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Abstract

Current Mendelian randomization (MR) methods do not reflect complex rela-
tionships among multiple exposures and outcomes as is typical for real-life applica-
tions. We introduce MrDAG the first MR method to model dependency relations
within the exposures, the outcomes, and between them to improve causal effects
estimation. MrDAG combines three causal inference strategies in a unified man-
ner. It uses genetic variation as instrumental variables to account for unmeasured
confounders. It performs structure learning to detect and orientate the direction of
the dependencies within exposures and outcomes. Finally, interventional calculus
is employed to derive principled causal effect estimates. MrDAG was motivated to
unravel how lifestyle and behavioural exposures impact mental health. It highlights
education and smoking as key effective points of intervention given their down-
stream effects on mental health. These insights would have been difficult to delin-
eate without modelling the causal paths between multiple exposures and outcomes

at once.
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Introduction

Genetic evidence is increasingly used to infer causal relationships between human traits in
Mendelian randomization (MR) analysis. The standard MR paradigm, one exposure and
one outcome, can be biased by unobserved pleiotropy. It occurs when the genetic variants
used as instruments in the MR analysis act via separate pathways to the exposure under
investigation. Extensions to consider multiple exposures [1] along with multi-response [2]
of standard MR allow to model pleiotropy acting either via any of the exposures or any
of the outcomes or both, respectively.

Yet, to date, there is no MR approach which can estimate the dependency relations
within the exposures and the outcomes to enhance the detection of causal effects between
them and improve their accuracy. As we show in our motivating data application on
mental health phenotypes, it is a common problem in practical applications that the effect
of an exposure on an outcome can be confounded or (partially or completely) mediated by
another exposure [3] or mediated by another outcome, or both. However, this structure is
latent and not known and consequently needs to be learned from the data. This problem
has been overlooked in the literature and current MR implementations which do not
account for these dependencies likely produce spurious findings which are often claimed
as supporting causality in applied analysis.

Here, we address this gap by proposing the MrDAG model, the first Mendelian ran-
domization method with Directed Acyclic Graphs (DAGs) exploration and causal effects
estimation, which utilises summary-level genetic associations from genome-wide asso-
ciation studies to learn how interrelated exposures affect multiple outcomes which, in
turn, are interconnected in a complex fashion. MrDAG is a Bayesian causal graphical
model that combines three causal inference strategies in a unified manner. First, the MR
paradigm which uses genetic variation as instrumental variables (IVs) [4, 5] to ensure un-
confoundedness. Second, structure learning [6], i.e., graphical models selection to define
the graphs that best describe the dependency structure in a given data set under the
constraint on edges’ orientation from the exposures to the outcomes implied by the MR
paradigm. Third, interventional calculus to derive principled causal effects estimates [7]
from the exposures to the outcomes.

Our motivating real data application considers the impact of six common modifiable
lifestyle and behavioural exposures on seven mental health phenotypes. Mental health
describes patterns of cognitive, emotional, and behavioural disregulations that limit daily
functioning and cause distress. One in eight individuals suffers from one or more men-
tal health phenotypes worldwide, most commonly anxiety, attention-deficit hyperactivity,
autism spectrum, bipolar, eating, personality or schizophrenia-related diseases [8]. Col-
lectively, they contribute to more than 15% of total years lived with disability [9]. Clinic-

ally, mental health phenotypes are notoriously difficult to disentangle and diagnose due to
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the lack of objective biological biomarkers and distinct disease impressions [10]. No symp-
tom can be uniquely ascribed to one disease, and each disease comprises experiencing a
group of interrelated traits. In research, this complexity is reinforced by the multifaceted
mechanisms that cause and sustain mental health [10, 11]. In addition to genetic liability,
numerous behavioural and lifestyle factors such as alcohol consumption, smoking, sleep
hygiene, physical activity and education contribute to the risk of developing a mental
health trait [11, 12]. Notably, these factors are also affected by existing disease and treat-
ment [13]. It is essential to appreciate these complexities when attempting to identify
distinct and shared underlying mechanisms of mental health. While MR studies have
been effective in circumventing some of the limitations of traditional epidemiology such
as environmental confounding and reverse causation, MR remains largely unable to fully
disentangle the interplay between traits that cause or result from mental health [14]. The
complexity of such an example demonstrates the limitations of current MR solutions to
offer a more comprehensive picture of causal mechanisms between complex phenotypes

and provides a suitable test ground for the application of the proposed methodology.

Results

Causal inferential strategies in MrDAG

MrDAG combines three causal inference strategies.

First, MR has pioneered the ability to use genetic data as [Vs to derive causal state-
ments from observational data despite the presence of unmeasured confounders [15, 16].

Second, in its standard formulation of one exposure and one outcome, the conditional
dependencies between the outcome Y, the exposure X, the IV G and the unmeasured
confounder U are all given as well as their graphical representation [5]. When multiple
exposures X [1] and multiple outcomes Y [2] are considered along with multiple IVs G,
(partial) correlation between X and conditional dependencies between Y are included in
the models to perform the selection of important exposures whose causal effects can be
shared or are distinct across the responses. However, to date, no dependency relations
within the exposures and within the outcomes are estimated, although, in practical ap-
plications, the effect of an exposure on an outcome can be confounded or (partially or
completely) mediated by another exposure or mediated by another outcome, or both, see
Figures [JJA-B for an illustration. Moreover, dependency relations are also important to
derive principled estimates of the causal effects [7].

In real data applications, complex dependency relations between the traits are gener-
ally not known in advance, and they need to be learned from the data. To detect them,

