 Gaba subclass and supertypes 275
380 and 278 within the 62 STR D2 Gaba subclass are mostly restricted to ACB and OT (**Figure**
381 **3h,i**). The ACB can be divided into core and shell subregions^{41,42}. Supertypes 272 STR D1
382 Gaba_8, 273 STR D1 Gaba_9, and 278 STR D2 Gaba_5 are predominantly located in the core
383 region. Supertype 266 STR D1 Gaba_2 consists of two highly related cell types of which cluster
384 948 is in the core subdomain and cluster 949 is located in the shell subdomain (**Figure 3h**).
385 Similarly, supertype 275 STR D2 contains various clusters of which 973 and 974 are
386 predominantly located in the core subdomain and the other types are present in the shell
387 subdomain or OT (**Figure 3i**). Based on the cell types and their locations the core and shell
388 regions of ACB can be further divided on a mediolateral and anteroposterior axis. For example,
389 supertype 272 STR D1 Gaba_8 consists of three different clusters, with cluster 963 located in the
390 medial-anterior subdomain of the ACB core while cluster 961 in a more lateral-posterior position
391 (**Figure 3h**). The same can be seen for ACB core D2 neurons in supertype 278 STR D2 Gaba_5,
392 with cluster 985 in a medial-anterior position and cluster 983 in a more lateral-posterior position.
393 Similar distribution of cell types along the different anatomical axes can be observed for the
394 types in the shell subdomain of ACB. Within the STR D1 Gaba subclass, the shell cell types are
395 present in supertypes 265 STR D1 Gaba_1 and 270 STR D1 Gaba_7 and occupy medial and
396 lateral subdomains of shell, respectively. Compared to the lateral types (supertype 270), the
397 medial types (supertype 265) show higher diversity and distinct distribution along the
398 anteroposterior axis (**Figure 3h**). As observed previously, though the cell types are preferentially
399 located in either core or shell domains of ACB, the cell types occupy overlapping regions³³.

400

401 **GABAergic neuronal types in the lateral septum of the cerebral nuclei**

402 The LSX GABA class is located specifically in lateral septal complex (LSX) and is highly
403 distinct from other CNU GABAergic neuronal types. It can be divided into six subclasses, 67
404 LSX Sall3 Pax6 Gaba, 68 LSX Otx2 Gaba, 69 LSX Nkx2-1 Gaba, 70 LSX Prdm12 Slit2 Gaba,
405 71 LSX Prdm12 Zeb2 Gaba, and 72 LSX Sall3 Lmo1 Gaba, but the relationships among these
406 subclasses are complex and intertwined (**Extended Data Figure 8a-c**). The LSX subclasses
407 exhibit partially overlapping spatial distribution patterns within the lateral septum (**Extended**
408 **Data Figure 8d-j**). For example, the 67 LSX Sall3 Pax6 Gaba and 68 LSX Otx2 Gaba
409 subclasses are both present in rostral (LSr) and ventral (LSv) regions of LSX, with the 68 LSX
410 Otx2 extending more into dorsal LSX (**Extended Data Figure 8d-f**). Another example is
411 subclasses 69 LSX Nkx2-1 Gaba and 70 LSX Prdm12 Slit2 Gaba that have shared presence in
412 LSr and LSv, with 69 extending more into anterior LSX and 70 extending into posterior LSX
413 (**Extended Data Figure 8d,g,h**).

414

415 **GABAergic neuronal types in the striatum-like amygdalar nuclei**

416 The CNU-HYa GABA class is highly complex, with 19 subclasses that are predominantly
417 localized in CNU but also extend into the preoptic area (POA) of the anterior hypothalamus. The
418 19 subclasses are 66 NDB-SI-ant Prdm12 Gaba, 73 MEA-BST Sox6 Gaba, 74 MEA-BST Lhx6
419 Sp9 Gaba, 75 MEA-BST Lhx6 Nr2e1 Gaba, 76 MEA-BST Lhx6 Nfib Gaba, 77 CEA-BST Gal
420 Avp Gaba, 78 SI-MA-ACB Ebf1 Bnc2 Gaba, 79 CEA-BST Six3 Cyp26b1 Gaba, 80 CEA-AAA-
421 BST Six3 Sp9 Gaba, 81 ACB-BST-FS D1 Gaba, 82 CEA-BST Ebf1 Pdyn Gaba, 83 CEA-BST
422 Rai14 Pdyn Crh Gaba, 84 BST-SI-AAA Six3 Slc22a3 Gaba, 85 SI-MPO-LPO Lhx8 Gaba, 86
423 MPO-ADP Lhx8 Gaba, 87 MPN-MPO-LPO Lhx6 Zfhx3 Gaba, 88 BST Tac2 Gaba, 89 PVR
424 Six3 Sox3 Gaba, and 90 BST-MPN Six3 Nrgn Gaba (**Extended Data Figure 9**). Neurons in this
425 class are located in specific sAMY and PAL areas, including central amygdalar nucleus (CEA),
426 anterior amygdalar area (AAA), bed nuclei of the stria terminalis (BST), substantia innominata
427 (SI), and magnocellular nucleus (MA) (**Figure 4a, Extended Data Figure 9d**). Each subclass
428 within the CNU-HYa GABA class is not specific to a single region but contains neurons from
429 multiple regions. For example, subclass 80 contains neurons from CEA, AAA, and BST (**Figure**
430 **4a,c, Extended Data Figure 9d**). Conversely, each region contains multiple subclasses. For
431 example, subclasses 74, 79, 80, and 82 are co-localized in CEA, AAA, and BST. Subclasses 78
432 and 84 are co-localized in SI, NDB, and MA.

433

434 BST serves as a hub for processing limbic information and monitoring emotional valence and the
435 center of a vast connectivity network. Mood and arousal are processed via connections to sAMY,
436 dorsal raphe, and the ventral tegmental area (VTA). Via connections to the hypothalamus, BST
437 monitors feeding and drinking signals coming from brainstem. Via connections to lateral septum
438 and MEA, BST coordinates reproductive and related social behaviors. The diverse connectivity
439 patterns in which the BST participates appear to be associated with specific cell types. BST, also

440 referred to as part of the extended amygdala, is a major output region for neurons in both CEA
441 and MEA⁴³⁻⁴⁵. Our data shows a high transcriptomic similarity of cell types in CEA and BST,
442 and of cell types in MEA and BST, while these two groups are easily distinguishable by distinct
443 marker genes (**Extended Data Figure 9d**).

444

445 Types within subclasses 73, 74, 75, 76, and 88 are mostly located in MEA and/or BST (**Figure 1a,e, Figure 4b, Extended Data Figure 9d**), and possibly share a similar developmental origin
446 based on preserved transcription factor expression (see below). The MEA-BST types also show
447 similarity to subclasses 85, 86, 87, 89 and 90 which are mostly located in POA and are known to
448 share functions and circuits⁴⁶⁻⁴⁹ (**Figure 1e, Extended Data Figure 9d**). MEA plays a central
449 role in regulating social behavior in rodents. It is the location where signals from the OB and
450 vomeronasal system converge, placing the MEA in a position critical for processing pheromonal
451 signals that regulate social behavior^{50,51}. For example, subclasses 74, 75, 76 express the MEApd
452 marker *Lhx6*^{52,53} and neurons in this region are involved in reproductive behaviours^{50,53,54}.
453 Supertypes 349 and 351 within subclass 74 MEA-BST *Lhx6* *Sp9* *Gaba* express *Crhr2* and *Ucn3*
454 (**Extended Data Figure 2**). Cell types expressing these genes have been identified as part of the
455 behavioral stress response system⁵⁵. Supertypes 357 to 359 within subclass 76 MEA-BST *Lhx6*
456 *Nfib* *Gaba* contain the BNSTpr^{Tac1/Esr1} cell type that is essential for male social interactions
457 (**Extended data Figure 10a**)⁴⁹.
458

459

460 Subclasses 77 to 84 are mostly located in CEA, BST, AAA and SI (**Extended Data Figure 9d**),
461 are similar to striatal CNU-LGE subclasses (**Figure 1e, Figure 4a,c**), and possibly share a
462 similar developmental origin based on preserved transcription factor expression (see below).
463 CEA is a striatal-like GABAergic structure that contains both GABAergic interneurons and
464 GABAergic long-range projection neurons and projects to the hypothalamus and brainstem to
465 initiate fear responses⁵⁶. Most supertypes in subclass 79 CEA-AAA-BST *Six3* *Cyp26b1* *Gaba*
466 are located in the lateral and capsular part of CEA (CEA1 and CEAc), express known MSN
467 markers *Penk*, *Pax6*, *Gpr88*, and *PppIr1b*^{34,35,52}, and are related to subclass 62 STR D2 *Gaba*
468 (**Figure 1e,f, Figure 4c, Extended Data Figure 9d**). Supertype 371 CEA-AAA-BST *Six3*
469 *Cyp26b1* *Gaba_5*, located mostly in CEAc, is closely related to supertypes 274 STR D2 *Gaba_1*
470 and 280 STR D2 *Gaba71* (**Figure 1e,f, Figure 4c**). Also based on their spatial location these
471 supertypes are in close proximity to each other (**Figure 3i**). Supertype 368 CEA-AAA-BST *Six3*
472 *Cyp26b1* *Gaba_2* corresponds to the previously described CeA *Prkcd-Ezr* type that is highly
473 responsive to cued fear conditioning (**Extended Data Figure 10b**)⁵². Subclasses 77 CEA-BST
474 *Gal Avp Gaba*, 82 CEA-BST *Ebf1* *Pdyn Gaba* and 83 CEA-BST *Rai14 Pdyn Crh Gaba* are
475 mainly located in the medial part of CEA (CEAm, **Figure 4c**).
476

477

478 As the MERFISH data was registered to the Allen Mouse Brain CCFv3, we could select all
479 neurons within BST from the MERFISH dataset and apply spatial clustering to identify
subdomains. Cells were clustered on both their gene expression pattern based on the 500 gene

480 panel and their spatial location within the neighborhood (see **Methods**). Using this approach, we
481 identified unique domains of which several align with previously described anatomical
482 subdivisions of BST, and these align with the MEA-BST and CEA-BST cell subclasses (**Figure**
483 **4d**). Several subdivisions of BST have been proposed; a mediolateral division based on
484 cytoarchitecture and input connections from amygdala, an anteroposterior division based on
485 developmental origin, and a dorsoventral division based on divergent patterns of monoaminergic
486 innervation^{43,57–61}. MEA projects mostly to posteromedial BST regions⁴³ which is an area where
487 the MEA-BST subclasses (73–76) are enriched. CEA, on the other hand, mostly projects to
488 anterolateral regions in BST⁶² which is where we see enrichment of CEA-BST subclasses (77,
489 79–83) (**Figure 4e-f**).
490

491 **Long-range GABAergic projection neurons**

492 Most GABAergic neurons in the cerebral cortex are local interneurons, except for a small set of
493 cell types that have long-range projections (LRP)^{63–65}. The LRP types in the hippocampus (HIP)
494 are among the best described cortical LRP neurons. Based on expression of genes, including
495 *Chrna4*, *Pcp4*, *Nos1* and *Htr3a*, supertype 179 Vip Gaba_7, located in HIP, is marked as a LRP
496 population⁶⁶. The 215 Sst Gaba_2 and 216 Sst Gaba_3 supertypes contain putative LRP neurons
497 expressing *Sst*, *Npy*, and *Nos1*, and located in OLF/CTXsp regions or HPF regions, respectively
498 (**Figure 2i**).
499

500 The previously identified Sst Chodl long-range projecting neurons in cortex^{27,28,67,68} are closely
501 related to the local Sst interneurons in CNU, as they all belong to a single subclass, 56 Sst Chodl
502 Gaba, based on their gene expression profiles (**Figure 2a,d,e,l**). Supertype 241 Sst Chodl
503 Gaba_4 contains the cortical Sst Chodl neurons whereas the other 5 supertypes in this class are
504 mostly located in CNU.
505

506 The 58 PAL-STR Gaba-Chol subclass contains basal forebrain cholinergic neurons (**Extended**
507 **Data Figure 11**). This subclass is divided into 3 supertypes, with supertypes 259 and 260
508 containing cholinergic neurons. The third one, supertype 261, contains closely related
509 GABAergic neurons that are mainly located in medial septum (MS) and diagonal band nucleus
510 (NDB). The cholinergic neurons have cluster-level specificity in their spatial localizations. Those
511 in supertype 259 are located in MS and NDB (clusters 923-925), substantia innominata (SI) and
512 NDB (clusters 926 and 928), or GPe and SI (cluster 927) (**Extended Data Figure 11b**), and thus
513 are assigned as the cholinergic projection neurons in the basal forebrain. Those in supertype 260
514 are located in STR (including CP, ACB, OT, etc.) (**Extended Data Figure 11c**), and thus are
515 assigned as the striatal cholinergic interneurons. All cholinergic projection neuron clusters in
516 supertype 259 co-release GABA, some of which also co-release glutamate. On the other hand,
517 we were surprised to find that none of the striatal cholinergic interneuron clusters in supertype
518 260 co-release GABA, instead, some of these clusters even co-express glutamate (via transporter
519 gene *Slc17a8*) (**Extended Data Figure 11e, Supplementary Table 3**). Other cholinergic

520 neurons in CNU include clusters 1081 and 1084 within the 69 LSX Nkx2-1 Gaba subclass and
521 307 LSX Nkx2-1 Gaba_2 supertype, which are both GABAergic and cholinergic (**Extended**
522 **Data Figure 11a,d,e**).

523

524 **Gene expression gradients within telencephalic brain structures**

525 *MGE cortical gradient*

526 During adulthood, CGE-derived GABAergic neurons in the 46 Vip Gaba and 47 Sncg Gaba
527 subclasses are distributed evenly through either deep or superficial cortical layers and do not
528 show much of a spatial gene expression gradient (**Extended Data Figures 1b, 5c-e**). In contrast,
529 MGE-derived GABAergic neurons adopt their laminar distribution in an “inside-out” manner
530 that correlates with their birthdate, later-born neurons migrate radially past earlier-born neurons
531 to populate more superficial layers. *Sst*-positive GABAergic neurons are among the first types to
532 diversify and mature and are more abundant in infragranular than in supragranular layers of the
533 isocortex, while *Pvalb*-positive GABAergic neurons can be found throughout all layers except
534 Layer 1 (**Figure 2h-i, Extended Data Figure 12a-c**). We performed Independent Component
535 Analysis (ICA) on the *Pvalb* GABA and *Sst* GABA classes independently, projected the scRNA-
536 seq result onto the MERFISH data and extracted the top loading genes for the components with
537 the strongest spatial gradient (see **Methods**). We identified 20 genes that drive a spatial gradient
538 along the cortical depth in the *Pvalb* GABA subclass and 45 genes that drive a spatial gradient in
539 the *Sst* GABA subclass (**Extended Data Figure 12d-g**). Among these genes, there only five
540 genes that are shared between the subclasses (*Gm32647*, *Il1rapl2*, *Calb1*, *Nkain3*, and *Parm1*)
541 indicating that the observed gradient is unique for each subclass. Among the genes driving the
542 gene expression gradient there are only 4 genes that are subclass or supertype markers (*Rbp4*,
543 *Pdyn*, *Nr2f2*, and *Plpp4*), suggesting that the spatial gene expression gradient is not only driven
544 by supertype diversity within the subclass.

545

546 *Homology and gradients in MSN populations*

547 There exists a strong similarity between STR D1 and STR D2 GABAergic neurons. The
548 constellation plot shows most similar pairs of STR D1 and STR D2 neurons (**Figure 5a**, see
549 **Methods**). We selected five cluster pairs along the UMAP distribution and examined their
550 spatial location using the MERFISH data (**Figure 5b-f**). These closely related STR D1 and STR
551 D2 clusters share the same spatial locations. Next, we performed Independent Component
552 Analysis (ICA) on the STR D1 and STR D2 subclasses independently, projected the scRNA-seq
553 result onto the MERFISH data, and extracted the top common genes among STR D1 and D2
554 clusters driving the spatial gradient (see **Methods, Figure 5g,h**). We identified two gene
555 modules that represent the dorsolateral-to-ventromedial ends of the gradient. For each cell we
556 calculated the gene module score for each of the two modules and show the scores on both the
557 UMAP based on single cell RNA-seq and representative MERFISH sections (**Extended Data**
558 **Figure 7b-i**). The results show that a similar spatial gradient drives the dorsolateral-to-
559 ventromedial differences seen in both STR D1 and D2 types. The ventromedial located STR D1

560 and D2 types are marked by expression of genes coding for various neuroactive receptors, like
561 *Grm8*, *Htr2a*, and *Cnr* (**Figure 5g,h**). The dorsolateral located STR D1 and D2 types on the
562 other hand are marked by expression of genes coding for proteins involved in cGMP-PKG
563 signaling including *Csgalnact1*, *Prkg1*, and *Slc8a1*.

564

565 ***LSX gradients***

566 LSX is a structure of the basal forebrain that integrates inputs from many cortical and subcortical
567 regions and transmitting the appropriate signals to downstream hypothalamic and midbrain
568 nuclei. As such it plays a central role in the regulation of social behaviors like anxiety and
569 aggression. Most neurons in LSX are GABAergic and contain receptors for a variety of
570 neuromodulators and neuropeptides (**Extended Data Figure 2**). The relationships among
571 subclasses in LSX are complex, show overlapping spatial distribution patterns, and
572 transcriptomic subclasses or supertypes are not necessarily restricted to a single segment of LSX.
573 By imputing scRNA-seq data into the MERFISH brain space, we examined the 3D spatial
574 gradients in LSX more systematically (**Extended Data Figure 13**). We performed ICA on the
575 LSX GABA class and projected the scRNA-seq result onto the MERFISH data (see **Methods**).
576 For the top five spatial gradients identified, we extracted the genes driving the gradient (gene
577 modules) and calculated a gene score for each cell based on both the positive and negative genes
578 in each of the five modules (**Extended Data Figure 13**). Among the genes in the gene modules
579 highlighted, we see two subclass markers, *Zeb2*, and *Six3*, and just one supertype marker, *Foxp2*.
580 Indicating that most genes driving the spatial gradients are crossing subclass and supertype
581 boundaries (**Extended Data Figure 13a**). The strongest spatial gradients in LSX represent
582 dorsoventral or mediolateral gradients but no strong anteroposterior gradient (**Extended Data**
583 **Figure 13c**). Earlier reports already indicated that LSX input domains do not align well with the
584 molecular organization within LSX but the molecular organization does align with the long
585 range projections^{69,70}. For example, gene module 3 contains *Foxp2* and *Ndst4*, genes that are
586 expressed in a subdomain of LSX and neurons in this area have been shown to project to MPO
587 and LPOA regions in the hypothalamus^{70,71}. Our data shows that cell types are organized along
588 multidimensional gradients that might align with both input and output domains in LSX.
589

590 **Persistent developmental signatures**

591 The telencephalic GABAergic neurons arise mostly from the five principal progenitor domains
592 of the subpallium and from there migrate to populate various regions of the telencephalon. We
593 identified a comprehensive set of transcription factor (TF) marker genes defining the adult
594 neuronal types at class and subclass levels (**Figure 6a**). To verify that the expression patterns are
595 consistent with their developmental origin, we collected scRNA-seq data from 3 different
596 developmental stages, namely E11.5 to E14.5 (n = 74,550), postnatal day 0 (P0, n = 138,613)
597 and P14 (n = 360,748). These cells were mapped onto the whole mouse brain taxonomy^{14,72} and
598 cells belonging to the subpallium GABAergic cell types were selected. This resulted in a
599 developmental dataset containing 10,259 E11.5 to E14.5 cells, 31,672 P0 cells, and 57,507 P14

600 cells (**Supplementary Table 4**). This data was integrated with the adult P56 subpallium
601 GABAergic neurons to visualize gene expression patterns across time (**Figure 6b**). From this
602 integration we could delineate which progenitor domain gives rise to specific classes and
603 subclasses in the adult dataset (**Figure 6c,d**).
604

605 **Developmental CGE-MGE**

606 Starting in early development, CGE- and MGE-derived GABAergic neurons that will populate
607 the CTX and CNU can be identified by their distinct gene expression patterns (**Figure 6e**,
608 **Extended Data Figure 14a**). The spatial specificity of some transcription factors was verified
609 using the developing mouse ISH atlas⁷³ and the P56 MERFISH dataset (**Extended Data Figure**
610 **14b**). Our MERFISH dataset was generated using a 500-gene probe set. We imputed the scRNA-
611 seq data into the MERFISH data¹⁴. By doing so, the imputed spatial expression pattern of every
612 gene in the transcriptome, including TF genes not in the MERFISH probe set, can be visualized
613 in the MERFISH sections and confirmed by ISH data⁷⁴ (**Extended Data Figure 14b**).
614

615 The cortical CGE and MGE-derived GABAergic classes are predominantly located in all regions
616 of isocortex, OLF, HPF and CTXsp (**Extended Data Figure 1a**), and are marked by expression
617 of the developmental TF *Maf* (**Figure 6a**, **Extended Data Figure 14a**). The CTX-CGE GABA
618 class specifically expresses the developmental TF *Nr2f2* and *Prox1*. MGE gives rise to
619 GABAergic neurons that populate both cerebral cortex (CTX-MGE GABA class) and striatum
620 and pallidum (CNU-MGE GABA class). Both classes are marked by expression of *Lhx6* and the
621 CNU-MGE GABA class also specifically expresses *Lhx8* (**Extended Data Figure 14b**).
622

623 As mentioned above, cortical MGE-derived GABAergic neurons adopt their laminar distribution
624 in an “inside-out” manner that correlates with their birthdate, later-born neurons migrate
625 radially past earlier-born neurons to populate more superficial layers^{75,76}. For both CGE and
626 MGE-derived GABAergic neurons we observed an expansion of distinct types that happens
627 between P0 and P14 (**Extended Data Figure 15a-e**). *Sst*-positive GABAergic neurons are
628 among the first types to emerge and diversify, compared to *Pvalb*-positive GABAergic
629 neurons^{11,77}. Cortical *Sst*-positive GABAergic neurons arrive at their final destination by P5 in
630 mice but are not yet fully mature at that point⁷⁸. A recent study showed that select subtypes of
631 *Sst*-positive neurons, including *Sst*-positive LRP, are already present in the embryonic cortex but
632 several types of *Sst*-positive interneurons diversify during the postnatal period⁶⁸. *Pvalb*-positive
633 GABAergic neurons exhibit a similar diversification pattern during development. Specifically,
634 the *Pvalb*-positive Chandelier cells show early specification while many other subtypes specify
635 in the early postnatal period⁷⁹. It is becoming increasingly clear that circuit activity influences
636 cell (sub)type specification in cortical GABAergic neurons during the early postnatal period^{80,81}.
637

638 In corroboration with previous results, the CTX-MGE GABA subclass 50 Lamp5 Lhx6 Gaba
639 expresses both *Lhx6* and *Adarb2*, markers for MGE and CGE respectively (**Extended Data**

640 **Figure 15f).** As stated above, in the current WMB taxonomy this subclass is assigned to the
641 CTX-MGE class due to expression of the MGE marker *Lhx6*. *Lhx6* and *Adarb2*, marking MGE-
642 and CGE-originated inhibitory neurons respectively, are co-enriched in the POA-derived
643 neurogliaform cells, indicating that the Lamp5 Lhx6 subclass might be POA-derived. From our
644 developmental data here, we can see that at P0 the Lamp5 Lhx6 subclass is more closely related
645 to the CTX-MGE class than the CTX-CGE class, but cluster 10087 has signatures from both
646 CGE and MGE that connects immature CGE and MGE neurons with the Lamp5 Lhx6 subclass
647 (**Extended Data Figure 15b-f**).

648

649 ***Developmental LGE***

650 The OB-IMN GABA and CNU-LGE GABA cell classes both arise from the LGE domain
651 (**Figure 6b-e, Extended Data Figure 16a-c**). The OB-IMN GABA class contain cell types
652 located in the MOB and AOB as well as immature neurons in the SVZ lining the lateral
653 ventricles (**Extended Data Figure 1a**). These cells mostly express TFs *Sp8*, *Sp9*, and *Meis2*
654 (**Figure 6e, Extended Data Figure 14a,b**). The types within the CNU-LGE GABA class are
655 predominantly located in STRd and STRv and are marked by expression of *Rarb* and *Foxp2*
656 (**Extended Data Figure 14a,b**).

657

658 In the adult GABAergic cell type taxonomy, we observed a relatedness between subclass 39 OB
659 *Meis2 Thsd7b Gaba* and subclass 65 IA *Mgp Gaba* from CNU that would suggest that these
660 subclasses share their developmental origin. Subclass 39, containing the neurons that populate
661 the Ipl/Mi, EPI, and G1 layers of OB, is sequestered away from most other olfactory bulb cell
662 types and more closely related to subclass 65 containing immature cells populating the
663 intercalated amygdalar nucleus (**Figure 6d, Extended Data Figure 16b,c**).

