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Abstract

Current Mendelian randomization (MR) methods do not reflect complex rela-

tionships among multiple exposures and outcomes as is typical for real-life applica-

tions. We introduce MrDAG the first MR method to model dependency relations

within the exposures, the outcomes, and between them to improve causal effects

estimation. MrDAG combines three causal inference strategies in a unified man-

ner. It uses genetic variation as instrumental variables to account for unmeasured

confounders. It performs structure learning to detect and orientate the direction of

the dependencies within exposures and outcomes. Finally, interventional calculus

is employed to derive principled causal effect estimates. MrDAG was motivated to

unravel how lifestyle and behavioural exposures impact mental health. It highlights

education and smoking as key effective points of intervention given their down-

stream effects on mental health. These insights would have been difficult to delin-

eate without modelling the causal paths between multiple exposures and outcomes

at once.
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Introduction

Genetic evidence is increasingly used to infer causal relationships between human traits in

Mendelian randomization (MR) analysis. The standard MR paradigm, one exposure and

one outcome, can be biased by unobserved pleiotropy. It occurs when the genetic variants

used as instruments in the MR analysis act via separate pathways to the exposure under

investigation. Extensions to consider multiple exposures [1] along with multi-response [2]

of standard MR allow to model pleiotropy acting either via any of the exposures or any

of the outcomes or both, respectively.

Yet, to date, there is no MR approach which can estimate the dependency relations

within the exposures and the outcomes to enhance the detection of causal effects between

them and improve their accuracy. As we show in our motivating data application on

mental health phenotypes, it is a common problem in practical applications that the effect

of an exposure on an outcome can be confounded or (partially or completely) mediated by

another exposure [3] or mediated by another outcome, or both. However, this structure is

latent and not known and consequently needs to be learned from the data. This problem

has been overlooked in the literature and current MR implementations which do not

account for these dependencies likely produce spurious findings which are often claimed

as supporting causality in applied analysis.

Here, we address this gap by proposing the MrDAG model, the first Mendelian ran-

domization method with Directed Acyclic Graphs (DAGs) exploration and causal effects

estimation, which utilises summary-level genetic associations from genome-wide asso-

ciation studies to learn how interrelated exposures affect multiple outcomes which, in

turn, are interconnected in a complex fashion. MrDAG is a Bayesian causal graphical

model that combines three causal inference strategies in a unified manner. First, the MR

paradigm which uses genetic variation as instrumental variables (IVs) [4, 5] to ensure un-

confoundedness. Second, structure learning [6], i.e., graphical models selection to define

the graphs that best describe the dependency structure in a given data set under the

constraint on edges’ orientation from the exposures to the outcomes implied by the MR

paradigm. Third, interventional calculus to derive principled causal effects estimates [7]

from the exposures to the outcomes.

Our motivating real data application considers the impact of six common modifiable

lifestyle and behavioural exposures on seven mental health phenotypes. Mental health

describes patterns of cognitive, emotional, and behavioural disregulations that limit daily

functioning and cause distress. One in eight individuals suffers from one or more men-

tal health phenotypes worldwide, most commonly anxiety, attention-deficit hyperactivity,

autism spectrum, bipolar, eating, personality or schizophrenia-related diseases [8]. Col-

lectively, they contribute to more than 15% of total years lived with disability [9]. Clinic-

ally, mental health phenotypes are notoriously difficult to disentangle and diagnose due to
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the lack of objective biological biomarkers and distinct disease impressions [10]. No symp-

tom can be uniquely ascribed to one disease, and each disease comprises experiencing a

group of interrelated traits. In research, this complexity is reinforced by the multifaceted

mechanisms that cause and sustain mental health [10, 11]. In addition to genetic liability,

numerous behavioural and lifestyle factors such as alcohol consumption, smoking, sleep

hygiene, physical activity and education contribute to the risk of developing a mental

health trait [11, 12]. Notably, these factors are also affected by existing disease and treat-

ment [13]. It is essential to appreciate these complexities when attempting to identify

distinct and shared underlying mechanisms of mental health. While MR studies have

been effective in circumventing some of the limitations of traditional epidemiology such

as environmental confounding and reverse causation, MR remains largely unable to fully

disentangle the interplay between traits that cause or result from mental health [14]. The

complexity of such an example demonstrates the limitations of current MR solutions to

offer a more comprehensive picture of causal mechanisms between complex phenotypes

and provides a suitable test ground for the application of the proposed methodology.

Results

Causal inferential strategies in MrDAG

MrDAG combines three causal inference strategies.

First, MR has pioneered the ability to use genetic data as IVs to derive causal state-

ments from observational data despite the presence of unmeasured confounders [15, 16].

Second, in its standard formulation of one exposure and one outcome, the conditional

dependencies between the outcome Y , the exposure X, the IV G and the unmeasured

confounder U are all given as well as their graphical representation [5]. When multiple

exposures X [1] and multiple outcomes Y [2] are considered along with multiple IVs G,

(partial) correlation between X and conditional dependencies between Y are included in

the models to perform the selection of important exposures whose causal effects can be

shared or are distinct across the responses. However, to date, no dependency relations

within the exposures and within the outcomes are estimated, although, in practical ap-

plications, the effect of an exposure on an outcome can be confounded or (partially or

completely) mediated by another exposure or mediated by another outcome, or both, see

Figures 1A-B for an illustration. Moreover, dependency relations are also important to

derive principled estimates of the causal effects [7].

In real data applications, complex dependency relations between the traits are gener-

ally not known in advance, and they need to be learned from the data. To detect them,

we rely on Directed Acyclic Graphs (DAGs) and structure learning. Graphical models
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Figure 1. Directed Acyclic Graph (DAG) representation of the proposed multiple exposures
and multiple outcomes Mendelian randomization model and causal effects estimation. (A)
Middle panel: Multivariable Mendelian randomization for multiple responses with G = (G1, . . . , Gn)

⊤:
Genetic variants (black) or instrumental variables (IVs); X = (X1, X2, X3)

⊤: Exposures (blue); Y =
(Y1, Y2, Y3)

⊤: Responses (orange); U : Unmeasured confounder(s) (grey). True (unconfounded by U)
exposure-outcome dependency relations depicted in the middle panel are classified as follows: X1 has
shared causal effect on responses Y1 and Y2, while X2 has a distinct causal effect on response Y3. X3

does not have any effect on the outcomes. Bottom panel: True fork structure within the exposures
with X3 regarded as the common cause of X1 and X2. Top panel: True chain structure within the
outcomes, where Y1 affects Y3 through Y2. (B) DAG is obtained by combining the true exposure-
outcome dependency relations ((A) middle panel), the fork structure within the exposures ((A) bottom
panel) and the chain structure within the responses ((A) top panel). When looking at the effect of X1 on
Y3, X3 (along with G and U) is a confounder of X1 and Y2 is a complete mediator. Without conditioning
on Y2, with the same set of confounders, a spurious association would be found between X1 and Y3.
(C) Estimation of the causal effect under intervention in X1 on Y2, highlighted in blue and orange,
respectively. The representation of X1 has changed from a circle to a square to emphasise that, under
intervention, it is no longer a random variable and it is now set at X1 = x̃1. Intervention affects only the
conditional distribution ofX1, i.e., X1 | (X3,G, U) and it leaves unaltered all the others. From a practical
perspective, it would be sufficient to condition on X3, G and U (graphically, the directed edges to X1 from
X3, G and U are removed) to guarantee that the association between X1 and Y2 is purely causative (see
Supplementary Figure 1). However, since U is unobserved, the estimation of the causal effects cannot be

obtained only by conditioning. (D) Genetically predicted exposures X̂∗ = (X̂∗
1 , X̂

∗
2 , X̂

∗
3 )

⊤ and outcomes

Ŷ ∗ = (Ŷ ∗
1 , Ŷ

∗
2 , Ŷ

∗
3 )

⊤ depend only on G which are chosen to be associated only with X and not with Y .

Graphically, no directed edges to X̂∗ and Ŷ ∗ from U are pictured. True (unconfounded by U) dependency
relations between the traits in the original (individual-level) data shown in (B) are obtained by the DAG

estimated by using X̂∗ and Ŷ ∗. (E) Adjacency matrix describing the Markov properties of the DAG
obtained by using genetically predicted exposures and outcomes (the variables in the x-axis are dependent
on the variables in the y-axis) which are function of the IVs and the inverse-variance weighted (IVW)

(depicted with a “ ∗ ”) summary-level statistics B̂∗
X = (β̂∗

X1
, β̂∗

X2
, β̂∗

X3
)⊤ and B̂∗

Y = (β̂∗
Y1
, β̂∗

Y2
, β̂∗

Y3
)⊤.

Neither reverse causation (top-right submatrix) nor feedback loops (main diagonal) are allowed. Colour
code: Black, directed edge between variables; white, no causal relationship between variables; black-white
strips, directed edge not allowed (feedback loop and reverse causation between exposures and outcomes).
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are multivariate distributions associated with a graph and are very effective for encoding

conditional dependencies [17] between random variables. They are represented in a graph

as nodes (vertices) while edges denote conditional dependence relationships between the

corresponding random variables. A DAG is a directed graph, where each edge has an

orientation with no directed cycles. Structure learning is a model selection problem [6]

to estimate the DAG (or competing DAGs) that best describes the dependency structure

in a given data set. However, without identifiability conditions [18], it is not possible to

estimate uniquely the underlying DAG since its conditional independencies can be asso-

ciated with several alternative DAGs. The set of DAGs that hold the same conditional

independencies is known as Markov Equivalent Class and the best that can be done from

observational data is to estimate this class (or competing classes). Thus, this paper aims

to illustrate how to perform DAG exploration (whose importance will be apparent in the

next paragraph) which belongs to the Markov Equivalent Classes that best fit the data

under the constraint on the orientation of the edges, known as partial ordering [19], from

the exposures to the outcomes implied by the MR paradigm.

Third, besides the identification of the exposure-outcome relations as well as the de-

pendency patterns within the exposures and the outcomes, we are also interested in the

causal effects estimation under intervention [7]. An intervention on the exposures can be

made explicit by a suitable modification of the multivariate distribution associated with

the DAG, under the assumption that the intervention does not affect any other variable in

the joint distribution besides the conditional distribution of the exposure under interven-

tion [20]. See Figure 1C for an example of intervention on an exposure and the estimation

of the causal effect on an outcome.