we rely on Directed Acyclic Graphs (DAGs) and structure learning. Graphical models
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Figure 1. Directed Acyclic Graph (DAG) representation of the proposed multiple exposures
and multiple outcomes Mendelian randomization model and causal effects estimation. (A)
Middle panel: Multivariable Mendelian randomization for multiple responses with G = (Gy,...,G,)":
Genetic variants (black) or instrumental variables (IVs); X = (X1, X2, X3)": Exposures (blue); Y =
(Y1,Y2,Y3)T: Responses (orange); U: Unmeasured confounder(s) (grey). True (unconfounded by U)
exposure-outcome dependency relations depicted in the middle panel are classified as follows: X; has
shared causal effect on responses Y7 and Y5, while X5 has a distinct causal effect on response Y3. X3
does not have any effect on the outcomes. Bottom panel: True fork structure within the exposures
with X3 regarded as the common cause of X; and Xs. Top panel: True chain structure within the
outcomes, where Y7 affects Y3 through Y3. (B) DAG is obtained by combining the true exposure-
outcome dependency relations ((A) middle panel), the fork structure within the exposures ((A) bottom
panel) and the chain structure within the responses ((A) top panel). When looking at the effect of X; on
Y3, X3 (along with G and U) is a confounder of X; and Y3 is a complete mediator. Without conditioning
on Y5, with the same set of confounders, a spurious association would be found between X; and Y3.
(C) Estimation of the causal effect under intervention in X7 on Y3, highlighted in blue and orange,
respectively. The representation of X; has changed from a circle to a square to emphasise that, under
intervention, it is no longer a random variable and it is now set at X; = ;. Intervention affects only the
conditional distribution of X1, i.e., X1 | (X3, G,U) and it leaves unaltered all the others. From a practical
perspective, it would be sufficient to condition on X3, G and U (graphically, the directed edges to X from
X3, G and U are removed) to guarantee that the association between X; and Y3 is purely causative (see
Supplementary Figure . However, since U is unobserved, the estimation of the causal effects cannot be
obtained only by conditioning. (D) Genetically predicted exposures Xt = ()/(\'f . X3, X’g‘ )T and outcomes
Y = (}Aff‘, }72*, }/;},*)T depend only on G which are chosen to be associated only with X and not with Y.
Graphically, no directed edges to X* and Y* from U are pictured. True (unconfounded by U) dependency
relations between the traits in the original (individual-level) data shown in (B) are obtained by the DAG
estimated by using X* and Y*. (E) Adjacency matrix describing the Markov properties of the DAG
obtained by using genetically predicted exposures and outcomes (the variables in the x-axis are dependent
on the variables in the y-axis) which are function of the IVs and the inverse-variance weighted (IVW)
(depicted with a “*”) summary-level statistics By = (ﬂ}l,,@}z,,@}s)—r and By = (,Bf,l,ﬂi‘,Q,B)*/g)T.
Neither reverse causation (top-right submatrix) nor feedback loops (main diagonal) are allowed. Colour
code: Black, directed edge between variables; white, no causal relationship between variables; black-white
strips, directed edge not allowed (feedback loop and reverse causation between exposures and outcomes).
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are multivariate distributions associated with a graph and are very effective for encoding
conditional dependencies [17] between random variables. They are represented in a graph
as nodes (vertices) while edges denote conditional dependence relationships between the
corresponding random variables. A DAG is a directed graph, where each edge has an
orientation with no directed cycles. Structure learning is a model selection problem [6]
to estimate the DAG (or competing DAGs) that best describes the dependency structure
in a given data set. However, without identifiability conditions [18], it is not possible to
estimate uniquely the underlying DAG since its conditional independencies can be asso-
ciated with several alternative DAGs. The set of DAGs that hold the same conditional
independencies is known as Markov Equivalent Class and the best that can be done from
observational data is to estimate this class (or competing classes). Thus, this paper aims
to illustrate how to perform DAG exploration (whose importance will be apparent in the
next paragraph) which belongs to the Markov Equivalent Classes that best fit the data
under the constraint on the orientation of the edges, known as partial ordering [19], from
the exposures to the outcomes implied by the MR paradigm.

Third, besides the identification of the exposure-outcome relations as well as the de-
pendency patterns within the exposures and the outcomes, we are also interested in the
causal effects estimation under intervention [7]. An intervention on the exposures can be
made explicit by a suitable modification of the multivariate distribution associated with
the DAG, under the assumption that the intervention does not affect any other variable in
the joint distribution besides the conditional distribution of the exposure under interven-
tion [20]. See Figure [|C for an example of intervention on an exposure and the estimation
of the causal effect on an outcome.

In this formulation, all confounders should be measurable to perform structure learning
and causal effects estimation (causal sufficiency assumption [21]). This assumption is
usually not met in real data applications where, instead, unmeasured confounders are
ubiquitous and affect exposures and responses at the same time. To solve this problem, we
demonstrate (see [Methods|) and show in an extensive simulation study (see that,
under partial ordering, we can estimate the dependency structure that exists between the
traits in the original (individual-level) data unconfounded by U by using their genetically
predicted values. Since the genetically predicted traits depend only on the selected IVs,
the confounders do not mask the true dependency relations required in causal effects
estimation. See Figure [ID, where the graphical model estimated by using genetically
predicted exposures and outcomes approximates the corresponding DAG in the individual-
level data not affected by U. Our approach shares some similarities with methods based on
the genetic correlation and developed to analyse the joint genetic architecture of complex
traits [22] although, in the proposed MR framework, genetic variants are chosen to be valid
IVs in contrast to genetic variants chosen for genome-wide [23] or local genetic correlation

[24]. Computationally, given the duality between the Markov properties of the DAG and
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a non-symmetrical adjacency matrix (see Figure ), structure learning of the graphical
model (or competing graphical models) that best fits the data is performed on a non-
symmetrical adjacency matrix which incorporates the constraints on the orientation of
the edges from the exposures to the outcomes.

Finally, for a given DAG, we extend results regarding the consistency of the effects of
the regressions of the exposures and the outcomes on G which can be obtained without
adjustment on U since the genetic variants used as IVs are randomly assigned [4], and show
that it is possible to identify and estimate the causal effects between multiple exposures
and multiple outcomes based on Pearl’s interventional calculus [7] (see [Methods]).

The MrDAG model can be summarised as follows:
l9" Byg'BX]" ~ Nyy,(lg" Byg ' Bx]', XY,

where g are the observed IVs after pruning or clumping, ﬁ;‘/ and ﬁ}‘( are the inverse-
variance weighted (IVW) [25] estimated genetic associations with the outcomes and the
exposures, gT§§ and gTﬁ}‘( are the genetically predicted values of the outcomes Y* and
exposures X* based on the IVs, respectively, which are normally distributed for large
sample sizes, and X* is the genetic covariance matrix that can be partitioned into 3%y,
¥}y and X%y, the genetic covariances within the exposures, the outcomes and between
them. The MrDAG model allows us to find a solution to the two problems highlighted
before. First, we perform DAGs exploration under partial ordering by using Q* = X* ',
to learn the unconfounded dependency relations within the exposures, the outcomes and
between them and to understand the genetic paths that link exposures and outcomes (see
. Second, estimate the causal effects of the intervention on the exposures as a
function of trait-specific elements of the genetic associations E’{, and E’}‘( informed by the
explored DAGs, unconfounded by any pleiotropic effects within the exposures and the

outcomes and any unmeasured confounder.

Selection of instrumental variables

MrDAG uses the same instrument selection employed in MVMR regardless of the mul-
tiple outcomes [2]. A genetic variant is considered a valid instrument for MVMR when
three core conditions hold [3]: (IV1) Independence: The variant is independent of all
confounders of each of the exposure-outcome associations; (IV2) Relevance: The variant
must not be conditional independent of each exposure given the other exposures; (IV3)
Exclusion restriction: The variant is independent of the outcome conditional on the ex-
posures and confounders. In practice, only IV2 can be computationally evaluated from
the available data. A recent solution to mitigate the effects of weak IVs in MVMR is
presented in [26].