664

665 Despite their similarity in adulthood, the distinction between 61 STR D1 Gaba and 62 STR D2
666 Gaba subclasses is established in early development (**Extended Data Figure 16a-e**). The D1 and
667 D2 populations appear to arise from different progenitor populations based on expression of
668 distinct gene sets (**Extended Data Figure 16f-j**). Genes like *Sp9* and *Six3* are essential for the
669 generation of STR D2 neurons, and genes including *Isl1* and *Ebf1* drive differentiation towards
670 STR D1 neurons (**Extended Data Figure 16f,k-n**). Based on the sparse developmental data
671 collected in this study, it appears that the maturation of the STR D2 neuron population is slower
672 than that of the STR D1 population. At P0 there is less differentiation into mature D2 supertypes
673 compared to D1 supertypes. This delay can also be seen by a set of genes that is expressed at
674 earlier stages in D1 neurons than in D2 neurons (**Extended Data Figure 16e,f,o-q**). In adulthood
675 we observed that STR D1 and STR D2 neuronal types that share the same spatial location are
676 transcriptomically highly similar to each other (**Figure 5**). The transcriptomic distance between
677 STR D1 and STR D2 types is greater during development than in adulthood (**Extended Data**
678 **Figure 16u**). There are genes in both D1 and D2 types that are expressed in just one of the types
679 at early timepoints but in both types at P14 and P56 (**Extended Data Figure 16f,r-t**). This

680 indicates that the two types develop along their own trajectory but when they reach their final
681 anatomical location their transcriptomes are molded towards their neighboring cells.
682

683 **CNU-HYa and LSX**

684 The LSX GABA class is located specifically in lateral septum complex (LSX) and expresses TFs
685 *Zic1*, *Zic4*, *Zic5*, and *Prdm16* (**Figure 6e, Extended Data Figure 1a, Extended Data Figures**
686 **14a,b, 17d**). Lastly, the CNU-HYa GABA class contains cell types present in both CNU, mostly
687 located in sAMY, PALc, and POA. Cell types in LSX and CNU-HYa are highly diverse and
688 have multiple embryonic origins. LSX contains a population of *Nkx2-1*-positive neurons that
689 might arise from MGE or POA. CNU-HYa cell types located in CEA, AAA, and BST express
690 *Meis2* and *Six3*, cell types in MEA and certain BST cell types express *Lhx6* and *Nr2f2*, and cell
691 types located in POA express *Zic1* and *Zic4* (**Extended Data Figure 17d**). From the sparse
692 developmental data we collected it was difficult to precisely link the developmental origin to
693 each adult subclass (**Extended Data Figure 17a-c**). Both LSX and CNU-HYa classes show
694 similar progenitor populations at E11.5-E14.5, which are very distinct from the cell populations
695 detected at P0. While there is a great expansion of types between P0 and P14 in the cortical
696 GABAergic cell types, in the LSX GABA and CNU-HYa GABA classes this is not the case. At
697 P0, we identified nearly all adult cell types within these classes, indicating that cell type
698 diversification completed before birth similar to what has been described for POA derived
699 hypothalamic neurons⁸².
700

701 **DISCUSSION**

702

703 In this study, we present an extraordinarily complex, high-resolution cell type taxonomy and
704 atlas of GABAergic neurons in the mouse telencephalon. We have integrated high-quality single
705 cell RNA-seq data with an adult whole brain MERFISH dataset. This integration allowed us to
706 analyze the molecular and anatomical organization of GABAergic neurons in detail. We find that
707 telencephalic GABAergic cell types can be organized in a hierarchical manner where
708 relationships among cell types reflect both spatial location and developmental origin. We
709 systematically relate cell types in our taxonomy to the wide variety of previously identified cell
710 types or populations across all telencephalic regions, and we discover and categorize many new
711 cell types that were previously unknown or with little information. As such, the telencephalic
712 GABAergic cell type taxonomy can serve as a foundational reference for molecular, structural
713 and functional studies of cell types and circuits by the entire community. Furthermore, we gain
714 additional insights into the organization of these cell types, including multiple dimensions of
715 continuous variations among related cell types along with correlated gene expression gradients,
716 long-range migration and dispersion to distinct brain regions of closely related cell types with a
717 common developmental origin, and a stark contrast in pre- and postnatal diversification between
718 cortical/striatal/some pallidal and septal/other pallidal/preoptic GABAergic cell types.
719

720 Telencephalic GABAergic neurons originate from five principal progenitor domains of the
721 subpallium: MGE, CGE, LGE, the embryonic POA, and the embryonic septum^{3,5,83}. From here
722 the progenitor cells migrate to distant locations and differentiate to form mature brain structures.
723 These processes are regulated by morphogen-regulated transcription factor modules. Our
724 understanding of the TF cascades that specify neuronal cell types during development has
725 increased greatly^{11,83-85}. Many of the TFs regulating neuronal differentiation during development
726 are also expressed in mature neurons and we can use the expression of these TFs to infer the
727 expected developmental origin of neuronal subtypes. More recently, studies have shown that
728 some of these TFs also play a role in the maintenance of neuronal identity. In invertebrates, the
729 term “terminal selector gene” has been used to describe genes that not only specify but also
730 maintain cell type identity^{86,87} and these terminal selectors often work in specific combinations to
731 define neuronal subtypes. In mouse, the term “master regulator” has been used to describe the
732 transcription factor(s) that triggers the gene expression program of a developmental lineage.
733 Many of these TFs have been identified by the fact that genetic removal during development
734 results in failure of specific neuronal classes to develop properly. Studies on the role of these
735 regulators in maintenance of neuronal identity are limited but there is reason to believe these
736 terminal selector genes exist in mice as well^{88,89}. Our study reveals a large set of persistent TFs in
737 the telencephalic GABAergic cell types (**Figure 6**), and their roles in the maintenance of cell
738 type identity can be tested in future genetic perturbation experiments.
739

740 A nearly universal characteristic of the telencephalic GABAergic neurons is that neurons located
741 in far apart regions of the telencephalon can belong to the same cell type (subclass, supertype, or
742 even cluster). This suggests that neurons of a common developmental origin can migrate long
743 distances and reside in highly distinct brain regions. Most supertypes and clusters in the CTX-
744 CGE and CTX-MGE classes, that is, the CGE- and MGE-derived cortical GABAergic
745 interneurons, are widely distributed in nearly all isocortex, HPF, OLF and CTXsp regions, with
746 only a small group of supertypes and clusters located selectively in HPF, OLF and/or CTXsp
747 (**Figure 2, Extended Data Figure 5**). The CNU-MGE class, containing all striatal GABAergic
748 interneurons and many pallidal GABAergic neurons, shares transcriptomic similarity and a
749 common origin from MGE⁹⁰⁻⁹² to the CTX-MGE class which includes the cortical *Pvalb*-
750 positive and *Sst*-positive GABAergic interneurons (**Figure 2**). The OB-IMN class, containing
751 olfactory bulb GABAergic neurons, developmentally originates in LGE and is transcriptomically
752 related to the CNU-LGE class which contains the striatal D1 and D2 MSNs and related cell types
753 (**Figure 3, Extended Data Figures 3, 16**). The OB-IMN class also contains immature neurons
754 generated in SVZ through adult neurogenesis and migrating to OB. Lastly, the CNU-HYa class
755 contains a large set of highly heterogeneous cell types that are widely distributed in sAMY,
756 medial, ventral and caudal pallium, as well as the hypothalamic preoptic area (**Figure 4,**
757 **Extended Data Figure 9**).
758

759 At more fine-grained levels, subclass 56 Sst Chodl Gaba in the CNU-MGE class contains both
760 the cortical Sst-Chodl neurons (as a specific supertype) that are the long-range projection
761 neurons enriched in deep layers of many cortical areas^{28,67,93}, and the *Sst*-positive interneurons in
762 the striatum^{32,94} (also found in pallidal regions) that have electrophysiological properties similar
763 to that of MSNs^{32,95} (**Figure 2**). As such, the cortical Sst-Chodl neurons are more similar to the
764 striatal/pallidal Sst -Chodl interneurons than the cortical Sst interneurons. The cholinergic
765 neurons in the 58 PAL-STR Gaba-Chol subclass, also belonging to the CNU-MGE class, include
766 the basal forebrain cholinergic projection neurons in multiple pallidal regions as well as the
767 striatal cholinergic interneurons, with spatial specificity at supertype or cluster level (**Figure 2**,
768 **Extended Data Figure 11**). Lastly, within multiple subclasses in the CNU-HYa class, neurons
769 belonging to the same supertype can be found in both CEA (part of sAMY) and BST (part of
770 PALc), or in both MEA (part of sAMY) and BST (**Figure 4, Extended Data Figure 9**).
771

772 As a consequence of this widespread migration and dispersion, most of the telencephalic regions
773 (except for LSX and OB) contain a heterogeneous mixture of GABAergic neuronal types
774 (**Extended Data Figure 1**) with distinct developmental origins and likely distinct connectivity
775 and circuit functions. Within the major developmental progenitor domains, several functional
776 subdomains have been identified that generate different types of GABAergic neurons. For
777 example, the LGE subventricular zone can be divided into four subdomains along the
778 dorsoventral axis (pLGE1, 2, 3, and 4). The dorsal domain (dLGE; pLGE1, 2) expresses genes
779 like *Sp8* and *Er81* and gives rise to olfactory bulb interneurons and intercalated cells (ITCs) of
780 the amygdala, and the ventral domain (vLGE; pLGE3, 4) expresses genes like *Isl1* and *Ebf1*
781 predominantly gives rise to GABAergic medium spiny neurons^{38,96,97}. More recent studies
782 indicate that the pLGE3 and pLGE4 domains might preferentially generate MSN D2 and MSN
783 D1 neurons respectively^{98,99}. Similarly, MGE can be divided into five subdomains along the
784 dorsoventral axis (pMGE1 to 5) and each of these domains generates multiple types of
785 GABAergic neurons^{5,100,101}. The more ventral part of MGE (pMGE4,5) tends to generate many
786 GABAergic neurons that populate the striatum and pallidum, while the dorsal part of MGE
787 (pMGE1-4) generates many of the cortical interneurons^{5,101,102}. Future studies will be needed to
788 systematically understand the spatial and temporal patterns of the emergence of diverse cell
789 types within each progenitor domain.
790

791 As the GABAergic neurons reach their final destinations in later stages of development, cell type
792 identities may be further shaped by local environment, as evidenced by gene expression
793 gradients and continuous variations in various spatial dimensions across supertypes and clusters
794 of a specific GABAergic subclass. The MGE-derived cortical *Sst*- and *Pvalb*-neurons exhibit
795 continuous variations from deep to superficial layers (**Extended Data Figure 12**). The six LSX
796 subclasses are not spatially segregated but partially overlapping, and they exhibit
797 multidimensional gradients (**Extended Data Figure 13**) that might align with their input/output
798 connections^{69,70}. The most prominent continuous variations we observed are in the striatal D1

799 and D2 MSN types (**Figure 5**). We have identified 5 subclasses of MSN types of which
800 subclasses 61 STR D1 Gaba and 62 STR D2 Gaba contain the “classical” MSN D1 and MSN D2
801 neurons that are present in striatum and have defined gene expression profiles, connectivity
802 patterns, and function^{33,34,103–106}. These two subclasses show a strong correlation along the
803 dorsolateral-to-ventromedial axis of striatum (**Figure 5**). We have identified gene modules,
804 shared between MSN D1 and MSN D2 types, that drive the gene expression gradient along the
805 dorsolateral-to-ventromedial axis of striatum. Genes involved in cGMP-PKG signaling are
806 expressed at higher levels in the dorsolateral MSN D1 and D2 types. Downstream effectors of
807 this signaling pathway play a key role in regulating long-term changes in striatal synaptic
808 efficacy^{107–109}. On the ventromedial end of the gradient axis genes coding for various neuroactive
809 receptors are expressed at higher levels of which *Cnr1* has been described before
810^{34,110}. The dorsolateral-to-ventromedial transcriptional gradient and cell types related to that align
811 with topographical organization of excitatory striatal afferent projections^{111,112}.

812
813 We have identified distinct cholinergic neuronal types in striatum, pallidum, and lateral septum.
814 Most telencephalic cholinergic neurons originate from the MGE, embryonic POA, and
815 embryonic septum^{113,114}. The cholinergic precursors originate from the *Nkx2.1*-positive domain
816 and are further specified by combinatorial expression of additional transcription factors⁵. *Lhx6* is
817 essential for specification and migration of MGE-derived GABAergic interneurons, in both the
818 cortex and striatum^{6,115,116} and *Lhx8* has been associated with the specification of a cholinergic
819 phenotype by actively inducing cholinergic properties⁶. These genes are still expressed in the
820 cholinergic neurons in adulthood (**Extended Data Figure 11e**). The cholinergic neurons acquire
821 different identities based on their time of birth, which occurs between E12 and E16¹¹⁷. Early- and
822 late-born cholinergic striatal interneurons migrate at different time points and populate different
823 regions. Absence of *Gbx2* has been shown to cause ablation of the entire late-born cholinergic
824 population¹¹⁸. This late-born population most likely corresponds to supertype 260 PAL-STR
825 Gaba-Chol_2 which still expresses *Gbx2* in adulthood and is located in striatum. A subset of the
826 striatal cholinergic interneurons in this supertype expresses the Type-3 vesicular glutamate
827 transporter (*VgluT3*, *Slc17a8*; **Extended Data Figure 11e**) and can mediate glutamatergic
828 transmission which is required for cholinergic signaling onto fast spiking interneurons (subclass
829 54 STR Prox1 Lhx6 Gaba) as well as acetylcholine-dependent inhibition of MSNs^{119,120}. While
830 striatal cholinergic neurons mostly serve as local interneurons, pallidal cholinergic neurons are
831 mostly sending projections to cortex, hippocampus, and amygdala. These basal forebrain
832 cholinergic neurons are distributed across a series of nuclei, including MS, NDB, the nucleus
833 basalis of Meynert (part of SI), and GPe. Several studies have shown that the function of basal
834 forebrain cholinergic neurons is linked to their topographical organization. For example, the
835 dorsal parts of PL, ILA, and ACA of isocortex receive projections from medially located SI and
836 NDB neurons, whereas more ventral parts of prefrontal cortex receive projections from more
837 laterally located basal forebrain nuclei. Hippocampus and the entorhinal cortex receive the
838 majority of their cholinergic input from the MS and vNDB cholinergic neurons^{121,122}.

839

840 Finally, the developmental scRNA-seq data presented in this study reveals an interesting
841 difference between the MGE/CGE/LGE derived GABAergic neuronal types (in classes CTX-
842 CGE, CTX-MGE, CNU-MGE, CNU-LGE and OB-IMN) and those in the LSX and CNU-HYa
843 GABAergic classes. The former group of GABAergic types exhibit relatively clear continuity
844 from E11-14 to P0 to P14 to P56, along with substantial transcriptomic shifts between E11-14
845 and P0 as well as between P0 and P14 (**Extended Data Figures 15, 16**), suggesting these cell
846 types undergo continued and extensive postmitotic and postnatal diversification similar to what
847 has been described before for cell types in cortex^{123,124}. On the other hand, the latter group of
848 septal and most pallidal GABAergic types exhibit disjointed transcriptomic changes between
849 E11-14 and P0, whereas no substantial transcriptomic shifts from P0 to P14 to P56 were
850 observed (**Extended Data Figure 17**), suggesting that this cell type repertoire emerges in an
851 apparent burst in the embryonic stage with limited postnatal diversification, consistent with a
852 recent study⁸². This developmental difference between these two groups of GABAergic neuronal
853 types is intriguing because it is consistent with our previous observation of the dichotomy of cell
854 type characteristics between the dorsal and ventral parts of the adult brain¹⁴.

855

856 In conclusion, our study provides a detailed transcriptomic characterization of GABAergic
857 neurons in the telencephalon, their spatial locations, and their potential developmental origins. It
858 highlights both the vast differences and the similarities between spatially distant and not so
859 distant types of GABAergic neurons. With the current developmental dataset, we could link
860 adult cell types to their developmental origins, but more detailed molecular investigations will be
861 needed to fully understand how neurons across different lineages diversify during development.
862 Moreover, though the spatial organization of transcriptomic types follows a similar logic to the
863 current knowledge of the circuit organization in the telencephalon, further experiments are
864 needed to link the transcriptomic types to their projection and connectivity patterns.

865

866

867 REFERENCES

868

- 869 1. Wang, Q. *et al.* The Allen Mouse Brain Common Coordinate Framework: A 3D Reference
870 Atlas. *Cell* **181**, 936-953 e20 (2020).
- 871 2. Swanson, L. W. *Brain Architecture: Understanding the Basic Plan*. (Oxford University
872 Press, 2012).
- 873 3. Hu, J. S., Vogt, D., Sandberg, M. & Rubenstein, J. L. Cortical interneuron development: a
874 tale of time and space. *Development* **144**, 3867–3878 (2017).
- 875 4. Lim, L., Mi, D., Llorca, A. & Marín, O. Development and Functional Diversification of
876 Cortical Interneurons. *Neuron* **100**, 294–313 (2018).
- 877 5. Flames, N. *et al.* Delineation of multiple subpallial progenitor domains by the combinatorial
878 expression of transcriptional codes. *J. Neurosci.* **27**, 9682–9695 (2007).

879 6. Fragkouli, A., van Wijk, N. V., Lopes, R., Kessaris, N. & Pachnis, V. LIM homeodomain
880 transcription factor-dependent specification of bipotential MGE progenitors into cholinergic
881 and GABAergic striatal interneurons. *Development* **136**, 3841–3851 (2009).

882 7. Anderson, S. A., Eisenstat, D. D., Shi, L. & Rubenstein, J. L. Interneuron migration from
883 basal forebrain to neocortex: dependence on Dlx genes. *Science* **278**, 474–476 (1997).

884 8. Nóbrega-Pereira, S. *et al.* Origin and molecular specification of globus pallidus neurons. *J.
885 Neurosci.* **30**, 2824–2834 (2010).

886 9. Tufo, C. *et al.* Development of the mammalian main olfactory bulb. *Development* **149**,
887 (2022).

888 10. Li, J. *et al.* Transcription Factors Sp8 and Sp9 Coordinately Regulate Olfactory Bulb
889 Interneuron Development. *Cereb. Cortex* **28**, 3278–3294 (2018).

890 11. Bandler, R. C., Mayer, C. & Fishell, G. Cortical interneuron specification: the juncture of
891 genes, time and geometry. *Curr. Opin. Neurobiol.* **42**, 17–24 (2017).

892 12. Turrero García, M. & Harwell, C. C. Radial glia in the ventral telencephalon. *FEBS Lett.*
893 **591**, 3942–3959 (2017).

894 13. Schmitz, M. T. *et al.* The development and evolution of inhibitory neurons in primate
895 cerebrum. *Nature* **603**, 871–877 (2022).

896 14. Yao, Z. *et al.* A high-resolution transcriptomic and spatial atlas of cell types in the whole
897 mouse brain. *Nature* **624**, 317–332 (2023).

898 15. Lim, D. A. & Alvarez-Buylla, A. The Adult Ventricular-Subventricular Zone (V-SVZ) and
899 Olfactory Bulb (OB) Neurogenesis. *Cold Spring Harb. Perspect. Biol.* **8**, (2016).

900 16. Kempermann, G., Song, H. & Gage, F. H. Neurogenesis in the Adult Hippocampus. *Cold
901 Spring Harb. Perspect. Biol.* **7**, a018812 (2015).

902 17. Obernier, K. & Alvarez-Buylla, A. Neural stem cells: origin, heterogeneity and regulation in
903 the adult mammalian brain. *Development* **146**, (2019).

904 18. Cebrian-Silla, A. *et al.* Single-cell analysis of the ventricular-subventricular zone reveals
905 signatures of dorsal and ventral adult neurogenesis. *Elife* **10**, (2021).

906 19. Pressler, R. T. & Strowbridge, B. W. Blanes cells mediate persistent feedforward inhibition
907 onto granule cells in the olfactory bulb. *Neuron* **49**, 889–904 (2006).

908 20. Batista-Brito, R., Close, J., Machold, R. & Fishell, G. The distinct temporal origins of
909 olfactory bulb interneuron subtypes. *J. Neurosci.* **28**, 3966–3975 (2008).

910 21. Tepe, B. *et al.* Single-Cell RNA-Seq of Mouse Olfactory Bulb Reveals Cellular
911 Heterogeneity and Activity-Dependent Molecular Census of Adult-Born Neurons. *Cell Rep.*
912 **25**, 2689–2703.e3 (2018).

913 22. Mizrak, D. *et al.* Single-Cell Profiling and SCOPE-Seq Reveal Lineage Dynamics of Adult
914 Ventricular-Subventricular Zone Neurogenesis and NOTUM as a Key Regulator. *Cell Rep.*
915 **31**, 107805 (2020).

916 23. Allen, Z. J., 2nd, Waclaw, R. R., Colbert, M. C. & Campbell, K. Molecular identity of
917 olfactory bulb interneurons: transcriptional codes of periglomerular neuron subtypes. *J. Mol.
918 Histol.* **38**, 517–525 (2007).

919 24. Capsoni, S., Fogli Iseppe, A., Casciano, F. & Pignatelli, A. Unraveling the Role of

920 Dopaminergic and Calretinin Interneurons in the Olfactory Bulb. *Front. Neural Circuits* **15**,
921 718221 (2021).

922 25. Burton, S. D. Inhibitory circuits of the mammalian main olfactory bulb. *J. Neurophysiol.*
923 **118**, 2034–2051 (2017).

924 26. Yao, Z. *et al.* A taxonomy of transcriptomic cell types across the isocortex and hippocampal
925 formation. *Cell* **184**, 3222-3241.e26 (2021).

926 27. Gouwens, N. W. *et al.* Integrated Morphoelectric and Transcriptomic Classification of
927 Cortical GABAergic Cells. *Cell* **183**, 935-953.e19 (2020).

928 28. Tasic, B. *et al.* Shared and distinct transcriptomic cell types across neocortical areas. *Nature*
929 **563**, 72–78 (2018).

930 29. Frazer, S. *et al.* Transcriptomic and anatomic parcellation of 5-HT3AR expressing cortical
931 interneuron subtypes revealed by single-cell RNA sequencing. *Nat. Commun.* **8**, 14219
932 (2017).

933 30. von Engelhardt, J., Khrulev, S., Eliava, M., Wahlster, S. & Monyer, H. 5-HT(3A) receptor-
934 bearing white matter interstitial GABAergic interneurons are functionally integrated into
935 cortical and subcortical networks. *J. Neurosci.* **31**, 16844–16854 (2011).

936 31. Turrero García, M. *et al.* Transcriptional profiling of sequentially generated septal neuron
937 fates. *Elife* **10**, (2021).

938 32. Tepper, J. M. *et al.* Heterogeneity and Diversity of Striatal GABAergic Interneurons:
939 Update 2018. *Front. Neuroanat.* **12**, 91 (2018).

940 33. Chen, R. *et al.* Decoding molecular and cellular heterogeneity of mouse nucleus accumbens.
941 *Nat. Neurosci.* **24**, 1757–1771 (2021).

942 34. Stanley, G., Gokce, O., Malenka, R. C., Südhof, T. C. & Quake, S. R. Continuous and
943 Discrete Neuron Types of the Adult Murine Striatum. *Neuron* **105**, 688-699.e8 (2020).

944 35. Gokce, O. *et al.* Cellular Taxonomy of the Mouse Striatum as Revealed by Single-Cell
945 RNA-Seq. *Cell Rep.* **16**, 1126–1137 (2016).

946 36. Smith, J. B. *et al.* Genetic-Based Dissection Unveils the Inputs and Outputs of Striatal Patch
947 and Matrix Compartments. *Neuron* **91**, 1069–1084 (2016).

948 37. Paxinos, G. & Franklin, K. B. J. *Paxinos and Franklin's the Mouse Brain in Stereotaxic
949 Coordinates*. (Academic Press, 2019).

950 38. Kuerbitz, J. *et al.* Loss of Intercalated Cells (ITCs) in the Mouse Amygdala of Tshz1
951 Mutants Correlates with Fear, Depression, and Social Interaction Phenotypes. *J. Neurosci.*
952 **38**, 1160–1177 (2018).

953 39. Waclaw, R. R., Ehrman, L. A., Pierani, A. & Campbell, K. Developmental origin of the
954 neuronal subtypes that comprise the amygdalar fear circuit in the mouse. *J. Neurosci.* **30**,
955 6944–6953 (2010).

956 40. Alderman, P. J. *et al.* Delayed maturation and migration of excitatory neurons in the juvenile
957 mouse paralaminar amygdala. *Neuron* **112**, 574-592.e10 (2024).

