

1 **Hair follicle-resident progenitor cells are a major cellular contributor to**
2 **heterotopic subcutaneous ossifications in a mouse model of Albright**
3 **hereditary osteodystrophy**

4

5 Patrick McMullan^{1,2}, Peter Maye², Sierra H. Root², Qingfen Yang^{1,2}, Sarah Edie³, David Rowe², Ivo
6 Kalajzic², Emily L. Germain-Lee*^{1,2,4}

7 *¹Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT, ²Department of*
8 *Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, University of*
9 *Connecticut School of Dental Medicine, Farmington, CT; ³ The Jackson Laboratory, Farmington, CT;*

10 *⁴Albright Center, Division of Endocrinology & Diabetes, Connecticut Children's, Farmington, CT*

11 **Corresponding Author*:**

12 Emily L. Germain-Lee, M.D.

13 Department of Pediatrics and Department of Reconstructive Sciences

14 Center for Regenerative Medicine & Skeletal Development

15 Mail Code 3213

16 UConn Health

17 Farmington, CT 06030

18 GermainLee@uchc.edu

19 (860) 837-6719

20 **Corresponding Author's ORCID:** 0000-0002-5727-610X

21

22

23

24 **Authors CRediT Contribution Roles:**

25 Patrick McMullan – Conceptualization, Data Curation, Formal Analysis, Investigation,
26 Methodology, Validation, Visualization, Writing – Original Draft Preparation, Writing – Review,
27 Writing – Editing

28 Peter Maye – Methodology, Project Administration, Resources, Supervision, Validation, Writing
29 – Review, Writing – Editing

30 Sierra Root - Methodology, Data Curation, Formal Analysis, Investigation, Validation,
31 Visualization, Writing – Review, Writing – Editing

32 Qingfen Yang – Data Curation, Investigation, Methodology, Validation, Writing – Review

33 Sarah Edie – Data Curation, Investigation, Validation, Writing – Review, Writing – Editing

34 David W. Rowe – Methodology, Resources, Supervision, Validation, Writing – Review

35 Ivo Kalajzic - Methodology, Resources, Supervision, Validation, Writing – Review, Writing –
36 Editing

37 Emily L. Germain-Lee – Conceptualization, Data Curation, Formal Analysis, Funding
38 Acquisition, Investigation, Methodology, Project Administration, Resources, Supervision,
39 Validation, Writing – Original Draft Preparation, Writing – Review, Writing – Editing

40

41

42

43

44 **Abstract**

45 Heterotopic ossifications (HOs) are the pathologic process by which bone inappropriately forms outside of
46 the skeletal system. Despite HOs being a persistent clinical problem in the general population, there are no
47 definitive strategies for their prevention and treatment due to a limited understanding of the cellular and
48 molecular mechanisms contributing to lesion development. One disease in which the development of
49 heterotopic subcutaneous ossifications (SCOs) leads to morbidity is Albright hereditary osteodystrophy
50 (AHO). AHO is caused by heterozygous inactivation of *GNAS*, the gene that encodes the α -stimulatory
51 subunit ($G\alpha_s$) of G proteins. Previously, we had shown using our laboratory's AHO mouse model that SCOs
52 develop around hair follicles (HFs). Here we show that SCO formation occurs due to inappropriate
53 expansion and differentiation of HF-resident stem cells into osteoblasts. We also show in AHO patients and
54 mice that *Secreted Frizzled Related Protein 2* (*SFRP2*) expression is upregulated in regions of SCO
55 formation and that elimination of *Sfrp2* in male AHO mice exacerbates SCO development. These studies
56 provide key insights into the cellular and molecular mechanisms contributing to SCO development and
57 have implications for potential therapeutic modalities not only for AHO patients but also for patients
58 suffering from HOs with other etiologies.

59 **Introduction**

60 Heterotopic ossifications (HOs) are the result of a pathologic process by which bone inappropriately forms
61 outside of the skeletal system in areas such as the dermis, subcutaneous tissue, and skeletal muscle [1–3]
62 and are a significant clinical issue in the general population. HOs frequently form after surgical procedures
63 such as hip arthroplasty (up to 40%), as well as close to 30% of fractures, high-energy military injuries, and
64 severe burns, and up to 50% of traumatic brain and spinal cord injuries [1]. Although non-genetic forms of
65 HOs are a major clinical issue, there are no definitive therapeutic strategies for their prevention and
66 treatment. This lack of available therapies is problematic because HOs not only can cause pain and joint
67 immobility but also can cause permanent neurologic and vascular insufficiency if inappropriately managed
68 [1,2]. Furthermore, surgical resection of HOs is often not an option due to frequent post-operative
69 recurrence [1,2].

70 A definitive strategy for the prevention and treatment of HOs requires a better understanding of the
71 cellular populations contributing to their formation and the molecular mechanisms promoting aberrant
72 osteogenesis. One approach towards understanding these etiologies is to study monogenic disorders that
73 result in spontaneous heterotopic bone formation. To date, there are three monogenic disorders that are
74 known to be characterized by the formation of extensive HOs. The most devastating in terms of HO severity
75 is fibrodysplasia ossificans progressiva (FOP), which has been shown to be caused by mutations in the gene
76 encoding activin A receptor type 1 (*ACVR1*) [4,5]. This mutation results in the hyperactive dysregulation
77 of the BMP signaling cascade leading to endochondral bone formation within skeletal muscle and
78 surrounding connective tissue [4,5]. Two additional disorders that result in spontaneous HO formation
79 include Albright hereditary osteodystrophy (AHO) and progressive osseous heteroplasia (POH) (for review,
80 [6–15]).

81 AHO is a disorder caused by the heterozygous inactivation of *GNAS*, an imprinted gene that
82 encodes the α -stimulatory subunit ($G\alpha_s$) of G protein-coupled receptors (GPCRs), which are utilized by
83 multiple hormones that activate adenylyl cyclase [16,17]. Patients with maternally inherited *GNAS*

84 mutations develop pseudohypoparathyroidism type 1A (PHP1A) and exhibit extraskeletal manifestations
85 that include obesity and resistance to multiple hormones requiring $\text{G}\alpha_s$, such as PTH, TSH, GHRH, and
86 LH/FSH, [18–24] whereas patients with paternally derived *GNAS* mutations develop
87 pseudopseudohypoparathyroidism (PPHP), in which patients have AHO skeletal features without severe
88 obesity [25] or hormonal resistance (for review [6–11]). Through studies of both humans and mouse models
89 [6] these metabolic and hormonal distinctions were shown to be due to tissue-specific paternal imprinting
90 of *GNAS*, typically within endocrine organs such as the pituitary [22,23,26], thyroid [18–20,27], gonads
91 [20,27], renal cortex [27–29] and potentially osteoclasts [30].

92 POH is also attributed to heterozygous inactivation of *GNAS*, secondary to paternal inheritance of
93 the affected allele, and in general POH patients do not have hormonal resistance, [13–15,31] although there
94 are rare cases of an overlap syndrome with PHP1A [32,33]. Unlike lesions in FOP, the HOs that form
95 within AHO and POH develop within the skin and subcutaneous tissue by intramembranous ossification
96 for which the cellular and molecular mechanisms remain undetermined [7,12,15,34,35]. Although AHO
97 and POH share a similar genetic defect, they are recognized clinically as two distinct disorders aside from
98 the difference in hormonal resistance (for review, [6–15]). First, the extent of penetration of heterotopic
99 ossifications differs between the two conditions. In AHO, heterotopic bone formation is always restricted
100 to the dermis and subcutaneous tissue and does not penetrate further [10,12,35]. Our group has confirmed
101 this through physical examinations of our AHO patient population as well as through clinically-indicated
102 radiographs, computerized tomography (CT) scans, and magnetic resonance images (MRI) [35], and this is
103 recapitulated in our mouse model [34]. Therefore, heterotopic bone lesions that form in AHO are defined
104 as subcutaneous ossifications (SCOs). Patients with POH, however, develop significantly more invasive
105 heterotopic bone when compared to AHO, and although ossifications in POH can be identified within the
106 dermis and subcutaneous tissue, these lesions often penetrate into underlying tissue such as skeletal muscle,
107 fascia, tendons, and deep connective tissue [7–15,35]. The second distinction between AHO and POH is

108 that in addition to heterotopic bone formation, AHO patients develop additional skeletal manifestations
109 including adult short stature and brachydactyly, whereas these are typically absent in POH [6–15][22–24].

110 In our Albright Center, a clinic dedicated to the care of patients with AHO, we have evaluated
111 hundreds of mutation-confirmed patients from throughout the world. Many suffer from pain and decreased
112 functional abilities secondary to SCOs, and in this regard, we have become interested in determining the
113 mechanisms involved in SCO initiation and formation; an understanding of this pathophysiology could
114 provide insights into therapeutic modalities for prevention and treatment. Over a 16-year timespan of
115 monitoring a cohort of mutation-confirmed AHO patients, we found that SCOs are present at an equal
116 prevalence of approximately 70% in both PHP1A and PPHP [35]. These lesions either develop *de novo* as
117 early as birth or secondary to repetitive pressure or trauma. Further observation of this patient cohort
118 revealed that SCO prevalence was significantly higher among male patients than females, suggesting the
119 potential for sex hormones contributing to SCO development. Additionally, patients with nonsense or
120 frameshift *GNAS* mutations developed SCOs at a significantly higher frequency (>90%) than patients with
121 missense mutations (29.2%), suggesting a genotype-phenotype correlation [35].

122 In conjunction with clinically monitoring AHO patients, we had generated and characterized an
123 AHO mouse model via the targeted disruption of exon 1 of *Gnas* that recapitulates the human disorder
124 [27,34]. In particular, mice with heterozygous inactivation of *Gnas* (*Gnas* *E1+/-*) [27] develop SCOs that
125 are independent of the parental origin of the mutant allele [34]. *Gnas* *E1+/-* mice form SCOs spontaneously
126 and/or in response to repetitive pressure or trauma, such as at the base of the tail, footpads, and surrounding
127 ear tags, and CT examination of *Gnas* *E1+/-* mice revealed that SCOs are limited to the dermis and
128 subcutaneous tissue [34]. Similar to AHO patients, male *Gnas* *E1+/-* mice have SCOs at a significantly
129 higher prevalence than female mice, with 100% of male mice developing SCOs by 9 months of age.
130 Histologic evaluation revealed that prior to the formation of radiographically-detectable SCOs, male *Gnas*
131 *E1+/-* mice at 3 months exhibit hypercellularity and collagen deposition within the reticular dermis that
132 specifically surrounds hair follicles (HF) [34]. These histologic changes appear to be essential for the future

133 development of SCOs since both male and female *Gnas* *EI*+/− mice at later timepoints develop SCOs that
134 consistently form directly adjacent to or surrounding HFs. The HF is known to contain both epithelial and
135 mesenchymal-derived progenitor populations that maintain their proliferative abilities throughout all phases
136 of life [36–38], and this consistent spatial localization of SCOs near HFs suggested the possibility that this
137 microenvironment and its progenitor populations may play a role in ossification development. This
138 investigation is the first to demonstrate that SCO formation is initiated by the inappropriate expansion and
139 differentiation of HF-resident dermal sheath cells into osteoblasts.

140 **Results:**

141 **Secreted Frizzled Related Protein 2 (*SFRP2*) expression correlates with SCO severity in human
142 fibroblasts isolated from AHO and POH participant skin biopsies.**

143 As an initial investigation to identify genes and/or pathways that may play a role in SCO formation, we had
144 performed a microarray analysis on RNA from primary dermal fibroblast cultures generated from skin
145 biopsies from a selected group of mutation-confirmed AHO and POH participants. The participants selected
146 either lacked SCOs or had SCOs of varying severity: Participant 1 (P1) was an adult female with PPHP
147 with moderate palpable SCOs; Participant 2 (P2) was an adult female with PPHP without palpable SCOs;
148 Participant 3 (P3) was a female child, daughter of P2, with PHP1A and severe SCOs; Participant 4 (P4)
149 was an adult male with POH and extensive ossifications in the subcutaneous and deep connective tissue
150 that invaded into the muscle, nerve, and blood vessels as documented by both surgical pathology of excised
151 ossifications and imaging performed for clinical reasons (CT and/or MRI). Participant 5 (P5) was an
152 adolescent male with PPHP and one small palpable SCO. We selected this diverse subgroup for analysis to
153 examine both pre- and post-pubertal males and females with PHP1A and PPHP, and differences in the
154 extent of SCO formation between close relatives.

155 We assessed differential gene expression by performing three comparisons (Figure 1A) that we
156 hypothesized would have the greatest potential of highlighting variations in expression based on the degree
157 of SCO formation and that would also help sort out potential hormonal effects that could be leading to

158 SCOs being worse in males than in females based on our past studies in both humans and our mouse model
159 [34,35]. In all three comparisons (P1 vs P2, P3 vs P2, and P4 vs P5), a participant with the greater number
160 (as well as size) of SCOs was compared to a participant with fewer or no ossifications. We identified 23
161 differentially regulated genes (14 upregulated and 9 downregulated) that were observed within SCO-
162 containing regions in each comparison (Figure 1B,C). The two most upregulated genes were Rho GTPase
163 Activating Protein 28 (*ARHGAP28*), and Secreted Frizzled Related Protein 2 (*SFRP2*), which have been
164 shown to become activated in response to extracellular matrix assembly and negatively regulate stress fiber
165 formation both *in vivo* and *in vitro* [39–43]. Microarray analysis also revealed an upregulation in *ALDH1A3*
166 and *NR4A3*, which are genes that have since been identified as being commonly recognized biomarkers for
167 carcinoma-associated fibroblasts (CAFs) in skin disorders including basal cell carcinoma and systemic
168 sclerosis [44–47].

169 Among these differentially expressed genes, we became most interested in further examining the
170 role of *SFRP2* in SCO pathogenesis given that it was the most upregulated gene with a known relationship
171 to osteogenesis at the time of microarray investigation [39,48]. Additionally, we had identified a direct
172 correlation between *SFRP2* mRNA expression and SCO severity by Northern blot analysis of RNA isolated
173 from skin biopsies from 7 participants in our investigations who had either AHO or POH or 2 who were
174 unaffected family members (described in methods) (Figure 1D). In particular, we found the highest level
175 of *SFRP2* mRNA expression in the POH participant, intermediate expression in the AHO participant with
176 severe ossifications, and lower levels of expression in the remaining participants with minimal, moderate,
177 or no ossifications.

178 **Figure 1: Microarray analyses of AHO/POH human dermal fibroblasts identify transcriptional
179 profiles of fibroblasts in SCO-containing regions and are consistent with murine profiles** (A) Venn
180 diagram of differentially regulated genes between three microarray analyses from RNA isolated from AHO
181 and POH human dermal fibroblast cultures. (B) Representative heatmap (C) Listing of commonly
182 differentially regulated genes among the three microarray comparisons. (D) Quantification of Northern blot
183 data of *SFRP2* expression relative to S26 from AHO and POH human dermal fibroblasts. (E) RT-PCR of

184 *Sfrp2* expression for 12-month WT and *Gnas* *E1+/-* skin samples. (F-G) Dorsal skin of 6-month-old (F)
185 WT and (G) unaffected *Gnas* *E1+/-* mice stained with anti-*Sfrp2* (yellow). (H) Dorsal skin section of 6-
186 month *Gnas* *E1+/-* mouse SCO skin stained with anti-*Sfrp2* (yellow).

187 ***Gnas* *E1+/-* mice display elevated *Sfrp2* expression within the hair follicle microenvironment
188 surrounding ossification sites**

189 To further explore the functional role of *SFRP2* in the development of SCOs, we utilized our *Gnas* *E1+/-*
190 mouse model that phenotypically recapitulates lesion development [27,34]. We assessed whether the
191 transcriptional differences observed in human samples were similar to those within skin samples harvested
192 from 12-month-old *Gnas* *E1+/-* mice (Figure 1E, Supplemental Figure 1). *Gnas* *E1+/-* mice displayed a
193 significant upregulation of *Sfrp2* mRNA expression in dorsal skin samples containing SCOs when
194 compared to both *WT* skin samples and *Gnas* *E1+/-* samples harvested from unaffected skin regions (Figure
195 1E). We also confirmed that the upregulation of *ARHGAP28*, *ALDH1A3*, *GPR133*, *ACVR2A* and *ROR2*
196 observed in human SCO samples was similarly observed in *Gnas* *E1+/-* SCO (Supplemental Figure 1),
197 demonstrating further correlation of our mouse model with the human disorder.

198 Based on this direct correlation of *SFRP2* expression and SCO severity in both the human and
199 mouse samples, we assessed the spatial localization of *Sfrp2* protein within the dorsal skin of 6-month *WT*
200 and *Gnas* *E1+/-* mice by immunofluorescence (Figure 1F-H). *Sfrp2* expression was observed in epithelial-
201 derived cells in the HF and in a limited number of dermal fibroblasts (Figure 1F,G). However, *Gnas* *E1+/-*
202 SCO-containing skin samples revealed a markedly different pattern (Figure 1H) and showed an expansion
203 of *Sfrp2*+ cellular populations along the basal epithelial surface and surrounding HFs. We detected limited
204 expression of *Sfrp2* in cells on the SCO bone-lining surface (Figure 1H) and observed a similar pattern of
205 *Sfrp2*+ cells in dorsal skin samples from 15-month *Gnas* *E1+/-* mice with extensive SCOs (Supplemental
206 Figure 2).

207 Given that SCO-containing skin regions exhibit a broader expression of *Sfrp2* near HFs and that
208 our previous studies had found SCOs consistently developing adjacent to or surrounding HFs, we further

209 examined the contribution of HF cellular populations to SCO formation and how *Sfrp2* may influence the
210 differentiation capacity of cell types within this microenvironment.

211 **Supplemental Figure 1:** Quantitative RT-PCR analysis of upregulated genes identified through AHO/POH
212 human fibroblast microarray comparisons (*Arhgap28*, *Aldh1a3*, *Gpr133* and *Ror2*) within 12-month *WT*
213 and *Gnas E1+/-* skin samples. Statistical analyses were completed using ANOVA with post-hoc Tukey test
214 for multiple comparisons. *P*-values for each statistical comparison are indicated within the panels.

215 **Supplemental Figure 2:** Dorsal skin section of 15-month *Gnas E1+/-* mouse isolated from SCO region
216 and stained with α SMA (red) and *Sfrp2* (yellow).

217 ***Gnas E1+/-* mice form SCOs that progressively expand and localize to hair follicles**

218 We next analyzed skin samples of *WT* and *Gnas E1+/-* mice by radiographic imaging and histology
219 (Figure 2). Histologic analysis of *Gnas E1+/-* mice demonstrated that SCO formation occurs through
220 intramembranous ossification as indicated by enhanced collagen and osteoid deposition along the bone
221 lining surface by Masson Trichrome staining and the absence of glycosaminoglycan detection by Safranin
222 O staining (Supplemental Figure 3). Serial x-rays of *Gnas E1+/-* mice demonstrated that SCOs become
223 radiographically detectable by 4 months of age and progressively expand (Figure 2A). We have found that
224 this progressive expansion of intramembranous heterotopic bone surrounding HFs in *Gnas E1+/-* mice is
225 reflected by the presence of both actively mineralizing osteoblasts (Figure 2B) and bone-lining osteoclasts
226 (Supplemental Figure 3). We therefore assessed the spatial localization of progenitor cells within the HF
227 by alkaline phosphatase (ALP) histochemistry in dorsal skin sections of 15-month-old mice (Figure 2C-F).
228 Both *WT* (Figure 2C) and *Gnas E1+/-* (Figure 2D) mice displayed ALP+ populations within the HF that
229 localized to a distinct mesenchymal population, specifically the dermal papilla. However, *Gnas E1+/-* mice
230 also exhibited an expansion of ALP+ cells within two additional areas of the dermis in SCO regions (Figure
231 2D-F), which included the SCO bone-lining surface and the adjacent unmineralized regions of the dermis
232 encompassing the entire HF.