There is an important distinction between IV selection in MVMR, as used by MrDAG,


https://doi.org/10.1101/2024.06.18.599498
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.18.599498; this version posted June 22, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

and bidirectional MR. Let’s consider two traits A and B. In bidirectional MR, two MR
analyses are conducted, one for trait A on trait B, and then wice versa. First, specific
IVs are selected for trait A and the first MR model is fit. Then, another set of specific
IVs is selected for trait B and the second MR model tests the opposite effects direction.
In contrast, in MVMR, IVs are chosen to be the union of genome-wide significant genetic
variants for any exposure. By combining MVMR IVs selection approach with DAG learn-
ing, MrDAG can infer the bidirectionality of the relationships within exposures based on
D%y = Z}; without repeated IVs selection and subsequent analyses. A similar com-
ment can be made for the estimation of the bidirectionality of the relationships within the
outcomes based on %y = (T, — B3 Dy Zhy ) ! (see . These dependencies
should be interpreted as an indication of a violation of condition IV3, i.e., pleiotropy
not explained by the estimated causal effects from the exposures to the outcomes [2].
The detected relationships within the exposures also suggest the existence of measured
pleiotropy which, in the proposed framework, comprises confounding, mediation and in-
dependent pleiotropic pathways [3].

Overall, only the direction from exposures to outcomes is fixed in MrDAG, and no

reverse causation is allowed, reflecting the standard MR paradigm.

Simulation study

We compare MrDAG in an extensive and comprehensive simulation study where four
different in silico scenarios have been generated on individual-level data for N = 100, 000
individuals. The simulated data sets include n = 100 independent genetic variants G, an
unmeasured confounder U, 15 exposures X and 5 outcomes Y. All exposures X were
measured on the same individuals in the first sample and have complete overlap as well as
all outcomes Y were measured on the same individuals in the second sample independent
of the first sample. In all simulations, the unconfounded dependency relations between
the traits are simulated at the individual-level while the algorithms use as input the
corresponding IVW summary-level statistics.

The four simulation scenarios are built by combining two different strategies we used

to simulate the dependency patterns within the exposures and the responses:

i) “UndGyx-Medy”. A sparse undirected graphical model (“UndGx”) encodes the de-
pendency pattern within the exposures X = (X7, ..., Xj5). Regarding the responses
Y = (V,...,Y5), one outcome is completed mediated by another one (“Medy”).

For a visual representation of this scenario, see Figure [2JA.

ii) “DAGx-Medy”. The dependency relations within the exposures are more com-

plex than in scenario (i) since a topologically ordered DAG within the exposures
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Figure 2. Schematic illustration of different dependency structures simulated between the
traits at the individual-level data and the parameters employed in the simulation study.
Directed edges indicate dependency relations, while undirected edges denote partial correlations. Dashed
lines depict the true (unconfounded by U) dependency structure within the exposures and the outcomes,
while solid lines indicate true causal effects between them. Parameters ¢y and 1 x indicate the sim-
ulated effects of the unmeasured confounder U on the exposures and the outcomes, respectively, and
Bx = (Bx,,Bx,,8x,) are the simulated genetic effects on the exposures. For simplicity, they are shown
only on the left panel. © = (61,1,61,2,023) are the simulated causal effects from the exposures to the
outcomes while I'x = (vgfl,vng) and I'y = (7%/ 2,7{ 3) are the mediation parameters within the ex-
posures and the outcomes, respectively, where the subscripts denote their directionality. When partial
correlations are simulated within the exposures, bidirectional effects are depicted with double subscripts,
ie., T'x = (752//271,72)7(3//372). (A) Simulated scenario “UndGx-Medy”, where an undirected graph
(“UndGx”) encodes the dependency pattern within X and, within the responses, an outcome (Y3) is
completed mediated (“Medy”) by another response (Y3) which, in turn, is affected by a different expos-
ure (X7). Although there is another partial mediation between X; and Y3 through X5, this mediation
happens within X, so it does not affect the definition of complete mediation within Y. (B) Simulated
scenario “DAG x-Medy”, where a topologically ordered DAG within the exposures (“DAGx”) is simu-
lated. Specifically, in the example depicted, a fork structure is simulated, i.e., X3 affects both X; and
Xs. A complete mediation is still considered within the responses. (C) Simulated scenario “UndGx-
DAGy”. Here, the dependency structure between the individual-level responses is obtained by simulating
a topologically ordered DAG (“DAGy”). Specifically, a chain structure is considered, i.e., Y7 affects Y5
which, in turn, affects Y3, whereas an undirected graph encodes the dependency pattern within X. (D)
Simulated scenario “DAGx-DAGy”, where two topologically ordered DAGs are simulated within the
exposures (fork structure) and outcomes (chain structure), respectively.

(“DAGx”) is simulated [27]. A complete mediation is still considered within the

responses. This second scenario is illustrated in Figure 2B.

iii) “UndGx-DAGy”. Here, a more complex dependency structure within the individual-
level responses (“DAGy”) is simulated. This scenario is represented in Figure .
An example of the complex dependency patterns generated in the simulation study

between the traits for one replicate of scenario UndGx-DAGy is shown in Figure

BA.

iv) “DAGx-DAGy”: This is the most complex simulated scenario where two inde-
pendent topologically ordered DAGs have been simulated within the exposures and
outcomes. Figure presents a schematic illustration of this scenario, while Figure
shows the intricate dependency structure simulated between the traits for one
replicate of DAGx-DAGy scenario.

Taken together, in scenarios (ii) and (iv), the overall individual-level DAGs, obtained
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by combining two different simulation strategies for X and Y, are fully oriented while
in scenarios (i) and (iii) the overall DAGs are partially oriented. Details regarding the
parameters 1y and 1y, the simulated levels of the effects of the unmeasured confounder
U on the responses and the outcomes, By, the simulated levels of the genetic effects on
the exposures, and I'x and I'y, the simulated levels of the mediation parameters within
the exposures and the outcomes are presented in [Methodsl Finally, all simulations are
replicated 25 times and initialised with a different random seed.