In this formulation, all confounders should be measurable to perform structure learning

and causal effects estimation (causal sufficiency assumption [21]). This assumption is

usually not met in real data applications where, instead, unmeasured confounders are

ubiquitous and affect exposures and responses at the same time. To solve this problem, we

demonstrate (see Methods) and show in an extensive simulation study (see Results) that,

under partial ordering, we can estimate the dependency structure that exists between the

traits in the original (individual-level) data unconfounded by U by using their genetically

predicted values. Since the genetically predicted traits depend only on the selected IVs,

the confounders do not mask the true dependency relations required in causal effects

estimation. See Figure 1D, where the graphical model estimated by using genetically

predicted exposures and outcomes approximates the corresponding DAG in the individual-

level data not affected by U . Our approach shares some similarities with methods based on

the genetic correlation and developed to analyse the joint genetic architecture of complex

traits [22] although, in the proposed MR framework, genetic variants are chosen to be valid

IVs in contrast to genetic variants chosen for genome-wide [23] or local genetic correlation

[24]. Computationally, given the duality between the Markov properties of the DAG and
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a non-symmetrical adjacency matrix (see Figure 1E), structure learning of the graphical

model (or competing graphical models) that best fits the data is performed on a non-

symmetrical adjacency matrix which incorporates the constraints on the orientation of

the edges from the exposures to the outcomes.

Finally, for a given DAG, we extend results regarding the consistency of the effects of

the regressions of the exposures and the outcomes on G which can be obtained without

adjustment on U since the genetic variants used as IVs are randomly assigned [4], and show

that it is possible to identify and estimate the causal effects between multiple exposures

and multiple outcomes based on Pearl’s interventional calculus [7] (see Methods).

The MrDAG model can be summarised as follows:

[g⊤B̂∗
Y g

⊤B̂∗
X ]

⊤ ∼ Nq+p([g
⊤B∗

Y g
⊤B∗

X ]
⊤,Σ∗),

where g are the observed IVs after pruning or clumping, B̂∗
Y and B̂∗

X are the inverse-

variance weighted (IVW) [25] estimated genetic associations with the outcomes and the

exposures, g⊤B̂∗
Y and g⊤B̂∗

X are the genetically predicted values of the outcomes Ŷ ∗ and

exposures X̂∗ based on the IVs, respectively, which are normally distributed for large

sample sizes, and Σ∗ is the genetic covariance matrix that can be partitioned into Σ∗
XX ,

Σ∗
Y Y and Σ∗

XY , the genetic covariances within the exposures, the outcomes and between

them. The MrDAG model allows us to find a solution to the two problems highlighted

before. First, we perform DAGs exploration under partial ordering by using Ω∗ = Σ∗−1
,

to learn the unconfounded dependency relations within the exposures, the outcomes and

between them and to understand the genetic paths that link exposures and outcomes (see

Methods). Second, estimate the causal effects of the intervention on the exposures as a

function of trait-specific elements of the genetic associations B̂∗
Y and B̂∗

X informed by the

explored DAGs, unconfounded by any pleiotropic effects within the exposures and the

outcomes and any unmeasured confounder.

Selection of instrumental variables

MrDAG uses the same instrument selection employed in MVMR regardless of the mul-

tiple outcomes [2]. A genetic variant is considered a valid instrument for MVMR when

three core conditions hold [3]: (IV1) Independence: The variant is independent of all

confounders of each of the exposure-outcome associations; (IV2) Relevance: The variant

must not be conditional independent of each exposure given the other exposures; (IV3)

Exclusion restriction: The variant is independent of the outcome conditional on the ex-

posures and confounders. In practice, only IV2 can be computationally evaluated from

the available data. A recent solution to mitigate the effects of weak IVs in MVMR is

presented in [26].

There is an important distinction between IV selection in MVMR, as used by MrDAG,
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and bidirectional MR. Let’s consider two traits A and B. In bidirectional MR, two MR

analyses are conducted, one for trait A on trait B, and then vice versa. First, specific

IVs are selected for trait A and the first MR model is fit. Then, another set of specific

IVs is selected for trait B and the second MR model tests the opposite effects direction.

In contrast, in MVMR, IVs are chosen to be the union of genome-wide significant genetic

variants for any exposure. By combining MVMR IVs selection approach with DAG learn-

ing, MrDAG can infer the bidirectionality of the relationships within exposures based on

Ω∗
XX = Σ∗−1

XX without repeated IVs selection and subsequent analyses. A similar com-

ment can be made for the estimation of the bidirectionality of the relationships within the

outcomes based on Ω∗
Y Y = (Σ∗

Y Y −Σ∗
Y XΣ

∗−1

XXΣ
∗
XY )

−1 (see Methods). These dependencies

should be interpreted as an indication of a violation of condition IV3, i.e., pleiotropy

not explained by the estimated causal effects from the exposures to the outcomes [2].

The detected relationships within the exposures also suggest the existence of measured

pleiotropy which, in the proposed framework, comprises confounding, mediation and in-

dependent pleiotropic pathways [3].

Overall, only the direction from exposures to outcomes is fixed in MrDAG, and no

reverse causation is allowed, reflecting the standard MR paradigm.

Simulation study

We compare MrDAG in an extensive and comprehensive simulation study where four

different in silico scenarios have been generated on individual-level data for N = 100, 000

individuals. The simulated data sets include n = 100 independent genetic variants G, an

unmeasured confounder U , 15 exposures X and 5 outcomes Y . All exposures X were

measured on the same individuals in the first sample and have complete overlap as well as

all outcomes Y were measured on the same individuals in the second sample independent

of the first sample. In all simulations, the unconfounded dependency relations between

the traits are simulated at the individual-level while the algorithms use as input the

corresponding IVW summary-level statistics.

The four simulation scenarios are built by combining two different strategies we used

to simulate the dependency patterns within the exposures and the responses:

i) “UndGX-MedY ”. A sparse undirected graphical model (“UndGX”) encodes the de-

pendency pattern within the exposuresX = (X1, . . . , X15). Regarding the responses

Y = (Y1, . . . , Y5), one outcome is completed mediated by another one (“MedY ”).

For a visual representation of this scenario, see Figure 2A.

ii) “DAGX-MedY ”. The dependency relations within the exposures are more com-

plex than in scenario (i) since a topologically ordered DAG within the exposures
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Figure 2. Schematic illustration of different dependency structures simulated between the
traits at the individual-level data and the parameters employed in the simulation study.
Directed edges indicate dependency relations, while undirected edges denote partial correlations. Dashed
lines depict the true (unconfounded by U) dependency structure within the exposures and the outcomes,
while solid lines indicate true causal effects between them. Parameters ψY and ψX indicate the sim-
ulated effects of the unmeasured confounder U on the exposures and the outcomes, respectively, and
BX = (βX1 ,βX2 ,βX3) are the simulated genetic effects on the exposures. For simplicity, they are shown
only on the left panel. Θ = (θ1,1, θ1,2, θ2,3) are the simulated causal effects from the exposures to the
outcomes while ΓX = (γX3,1, γ

X
3,2) and ΓY = (γY1,2, γ

Y
2,3) are the mediation parameters within the ex-

posures and the outcomes, respectively, where the subscripts denote their directionality. When partial
correlations are simulated within the exposures, bidirectional effects are depicted with double subscripts,
i.e., ΓX = (γX1,2//2,1, γ

X
2,3//3,2). (A) Simulated scenario “UndGX -MedY ”, where an undirected graph

(“UndGX”) encodes the dependency pattern within X and, within the responses, an outcome (Y3) is
completed mediated (“MedY ”) by another response (Y2) which, in turn, is affected by a different expos-
ure (X1). Although there is another partial mediation between X1 and Y3 through X2, this mediation
happens within X, so it does not affect the definition of complete mediation within Y . (B) Simulated
scenario “DAGX -MedY ”, where a topologically ordered DAG within the exposures (“DAGX”) is simu-
lated. Specifically, in the example depicted, a fork structure is simulated, i.e., X3 affects both X1 and
X2. A complete mediation is still considered within the responses. (C) Simulated scenario “UndGX -
DAGY ”. Here, the dependency structure between the individual-level responses is obtained by simulating
a topologically ordered DAG (“DAGY ”). Specifically, a chain structure is considered, i.e., Y1 affects Y2
which, in turn, affects Y3, whereas an undirected graph encodes the dependency pattern within X. (D)
Simulated scenario “DAGX -DAGY ”, where two topologically ordered DAGs are simulated within the
exposures (fork structure) and outcomes (chain structure), respectively.

(“DAGX”) is simulated [27]. A complete mediation is still considered within the

responses. This second scenario is illustrated in Figure 2B.

iii) “UndGX-DAGY ”. Here, a more complex dependency structure within the individual-

level responses (“DAGY ”) is simulated. This scenario is represented in Figure 2C.

An example of the complex dependency patterns generated in the simulation study

between the traits for one replicate of scenario UndGX-DAGY is shown in Figure

3A.

iv) “DAGX-DAGY ”: This is the most complex simulated scenario where two inde-

pendent topologically ordered DAGs have been simulated within the exposures and

outcomes. Figure 2D presents a schematic illustration of this scenario, while Figure

3E shows the intricate dependency structure simulated between the traits for one

replicate of DAGX-DAGY scenario.

Taken together, in scenarios (ii) and (iv), the overall individual-level DAGs, obtained

8

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 22, 2024. ; https://doi.org/10.1101/2024.06.18.599498doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.18.599498
http://creativecommons.org/licenses/by-nc/4.0/


by combining two different simulation strategies for X and Y , are fully oriented while

in scenarios (i) and (iii) the overall DAGs are partially oriented. Details regarding the

parameters ψX and ψY , the simulated levels of the effects of the unmeasured confounder

U on the responses and the outcomes, BX , the simulated levels of the genetic effects on

the exposures, and ΓX and ΓY , the simulated levels of the mediation parameters within

the exposures and the outcomes are presented in Methods. Finally, all simulations are

replicated 25 times and initialised with a different random seed.

We compare MrDAG with published multivariable MR methods and their software im-

plementations excluding from the comparisons näıve one-exposure and one-outcome MR

models since it has been shown that they are outperformed by multivariable MR meth-

ods when there is measured pleiotropy among exposures [3]. Specifically, we consider

Mendelian randomization with Bayesian Model Averaging (MR-BMA) [1] an MVMR

algorithm which allows for many exposures to be included, but does not model expli-

citly the dependency relations within the exposures [3]. MR-BMA estimates the sparse

direct causal effects between the exposures and one outcome providing the marginal pos-

terior probability of inclusion (mPPI) along with the posterior mean of the causal effects.

We treat MR-BMA as the baseline algorithm for the comparisons since it analyses one

outcome at-a-time. Secondly, we include Mendelian randomization with PC algorithm

(MRPC) [28], which combines instrumental variables with the PC algorithm [29] for DAG

estimation. At a specified type I error rate for the conditional independence test, MRPC

returns the estimated Partially Directed Acyclic Graphs (PDAGs) [19] (see Methods) in

which some undirected edges are present along with the directed ones as well as the p-

values of all conditional independence tests. For a given PDAG detected by MRPC in

each replicate and scenario, we utilise [27] to estimate the causal effects between the ex-

posures and outcomes. Finally, Partition-DAG (ParDAG) [30] provides a solution to the

structure learning problem once the summary-level statistics have been partitioned into

two groups and the orientation of the edges from the exposures to the outcomes has been

enforced. ParDAG computes the causal effects estimates under Lasso regularisation. It

has not been combined with instrumental variable estimation and applied to genetic data

to date. All methods use summary-level statistics as input after IVW. Finally, for each

method and algorithmic implementation, details of the parameter settings are provided

in Supplementary Information.