233 **Figure 2: *Gnas E1+/-* mice develop progressively expanding subcutaneous ossifications in dermis**
234 **surrounding hair follicles** (A) Consecutive x-ray images of a male *Gnas E1+/-* mouse at 16, 28, 40, and
235 52 weeks. (B) Dorsal skin of 40-week-old male *Gnas E1+/-* mouse demonstrating SCOs surrounding hair
236 follicles and the presence of active mineralizing osteoblasts [alkaline phosphatase (ALP+) populations
237 superimposed over a calcein mineralization label]. (C-D) Dorsal skin sections from 15-month-old (C) *WT*
238 and (D) *Gnas E1+/-* mice stained using Toluidine Blue, ALP, and Von Kossa. ALP+ populations within
239 *WT* mice are limited to the dermal papilla (yellow arrows) whereas *Gnas E1+/-* mice display ALP+ cells
240 within the dermal papilla and throughout the dermis along the SCO bone surface. (E-F). Higher power
241 images of boxed regions in panel D.

242 **Supplemental Figure 3:** Representative images of dorsal skin sections isolated from 10-month *Gnas E1+/-*
243 mice following: (A) Masson Trichome; (B) Safranin O/Fast Green; and (C) Tartrate resistant acid
244 phosphatase (TRAP)/Aniline Blue staining.

245 ***Osterix-mCherry* reporter identifies expanded hair follicle progenitor cells that are osteoprecursors**
246 **within *Gnas E1+/-* mice as α SMA+ dermal sheath cells *in vivo*.**

247 We next crossed *Gnas E1+/-* mice with *Osterix-mCherry* (*Osx-mCherry*) transgenic reporter mice (Figure
248 3A) in order to label multipotent mesenchymal progenitors, osteoblasts, and osteocytes *in vivo* [49]. We
249 were particularly interested in examining skin regions prior to the formation of radiographically detectable
250 SCOs based on our previous studies demonstrating hypercellularity and collagen deposition near HFs [34].
251 We hypothesized that this hypercellularity represented the condensation of differentiated HF
252 osteoprecursors initiating intramembranous ossification.

253 Histologic evaluation at 3 weeks (Supplemental Figure 4) and 6 months of age (Figure 3A-E)
254 identified a distinct population of Osterix+ cells in *Gnas E1+/-* mice that localized to the outer surface of
255 the HF. These Osterix+ cells aligned with the location of the expanded ALP+ osteoprecursors that we had
256 previously identified within *Gnas E1+/-* skin samples (Figure 2D-F). These Osterix+ populations
257 corresponded to dermal sheath cells based upon their co-expression of alpha-Smooth Muscle Actin

258 (αSMA), which is an established biomarker for dermal sheath cells (Figure 3D) [50,51]. It is important to
259 note that although αSMA has been shown to label dermal sheath cells, it has also been shown to label
260 smooth muscle cells within the HF arrector pili muscle and the underlying blood vasculature (Figure 3A,B)
261 [50,51]. We did not detect Osterix expression in dermal papilla cells (Figure 3C). Given that the only
262 Osterix+ αSMA+ double positive populations within the dermis localized to the dermal sheath, we
263 hypothesized that dermal sheath cells may contribute to the process of SCO initiation.

264 When evaluating 6-month *Gnas E1+/-;Osx-mCherry* mice in skin regions without radiographically
265 detectable SCOs (Figure 3C, 3E), we observed a significant expansion of Osterix+ cell populations that
266 extended into the dermis from adjacent HFs when compared to littermate *Osx-mCherry* mice.
267 Immunofluorescence colocalization studies revealed that these expanded Osterix+ cells co-expressed
268 αSMA and ALP (Figure 3E). These data aligned with our initial hypothesis and suggested that these
269 Osterix+, αSMA+, ALP+ triple positive cells within the dermis are labeling expanded HF-derived
270 osteoprecursors that are actively undergoing osteogenic differentiation. Additionally, these data
271 demonstrating Osterix and αSMA colocalization were of particular interest because αSMA has been
272 previously identified as a biomarker for tissue-resident mesenchymal progenitors with osteogenic potential
273 and have been shown to contribute to the initiation and progression of HOs within skeletal muscle [52–55].

274 We next evaluated the spatial localization of αSMA+ populations in 10-month-old mice (Figure
275 3F,G) because *Gnas E1+/-* mice at this timepoint consistently exhibit extensive SCOs throughout the dorsal
276 skin. αSMA immunofluorescence in both *WT* and unaffected *Gnas E1+/-* skin regions labeled the dermal
277 sheath cells as well as the HF arrector pili muscle and underlying vasculature, as similarly observed at
278 earlier timepoints (Figure 3F). However, *Gnas E1+/-* mice exhibited an expansion of αSMA+ populations
279 throughout the dermis that localized to areas of active bone mineralization, as indicated by alizarin
280 complexone labeling (Figure 3G). In addition to histologic analysis, we also performed flow cytometry on
281 single cell suspensions of enzymatically digested dorsal skin samples from 10-month *WT* and *Gnas E1+/-*
282 mice to determine the percentage of αSMA+ mesenchymal progenitors as defined by percentage of αSMA+
283 cells within the Lineage-gate, which excluded hematopoietic and endothelial cells by CD45- Ter119- and

284 CD31- staining, respectively. We found that *Gnas E1+/-* mice exhibited a 3-fold increase in the percentage
285 of α SMA+ mesenchymal progenitors when compared to *WT* samples (Figure 3H-I, Supplemental Figure
286 5). In summary, these data suggest that HF-resident α SMA+ mesenchymal populations may contribute to
287 SCO development.

288 **Figure 3: Genetic fate-mapping studies using *Osterix-mCherry* model identifies hair-follicle resident**
289 **osteoprecursors as α SMA+ dermal sheath cells** (A-B) Dorsal skin sections of 6-month (A) *Osx-mCherry*
290 and (B) *Gnas E1+/-;Osx-mCherry* littermates demonstrating spatial expression of *Osterix* (red), alpha-
291 Smooth Muscle Actin (α SMA) (green), and ALP (white). (C) Bar graph demonstrating number of *Osterix*+
292 cell types within the dermis of 6-month *Osx-mCherry* and *Gnas E1+/-;Osx-mCherry* mice. (D-E) Higher-
293 power images of *Osx-mCherry* and *Gnas E1+/-;Osx-mCherry* hair follicles demonstrating *Osterix* and
294 α SMA colocalization. (F-G) Representative dorsal skin sections of 10-month-old (F) *WT* and (G) *Gnas*
295 *E1+/-* mice stained for α SMA (green), mineralized tissue (white), and bone mineral label alizarin
296 complexone (red). (H) Representative flow cytometry plots. SSC-A refers to side scatter area. (I) Graph of
297 the percentage of Lin- α SMA+ populations from 10-month-old *WT* and *Gnas E1+/-* mice *in vivo*.

298 **Supplemental Figure 4:** (A) Schematics of transgene and breeding strategies. (B) Representative images
299 of dorsal skin sections isolated from 3-week old (P21) males: (top panel) *Osx-mCherry* and (bottom panel)
300 *Gnas E1+/-;Osx-mCherry* littermates demonstrating similar expression patterns of *Osterix*+ populations
301 for the hair follicle dermal sheath.

302 **Supplemental Figure 5:** Flow cytometry gating strategy implemented to quantify the percentage of
303 α SMA+ cells within the Lineage-negative population from dorsal skin single cell suspensions as depicted
304 in Figure 3.

305 **Lineage tracing identifies osteoblasts and osteocytes in subcutaneous ossifications in *Gnas E1+/-***
306 **$; \alpha$ SMA^{CreERT2};Ai9^{fl/fl}** mice

307 We next performed genetic fate-mapping studies by crossing our *Gnas E1+/-* mice with tamoxifen-
308 inducible α SMA^{CreERT2};Ai9^{fl/fl} mice (Figure 4A,B) [53,54] which would allow us to trace α SMA+ cell types

309 at various timepoints in the skin and subcutaneous tissue following the injection of tamoxifen through the
310 expression of Ai9 (tdTomato). We first examined the dorsal skin of 10-month-old *Gnas E1+/-;αSMACreERT2;Ai9fl/fl* and *αSMACreERT2;Ai9fl/fl* mice that did not receive any tamoxifen in order to identify
311 the degree of endogenous Ai9 expression due to leakiness, which was minimal in unaffected and SCO skin
312 regions (Supplemental Figure 6).

314 In alignment with previous αSMA lineage tracing studies in the skin [50,56], we observed that 2
315 days following tamoxifen administration, Ai9 expression localized to the dermal sheath, HF arrector pili
316 muscle, and underlying blood vasculature (Supplemental Figure 7). We next addressed the question of
317 whether αSMA+ populations were essential cell types for the initiation of SCO formation (Figure 4C-H)
318 by examining mice 6 months following tamoxifen treatment (Figure 4A-B for schematic). Histology of the
319 dorsal skin from 8-month-old *αSMACreERT2;Ai9fl/fl* mice showed that Ai9+ populations remained restricted
320 to the dermal sheath, arrector pili, and blood vasculature (Figure 4C). However, within the surrounding HF
321 microenvironment, *Gnas E1+/-;αSMACreERT2;Ai9fl/fl* mice displayed a significant expansion of both Ai9+
322 and ALP+ populations (Figure 4D-G). Immunofluorescence colocalization studies revealed that 69% of
323 these expanded Ai9+ populations within *Gnas E1+/-;αSMACreERT2;Ai9fl/fl* mice coexpressed ALP (Figure
324 4H). Further colocalization analysis revealed these ALP+ Ai9+ double positive populations were localized
325 to the SCO bone-lining surface superimposed over a calcein mineral label, and were embedded within the
326 SCO bone matrix. Taken together, these data demonstrate that HF-resident αSMA+ cells are capable of
327 undergoing differentiation into both osteoblasts and osteocytes and appear to be an essential cell type
328 required for the initial osteoid deposition and formation of SCOs.

329 We next assessed the contribution of αSMA+ populations in the progressive expansion of SCOs by
330 performing 21-day tamoxifen pulse-chase experiments in 9-month-old *Gnas E1+/-;αSMACreERT2;Ai9fl/fl*
331 mice with radiographically detectable SCOs compared to littermate *αSMACreERT2;Ai9fl/fl* mice (Figure 5A).
332 We did not observe any significant changes in the localization of Ai9+ populations in 9-month-old
333 *αSMACreERT2;Ai9fl/fl* mice (Figure 5B,C) when compared to earlier timepoints. We did, however, observe

334 an expansion of Ai9+ populations surrounding HFs in the dermis of *Gnas* *EI*+/-.*αSMACre*^{ERT2}.*Ai9*^{f/f} mice
335 within both unaffected and SCO skin regions (Figure 5D-G). Furthermore, *Gnas* *EI*+/-.
336 ;*αSMACre*^{ERT2}.*Ai9*^{f/f} mice displayed Ai9+ populations along the SCO bone lining surface that: (1)
337 expressed ALP superimposed over a calcein mineral label (Figure 5H); (2) expressed Sclerostin (Sost); and
338 (3) were embedded within the SCO bone matrix (Figure 5H). These data further underscore that αSMA+
339 dermal sheath cells in *Gnas* *EI*+/-. mice contribute not only to the initiation of SCO formation through
340 expansion within the HF microenvironment but also serve as essential cells in SCO expansion given their
341 osteogenic capacity and potential to differentiate into osteoblasts and osteocytes.

342 In conjunction with *in vivo* lineage tracing, we assessed the osteogenic capacity of labeled Ai9+
343 populations *in vitro* by injecting 9-month-old *Gnas* *EI*+/-.*αSMACre*^{ERT2}.*Ai9*^{f/f} and *αSMACre*^{ERT2}.*Ai9*^{f/f}
344 mice with tamoxifen at 7 and at 5 days prior to tissue harvest and then generating primary dermal explant
345 cell cultures (Methods described[57]). This culture model allowed us to monitor the behavior of Ai9+ cells
346 from the onset of culture establishment and throughout the course of our *in vitro* analyses (Figure 6A,B)
347 using live cell imaging. Following 14 days of primary culture expansion, we performed FACS sorting
348 analyses and confirmed a 3-fold increase in the percentage of Ai9+ populations in *Gnas* *EI*+/-.
349 ;*αSMACre*^{ERT2}.*Ai9*^{f/f} cultures compared to *WT* *αSMACre*^{ERT2}.*Ai9*^{f/f} (Figure 6C-D, Supplemental Figure 8).
350 Gene expression studies demonstrated that Ai9+ sorted populations from *Gnas* *EI*+/-. cultures have
351 significant upregulation of *Osterix* (*Sp7*) mRNA expression when compared to *WT* Ai9+, *Gnas* *EI*+/-. and
352 *WT* unsorted cultures (Figure 6E). We next treated dermal explant cultures for 4 weeks with osteogenic
353 induction media (Figure 6F-H). *Gnas* *EI*+/-. cultures displayed multiple colonies of ALP+ populations and
354 mineral deposition by Von Kossa staining (Figure 6G). Live imaging studies of *Gnas* *EI*+/-.
355 ;*αSMACre*^{ERT2}.*Ai9*^{f/f} cultures revealed that *in vivo* labeled Ai9+ populations localized to areas of active
356 mineralization based upon calcein staining (Figure 6G). This enhanced mineralization capacity in *Gnas*
357 *EI*+/-.*αSMACre*^{ERT2}.*Ai9*^{f/f} cultures correlated with an upregulation in both *Osterix* (*Sp7*) and *Integrin*
358 *Binding Sialoprotein* (*Ibsp*) mRNA expression by RT-PCR when compared to *αSMACre*^{ERT2}.*Ai9*^{f/f} cultures

359 (Figure 6H). These data further implicate dermal α SMA+ progenitors as an essential cell type in SCO
360 formation.

361 **Figure 4: *In vivo* lineage tracing of α SMA+ populations identifies progenitor cells that are**
362 **osteoprecursors contributing to SCO initiation** (A) Breeding scheme and generation of *Gnas E1+/-*
363 ; α SMA Cre^{ERT2} ; *Ai9^{f/f}* mice. (B) *In vivo* lineage tracing strategies utilized. (C-D) Dorsal skin sections of 8-
364 month old mice: (C) α SMA Cre^{ERT2} ; *Ai9^{f/f}* and (D) *Gnas E1+/-*; α SMA Cre^{ERT2} ; *Ai9^{f/f}* following 6-month
365 lineage tracing study of *Ai9+* populations also shown at higher magnification in (E) in which *Gnas E1+/-*
366 ; α SMA Cre^{ERT2} ; *Ai9^{f/f}* mice displayed an expansion of *Ai9+* populations near hair follicles and differentiated
367 into SCO-lining osteoblasts (ALP+ cells over calcein label) and osteocytes embedded into SCO bone
368 matrix. (F-G) Graph of number of dermal (F) *Ai9+* and (G) dermal ALP+ populations within 8-month old
369 α SMA Cre^{ERT2} ; *Ai9^{f/f}* and *Gnas E1+/-*; α SMA Cre^{ERT2} ; *Ai9^{f/f}* mice. (H) Graph demonstrating the ratio of
370 dermal *Ai9+;ALP+* double positive cells when compared to the total number of dermal ALP+ cells within
371 8-month *Gnas E1+/-*; α SMA Cre^{ERT2} ; *Ai9^{f/f}* mice.

372 **Figure 5: *In vivo* lineage tracing of α SMA+ populations identifies osteoprecursors contributing to**
373 **SCO progression** (A) *In vivo* lineage tracing strategy utilized. (B-G) Dorsal skin sections of 10-month (B-
374 C) α SMA Cre^{ERT2} ; *Ai9^{f/f}* and (D-G) *Gnas E1+/-*; α SMA Cre^{ERT2} ; *Ai9^{f/f}* mice within (D-E) unaffected and (F-
375 G) SCO skin regions following 21-day lineage tracing. (H) SCO region of 10-month old *Gnas E1+/-*
376 ; α SMA Cre^{ERT2} ; *Ai9^{f/f}* mice demonstrating the differentiation of *Ai9+* cells into bone lining osteoblasts and
377 osteocytes (based on Sclerostin [Sost] coexpression).

378 **Figure 6: *In vivo* labeled *Ai9+* populations from *Gnas E1+/-*; α SMA Cre^{ERT2} ; *Ai9^{f/f}* mice exhibit**
379 **enhanced osteogenic capacity *in vitro*** (A) Timeline of dermal explant culture generation and *in vitro*
380 lineage tracing. (B) Representative images of *in vivo* labeled *Ai9+* cells within primary dermal explant
381 cultures. (C) FACS plots and (D) graph of the percentage of *Ai9+* cells isolated from α SMA Cre^{ERT2} ; *Ai9^{f/f}*
382 and *Gnas E1+/-*; α SMA Cre^{ERT2} ; *Ai9^{f/f}* cultures. (E) RT-PCR of *Sp7* (*Osterix*) mRNA expression for unsorted
383 and *Ai9+* sorted primary dermal explants. (F) α SMA Cre^{ERT2} ; *Ai9^{f/f}* and (G) *Gnas E1+/-*

384 ; α SMACre^{ERT2};Ai9^{f/f} dermal explant cultures following 28 days of osteogenic differentiation stained for
385 ALP and Von Kossa as well as live culture images of calcein (green) and tdTomato (red). (H) RT-PCR of
386 *Gsα*, *Alpl*, *Sp7* and *Ibsp* mRNA expression in cultures following 28 days of osteogenic differentiation.

387 **Supplemental Figure 6:** Representative images of dorsal skin section from 10-month α SMACre^{ERT2};Ai9^{f/f}
388 and *Gnas* *E1*^{+/−}; α SMACre^{ERT2};Ai9^{f/f} mice in both unaffected and SCO skin regions without tamoxifen
389 administration.

390 **Supplemental Figure 7:** Representative images of dorsal skin sections from 2-month old
391 α SMACre^{ERT2};Ai9^{f/f} and *Gnas* *E1*^{+/−}; α SMACre^{ERT2};Ai9^{f/f} mice at 2 days post tamoxifen injection. Note
392 the visualization of Ai9+ populations within the hair follicle dermal sheath, hair follicle arrector pili
393 muscles, and underlying blood vasculature.

394 **Supplemental Figure 8:** Unstained and single color staining controls utilized to establish FACS sorting
395 gates for α SMACre^{ERT2};Ai9^{f/f} and *Gnas* *E1*^{+/−}; α SMACre^{ERT2};Ai9^{f/f} dermal explant cultures. Additionally,
396 aliquots of sorted tdTomato- and Ai9+ populations were reanalyzed to assess purity.