We compare MrDAG with published multivariable MR methods and their software im-
plementations excluding from the comparisons naive one-exposure and one-outcome MR
models since it has been shown that they are outperformed by multivariable MR meth-
ods when there is measured pleiotropy among exposures [3]. Specifically, we consider
Mendelian randomization with Bayesian Model Averaging (MR-BMA) [1] an MVMR
algorithm which allows for many exposures to be included, but does not model expli-
citly the dependency relations within the exposures [3]. MR-BMA estimates the sparse
direct causal effects between the exposures and one outcome providing the marginal pos-
terior probability of inclusion (mPPI) along with the posterior mean of the causal effects.
We treat MR-BMA as the baseline algorithm for the comparisons since it analyses one
outcome at-a-time. Secondly, we include Mendelian randomization with PC algorithm
(MRPC) [28], which combines instrumental variables with the PC algorithm [29] for DAG
estimation. At a specified type I error rate for the conditional independence test, MRPC
returns the estimated Partially Directed Acyclic Graphs (PDAGs) [19] (see in
which some undirected edges are present along with the directed ones as well as the p-
values of all conditional independence tests. For a given PDAG detected by MRPC in
each replicate and scenario, we utilise [27] to estimate the causal effects between the ex-
posures and outcomes. Finally, Partition-DAG (ParDAG) [30] provides a solution to the
structure learning problem once the summary-level statistics have been partitioned into
two groups and the orientation of the edges from the exposures to the outcomes has been
enforced. ParDAG computes the causal effects estimates under Lasso regularisation. It
has not been combined with instrumental variable estimation and applied to genetic data
to date. All methods use summary-level statistics as input after IVW. Finally, for each
method and algorithmic implementation, details of the parameter settings are provided
in Supplementary Information.

Regarding the evaluation criteria, we use a precision-recall curve (PRC) that shows
the relationship between precision (i.e., positive predictive value, on the y-axis) and recall
(i.e., sensitivity, on the z-axis) for every possible cut-off and it is not impacted by the over-
representation of null effects. See Supplementary Information for a detailed discussion
regarding how we implemented a fair comparison between the methods considered.

Finally, to evaluate the quality of the causal effects estimation, we calculate the sum of

squared errors (SSE), defined as the sum of the squared differences between the estimated
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and the simulated causal effect. In contrast to the evaluation of the recovery obtained
by each method of the simulated dependencies within the exposures, the outcomes and
between them, we do not report the SSE of the mediation parameters I'x and I'y since
they are considered nuisance parameters in the proposed model (see Supplementary In-

formation).

MrDAG more accurately detects unconfounded dependency relations within

the exposures and the outcomes and between them

Figure 3| presents the results of MrDAG and alternative methods for one replicate of the
simulated scenario UndG x-DAGy (Figures [3]A-D) and DAGx-DAGy (Figures BE-F) for
a particular choice of the parameters rx = 0.6 and my = 1 used in the simulation study
to control the average value of the mediation parameters I'xy within the exposures and
I'y within the outcomes, and ¢x = 2 and ¥y = 1 for the level of confounding on the
exposures and the outcomes, respectively (see .

The general performance of competing algorithms is already apparent from it. In
scenario UndG x-DAGy, if a causal effect is simulated from an exposure to an outcome
and there are dependency relations from this outcome to other responses (Figure BA),
MR-BMA adds erroneously causal effects to all linked responses with severe FP inflation
(Figure IB FPs between )?{‘2 and }//\})*, 5//1*, ?5* depicted in red). On the other hand,
MR-BMA estimates neither the dependency pattern within X, since (partial) correlation
between summary-level exposures is assumed in the model [3] but not estimated, nor
the dependencies within Y since MR-BMA considers one response at-a-time. MRPC
infers correctly most of the dependencies within X, but it does not have the power to
detect all simulated causal effects ® at the specified type I error rate for the conditional
independence test (a = 0.01) with a few FNs (Figure , FNs between X7, X3 and
}72*) and well as FPs within ﬁ;‘/ (FPs between 1//\'2*, 1//\}3*, 1//1*7 17'5*7 where bidirectionally is
erroneously detected). MrDAG performs better than alternative methods to detect both
directed and bidirected edges with only one FP between X 5 and X 15 (Figure )

Similar comments can be made for a particular replicate of scenario DAG x-DAGy,
although in this scenario the dependency patterns are more complex since a topological
ordered DAG is simulated also within the outcomes (Figure BE). MrDAG confirms its
good performance except for the directionality of the dependency relations within X,
where bidirectional edges are found with a few FPs (Figure , FPs between X 1 and X 12
and between )?g and )A(S)

Figure [4] generalises the results depicted in Figure [3| averaging the results over 25
replicates of the simulated scenarios UndG x-DAGy (Figures —C) and DAGx-DAGy
(Figures -F) with the same parameters setting used in Figure The results are
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Figure 3. Examples of unconfounded dependency structure simulated at the individual-
level data and estimated by using summary-level statistics within the exposures, the
outcomes and between them in two different scenarios. In each panel, individual-level out-
comes Y = (Y1,...,Ys5) and exposures X = (Xi,...,X;5) as well as genetically predicted outcomes
Y = (}71*, ... ,}7’5*) and exposures X* = ()/(\'i", . .,)/(\'fg)) are represented with orange and blue nodes,
respectively. Directed edges indicate dependency relations, while undirected edges denote partial correl-
ation. Dashed lines depict the true (unconfounded by U) and estimated dependency structure within the
exposures and the outcomes, while solid lines indicate true and estimated causal effects between them.
Red colour denotes false positives, either falsely detected effects (regardless of the directionality) or wrong
directionality of the edges. Besides the proposed model, alternative methods considered: Mendelian ran-
domization with Bayesian Model Averaging (MR-BMA) [1], Mendelian randomization with PC algorithm
(MRPC) [28], Partition-DAG (ParDAG) [30]. We report the results of MR-BMA and MrDAG without
any threshold on the marginal posterior probability of inclusion (mPPI) and the posterior probability of
edge inclusion (PPel), respectively. MRPC Partially Directed Acyclic Graphs (PDAGs) are obtained by
specifying the type I error rate for the conditional independence test at o = 0.01. ParDAG results are
the solutions of causal effects estimation with Lasso penalisation set at A = 0.9 after partitioning the
traits into two groups and enforcing a constraint on the orientation of the edges between the exposures
and the outcomes. (A-D) Single replicate of the simulated scenario UndGx-DAGy, where an undirec-
ted graph encodes the dependency pattern within X and a DAG represents the dependency relations
within Y along with the simulated causal effects from the exposures to the outcomes, resulting in an
overall partially oriented DAG. In this scenario, the strength of correlation between consecutive X is set
at rx = 0.6, and then decreases exponentially for non-consecutive exposures, and the average level of
the mediation parameters within Y is set at my = 1. (E-H) Single replicate of the simulated scenario
DAG x-DAGy, where two topologically ordered DAGs have been independently simulated within X and
Y along with the simulated causal effects from the exposures to the responses, resulting in an overall
fully-oriented DAG. In this scenario, the average level of mediation parameters for X and Y are set at
rx = 0.6 and my = 1, respectively.

presented separately for the simulated dependency structures from the exposures to the
outcomes (Figures and D), within the exposures (Figures 4B and E) and within the
outcomes (Figures and D), respectively.