958 41. Meredith, G. E., Agolia, R., Arts, M. P., Groenewegen, H. J. & Zahm, D. S. Morphological
959 differences between projection neurons of the core and shell in the nucleus accumbens of the
960 rat. *Neuroscience* **50**, 149–162 (1992).

961 42. Zahm, D. S. Functional-anatomical implications of the nucleus accumbens core and shell
962 subterritories. *Ann. N. Y. Acad. Sci.* **877**, 113–128 (1999).

963 43. Pardo-Bellver, C., Cádiz-Moretti, B., Novejarque, A., Martínez-García, F. & Lanuza, E.
964 Differential efferent projections of the anterior, posteroventral, and posterodorsal
965 subdivisions of the medial amygdala in mice. *Front. Neuroanat.* **6**, 33 (2012).

966 44. Canteras, N. S., Simerly, R. B. & Swanson, L. W. Organization of projections from the
967 medial nucleus of the amygdala: a PHAL study in the rat. *J. Comp. Neurol.* **360**, 213–245
968 (1995).

969 45. Wang, Y. *et al.* Multimodal mapping of cell types and projections in the central nucleus of
970 the amygdala. *Elife* **12**, (2023).

971 46. Nguyen, Q. A. T. *et al.* Hypothalamic representation of the imminence of predator threat
972 detected by the vomeronasal organ in mice. *bioRxiv* 2023.09.27.559655 (2024)
973 doi:10.1101/2023.09.27.559655.

974 47. Butler, C. W., Wilson, Y. M., Gunnersen, J. M. & Murphy, M. Tracking the fear memory
975 engram: discrete populations of neurons within amygdala, hypothalamus, and lateral septum
976 are specifically activated by auditory fear conditioning. *Learn. Mem.* **22**, 370–384 (2015).

977 48. Miller, S. M., Marcotulli, D., Shen, A. & Zweifel, L. S. Divergent medial amygdala
978 projections regulate approach-avoidance conflict behavior. *Nat. Neurosci.* **22**, 565–575
979 (2019).

980 49. Knoedler, J. R. *et al.* A functional cellular framework for sex and estrous cycle-dependent
981 gene expression and behavior. *Cell* **185**, 654-671.e22 (2022).

982 50. Raam, T. & Hong, W. Organization of neural circuits underlying social behavior: A
983 consideration of the medial amygdala. *Curr. Opin. Neurobiol.* **68**, 124–136 (2021).

984 51. Samuels, C. L. & Meredith, M. Categorization of biologically relevant chemical signals in
985 the medial amygdala. *Brain Res.* **1263**, 33–42 (2009).

986 52. Hochgerner, H. *et al.* Cell types in the mouse amygdala and their transcriptional response to
987 fear conditioning. *bioRxiv* 2022.10.25.513733 (2022) doi:10.1101/2022.10.25.513733.

988 53. Choi, G. B. *et al.* Lhx6 delineates a pathway mediating innate reproductive behaviors from
989 the amygdala to the hypothalamus. *Neuron* **46**, 647–660 (2005).

990 54. Chen, P. B. *et al.* Sexually Dimorphic Control of Parenting Behavior by the Medial
991 Amygdala. *Cell* **176**, 1206-1221.e18 (2019).

992 55. Shemesh, Y. *et al.* Ucn3 and CRF-R2 in the medial amygdala regulate complex social
993 dynamics. *Nat. Neurosci.* **19**, 1489–1496 (2016).

994 56. Pare, D. & Duvarci, S. Amygdala microcircuits mediating fear expression and extinction.
995 *Curr. Opin. Neurobiol.* **22**, 717–723 (2012).

996 57. Egli, R. E. & Winder, D. G. Dorsal and ventral distribution of excitable and synaptic
997 properties of neurons of the bed nucleus of the stria terminalis. *J. Neurophysiol.* **90**, 405–414
998 (2003).

999 58. Paxinos, G. *The Rat Nervous System*. (Elsevier Science & Technology, London, UNITED
1000 STATES, 2004).

1001 59. Bota, M., Sporns, O. & Swanson, L. W. Neuroinformatics analysis of molecular expression
1002 patterns and neuron populations in gray matter regions: the rat BST as a rich exemplar.

1003 1003 *Brain Res.* **1450**, 174–193 (2012).

1004 60. Hammack, S. E., Braas, K. M. & May, V. Chemoarchitecture of the bed nucleus of the stria
1005 terminalis: Neurophenotypic diversity and function. *Handb. Clin. Neurol.* **179**, 385–402
1006 (2021).

1007 61. Dong, H. W., Petrovich, G. D. & Swanson, L. W. Topography of projections from amygdala
1008 to bed nuclei of the stria terminalis. *Brain Res. Brain Res. Rev.* **38**, 192–246 (2001).

1009 62. Forray, M. I. & Gysling, K. Role of noradrenergic projections to the bed nucleus of the stria
1010 terminalis in the regulation of the hypothalamic-pituitary-adrenal axis. *Brain Res. Brain Res.*
1011 *Rev.* **47**, 145–160 (2004).

1012 63. Pelkey, K. A. *et al.* Hippocampal GABAergic Inhibitory Interneurons. *Physiol. Rev.* **97**,
1013 1619–1747 (2017).

1014 64. Melzer, S. & Monyer, H. Diversity and function of corticopetal and corticofugal
1015 GABAergic projection neurons. *Nat. Rev. Neurosci.* **21**, 499–515 (2020).

1016 65. Yassa, M. A. & Stark, C. E. L. Pattern separation in the hippocampus. *Trends Neurosci.* **34**,
1017 515–525 (2011).

1018 66. Luo, X. *et al.* Transcriptomic profile of the subiculum-projecting VIP GABAergic neurons
1019 in the mouse CA1 hippocampus. *Brain Struct. Funct.* **224**, 2269–2280 (2019).

1020 67. Tomioka, R. *et al.* Demonstration of long-range GABAergic connections distributed
1021 throughout the mouse neocortex. *Eur. J. Neurosci.* **21**, 1587–1600 (2005).

1022 68. Fisher, J. *et al.* Cortical somatostatin long-range projection neurons and interneurons exhibit
1023 divergent developmental trajectories. *Neuron* (2023) doi:10.1016/j.neuron.2023.11.013.

1024 69. Risold, P. Y. & Swanson, L. W. Connections of the rat lateral septal complex. *Brain Res.*
1025 *Rev.* **24**, 115–195 (1997).

1026 70. Besnard, A. & Leroy, F. Top-down regulation of motivated behaviors via lateral septum
1027 sub-circuits. *Mol. Psychiatry* **27**, 3119–3128 (2022).

1028 71. Reid, C. M. *et al.* Multimodal classification of neurons in the lateral septum. *bioRxiv*
1029 2024.02.15.580381 (2024) doi:10.1101/2024.02.15.580381.

1030 72. Johansen, N., Miller, J., Lee, C. & ikapen-alleninst. *AllenInstitute/Scratch.Mapping: V0.55.*
1031 (Zenodo, 2024). doi:10.5281/zenodo.10939013.

1032 73. Thompson, C. L. *et al.* A high-resolution spatiotemporal atlas of gene expression of the
1033 developing mouse brain. *Neuron* **83**, 309–323 (2014).

1034 74. Lein, E. S. *et al.* Genome-wide atlas of gene expression in the adult mouse brain. *Nature*
1035 **445**, 168–176 (2007).

1036 75. Rymar, V. V. & Sadikot, A. F. Laminar fate of cortical GABAergic interneurons is
1037 dependent on both birthdate and phenotype. *J. Comp. Neurol.* **501**, 369–380 (2007).

1038 76. Valcanis, H. & Tan, S.-S. Layer specification of transplanted interneurons in developing
1039 mouse neocortex. *J. Neurosci.* **23**, 5113–5122 (2003).

1040 77. Inan, M., Welagen, J. & Anderson, S. A. Spatial and temporal bias in the mitotic origins of
1041 somatostatin- and parvalbumin-expressing interneuron subgroups and the chandelier subtype
1042 in the medial ganglionic eminence. *Cereb. Cortex* **22**, 820–827 (2012).

1043 78. Miyoshi, G. & Fishell, G. GABAergic interneuron lineages selectively sort into specific

1044 cortical layers during early postnatal development. *Cereb. Cortex* **21**, 845–852 (2011).

1045 79. Taniguchi, H., Lu, J. & Huang, Z. J. The spatial and temporal origin of chandelier cells in
1046 mouse neocortex. *Science* **339**, 70–74 (2013).

1047 80. De Marco García, N. V., Karayannis, T. & Fishell, G. Neuronal activity is required for the
1048 development of specific cortical interneuron subtypes. *Nature* **472**, 351–355 (2011).

1049 81. Dehorter, N. *et al.* Tuning of fast-spiking interneuron properties by an activity-dependent
1050 transcriptional switch. *Science* **349**, 1216–1220 (2015).

1051 82. Kaplan, H. S. *et al.* Sensory Input, Sex, and Function Shape Hypothalamic Cell Type
1052 Development. *bioRxiv* 2024.01.23.576835 (2024) doi:10.1101/2024.01.23.576835.

1053 83. Huilgol, D. & Tole, S. Cell migration in the developing rodent olfactory system. *Cell. Mol.*
1054 *Life Sci.* **73**, 2467–2490 (2016).

1055 84. Gao, M., Wang, K. & Zhao, H. GABAergic neurons maturation is regulated by a delicate
1056 network. *Int. J. Dev. Neurosci.* **83**, 3–15 (2023).

1057 85. Achim, K., Salminen, M. & Partanen, J. Mechanisms regulating GABAergic neuron
1058 development. *Cell. Mol. Life Sci.* **71**, 1395–1415 (2014).

1059 86. Hobert, O. Regulatory logic of neuronal diversity: terminal selector genes and selector
1060 motifs. *Proc. Natl. Acad. Sci. U. S. A.* **105**, 20067–20071 (2008).

1061 87. Deneris, E. S. & Hobert, O. Maintenance of postmitotic neuronal cell identity. *Nat.*
1062 *Neurosci.* **17**, 899–907 (2014).

1063 88. Zhang, G., Titlow, W. B., Biecker, S. M., Stromberg, A. J. & McClintock, T. S. Lhx2
1064 Determines Odorant Receptor Expression Frequency in Mature Olfactory Sensory Neurons.
1065 *eNeuro* **3**, (2016).

1066 89. Monahan, K. *et al.* Cooperative interactions enable singular olfactory receptor expression in
1067 mouse olfactory neurons. *Elife* **6**, (2017).

1068 90. Harwell, C. C. *et al.* Wide Dispersion and Diversity of Clonally Related Inhibitory
1069 Interneurons. *Neuron* **87**, 999–1007 (2015).

1070 91. Mayer, C. *et al.* Clonally Related Forebrain Interneurons Disperse Broadly across Both
1071 Functional Areas and Structural Boundaries. *Neuron* **87**, 989–998 (2015).

1072 92. Marin, O., Anderson, S. A. & Rubenstein, J. L. Origin and molecular specification of striatal
1073 interneurons. *J. Neurosci.* **20**, 6063–6076 (2000).

1074 93. Paul, A. *et al.* Transcriptional Architecture of Synaptic Communication Delineates
1075 GABAergic Neuron Identity. *Cell* **171**, 522-539.e20 (2017).

1076 94. Muñoz-Manchado, A. B. *et al.* Diversity of Interneurons in the Dorsal Striatum Revealed by
1077 Single-Cell RNA Sequencing and PatchSeq. *Cell Rep.* **24**, 2179-2190.e7 (2018).

1078 95. Ibáñez-Sandoval, O. *et al.* A novel functionally distinct subtype of striatal neuropeptide Y
1079 interneuron. *J. Neurosci.* **31**, 16757–16769 (2011).

1080 96. Waclaw, R. R. *et al.* Foxo1 is a downstream effector of Isl1 in direct pathway striatal
1081 projection neuron development within the embryonic mouse telencephalon. *Mol. Cell.*
1082 *Neurosci.* **80**, 44–51 (2017).

1083 97. Stenman, J., Toresson, H. & Campbell, K. Identification of two distinct progenitor
1084 populations in the lateral ganglionic eminence: implications for striatal and olfactory bulb

1085 neurogenesis. *J. Neurosci.* **23**, 167–174 (2003).

1086 98. Xu, Z. *et al.* SP8 and SP9 coordinately promote D2-type medium spiny neuron production
1087 by activating Six3 expression. *Development* **145**, (2018).

1088 99. Song, X. *et al.* Homeobox Gene Six3 is Required for the Differentiation of D2-Type
1089 Medium Spiny Neurons. *Neurosci. Bull.* **37**, 985–998 (2021).

1090 100. He, M. *et al.* Strategies and Tools for Combinatorial Targeting of GABAergic Neurons in
1091 Mouse Cerebral Cortex. *Neuron* **91**, 1228–1243 (2016).

1092 101. Wonders, C. P. *et al.* A spatial bias for the origins of interneuron subgroups within the
1093 medial ganglionic eminence. *Dev. Biol.* **314**, 127–136 (2008).

1094 102. Flandin, P., Kimura, S. & Rubenstein, J. L. R. The progenitor zone of the ventral medial
1095 ganglionic eminence requires Nkx2-1 to generate most of the globus pallidus but few
1096 neocortical interneurons. *J. Neurosci.* **30**, 2812–2823 (2010).

1097 103. Tepper, J. M., Tecuapetla, F., Koós, T. & Ibáñez-Sandoval, O. Heterogeneity and diversity
1098 of striatal GABAergic interneurons. *Front. Neuroanat.* **4**, 150 (2010).

1099 104. Gerfen, C. R. & Surmeier, D. J. Modulation of striatal projection systems by dopamine.
1100 *Annu. Rev. Neurosci.* **34**, 441–466 (2011).

1101 105. Tai, L.-H., Lee, A. M., Benavidez, N., Bonci, A. & Wilbrecht, L. Transient stimulation of
1102 distinct subpopulations of striatal neurons mimics changes in action value. *Nat. Neurosci.*
1103 **15**, 1281–1289 (2012).

1104 106. Kravitz, A. V., Tye, L. D. & Kreitzer, A. C. Distinct roles for direct and indirect pathway
1105 striatal neurons in reinforcement. *Nat. Neurosci.* **15**, 816–818 (2012).

1106 107. Calabresi, P., Picconi, B., Tozzi, A. & Di Filippo, M. Dopamine-mediated regulation of
1107 corticostriatal synaptic plasticity. *Trends Neurosci.* **30**, 211–219 (2007).

1108 108. Jourvert, P. *et al.* Activation of the cGMP pathway in dopaminergic structures reduces
1109 cocaine-induced EGR-1 expression and locomotor activity. *J. Neurosci.* **24**, 10716–10725
1110 (2004).

1111 109. Ota, K. T., Pierre, V. J., Ploski, J. E., Queen, K. & Schafe, G. E. The NO-cGMP-PKG
1112 signaling pathway regulates synaptic plasticity and fear memory consolidation in the lateral
1113 amygdala via activation of ERK/MAP kinase. *Learn. Mem.* **15**, 792–805 (2008).

1114 110. Märtin, A. *et al.* A Spatiomolecular Map of the Striatum. *Cell Rep.* **29**, 4320–4333.e5
1115 (2019).

1116 111. Hunnicutt, B. J. *et al.* A comprehensive excitatory input map of the striatum reveals novel
1117 functional organization. *Elife* **5**, (2016).

1118 112. Poulin, J.-F. *et al.* Mapping projections of molecularly defined dopamine neuron subtypes
1119 using intersectional genetic approaches. *Nat. Neurosci.* **21**, 1260–1271 (2018).

1120 113. Ballinger, E. C., Ananth, M., Talmage, D. A. & Role, L. W. Basal Forebrain Cholinergic
1121 Circuits and Signaling in Cognition and Cognitive Decline. *Neuron* **91**, 1199–1218 (2016).

1122 114. Magno, L. *et al.* NKX2-1 Is Required in the Embryonic Septum for Cholinergic System
1123 Development, Learning, and Memory. *Cell Rep.* **20**, 1572–1584 (2017).

1124 115. Liodis, P. *et al.* Lhx6 activity is required for the normal migration and specification of
1125 cortical interneuron subtypes. *J. Neurosci.* **27**, 3078–3089 (2007).

1126 116. Flandin, P. *et al.* Lhx6 and Lhx8 coordinately induce neuronal expression of Shh that
1127 controls the generation of interneuron progenitors. *Neuron* **70**, 939–950 (2011).

1128 117. Allaway, K. C. *et al.* Cellular birthdate predicts laminar and regional cholinergic projection
1129 topography in the forebrain. *Elife* **9**, (2020).

1130 118. Chen, L., Chatterjee, M. & Li, J. Y. H. The mouse homeobox gene Gbx2 is required for the
1131 development of cholinergic interneurons in the striatum. *J. Neurosci.* **30**, 14824–14834
1132 (2010).

1133 119. Higley, M. J. *et al.* Cholinergic interneurons mediate fast VGlut3-dependent glutamatergic
1134 transmission in the striatum. *PLoS One* **6**, e19155 (2011).

1135 120. Nelson, A. B., Bussert, T. G., Kreitzer, A. C. & Seal, R. P. Striatal cholinergic
1136 neurotransmission requires VGLUT3. *J. Neurosci.* **34**, 8772–8777 (2014).

1137 121. Bloem, B. *et al.* Topographic mapping between basal forebrain cholinergic neurons and the
1138 medial prefrontal cortex in mice. *J. Neurosci.* **34**, 16234–16246 (2014).

1139 122. Gielow, M. R. & Zaborszky, L. The Input-Output Relationship of the Cholinergic Basal
1140 Forebrain. *Cell Rep.* **18**, 1817–1830 (2017).

1141 123. Mayer, C. *et al.* Developmental diversification of cortical inhibitory interneurons. *Nature*
1142 **555**, 457–462 (2018).

1143 124. Di Bella, D. J. *et al.* Molecular logic of cellular diversification in the mouse cerebral cortex.
1144 *Nature* **595**, 554–559 (2021).

1145 125. McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: Uniform Manifold
1146 Approximation and Projection. *J. Open Source Softw.* **3**, 861 (2018).

1147 126. Marchini, J. L., Heaton, C. & Ripley, B. D. fastICA: FastICA Algorithms to Perform ICA
1148 and Projection Pursuit. Preprint at <https://CRAN.R-project.org/package=fastICA> (2021).

1149 127. Andreatta, M. & Carmona, S. J. UCell: Robust and scalable single-cell gene signature
1150 scoring. *Comput. Struct. Biotechnol. J.* **19**, 3796–3798 (2021).

1151 128. Singhal, V. *et al.* BANKSY unifies cell typing and tissue domain segmentation for scalable
1152 spatial omics data analysis. *Nat. Genet.* **56**, 431–441 (2024).

1153 129. Allen Institute for Brain Science. Mouse Whole Cell Tissue Processing for 10x Genomics
1154 Platform V.9. *protocols.io* (2022) doi:10.17504/protocols.io.q26g7b52klwz/v9.

1155 130. Allen Institute for Brain Science. 10xV3 Genomics Sample Processing Protocol.
1156 *protocols.io* (2021) doi:10.17504/protocols.io.bq7cmziw.

1157 131. Allen Institute for Brain Science. 10Xv3.1 Genomics Sample Processing. *protocols.io*
1158 (2024) doi:10.17504/protocols.io.dm6gpwd8jlzp/v3.

1159

1160 METHODS

1161

1162 Sample collection, data generation, and data analysis for P56 dataset

1163 Most of methods which apply to the adult P56 10x scRNA and MERFISH datasets used for this
1164 paper were described before¹⁴ and the following methods are either newly introduced or
1165 modified version for this paper.

1166

1167 **UMAP projection**

1168 We performed PCA based on the imputed gene expression matrix of 4,895 marker genes using
1169 the 10xv3 reference. We selected the top 100 PCs, then removing one PC with more than 0.7
1170 correlation with the technical bias vector, defined as $\log_2(\text{gene count})$ for each cell. We used the
1171 remaining PCs as input to create 2D and 3D UMAPs¹²⁵, using parameters `nn.neighbors = 25` and
1172 `md = 0.4`.

1173

1174 **Constellation plot**

1175 To generate the constellation plot, each transcriptomic supertype was represented by a node
1176 (circle), whose surface area reflected the number of cells within the supertype in log scale. The
1177 position of nodes was based on the centroid positions of the corresponding supertypes in UMAP
1178 coordinates. The relationships between nodes were indicated by edges that were calculated as
1179 follows. For each cell, 15 nearest neighbors in reduced dimension space were determined and
1180 summarized by supertypes. For each supertype, we then calculated the fraction of nearest
1181 neighbors that were assigned to other supertypes. The edges connected two nodes in which at
1182 least one of the nodes had $> 5\%$ of nearest neighbors in the connecting node. The width of the
1183 edge at the node reflected the fraction of nearest neighbors that were assigned to the connecting
1184 node and was scaled to node size. For all nodes in the plot, we then determined the maximum
1185 fraction of “outside” neighbors and set this as edge width = 100% of node width. The function
1186 for creating these plots, `plot_constellation`, is included in `scrattch.bigcat`.

1187

1188 **Imputation of scRNA-seq data into the MERFISH space**

1189 The MERFISH dataset was collected using only 500 genes. To obtain the spatial distribution of
1190 all the genes, we projected gene expression of the MERFISH dataset to the 10xv3 scRNA-seq
1191 dataset using a modified version of the `impute_knn_global` function in the `scrattch.bigcat`
1192 package^{14,26}. We used self-imputed 10xv3 dataset as reference, meaning that the expression of
1193 each 10xv3 cells was first imputed based on its nearest 15 neighbors in the reduced principal
1194 component space. This decision was made to ensure that in the following hierarchical imputation
1195 step, the transitions between major cell types were preserved. The imputation was conducted in
1196 the order specified by the hierarchy defined by class and subclass. At the root, we imputed the
1197 expression for all the genes for each MERFISH cell based on the average expression of their
1198 nearest neighbors from the reference 10xv3 dataset, defined by the cosine similarity using all 500
1199 MERFISH genes. In each of the following iterations, we selected the node to which each
1200 MERFISH cell was assigned and imputed only the expression of the DEGs based on pairwise
1201 comparison for all the clusters under this node. The nearest neighbors for imputation were
1202 selected from the clusters under this node in the reference dataset, using only the subset of DEGs
1203 that were present on the MERFISH gene panel. We repeated this procedure until reaching the
1204 leaf node. This strategy enabled us to preserve the cell type resolution during imputation, making
1205 it less susceptible to the global platform differences between MERFISH and scRNA-seq.

1206

1207 **Analysis of spatial gene expression gradients**

1208 We performed independent component analysis using fastICA¹²⁶ to decompose the gene
1209 expression matrix into independent components. These components are then projected onto the
1210 imputed MERFISH data to determine if the component represents a spatial gene expression
1211 program. For components that represent a spatial gene expression program the top loading genes
1212 we selected and visualized on both the UMAP in RNAseq space and on sections in the imputed
1213 MERFISH space. We evaluated the gene modules in the identified individual components and
1214 applied UCell¹²⁷ to assign a “gene module score” based on both positive and negative genes to
1215 each cell.

1216

1217 **Spatial domain clustering**

1218 We used BANKSY¹²⁸ to perform spatial domain clustering within BST neurons. This algorithm
1219 implements a feature-augmentation approach to map domains by integrating the transcriptional
1220 profiles of individual cells with their physical distances and tissue neighborhood context. As the
1221 MERFISH data was registered to the CCFv3, it allowed us to subset BST neurons from the
1222 MERFISH data. We used the 8988 BST neurons, their spatial location, and their 500 genes
1223 expression profile as input for BANKSY.

1224

1225 **Assessing concordance of cell type taxonomy between the subpallium GABAergic cell type
1226 atlas and external datasets**

1227 We performed mapping of cells from each external dataset to the 10x v3 whole-brain dataset
1228 using treeMap function from scrattch.mapping package
1229 (<https://github.com/AllenInstitute/scrattch-mapping>)⁷². The reference cell type taxonomy was
1230 organized in a hierarchy defined by class and subclass. At each node, top markers were selected
1231 that best discriminate the clusters belonging to different child nodes. Starting at the root, cells
1232 were assigned to the closest cluster centroid from all the clusters under the given node based on
1233 the selected node markers using the cosine similarity metric. This mapping procedure was
1234 repeated until reaching the leaf nodes. To assess mapping confidence, we subsampled 80% of the
1235 markers at each node, and repeated the mapping process 100 times. In each bootstrapping step,
1236 we also computed the cosine similarity of the cell to the mapped the cluster based on the markers
1237 for all the nodes along the mapping path and calculated the average similarity across all 100
1238 bootstrapping iterations. This score was used to assess the quality of the mapping. Cells with a
1239 score above 0.5 were used to generate a confusion matrix showing the proportion of cells jointly
1240 found between 2 types and their Jaccard similarity score.