Regarding the evaluation criteria, we use a precision-recall curve (PRC) that shows

the relationship between precision (i.e., positive predictive value, on the y-axis) and recall

(i.e., sensitivity, on the x-axis) for every possible cut-off and it is not impacted by the over-

representation of null effects. See Supplementary Information for a detailed discussion

regarding how we implemented a fair comparison between the methods considered.

Finally, to evaluate the quality of the causal effects estimation, we calculate the sum of

squared errors (SSE), defined as the sum of the squared differences between the estimated
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and the simulated causal effect. In contrast to the evaluation of the recovery obtained

by each method of the simulated dependencies within the exposures, the outcomes and

between them, we do not report the SSE of the mediation parameters ΓX and ΓY since

they are considered nuisance parameters in the proposed model (see Supplementary In-

formation).

MrDAG more accurately detects unconfounded dependency relations within

the exposures and the outcomes and between them

Figure 3 presents the results of MrDAG and alternative methods for one replicate of the

simulated scenario UndGX-DAGY (Figures 3A-D) and DAGX-DAGY (Figures 3E-F) for

a particular choice of the parameters rX = 0.6 and mY = 1 used in the simulation study

to control the average value of the mediation parameters ΓX within the exposures and

ΓY within the outcomes, and ψX = 2 and ψY = 1 for the level of confounding on the

exposures and the outcomes, respectively (see Methods).

The general performance of competing algorithms is already apparent from it. In

scenario UndGX-DAGY , if a causal effect is simulated from an exposure to an outcome

and there are dependency relations from this outcome to other responses (Figure 3A),

MR-BMA adds erroneously causal effects to all linked responses with severe FP inflation

(Figure 3B, FPs between X̂∗
12 and Ŷ ∗

3 , Ŷ
∗
4 , Ŷ

∗
5 depicted in red). On the other hand,

MR-BMA estimates neither the dependency pattern within X, since (partial) correlation

between summary-level exposures is assumed in the model [3] but not estimated, nor

the dependencies within Y since MR-BMA considers one response at-a-time. MRPC

infers correctly most of the dependencies within X, but it does not have the power to

detect all simulated causal effects Θ at the specified type I error rate for the conditional

independence test (α = 0.01) with a few FNs (Figure 3C, FNs between X̂∗
1 , X̂

∗
2 and

Ŷ ∗
2 ) and well as FPs within B̂∗

Y (FPs between Ŷ ∗
2 , Ŷ

∗
3 , Ŷ

∗
4 , Ŷ

∗
5 , where bidirectionally is

erroneously detected). MrDAG performs better than alternative methods to detect both

directed and bidirected edges with only one FP between X̂∗
5 and X̂∗

15 (Figure 3D).

Similar comments can be made for a particular replicate of scenario DAGX-DAGY ,

although in this scenario the dependency patterns are more complex since a topological

ordered DAG is simulated also within the outcomes (Figure 3E). MrDAG confirms its

good performance except for the directionality of the dependency relations within X,

where bidirectional edges are found with a few FPs (Figure 3H, FPs between X̂∗
1 and X̂∗

12

and between X̂∗
8 and X̂∗

9 ).

Figure 4 generalises the results depicted in Figure 3, averaging the results over 25

replicates of the simulated scenarios UndGX-DAGY (Figures 4A-C) and DAGX-DAGY

(Figures 4D-F) with the same parameters setting used in Figure 3. The results are
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Figure 3. Examples of unconfounded dependency structure simulated at the individual-
level data and estimated by using summary-level statistics within the exposures, the
outcomes and between them in two different scenarios. In each panel, individual-level out-
comes Y = (Y1, . . . , Y5) and exposures X = (X1, . . . , X15) as well as genetically predicted outcomes

Ŷ ∗ = (Ŷ ∗
1 , . . . , Ŷ

∗
5 ) and exposures X̂∗ = (X̂∗

1 , . . . , X̂
∗
15) are represented with orange and blue nodes,

respectively. Directed edges indicate dependency relations, while undirected edges denote partial correl-
ation. Dashed lines depict the true (unconfounded by U) and estimated dependency structure within the
exposures and the outcomes, while solid lines indicate true and estimated causal effects between them.
Red colour denotes false positives, either falsely detected effects (regardless of the directionality) or wrong
directionality of the edges. Besides the proposed model, alternative methods considered: Mendelian ran-
domization with Bayesian Model Averaging (MR-BMA) [1], Mendelian randomization with PC algorithm
(MRPC) [28], Partition-DAG (ParDAG) [30]. We report the results of MR-BMA and MrDAG without
any threshold on the marginal posterior probability of inclusion (mPPI) and the posterior probability of
edge inclusion (PPeI), respectively. MRPC Partially Directed Acyclic Graphs (PDAGs) are obtained by
specifying the type I error rate for the conditional independence test at α = 0.01. ParDAG results are
the solutions of causal effects estimation with Lasso penalisation set at λ = 0.9 after partitioning the
traits into two groups and enforcing a constraint on the orientation of the edges between the exposures
and the outcomes. (A-D) Single replicate of the simulated scenario UndGX -DAGY , where an undirec-
ted graph encodes the dependency pattern within X and a DAG represents the dependency relations
within Y along with the simulated causal effects from the exposures to the outcomes, resulting in an
overall partially oriented DAG. In this scenario, the strength of correlation between consecutive X is set
at rX = 0.6, and then decreases exponentially for non-consecutive exposures, and the average level of
the mediation parameters within Y is set at mY = 1. (E-H) Single replicate of the simulated scenario
DAGX -DAGY , where two topologically ordered DAGs have been independently simulated within X and
Y along with the simulated causal effects from the exposures to the responses, resulting in an overall
fully-oriented DAG. In this scenario, the average level of mediation parameters for X and Y are set at
rX = 0.6 and mY = 1, respectively.

presented separately for the simulated dependency structures from the exposures to the

outcomes (Figures 4A and D), within the exposures (Figures 4B and E) and within the

outcomes (Figures 4C and D), respectively.

On average, MRPC and MrDAG have good performance in both simulated scenarios

(Figures 4A and D). MRPC best results are obtained at a stringent type I error rate
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Figure 4. Precision Recall Curves (PRCs) for all methods considered in the simulated
scenarios UndGX-DAGY and DAGX-DAGY show recall (= sensitivity = TP/(TP+FN)) in the x-
axis and precision (= positive predictive value = TP/(TP+FP)) in the y-axis with TP = True Positive,
FN = False Negative and FN = False Positive averaged over 25 replicates in each scenario. In scenario
UndGX -DAGY (A-C), the strength of correlation between consecutive X is set at rX = 0.6, and then it
decreases exponentially for non-consecutive exposures, and the average level of the mediation parameters
within Y is set at mY = 1, while in scenario DAGX -DAGY (D-F), the average level of the mediation
parameters within X and Y is set at rX = 0.6 and mY = 1, respectively. For details, see Methods.
In both scenarios, the results are presented separately for the simulated dependency structures from the
exposures to the outcomes (A and D), within the exposures (B and E) and the outcomes (C and D),
respectively. Vertical bars in each PRC, at specific recall levels 0.0625, 0.125, 0.25, 0.50 and 0.75, indicate
standard error. For the MRPC algorithm, type I error rate for the conditional independence test is set
at α = {0.01, 0.05, 0.10, 0.20} (from light- to dark-blue dots) and for the ParDAG algorithm we specify
three different values for the Lasso penalisation λ = {0.5, 0.7, 0.9} (from light- to dark-green dots). See
Supplementary Information for details.

α = 0.01 for the conditional independent tests (blue dots) although they are quite similar

across different values of α and thus robust to this choice. However, it fails to detect

the simulated dependency pattern within X in scenario DAGX-DAGY (Figure 4B). The

performance of MR-BMA can be only evaluated for the detection of the causal effects

from the exposures to the outcomes (Figures 4A and D). As we noticed above, the large

number of FPs degrades the results of this method which was not developed to deal with

multiple related responses.

The performance of ParDAG is the worst among the methods considered for all types

of designed relationships, slightly better within the exposures (Figures 4B and E) and
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between the exposures and outcomes (Figures 4A and D) and worse within the outcomes

(Figures 4C and F). Since ParDAG detects only directed edges, in Figure 4B, where

partial correlation between exposures is simulated, the method has 50% recall rate. The

results seem also quite different according to the penalty parameter λ.

MrDAG has a strong performance in both scenarios. In contrast to MR-BMA, in

scenario DAGX-DAGY (Figures 4A and C) there is only a small reduction of the precision

in the estimation of the dependency relations between the exposures and the outcomes,

and within the latter, compared to the scenario UndGX-DAGY (Figures 4D and F).

The comments above can be extended to the scenarios where the relationships within

outcomes are completely mediated (UndGX-MedY depicted in Supplementary Figures

2A-C, and DAGX-MedY shown in Supplementary Figures 2D-F). In these scenarios, the

mediation within the outcomes is easier to detect (Supplementary Figures 2C and F) than

a topologically ordered DAG simulated within Y .

Supplementary Figure 3 shows the results of the AUCPR to detect the causal effects

Θ and the sensitivity of the methods to different specifications of rX and mY . MrDAG

confirms to be uniformly the best method with stable AUCPR for any combination of rX

and mY with similar AUCPR when partial correlation or a topological ordered DAG is

simulated within X (Supplementary Figures 3A and B). MR-BMA performs well, espe-

cially in the scenario UndGX-MedY (Supplementary Figure 3A) which is the scenario that

is most compatible for this method as well as in scenario DAGX-MedY (Supplementary

Figure 3C), where its performance slightly decreases. Both MRPC and ParDAG seem to

be less precise at higher levels of rX irrespective of the simulated scenario, with ParDAG

also influenced by the value of mY . Similarly, Supplementary Figures 4) and 5 show the

sensitivity of the algorithms to detect the simulated patterns within X and within Y for

different specifications of rX and mY .

MrDAG improves the estimation of the causal effects over existing methods

Figure 5A shows the Sum of Squares Error (SSE) of the causal effects Θ between the

exposures and the outcomes for all methods considered in the simulated scenario UndGX-

DAGY and Figure 5B for the simulated scenario DAGX-DAGY across 25 replicates in each

scenario with the same parameter setting and implementation of algorithms described

above. For MRPC and ParDAG algorithms, we only show the results obtained at type I

error rate for the conditional independence test α = 0.01 and Lasso penalisation λ = 0.9,

respectively. These values provide the best results for the two algorithms as shown in

Figure 4 and Supplementary Figure 2.