On average, MRPC and MrDAG have good performance in both simulated scenarios
(Figures A and D). MRPC best results are obtained at a stringent type I error rate
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Figure 4. Precision Recall Curves (PRCs) for all methods considered in the simulated
scenarios UndG x-DAGy and DAG x-DAGy show recall (= sensitivity = TP/(TP 4+ FN)) in the z-
axis and precision (= positive predictive value = TP /(TP + FP)) in the y-axis with TP = True Positive,
FN = False Negative and FN = False Positive averaged over 25 replicates in each scenario. In scenario
UndG x-DAGy (A-C), the strength of correlation between consecutive X is set at rx = 0.6, and then it
decreases exponentially for non-consecutive exposures, and the average level of the mediation parameters
within Y is set at my = 1, while in scenario DAGx-DAGy (D-F), the average level of the mediation
parameters within X and Y is set at x = 0.6 and my = 1, respectively. For details, see
In both scenarios, the results are presented separately for the simulated dependency structures from the
exposures to the outcomes (A and D), within the exposures (B and E) and the outcomes (C and D),
respectively. Vertical bars in each PRC, at specific recall levels 0.0625,0.125,0.25,0.50 and 0.75, indicate
standard error. For the MRPC algorithm, type I error rate for the conditional independence test is set
at o = {0.01,0.05,0.10,0.20} (from light- to dark-blue dots) and for the ParDAG algorithm we specify
three different values for the Lasso penalisation A = {0.5,0.7,0.9} (from light- to dark-green dots). See
Supplementary Information for details.

a = 0.01 for the conditional independent tests (blue dots) although they are quite similar
across different values of o and thus robust to this choice. However, it fails to detect
the simulated dependency pattern within X in scenario DAGx-DAGy (Figure ) The
performance of MR-BMA can be only evaluated for the detection of the causal effects
from the exposures to the outcomes (Figures and D). As we noticed above, the large
number of FPs degrades the results of this method which was not developed to deal with
multiple related responses.

The performance of ParDAG is the worst among the methods considered for all types

of designed relationships, slightly better within the exposures (Figures and E) and
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between the exposures and outcomes (Figures and D) and worse within the outcomes
(Figures and F). Since ParDAG detects only directed edges, in Figure B, where
partial correlation between exposures is simulated, the method has 50% recall rate. The
results seem also quite different according to the penalty parameter .

MrDAG has a strong performance in both scenarios. In contrast to MR-BMA, in
scenario DAG x-DAGy (Figures A and C) there is only a small reduction of the precision
in the estimation of the dependency relations between the exposures and the outcomes,
and within the latter, compared to the scenario UndGx-DAGy (Figures and F).

The comments above can be extended to the scenarios where the relationships within
outcomes are completely mediated (UndGx-Medy depicted in Supplementary Figures
-C, and DAGx-Medy shown in Supplementary Figures —F). In these scenarios, the
mediation within the outcomes is easier to detect (Supplementary Figures|2C and F) than
a topologically ordered DAG simulated within Y.

Supplementary Figure |3 shows the results of the AUCPR to detect the causal effects
©® and the sensitivity of the methods to different specifications of rx and my. MrDAG
confirms to be uniformly the best method with stable AUCPR for any combination of rx
and my with similar AUCPR when partial correlation or a topological ordered DAG is
simulated within X (Supplementary Figures and B). MR-BMA performs well, espe-
cially in the scenario UndG x-Medy (Supplementary Figure[3]A) which is the scenario that
is most compatible for this method as well as in scenario DAG x-Medy (Supplementary
Figure ), where its performance slightly decreases. Both MRPC and ParDAG seem to
be less precise at higher levels of rx irrespective of the simulated scenario, with ParDAG
also influenced by the value of my . Similarly, Supplementary Figures [4)) and |5| show the
sensitivity of the algorithms to detect the simulated patterns within X and within Y for

different specifications of rx and my .

MrDAG improves the estimation of the causal effects over existing methods

Figure shows the Sum of Squares Error (SSE) of the causal effects ® between the
exposures and the outcomes for all methods considered in the simulated scenario UndG x-
DAGy and Figure[5B for the simulated scenario DAG x-DAGy across 25 replicates in each
scenario with the same parameter setting and implementation of algorithms described
above. For MRPC and ParDAG algorithms, we only show the results obtained at type I
error rate for the conditional independence test o = 0.01 and Lasso penalisation A = 0.9,
respectively. These values provide the best results for the two algorithms as shown in
Figure [ and Supplementary Figure [2|

MrDAG has the lowest SSE mean and median (white dots and horizontal black line,
respectively) in both scenarios. As expected, when a topological ordered DAG is simulated

within the exposures (Figure ), the violin plot have a wider range, showing more variable
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Figure 5. Violin plots of the Sum of Squares Error (SSE) of the causal effects ® between the
exposures and the outcomes for all methods considered in the simulated scenarios UndG x-
DAGy and DAGx-DAGy across 25 replicates in each scenario. (A) In scenario UndGx-DAGy, the
strength of correlation between consecutive X is set at rx = 0.6, and then it decreases exponentially for
non-consecutive exposures, and the average level of the mediation parameters within Y is set at my = 1.
(B) In scenario DAG x-DAGy, the average level of the mediation parameters within X and Y is set at
rx = 0.6 and my = 1, respectively. For details, see In each violin plot, the vertical black thick
line displays the interquartile range, the black horizontal line denotes the median and the white dot the
mean. For MRPC and ParDAG algorithms, we only show the results obtained at type I error rate for
the conditional independence test a = 0.01 and Lasso penalisation A = 0.9, respectively. These values
provide the best results for the two algorithms as shown in Figure E| and Supplementary Figure

results, although the median is almost similar to the scenario with simulated partial
correlation within X (Figure [JJA). Alternative methods have larger SSE.

Similar comments can be made for simulated scenarios UndG x-Medy (Supplementary
Figure @A) and DAGx-Medy (Supplementary Figure ), where a complete mediation is
considered within the outcomes. MrDAG is confirmed as the best method.

We conclude this section by inspecting the sensitivity of the SSE of the causal effects
between the exposures and the outcomes for different values of the average level of the
mediation parameters ryx and my. The estimation of the causal effects displayed in Sup-
plementary Figure [7] shows that both MR-BMA and MRPC depend on the combination
of rx and my with similar performance when a complete mediation is simulated (Supple-
mentary Figures and C) (Supplementary Figures and D). Compared to the other
methods, MrDAG is not only the best, but it is rather insensitive to different levels of the

mediation parameters within X and Y.