397 ***Gnas* *E1*^{+/−} mice exhibit transcriptome variation within SCO containing regions**

398 We next investigated potential signaling pathways that may be promoting the inappropriate differentiation
399 of these dermal populations by isolating RNA from dorsal skin samples from 12-month *WT* mice and *Gnas*
400 *E1*^{+/−} mice from both unaffected and SCO-containing skin regions and assessed transcriptional variations
401 among samples using an RT-PCR array (Figure 7A, Supplemental Figure 9). We were particularly focused
402 on a panel of genes related to Wnt, Sonic hedgehog (Shh), TGF- β , and BMP signaling pathways due to
403 their implications in regulating both epithelial-mesenchymal interactions within the HF microenvironment
404 [58–62] and the pathogenesis of heterotopic ossifications. We did not identify any significant differences
405 in mRNA expression patterns between *WT* and unaffected *Gnas* *E1*^{+/−} skin samples, but we observed
406 significant transcriptional changes in genes related to each of these canonical signaling pathways within
407 SCO-containing *Gnas* *E1*^{+/−} skin samples when compared to both *WT* and unaffected *Gnas* *E1*^{+/−} samples
408 (Figure 7A, Supplemental Figure 9). We also confirmed the validity of these transcriptomic data by

409 performing immunofluorescence within dorsal skin specimens from 12 month *WT* and *Gnas E1+/-* mice
410 (Figure 7B-E), which demonstrated increased expression of Gli1+ cellular populations (Figure 7B,C) in
411 addition to Tgf β 1+ populations (Figure 7D,E) throughout the basal epithelium, dermis, and SCO bone-
412 lining surface of *Gnas E1+/-* skin samples when compared to *WT*. In summary, these findings suggest that
413 *Gnas* heterozygous inactivation results in the dysregulation of multiple signaling pathways within the HF
414 microenvironment to promote the osteogenic differentiating capacity of tissue-resident progenitor
415 populations during SCO formation.

416 **Figure 7: *Gnas E1+/-* mice exhibit transcriptome variation within SCO-containing regions (A)**
417 Heatmap of differential gene expression in *Gnas E1+/-* SCO skin samples when compared to *WT* and *Gnas*
418 *E1+/-* unaffected skin samples (n=4 samples per condition). (B-C) 12-month dorsal skin sections from (B)
419 *WT* and (C) *Gnas E1+/-* mice for α SMA (green) and Gli1 (red). (D-E) 12-month dorsal skin sections from
420 (D) *WT* and (E) *Gnas E1+/-* mice stained for Tgf β 1 (red) and calcein mineral label (green)

421 **Supplemental Figure 9:** Quantitative RT-PCR analysis of Sonic Hedgehog, TGF-beta, BMP and Wnt
422 signaling pathway transcripts analyzed among 12 month *WT* and *Gnas E1+/-* skin samples as depicted in
423 the heat map in Figure 7. Statistical analyses were completed using ANOVA with post-hoc Tukey test for
424 multiple comparisons. *P*-values for each statistical comparison are indicated within the panels.

425 **Global deletion of *Sfrp2* within *Gnas E1+/-* mice accelerates SCO formation.**

426 Finally, we investigated the functional role of SFRP2 in SCO development based on our initial findings
427 showing increased *SFRP2* expression in fibroblasts isolated from AHO patients, which we also observed
428 in our mouse model. We first carried out cell culture studies using mouse dermal explants (Supplemental
429 Figure 10). Although we observed increased collagen matrix deposition in *Gnas E1+/-* explants compared
430 to *WT*, addition of recombinant SFRP2 to these cultures had no effect on matrix deposition, mineralization,
431 osteogenic differentiation, or *Alpl*, *Sp7* (*Osterix*), and *Ibsp* gene expression.

432 We next investigated the role of *Sfrp2* in SCO formation *in vivo* by crossing *Sfrp2-/-* mice [63] with
433 *Gnas E1+/-* mice. *Sfrp2* deletion was confirmed at both the RNA and protein level in *Gnas E1+/-;Sfrp2-/-*

434 and *Sfrp2*^{-/-} mice by RT-PCR (Figure 8A) and immunofluorescence (Supplemental Figure 11). We
435 examined the rate of SCO formation in both male and female *Gnas E1*^{+/}⁻ and *Gnas E1*^{+/}⁻; *Sfrp2*^{-/-} mice
436 by serial radiographic imaging every 4 weeks starting at 4 months (16 weeks) of age. As expected, we did
437 not observe SCO formation in male or female *WT* or *Sfrp2*^{-/-} mice (data not shown); however, we could
438 readily detect SCOs in both *Gnas E1*^{+/}⁻ and *Gnas E1*^{+/}⁻; *Sfrp2*^{-/-} mice (Figure 8B-C). As described
439 previously, *Gnas E1*^{+/}⁻ female mice developed fewer SCOs compared to male mice [34] and we did not
440 observe any significant differences in SCO formation between female *Gnas E1*^{+/}⁻ and *Gnas E1*^{+/}⁻; *Sfrp2*⁻
441 /⁻ mice (Supplemental Figure 12). However, male *Gnas E1*^{+/}⁻; *Sfrp2*^{-/-} mice developed SCOs significantly
442 earlier than *Gnas E1*^{+/}⁻ mice and also developed a greater number of total SCOs by 20 weeks of age that
443 continued to increase at each subsequent timepoint (Figure 8C). In alignment with their accelerated rate of
444 SCO formation, we observed that *Gnas E1*^{+/}⁻; *Sfrp2*^{-/-} mice displayed an expansion in the number of
445 α SMA+ populations throughout the dorsal skin and along the basal epithelial surface when compared to
446 *Gnas E1*^{+/}⁻ mice (Figure 8D,E). The expanded α SMA+ populations in *Gnas E1*^{+/}⁻; *Sfrp2*^{-/-} were observed
447 within the basal epithelial surface as well as within epithelial-derived hair follicle populations when
448 compared to *Gnas E1*^{+/}⁻ α SMA+ populations that were limited to the dermis (Figure 8D,E). Collectively,
449 these data demonstrate that loss of *Sfrp2* exacerbates the development of SCO formation in *Gnas E1*^{+/}⁻
450 mice and suggests that *SFRP2* upregulation in AHO may be a compensatory mechanism that limits SCO
451 formation.

452 **Figure 8: Global deletion of *Sfrp2* within male *Gnas E1*^{+/}⁻ mice accelerates SCO formation.** (A) RT-
453 PCR of *Gnas* and *Sfrp2* mRNA expression within 6-month *WT*, *Gnas E1*^{+/}⁻, *Gnas E1*^{+/}⁻; *Sfrp2*^{-/-} and
454 *Sfrp2*^{-/-} skin samples. (B) Representative x-ray of 36-week old male *Gnas E1*^{+/}⁻ and *Gnas E1*^{+/}⁻; *Sfrp2*^{-/-}
455 mice demonstrating SCO formation. (C) Quantification of SCOs within *Gnas E1*^{+/}⁻ and *Gnas E1*^{+/}⁻; *Sfrp2*⁻
456 /⁻ mice following serial x-ray imaging. (** indicates $p < 0.01$, and **** indicates $p < 0.0001$). (D-E) Dorsal
457 skin of SCO skin regions of 6-month *Gnas E1*^{+/}⁻ (D) and *Gnas E1*^{+/}⁻; *Sfrp2*^{-/-}. (E) mice stained with
458 α SMA (green).

459 **Supplemental Figure 10:** (A) Representative whole well images of Sirius Red staining and quantification
460 of total collagen per well observed in dermal explant cultures following 14 days of exposure to 100ng/mL
461 recombinant mouse Sfrp2 or vehicle control. (B) Quantitative RT-PCR of *Gnas E1+/-* dermal explant
462 cultures following 28 days of osteogenic differentiation media supplemented with 100 ng/mL recombinant
463 mouse Sfrp2 or vehicle control. (C) Statistical analyses for Sirius red staining were completed using
464 ANOVA with post-hoc Tukey test for multiple comparisons; statistical analyses of osteogenic
465 differentiation RT-PCR studies were performed using an unpaired two-sided T test. *P*-values for each
466 statistical comparison are indicated within the panels.

467 **Supplemental Figure 11:** Representative immunofluorescence staining for α SMA (red) and Sfrp2 (yellow)
468 within dorsal skin sections of 6 month *WT*, *Gnas E1+/-*, *Sfrp2-/-* and *Gnas E1+/-;Sfrp2-/-* mice in
469 unaffected skin regions.

470 **Supplemental Figure 12:** (A) Quantification of total SCOs identified within female *Gnas E1+/-* and *Gnas*
471 *E1+/-;Sfrp2-/-* mice (B) Quantification of total SCOs identified between male and female *Gnas E1+/-* mice
472 up to 32 weeks of age. (C) Quantification of total SCOs identified between male *Gnas E1+/-* and *Gnas*
473 *E1+/-;Sfrp2-/-* mice with either maternally-inherited or paternally-inherited *Gnas* mutations.

474 **Discussion:**

475 Our data are the first to provide direct evidence that SCO formation in *Gnas E1+/-* mice is initiated by the
476 inappropriate expansion and differentiation of HF-resident dermal sheath cells into osteoblasts. We also
477 demonstrate that following their initial development, SCOs progressively expand through the recruitment
478 and differentiation of a heterogenous population of basal epithelial cells, reactive myofibroblasts, and
479 perivascular cells within the surrounding dermis. These findings correlate with clinical observations in
480 patients with AHO in whom SCOs develop within the dermis and subcutaneous tissue and do not penetrate
481 underlying fascial planes.

482 We performed lineage tracing using an *Osterix-mCherry* transgenic reporter system [49] in order
483 to characterize the presence of dermal-resident osteoprogenitors. *Osterix* has been recognized as an

484 indispensable transcription factor necessary for the commitment of mesenchymal progenitors to the
485 osteogenic lineage and to osteoblast differentiation. Our investigations led to the identification of Osterix+
486 cell types within the HF of both *WT* and *Gnas E1+/-* mice. These data align with prior studies demonstrating
487 postnatal extraskeletal Osterix expression in tissues such as olfactory glomerular cells [64], intestinal crypt
488 stem cells [64,65] and the renal proximal convoluted tubules [49]. Given that the HF contains multiple
489 epithelial and mesenchymal-derived progenitors, we performed immunofluorescence co-localization
490 studies and identified that these Osterix+ cells specifically corresponded to mesenchymal-derived dermal
491 sheath cells in the HF based on the co-expression studies with α SMA.

492 The dermal sheath has recently been recognized as a substantial source of mesenchymal progenitors
493 within the HF that exhibit high plasticity and self-renewal capacity throughout adulthood (for review, see
494 [66]). *In vivo* fate-mapping studies of dermal sheath cells using a tamoxifen-inducible α SMA $CreER^{T2}$;YFP
495 mouse model have demonstrated that there is a subset of HF stem cells within the dermal sheath that can
496 regenerate out to 24 months post tamoxifen injection and can differentiate and repopulate into multiple cell
497 types within the regenerating HF [50,67]. In addition, studies using human and rat-derived dermal sheath
498 cells have been shown to differentiate into adipocytes, osteoblasts and chondrocytes *in vitro* [36,68]. These
499 data, in conjunction with our genetic fate-mapping studies demonstrating that *Gnas E1+/-* dermal sheath
500 cells differentiate into osteoblasts and osteocytes, further emphasize the plasticity of these HF-resident
501 mesenchymal progenitors. Future transplantation studies assessing the osteogenic capacity of purified
502 dermal sheath cells using methods such as a subcutaneous implantation or calvarial defect models are
503 warranted.

504 Our genetic fate-mapping studies in 10-month-old *Gnas E1+/-;Osx-mCherry* mice already
505 containing SCOs identified Osterix+ populations dispersed throughout the surrounding epidermis and
506 dermis. We hypothesize that this heterogenous expression pattern within the dermis is attributed to the
507 recruitment of activated dermal myofibroblasts and pericytes in response to lesion development. In addition,
508 our observations of Osterix expression within basal epithelial cells and epithelial-derived HF progenitors
509 implicate that these populations are undergoing epithelial-mesenchymal transition. These observations

510 directly correlate with prior fate-mapping studies that have shown that in postnatal *Gnas* homozygous
511 deletion models, initial heterotopic bone formation is driven by the osteogenic differentiation of local
512 mesenchymal progenitors; however, the progressive expansion of these lesions over time is driven by the
513 recruitment of surrounding cell types to the lesion site for subsequent osteogenic differentiation [69,70].

514 In conjunction with assessing the cellular populations that contribute to SCO formation, we also
515 identified significant variations in Sonic Hedgehog, TGF- β , BMP, and Wnt signaling activity within SCO-
516 containing skin regions of *Gnas* *EI*^{+/−} mice by RT-PCR array and immunofluorescence. These data are of
517 particular interest given that each of these pathways have been shown to contribute to the pathogenesis of
518 trauma-induced HOs [1,71–75] but to date have not been fully implicated in the context of ossification
519 formation in AHO or POH. Consequently, further studies are warranted to further understand the role of
520 the $G\alpha_s$ -PKA-cAMP signaling cascade in mediating epithelial-mesenchymal interactions within the hair
521 follicle microenvironment. Additionally, despite these encouraging data, it is also important to acknowledge
522 that these findings are representative of the global transcriptional changes within the skin at 12 months of
523 age with the presence of established SCOs contained within the dermis. To this point, it is likely that there
524 are additional and alternative contributing pathways throughout the various stages of SCO development
525 that are restricted to specific timeframes, tissue microenvironments and/or individual cell populations that
526 may not be most representative within this current data set. Consequently, these data pose an interesting set
527 of additional questions into the spatiotemporal activation of varying cell types involved in the pathogenesis
528 of heterotopic bone formation that warrants further exploration through the use of techniques such as single
529 cell RNA sequencing and spatial transcriptomics.

530 Finally, we had carried out microarray analysis of RNA from dermal fibroblast cultures derived
531 from skin biopsies from patients with AHO and POH presenting with varying degrees of SCOs. By
532 comparing gene expression profiles from these patients, we had identified a direct correlation between
533 *SFRP2* mRNA expression and SCO severity. Although *SFRP2* was initially characterized as a secreted
534 protein that competitively binds and inhibits ligands essential for canonical Wnt signaling [39–41,43,76],
535 more recent studies have identified this gene to function as a negative regulator of both epithelial

536 proliferation and epithelial to mesenchymal transition [77–79]. We also analyzed *Sfrp2* expression in the
537 skin of *Gnas* *EI*^{+/−} mice and similarly found strong expression within the HF and its surrounding dermis
538 and basal epithelium. Our findings could be consistent either with SFRP2 playing a causal role in the
539 initiation of SCO development or with SFRP2 upregulation being a response to mitigate further SCO
540 formation. In order to distinguish these two possibilities, we investigated the development of SCOs in *Gnas*
541 *EI*^{+/−}; *Sfrp2*^{−/−} mice. We found that loss of *Sfrp2* exacerbated the development of SCOs resulting from
542 heterozygous loss of *Gnas* in terms of both age of onset and total number of SCOs. These results imply that
543 the upregulation of *SFRP2* seen in both humans and mice likely represents a compensatory mechanism that
544 limits further SCO development and/or progression. Our findings raise the possibility that administration
545 of SFRP2 or a functional agonist may be a potential therapeutic strategy for the prevention and treatment
546 of heterotopic ossifications.

547

548 **Materials and Methods**

549 Generation and maintenance of mice: All animal studies and protocols were carried out in accordance with
550 the standards of the UConn Health Animal Care and Use Committee. Mice were fed a standard diet of
551 mouse chow and water *ad libitum*. Mouse strains and their background are outlined in Table 1. The
552 generation of *Gnas* *EI*^{+/−} mice carrying a targeted disruption of exon 1 of *Gnas* [27,34] as well as the
553 generation and characterization of *Osx-mCherry*[49] mice and *αSMACre*^{ERT2}; *Ai9*^{fl/fl} [53] mice have been
554 previously described. *Sfrp2*^{tm1.1Brl} mice (from here on termed *Sfrp2*^{−/−} mice) were purchased from Jackson
555 Labs. *Gnas* *EI*^{+/−}, *Sfrp2*^{−/−} and *αSMACre*^{ERT2}; *Ai9*^{fl/fl} mice were maintained on a pure 129SvEv background.
556 *Osx-mCherry* mice were maintained on a CD1 background; therefore for *Gnas* *EI*^{+/−}; *Osx-mCherry* mice
557 used for fate-mapping studies, the mice were bred as F1 129xCD1 crosses and the *Osx-mCherry* littermates
558 were used as controls. Mice were genotyped by PCR analysis using the primer sequences outlined in Table
559 2. For experiments utilizing *αSMACre*^{ERT2}; *Ai9*^{fl/fl} mice, Cre activation was performed by intraperitoneal
560 injection of tamoxifen in corn oil (75 µg/g body weight). Mice were administered 2 doses of tamoxifen
561 spaced 48 hours apart.

562

Table 1: Mouse Models Utilized

<u>Mouse</u>	<u>Description and Nomenclature</u>	<u>Source</u>
<i>Gnas</i> <i>EI</i> ^{+/−}	<i>Gnas</i> ^{tm1Gwa} Global heterozygous inactivation of <i>Gnas</i> by targeted disruption of exon 1	Germain-Lee <i>et al.</i> [27]
<i>αSMACre</i> ^{ERT2}	Tg(Acta2-cre/ERT2)1Ikal Transgenic mouse with construct containing murine <i>αSMA</i> 1.1kb promoter, intron 1 and a 2.0 kb <i>CreERT2</i> fragment	Greevic <i>et al</i> [53]
<i>Ai9</i> ^{fl/fl}	Gt(ROSA)26Sor ^{tm9(CAG-tdTomato)Hze} Cre reporter with a loxP-flanked stop cassette preceding CAG-driven tdTomato.	Madisen <i>et al.</i> [80]

<i>Osx-mCherry</i>	Tg(Sp7/mCherry)2Pmay Expression of <i>Cherry</i> protein from Osterix promoter	Strecker <i>et al.</i> [49]
<i>Sfrp2</i> ^{-/-}	<i>Sfrp2</i> ^{tm1.1Brle} Targeted global deletion of <i>Sfrp2</i> exons 1 and 2	Morello <i>et al.</i> [63]
<i>Gnas</i> <i>E1</i> ^{+/-} ; <i>Sfrp2</i> ^{-/-}	Global heterozygous inactivation of <i>Gnas</i> and global deletion of <i>Sfrp2</i> exons 1 and 2	Generated and maintained in Germain-Lee laboratory

563

Table 2: PCR Oligonucleotide Primer Sequences

<u>Gene</u>	<u>Forward (5' → 3')</u>	<u>Reverse (5' → 3')</u>
<i>Gnas</i>	TCGTCCCCTCAGTTGGCCAC	CCTCCCAACAAATCGCACAC
<i>Neo I</i>	GAATTCTGCCAATGACAAGAC	
<i>Osx-mCherry</i> transgene	ATCCTCTTGGAGTCCCTGGT (oIMR19534 oligo)	GCGCATGAACTCCTTGATGA (oIMR19535 oligo)
<i>CRE</i>	CAGGTTCGTTCACTCATGGA	TGCATGATCTCCGGTATTGA
<i>ROSA26</i> <i>Ai9</i> (WT)	AAGGGAGCTGCAGTGGAGTA (oIMR9020 oligo)	CCGAAAATCTGTGGGAAGTC (oIMR9021 oligo)
<i>ROSA26</i> <i>Ai9</i> (<i>tdTomato</i>)	CTGTTCTGTACGGCATGG (oIMR9105 oligo)	GGCATTAAAGCAGCGTATCC (oIMR9103 oligo)
<i>SFRP2</i> (WT Forward)	GAGGTGAAAGAGGTTGGTCGT	
<i>SFRP2</i> (null forward)	TTGAGCCCGGTGTTACTGGAG	
<i>SFRP2</i> (common reverse)		AAACCTTATGACCTCCTGTGAGG

564

565 Human GNAS mutation analyses of participants: All human studies were approved by the Johns Hopkins
566 Medicine Institutional Review Board (E.L.G-L.'s institution at that time). Informed consent was obtained
567 from all participants (or parent of participant) prior to enrollment. Assent was obtained when appropriate
568 based on age and emotional/cognitive maturity. In brief, peripheral blood from all participants was collected

569 within the Johns Hopkins Institute of Clinical and Translational Research. DNA isolation and *GNAS*
570 mutation analyses of the 13 coding exons and all intron/exon boundaries, including determination of the
571 parental origin of the mutated allele, were performed for all participants in our investigations (E.L.G-L.,
572 Johns Hopkins laboratory) as previously described [22,24,25,81]. Therefore, all participants were mutation-
573 confirmed. We also documented that the POH participant in our study had inheritance of the mutation from
574 the paternal allele, which is the pattern of inheritance typical of POH [81]. The participant with POH had
575 very severe SCOs as well as deep, penetrating ossifications assessed by surgical pathology of excised
576 ossifications as well as CT scan and magnetic resonance imaging (MRI) performed for clinical reasons.