MrDAG has the lowest SSE mean and median (white dots and horizontal black line,

respectively) in both scenarios. As expected, when a topological ordered DAG is simulated

within the exposures (Figure 5B), the violin plot have a wider range, showing more variable
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Figure 5. Violin plots of the Sum of Squares Error (SSE) of the causal effects Θ between the
exposures and the outcomes for all methods considered in the simulated scenarios UndGX-
DAGY and DAGX-DAGY across 25 replicates in each scenario. (A) In scenario UndGX -DAGY , the
strength of correlation between consecutive X is set at rX = 0.6, and then it decreases exponentially for
non-consecutive exposures, and the average level of the mediation parameters within Y is set at mY = 1.
(B) In scenario DAGX -DAGY , the average level of the mediation parameters within X and Y is set at
rX = 0.6 and mY = 1, respectively. For details, see Methods. In each violin plot, the vertical black thick
line displays the interquartile range, the black horizontal line denotes the median and the white dot the
mean. For MRPC and ParDAG algorithms, we only show the results obtained at type I error rate for
the conditional independence test α = 0.01 and Lasso penalisation λ = 0.9, respectively. These values
provide the best results for the two algorithms as shown in Figure 4 and Supplementary Figure 2.

results, although the median is almost similar to the scenario with simulated partial

correlation within X (Figure 5A). Alternative methods have larger SSE.

Similar comments can be made for simulated scenarios UndGX-MedY (Supplementary

Figure 6A) and DAGX-MedY (Supplementary Figure 6B), where a complete mediation is

considered within the outcomes. MrDAG is confirmed as the best method.

We conclude this section by inspecting the sensitivity of the SSE of the causal effects

between the exposures and the outcomes for different values of the average level of the

mediation parameters rX and mY . The estimation of the causal effects displayed in Sup-

plementary Figure 7 shows that both MR-BMA and MRPC depend on the combination

of rX and mY with similar performance when a complete mediation is simulated (Supple-

mentary Figures 7A and C) (Supplementary Figures 7B and D). Compared to the other

methods, MrDAG is not only the best, but it is rather insensitive to different levels of the

mediation parameters within X and Y .

Real data application: The impact of lifestyle and behavioural

traits on mental health

We apply MrDAG to investigate its ability to detect the effect of lifestyle and behavioural

exposures on the risk of mental health phenotypes as well as potential forms of interven-

tions for their prevention. As exposures, we chose seven lifestyle and behavioural traits

that have previously been investigated for their effects on mental health, including educa-

14

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 22, 2024. ; https://doi.org/10.1101/2024.06.18.599498doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.18.599498
http://creativecommons.org/licenses/by-nc/4.0/


tion (in years) (EDU), physical activity (PA), sleep duration (SP), alcohol consumption

(ALC), lifetime smoking index (SM) and leisure screen time (LST). As outcomes, we select

seven mental health phenotypes, including major depressive disorder (MDD), anorexia

nervosa (AN), attention deficit hyperactivity disorder (ADHD), bipolar disorder (BD),

autism spectrum disorder (ASD), schizophrenia (SCZ) and cognition (COG). See Sup-

plementary Table 1 for the description of the summary-level statistics, the data sources,

the number of IVs for each trait and Methods for the pre-processing steps. In a separate

analysis, we also investigate the reverse direction, i.e., whether the same mental health

phenotypes have an impact on the group of lifestyle and behavioural traits by selecting

IVs for the mental health phenotypes, see Methods for the respective pre-processing steps.

Figure 6 presents the results of MrDAG. In particular, Figures 6A and C show the

estimated posterior probability of edge inclusion (PPeI) (12) after structure learning and

Figures 6B and D the posterior causal effects (95% credible intervals (CI)) between the

exposures and the outcomes. Results on PPeI (and the posterior causal effects) are not

thresholded and sparsity is enforced by assigning a prior on the number of expected edges.

We set it at πedge = 0.16, i.e., we expect a priori one edge for each of the 13 traits, see

Methods and Supplementary Information.

As shown in Figures 6C and D, there is one distinct exposure (LST) and two key shared

exposures with important down-stream effects on mental health phenotypes, which are

EDU and SM on which we focus our discussion. For each of them, we also describe

how MrDAG can disentangle complex dependency relations within the exposures and the

outcomes and detect (partial or complete) mediation which prevents spurious findings.

As could be expected due to its centrality in the global health agenda [31] and the

high level of confounding of this phenotype with other genetically associated biological,

behavioural and socioeconomic traits, genetically predicted EDU shows the most inter-

exposure and exposure-outcome dependency relations (Figure 6C bottom part). Previous

work has supported the broad mental health implications of education [32]. First, in

keeping with previous findings [33, 34, 35, 36], our results show that EDU has a positive

causal effect on COG, it is causally associated with an increased liability to ASD and

BD as well as with a lower liability to ADHD. CIs show that the causal association

with BD is markedly skewed to the right. In contrast, EDU has no effects on SP, the

amount of ALC, or the liability to MDD [33], AN [37], or SCZ [36] (Figure 6D). Second, we

investigate the detected dependency relations of EDU with other exposures that contribute

to the reported causal associations. We find bidirectional relationships between genetically

predicted EDU, PA and LST consistent with a large literature [33, 38]. Dependency

relations have been also identified between EDU and SM [33, 39]. Supported by the

existing literature, these results confirm the ability of MrDAG to disentangle complex

relationships that exist between interrelated exposures.
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Figure 6. Results of MrDAG algorithm regarding how lifestyle and behavioural exposures
impact mental health outcomes. (A) PDAG of the posterior probability of edge inclusion (PPeI)
within the exposures (lifestyle and behavioural traits, blue nodes), the outcomes (mental health phen-
otypes, orange nodes) and between them. Undirected edges are represented as bidirectional edges, see,
for instance, edges between PA (physical activity) and LST (leisure screen time) or ASD (autism spec-
trum disorder) and ADHD (attention deficit hyperactivity disorder). Neither reverse causation from the
outcomes to the exposures nor feedback loops are allowed. (B) Posterior causal effects on the outcomes
(orange nodes) under intervention on the exposures (blue nodes). Red and green edges indicate positive
and negative posterior causal effects, respectively. (C) Posterior probability of edge inclusion (PPeI)
for each combination of outcomes (mental health phenotypes) and exposures (lifestyle and behavioural
traits). Horizontal and vertical dotted lines separate the exposures (bottom-right submatrix) from the
outcomes (top-left submatrix). PPEIs between exposures and outcomes are depicted in the bottom-left
submatrix. Neither reverse causation (top-right submatrix) nor feedback loops (main diagonal) are al-
lowed (black-white strips). (D) Posterior causal effects (95% credible intervals) on the outcomes (y-axis)
under intervention on the exposures (x-axis).

We find that SM is second only to EDU in its causal association with several outcomes.

Specifically, SM associates with an increased liability to MDD and ADHD as previously

reported [40, 41]. It is also associated with COG, BD and SCZ, although these causal
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effects are small and CIs are skewed to the right. As discussed above, we also check

the detected dependency relations of SM with other exposures. SM is related to PA as

documented in epidemiological studies [42] and in standard MR analysis [43], the latter

for objectively assessed average activity and number of cigarettes per day, respectively.

Moreover, MrDAG appropriately identifies the relationship between ALC and SM, but not

vice versa. In a recent MR publication [44], the opposite causal association is observed.

However, in contrast to [44] who conceptualize SM with smoking initiation, we use a

lifetime smoking index [40] which captures smoking duration, heaviness and cessation.

As important as the discussion of existing causal associations between the exposures

and the outcomes, it is similarly insightful to discuss the absence of causal effects, espe-

cially those relationships that are reported in the literature or found by standard (one

exposure and one outcome) MR models. For example, we do not replicate all previous

evidence for positive causal effects of liability to SM on mental health phenotypes. Though

we find a strong causal effect of SM on MDD [40], we do not find the same strong effect

of SM on SCZ [40] as observed in observational studies [45, 46]. By looking at Figure 6C,

this might be due to pleiotropic effects that have been identified by MrDAG within the

mental health phenotypes. In line with prior findings, evidence from MrDAG supports

dependency relations between genetic liability to MDD and AN, ASD and BD [47] as well

as between genetic liability to BD and SCZ [48]. Lastly, in keeping with prior findings

of possible bidirectional ASD-ADHD relationships [49], we observed genetic dependency

relations between ASD and ADHD, and vice versa. These results suggest that the genetic

effects of SM on SCZ can be mediated by pleiotropic effects within the responses. By

considering the results above, we hypothesise that the SM to SCZ relationship is partly

mediated first by MDD and then by BD. Moreover, there is another path that goes from

the genetically predicted level of SM to SCZ through a positive weak causal association

identified by MrDAG between SM and BD [50]. Both genetic paths are illustrated in

Figure 6A. Conditionally on these relationships that are not considered in standard MR

or MVMR, MrDAG does not detect a strong causal effect between SM and SCZ.

We further note that the causal effect of SM on ADHD is both direct and indir-

ect, the latter mediated first by MDD and then by ASD. Thus, our analysis pinpoints

the important role of MDD which partly or entirely accounts for many causal pathways

within mental health phenotypes and their causal exposures. This might be due to the

potentially high levels of confounding and non-specific genetic associations present in the

original MDD GWAS [51, 52] as well as the high levels of symptom-level and therefore

diagnostic overlap between MDD and all other psychiatric disorders [53]. Nonetheless,

the implications of our results, assuming the validity of all GWAS findings, are that pre-

vention and/or therapeutic intervention on MDD [54] can have a cascade of important

effects for the prevention of several mental health phenotypes.

To investigate this hypothesis, Supplementary Figures 10A and B show the results
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of MrDAG when MDD is removed from the list of outcomes. Regarding the causal

association between SM and ADHD, it is still present with the same strength and similar

CI depicted in Figure 6D, suggesting that the indirect effect mediated first by MDD and

then by ASD is negligible. Supplementary Figure 10B also shows that, after removing

MDD, the genetically predicted SM is positively associated with SCZ as reported in the

literature. Combined with our main findings, this result indicates that the absence of a

link between SM and SCZ in the MrDAG model is likely due to the mediation of MDD

and BD.

The risk of detecting spurious shared causal effects is very high when a standard MR

method is used separately on each trait as well as when multiple exposures are considered

for each outcome [1]. This problem has been highlighted in the simulation study and

visually presented in Figures 3B and F. In Supplementary Table 2 we show the results

MR-BMA algorithm when applied to the same data set. We notice an overestimation

of the causal effects since MR-BMA tries to ascribe the whole effects to the exposures

and, as expected from the simulation study, it also detects many more associations than

MrDAG.

We conclude the analysis by assessing the validity of the results obtained by MrDAG.