Real data application: The impact of lifestyle and behavioural
traits on mental health

We apply MrDAG to investigate its ability to detect the effect of lifestyle and behavioural
exposures on the risk of mental health phenotypes as well as potential forms of interven-

tions for their prevention. As exposures, we chose seven lifestyle and behavioural traits

that have previously been investigated for their effects on mental health, including educa-
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tion (in years) (EDU), physical activity (PA), sleep duration (SP), alcohol consumption
(ALC), lifetime smoking index (SM) and leisure screen time (LST). As outcomes, we select
seven mental health phenotypes, including major depressive disorder (MDD), anorexia
nervosa (AN), attention deficit hyperactivity disorder (ADHD), bipolar disorder (BD),
autism spectrum disorder (ASD), schizophrenia (SCZ) and cognition (COG). See Sup-
plementary Table [1| for the description of the summary-level statistics, the data sources,
the number of IVs for each trait and for the pre-processing steps. In a separate
analysis, we also investigate the reverse direction, i.e., whether the same mental health
phenotypes have an impact on the group of lifestyle and behavioural traits by selecting
IVs for the mental health phenotypes, see for the respective pre-processing steps.

Figure [6] presents the results of MrDAG. In particular, Figures [(JA and C show the
estimated posterior probability of edge inclusion (PPel) after structure learning and
Figures [6B and D the posterior causal effects (95% credible intervals (CI)) between the
exposures and the outcomes. Results on PPel (and the posterior causal effects) are not
thresholded and sparsity is enforced by assigning a prior on the number of expected edges.
We set it at 7°98¢ = .16, i.e., we expect a priori one edge for each of the 13 traits, see
and Supplementary Information.

As shown in Figures[6IC and D, there is one distinct exposure (LST) and two key shared
exposures with important down-stream effects on mental health phenotypes, which are
EDU and SM on which we focus our discussion. For each of them, we also describe
how MrDAG can disentangle complex dependency relations within the exposures and the
outcomes and detect (partial or complete) mediation which prevents spurious findings.

As could be expected due to its centrality in the global health agenda [31] and the
high level of confounding of this phenotype with other genetically associated biological,
behavioural and socioeconomic traits, genetically predicted EDU shows the most inter-
exposure and exposure-outcome dependency relations (Figure |§|C bottom part). Previous
work has supported the broad mental health implications of education [32]. First, in
keeping with previous findings [33, 34, 35, 36], our results show that EDU has a positive
causal effect on COG, it is causally associated with an increased liability to ASD and
BD as well as with a lower liability to ADHD. CIs show that the causal association
with BD is markedly skewed to the right. In contrast, EDU has no effects on SP, the
amount of ALC, or the liability to MDD [33], AN [37], or SCZ [36] (Figure[6D). Second, we
investigate the detected dependency relations of EDU with other exposures that contribute
to the reported causal associations. We find bidirectional relationships between genetically
predicted EDU, PA and LST consistent with a large literature [33, 38]. Dependency
relations have been also identified between EDU and SM [33, 39]. Supported by the
existing literature, these results confirm the ability of MrDAG to disentangle complex

relationships that exist between interrelated exposures.
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Figure 6. Results of MrDAG algorithm regarding how lifestyle and behavioural exposures
impact mental health outcomes. (A) PDAG of the posterior probability of edge inclusion (PPel)
within the exposures (lifestyle and behavioural traits, blue nodes), the outcomes (mental health phen-
otypes, orange nodes) and between them. Undirected edges are represented as bidirectional edges, see,
for instance, edges between PA (physical activity) and LST (leisure screen time) or ASD (autism spec-
trum disorder) and ADHD (attention deficit hyperactivity disorder). Neither reverse causation from the
outcomes to the exposures nor feedback loops are allowed. (B) Posterior causal effects on the outcomes
(orange nodes) under intervention on the exposures (blue nodes). Red and green edges indicate positive
and negative posterior causal effects, respectively. (C) Posterior probability of edge inclusion (PPel)
for each combination of outcomes (mental health phenotypes) and exposures (lifestyle and behavioural
traits). Horizontal and vertical dotted lines separate the exposures (bottom-right submatrix) from the
outcomes (top-left submatrix). PPEIs between exposures and outcomes are depicted in the bottom-left
submatrix. Neither reverse causation (top-right submatrix) nor feedback loops (main diagonal) are al-
lowed (black-white strips). (D) Posterior causal effects (95% credible intervals) on the outcomes (y-axis)
under intervention on the exposures (x-axis).

We find that SM is second only to EDU in its causal association with several outcomes.
Specifically, SM associates with an increased liability to MDD and ADHD as previously
reported [40, 41]. It is also associated with COG, BD and SCZ, although these causal
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effects are small and Cls are skewed to the right. As discussed above, we also check
the detected dependency relations of SM with other exposures. SM is related to PA as
documented in epidemiological studies [42] and in standard MR analysis [43], the latter
for objectively assessed average activity and number of cigarettes per day, respectively.
Moreover, MrDAG appropriately identifies the relationship between ALC and SM, but not
vice versa. In a recent MR publication [44], the opposite causal association is observed.
However, in contrast to [44] who conceptualize SM with smoking initiation, we use a
lifetime smoking index [40] which captures smoking duration, heaviness and cessation.

As important as the discussion of existing causal associations between the exposures
and the outcomes, it is similarly insightful to discuss the absence of causal effects, espe-
cially those relationships that are reported in the literature or found by standard (one
exposure and one outcome) MR models. For example, we do not replicate all previous
evidence for positive causal effects of liability to SM on mental health phenotypes. Though
we find a strong causal effect of SM on MDD [40], we do not find the same strong effect
of SM on SCZ [40] as observed in observational studies [45, 46]. By looking at Figure [6[C,
this might be due to pleiotropic effects that have been identified by MrDAG within the
mental health phenotypes. In line with prior findings, evidence from MrDAG supports
dependency relations between genetic liability to MDD and AN, ASD and BD [47] as well
as between genetic liability to BD and SCZ [48]. Lastly, in keeping with prior findings
of possible bidirectional ASD-ADHD relationships [49], we observed genetic dependency
relations between ASD and ADHD, and wice versa. These results suggest that the genetic
effects of SM on SCZ can be mediated by pleiotropic effects within the responses. By
considering the results above, we hypothesise that the SM to SCZ relationship is partly
mediated first by MDD and then by BD. Moreover, there is another path that goes from
the genetically predicted level of SM to SCZ through a positive weak causal association
identified by MrDAG between SM and BD [50]. Both genetic paths are illustrated in
Figure [6]A. Conditionally on these relationships that are not considered in standard MR
or MVMR, MrDAG does not detect a strong causal effect between SM and SCZ.

We further note that the causal effect of SM on ADHD is both direct and indir-
ect, the latter mediated first by MDD and then by ASD. Thus, our analysis pinpoints
the important role of MDD which partly or entirely accounts for many causal pathways
within mental health phenotypes and their causal exposures. This might be due to the
potentially high levels of confounding and non-specific genetic associations present in the
original MDD GWAS [51, 52] as well as the high levels of symptom-level and therefore
diagnostic overlap between MDD and all other psychiatric disorders [53]. Nonetheless,
the implications of our results, assuming the validity of all GWAS findings, are that pre-
vention and/or therapeutic intervention on MDD [54] can have a cascade of important
effects for the prevention of several mental health phenotypes.