577 *Human dermal biopsy culture generation from mutation-confirmed AHO and POH participants:* Informed
578 consent and assent specifically for the skin biopsies was additionally obtained from all participants (or
579 parent of participant) prior to enrollment. For consistency, skin biopsies were performed by the same
580 investigator (E.L. G-L.) on all participants with mutation-confirmed AHO (both PHP1A and PPHP) and
581 POH, as well as on unaffected family members (in whom no *GNAS* mutations were identified). Skin
582 biopsies were performed according to standard clinical procedures using a 2 mm biopsy punch (Accu-Punch
583 Biopsy Punch, Accuderm Inc, Ft Lauderdale, FLA) after numbing the region with 1% lidocaine. Biopsies
584 of SCO regions were performed on an extremity within a location of significant subcutaneous tissue. If no
585 SCOs were present, biopsies were collected on the ventral surface of the participant's forearm. Primary
586 cultures were generated and maintained in Minimum Essential Medium (Eagle's) with Earle's Salts
587 supplemented with 85 units of Penicillin and Streptomycin/ml, 1.7 moles L-glutamine and 13% Fetal
588 Bovine Serum (FBS). RNA was extracted using a cesium chloride gradient according to routine well-
589 established procedures as previously described [82]. There were no complications post-procedure.

590 *Microarray analyses from RNA generated from human dermal cultures:* Microarray analyses were
591 performed using RNA obtained from dermal fibroblast cultures from 5 mutation-confirmed participants,
592 consisting of 4 with AHO and 1 with POH. Participants with AHO with varying degrees of SCOs were
593 chosen. The severity of SCOs was based on the number of individual lesions noted on palpation by one
594 consistent examiner (E.L.G-L.) and categorized as either none, minimal, moderate, or severe with minimal

595 < 3, moderate = 3 - 25, and severe > 25. The number of SCOs > 1.0 cm increased with the degree of
596 severity.

597 All microarray analyses were performed by the Johns Hopkins Medical Institutions Microarray
598 Core Facility using an Affymetric GeneChips U133 Plus 2.0 (human) chip (Santa Clara, CA). Differential
599 gene expression was determined on the basis of exhibiting either > +2.0 fold or < -2.0 fold change as well
600 as a having a probability of > 0.50. Pairwise comparisons of these samples (ie. two participants analyzed
601 and compared to one another) were performed as shown in Figure 1A. In all three comparisons (P1 x P2,
602 P3 x P2, and P4 x P5), a participant with the greater number (as well as size) of SCOs was compared to a
603 participant with fewer or no ossifications. The distribution of the final subset of differentially expressed
604 genes is shown in Figure 1, panels B and C.

605 Human SFRP2 northern blot studies: RNA isolation and Northern blot analysis from human cultured
606 fibroblasts were performed as previously described[82] using 10 micrograms of RNA per lane and analyzed
607 by phosphorimager quantitation (Bio-Rad, Hercules, CA) of the resulting autoradiograph of the Northern
608 blot (Bio-Rad, Hercules, CA) and expressed as a ratio of *SFRP2* to *S26* [82]. For these studies, there were
609 an additional 2 participants with mutation-confirmed AHO, and therefore a total of 9 participants: 6 with
610 AHO (2 with PHP1A and 4 with PPHP), 1 with POH, and 2 unaffected family members for whom
611 sequencing revealed no mutation in *GNAS* (Figure 1D).

612 Mouse histology

613 Following euthanasia by CO₂ asphyxiation, dorsal skin hair was removed using an electric trimmer and a
614 depilatory cream (Nair, Church & Dwight, New York, NY). Dorsal skin samples, including the underlying
615 adipose and muscle were harvested and fixed in 10% neutral buffered formalin (NBF) overnight at 4°C,
616 followed by 30% sucrose in PBS for 24 hours at 4°C and subsequently embedded into Optimal Cutting
617 Temperature (OCT). Tissue blocks were stored at -20°C until use, and cryosections (10-15µm) were
618 collected using a cryostat tape-transfer system (Section-lab, Hiroshima, Japan) as previously described [83].
619 Samples were imaged using a Ziess Axioscan Z1 high-speed automated image acquisition system
620 (Cat#440640-9903-000) and a high resolution camera (AxioCam HRm).

621

622 *Bone mineral label visualization:* *WT* and *Gnas E1+/-* mice were administered intraperitoneal injections of
623 calcein [10mg/kg (Sigma C-0875)] or alizarin complexone (30mg/kg (Sigma A-3882)] 2-7 days prior to
624 sacrifice. Dorsal skin sections were stained with calcein blue (Sigma M1255) for 10 minutes to visualize
625 total mineral content, as previously described [30,83]. For multiplex staining, skin sections were decalcified
626 using a sodium acetate and sodium tartrate dibasic dihydrate solution in water (pH 4.2) to remove bone
627 mineral labels from the tissue section as described previously [83].

628 *Immunofluorescence:* Antibodies utilized for immunofluorescence staining are listed in Table 3. Tissues
629 were permeabilized in 0.1% Triton X for 10 minutes, blocked using a Mouse-on-Mouse Immunodetection
630 Kit (Vector Laboratories BMK-2202) diluted in a 2% bovine serum albumin in PBS solution for 45 minutes
631 and stained with primary antibody overnight at 4°C. The following day, sections were washed in 0.1%
632 Triton X in PBS for 10 minutes and stained with secondary antibodies (1:300 dilution) in 2% BSA in PBS
633 at room temperature for 1 hour. Tissue sections were mounted in a 50% glycerol / PBS solution containing
634 4',6-diamidino-2-phenylindole (DAPI) (1:1000 dilution) and imaged.

Table 3: Antibodies Utilized for Immunofluorescence and Flow Cytometry

<u>Antibody</u>	<u>Source</u>	<u>Application</u>	<u>Dilution Factor</u>
αSMA-Alexa 488 Mouse Monoclonal	ThermoFisher 53-9760-82 Clone 1A4	IF, Flow	IF: 1:100 Flow: 1:100
αSMA-Cy3 Mouse monoclonal	ThermoFisher 53-9760-82 Clone 1A4	IF	IF: 1:100
Sfrp2-Alexa 647 Mouse Monoclonal	Santa Cruz SC-365524 Clone C-4	IF	IF: 1:50
Snai1 Rabbit Polyclonal	Santa Cruz SC-28199 Clone H-130	IF	IF: 1:100
Gli1 Rabbit Polyclonal	Novus Biologicals NBP1-78259	IF	IF: 1:100
TGF-β1 Rabbit Polyclonal	Novus Biologicals NBP1-45891	IF	IF: 1:100

Sost Goat Polyclonal	Novus Biologicals AF1589	IF	IF: 1:200
CD31-APC Rat Monoclonal	Miltenyi Biotec 130-123-813 Clone 390	Flow	Flow: 1:200
CD45-APC Rat Monoclonal	Miltenyi Biotec 130-123-784 Clone 30F11	Flow	Flow: 1:200
Ter119-APC Rat Monoclonal	Miltenyi Biotec 130-102-290 Clone Ter-119	Flow	Flow: 1:200
AffiniPure Fab Fragment Donkey Anti-Rabbit IgG (H+L) Cy3-conjugated	Jackson ImmunoResearch Laboratories 711-167-003	IF (Secondary)	IF: 1:300
AffiniPure Donkey Anti-Rabbit IgG (H+L) Alexa Fluor 488 conjugated	Jackson ImmunoResearch Laboratories 711-545-152	IF (Secondary)	IF: 1:300
Donkey anti-Goat IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 647	Thermo Fisher Scientific Catalog # A-21447	IF (Secondary)	IF: 1:300

635

636 ALP enzyme histochemistry: Alkaline phosphatase (ALP) enzyme histochemistry was performed on tissue
637 sections following the methods previously described [30,83,84]. Briefly, slides were incubated in an
638 alkaline buffer (1M Tris, 1M MgCl₂, 2 M NaCl in deionized water pH 9.5) for 10 minutes, followed by
639 exposure to an alkaline Fast Red substrate buffer for 30 minutes. Sections were mounted in 50%
640 glycerol/PBS solution with DAPI and coverslipped for image acquisition. For experiments performed with
641 *Osx-mCherry* and *αSMA-CRE^{ERT2};Ai9^{fl/fl}* reporter mice, ALP staining was performed using a Vector Blue
642 Alkaline Phosphatase Substrate Kit (Vector Laboratories SK-5300) for 30 minutes to avoid overlap of
643 fluorescent signals.

644 Chromogenic staining: General tissue architecture within the dermis was visualized by staining tissues with
645 0.025% toluidine blue in deionized water for 5 minutes as previously described [83]. Von Kossa staining
646 was performed by incubating slides with 4% silver nitrate solution and exposing slides to 2400 kJ of
647 ultraviolet light using a UV Stratalinker. Safranin O and fast green staining were performed by staining

648 sections in Weigert's iron hematoxylin for 5 minutes to visualize nuclei, rinsed in tap water for 10 minutes,
649 stained in 0.2% fast green solution for 2 minutes, rinsed in 1% acetic acid solution for 2 minutes, and stained
650 in 0.1% safranin O solution for 1 minute. Masson trichrome staining was performed using a commercially
651 available kit (Sigma HT15-1KT) based on the manufacturer's instructions.

652 Dorsal Skin Flow Cytometry: Flow cytometry analyses were performed using single cell suspensions
653 isolated by enzymatic digestion from 10 month old *WT* and *Gnas E1+/-* dorsal skin samples using slightly
654 modified methods as described by *Walmsley et al, (2016)* [85]. Briefly, the entire dorsal skin was harvested,
655 avoiding collection of underlying adipose or skeletal muscle, and placed in sterile PBS on ice. Harvested
656 samples were minced into 1-2 mm fragments and placed into DMEM supplemented with 2mg/mL
657 collagenase IV, and 0.5 mg/mL collagenase I. Collection beakers were then placed onto a magnetic stirrer
658 at medium speed inside a cell culture incubator at 37°C to promote tissue digestion. After 90 minutes of
659 digestion, an equal amount of DMEM containing 10% FBS was added to the digested tissue sample, passed
660 through a 100 µm filter, and centrifuged at 300 g for 10 minutes at 4°C. The collected cell pellet was
661 resuspended in Zombie Fixable Live/Dead Staining Solution in PBS and incubated for 30 minutes at 4°C
662 protected from light. Samples were subsequently washed and centrifuged in Staining Media [(Hanks'
663 Balanced Salt Solution (HBSS) supplemented with 10% FBS and 10µg/mL DNase I)]. The remaining pellet
664 was stained for 20 minutes at 4°C in Staining Media with primary conjugated antibodies for cell surface
665 markers (antibodies, clones, and dilution factors are summarized in Table 4). Stained cells were washed,
666 centrifuged, fixed in 4% PFA for 15 minutes at 4 °C and incubated in 1X InVitrogen eBioscience Cell
667 Permeabilization buffer (InVitrogen 00-8333-56) for 15 minutes at 4 °C. After centrifugation, the
668 resuspended pellet was stained with an Alexa-488 conjugated αSMA antibody clone 1A4 (1:100 dilution)
669 for 30 minutes at 4 °C. Washed and filtered cells were analyzed with a BD-LSRII flow cytometer with
670 gates established according to unstained and single-channel controls. All compensations were identified
671 using FACS Diva Software, and downstream data analysis was performed using FlowJo Software v10.

672 Primary dermal explant cultures: Primary dermal explant cultures were established from dorsal skin
673 fragments isolated from 9-month *Gnas E1+/-; αSMA-CRE^{ERT2}; Ai9^{f/f}* and *αSMA-CRE^{ERT2}; Ai9^{fl/fl}* mice

674 following methods as previously described by *Seluanov et al* 2010 [57]. Confluent primary cell cultures
675 were dissociated using Accutase and subsequently prepared for either fluorescence activated cell sorting
676 (FACS) or passaged onto 24-well culture dishes at a cellular density of 5.0×10^4 cells per well for osteogenic
677 differentiation or collagen deposition assays. For experiments using recombinant Sfrp2 treatment, cultures
678 were exposed for the duration of treatment with either 100ng/mL recombinant mouse Sfrp2 (R&D Systems
679 Cat 1169-FR-025) or vehicle control (PBS with 0.1% BSA).

680 *Dermal explant FACS sorting:* FACS analysis and cell sorting of Ai9+ cells from primary dermal explants
681 were performed using a BD FACSAria II (BD Biosciences, San Jose, CA, USA). Primary cell culture
682 pellets were resuspended into FACS Staining Media (HBSS supplemented with 10% FBS) containing
683 Sytox Blue Dead Cell Stain (InVitrogen S34857). Sorting gates were established using cultures generated
684 from non-transgenic cultures and unstained transgenic cultures. All downstream data analysis was
685 performed using FlowJo in order to determine the percentage of Ai9+ sorted populations.

686 *In vitro osteogenic differentiation assays:* Osteogenic differentiation capacity was assessed *in vitro* by
687 exposing cultures to DMEM/F12 with 10% FBS, 1% penicillin/streptomycin supplemented with 50 μ g/mL
688 ascorbic acid and 10mM Beta-glycerophosphate for 28 days. Live imaging studies assessing bone
689 mineralization was performed by supplementing culture media with 30 μ M calcein (Sigma C-0875)
690 overnight. The following day, areas of mineralization and their localization to Ai9+ populations were
691 assessed by fluorescence microscopy. Cultures were subsequently fixed in 4% PFA and stained for ALP
692 using the Vector Blue Alkaline Phosphatase Substrate Kit (Vector Laboratories SK-5300) and Von Kossa
693 using a 4% silver nitrate solution and exposing cultures to 2400 kJ of ultraviolet light using a UV
694 Stratalinker.

695 *In vitro collagen deposition assays:* Total collagen deposition from dermal explants cultured in
696 DMEM/F12 containing 10% FBS for 14 days was assessed using a Sirius red/fast green assay as previously
697 described [86,87]. Briefly, cells were fixed using a Kahle fixative solution, stained for 30 minutes in a 0.1%
698 Fast Green and 0.2% Sirius Red solution in saturated picric acid in distilled water. Stained cultures were
699 visualized under brightfield microscopy to assess collagen deposition and destained using a 0.1N sodium

700 hydroxide solution in absolute methanol for absorbance measurements at 540nm and 605nm. Calculations
701 of total collagen per well using these absorbance measurements were performed based on the previously
702 described methods [87].

703 RNA purification

704 Total RNA was extracted from dermal explant cultures, FACS-sorted cultures and 1cm² dorsal skin samples
705 using an RNEasy Micro Kit (Qiagen) for FACS-sorted cultures and a Direct-zol RNA Miniprep Kit (Zymo
706 Research) for dermal explant and dorsal skin samples following the manufacturer's instructions. Prior to
707 RNA isolation, harvested dorsal skin tissue was placed into RNA Later solution (InVitrogen) and stored at
708 -80°C. Prior to RNA isolation, the tissue was thawed into RNA Later solution, minced into 1-2mm
709 fragments and subsequently placed into 1mL of Trizol (Invitrogen) on ice and homogenized. RNA samples
710 were treated with DNase I (New England Biosciences) and were concentrated through a Monarch RNA
711 Cleanup Kit (NEB) to ensure no carryover of contaminants.

712 Quantitative RT-PCR

713 1 µg of RNA was utilized for reverse transcription using a high capacity cDNA reverse transcription kit
714 (Applied Biosystems). Quantitative RT-PCR was performed using a Bio-Rad CFX96 ThermoCycler (Bio-
715 Rad Laboratories, Hercules, CA) within a 20 µL reaction, consisting of iTaq Universal SYBR Green
716 supermix (Bio-Rad Laboratories, Hercules, CA), 10 µM of forward and reverse primers and 25ng of cDNA.
717 The specific primer sequences utilized are listed in Table 4.

Table 4 Real-time Quantitative RT-PCR Oligonucleotide Primer Sequences

(Note: All Forward and Reverse Primer Sequences are Located on Different Exons)

Gene	Forward (5' → 3')	Reverse (5' → 3')
<i>Acvr2a</i>	GCGTTCGCCGTCTTCTTATC	GTTGGTTCTGTCTCTTCCCAAT
<i>Acvr2b</i>	AGGCAACTCTGCAACGAG	CTTCCGATGACGATACTCCAG
<i>Aldh1a3</i>	GGGTACACTGGAGCTAGGA	CTGGCCTCTTCTGGCGAA
<i>Alpl</i>	AATGAGGTACATCCATCC	CGAGTGGTAGTCACAATGC
<i>Acta2(αSMA)</i>	GAGACGCTGCTCCAGCTATGT	CCTCTTTGCTCTGGGCTTCA
<i>Arhgap28</i>	CAGCAGAAAATCCATTCTCGC	CTGAGGCTTGAGAGTTGGAGC
<i>Axin2</i>	CCAAGACCAAGGAGGAGATCG	CTAACATCCACTGCCAGACATC
<i>Bglap1</i>	TCCAAGCAGGAGGGCAATAAG	GCGTTGTAGGCAGGTCTCAAG
<i>Bmp2</i>	CGGACTGCGGTCTCCTAA	GGGAAAGCAGCAACACTAGA

<i>Bmp4</i>	GAGGAGTTCCATCACGAAGA	GCTCTGCCGAGGGAGATCA
<i>Bmp7</i>	ACGGACAGGGCTCTCCTAC	ATGGTGGTATCGAGGGTGGAA
<i>Bmpr1a</i>	GGCCATTGCTTGCCATTATAG	CTTCGGTGAATCCTGCATTG
<i>Bmpr1b</i>	CCCTCGGCCAAGATCCTA	CAACAGGCATTCCAGAGTCATC
<i>Gli1</i>	GAGGTTGGATGAAGAAGCA	CTTGTGGTGGAGTCATTGGA
<i>Gli2</i>	CGAGAACAGATGTCAGCGAG	TGAGGCTGCATAGTGATTGC
<i>Gpr133</i>	ACTATGGATAGGCTGGGGG	CCACAAAGGCCAAATAGCG
<i>Gsa</i>	ACCAGCGAACGAGGGAGAA	CCCATCCGGCGTCACTAAT
<i>Ibsp</i>	CGCCACACTTCCACACTCTC	CTTCCTCGTCGCTTCCTTCAC
<i>Lgr4</i>	TACAACCTGGCTGGTAACGACC	GGAGGGTTAGGACTTGAGTCT
<i>Lgr5</i>	GGACCAGATGCGATAACCGC	CAGAGGCGATGTAGGAGACTG
<i>Lgr6</i>	GGACCAGATGCGATAACCGC	ACTGAGGTCTAGGTAAGCCGT
<i>Ptch1</i>	CTCCTCATATTGGGGCCTT	AATTCTCGACTCACTCGTCCA
<i>Rspo3</i>	TGTCAGTATTGTGCACTGTGAGGT	TCGGACCCGTGTTCAGTCC
<i>Sfrp2</i>	CGTGGGCTCTCCTCTTCG	ATGTTCTGGTACTCGATGCCG
<i>Shh</i>	TGGCCTGGAGTGAAGCTCGA	CGGTCCAGGAAGGTGAGGAAG
<i>Sp7 (Osterix)</i>	GGATGGCGTCCTCTGCTTGAG	GAGGAGTCCATTGGTGCTTGAGA
<i>Tgfb1</i>	GCCCTGGATACCAACTATTGC	AAGTTGGCATGGTAGCCCTT
<i>Tgfb2</i>	ATAAAATCGACATGCCGTCC	TTGTTGAGACATCAAAGCGG
<i>Tgfb3</i>	ATTCGACATGATCCAGGGAC	TCTCCACTGAGGACACATTGA
<i>Tgfb1</i>	GCTCCTCATCGTGTGGTG	CAGTGACTGAGACAAAGCAAAGA
<i>Tgfb2</i>	GTCGGATGTGGAAATGGAAG	CTGGCCATGACATCACTGTT
<i>Tgfb3</i>	CCGGCAGGAGGTGAAAGT	GAGTAGCCCAGACGAGTCCC
<i>Wnt3a</i>	GGATACCTCTAGTGCTCTGC	TGCTCAGAGAGGAGTACTGG
<i>Wnt5a</i>	CAACTGGCAGGACTTCTCAA	CATCTCCGATGCCGGAAC

718

719 Statistical analysis

720 All statistical analyses were performed using Graphpad Prism Version 9 (GraphPad Software, Inc., La Jolla,
721 CA, USA) with *P*-values < 0.05 considered statistically significant. For all analyses that compared data
722 obtained from *WT* and *Gnas E1+/-* mice at one discrete time point (i.e. Flow and FACS analyses and cell
723 culture RT-PCR studies), data were analyzed using an unpaired two-tailed t-test. For all analyses observed
724 at one discrete timepoint comparing data from three or more groups from *WT*, *Gnas E1+/-*, *Sfrp2-/-* or *Gnas*
725 *E1+/-;Sfrp2-/-* mice, the data were analyzed by a one-way ANOVA with a post-hoc Tukey test for multiple
726 comparisons. Each *n* value refers to the number of mice. All data points were included in the data analysis.
727 No samples were excluded. *P*-values for each statistical comparison are indicated within the figure panels.