We divide this internal check into sensitivity to hyper-prior specification and robustness

of structure learning. Regarding the first point, Supplementary Figure 11 show that

the posterior causal effects as well as the 95% CIs for different values of the a priori

probability of edge inclusion are not influenced by this choice. For the second internal

check, we bootstrap MrDAG repeatedly on the data [55] (see Supplementary Information).

In Supplementary Figures 12 we present the bootstrap frequency of edge inclusion for each

permitted combination of exposures and outcomes and the scatterplot of the posterior

probability of edge inclusion (PPeI) against the bootstrap frequency of edge inclusion. The

results show that there is a satisfactory agreement between a single run of the algorithm

and the bootstrap results for the causal associations. Extended results are presented in

Supplementary Information.

For completeness, we have also tested reverse causation by selecting genetic variants

to be associated with the mental health phenotypes. Figure 7 and Supplementary Figure

9 show the results of the analysis to detect the impact of mental health phenotypes on

lifestyle and behavioural traits, where, besides the positive causal effect of genetically

predicted COG on EDU [56], smoking is causally affected by the genetic liability to MDD

[40] and ADHD, the latter well-documented in epidemiological studies [57] and recently

confirmed in a randomised clinical trial of smoking cessation [58].
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Figure 7. Results of MrDAG regarding how liability to mental health phenotypes affects
lifestyle and behavioural traits. (A) Posterior probability of edge inclusion (PPeI) for each combina-
tion of outcomes (lifestyle and behavioural traits) and exposures (mental health phenotypes). Horizontal
and vertical dotted lines separate the exposures (bottom-right submatrix) from the outcomes (top-left
submatrix). PPEIs between exposures and outcomes are depicted in the bottom-left submatrix. Neither
reverse causation (top-right submatrix) nor feedback loops (main diagonal) are allowed (black-white
strips). (B) Posterior causal effects (95% credible intervals) on the outcomes (y-axis) under intervention
on the exposures (x-axis).

Discussion

Here, we have introduced MrDAG, the first Bayesian causal graphical MR model for

multivariable and multiresponse that can detect dependency patterns within the exposures

as well as within the outcomes thus allowing for a more precise estimation of the causal

effects from the exposures to the outcomes. We showcased the advantage of the proposed

method in a comprehensive simulation study and its utility in detecting how lifestyle and

behavioural traits interact to cause mental health phenotypes, and vice versa. In the

real data application, we highlighted how MrDAG can recover more information on the

genetic paths that link exposures to outcomes compared to existing MR methods that

ignore these dependency relations. Specifically, we highlighted education and smoking

as key effective points of intervention given their distinct downstream effects on multiple

mental health phenotypes.

These insights are possible since three methodological advances are considered in

MrDAG. First, in structure learning, the hypothesis of no unobserved confounding is

a fundamental underlying assumption. This assumption, known as causal sufficiency, is

difficult to justify in real data applications and its violation produces biased results. By

using IVs within the MR paradigm, we bypass the need to remove the effects of the un-

measured confounder from the individual-level data [21]. Instead, we solve this problem

by employing genetically predicted exposures and outcomes which depend only on the
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genetic variants chosen as IVs. Genetically predicted exposures are key in the derivation

of the two-stage least square causal effect estimator [25], but in MrDAG we have extended

it to include genetically predicted outcomes. On both predicted traits, we perform DAG

exploration to learn the unconfounded dependency relations that exist within the expos-

ures, the outcomes and between them. Our second contribution is the estimation of causal

effects under intervention on the exposures conditionally on a given DAG. We showed that

they can be estimated based on Pearl’s interventional calculus [7]. Moreover, differently

from [59] and its application in the MRPC algorithm [60], the estimation of the causal

effects is averaged over the visited graphical models [61], thus taking into account the

uncertainty regarding the graphs that best portray the dependency structure in a given

data set. Third, MrDAG allows the possibility of including domain-knowledge relations

between the traits. In the designed MrDAG model, constraints between the exposures

and the outcomes descend directly from the MR paradigm. Our Bayesian implementation

of structure learning under restrictions offers clear advantages over alternative methods

[30]. Although not discussed here, other restrictions can be straightforwardly included,

for instance, known relations regarding disease progression or time-dependent outcomes,

e.g., smoking initiation and cessation [62].

In the real data application, while the use of existing summary-level statistics of

genome-wide association studies facilitates the integration of diverse phenotypes meas-

ured in different cohorts, we are also limited by the biases suffered by the initial genome-

wide association studies. Specifically, studies on mental health rely on the presence of

a clinical diagnosis. Consequently, it is not truly the genetic liability of the disease it-

self as much as it is the probability of having access to diagnoses or treatment. Our

findings on the relationship between higher genetically predicted educational attainment

(EDU) and increased ASD and BD, but decreased ADHD risk provide an example of

such bias. In these analyses, the predicted number of school years completed is unlikely

to be causally implicated in the development of ASD traits. While the typical age of

onset of ASD precedes the start of formal education (therefore unlikely to be caused by

it), ASD-related traits are more likely to be recognized and referred, particularly in those

who are undiagnosed or untreated, when individuals are within a schooling system where

standardized testing and progress reports by peer comparison are performed. Moreover,

current GWAS consider one trait or disease at-a-time and do not consider to what extent

cases are comorbid with other diseases. Future GWAS on co-morbidity [63] may provide

more fine-grained genetic associations allowing to disentangle some of these relationships.

Alternatively, novel causal inference methodology designed for individual-level data in

combination with large-scale biobank or cohort studies with genotype data could be used

to triangulate evidence.

In conclusion, MrDAG represents an important step forward in how we can learn

complex relationships among phenotypic traits and uncover causal pathways using ge-
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netic data. It provides analysts with the opportunity to derive a more comprehensive

picture of causal mechanisms between complex phenotypes. The real data application is

an example of the proposed holistic approach, where we leverage MrDAG and large-scale

genome-wide association data to offer novel mechanistic insight into the causal behavi-

oural determinants of mental health phenotypes to delineate between their overlapping

pathophysiology and phenotypic presentation, toward translational progress in the field

of mental health. Moving forward, MrDAG is ideally placed for the analysis of common

causal exposures for multimorbid health conditions. This research into multimorbidity

has been facilitated by the advent of large-scale biobanks being linked and followed up

using electronic health records and routinely collected health care data. Using genotype

data as genetic anchors offers a principled way for causal inference. MrDAG provides an

addition to existing toolkits to map shared and distinct causes of disease, to understand

trajectories, and to draw causal paths that link diseases.

Methods

In the following, we denote with capital letters the random variables Y , X, G and U for the

observed outcome, exposure, instrumental variable and unmeasured confounder, respect-

ively, and with small letters y, x, g and u their corresponding observations. Multivariate

random variables and corresponding observations are presented in bold. A marginal ele-

ment of a vector of random variables is specified by a suitable subscript index, e.g., Yk,

k ∈ K = {1, . . . , q}, Xj, j ∈ J = {1, . . . , p}, and Gi, i ∈ I = {1, . . . , n}. Y\k and

Y\j consists of all the outcomes and exposures except those that are related to the kth

response and jth exposure, respectively. Finally, vectors understood as columns vectors

and matrices are indicated in bold, the latter also in capital letters.

We indicate with βX
i,j and βY

i,k the effect of the genetic variant i ∈ I on the exposure

j ∈ J and outcome k ∈ K, respectively, with βXj
and βYj

the n-dimensional vector

of genetic effects on the jth exposure and kth outcome, respectively, and, finally, with

BX and BY the (n × p)- and (n × q)-dimensional matrices of the genetic effects on all

exposures and outcomes. θj,k denotes the causal parameter of interest, i.e., the causal

effect of Xj on Yk, and γXh,j and γYh,k the mediation effect of Xh on Xj, h ̸= j and Yj

on Yk, h ̸= k, respectively. Θ, ΓX and ΓY indicate the corresponding (p × q)-, (p × p)-

and (q × q)-dimensional matrices of the causal parameters of interest (Θ) and mediation

parameters (ΓX and ΓY ). The symbol “̂” denotes the estimator of a parameter or its

estimated value and “ ∗ ” an IVW parameter.

Finally, let D = (V,E) be a Directed Acyclic Graph (DAG), where V denote a set of

vertices (nodes) and E = V ×V a set of directed edges, i.e., if (z, v) ∈ E, then (z, v) /∈ E.

For a given DAG D, if z → v, then z is a parent of v and, conversely, v is a child of z.

Moreover, if z → . . . → v, then z is an ancestor of v and v is a descendant of z. We
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denote the parent set of v in D as paD(v) and v∪paD(v) = faD(v) the family of v. Unless

otherwise stated, for ease of notation, we remove the subscript D.

In [5, 20, 64] key results regarding standard Mendelian randomization (single exposure

with single instrumental variable and single outcome) are presented. Here, we use them

to show that MrDAG is an extension of standard MR when (i) multiple exposures and

outcomes are considered and (ii) the underlying dependency relations within and between

them are not known (latent) and need to be estimated from the data. Technical details

are provided in Supplementary Information.

Multi-exposure and multi-outcome core conditions for instru-

mental variables

Let Y , X and G be the q-, p- and n-dimensional vector of the outcomes, exposures and

instruments (genotypes) random variables, respectively.

Let’s assume the following “multivariate core conditions” (MCC) for valid instrumental

variables (IVs) which are the extensions of the core conditions that G has to satisfy in

standard Mendelian randomization (MR) [5]:

(IV1) Gi ⊥⊥ U, ∀i ∈ I, i.e., Gi must be independent of U ;

(IV2) Gi ⊥̸⊥ Xj | X\j, ∀i ∈ I and ∀j ∈ J , i.e., Gi must not be independent of Xj

conditionally on X\j;

(IV3) Gi ⊥⊥ Yk | (X, U), ∀i ∈ I and ∀k ∈ K, i.e., Gi must be independent of Yk

conditionally on X and U .

The first multi-exposure and multi-outcome core condition (MCC) for instrumental vari-

ables is similar to the first CC in standard MR [5]. The second MCC imposes that Gi

should be associated with Xj conditionally on the other exposures. The third MCC estab-

lishes that the instrumental variables and outcomes are conditionally independent given

the exposures and the unmeasured confounder.

From the DAG D involving Y , X, G and U that satisfies the MCC, the corresponding

Markov properties say that Gi ⊥⊥ U, ∀i ∈ I, since Gi is not a descendant of U and vice

versa and Gi ⊥̸⊥ Xj | Xpa(j), ∀i ∈ I and ∀j ∈ J , because Xj is a descendant of Gi. The

Markov property for the third MCC is Gi ⊥⊥ Yk | (Ypa(k),Xpa(k), U), ∀i ∈ I and ∀k ∈ K,

since Gi is a non-descendant of Yk and (Ypa(k),Xpa(k), U) are the parents of Yk.
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Interventional distributions and causal effects estimation

The conditional dependencies associated with the multi-exposure and multi-outcome DAG

D lead to the following factorisation of the joint density of all random variables considered

f(y,x, g, u) =
∏
k∈K

f(yk | ypa(k),xpa(k), u)
∏
j∈J

f(xj | xpa(j), g, u)f(g)f(u)

which is known as pre-intervention distribution and it is assumed to be faithful to the

DAG [29], i.e., there are no conditional dependence relationships between the variables

in the model that do not follow directly from the Markov properties.