1241

1242 **Measuring similarity between MSN D1 and D2 clusters**

1243 We computed the nearest neighbors from MSN D1 cells for MSN D2 cells and vice versa using
1244 cosine similarity metric based on the same marker list, which were used to define the edge
1245 weights for the constellation plots. To select the most similar pairs between MSN D1 and MSN

1246 D2 types, we selected all the pairs with Pearson correlation greater than 0.93 and with at least
1247 30% of the KNNs from one cluster belonging to the other cluster in the pair.

1248

1249 **Developmental scRNA-seq data collection**

1250 *Mouse breeding and husbandry*

1251 All experimental procedures related to the use of mice were approved by the Institutional Animal
1252 Care and Use Committee of the AIBS, in accordance with NIH guidelines. Mice were housed in
1253 a room with temperature (21–22 °C) and humidity (40–51%) control within the vivarium of the
1254 AIBS at no more than five adult animals of the same sex per cage. Mice were provided food and
1255 water ad libitum and were maintained on a regular 14:10 h light:dark cycle. Mice were
1256 maintained on the C57BL/6 J background. We excluded any mice with anophthalmia or
1257 microphthalmia.

1258

1259 Mothers of all experimental pups were placed in a fresh cage when embryos were ~E8. We used
1260 6 pups to collect 74,550 cells from ages E11.5, E12.5, E13.5, and E14.5. From ages E11.5 and
1261 E12.5 we collected whole brain tissue and from ages E13.5 and E14.5 we collected cerebrum and
1262 brain stem (CH-BS). From 6 P0 pups we collected 138,613 cells, and from 6 P14 pups we
1263 collected 360,748 cells. P0 and P14 cells were collected from both male and female mice across
1264 6 dissection ROIs: OLF, CTXsp, Isocortex, HPF, CNU, and HY. No statistical methods were
1265 used to predetermine sample size. All donor animals used for the developmental scRNA-seq data
1266 generation are listed in **Supplementary Table 5**. Brain dissections for all groups took place in
1267 the morning.

1268

1269 *Single-cell isolation*

1270 Single cells were isolated following a cell-isolation protocol developed at AIBS¹²⁹. The brain
1271 was dissected, submerged in artificial cerebrospinal fluid (ACSF), embedded in 2% agarose, and
1272 sliced into 350-µm coronal sections on a compresstome (Precisionary Instruments). Block-face
1273 images were captured during slicing. ROIs were then microdissected from the slices and
1274 dissociated into single cells.

1275

1276 Dissected tissue pieces were digested with 30 U ml⁻¹ papain (Worthington PAP2) in ACSF for
1277 30 min at 30 °C. Due to the short incubation period in a dry oven, we set the oven temperature to
1278 35 °C to compensate for the indirect heat exchange, with a target solution temperature of 30 °C.
1279 Enzymatic digestion was quenched by exchanging the papain solution three times with
1280 quenching buffer (ACSF with 1% FBS and 0.2% BSA). Samples were incubated on ice for 5 min
1281 before trituration. The tissue pieces in the quenching buffer were triturated through a fire-
1282 polished pipette with 600-µm diameter opening approximately 20 times. The tissue pieces were
1283 allowed to settle and the supernatant, which now contained suspended single cells, was
1284 transferred to a new tube. Fresh quenching buffer was added to the settled tissue pieces, and
1285 trituration and supernatant transfer were repeated using 300-µm and 150-µm fire-polished

1286 pipettes. The single-cell suspension was passed through a 70- μ m filter into a 15-ml conical tube
1287 with 500 μ l of high-BSA buffer (ACSF with 1% FBS and 1% BSA) at the bottom to help
1288 cushion the cells during centrifugation at 100g in a swinging-bucket centrifuge for 10 min. The
1289 supernatant was discarded, and the cell pellet was resuspended in the quenching buffer. The
1290 concentration of the resuspended cells was quantified, and cells were immediately loaded onto
1291 the 10x Genomics Chromium controller.

1292

1293 ***cDNA amplification and library construction***

1294 The E11.5 to E14.5 cell suspensions were processed using the Chromium Single Cell 3' Reagent
1295 Kit v3 (1000075, 10x Genomics). We followed the manufacturer's instructions for cell capture,
1296 barcoding, reverse transcription, cDNA amplification and library construction¹³⁰. We loaded
1297 8,283 \pm 703 cells per port. We targeted a sequencing depth of 120,000 reads per cell; the actual
1298 average achieved was 70,324 \pm 62,149 reads per cell across 9 libraries.

1299

1300 The P0 cell suspensions were processed using the Chromium Single Cell 3' Reagent Kit v3.1
1301 (1000268, 10x Genomics). We followed the manufacturer's instructions for cell capture,
1302 barcoding, reverse transcription, cDNA amplification, and library construction¹³¹. We loaded
1303 11,551 \pm 1,785 (mean \pm s.d.) cells per port. We targeted sequencing depth of 120,000 reads per
1304 cell; the actual average achieved was 65,069 \pm 61,474 (mean \pm s.d.) reads per cell across 12
1305 libraries.

1306

1307 The P14 cell suspensions were processed using the Chromium Next GEM Single Cell 3' HT
1308 Reagent Kit v3.1 (1000370, 10x Genomics). We followed the manufacturer's instructions for
1309 cell capture, barcoding, reverse transcription, cDNA amplification, and library construction. We
1310 loaded 30,062 \pm 15,008 (mean \pm s.d.) cells per port. We targeted sequencing depth of 120,000
1311 reads per cell; the actual average achieved was 46,055 \pm 61,941 (mean \pm s.d.) reads per cell
1312 across 12 libraries.

1313

1314 ***Sequencing data processing and QC***

1315 Processing of 10x Genomics scRNA-seq libraries was performed as described previously²⁶. In
1316 brief, libraries were sequenced on the Illumina NovaSeq6000, and sequencing reads were aligned
1317 to the mouse reference transcriptome (M21, GRCm38.p6) using the 10x Genomics CellRanger
1318 pipeline (version 6.1.1) with default parameters. To remove low-quality cells, we applied similar
1319 QC analysis and thresholding as described previously¹⁴.

1320

1321 ***Clustering scRNA-seq data***

1322 To assign cell type identity to cells at P14 the cells were mapped onto the WMB taxonomy using
1323 Hierarchical Approximate Nearest Neighbour (HANN) mapping available in scratch-mapping
1324 package⁷². To improve mapping to the correct lineage, we removed three classes containing
1325 immature neurons (03 OB-CR Glut, 04 DG-IMN Glut, and 05 OB-IMN GABA) from the adult

1326 WMB taxonomy. For cells from P0 time point, we assigned their broad cell types by mapping to
1327 the nearest cluster centroid in the adjacent older age group, P14, using scrattch.mapping. Cells
1328 from E11.5 to E14.5 were binned, considered as one time point for further analysis, and mapped
1329 to the P0 time point. After assigning the broad cell types, iterative clustering was performed
1330 within assigned subclasses using the scrattch.bigcat package as described before¹⁴. Cell type
1331 annotation of the developmental scRNA-seq dataset is shown in **Supplementary Table 4**.
1332

1333 **ACKNOWLEDGEMENTS**

1334

1335 We are grateful to the Transgenic Colony Management, Lab Animal Services, Molecular
1336 Biology and Histology teams at the Allen Institute for technical support. The research was
1337 funded by the U19MH114830 and U01MH130962 grants from National Institute of Mental
1338 Health to H.Z., under the BRAIN Initiative of National Institutes of Health (NIH). The content is
1339 solely the responsibility of the authors and does not necessarily represent the official views of
1340 NIH and its subsidiary institutes. This work was also supported by the Allen Institute for Brain
1341 Science. The authors thank the Allen Institute founder, Paul G. Allen, for his vision,
1342 encouragement, and support.
1343

1344 **Author Contributions**

1345

1346 Conceptualization: H.Z. Data analysis lead and coordination: C.T.J.vV. Data generation scRNA-
1347 seq: C.T.J.v.V., T.C., M.C., R.F., J.Gl., J.Gu., C.R.H, W.H., K.J., R.MC., T.H.P., K.R., E.D.T.,
1348 A.T., N.D., K.A.S., Z.Y., H.Z. Data processing and analysis (scRNA-seq): C.T.J.v.V., Y.G.,
1349 C.L., A.B.C., R.C., T.D., J.Go., B.N., K.A.S., Z.Y., H.Z. Data generation (MERFISH): M.K.,
1350 D.M., J.W., H.Z. Data processing and analysis (MERFISH): C.T.J.v.V., M.K., D.M., S.D., M.H.,
1351 L.N., J.W., Z.Y., H.Z. Project management: C.P., L.K., K.S. Management and supervision:
1352 C.T.J.v.V., D.M., N.D., L.N., J.W., K.A.S., B.T., Z.Y., H.Z. Manuscript writing and figure
1353 generation: C.T.J.vV., Z.Y., H.Z. Manuscript review and editing: C.T.J.v.V., M.K., Z.Y., H.Z.
1354

1355 **Competing Interests**

1356

1357 H.Z. is on the scientific advisory board of MapLight Therapeutics, Inc. The other authors declare
1358 no competing interests.
1359

1360 **Additional Information**

1361

1362 Correspondence and requests for materials should be addressed to: H.Z.
1363 (hongkuiz@alleninstitute.org) or C.T.J.vV. (cindy.vanvelthoven@alleninstitute.org).
1364

1365 **Data Availability**

1366

1367 The scRNA-seq and MERFISH datasets for this study are part of the Allen whole mouse brain
1368 (WMB) cell type atlas and are accessible through Neuroscience Multi-omic Data Archive
1369 (NeMO, <https://nemoarchive.org/>) and Brain Image Library (BIL,
1370 <https://www.brainimagelibrary.org/index.html>). The 10x scRNA-seq datasets (FASTQ files) are
1371 available at NeMO under identifier <https://assets.nemoarchive.org/dat-qg7n1b0>. The MERFISH
1372 dataset is available at BIL under DOI <https://doi.org/10.35077/g.610>.

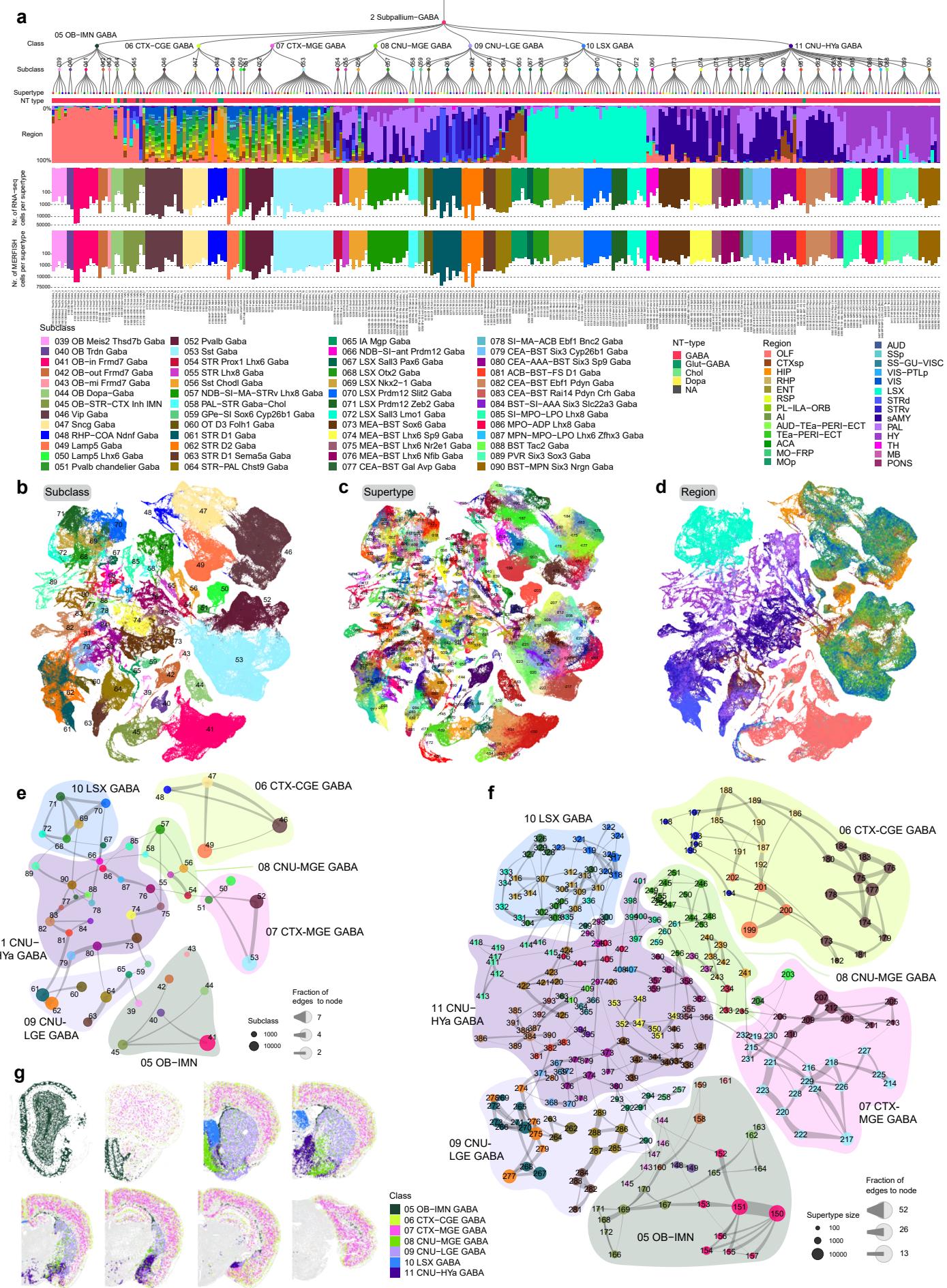
1373

1374 The Subpallium-GABA cell type taxonomy is available from the Allen Brain Cell (ABC) Atlas
1375 at <https://portal.brain-map.org/atlas-and-data/bkp/abc-atlas>, to visualize both sc/snRNA-seq
1376 and MERFISH datasets. Instruction for access of the processed 10x scRNA-seq data is available
1377 at https://github.com/AllenInstitute/abc_atlas_access/blob/main/descriptions/WMB-10X.md, and
1378 instruction for access of the processed MERFISH data is available at
1379 https://github.com/AllenInstitute/abc_atlas_access/blob/main/descriptions/MERFISH-C57BL6J-638850.md.

1380

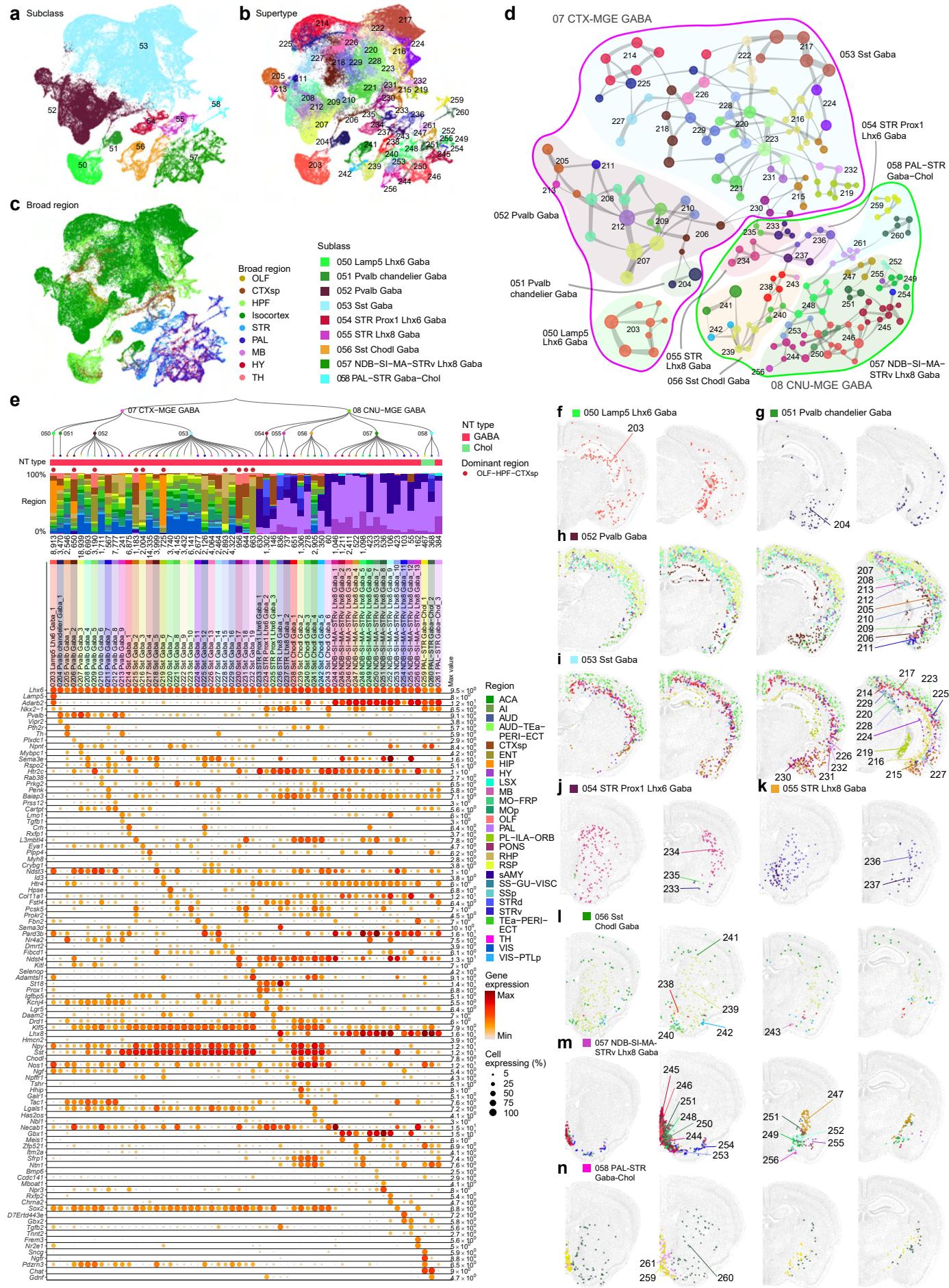
1381

1382 The developmental scRNA-seq datasets are being made available through BRAIN Initiative Cell
1383 Atlas Network (BICAN), www.portal.brain-bican.org, and at NeMO.

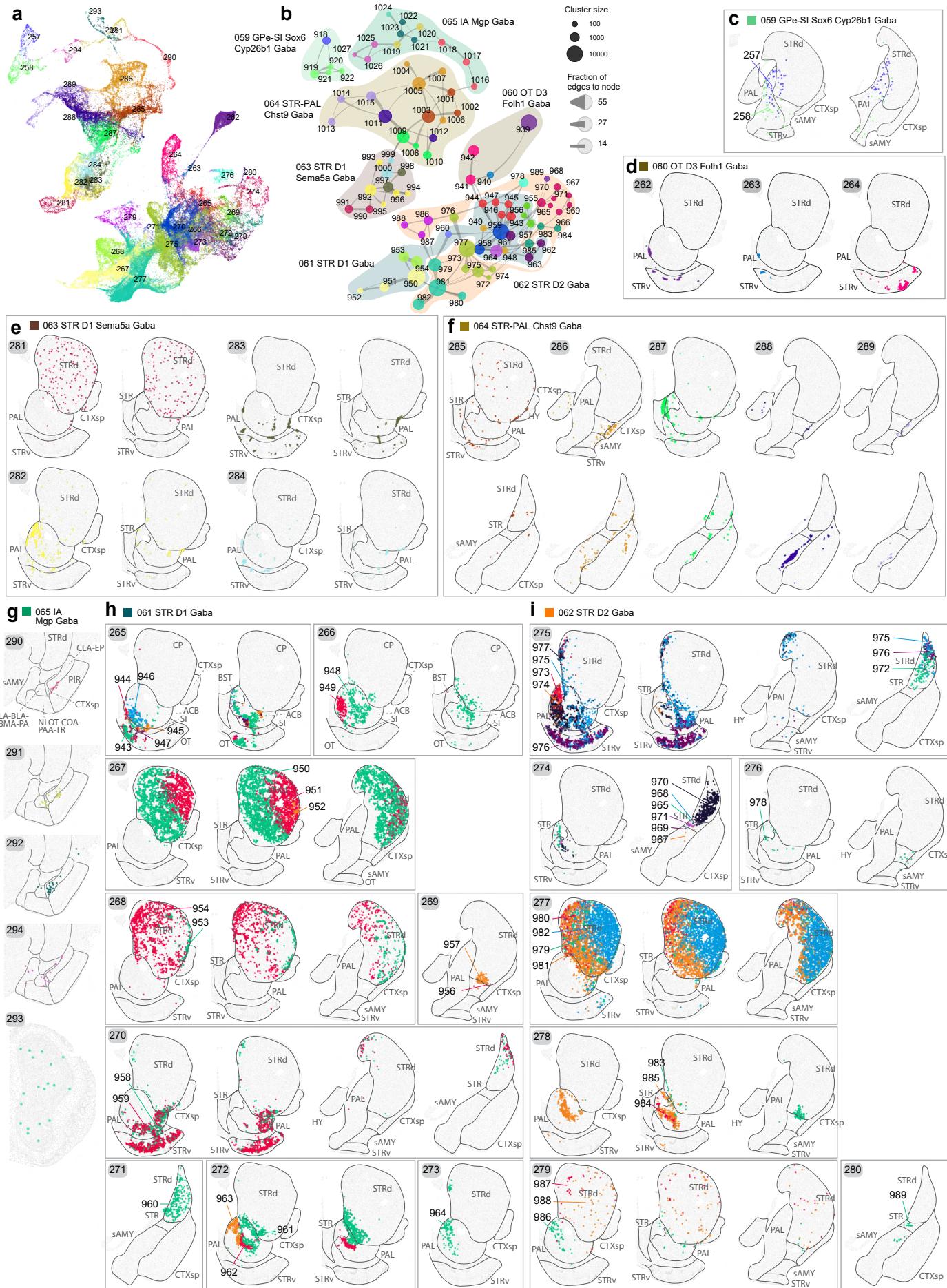

1384

1385 **Code Availability**

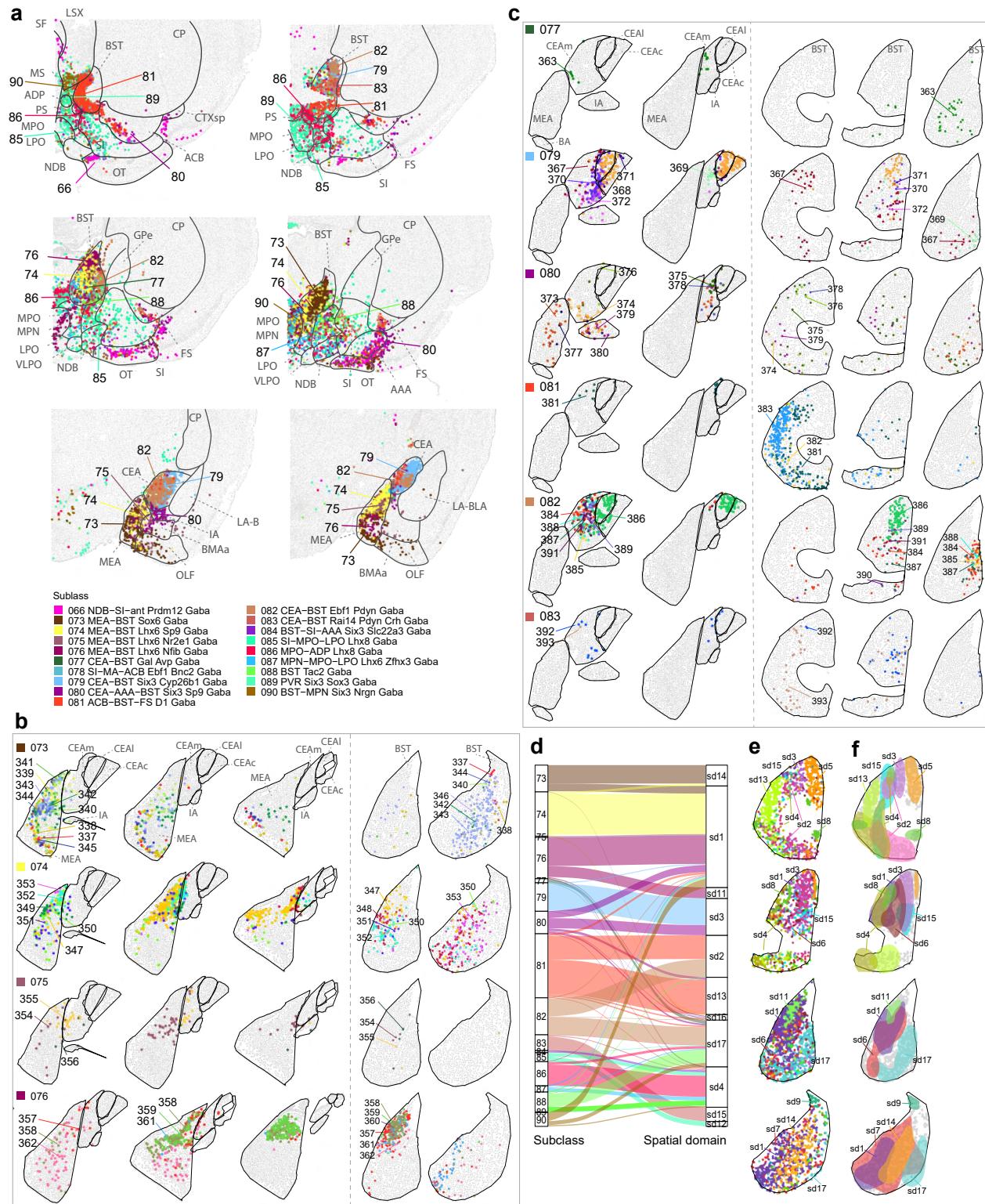
1386


1387 The R package scrattch.bigcat, is available via github
1388 <https://github.com/AllenInstitute/scrattch.bigcat>. Notebooks with examples of data analysis code
1389 used in this manuscript are available via github <https://alleninstitute.github.io/scrattch.example/>.