To investigate this hypothesis, Supplementary Figures and B show the results
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of MrDAG when MDD is removed from the list of outcomes. Regarding the causal
association between SM and ADHD, it is still present with the same strength and similar
CI depicted in Figure [6D, suggesting that the indirect effect mediated first by MDD and
then by ASD is negligible. Supplementary Figure [I0B also shows that, after removing
MDD, the genetically predicted SM is positively associated with SCZ as reported in the
literature. Combined with our main findings, this result indicates that the absence of a
link between SM and SCZ in the MrDAG model is likely due to the mediation of MDD
and BD.

The risk of detecting spurious shared causal effects is very high when a standard MR
method is used separately on each trait as well as when multiple exposures are considered
for each outcome [1]. This problem has been highlighted in the simulation study and
visually presented in Figures and F. In Supplementary Table [2] we show the results
MR-BMA algorithm when applied to the same data set. We notice an overestimation
of the causal effects since MR-BMA tries to ascribe the whole effects to the exposures
and, as expected from the simulation study, it also detects many more associations than
MrDAG.

We conclude the analysis by assessing the validity of the results obtained by MrDAG.
We divide this internal check into sensitivity to hyper-prior specification and robustness
of structure learning. Regarding the first point, Supplementary Figure show that
the posterior causal effects as well as the 95% Cls for different values of the a priori
probability of edge inclusion are not influenced by this choice. For the second internal
check, we bootstrap MrDAG repeatedly on the data [55] (see Supplementary Information).
In Supplementary Figures|12|we present the bootstrap frequency of edge inclusion for each
permitted combination of exposures and outcomes and the scatterplot of the posterior
probability of edge inclusion (PPel) against the bootstrap frequency of edge inclusion. The
results show that there is a satisfactory agreement between a single run of the algorithm
and the bootstrap results for the causal associations. Extended results are presented in
Supplementary Information.

For completeness, we have also tested reverse causation by selecting genetic variants
to be associated with the mental health phenotypes. Figure [7|and Supplementary Figure
9] show the results of the analysis to detect the impact of mental health phenotypes on
lifestyle and behavioural traits, where, besides the positive causal effect of genetically
predicted COG on EDU [56], smoking is causally affected by the genetic liability to MDD
[40] and ADHD, the latter well-documented in epidemiological studies [57] and recently

confirmed in a randomised clinical trial of smoking cessation [58].
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Figure 7. Results of MrDAG regarding how liability to mental health phenotypes affects
lifestyle and behavioural traits. (A) Posterior probability of edge inclusion (PPel) for each combina-
tion of outcomes (lifestyle and behavioural traits) and exposures (mental health phenotypes). Horizontal
and vertical dotted lines separate the exposures (bottom-right submatrix) from the outcomes (top-left
submatrix). PPEIs between exposures and outcomes are depicted in the bottom-left submatrix. Neither
reverse causation (top-right submatrix) nor feedback loops (main diagonal) are allowed (black-white
strips). (B) Posterior causal effects (95% credible intervals) on the outcomes (y-axis) under intervention
on the exposures (z-axis).

Discussion

Here, we have introduced MrDAG, the first Bayesian causal graphical MR model for
multivariable and multiresponse that can detect dependency patterns within the exposures
as well as within the outcomes thus allowing for a more precise estimation of the causal
effects from the exposures to the outcomes. We showcased the advantage of the proposed
method in a comprehensive simulation study and its utility in detecting how lifestyle and
behavioural traits interact to cause mental health phenotypes, and vice versa. In the
real data application, we highlighted how MrDAG can recover more information on the
genetic paths that link exposures to outcomes compared to existing MR methods that
ignore these dependency relations. Specifically, we highlighted education and smoking
as key effective points of intervention given their distinct downstream effects on multiple
mental health phenotypes.

These insights are possible since three methodological advances are considered in
MrDAG. First, in structure learning, the hypothesis of no unobserved confounding is
a fundamental underlying assumption. This assumption, known as causal sufficiency, is
difficult to justify in real data applications and its violation produces biased results. By
using IVs within the MR paradigm, we bypass the need to remove the effects of the un-
measured confounder from the individual-level data [21]. Instead, we solve this problem

by employing genetically predicted exposures and outcomes which depend only on the
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genetic variants chosen as IVs. Genetically predicted exposures are key in the derivation
of the two-stage least square causal effect estimator [25], but in MrDAG we have extended
it to include genetically predicted outcomes. On both predicted traits, we perform DAG
exploration to learn the unconfounded dependency relations that exist within the expos-
ures, the outcomes and between them. Our second contribution is the estimation of causal
effects under intervention on the exposures conditionally on a given DAG. We showed that
they can be estimated based on Pearl’s interventional calculus [7]. Moreover, differently
from [59] and its application in the MRPC algorithm [60], the estimation of the causal
effects is averaged over the visited graphical models [61], thus taking into account the
uncertainty regarding the graphs that best portray the dependency structure in a given
data set. Third, MrDAG allows the possibility of including domain-knowledge relations
between the traits. In the designed MrDAG model, constraints between the exposures
and the outcomes descend directly from the MR paradigm. Our Bayesian implementation
of structure learning under restrictions offers clear advantages over alternative methods
[30]. Although not discussed here, other restrictions can be straightforwardly included,
for instance, known relations regarding disease progression or time-dependent outcomes,
e.g., smoking initiation and cessation [62].

In the real data application, while the use of existing summary-level statistics of
genome-wide association studies facilitates the integration of diverse phenotypes meas-
ured in different cohorts, we are also limited by the biases suffered by the initial genome-
wide association studies. Specifically, studies on mental health rely on the presence of
a clinical diagnosis. Consequently, it is not truly the genetic liability of the disease it-
self as much as it is the probability of having access to diagnoses or treatment. Our
findings on the relationship between higher genetically predicted educational attainment
(EDU) and increased ASD and BD, but decreased ADHD risk provide an example of
such bias. In these analyses, the predicted number of school years completed is unlikely
to be causally implicated in the development of ASD traits. While the typical age of
onset of ASD precedes the start of formal education (therefore unlikely to be caused by
it), ASD-related traits are more likely to be recognized and referred, particularly in those
who are undiagnosed or untreated, when individuals are within a schooling system where
standardized testing and progress reports by peer comparison are performed. Moreover,
current GWAS consider one trait or disease at-a-time and do not consider to what extent
cases are comorbid with other diseases. Future GWAS on co-morbidity [63] may provide
more fine-grained genetic associations allowing to disentangle some of these relationships.
Alternatively, novel causal inference methodology designed for individual-level data in
combination with large-scale biobank or cohort studies with genotype data could be used
to triangulate evidence.