The post-intervention distribution under intervention on the hth exposure sets to take

the value x̃h is obtained by the truncated factorisation [7]

f(y,x\h, g, u | do(Xh = x̃h)) =
∏
k∈K

f(yk | x̃h,ypa(k),xpa(k), u)∏
j∈J\{h}

f(xj | xpa(j), g, u)Ixh
(x̃h)f(g)f(u),

(1)

where Ix(x̃) is the indicator function which is equal to one if xh = x̃h and zero otherwise.

Graphically, the directed edges to Xh from its parents in X, G and U are removed.

A post-intervention distribution under intervention on the hthe exposure is obtained

from (1) by marginalising all variables but the selected outcome and the exposure on

which an intervention is carried out

f(yk | do(Xh = x̃h)) =
∫
f(y,x\h, g, u | do(Xh = x̃h)) dy\k dx\h dg du

=
∫
f(yk | x̃h,xpa(h), u)f(xpa(h), u)Ixh

(x̃h) dxpa(h) du.
(2)

This result is derived from [7] and it follows directly from the Markov properties of the

DAG. It establishes that the parents of the variable on which an intervention is carried

out are the only variables that need to be measured to estimate the causal effect on an

outcome [65].

The post-intervention distribution (2) can be summarised by taking the expectation

and defining the causal effect of an intervention [59] as

θh,k =
∂

∂xh
E(Yk | do(Xh = xh))

∣∣∣∣
xh=x̃h

, h ∈ J, k ∈ K.

In Supplementary Information, we show the identifiability of the causal effect (Supple-

mentary Proposition 2) and the derivation of its estimand in multiple exposures and

multiple outcomes MR framework (Supplementary Proposition 3). We also show the

consistency of the effects of the regressions of each outcome and exposure on G (Supple-

mentary Proposition 1), i.e., the estimated genetic effects on the outcomes and exposures

contain all information regarding the causal parameters of interest and the mediation
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parameters within the exposures and the outcomes.

Here, for a given DAG D, we report the IVW estimator of the causal effect of the

intervention in Xh on Yk

θ̂h,k = [(B̂∗⊤
Xfa(h)

B̂∗
Xfa(h)

)−1B̂∗⊤
Xfa(h)

β̂∗
Yk
]1, (3)

where the subscript indicates the first element of the solution of the linear least squares

(LLS) regression since fa(v) = v ∪ pa(v), Xfa(h) denotes the exposures that are the family

of the exposure Xh under intervention, B̂∗
Xfa(h)

are the IVW estimated coefficients of the

regressions of each exposure in Xfa(h) on G and β̂∗
Yk

is the IVW estimated coefficient of a

regression of Yk on G. (3) resembles the standard IVW estimator of the causal effect that

approximates the estimate that would have been obtained if individual-level data were

available [3]. However, in contrast to general proposed solutions in MVMR, in (3) the set

of regressors is with regard to the family of the exposure under intervention.

Dependency structure under the effect of unmeasured confounders

To estimate (3), structure learning of the graphical models needs to be performed to

detect the parents Xpa(h) of the exposure Xh under intervention. However, structure

learning assumes causal sufficiency [21], i.e., it requires that there are no hidden (or latent)

variables that are common causes of two or more traits. Instead, here we explicitly assume

that an unmeasured confounder U acts on both outcomes and exposures.

Links between the genetic correlation and MR causal effect estimate have been already

discussed in [23]. Here, we provide further connections with genetic covariance [24] which

is key to show that, by working with summary-level statistics, it is possible to recover the

dependency structure between the corresponding traits in the original (individual-level)

data unconfounded by U .

Let’s assume that the genetic effect on a phenotypic trait is linear and consider two

traits

Yk = G⊤βYk
+ ψYU + ϵYk

, k ∈ K,

Xj = G⊤βXj
+ ψXU + ϵXj

, j ∈ J,

where G is a set of genetic variants, either spanning the whole genome, or region(s)-

specific or selected to be associated with a trait, βYk
and βYk

are the genetic effects, U

is an unmeasured confounder that affects both traits with ψY and ψX the effects sizes

and ϵYk
and ϵXk

are white noises which can be interpreted as environmental effects. We

assume that G ⊥⊥ U and, similarly, G ⊥⊥ ϵYk
and G ⊥⊥ ϵXj

. Finally, we assume that

U ⊥⊥ ϵYk
and U ⊥⊥ ϵXj

, i.e., the unmeasured confounder U exerts its effect on both traits

and it is distinct from other environmental factors. Under this model, the phenotypic
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covariance is

Cov(Yk, Xj) = Cov(G⊤βYk
+ ψYU + ϵYk

,G⊤βXj
+ ψXU + ϵXj

)

= β⊤
Yk

V(G)βXj
+ ψY ψX V(U) + Cov(ϵYk

, ϵXj
).

(4)

The phenotypic covariance can be decomposed into cg(Yk, Xk) = Cov(G⊤βYk
,G⊤βXj

) =

β⊤
Yk

V(G)βXj
, the genetic covariance between the two traits, i.e., the covariance between

the genetic components of the two traits, G⊤βYk
and G⊤βXj

, and the environmental

covariance, i.e., the covariance between the environmental effects of two traits that we

have split into the effect of the unmeasured confounder, cu(Yk, Xk) = ψY ψX V(U), and
other environmental factors, ce(Yk, Xk) = Cov(ϵYk

, ϵXj
). If the environmental factors

are trait-specific since U includes all common confounding factors, ce(Yk, Xk) = 0 and

(4) shows that an estimand of the covariance between two traits unconfounded by U is

cg. From an MR perspective, by using MCC with G a set of IVs, in Supplementary

Proposition 5 we show that Cov(Yk, Xh | G = g) is unconfounded by U .

Assuming that the individuals for the two phenotypic traits are drawn from the same

population with LD matrix between the genetic variants V = G⊤G, the sampling distri-

bution of the genetic effects are N
1/2
Yk

(β̂Yk
−βYk

)
d→ Nn(0, σ

2
Yk
V −1) and N

1/2
Xj

(β̂Xj
−βXj

)
d→

Nn(0, σ
2
Xj
V −1), where “d” denotes convergence in distribution. Under infinite sample

sizes, β̂Yk

p→ βYk
and β̂Xj

p→ βXj
, where “p” denotes convergence in probability, and an

estimator of the genetic covariance between the two traits is

ĉg(Yk, Xj) = β̂⊤
Yk
V β̂Xj

.

In the finite sample sizes case, the estimates of βYk
and βXj

are noised and ĉg(Yk, Xj) is

biased [24]

E(ĉg(Yk, Xj)) = β⊤
Yk
V βXj

+
No

NYk
NXj

cu(Yk, Xj), (5)

where No is the sample size overlap between the two traits. However, even in the scenario

of complete overlap, the bias in (5) is negligible if the sample sizes of the two traits are

large, as it usually happens in modern GWAS.

The same considerations can made for all phenotypic traits under investigation to

reconstruct their joint genetic covariance unconfounded by U

Σ =

[
ΣY Y ΣY X

ΣXY ΣXX

]
=

[
B⊤

Y V BY B⊤
Y V BX

B⊤
XV BY B⊤

XV BX

]
, (6)

whereΣXX , ΣY Y andΣXY are the genetic covariances within the exposures, the outcomes

and between them and BY and BX are the coefficients of the regressions of the outcomes

and the exposures on G, respectively.
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MrDAG model

Assuming that the individuals for two phenotypic traits Yk and Xj are drawn from the

same population with LD matrix V , we have N
1/2
Yk

(g⊤β̂Yk
− g⊤βYk

)
d→ N(0, σ2

Yk
) and

N
1/2
Xj

(g⊤β̂Xj
− g⊤βXj

)
d→ N(0, σ2

Xj
), where g are the observed IVs, g⊤β̂Yk

and g⊤β̂Xj
are

the kth and the jth genetically predicted values of the outcome and exposure, i.e., Ŷk and

X̂k, respectively.

The joint distribution of all genetically predicted values of the outcomes and exposures

based on the IVs is

[g⊤B̂Y g
⊤B̂X ]

⊤ ∼ Nq+p([g
⊤BY g

⊤BX ]
⊤,Σ),

i.e., for large sample sizes they are normally distributed with mean [g⊤BY g
⊤BX ]

⊤ and

covariance matrixΣ ∈ CD, the space of the symmetric positive definite covariance matrices

Markov with respect to the DAG D.

If we assume that IVW is performed on the estimated regression coefficients and IVs

are independent after pruning or clumping, i.e., V = In, the MrDAG model becomes

[g⊤B̂∗
Y g

⊤B̂∗
X ]

⊤ ∼ Nq+p([g
⊤B∗

Y g
⊤B∗

X ]
⊤,Σ∗), (7)

where [g⊤B̂∗
Y g

⊤B̂∗
X ]

⊤ = [g⊤σ−1
Y B̂Y g

⊤σ−1
Y B̂X ]

⊤ with σ2
Y In = q−1

∑
k∈K V(β̂Yk

) [2] and

similarly for [g⊤B∗
Y g

⊤B∗
X ]

⊤. The covariance matrix can be can be partitioned into

Σ∗ =

[
Σ∗

Y Y Σ∗
Y X

Σ∗
XY Σ∗

XX

]
,

whereΣ∗
XX , Σ

∗
Y Y andΣ∗

XY are the genetic covariances within the exposures, the outcomes

and between them, and its inverse ([66], Theorem 8.5.11) into

Ω∗ = Σ∗−1

=

[
Ω∗

Y Y −Ω∗
Y YΣ

∗
Y XΣ

∗−1

XX

−Σ∗−1

XXΣ
∗
XYΩ

∗
Y Y Σ∗−1

XX +Σ∗−1

XXΣ
∗
XYΩ

∗
Y YΣ

∗
Y XΣ

∗−1

XX

]
, (8)

with Ω∗ ∈ PD, the space of the precision matrices Markov with respect to the DAG

D and Ω∗
Y Y = (Σ∗

Y Y − Σ∗
Y XΣ

∗−1

XXΣ
∗
XY )

−1. However, since by partial ordering Ω∗
Y X =

Ω∗
Y YΣ

∗
Y XΣ

∗−1

XX = 0, (8) becomes

Ω∗ =

[
Ω∗

Y Y 0

−Σ∗−1

XXΣ
∗
XYΩ

∗
Y Y Σ∗−1

XX

]
.