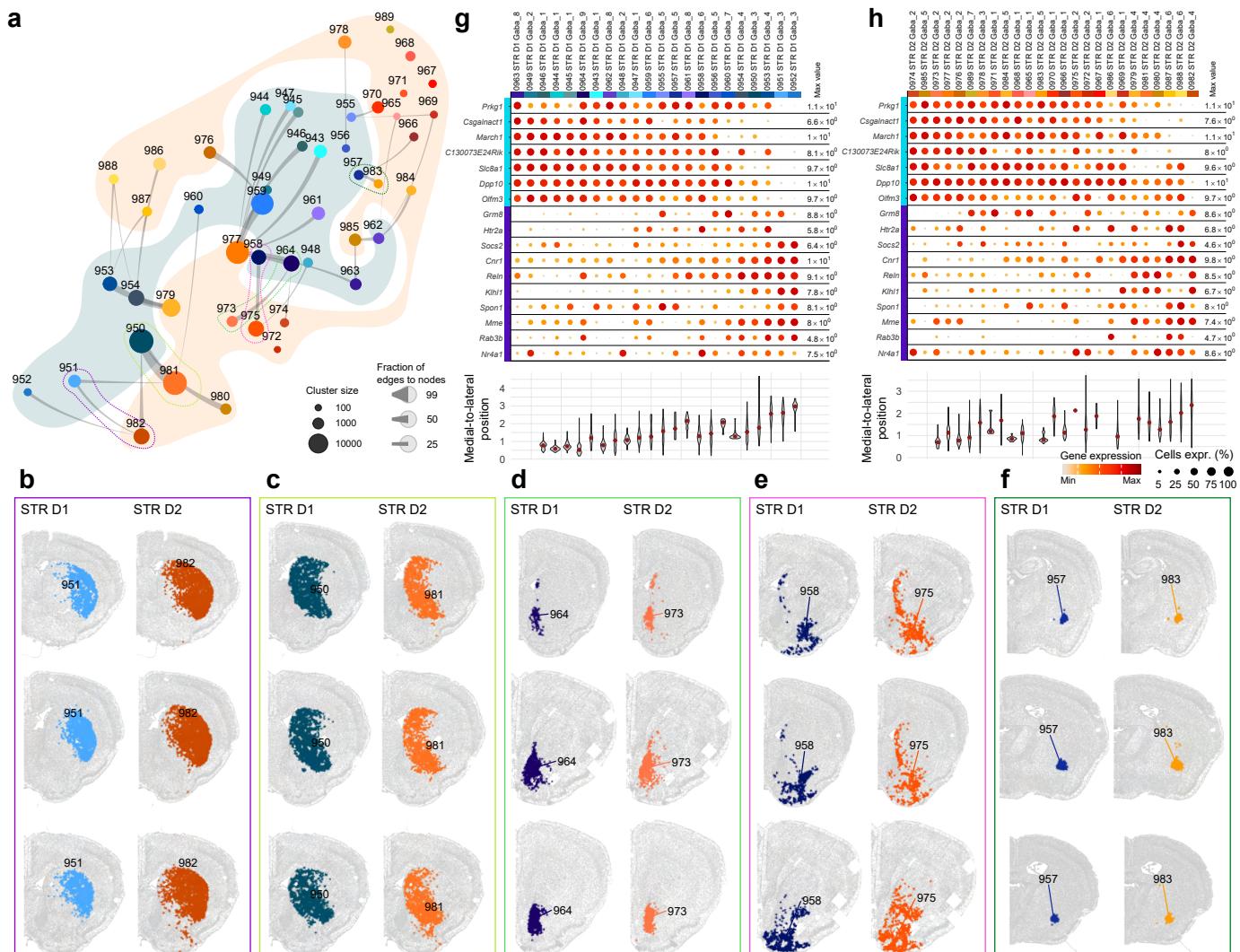
van Velthoven Figure 1


Figure 1. Transcriptomic taxonomy of telencephalic GABAergic neuronal types in the mouse. **(a)** The transcriptomic taxonomy of 285 supertypes organized in a dendrogram (10xv2: n = 271,656 cells; 10xv3 n = 343,761 cells). From top down, the bar plots represent subclass, major neurotransmitter (NT) type, region distribution of profiled cells, number of RNA-seq cells, and number of MERFISH cells per supertype. **(b-d)** UMAP representation of all cell types colored by subclass **(b)**, supertype **(c)**, and dissection region **(d)**. **(e)** Constellation plot of the global relatedness between subclasses. Each subclass is represented by a disk, labeled by the subclass ID, and positioned at the subclass centroid in UMAP coordinates shown in panel b. The size of the disk corresponds to the number of cells within each subclass, and the edge weights correspond to the fraction of shared neighbors (see **Methods**) between subclasses. **(f)** Constellation plot as in panel e but showing relatedness between supertypes. Each supertype is colored by the subclass it belongs to. Bubbles drawn around supertypes outline the major classes. **(g)** Representative MERFISH sections of adult mouse brain across forebrain structures colored by cell class. Each class is labelled by its ID and shown in the same color in the dendrogram and bubbles in the constellation plot.

van Velthoven Figure 2


Figure 2. MGE-derived GABAergic cell types in the cerebral cortex and cerebral nuclei. (a-c) UMAP representation of all MGE clusters colored by subclass (a), supertype (b), or broad brain region (c). **(d)** Constellation plot of MGE clusters using UMAP coordinates shown in b. Nodes are colored by supertype and grouped in bubbles by subclass. Lines around the bubbles denote the class the nodes belong to. **(e)** Dendrogram of MGE supertypes followed by bar graphs showing major neurotransmitter type, region distribution of profiled cells, dominant region, and number of cells within supertype, followed by dot plot showing marker gene expression in each supertype from the 10xv3 dataset. The dominant region was assigned if more than 70% of cells are from the OLF-HPF-CTXsp regions. For the gene expression dot plot, dot size and color indicate proportion of expressing cells and average expression level in each supertype, respectively. **(f-n)** Representative MERFISH sections showing the location of supertypes in MGE subclasses 50 Lamp5 Lhx6 Gaba (f), 51 Pvalb chandelier Gaba (g), 52 Pvalb Gaba (h), 53 Sst Gaba (i), 54 STR Prox1 Lhx6 Gaba (j), 55 STRv Lhx8 Gaba (k), 56 Sst Chodl Gaba (l), 57 NDB-SI-MA-STRv Lhx8 Gaba (m), 58 PAL-STR Gaba-Chol (n). Cells are colored and labelled by supertype.

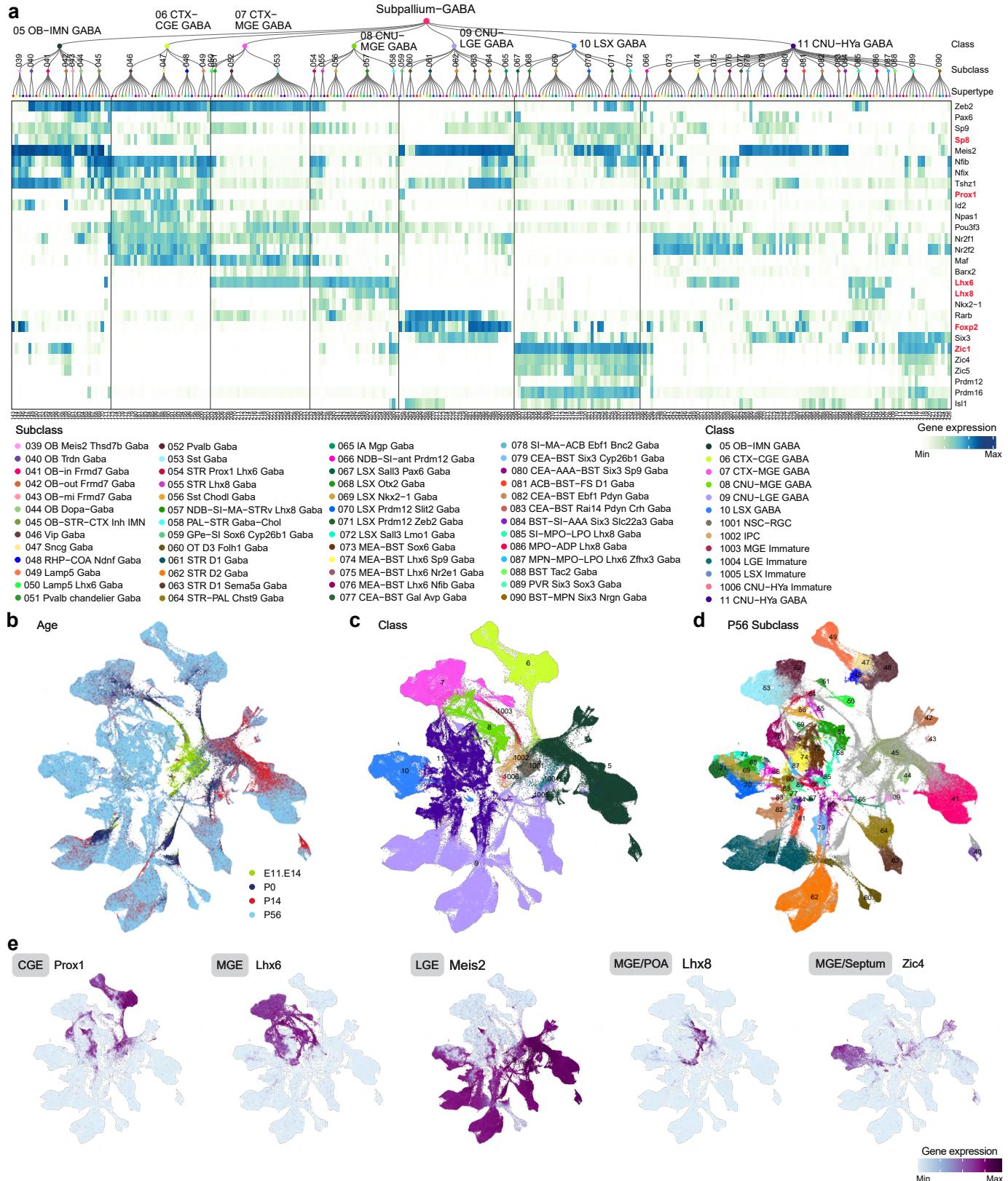
van Velthoven Figure 3


Figure 3. LGE-derived GABAergic cell types of the cerebral nuclei. (a) UMAP representation of all LGE clusters colored by supertype. **(b)** Constellation plot of LGE clusters using UMAP coordinates shown in a. Nodes are colored by supertype and grouped in bubbles by subclass. **(c-g)** Representative MERFISH sections showing the location of LGE subclasses, 58 GPe Sox6 Cyp26b1 Gaba (c), 60 OT D3 Folh1 Gaba (d), 63 STR D1 Sema5a Gaba (e), 64 STR-PAL Chst9 Gaba (f), 65 IA Mgp Gaba (g). Cells are colored and labelled by supertype. **(h-i)** Representative MERFISH sections showing the location of CNU-LGE subclasses, 61 STR D1 Gaba (h) and 62 STR D1 Gaba (i). Each box contains one supertype and cells are labelled and colored by cluster to highlight the diversity.

van Velthoven Fig. 4

Figure 4. Organization of GABAergic neuronal types across striatum-like amygdalar nuclei and bed nuclei of the stria terminalis. (a) Representative MERFISH sections showing the location of subclasses belonging to the CNU-HYa neuronal class. Cells are colored by the subclass they belong to and labelled by its ID. **(b-c)** Representative MERFISH sections showing the locations of cells belonging to the MEA-BST subclasses (b) and CEA-BST subclasses (c). Each row shows one subclass, and cells are colored and labelled by supertype identity. For each subclass the location in both MEA and BST (b) or CEA and BST (c) are shown, indicating the existence of the same cell types in these locations. **(d-f)** Spatial domain clustering within BST neurons using Banksy. The alluvial plot (d) shows the relation between subclasses present in BST and the spatial domains. Representative MERFISH images show the location of the spatial domains, with cells colored by spatial domain identity (e) and the area covered by each domain (f).

van Velthoven Figure 5


Figure 5. Gene signatures defining shared gradients in D1 and D2 medium spiny neurons.

(a) Constellation plot of clusters showing the pairs of most similar clusters between 61 STR D1 Gaba and 62 STR D2 Gaba subclasses. Clusters are represented by a disk colored by cluster, labeled by cluster ID, and disks with a colored border are highlighted exemplars in panels b to f.

(b-f) Representative MERFISH sections showing five examples of STR D1 and STR D2 pairs from panel a, and their spatial distribution patterns. Sections are colored by cluster identity.

(g-h) Gene expression dot plots of two major gene modules driving the spatial gradient among STR D1 (g) and STR D2 (h) clusters. Dot size and color indicate proportion of expressing cells and average expression level in each cluster, respectively. Underneath the dot plot a violin plot of the medial-lateral (x) coordinate for each MERFISH cell per cluster is shown.

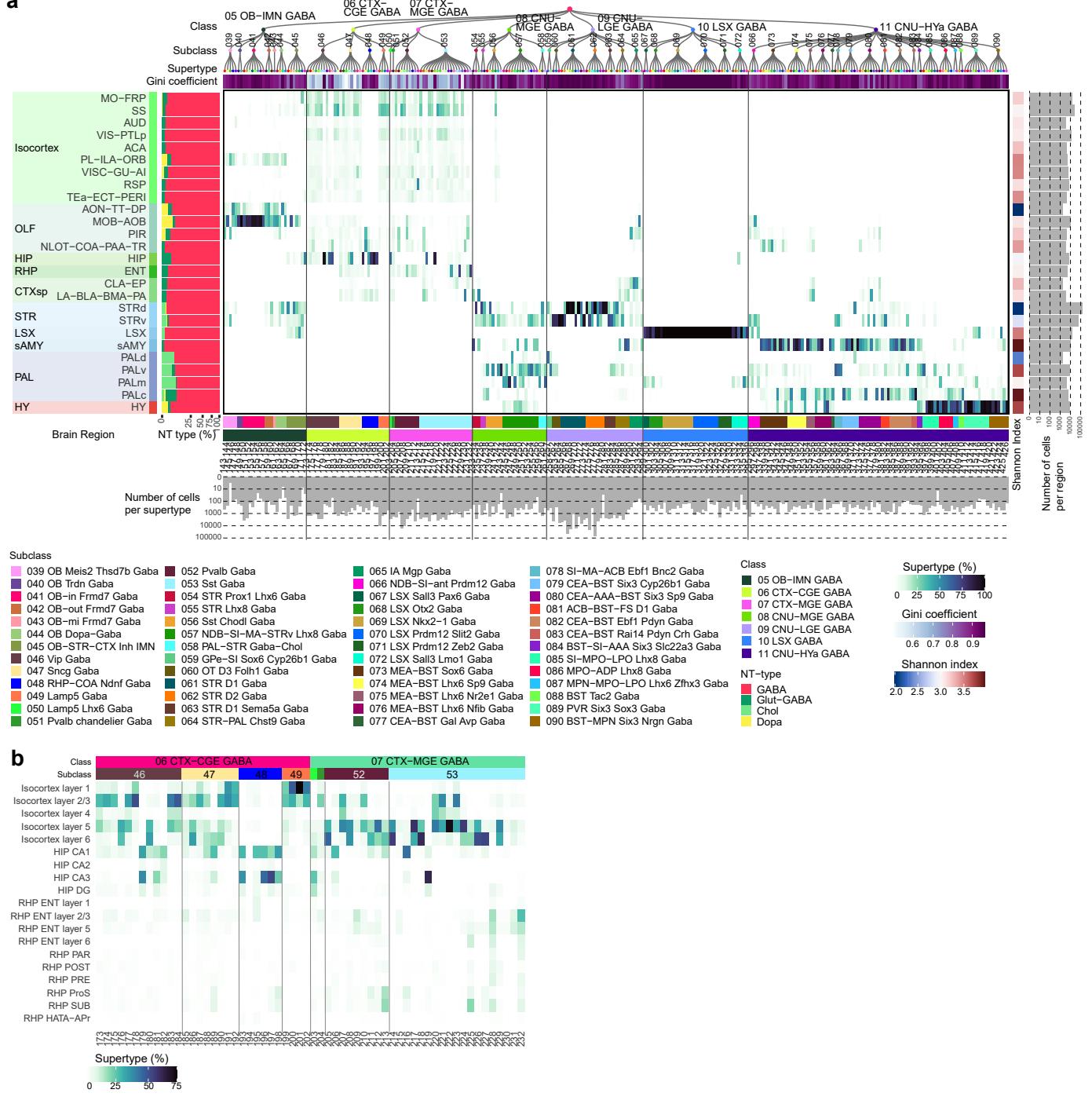
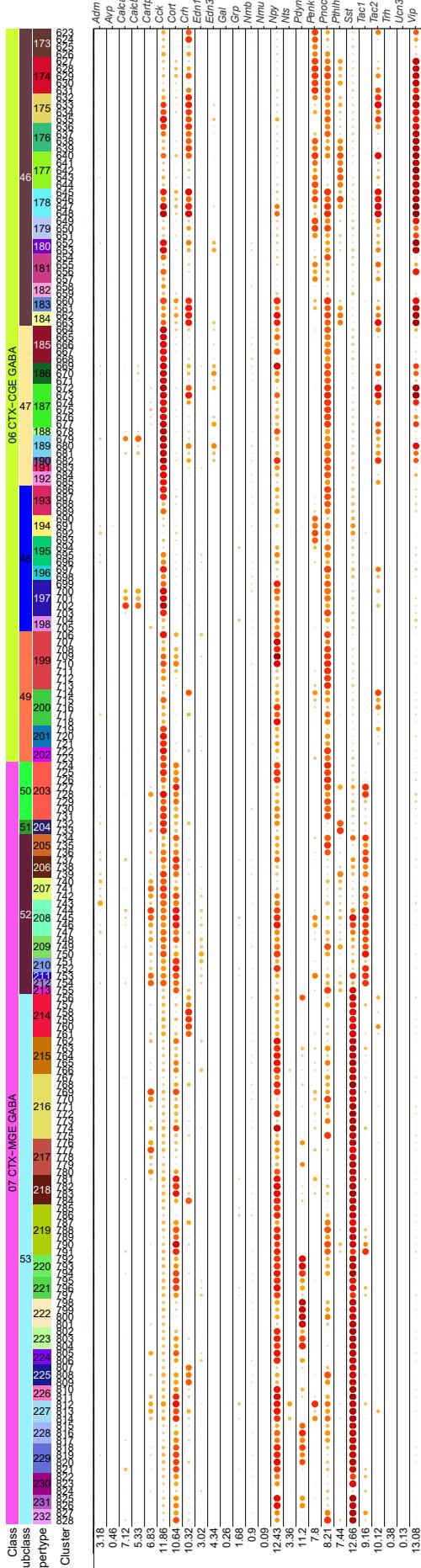
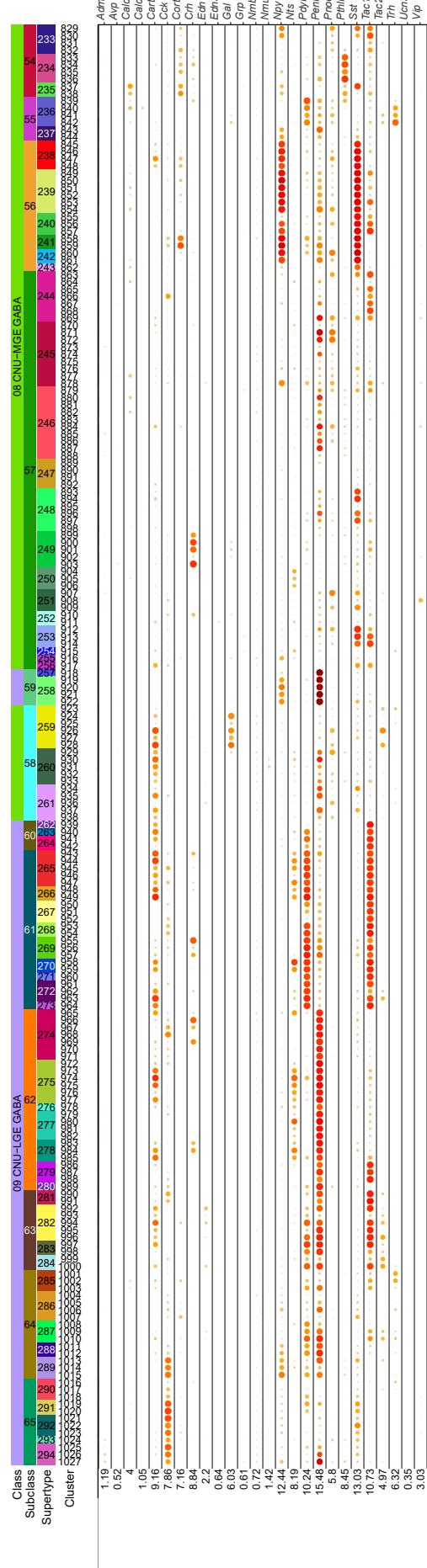
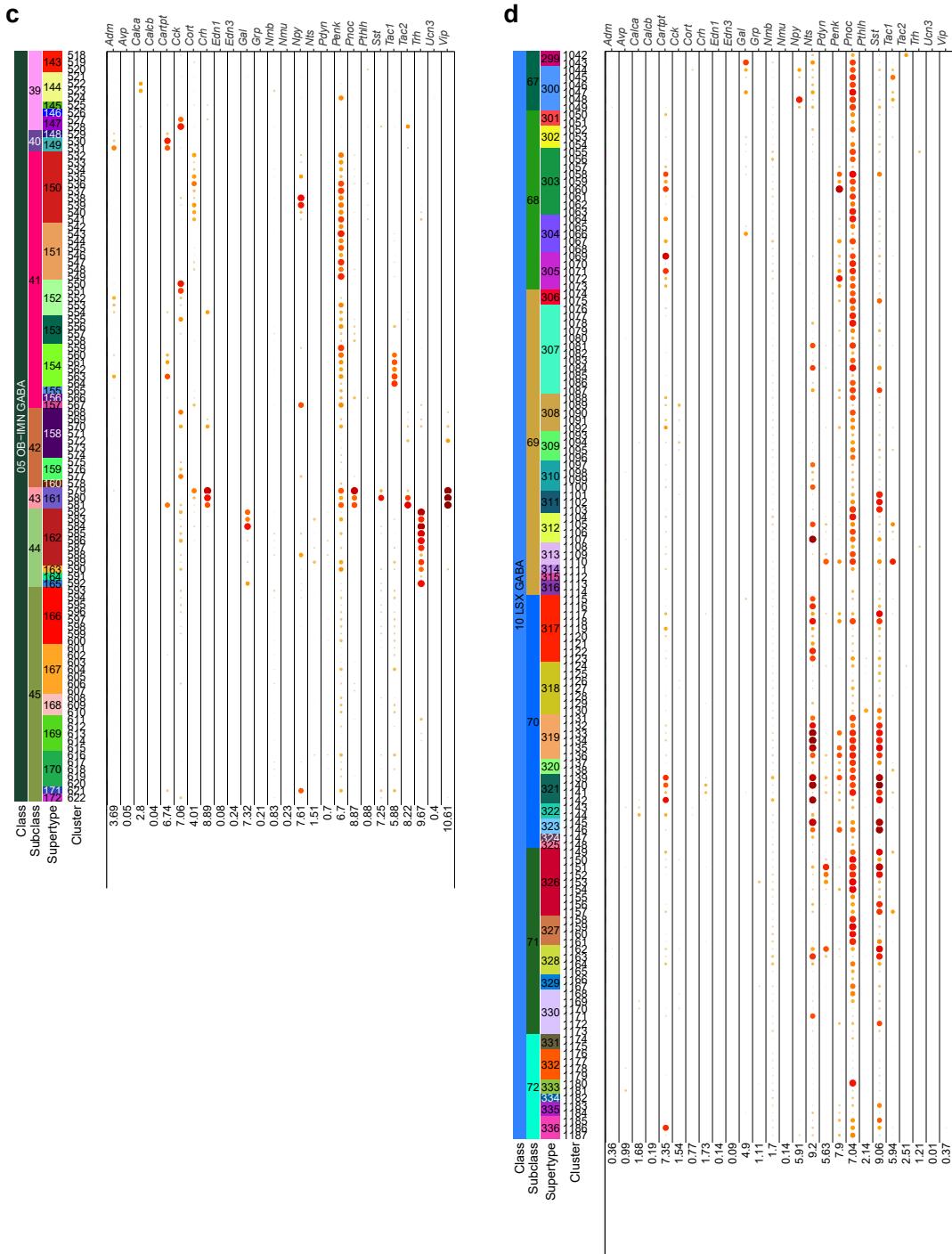

van Velthoven Figure 6

Figure 6. Transcription factor expression in telencephalic GABAergic neurons. (a) The supertype dendrogram from Figure 1, followed by a heatmap showing the expression of key transcription factors in each supertype in the taxonomy tree. (b-e) UMAP representation of all cell types across the developmental time course, E11.5-E14.5, P0, P14, and P56, colored by age (b), class (c), P56 subclass (d), and major developmental lineage gene markers (e).