728 All mouse analyses and human data are included within the main and supplemental figures within

729 this manuscript.

730

731 **Acknowledgments**

732 We sincerely thank the patients and their families who made this work possible. We also thank the Johns
733 Hopkins University School of Medicine Institute of Clinical and Translational Research and the Johns
734 Hopkins Microarray Core Facility, as well as Evan Jellison and the UConn Health Flow Cytometry Core
735 Facility for their assistance in a portion of these studies. The authors declare that there are no conflicts of
736 interest.

737 **Financial Support**

738 This work was supported in part by U.S. Food and Drug Administration Orphan Products Development
739 Grants R01 FD-R-002568 and R01 FD-R-003409 (to E.L.G-L.), Thrasher Research Foundation Grant
740 02818-8 (to E.L.G-L.), National Institutes of Health Grants R21 HD078864 and R01 AR081659 (to E.L.G-
741 L.), and National Institutes of Health Grant M01 RR00052 (to the Johns Hopkins University School of
742 Medicine Institute of Clinical and Translational Research). P.M. was supported by training grant NIDCR
743 640T90DE021989-09.

744 **Authors' roles:** P.Mc., P.Ma., S.R., I.K., D.R., and E.L.G-L. contributed to study design. P.Mc., S.R., S.
745 E., Q.Y., and E.L.G-L. collected and analyzed data. P.Mc. and E.L.G-L. wrote the initial manuscript. P.Mc.,
746 P.Ma., S.R., S.E., I.K., and E.L.G-L. critically revised the manuscript.

747

748

749 **References:**

- 750 1. Meyers C, Lisiecki J, Miller S, Levin A, Fayad L, Ding C, et al. Heterotopic Ossification: A
751 Comprehensive Review. *JBMR Plus*. 2019;3: e10172. doi:10.1002/jbm4.10172
- 752 2. Cappato S, Gamberale R, Bocciardi R, Brunelli S. Genetic and Acquired Heterotopic Ossification:
753 A Translational Tale of Mice and Men. *Biomedicines*. 2020;8: 1–20.
754 doi:10.3390/BIOMEDICINES8120611
- 755 3. Cocks M, Mohan A, Meyers CA, Ding C, Levi B, McCarthy E, et al. Vascular patterning in
756 human heterotopic ossification. *Hum Pathol*. 2017;63: 165–170.
757 doi:10.1016/j.humpath.2017.03.005
- 758 4. Shore EM, Xu M, Feldman GJ, Fenstermacher DA, Brown MA, Kaplan FS. A recurrent mutation
759 in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans
760 progressiva. *Nat Genet*. 2006;38: 525–527. doi:10.1038/ng1783
- 761 5. Kaplan FS, Le Merrer M, Glaser DL, Pignolo RJ, Goldsby RE, Kitterman JA, et al. Fibrodysplasia
762 ossificans progressiva. *Best Pract Res Clin Rheumatol*. 2008;22: 191–205.
763 doi:10.1016/J.BERH.2007.11.007
- 764 6. Plagge A, Kelsey G, Germain-Lee EL. Physiological functions of the imprinted Gnas locus and its
765 protein variants Gαs and XLαs in human and mouse. *Journal of Endocrinology*. 2008. pp. 193–
766 214. doi:10.1677/JOE-07-0544
- 767 7. Bastepe M. GNAS mutations and heterotopic ossification. *Bone*. 2018;109: 80–85.
768 doi:10.1016/j.bone.2017.09.002
- 769 8. Mantovani G, Bastepe M, Monk D, De Sanctis L, Thiele S, Usardi A, et al. Diagnosis and
770 management of pseudohypoparathyroidism and related disorders: First international Consensus
771 Statement. *Nat Rev Endocrinol*. 2018;14: 476–500. doi:10.1038/s41574-018-0042-0
- 772 9. Linglart A, Levine MA, Jüppner H. Pseudohypoparathyroidism. *Endocrinology and Metabolism*
773 *Clinics of North America*. W.B. Saunders; 2018. pp. 865–888. doi:10.1016/j.ecl.2018.07.011
- 774 10. Germain-Lee EL. Management of pseudohypoparathyroidism. *Current Opinion in Pediatrics*.
775 Lippincott Williams and Wilkins; 2019. pp. 537–549. doi:10.1097/MOP.0000000000000783
- 776 11. Haldeman-Englert CR, Hurst AC, Levine MA. Disorders of GNAS Inactivation. *GeneReviews®*.
777 1993. Available: <https://pubmed.ncbi.nlm.nih.gov/29072892/>
- 778 12. McMullan P, Germain-Lee EL. Aberrant Bone Regulation in Albright Hereditary Osteodystrophy
779 due to Gnas Inactivation: Mechanisms and Translational Implications. *Current Osteoporosis*
780 *Reports*. 2022. pp. 78–89. doi:10.1007/s11914-022-00719-w
- 781 13. Kaplan FS, Shore EM. Progressive Osseous Heteroplasia. *J Bone Miner Res*. 2000;15: 2084–2094.
782 doi:10.1359/JBMR.2000.15.11.2084
- 783 14. Adegbite NS, Xu M, Kaplan FS, Shore EM, Pignolo RJ. Diagnostic and mutational spectrum of
784 progressive osseous heteroplasia (POH) and other forms of GNAS -based heterotopic ossification.
785 *Am J Med Genet Part A*. 2008;146A: 1788–1796. doi:10.1002/ajmg.a.32346
- 786 15. Pignolo RJ, Ramaswamy G, Fong JT, Shore EM, Kaplan FS. Progressive osseous heteroplasia:
787 diagnosis, treatment, and prognosis. *Appl Clin Genet*. 2015;8: 37–48. doi:10.2147/tacg.s51064
- 788 16. Davies SJ, Hughes HE. Imprinting in Albright's hereditary osteodystrophy. *J Med Genet*. 1993;30:
789 101–103. doi:10.1136/jmg.30.2.101
- 790 17. Levine MA, Downs RW, Moses AM, Breslau NA, Marx SJ, Lasker RD, et al. Resistance to
791 multiple hormones in patients with pseudohypoparathyroidism. Association with deficient activity
792 of guanine nucleotide regulatory protein. *Am J Med*. 1983;74: 545–556. doi:10.1016/0002-
793 9343(83)91008-2
- 794 18. Germain-Lee EL, Ding C, Deng Z, Crane JL, Saji M, Ringel MD, et al. Paternal imprinting of
795 Galpha(s) in the human thyroid as the basis of TSH resistance in pseudohypoparathyroidism type
796 1a. *Biochem Biophys Res Commun*. 2002;296: 67–72. doi:10.1016/s0006-291x(02)00833-1
- 797 19. Liu J, Erlichman B, Weinstein LS. The stimulatory G protein α -subunit G α s is imprinted in human
798 thyroid glands: Implications for thyroid function in pseudohypoparathyroidism types 1A and 1B. *J*
799 *Clin Endocrinol Metab*. 2003;88: 4336–4341. doi:10.1210/jc.2003-030393

800 20. Mantovani G, Ballare E, Giammona E, Beck-Peccoz P, Spada A. The *Gsa* gene: Predominant
801 maternal origin of transcription in human thyroid gland and gonads. *J Clin Endocrinol Metab.*
802 2002;87: 4736–4740. doi:10.1210/jc.2002-020183

803 21. Nammoum AB, Merriam GR, Moses AM, Levine MA. Reproductive Dysfunction in Women with
804 Albright's Hereditary Osteodystrophy1. *J Clin Endocrinol Metab.* 1998;83: 824–829.
805 doi:10.1210/jcem.83.3.4652

806 22. Germain-Lee EL, Groman J, Crane JL, Beur SM de, Levine MA. Growth hormone deficiency in
807 pseudohypoparathyroidism type 1a: another manifestation of multihormone resistance. *J Clin*
808 *Endocrinol Metab.* 2003;88: 4059–4069. doi:10.1210/jc.2003-030028

809 23. Mantovani G, Maghnie M, Weber G, De Menis E, Brunelli V, Cappa M, et al. Growth hormone-
810 releasing hormone resistance in pseudohypoparathyroidism type Ia: New evidence for imprinting
811 of the *Gsa* gene. *J Clin Endocrinol Metab.* 2003;88: 4070–4074. doi:10.1210/jc.2002-022028

812 24. Germain-Lee EL. Short stature, obesity, and Growth hormone deficiency in
813 Pseudohypoparathyroidism Type 1A. *Pediatr Endocrinol Rev.* 2006;3: 318–327.

814 25. Long DN, McGuire S, Levine MA, Weinstein LS, Germain-Lee EL. Body mass index differences
815 in pseudohypoparathyroidism type 1a versus pseudopseudohypoparathyroidism may implicate
816 paternal imprinting of *Gsa* in the development of human obesity. *J Clin Endocrinol Metab.*
817 2007;92: 1073–1079. doi:10.1210/jc.2006-1497

818 26. Hayward BE, Barlier A, Korbonits M, Grossman AB, Jacquet P, Enjalbert A, et al. Imprinting of
819 the *Gsa* gene GNAS1 in the pathogenesis of acromegaly. *J Clin Invest.* 2001;107.
820 doi:10.1172/JCI11887

821 27. Germain-Lee EL, Schwindinger W, Crane JL, Zewdu R, Zweifel LS, Wand G, et al. A mouse
822 model of albright hereditary osteodystrophy generated by targeted disruption of exon 1 of the
823 *Gnas* gene. *Endocrinology.* 2005;146: 4697–4709. doi:10.1210/en.2005-0681

824 28. Weinstein LS, Yu S, Ecelbarger CA. Variable imprinting of the heterotrimeric G protein G(S) α -
825 subunit within different segments of the nephron. *American Journal of Physiology - Renal*
826 *Physiology. American Physiological Society;* 2000. doi:10.1152/ajprenal.2000.278.4.f507

827 29. Yu S, Yu D, Lee E, Eckhaus M, Lee R, Corria Z, et al. Variable and tissue-specific hormone
828 resistance in heterotrimeric Gs protein α -subunit (*Gsa*) knockout mice is due to tissue-specific
829 imprinting of the *Gsa* gene. *Proc Natl Acad Sci U S A.* 1998;95: 8715–8720.
830 doi:10.1073/pnas.95.15.8715

831 30. McMullan P, Maye P, Yang Q, Rowe DW, Germain-Lee EL. Parental Origin of *Gsa* Inactivation
832 Differentially Affects Bone Remodeling in a Mouse Model of Albright Hereditary
833 Osteodystrophy. *JBMR Plus.* 2021;6: e10570. doi:10.1002/jbm4.10570

834 31. Shore EM, Ahn J, de Beur SJ, Li M, Xu M, Gardner RJM, et al. Paternally inherited inactivating
835 mutations of the GNAS1 gene in progressive osseous heteroplasia. *N Engl J Med.* 2002;346: 99–
836 106. doi:10.1056/NEJMoa011262

837 32. Eddy MC, beur SMJ de, Yandow SM, McAlister WH, Shore EM, Kaplan FS, et al. Deficiency of
838 the α -Subunit of the Stimulatory G Protein and Severe Extraskeletal Ossification. *J Bone Miner*
839 *Res.* 2000;15: 2074–2083. doi:10.1359/JBMR.2000.15.11.2074

840 33. Lin MH, Numbenjapon N, Germain-Lee EL, Pitukcheewanont P. Progressive osseous
841 heteroplasia, as an isolated entity or overlapping with Albright hereditary osteodystrophy. *J*
842 *Pediatr Endocrinol Metab.* 2015;28: 911–918. doi:10.1515/jpem-2014-0435

843 34. Huso DL, Edie S, Levine MA, Schwindinger W, Wang Y, Jüppner H, et al. Heterotopic
844 ossifications in a mouse model of albright hereditary osteodystrophy. *PLoS One.* 2011;6: e21755.
845 doi:10.1371/journal.pone.0021755

846 35. Salemi P, Olson JMS, Dickson LE, Germain-Lee EL. Ossifications in Albright Hereditary
847 Osteodystrophy: Role of Genotype, Inheritance, Sex, Age, Hormonal Status, and BMI. *J Clin*
848 *Endocrinol Metab.* 2018;103: 158–168. doi:10.1210/jc.2017-00860

849 36. Jahoda CAB, Whitehouse CJ, Reynolds AJ, Hole N. Hair follicle dermal cells differentiate into
850 adipogenic and osteogenic lineages. *Exp Dermatol.* 2003;12: 849–859. doi:10.1111/j.0906-

851 6705.2003.00161.x

852 37. Rendl M, Lewis L, Fuchs E. Molecular Dissection of Mesenchymal–Epithelial Interactions in the
853 Hair Follicle. Hogan B, editor. *PLoS Biol.* 2005;3: e331. doi:10.1371/journal.pbio.0030331

854 38. Yang H, Adam RC, Ge Y, Hua ZL, Fuchs E. Epithelial-Mesenchymal Micro-niches Govern Stem
855 Cell Lineage Choices. *Cell.* 2017;169: 483-496.e13. doi:10.1016/j.cell.2017.03.038

856 39. Rattner A, Hsieh JC, Smallwood PM, Gilbert DJ, Copeland NG, Jenkins NA, et al. A family of
857 secreted proteins contains homology to the cysteine-rich ligand-binding domain of frizzled
858 receptors. *Proc Natl Acad Sci U S A.* 1997;94: 2859–2863. doi:10.1073/PNAS.94.7.2859

859 40. Wei W-Y, Zhao Q, Zhang W-Z, Wang M-J, Li Y, Shi-Zhong Wang ;, et al. Secreted frizzled-
860 related protein 2 prevents pressure-overload-induced cardiac hypertrophy by targeting the Wnt/ β -
861 catenin pathway. *Mol Cell Biochem.* 2020;472: 241–251. doi:10.1007/s11010-020-03802-x

862 41. Wu Y, Liu X, Zheng H, Zhu H, Mai W, Huang X, et al. Multiple roles of sFRP2 in cardiac
863 development and cardiovascular disease. *International Journal of Biological Sciences.* Ivyspring
864 International Publisher; 2020. pp. 730–738. doi:10.7150/ijbs.40923

865 42. Yeung C-YC, Taylor SH, Garva R, Holmes DF, Zeef LA, Soininen R, et al. Arhgap28 Is a
866 RhoGAP that Inactivates RhoA and Downregulates Stress Fibers. Hotchin NA, editor. *PLoS One.*
867 2014;9: e107036. doi:10.1371/journal.pone.0107036

868 43. He W, Zhang L, Ni A, Zhang Z, Mirotsou M, Mao L, et al. Exogenously administered secreted
869 frizzled related protein 2 (Sfrp2) reduces fibrosis and improves cardiac function in a rat model of
870 myocardial infarction. *Proc Natl Acad Sci U S A.* 2010;107: 21110–21115.
871 doi:10.1073/pnas.1004708107

872 44. Valin A, Barnay-Verdier S, Robert T, Ripoche H, Brellier F, Chevallier-Lagante O, et al.
873 PTCH1 $^{+/-}$ dermal fibroblasts isolated from healthy skin of Gorlin syndrome patients exhibit
874 features of carcinoma associated fibroblasts. *PLoS One.* 2009;4.
875 doi:10.1371/journal.pone.0004818

876 45. Micke P, Kappert K, Ohshima M, Sundquist C, Scheidl S, Lindahl P, et al. In situ identification of
877 genes regulated specifically in fibroblasts of human basal cell carcinoma. *J Invest Dermatol.*
878 2007;127: 1516–1523. doi:10.1038/sj.jid.5700714

879 46. Tabib T, Huang M, Morse N, Papazoglou A, Behera R, Jia M, et al. Myofibroblast transcriptome
880 indicates SFRP2hi fibroblast progenitors in systemic sclerosis skin. *Nat Commun* 2021 121.
881 2021;12: 1–13. doi:10.1038/s41467-021-24607-6

882 47. Valenzi E, Bulik M, Tabib T, Morse C, Sembrat J, Trejo Bittar H, et al. Single-cell analysis
883 reveals fibroblast heterogeneity and myofibroblasts in systemic sclerosis-associated interstitial
884 lung disease. *Ann Rheum Dis.* 2019;78: 1379. doi:10.1136/ANNRHEUMDIS-2018-214865

885 48. Oshima T, Abe M, Asano J, Hara T, Kitazoe K, Sekimoto E, et al. Myeloma cells suppress bone
886 formation by secreting a soluble Wnt inhibitor, sFRP-2. *Blood.* 2005;106: 3160–3165.
887 doi:10.1182/BLOOD-2004-12-4940

888 49. Strecker S, Fu Y, Liu Y, Maye P. Generation and characterization of Osterix-Cherry reporter mice.
889 *Genesis.* 2013;51: 246–258. doi:10.1002/dvg.22360

890 50. Rahmani W, Abbasi S, Hagner A, Raharjo E, Kumar R, Hotta A, et al. Hair Follicle Dermal Stem
891 Cells Regenerate the Dermal Sheath, Repopulate the Dermal Papilla, and Modulate Hair Type.
892 *Dev Cell.* 2014;31: 543–558. doi:10.1016/j.devcel.2014.10.022

893 51. Martino PA, Heitman N, Rendl M. The dermal sheath: An emerging component of the hair follicle
894 stem cell niche. *Exp Dermatol.* 2020; exd.14204. doi:10.1111/exd.14204

895 52. Kalajzic Z, Li H, Wang LP, Jiang X, Lamothe K, Adams DJ, et al. Use of an alpha-smooth muscle
896 actin GFP reporter to identify an osteoprogenitor population. *Bone.* 2008;43: 501–510.
897 doi:10.1016/j.bone.2008.04.023

898 53. Grcevic D, Pejda S, Matthews BG, Repic D, Wang L, Li H, et al. In vivo fate mapping identifies
899 mesenchymal progenitor cells. *Stem Cells.* 2012;30: 187–196. doi:10.1002/stem.780

900 54. Matthews BG, Torreggiani E, Roeder E, Matic I, Grcevic D, Kalajzic I. Osteogenic potential of
901 alpha smooth muscle actin expressing muscle resident progenitor cells. *Bone.* 2015;84: 69–77.