By using Ω∗, Gaussian graphical models [17] can be used to estimate the conditional

dependence relationships between the traits in the original (individual-level) data uncon-

founded by U since genetically predicted outcomes and exposures depend only on the
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selected IVs.

Finally, for a given DAG D, the estimand of the causal effect under intervention [67]

is

θh,k = [Σ∗−1

fa(h),fa(h)Σ
∗
fa(h),k]1, (9)

where Σ∗
fa(h),fa(h) indicates the submatrix of Σ∗ whose rows and columns are fa(h), Σ∗

fa(h),k

indicates the subvector of Σ∗ whose rows are fa(h) and the column correspond to the kth

outcome, and where the subscript indicates the first element of the vector. By using (6)

which is a sufficient statistic for Σ∗ after IVW and with V = In, (9) becomes

θh,k = [(B∗⊤
Xfa(h)

B∗
Xfa(h)

)−1B∗⊤
Xfa(h)

β∗
Yk
]1,

where B∗
Xfa(h)

are the IVW coefficients of the regressions of each exposure in Xfa(h) on G

and β∗
Yk

is the IVW coefficient of a regression of Yk on G. The corresponding estimator

coincides with (3).

An important aspect of the MrDAG model is that the genetically predicted values of

the outcomes and exposures do not need to be calculated since MrDAG uses as input

(6) the sufficient statistic for Σ∗. The only information that would be required from the

original (individual-level) data is the LD matrix V . However, this information is not

necessary in MrDAG summary-level MR design since independent genetic variants are

considered after pruning or clumping and thus V = In.

MrDAG algorithm

Markov Equivalent Class, Completed Partially DAGs, Essential Graphs and

Partially DAGs

The estimation of a DAG from observational data suffers the known problem of identi-

fiability, i.e., it is not possible to estimate uniquely the underlying true DAG since its

conditional independencies can be encoded in several alternative DAGs. This set of DAGs

that hold the same conditional independencies is known as Markov Equivalent Class and

the best that can be done from observational data is to estimate this class. All DAGs with

the same conditional independencies can be represented by a Completed Partially DAG

(CPDAG) [68] or Essential Graph (EG) [69]. EGs are Chain Graphs (CGs) whose chain

components are decomposable undirected graphs [17]. A CPDAG or EG is a partially

directed graph that might contain both directed and undirected edges without directed

cycles. Finally, Partially DAG (PDAG) contain both directed and undirected edges and

directed cycles might be present.
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Posterior probability of edge inclusion

Technical details of the algorithm for graphical models exploration that we used to develop

MrDAG algorithm are presented in [70]. Briefly, it is based on a Markov chain Monte Carlo

(MCMC) algorithm devised to explore the space of EGs whose enumeration is infeasible

since their number grows super-exponentially with the number of nodes. The EG G is

sampled from a proposal distribution which is accepted with a probability given by a

Metropolis-Hastings (M-H) ratio defined to guarantee the convergence of the algorithm

to the correct posterior distribution. The key ingredient in the M-H ratio is a closed-

form expression for the marginal likelihood mG(data). This is based on a non-informative

prior coupled with a fractional Bayes factor methodology and compatible priors building

procedure. In practice, a specific DAG D(G), which belongs to the Markov Equivalent

Class whose unique representative chain graph is the EG G, is proposed and, if accepted,

its information stored as an adjacent matrix at each sweep of the MCMC algorithm.

In MrDAG algorithm, we added an acceptance/rejection step to guarantee that D(G)
satisfies the partial ordering that corresponds to the orientation of the edges from the

exposures to the outcomes, see Figure 1E. To check the efficiency of this step, we also

monitor its acceptance rate. We also included a tempering scheme [71] by considering

an annealing parameter T in the M-H ratio to facilitate the convergence of the MCMC

algorithm to the target distribution and the exploration of regions of high posterior mass.

The temperature 1/T exponentiates the M-H ratio and its value increases linearly during

the burn-in until T = 1 at the end of the burn-in.

Sparsity is enforced by assigning a prior to G and specifically on GU , the skeleton of

G which contains the same edges of G but without orientation

GU
(l) | πedge i.i.d.∼ Ber(πedge), l = 1, . . . , (q + p)(q + p− 1)/2, (10)

where GU
(l) is the lth element of the vectorized lower triangular part of the adjacency matrix

of GU and (q+ p)(q+ p− 1)/2 is the maximum number of edges in an EG on q+ p nodes.

The posterior distribution of G is

P(G | data) = mG(data)P(G)∑
G∈Sq+p

mG(data)P(G)
(11)

with Sq+p the set of all EGs with q+ p nodes. The posterior probability of edge inclusion

(PPeIs) is defined as

Pz→v(data) =
∑

G∈Sz→v
P(G | data)

≈ 1
S

∑S
s=1 ID(G(s))(D(G(s)

z→v)),
(12)

where Sz→v is the set of EGs containing the directed edge z → v, S is the number of
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sweeps after burn-in and ID(G(s))(D(G(s)
z→v)) is the indicator function that is equal to one

if the specific DAG considered at the sth sweep D(G(s)) contains the directed edge z → v

and zero otherwise.

Note that, although MrDAG explores the space of EGs and stores a specific DAG that

belongs to the sampled EG, the graphs obtained by thresholding the PPeIs might give

rise to a PDAG [70].

Bayesian causal effects estimation

Here, we summarise the results reported in [67] that we employed to derive the Bayesian

estimation of the causal effects under unmeasured confounders.

Let’s rewrite (7) as

[g⊤B̂∗
Y g

⊤B̂∗
X ]

⊤ | Σ∗
D ∼ Nq+p([g

⊤B∗
Y g

⊤B∗
X ]

⊤,Σ∗
D),

where Σ∗
D ∈ CD, the space of s.p.d. covariance matrices Markov with respect to D. In

the following, for ease of notation, we refer to [g⊤B̂∗
Y g

⊤B̂∗
X ]

⊤ as the “data” and we also

drop the subscript D.

LetΩ∗ = Σ∗−1
= L∗D∗−1

L∗⊤ be the modified Cholesky decomposition of the precision

Ω∗. The DAG Cholesky parametrization of Ω∗ is given by the node-parameters ω∗
l =

(D∗
ll,L

∗
fa(l)), l = 1, . . . , q + p, with

D∗
ll = Σ∗

ll|pa(l), L∗
fa(l) = −Σ∗−1

pa(l)Σ
∗
fa(l),

where Σ∗
pa(l) indicates the submatrix of Σ∗ whose rows and columns are pa(l).

For a given DAG D, [67] derive the posterior distribution of ω∗
l , l = 1, . . . , q + p, in

an objective Bayes framework which has the advantage of not depending on priors hyper-

parameters. In turn, the posterior draws of the Cholesky parameters ω∗
l provide posterior

draws from (Ω∗ | data) = (L∗D∗−1
L∗⊤ | data) and finally, by using (9), posterior samples

of the causal effects between the exposures and the outcomes.

In contrast to frequentist approaches [72] where, for an estimated EG G, the causal

effects are calculated averaging over all (if numerical feasible) or a subset of DAGs within

the Markov Equivalent Class G, here, we also consider the uncertainty related to the

estimation of the EGs. Let {Gv, v = 1, . . . , V } the set of unique visited EGs by MrDAG.

Based on (11), the posterior probability of Gv can be approximated by

P(Gv | data) ≈
mGv(data)P(Gv)∑V
v=1mGv(data)P(Gv)

. (13)

Averaging over the unique visited EGs, the posterior causal effect under intervention in
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the hth exposures on the kth outcomes is

θh,k | data =
∑V

v=1 E(θh,k(D(Gv)) | data,Gv)P(Gv | data), h ∈ J, k ∈ K,

≈ 1
S

∑S
s=1 θh,k(D(G(s))),

(14)

where Gv is one of the unique EGs visited during the MCMC, E(θh,k(D(Gv)) | data,Gv) is

the posterior expectation of the causal effect given Gv, i.e., over all D(Gv), P(Gv | data) is
defined in (13) and θh,k(D(G(s)) is the posterior causal effect conditioned on the recorded

DAG at the sth sweep.

Finally, by a suitable modification of (14), credible intervals of the causal effects

between the exposures and outcomes can be derived.

Simulation study

We share several aspects of the simulation study with [2]. It is formulated in a two-sample

summary-level MR design, where N = 100, 000 independent individuals are simulated, of

which NY = 50, 000 are used to compute the genetic associations with the exposures and

NX = 50, 000 to compute the genetic associations with the outcomes. Thus, we assume

that the quantitative exposures Xj, j ∈ J = {1, . . . , p}, and the quantitative responses

Yk, k ∈ K = {1, . . . , q}, are measured on the same individuals NX and NY , respectively,

with 100% sample overlap, but independent of each other.

In all simulated scenarios, we consider p = 15 exposures, q = 5 outcomes and n = 100

independent genetic variants as IVs. Genotypes for the ith genetic variant and each

individual ℓ are simulated independently according to a binomial distribution with minor

allele frequency (MAF) equal to 0.05, i.e., gℓ,i
i.i.d.∼ Bin(2, 0.05), ℓ ∈ L = {1, . . . , N},

i ∈ I = {1, . . . , n}. The resulting matrix of genotypes G is split into two equally sized

groups, GX and GY , of dimension NX × n and NY × n, respectively. Thus, no IVW is

needed in the simulation study given that the same MAF at 5% is used to simulate the

genotypes.

Overall, the data generation process consists of two stages. In the first stage, the

raw data for the exposures X and the outcomes Y are simulated. Then, in the second

stage, summary-level statistics are obtained as the linear regression coefficients β̂X
i,j from

a univariable linear regression in which the jth exposure is regressed on the ith genetic

variant in sample one and the linear regression coefficients β̂Y
i,k from a univariable linear

regression in which the kth outcome is regressed on the ith genetic variant in sample two.

In the following, we detail each stage and how we simulate the quantities involved.

We start with the first stage which is divided into two steps.

� In the first step, the exposures are generated as follows

xj = GXβXj
+ ψXuX + ϵXj

, j ∈ J, (15)
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where GX and uX are the genotypes of the n IVs and the values of the confounder

U measured on the same NX individuals, respectively, and where βXj
and ψX are

the corresponding genetic and confounding effects. ϵXj
∼ NNX

(0, hXj
INX

) with hXj

the jth diagonal element of the (p× p)-dimensional matrix

HX =
1− vX
vX

(GXBX + ψXuX1
⊤
p )

⊤(GXBX + ψXuX1
⊤
p ), (16)

where vX is the desired level of heritability, or how much variation G can explain

of Xj, fixed at 10% for all exposures and in all simulated scenarios. In (16), BX =

{βXj
}j∈J is an (n × p)-dimensional matrix of the effects of the genetic variants on

the exposures.

The confounder U is drawn from a multivariate standard Gaussian distribution, i.e.,

u ∼ NN(0, IN) and, then, split into two equally sized vectors uX and uY with effect

ψX impacting all exposures and ψY effecting all outcomes.