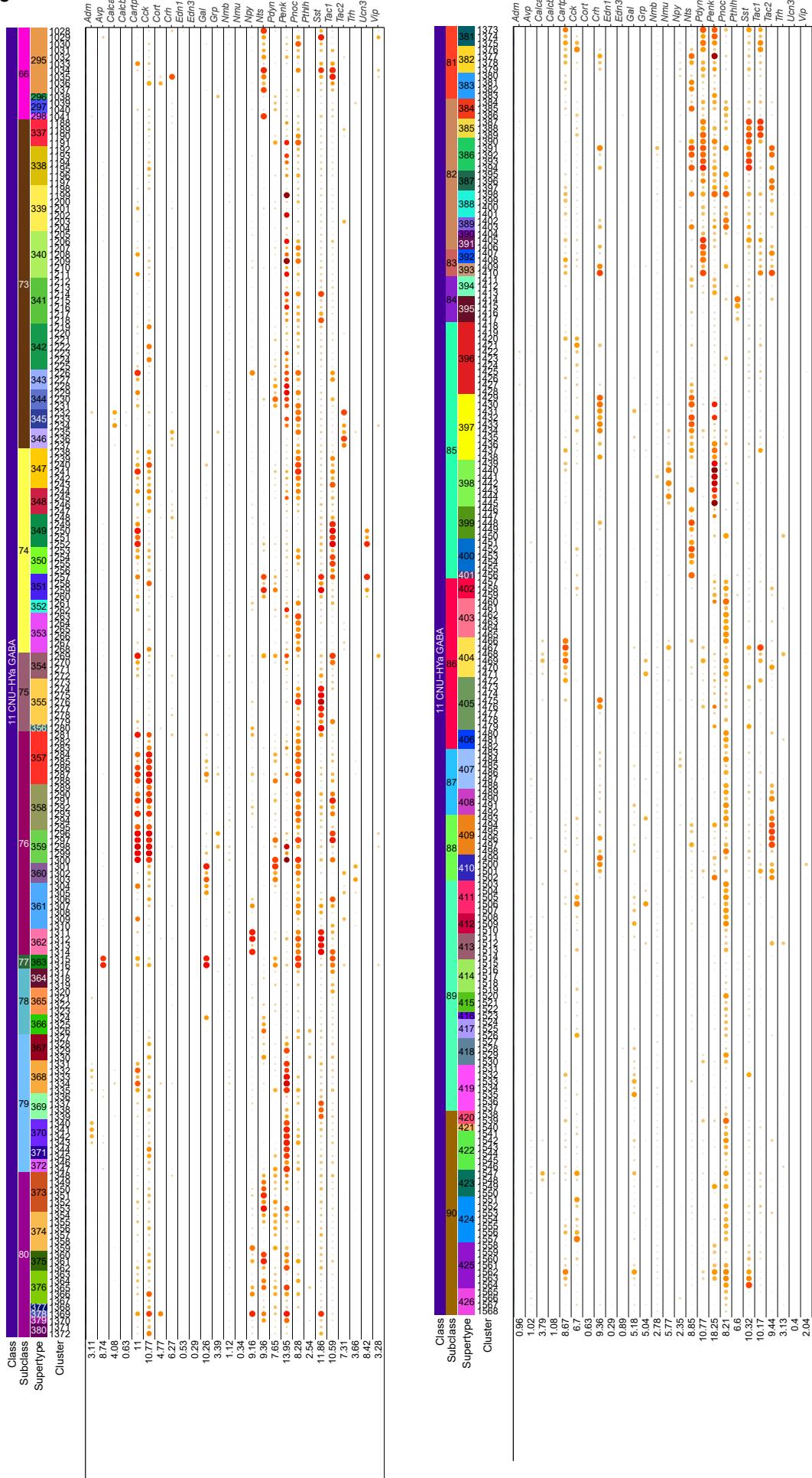
van Velthoven Extended Data Figure 1


a

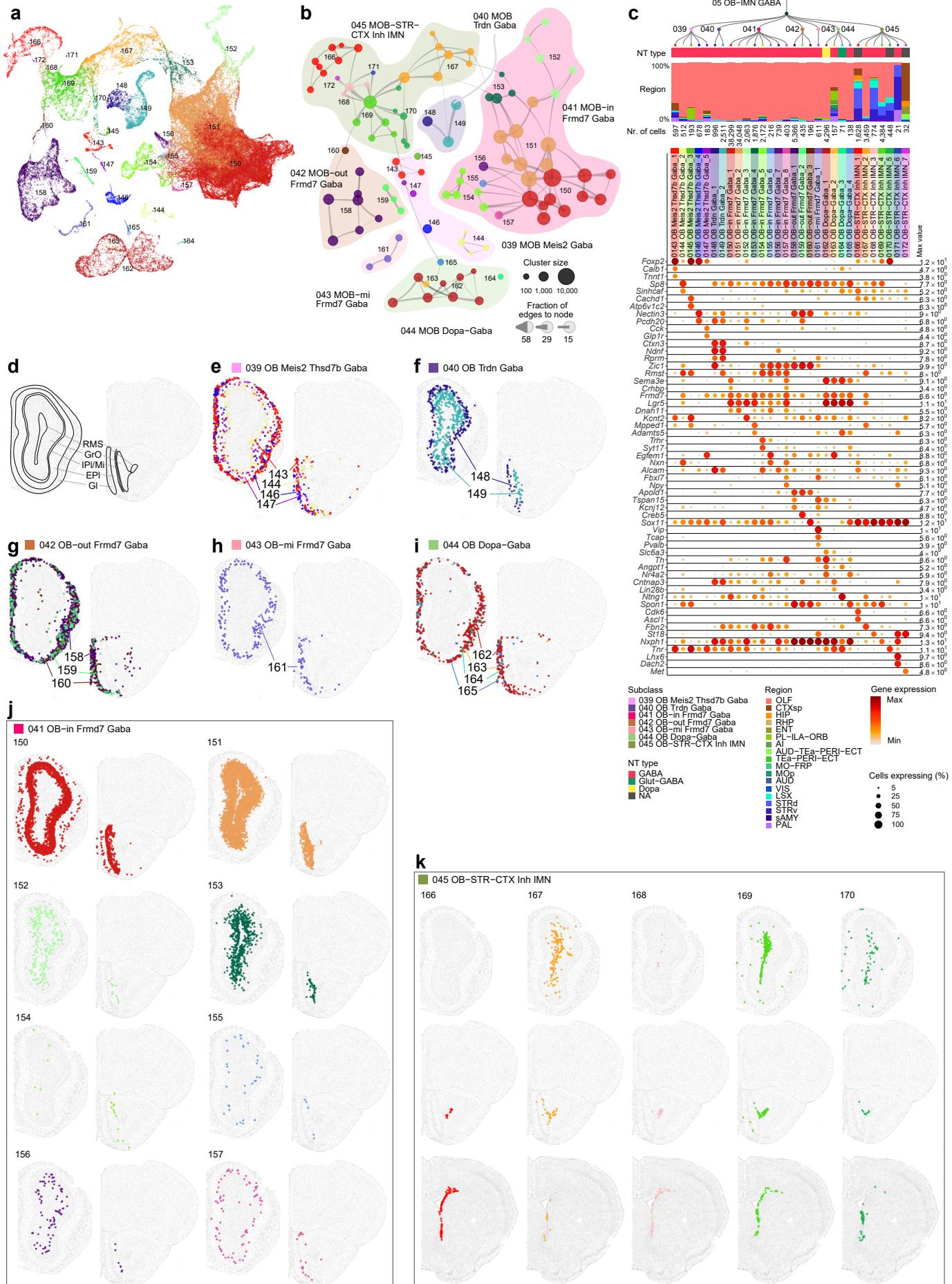

Extended Data Figure 1. GABAergic neuronal type composition in different regions of the telencephalon. **(a)** Heatmap showing the proportion of cells in each broad region of the telencephalon per GABAergic supertype. **(b)** Heatmap showing the proportion of cells in each supertype from 06 CTX-CGE GABA and 07 CTX-MGE GABA classes in each cortical layer and substructure of the hippocampal formation.


van Velthoven Extended Data Fig. 2

a

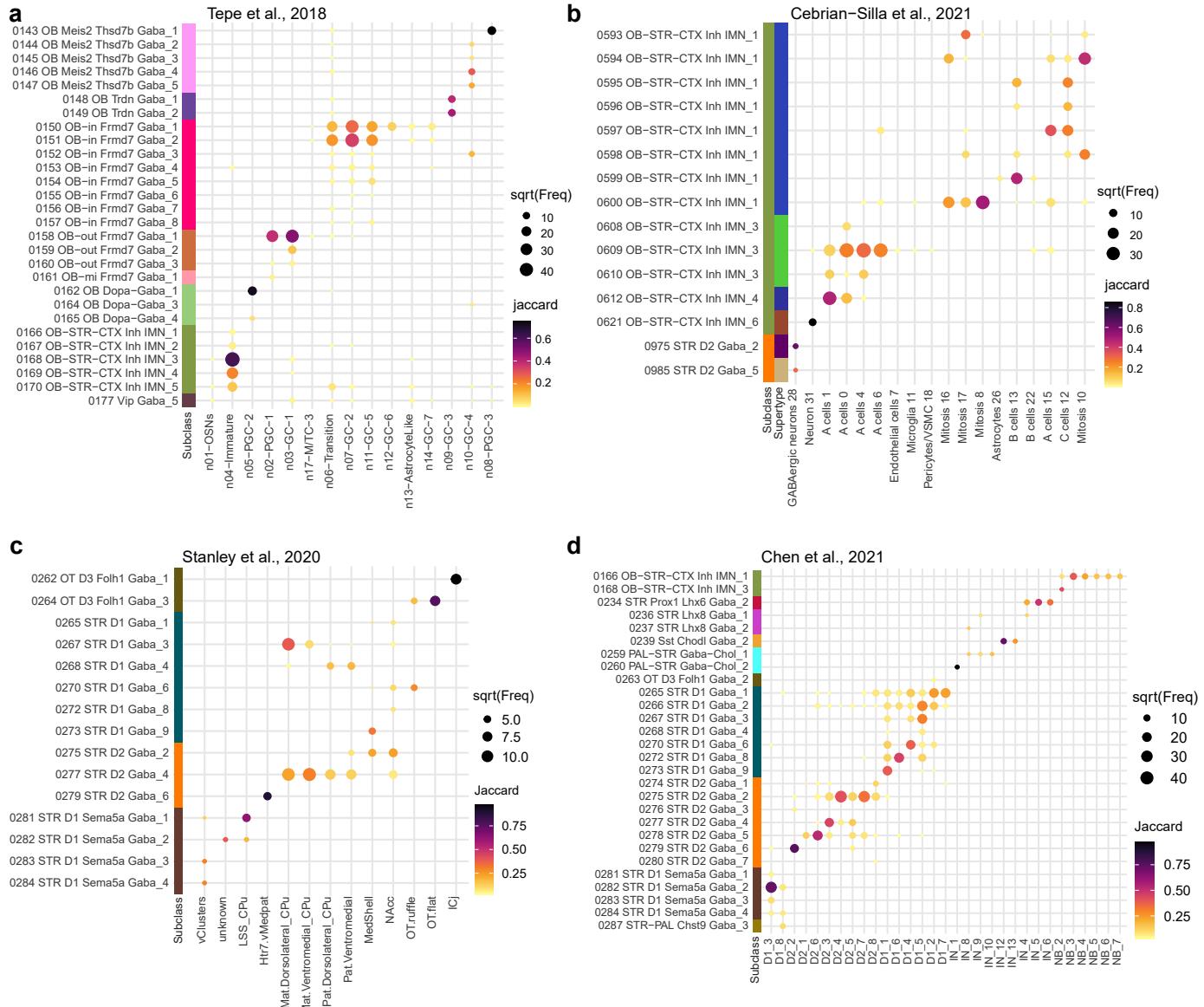


b



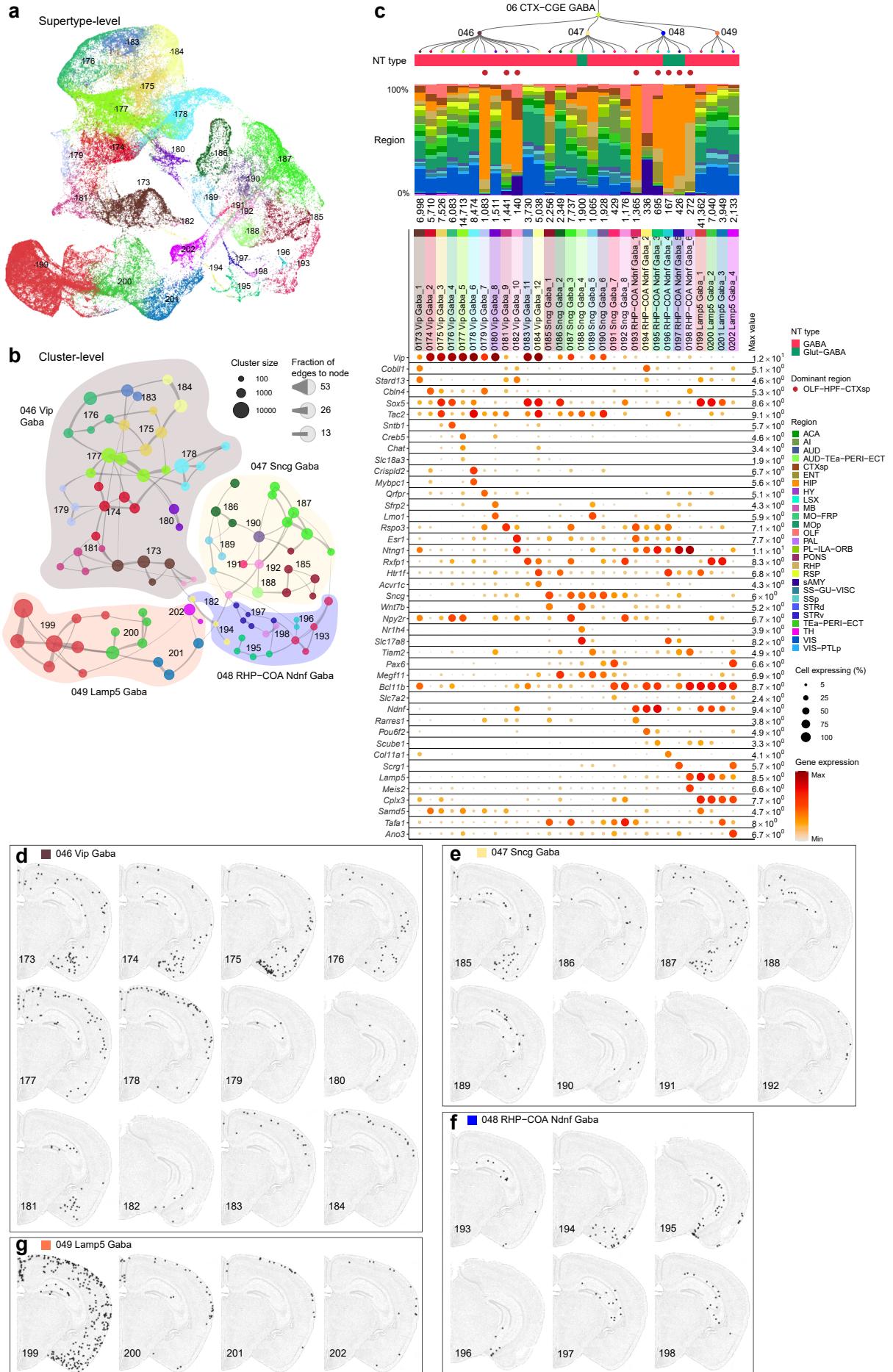
e

Extended Data Figure 2. Neuropeptide gene expression in telencephalic GABAergic neuronal types. (a-e) Dot plot showing gene expression level of differentially expressed neuropeptides in each cluster across classes 6 CTX-CGE GABA and 7 CTX-MGE GABA (a), 8 CNU-MGE GABA and 9 CNU-LGE GABA (b), 5 OB-IMN GABA (c), 10 LSX GABA (d), and 11 CNU-HYa GABA (e). Dot size and color indicate proportion of expressing cells and average expression level in each cluster, respectively.

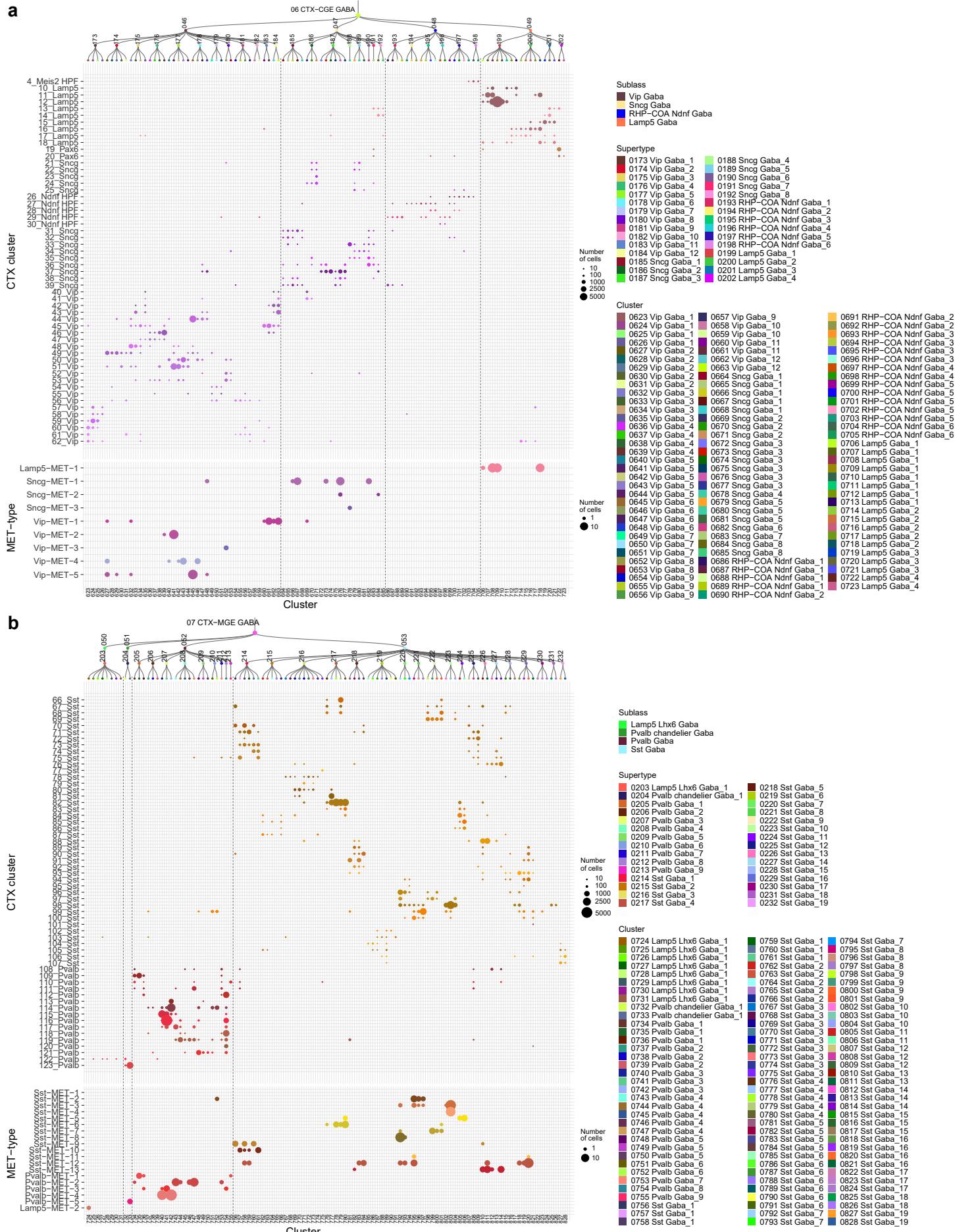

van Velthoven Extended Data Figure 3

Extended Data Figure 3. GABAergic and immature neuronal cell types of olfactory bulbs.