902 55. doi:10.1016/j.bone.2015.12.010

903 55. Kolind M, Bobyn JD, Matthews BG, Mikulec K, Aiken A, Little DG, et al. Lineage tracking of
904 mesenchymal and endothelial progenitors in BMP-induced bone formation. *Bone*. 2015;81: 53–59.
905 doi:10.1016/j.bone.2015.06.023

906 56. Heitman N, Sennett R, Mok KW, Saxena N, Srivastava D, Martino P, et al. Dermal sheath
907 contraction powers stem cell niche relocation during hair cycle regression. *Science* (80-).
908 2020;367: 161–166. doi:10.1126/science.aax9131

909 57. Seluanov A, Vaidya A, Gorbunova V. Establishing primary adult fibroblast cultures from rodents.
910 *J Vis Exp*. 2010;44. doi:10.3791/2033

911 58. Genander M, Cook PJ, Ramsköld D, Keyes BE, Mertz AF, Sandberg R, et al. BMP signaling and
912 its pSMADS1/5 target genes differentially regulate hair follicle stem cell lineages. *Cell Stem Cell*.
913 2014;15: 619–633. doi:10.1016/j.stem.2014.09.009

914 59. Greco V, Chen T, Rendl M, Schober M, Pasolli AH, Stokes N, et al. A two-step mechanism for
915 stem cell activation during hair regeneration. *Cell Stem Cell*. 2009;4: 155–169.
916 doi:10.1016/j.stem.2008.12.009

917 60. Zhang B, Tsai P-C, Gonzalez-Celeiro M, Chung O, Boumard B, Perdigoto CN, et al. Hair
918 follicles' transit-amplifying cells govern concurrent dermal adipocyte production through Sonic
919 Hedgehog. *Genes Dev*. 2016;30: 2325–2338. doi:10.1101/gad.285429.116

920 61. Plikus M V. New activators and inhibitors in the hair cycle clock: targeting stem cells' state of
921 competence. *J Invest Dermatol*. 2012;132: 1321–1324. doi:10.1038/jid.2012.38

922 62. Davies M, Robinson M, Smith E, Huntley S, Prime S, Paterson I. Induction of an epithelial to
923 mesenchymal transition in human immortal and malignant keratinocytes by TGF-beta1 involves
924 MAPK, Smad and AP-1 signalling pathways. *J Cell Biochem*. 2005;95: 918–931.
925 doi:10.1002/JCB.20458

926 63. Morello R, Bertin TK, Schlaubitz S, Shaw CA, Kakuru S, Munivez E, et al. Brachy-syndactyly
927 caused by loss of Sfrp2 function. *J Cell Physiol*. 2008;217: 127–137. doi:10.1002/jcp.21483

928 64. Chen J, Shi Y, Regan J, Karuppaiah K, Ornitz DM, Long F. Osx-Cre targets multiple cell types
929 besides osteoblast lineage in postnatal mice. *PLoS One*. 2014;9: e85161.
930 doi:10.1371/journal.pone.0085161

931 65. Wang L, Moore DC, Huang J, Wang Y, Zhao H, D-H Yue J, et al. SHP2 regulates the
932 development of intestinal epithelium by modifying OSTERIX⁺ crypt stem cell self-renewal and
933 proliferation. *FASEB J*. 2021;35: e21106. doi:10.1096/fj.202001091R

934 66. Martino PA, Heitman N, Rendl M. The dermal sheath: An emerging component of the hair follicle
935 stem cell niche. *Experimental Dermatology*. Blackwell Publishing Ltd; 2020.
936 doi:10.1111/exd.14204

937 67. Shin W, Rosin NL, Sparks H, Sinha S, Rahmani W, Sharma N, et al. Dysfunction of Hair Follicle
938 Mesenchymal Progenitors Contributes to Age-Associated Hair Loss. *Dev Cell*. 2020;53: 185–
939 198.e7. doi:10.1016/j.devcel.2020.03.019

940 68. Ma D, Kua JEH, Lim WK, Lee ST, Chua AWC. In vitro characterization of human hair follicle
941 dermal sheath mesenchymal stromal cells and their potential in enhancing diabetic wound healing.
942 *Cytotherapy*. 2015;17: 1036–1051. doi:10.1016/j.jcyt.2015.04.001

943 69. Brewer N, Fong JT, Zhang D, Ramaswamy G, Shore EM. Gnas Inactivation Alters Subcutaneous
944 Tissues in Progression to Heterotopic Ossification. *Front Genet*. 2021;0: 19.
945 doi:10.3389/FGENE.2021.633206

946 70. Cong Q, Liu Y, Zhou T, Zhou Y, Xu R, Cheng C, et al. A self-amplifying loop of YAP and SHH
947 drives formation and expansion of heterotopic ossification. *Sci Transl Med*. 2021;13: 2233.
948 doi:10.1126/scitranslmed.abb2233

949 71. Guo Y, Chen Y, Zhang L, Ma L, Jiang K, Yao G, et al. TERT Promoter Mutations and
950 Telomerase in Melanoma. *J Oncol*. 2022;2022. doi:10.1155/2022/6300329

951 72. Sorkin M, Huber AK, Hwang C, Carson WF, Menon R, Li J, et al. Regulation of heterotopic
952 ossification by monocytes in a mouse model of aberrant wound healing. *Nat Commun*. 2020;11.

953 doi:10.1038/s41467-019-14172-4

954 73. Kraft CT, Agarwal S, Ranganathan K, Wong VW, Loder S, Li J, et al. Trauma-induced
955 heterotopic bone formation and the role of the immune system: A review. *J Trauma Acute Care*
956 *Surg.* 2016;80: 156–165. doi:10.1097/ta.0000000000000083

957 74. Huang Y, Wang X, Zhou D, Zhou W, Dai F, Lin H. Macrophages in heterotopic ossification: from
958 mechanisms to therapy. *NPJ Regen Med.* 2021;6. doi:10.1038/S41536-021-00178-4

959 75. Wang X, Li F, Xie L, Crane J, Zhen G, Mishina Y, et al. Inhibition of overactive TGF- β attenuates
960 progression of heterotopic ossification in mice. *Nat Commun.* 2018;9: 1–13. doi:10.1038/s41467-
961 018-02988-5

962 76. Polesskaya A, Seale P, Rudnicki MA. Wnt signaling induces the myogenic specification of
963 resident CD45+ adult stem cells during muscle regeneration. *Cell.* 2003;113: 841–852.
964 doi:10.1016/S0092-8674(03)00437-9

965 77. Zeng X, Zhang Y, Xu H, Zhang T, Xue Y, An R. Secreted Frizzled Related Protein 2 Modulates
966 Epithelial–Mesenchymal Transition and Stemness via Wnt/ β -Catenin Signaling in
967 Choriocarcinoma. *Cell Physiol Biochem.* 2018;50: 1815–1831. doi:10.1159/000494862

968 78. Kim B-K, Yoon SK. Expression of sfrp2 is increased in catagen of hair follicles and inhibits
969 keratinocyte proliferation. *Ann Dermatol.* 2014;26: 79–87. doi:10.5021/ad.2014.26.1.79

970 79. Kwack MH, Ahn JS, Jang JH, Kim JC, Sung YK, Kim MK. SFRP2 augments Wnt/ β -catenin
971 signalling in cultured dermal papilla cells. *Exp Dermatol.* 2016;25: 813–815.
972 doi:10.1111/exd.12993

973 80. Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, et al. A robust and high-
974 throughput Cre reporting and characterization system for the whole mouse brain. *Nat Neurosci.*
975 2010;13: 133–140. doi:10.1038/NN.2467

976 81. Hsu SC, Groman JD, Merlo CA, Naughton K, Zeitlin PL, Germain-Lee EL, et al. Patients with
977 mutations in Gsalpha have reduced activation of a downstream target in epithelial tissues due to
978 haploinsufficiency. *J Clin Endocrinol Metab.* 2007;92: 3941–3948. doi:10.1210/JC.2007-0271

979 82. Germain-Lee EL, Obie C, Valle D. NVL: a new member of the AAA family of ATPases localized
980 to the nucleus. *Genomics.* 1997;44: 22–34. doi:10.1006/GENO.1997.4856

981 83. Dyment NA, Jiang X, Chen L, Hong SH, Adams DJ, Ackert-Bicknell C, et al. High-throughput,
982 multi-image cryohistology of mineralized tissues. *J Vis Exp.* 2016;2016: 54468.
983 doi:10.3791/54468

984 84. Hong S-HH, Jiang X, Chen L, Josh P, Shin D-GG, Rowe D. Computer-Automated Static,
985 Dynamic and Cellular Bone Histomorphometry. *J Tissue Sci Eng.* 2012;Suppl 1: 4.
986 doi:10.4172/2157-7552.S1-004

987 85. Walmsley GG, Maan ZN, Hu MS, Atashroo DA, Whittam AJ, Duscher D, et al. Murine dermal
988 fibroblast isolation by FACS. *J Vis Exp.* 2016;2016: 53430. doi:10.3791/53430

989 86. Marotta M, Martino G. Sensitive spectrophotometric method for the quantitative estimation of
990 collagen. *Anal Biochem.* 1985;150: 86–90. doi:10.1016/0003-2697(85)90443-9

991 87. López-De León A, Rojkind M. A simple micromethod for collagen and total protein determination
992 in formalin-fixed paraffin-embedded sections. *J Histochem Cytochem.* 1985;33: 737–743.
993 doi:10.1177/33.8.2410480