The effects βXj
of the n genetic variants on the jth exposure are drawn following

[70]. We randomly generate a topologically ordered DAG among the p exposures

with a probability of edge inclusion pedgeX = 2/(p−1) using the function randomDAG()

in the R package pcalg [27]. Thus, the resulting DAG implies the following system

of equations [18]

βXj
=

∑
h∈pa(j)

γXh,jβXh
+ ϵXj

(17)

with ϵXj
∼ N(0, In). For each j ∈ J , the effect within the exposures γXh,j are

uniformly chosen in the interval [−1.1rX ,−0.9rX ]∪[0.9rX , 1.1rX ]. This construction
procedure for βXj

corresponds to the simulated scenario that we call “DAGX”,

i.e., Directed Acyclic Graph within X, which, in turn, is paired with two different

simulated scenarios for the effects βYk
described in the second step (first stage) of

the simulation study.

We also simulate the effects βXj
following [2]. Specifically, we simulate βXj

∼
Nn(0,RX), where RX is the (p × p)-dimensional Toeplitz matrix with r

|j−j′|
X for

j, j′ ∈ J . The matrix RX implies a tridiagonal sparse inverse correlation matrix

ΩX = R−1
X . The interpretation of non-zero elements of ΩX coincides with the effects

simulated in (17). We call this second scenario for the effects of the genotypes on

the exposures “UGX”, i.e., Undirected Graph within X.

In both simulated scenarios for X, we use different levels of rX , ranging from in-

dependence to a strong dependence, i.e., rX = {0, 0.2, 0.4, 0.6, 0.8}, where rX = 0.6

represents a medium dependence between the genetic associations with the expos-

ures. We use this value in the figures presented in Section ‘Simulation study’.

� In the second step (first stage) of the simulation study, the outcomes are generated
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on another independent set of NY individuals based on the following set of equations

yk = Xθk +
∑

h∈pa(k)

γYh,kyh + ψYu+ ϵYk
, k ∈ K, (18)

where X is the (NX × p)-dimensional matrix of exposures simulated using (15),

θk = (θ1k, . . . , θpk)
⊤ is p-dimensional (sparse) vector the causal effects from the

exposures to the kth outcome and where ψY is the effect of the confounder U on

the outcomes. ϵYk
∼ NNY

(0, hYk
INY

) with hYk
the kth diagonal element of the

(q × q)-dimensional matrix

HY = 1−vY
vY

(Xθk +
∑

h∈pa(k) γ
Y
h,kyh + ψYu+ ϵYk

)⊤

(Xθk +
∑

h∈pa(k) γ
Y
h,kyh + ψYu+ ϵYk

),

where vY is the desired level of the proportion of variance explained, fixed at 25%

for all outcomes and in all simulated scenarios.

In (18), the term
∑

h∈pa(k) γ
Y
h,kYh depends on a randomly generated topologically

ordered DAG among the q outcomes with probability of edge inclusion pedgeY =

1/(q−1). For each k ∈ K, the effects within the outcomes γYh,k are uniformly drawn

in the interval [0.9mY , 1.1mY ]. In analogy with the first step, we call this scenario

“DAGY ”, i.e., Directed Acyclic Graph within Y .

We also simulate a simplified scenario where

yk = γYh,kyh + ψYu+ ϵYk
, (19)

i.e., a randomly selected outcome k is completed mediated by another randomly

selected response chosen between the remaining ones. We call this scenario “MedY ”,

i.e., complete mediation of an outcome, since in the previous scenario “DAGY ”

partial mediations [73] are likely simulated, while here we exclude this case. In this

second simulated scenario for the outcomes, the matrix HY is calculated according

to (19). Moreover, we use different levels of mY , ranging from small to a strong

level of (partial or complete) mediation, i.e., mY = {0.25, 0.50, 0.75, 1, 1.5, 2}, where
mY = 1 represents a medium (partial or complete) mediation effect. We use this

value in the figures presented in Section ‘Simulation study’.

Finally, the causal effects θk are drawn independently from a multivariate Gaussian

distribution, i.e., θk ∼ Np(0, Ip).

In both simulated scenarios for Y , we consider a (q× p)-dimensional sparse matrix

of causal effects Θ = {θk}k∈K , where 30 cells of the matrix are non-zero and where

several exposures are either shared or distinct for the outcomes. Specifically, we

select at random the same proportion of cells in the matrix Θ and assign them the
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simulated values, while the other cells are set to zero.

After the first stage, four scenarios are created by combining the simulations forX and

Y : (i) “UndGX-MedY ”, i.e., undirected graph within X and complete mediation of an

outcome in Y ; (ii) DAGX-MedY , i.e., topologically ordered DAG within X and complete

mediation of a response within Y ; (iii) UndGX-DAGY , i.e., undirected graph within

X and topologically ordered DAG within Y ; (iv) DAGX-DAGY , topologically ordered

DAGs withinX and Y . In (ii) and (iv) the overall DAGs, obtained by combining different

simulation patterns for X and Y , are fully oriented while in (i) and (iii) they are partially

oriented.

After creating the data at the individual level, in the second stage, we compute the

summary-level statistics from the two independent groups of individuals. The input data

for the simulation study are the summary-level statistics B̂X = {β̂X
i,j}i∈I, j∈J , an (n× p)-

dimensional matrix, and B̂Y = {β̂Y
i,k}i∈I, k∈K , an (n×q)-dimensional matrix, derived from

a univariable linear regression model, where each genetic variant Gi is regressed against

each exposure Xj and each outcome Yk at-a-time.

Real data application: Pre-processing and data preparation

The first step of the data processing merges the summary-level data (beta regression

coefficients, their standard errors and associated p-values) of all exposures by their unique

“rs” identifier and aligns the effect direction of the genetic associations with each exposure

according to the same effect allele. As IVs, we select the genetic variants which are

associated with any of the exposures at genome-wide significance (minimum p-value <

5×10−8 across all exposures). Next, we merge the genetic variants selected as IVs with the

outcome data by their unique “rs” identifier and align the effect direction of the genetic

associations with each outcome according to the same effect allele. Finally, we clump the

genetic variants to be independent at r2 < 0.01 using a European reference panel [74].

This results in n = 708 independent genetic variants selected as IVs. See Supplementary

Table 1 for the description of the summary-level statistics, the data sources, the number

of non-unique IVs which were genome-wide significant for each exposure along with the

contribution (%) of each exposure on the selected IVs.

Finally, we perform reverse causation using the same traits with mental health phen-

otypes as exposures and lifestyle and behavioural traits as outcomes. We apply the same

procedure described above resulting in 470 IVs. See Supplementary Table 1 for details

regarding the number of non-unique IVs which were genome-wide significant for each

exposure along with the contribution (%) of each exposure on the selected IVs.
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Data availability

Data sources are presented in Supplementary Information with associated URL links. So-

cial Science Genetic Association Consortium (SSGAC) summary-level statistics are avail-

able through a standard registration procedure (https://thessgac.com/register/).

Code availability

The Mendelian randomization with Directed Acyclic Graph learning R package MrDAG

is freely available on https://github.com/lb664/MrDAG/. It includes the data of the

real data examples and how to run the algorithm. Post-processing routines to estimate

the posterior causal effects presented in the manuscript are also included along with the

Posterior Probability of Edge Inclusion.
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tion analysis of the effect of educational attainment and cognitive ability on smoking
behaviour. Nature Communications 10 (2019). URL https://doi.org/10.1038/

s41467-019-10679-y.

[63] LaBianca, S. et al. Polygenic profiles define aspects of clinical heterogeneity in at-
tention deficit hyperactivity disorder. Nature Genetics 56, 234–244 (2023). URL
https://doi.org/10.1038/s41588-023-01593-7.

[64] Didelez, V. Causal concepts and graphical models. In Maathuis, M., Drton, M., Laur-
itzen, S. & Wainwright, M. (eds.) Handbook of Graphical Models, 353–376 (Chap-
man and Hall/CRC, Boca Raton, FL, 2018). URL https://doi.org//10.1201/

9780429463976-15.

[65] Pearl, J. An introduction to causal inference. The International Journal of Biostat-
istics 6 (2010). URL https://doi.org/10.2202/1557-4679.1203.

[66] Harville, D. Matrix Algebra from a Statistician’s Perspective (Springer-Verlag, New
York, 1997). Repr. with corrections.

[67] Castelletti, F. & Consonni, G. Bayesian inference of causal effects from observational
data in Gaussian graphical models. Biometrics 77, 136–149 (2021). URL https:

//doi.org/10.1111/biom.13281.

[68] Chickering, D. M. Learning equivalence classes of bayesian-network structures.
Journal of Machine Learning Research 2, 445–498 (2002). URL http://www.ai.

mit.edu/projects/jmlr/papers/volume2/chickering02a/chickering02a.pdf.

[69] Andersson, S. A., Madigan, D. & Perlman, M. D. A characterization of Markov
equivalence classes for acyclic digraphs. Annals of Statistics 25, 505–541 (1997).
URL https://doi.org/10.1214/aos/1031833662.

[70] Castelletti, F., Consonni, G., Vedova, M. L. D. & Peluso, S. Learning Markov equi-
valence classes of Directed Acyclic Graphs: An objective Bayes approach. Bayesian
Analysis 13, 1235–1260 (2018). URL https://doi.org/10.1214/18-ba1101.

40

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 22, 2024. ; https://doi.org/10.1101/2024.06.18.599498doi: bioRxiv preprint 

https://doi.org/10.1016/j.drugalcdep.2023.109798
https://doi.org/10.1214/09-aos685
https://doi.org/10.3389/fgene.2019.00460
https://doi.org/10.3389/fgene.2019.00460
https://doi.org/10.1214/ss/1009212519
https://doi.org/10.1214/ss/1009212519
https://doi.org/10.1038/s41467-019-10679-y
https://doi.org/10.1038/s41467-019-10679-y
https://doi.org/10.1038/s41588-023-01593-7
https://doi.org//10.1201/9780429463976-15
https://doi.org//10.1201/9780429463976-15
https://doi.org/10.2202/1557-4679.1203
https://doi.org/10.1111/biom.13281
https://doi.org/10.1111/biom.13281
http://www.ai.mit.edu/projects/jmlr/papers/volume2/chickering02a/chickering02a.pdf
http://www.ai.mit.edu/projects/jmlr/papers/volume2/chickering02a/chickering02a.pdf
https://doi.org/10.1214/aos/1031833662
https://doi.org/10.1214/18-ba1101
https://doi.org/10.1101/2024.06.18.599498
http://creativecommons.org/licenses/by-nc/4.0/


[71] Bottolo, L. & Richardson, S. Evolutionary stochastic search for Bayesian model
exploration. Bayesian Analysis 5, 583–618 (2010). URL https://doi.org/10.

1214/10-ba523.
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