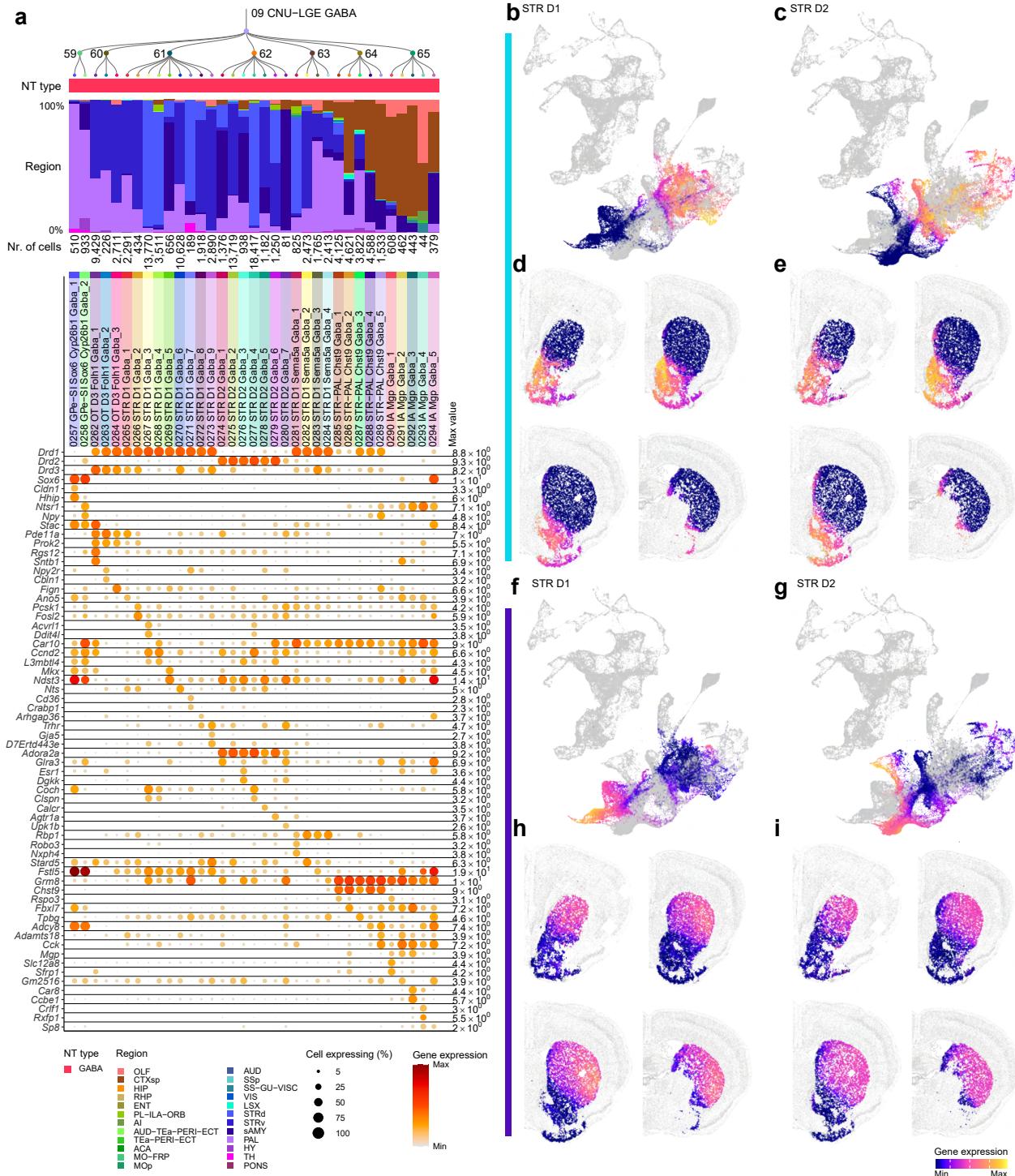
UMAP representation of GABAergic and immature neuronal types in olfactory bulbs colored by supertype **(a)**. **(b)** Constellation plot of OB-IMN GABA clusters using UMAP coordinates shown in b. Nodes are colored by supertype and grouped in bubbles by subclass. **(c)** Dendrogram of OB-IMN GABA supertypes followed by bar graphs showing major neurotransmitter type and region distribution of profiled cells, followed by dot plot showing marker gene expression in each supertype from the 10xv3 dataset. Dot size and color indicate proportion of expressing cells and average expression level in each supertype, respectively. **(d)** Schematic drawing of anatomical structure in MOB (left) and AOB (right). Abbreviations: RMS, rostral migratory stream; GrO, granular layer; IP1, internal plexiform layer; Mi, mitral layer; EP1, external plexiform layer; Gl, glomerular layer. **(e-k)** Representative MERFISH sections showing the location of OB subclasses 39 MOB Meis2 Gaba (e), 40 OB Trdn Gaba (f), 42 OB-out Frmd7 Gaba (g), 43 OB-mi Frmd7 Gaba (h), 44 OB Dopa-Gaba (i), 41OB-in Frmd7 Gaba (j), and 45 OB-STR-CTX Inh IMN (k). Cells are colored and labelled by supertype.


van Velthoven Extended Data Figure 4

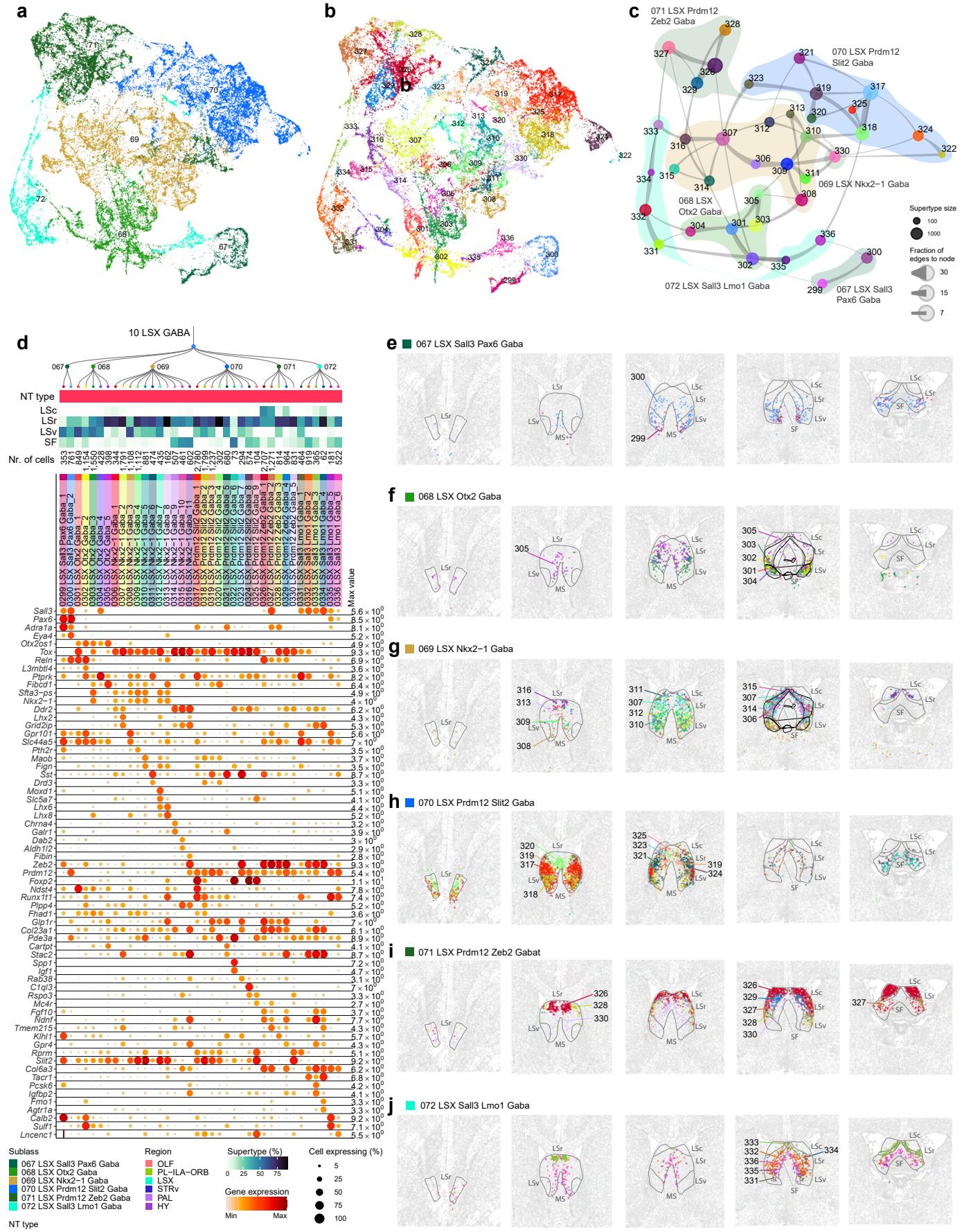
Extended Data Figure 4. Correspondence between the current transcriptomic taxonomy of OB-IMN GABA and CNU-LGE GABA classes and previously published ones.


Correspondence was determined by mapping cells from previously published datasets to the current taxonomy as described before²⁶. **(a,b)** Mapping of Tepe et al., 2018²¹ (a) and Cebrian-Silla et al., 2021¹⁸ (b) to the OB-IMN GABA class. **(c,d)** Mapping of Stanley et al., 2020³⁴ (c) and Chen et al., 2021³³ (d) to the CNU-LGE GABA class.

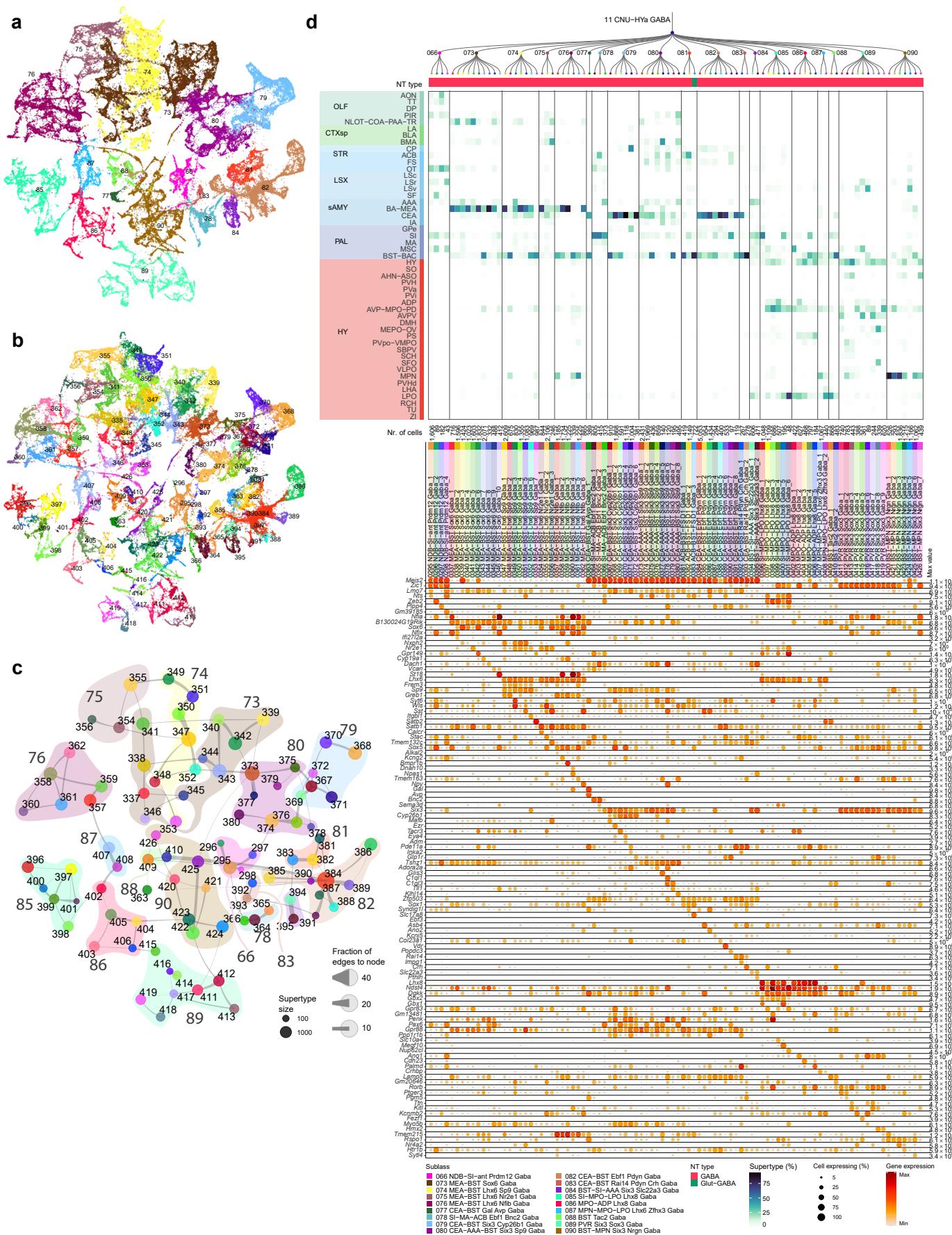
van Velthoven Extended Data Figure 5


Extended Data Figure 5. CGE-derived GABAergic neuronal types in the cerebral cortex.

(a) UMAP representation of all CGE clusters colored by supertype. **(b)** Constellation plot of CGE clusters using UMAP coordinates shown in a. Nodes are colored by supertype and grouped in bubbles by subclass. **(c)** Dendrogram of CGE supertypes followed by bar graphs showing major neurotransmitter type, region distribution of profiled cells, dominant region, and number of cells within supertype, followed by dot plot showing marker gene expression in each supertype from the 10xv3 dataset. The dominant region was assigned if more than 70% of cells are from the assigned region. For the gene expression dot plot, dot size and color indicate proportion of expressing cells and average expression level in each supertype, respectively. **(d-g)** Representative MERFISH sections showing the location of supertypes in CGE subclasses 46 Vip Gaba (d), 47 Sncg Gaba (e), 48 RHP-COA Ndnf Gaba (f), and 49 Lamp5 Gaba (g). Cells are colored and labelled by supertype.


Extended Data Figure 6. Correspondence of CGE and MGE GABAergic neuronal types with previously published cell-type taxonomies. (a-b) CGE (a) and MGE (b) GABAergic cell types identified in this study are compared to cell types in CTX-HPF study²⁶ and VISp Patch-seq study²⁷. Size of the dots corresponds to the number of overlapping cells in corresponding taxonomies. Columns are separated by supertypes, and rows are separated manually based on subclass in corresponding dataset.

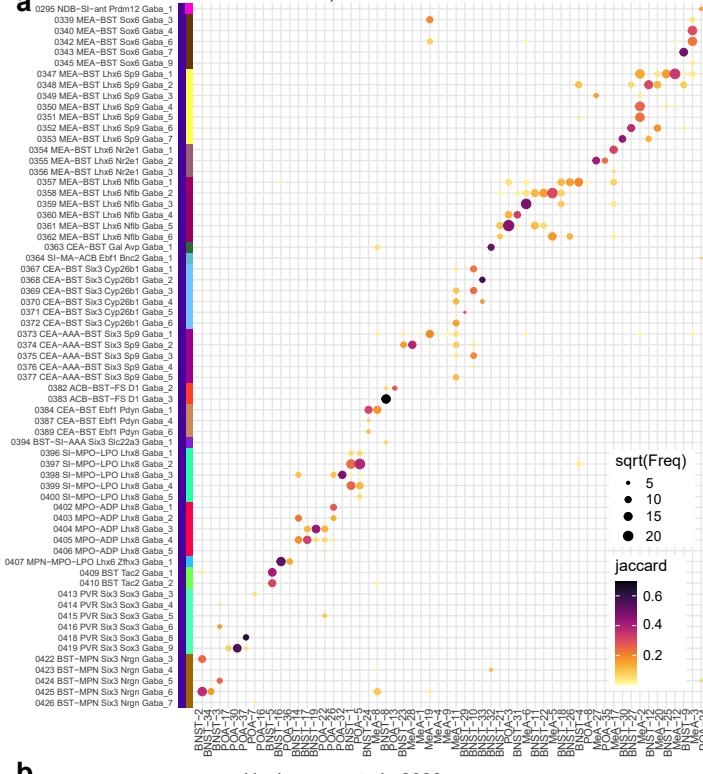
van Velthoven Extended Data Fig. 7


Extended Data Figure 7. LGE-derived GABAergic cell types of the cerebral nuclei. (a) Dendrogram of CNU-LGE supertypes followed by bar graphs showing major neurotransmitter type and region distribution of profiled cells, followed by dot plot showing marker gene expression in each supertype from the 10xv3 dataset. Dot size and color indicate proportion of expressing cells and average expression level in each supertype, respectively. **(b-i)** Based on the gene modules (blue and purple) identified in **Figure 5g-h**, a cumulative gene score was calculated using UCell. UMAPs showing CNU-LGE GABAergic neurons (b,c,f,g), and representative MERFISH sections (d,e,h,i) colored by blue gene module score for STR D1 (b,d) and STR D2 (c,e) types or colored by purple gene module score for STR D1 (f,h) and STR D2 (g,i) types.

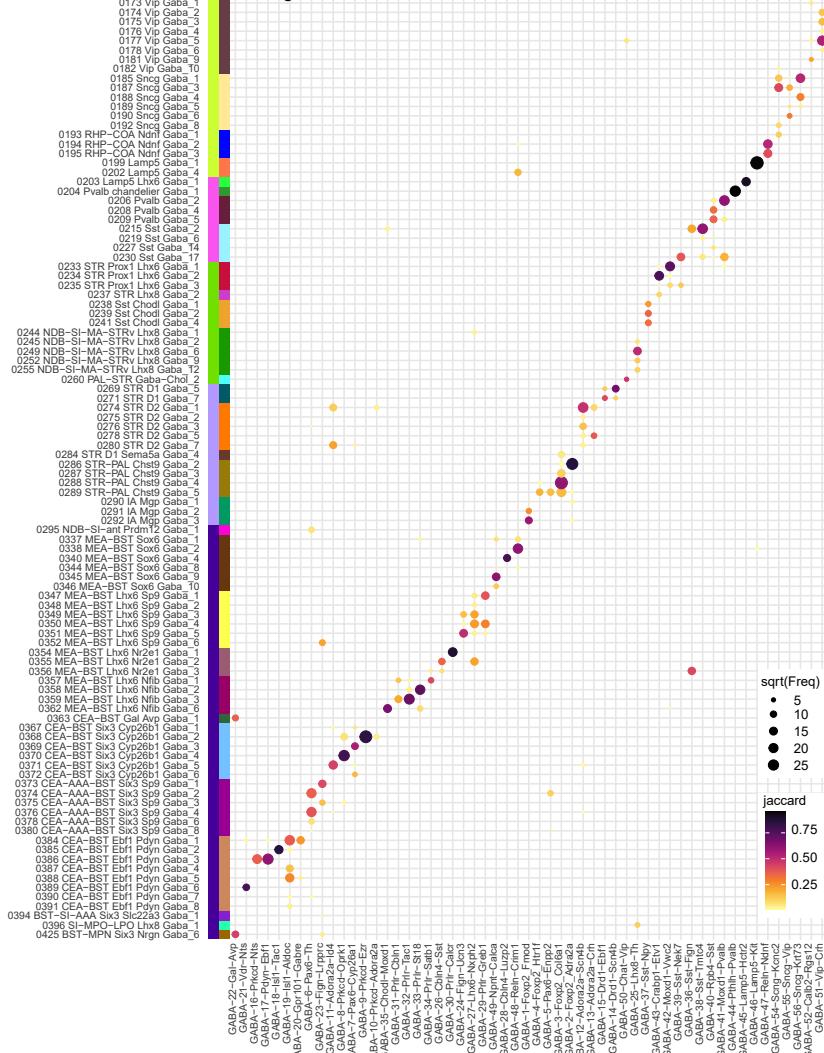
van Velthoven Extended Data Figure 8

Extended Data Figure 8. GABAergic cell types of the lateral septum. (a-b) UMAP representation of all LSX clusters colored by subclass **(a)** or supertype **(b)**. **(c)** Constellation plot of LSX clusters using UMAP coordinates shown in b. Nodes are colored by supertype and grouped in bubbles by subclass. **(d)** Dendrogram of LSX supertypes followed by tiles showing major neurotransmitter type, followed by a heatmap showing the region distribution of profiled cells, then followed by dot plot showing marker gene expression in each supertype from the 10xv3 dataset. Dot size and color indicate proportion of expressing cells and average expression level in each supertype, respectively. **(e-j)** Representative MERFISH sections showing the location of the LSX subclasses 67 LSX Sall3 Pax6 Gaba (e), 68 LSX Otx2 Gaba (f), 69 LSX Nkx2-1 Gaba (g), 70 LSX Prdm12 ve Gaba (h), 71 LSX Prdm12 do Gaba (i), and 72 LSX Sall3 Lmo1 Gaba (j).

Extended Data Fig. 9

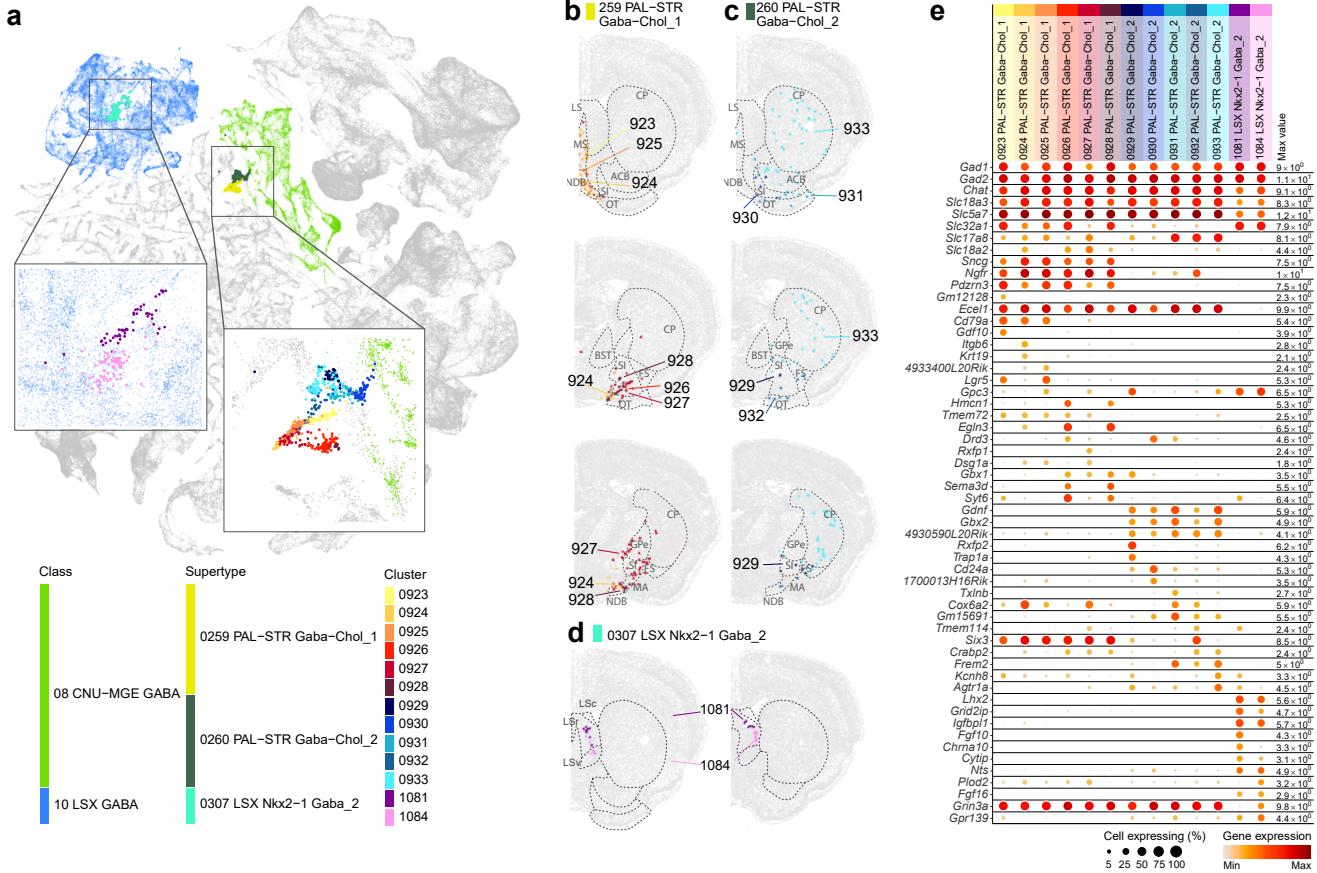


Extended Data Figure 9. GABAergic cell types of the CNU and anterior hypothalamus (HYa).