994

995

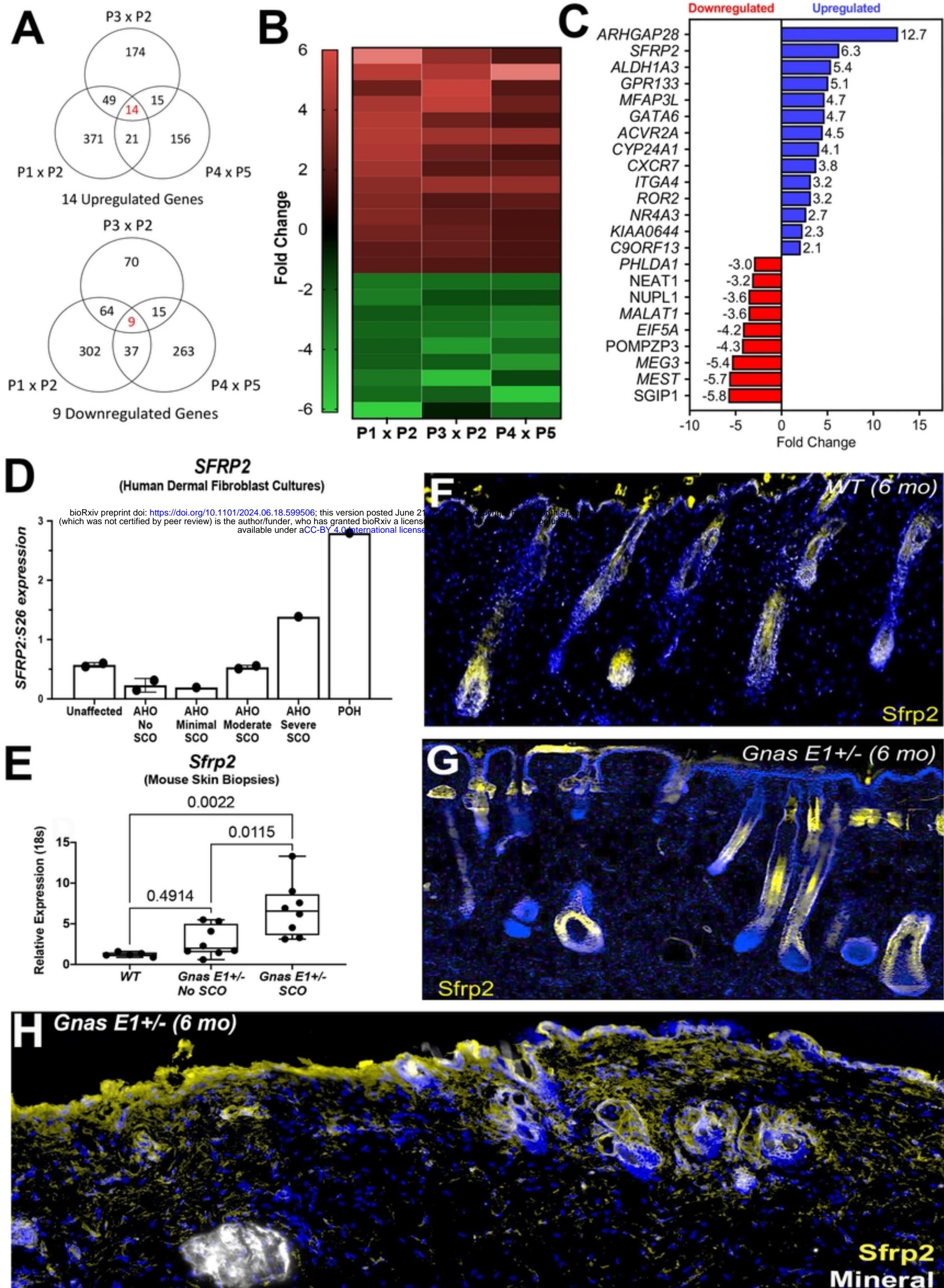


Figure 1

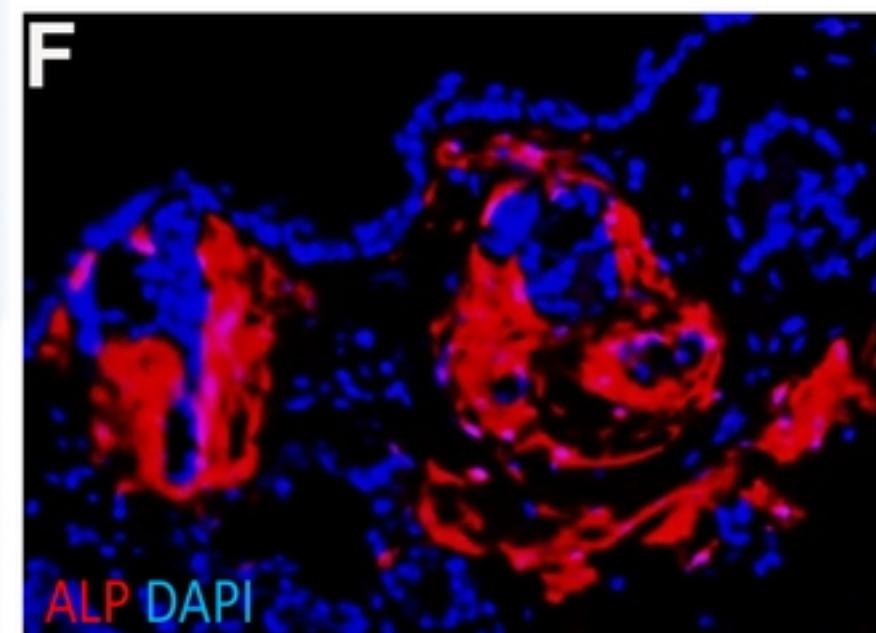
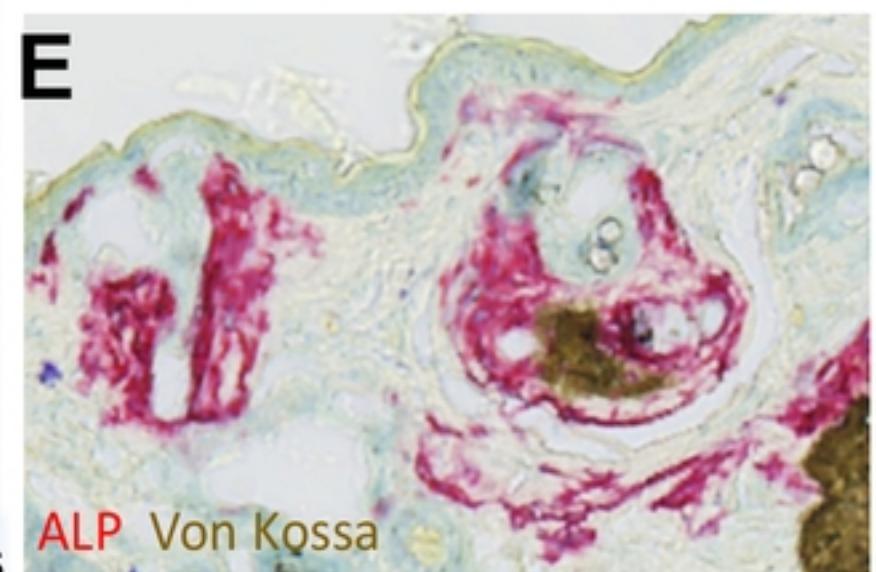
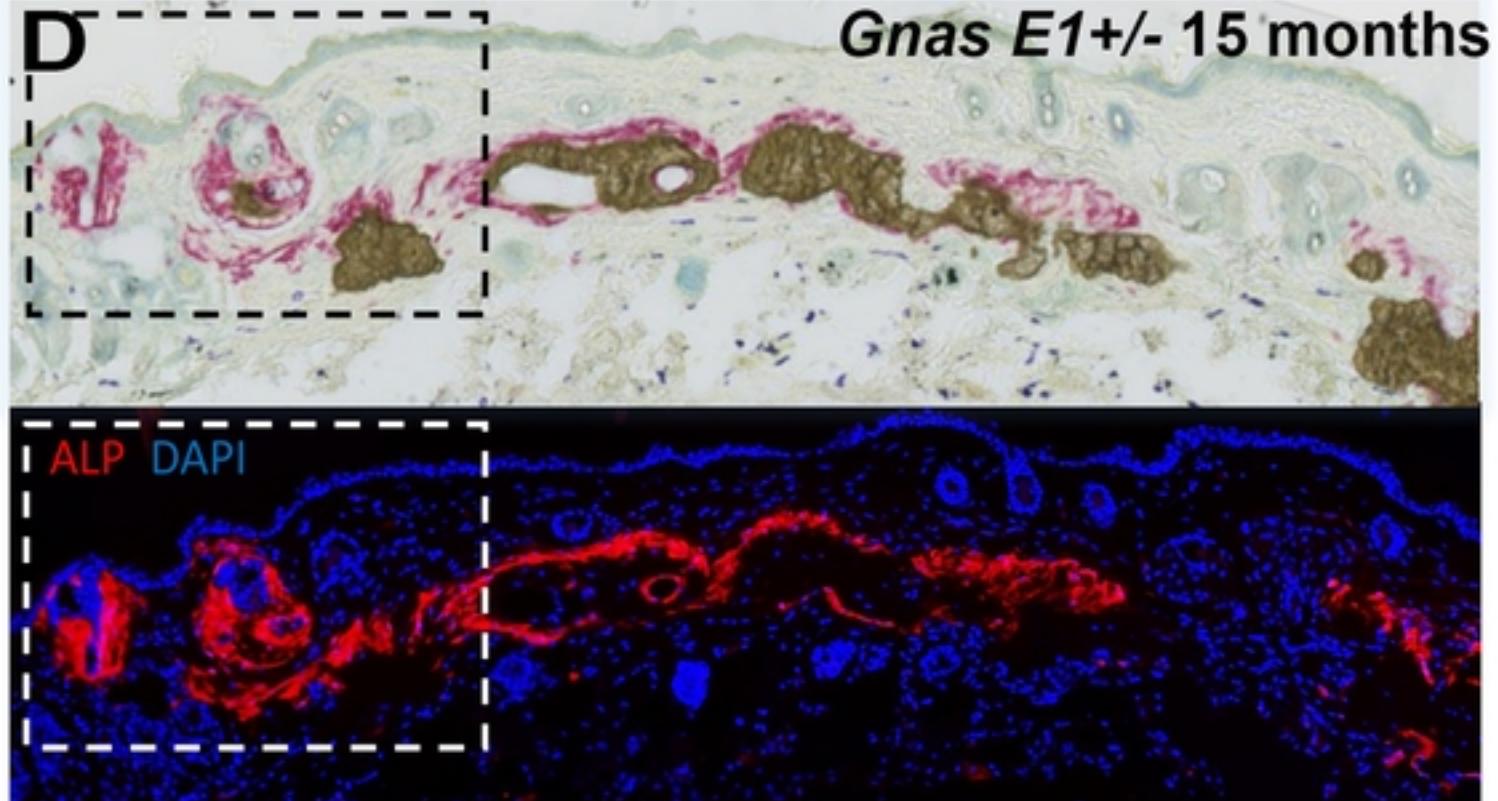
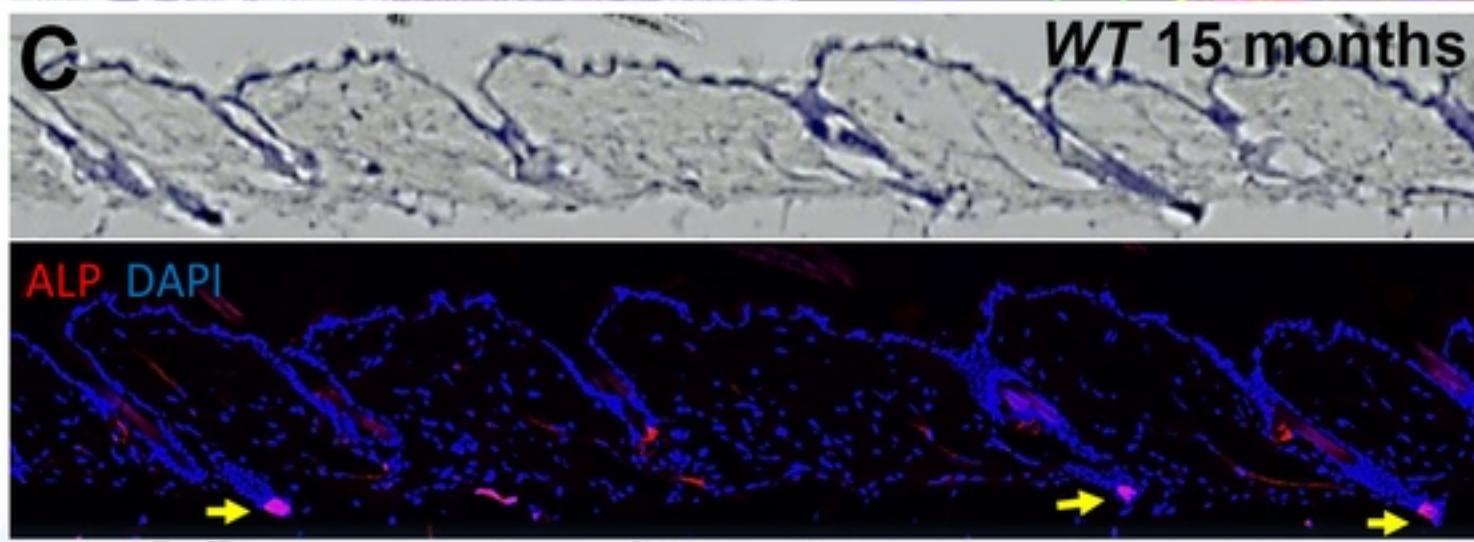
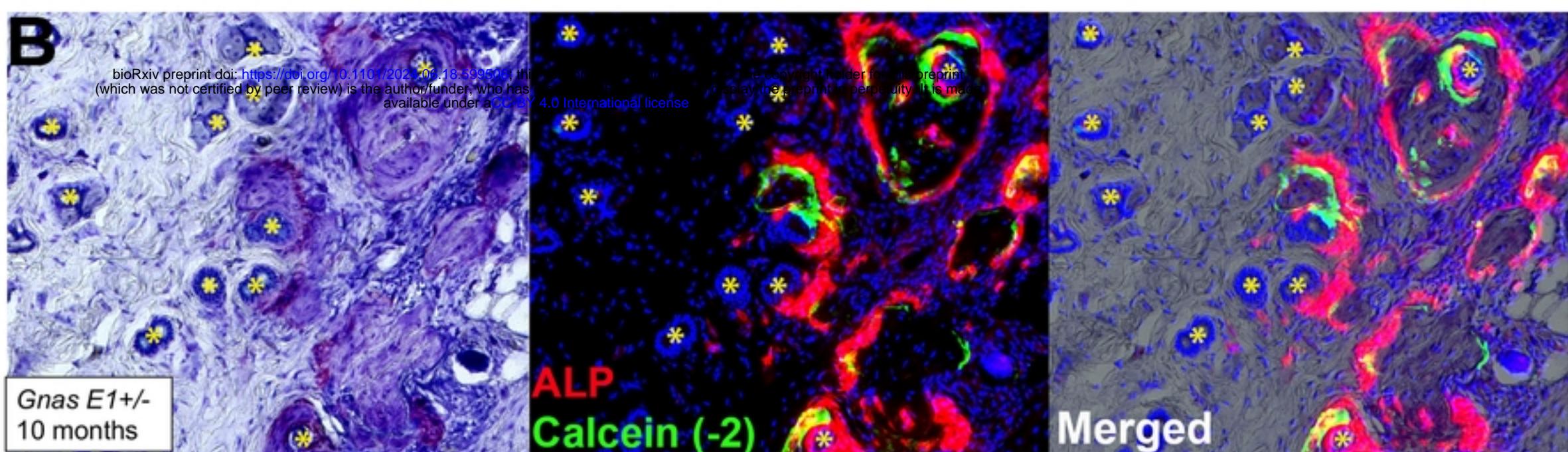







Figure 2

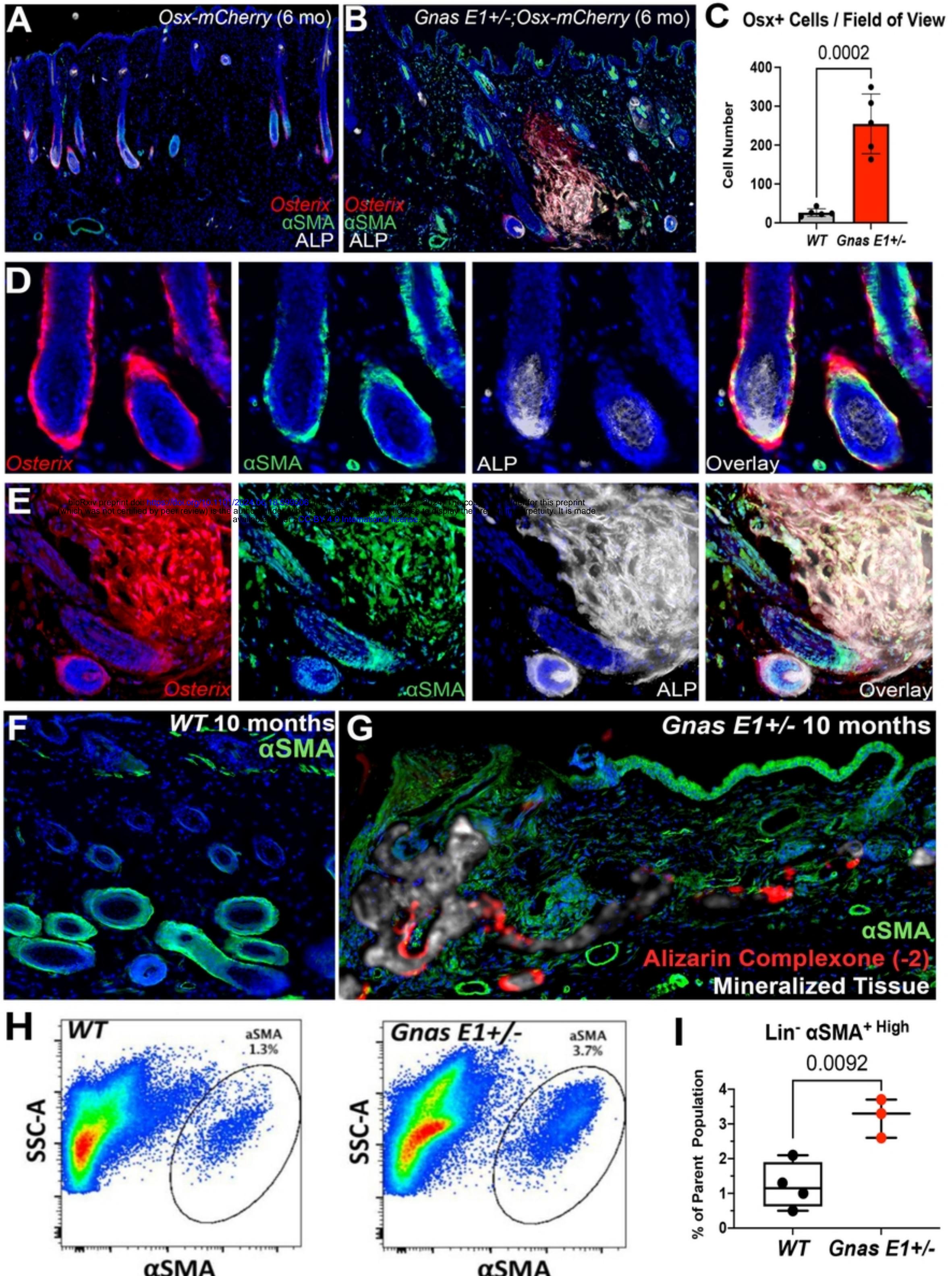


Figure 3

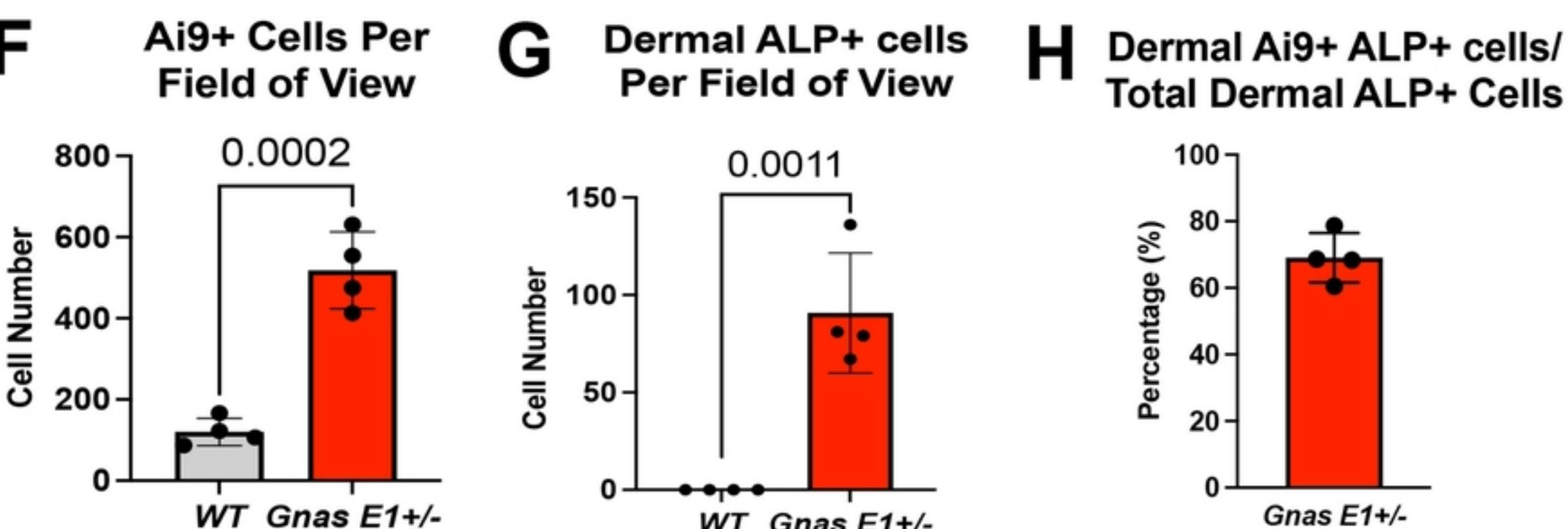
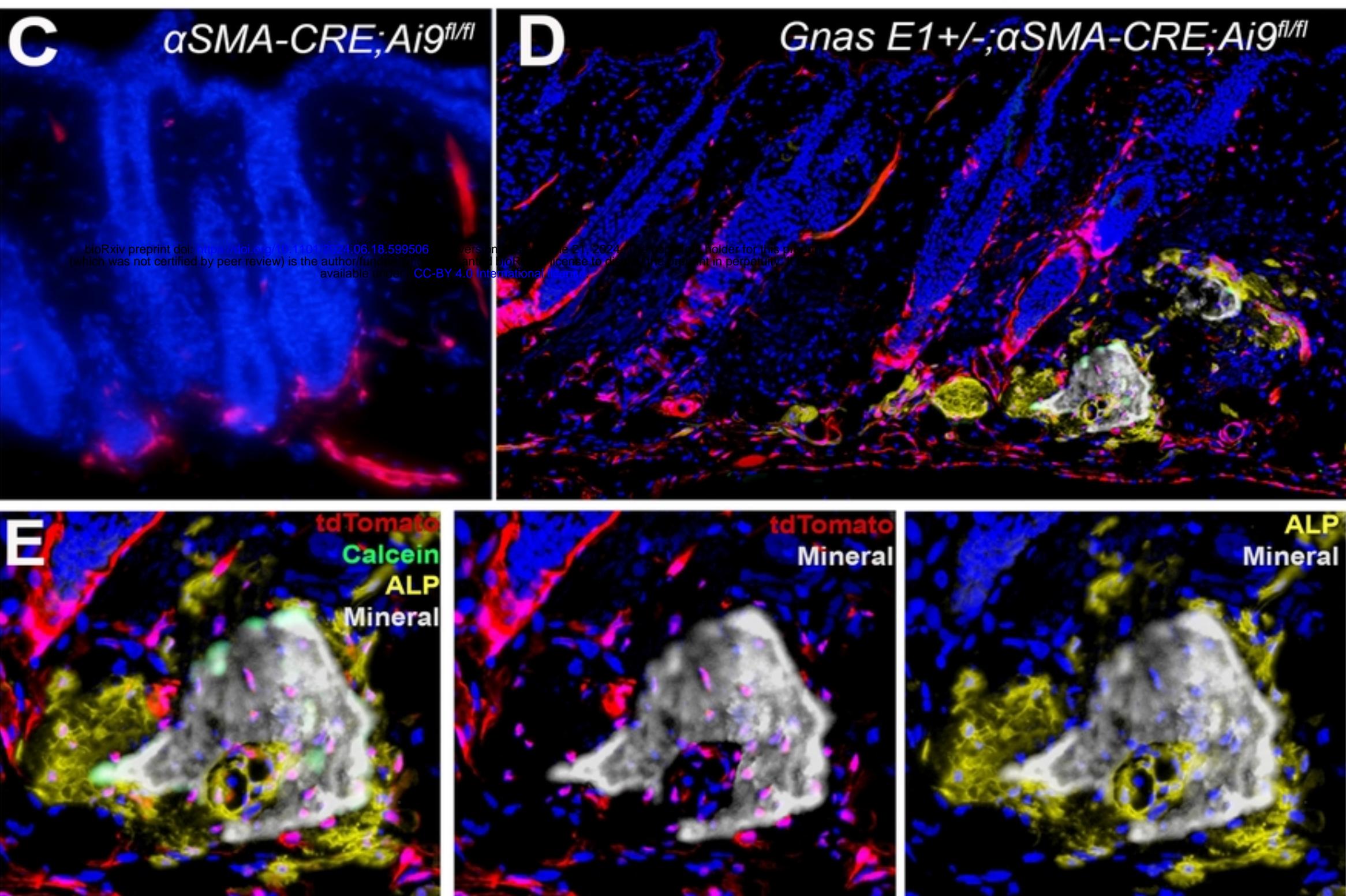
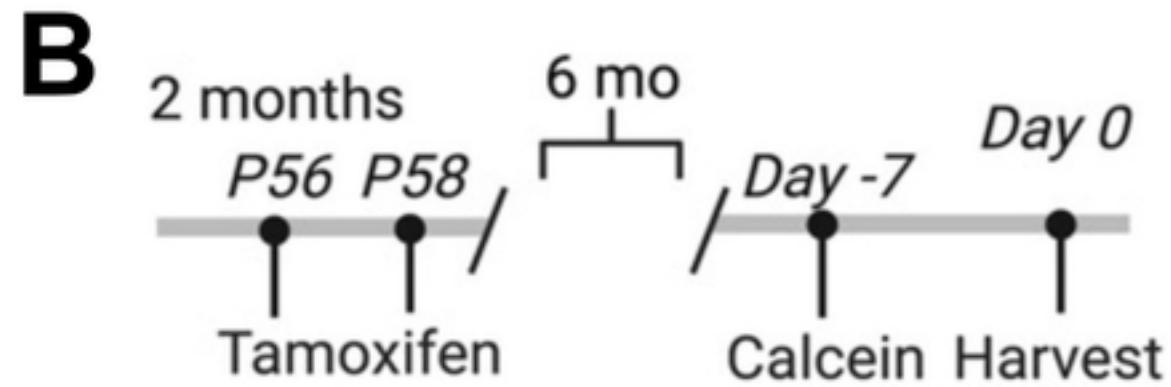
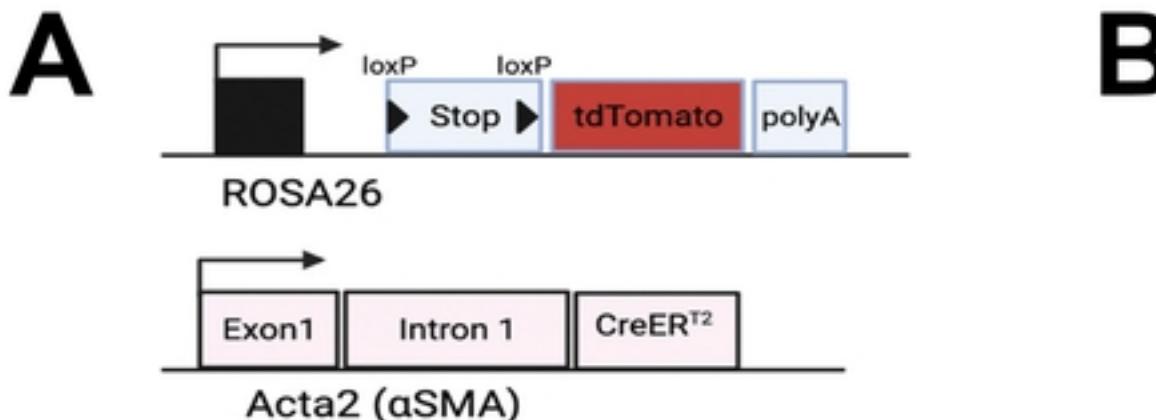





Figure 4

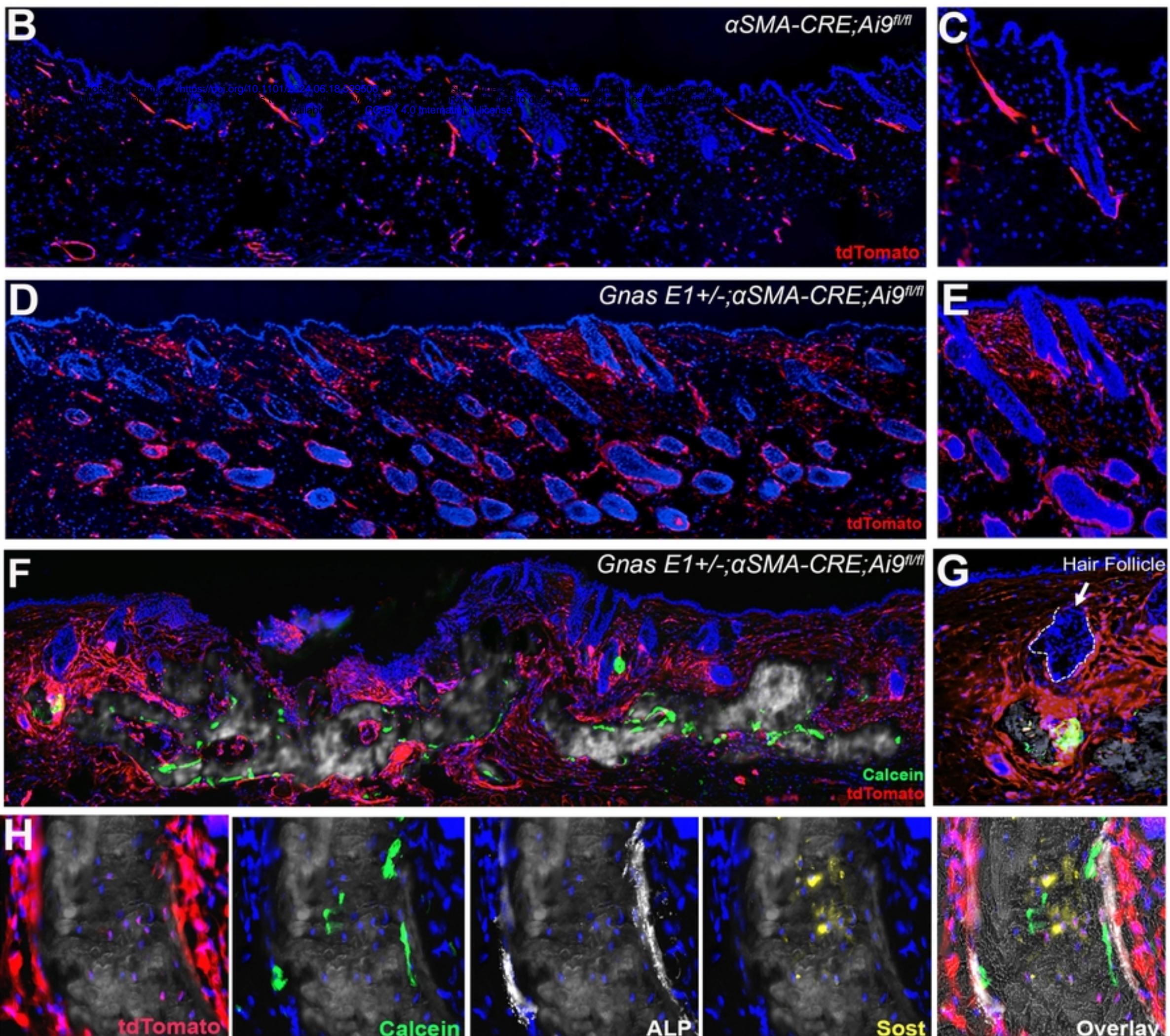


Figure 5

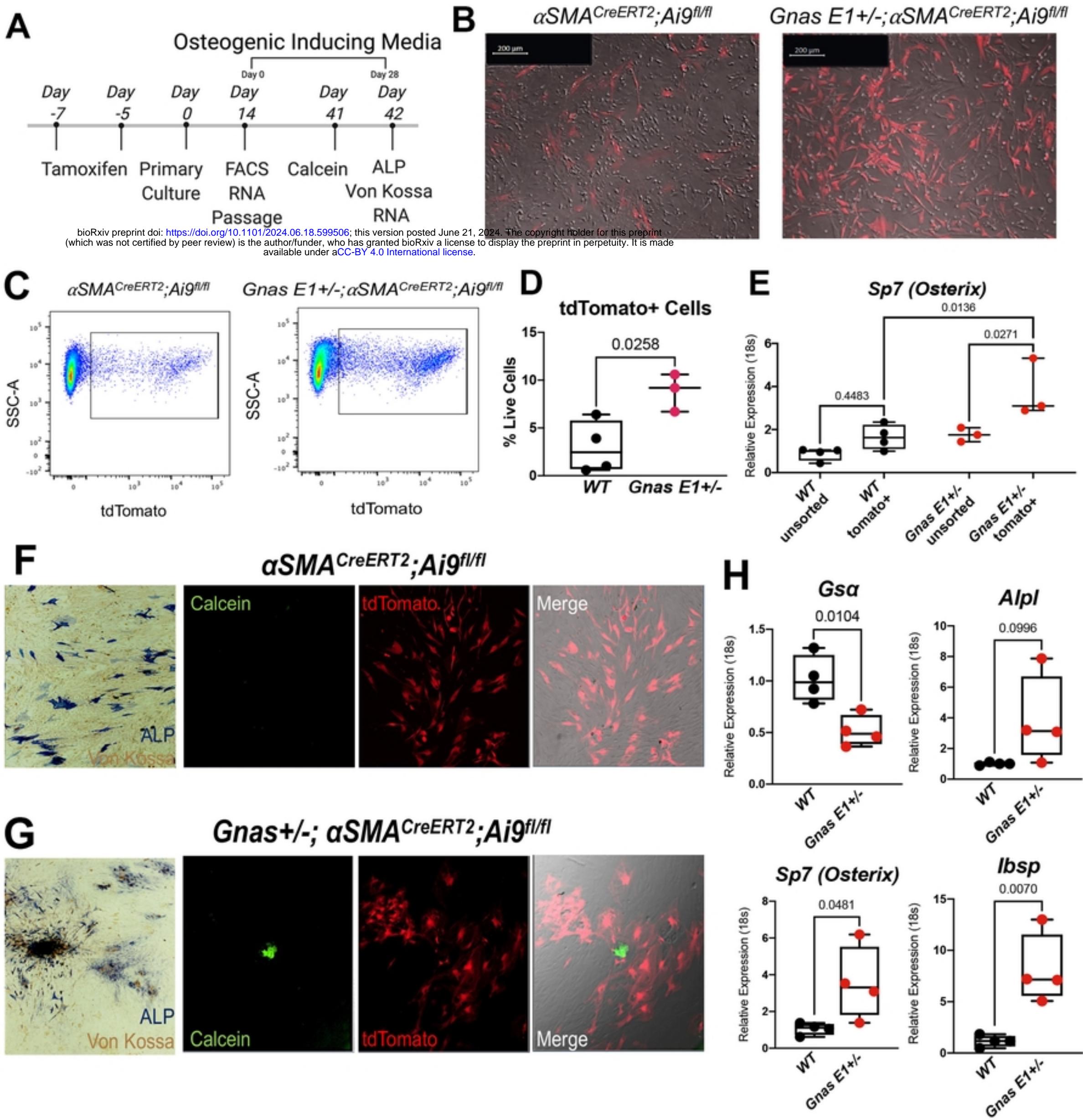


Figure 6

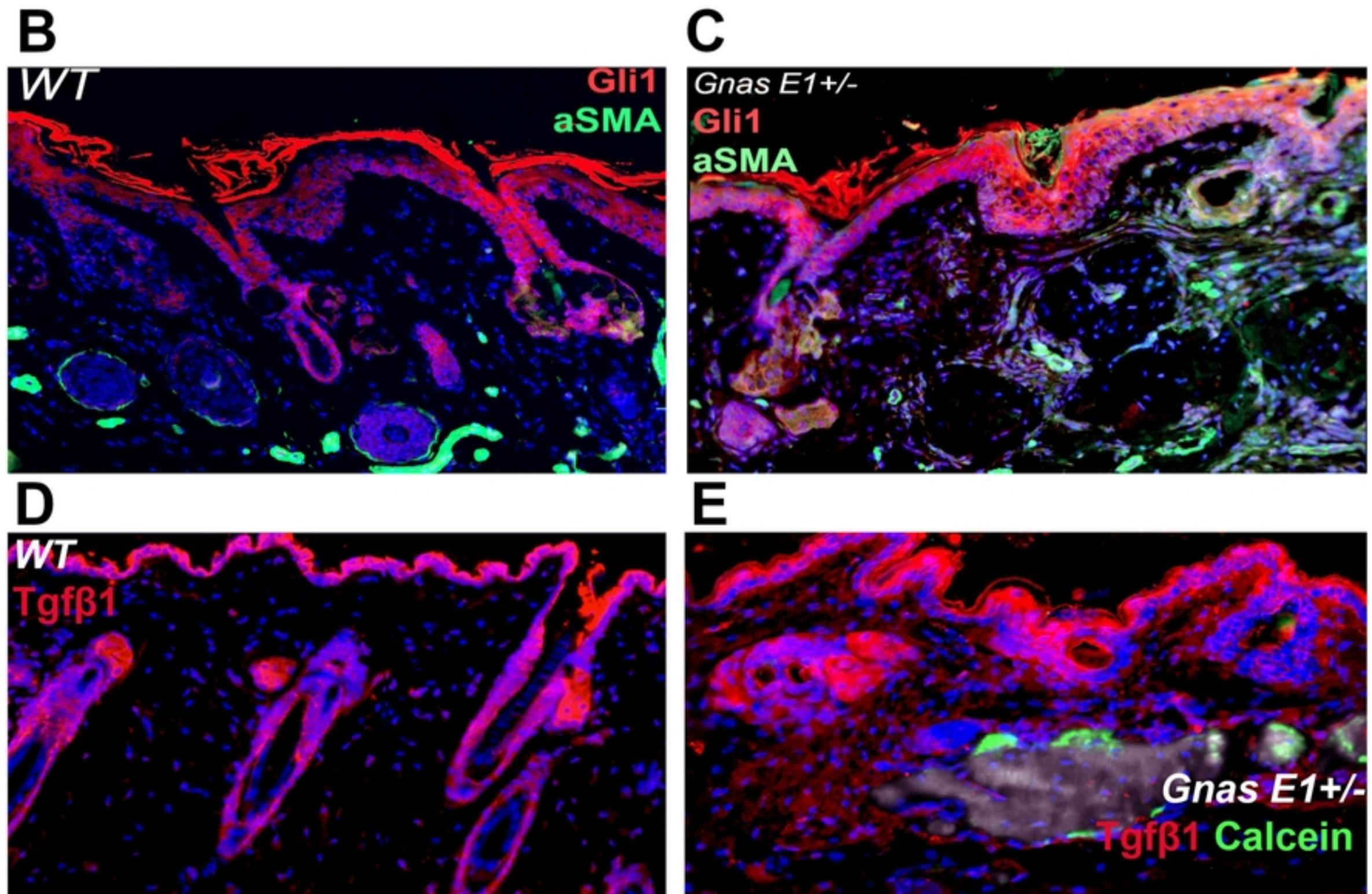
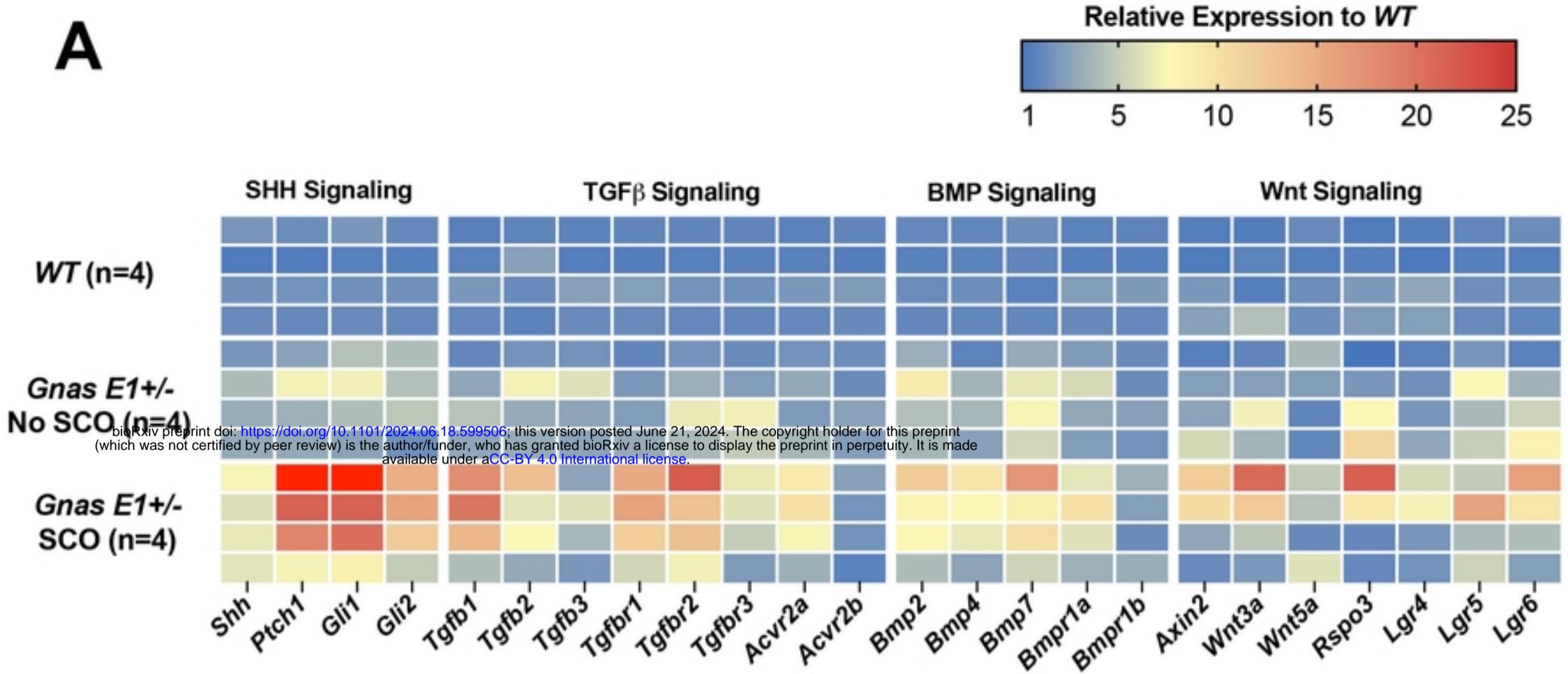



Figure 7

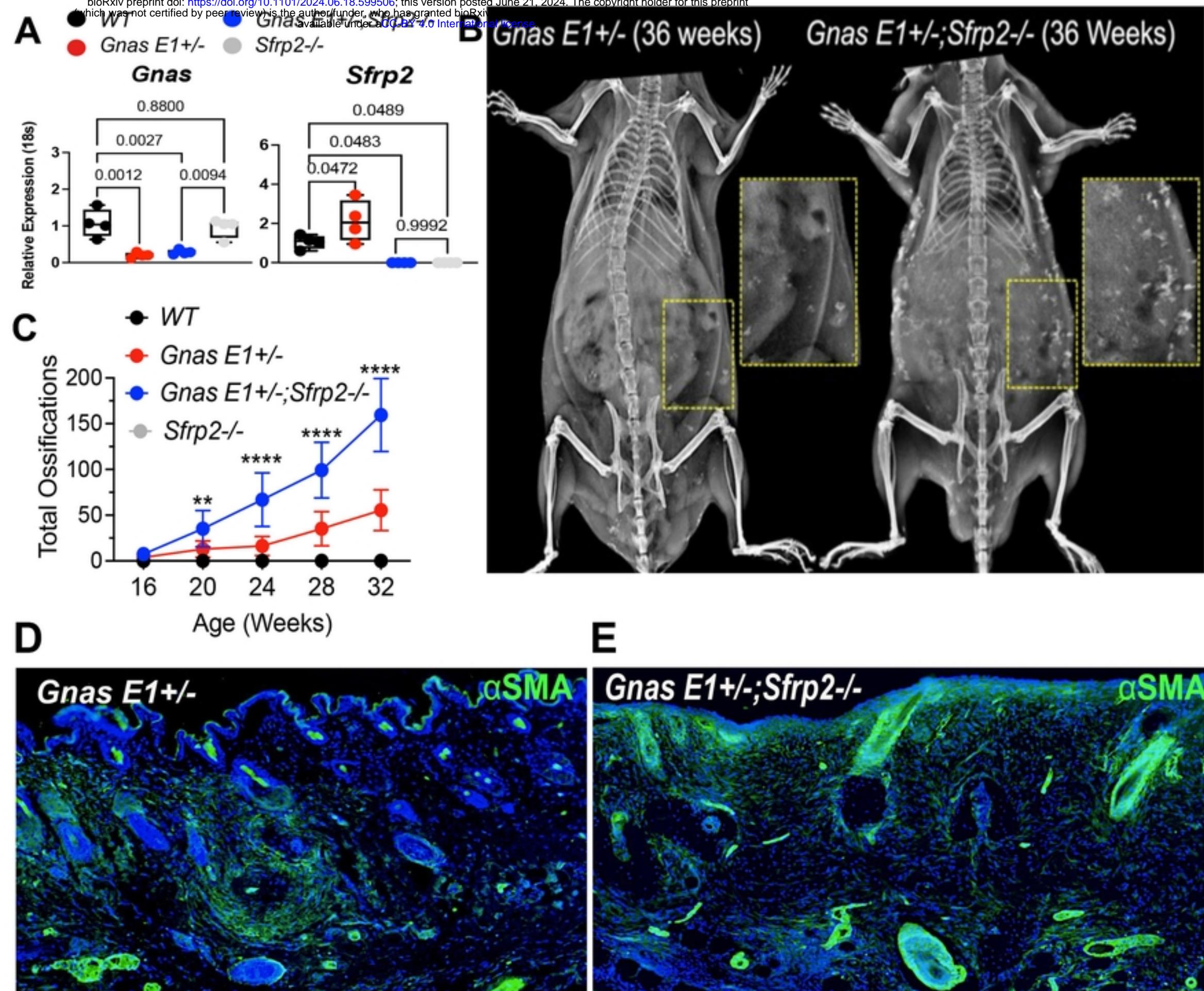


Figure 8