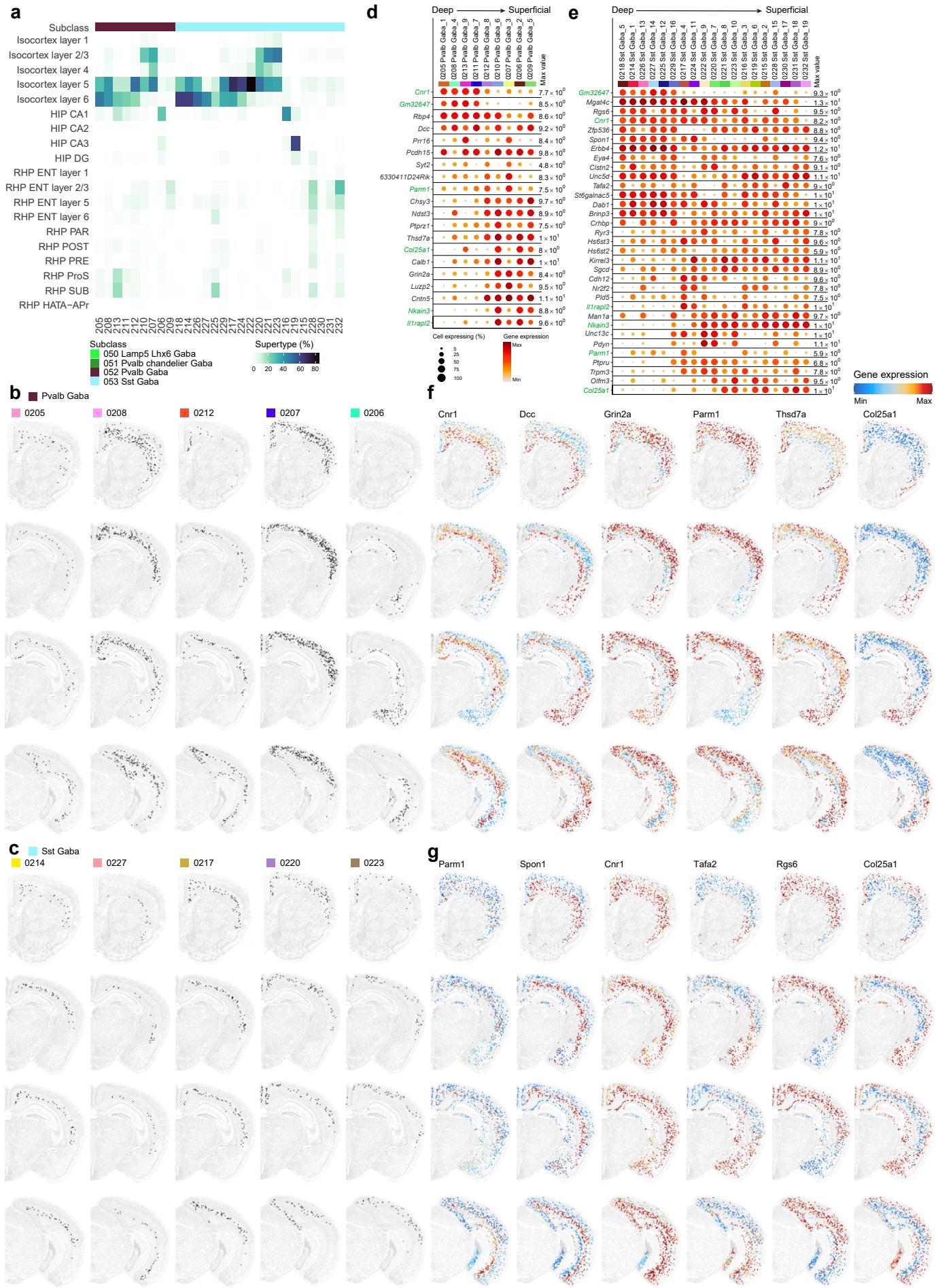

(a-b) UMAP representation of all CNU-HYa clusters colored by subclass (a) or supertype (b). **(c)** Constellation plot of CNU-HYa supertypes using UMAP coordinates shown in b. Nodes are colored by supertype and grouped in bubbles by subclass. **(d)** Dendrogram of CNU-HYa supertypes followed by tiles showing major neurotransmitter type, followed by a heatmap showing the region distribution of profiled cells, then followed by dot plot showing marker gene expression in each supertype from the 10xv3 dataset. Dot size and color indicate proportion of expressing cells and average expression level in each supertype, respectively.

van Velthoven Extended Data Figure 10

Knoedler et al., 2022

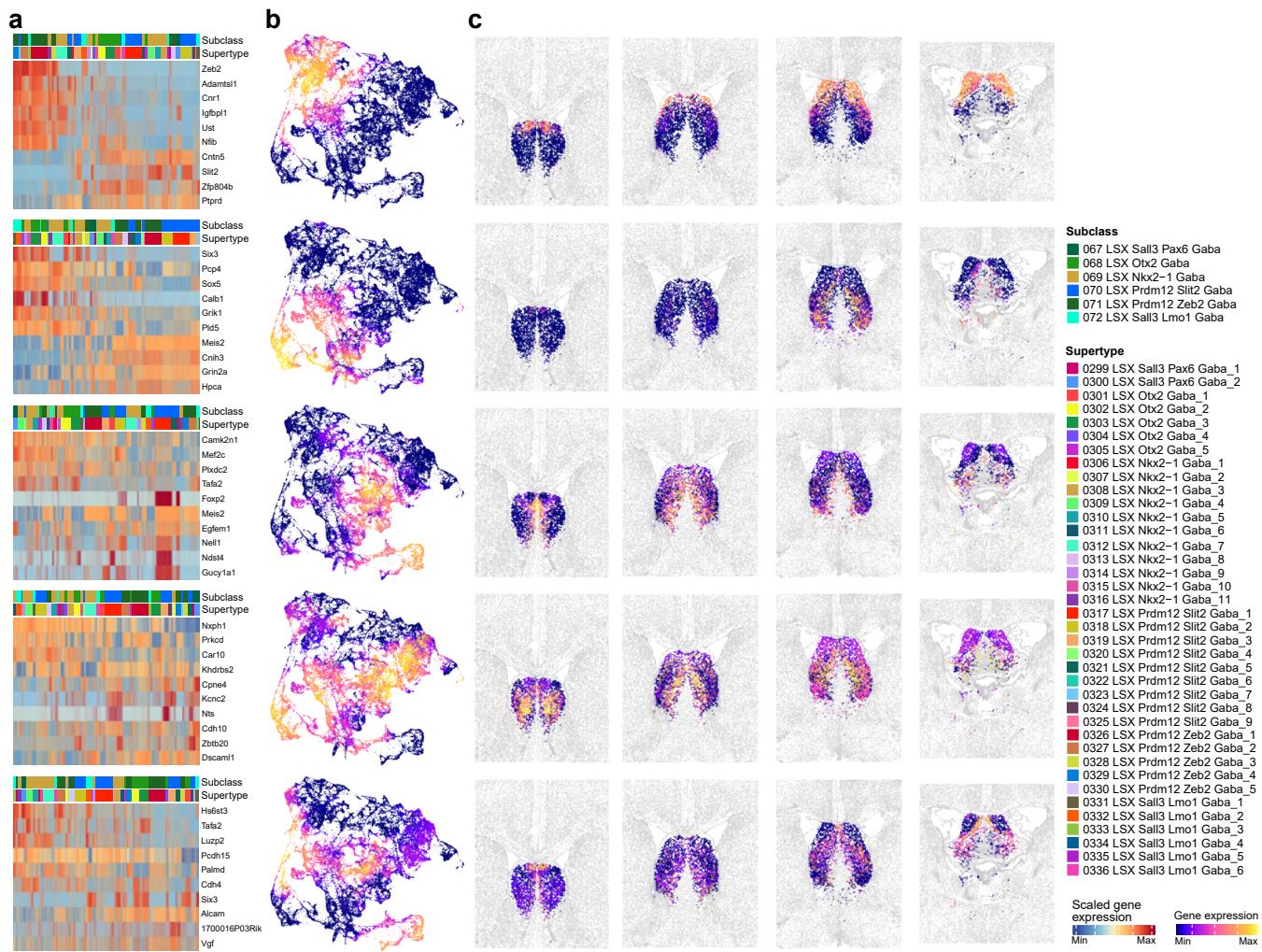


b



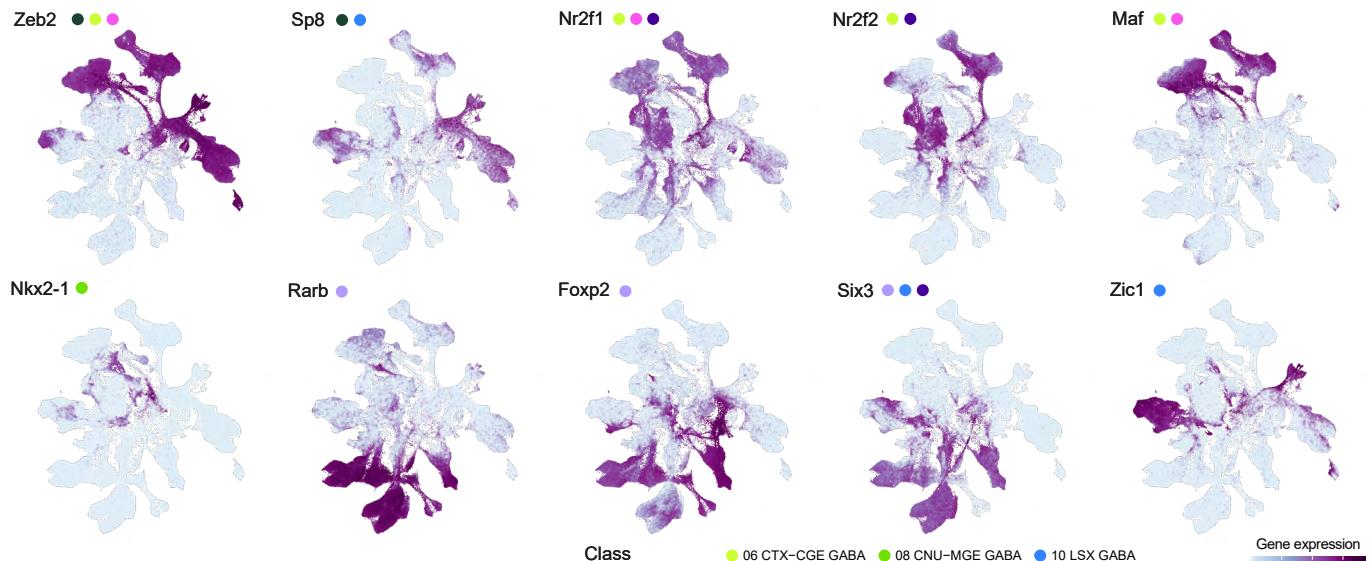
Extended Data Figure 10. Correspondence between the current transcriptomic taxonomy of the CNU-HYa class and previously published ones. Correspondence was determined by mapping cells from previously published datasets to the current taxonomy as described before. **(a-b)** Mapping of Knoedler et al., 2022 (a) and Hochgerner et al., 2023 (b) to supertypes in the CNU-HYa class or the entire telencephalic GABAergic taxonomy.

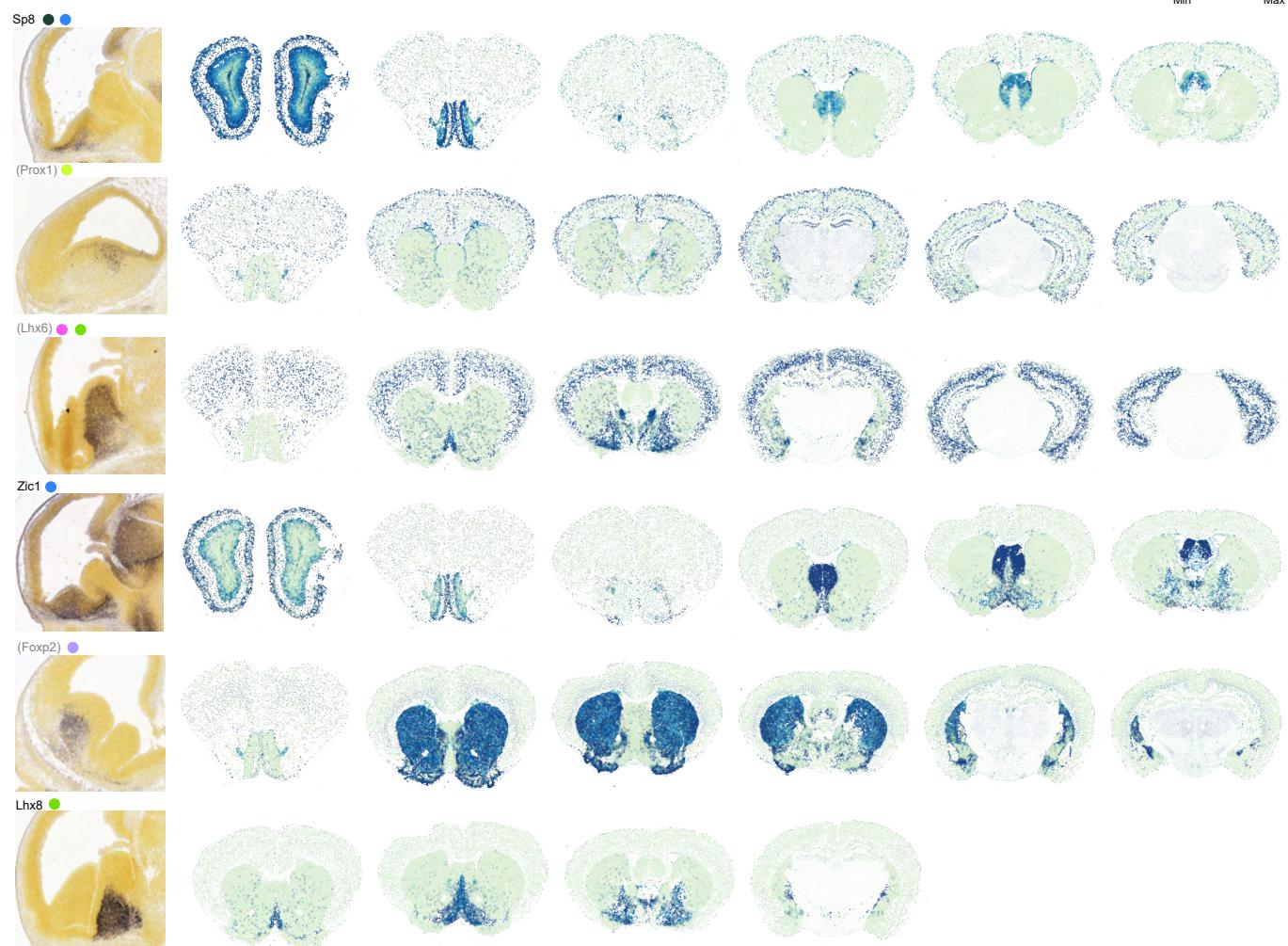
van Velthoven Extended Data Figure 11



van Velthoven Extended Data Fig. 12

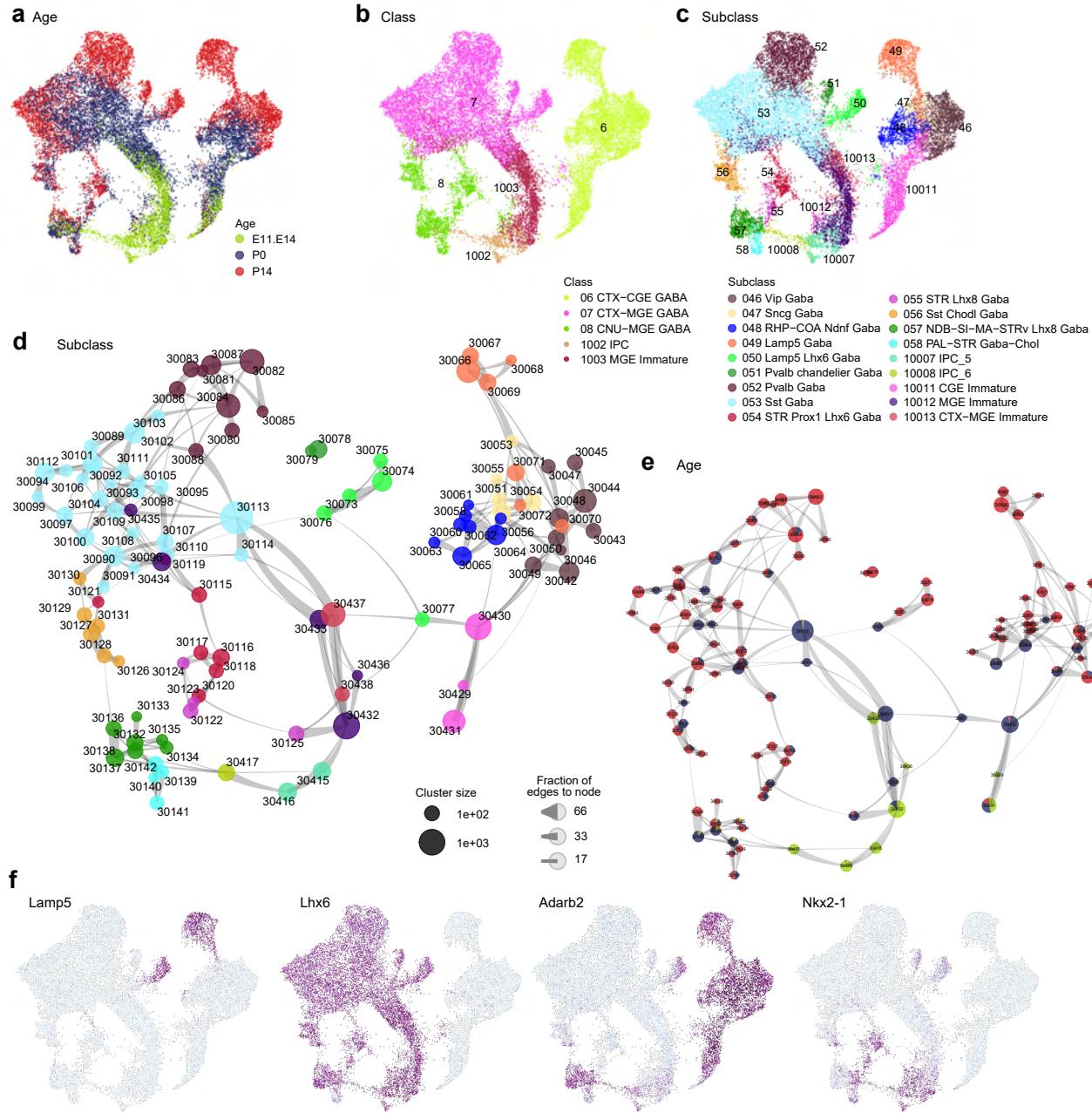
Extended Data Figure 12. Laminar distribution of MGE GABAergic neurons in cortex and hippocampal formation. (a) Heatmap showing the proportion of cells in each layer or region of the isocortex and HPF for supertypes in the MGE-CTX GABA class. (b,c) Representative MERFISH sections showing the distribution of neurons across cortex and hippocampal formation in select supertypes from subclasses 42 Pvalb Gaba (b) and 43 Sst Gaba (c). (d,e) Dot plot showing expression level of genes driving the gene expression gradient along the cortical depth for supertypes (ordered from superficial to deep) within the Pval Gaba (d) and Sst Gaba (e) subclasses. Dot size and color indicate proportion of expressing cells and average expression level in each supertype, respectively. (f, g) Representative examples of genes that drive the laminar gene expression gradient, plotted on the same MERFISH section as in panels b and c, shown for the 42 Pvalb Gaba (f) and 43 Sst Gaba (g) subclasses.


van Velthoven Extended Data Figure 13


Extended Data Figure 13. Spatial gradients in LSX. (a) Heatmap showing expression of genes that drive the spatial gradients among subclasses in LSX. Top five gene modules containing genes that are both up- and down-regulated along the spatial gradients. We calculated the gene signature score for these modules for every cell and colored the scRNA-seq UMAP representation (b) and representative MERFISH sections (c) by gene score.

van Velthoven Extended Data Figure 14

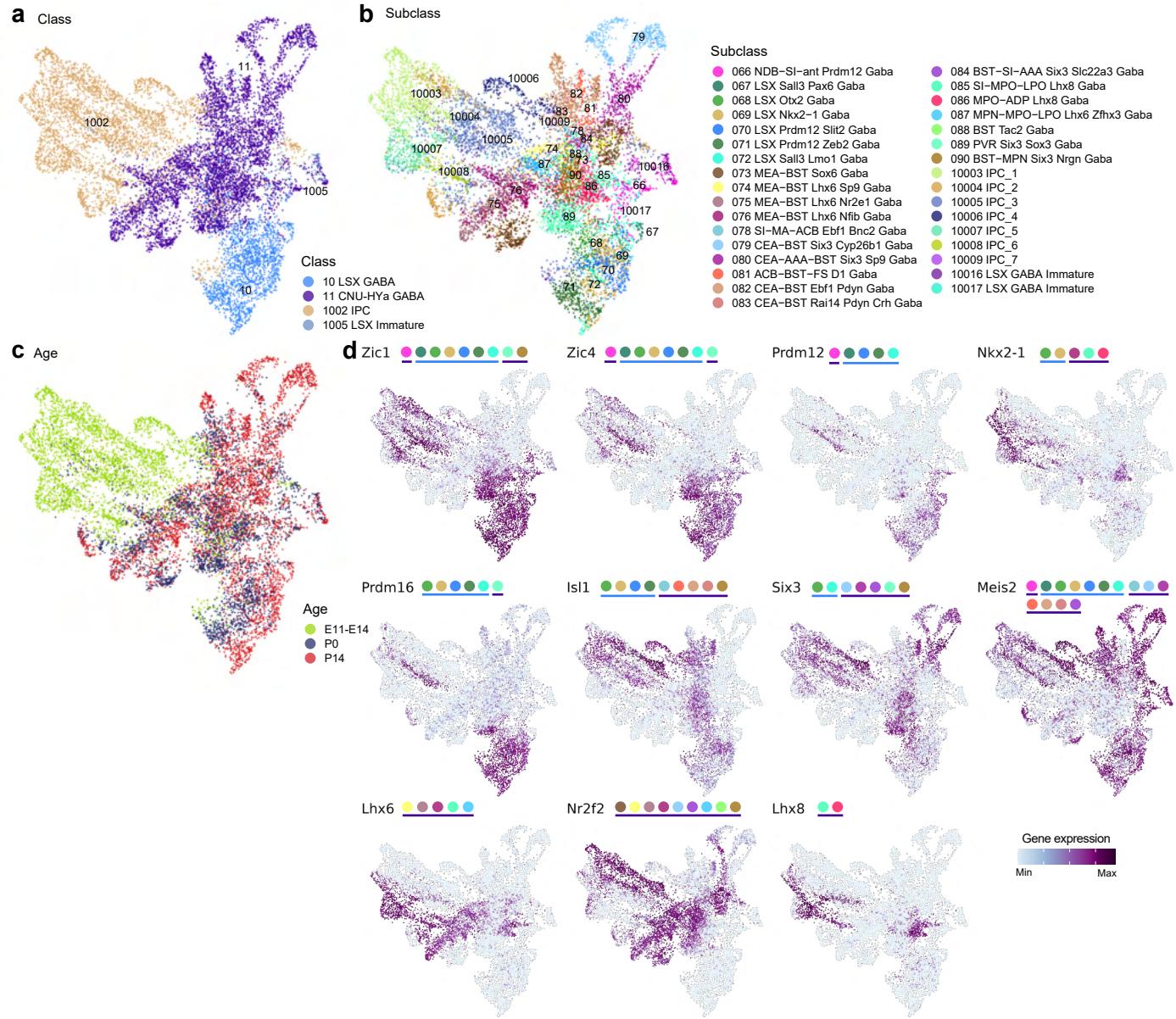
a


b

Extended Data Figure 14. Transcription factor expression marking developmental lineages.

(a) UMAP representation of all cells across E11-E14, P0, P14 and P56 time points colored by expression level of major lineage marker genes. The colored dots next to each gene name show the classes that express that gene. **(b)** Representative MERFISH sections showing expression of key transcription factors in GABAergic neurons. Genes marked with parentheses show expected spatial gene expression pattern based on imputed data (see **Methods**).

van Velthoven Extended Data Fig. 15


van Velthoven Extended Data Fig. 16

Extended Data Figure 16. Developmental trajectory of CNU LGE-derived neurons. (a-b)

UMAP representation of all neurons at E11.5-E14.5, P0, and P14 that are derived from LGE and will populate the OB-IMN and CNU-LGE classes. UMAPs are colored by age (a) or subclass (b). **(c)** Constellation plot showing all developmental clusters using UMAP coordinates from panel a. Nodes are colored by supertype and bubbles behind constellation are colored by subclass. **(d-e)** UMAP representation of all neurons at E11.5-E14.5, P0, and P14 that will form the CNU-LGE class. UMAPs are colored by subclass (d) or age (e). **(f)** Heatmap showing differentially expressed genes in the STR D1 and STR D2 lineages across time. Twelve gene modules were identified that show various modes of expression along and between subclasses over time. **(g-j)** Gene module scores marking different stages along the maturation path of D1 and D2 neurons. Gene modules 2 and 1 highlight immature STR D1 (g) and immature STR D2 (h) neurons respectively, while gene modules 12 and 8 mark mature STR D1 (i) and mature STR D2 (j) neurons respectively. **(k-n)** UMAP representation like in panels d-e colored by major lineage markers. **(o-q)** Gene module 6 contains genes highlighting the delayed maturation of STR D2 vs STR D1 neurons (o), such as two exemplar genes *Hs6st2* (p) and *Pam* (q). **(r-t)** Gene module 7 contains genes whose expressions converge along the maturation trajectory of STR D1 and STR D2 neurons (r), such as two exemplar genes *Tnr* (s) and *Arid5b* (t). **(u)** Violin plot showing the transcriptomic distance between STR D1 and STR D2 subclass transcriptomes across the time course.

van Velthoven Extended Data Fig. 17

Extended Data Figure 17. Developmental trajectory of LSX and CNU-HYa GABAergic neurons. (a-c) UMAP representation of all neurons at E11.5-E14.5, P0, and P14 that will form the 10 LSX GABA and 11 CNU-HYa GABA classes colored by class (a), subclass (b), and age (c). (d) UMAP representation as in panels a-c colored by expression level of subclass marker genes. The colored dots next to each gene name show the subclasses expressing that gene.

Supplementary Table 1. Allen Mouse Brain Common Coordinate Framework version 3 (CCFv3) regional ontology. Regions outside telencephalon are greyed out. Adopted from Wang et al, 2020.

Supplementary Table 2. MERFISH 500-gene panel used in Vizgen MERSCOPE platform to generate the whole mouse brain MERFISH dataset.

Supplementary Table 3. Cell type taxonomy of GABAergic neuronal types in the telencephalon. This taxonomy was defined as the Subpallium-GABA neighborhood in the whole mouse brain cell type atlas in Yao et al, 2023. Detailed information for telencephalic GABAergic clusters, including membership at different levels (supertype, subclass, class, and division), NT type, NT type combo, major NT marker genes, major neuropeptides, top and combo marker genes, main dissection region, manual anatomical annotation, number of 10x v2 and 10x v3 cells, fraction of male and female cells, and accession numbers to cell types.

Supplementary Table 4. Developmental cell type taxonomy of GABAergic neuronal types in the telencephalon. Detailed information for developmental GABAergic clusters, including membership at different levels (supertype, subclass, and class), number of cells from each age group, and top marker genes.

Supplementary Table 5. Donor information of the Developmental scRNA-seq dataset. All donors used to generate the developmental scRNA-seq data in this study are listed, with associated metadata including sex, age, genotype, etc. From one donor multiple regions could be dissected.