In conclusion, MrDAG represents an important step forward in how we can learn

complex relationships among phenotypic traits and uncover causal pathways using ge-
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netic data. It provides analysts with the opportunity to derive a more comprehensive
picture of causal mechanisms between complex phenotypes. The real data application is
an example of the proposed holistic approach, where we leverage MrDAG and large-scale
genome-wide association data to offer novel mechanistic insight into the causal behavi-
oural determinants of mental health phenotypes to delineate between their overlapping
pathophysiology and phenotypic presentation, toward translational progress in the field
of mental health. Moving forward, MrDAG is ideally placed for the analysis of common
causal exposures for multimorbid health conditions. This research into multimorbidity
has been facilitated by the advent of large-scale biobanks being linked and followed up
using electronic health records and routinely collected health care data. Using genotype
data as genetic anchors offers a principled way for causal inference. MrDAG provides an
addition to existing toolkits to map shared and distinct causes of disease, to understand

trajectories, and to draw causal paths that link diseases.

Methods

In the following, we denote with capital letters the random variables Y, X, G and U for the
observed outcome, exposure, instrumental variable and unmeasured confounder, respect-
ively, and with small letters y, x, g and u their corresponding observations. Multivariate
random variables and corresponding observations are presented in bold. A marginal ele-
ment of a vector of random variables is specified by a suitable subscript index, e.g., Y,
ke K={1,...,q}, Xj,j€J={1l,....,p},and Gy, i € I = {1,...,n}. Y, and
Y\, consists of all the outcomes and exposures except those that are related to the kth
response and jth exposure, respectively. Finally, vectors understood as columns vectors
and matrices are indicated in bold, the latter also in capital letters.

We indicate with ZX; and B}f . the effect of the genetic variant ¢ € I on the exposure
J € J and outcome k € K, respectively, with Bx, and By, the n-dimensional vector
of genetic effects on the jth exposure and kth outcome, respectively, and, finally, with
Byx and By the (n x p)- and (n x ¢)-dimensional matrices of the genetic effects on all
exposures and outcomes. 0;; denotes the causal parameter of interest, i.e., the causal
effect of X; on Y, and 75, and 4, the mediation effect of X}, on X, h # j and Y]
on Yy, h # k, respectively. ©, I'y and I'y indicate the corresponding (p x ¢)-, (p X p)-
and (¢ x ¢)-dimensional matrices of the causal parameters of interest (@) and mediation
parameters (I'y and T'y). The symbol “7” denotes the estimator of a parameter or its
estimated value and “* 7 an IVW parameter.

Finally, let D = (V, E) be a Directed Acyclic Graph (DAG), where V' denote a set of
vertices (nodes) and £ =V x V a set of directed edges, i.e., if (z,v) € E, then (z,v) ¢ E.
For a given DAG D, if z — v, then z is a parent of v and, conversely, v is a child of z.

Moreover, if z — ... — v, then z is an ancestor of v and v is a descendant of z. We
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denote the parent set of v in D as pap(v) and vUpap(v) = fap(v) the family of v. Unless
otherwise stated, for ease of notation, we remove the subscript D.

In [5, 20, 64] key results regarding standard Mendelian randomization (single exposure
with single instrumental variable and single outcome) are presented. Here, we use them
to show that MrDAG is an extension of standard MR when (i) multiple exposures and
outcomes are considered and (ii) the underlying dependency relations within and between
them are not known (latent) and need to be estimated from the data. Technical details

are provided in Supplementary Information.

Multi-exposure and multi-outcome core conditions for instru-

mental variables

Let Y, X and G be the ¢-, p- and n-dimensional vector of the outcomes, exposures and
instruments (genotypes) random variables, respectively.

Let’s assume the following “multivariate core conditions” (MCC) for valid instrumental
variables (IVs) which are the extensions of the core conditions that G has to satisfy in
standard Mendelian randomization (MR) [5]:

(IV1) G; L U, Vi € I, i.e., G; must be independent of U;

(IV2) G; X X; | X\j, Vi € I and Vj € J, d.e., G; must not be independent of X;
conditionally on X j;

(IV3) G; L Y, | (X,U), Vi € I and Vk € K, i.e., G; must be independent of Y}
conditionally on X and U.

The first multi-exposure and multi-outcome core condition (MCC) for instrumental vari-
ables is similar to the first CC in standard MR [5]. The second MCC imposes that G;
should be associated with X; conditionally on the other exposures. The third MCC estab-
lishes that the instrumental variables and outcomes are conditionally independent given
the exposures and the unmeasured confounder.

From the DAG D involving Y, X, G and U that satisfies the MCC, the corresponding
Markov properties say that G; I U, Vi € I, since G; is not a descendant of U and wvice
versa and G; X X | Xpa), Vi € I and Vj € J, because X is a descendant of G;. The
Markov property for the third MCC is G; L Yy | (Ypagk) Xpak), U), Vi € I and Vk € K,

since G; is a non-descendant of Yj, and (Ypawk), Xpa(k), U) are the parents of Yj.
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Interventional distributions and causal effects estimation

The conditional dependencies associated with the multi-exposure and multi-outcome DAG

D lead to the following factorisation of the joint density of all random variables considered

f(ya w>g7u) - H f(yk | Ypa(k)s Lpa(k)s u) H f(l'] ‘ Lpa(5), 9, u)f(g)f(u)

keK jeJ

which is known as pre-intervention distribution and it is assumed to be faithful to the
DAG [29], i.e., there are no conditional dependence relationships between the variables
in the model that do not follow directly from the Markov properties.

The post-intervention distribution under intervention on the hth exposure sets to take

the value 7, is obtained by the truncated factorisation [7]

f(y> L\h, g, U | dO(Xh = %h)) = kHKf(yk | fha Ypa(k)s Lpa(k)s U)
€ 1
0 @ | 2oy gl G @) )

jeN{r}
where [,(7) is the indicator function which is equal to one if 2, = Z}, and zero otherwise.
Graphically, the directed edges to X} from its parents in X, G and U are removed.
A post-intervention distribution under intervention on the hthe exposure is obtained

from by marginalising all variables but the selected outcome and the exposure on

which an intervention is carried out

[y | do(Xy = 7y)) = f [y, z\n, g, u | do(Xy = 7)) dy\x doy, dg du
= [ | T Ty, 0) f (@pagnys )L, () dpaqn du.

(2)

This result is derived from [7] and it follows directly from the Markov properties of the
DAG. It establishes that the parents of the variable on which an intervention is carried
out are the only variables that need to be measured to estimate the causal effect on an
outcome [65].

The post-intervention distribution can be summarised by taking the expectation

and defining the causal effect of an intervention [59] as

0
O = = E(Y | do(X}, = 1)) , heJkekK.

8xh o

h=Zh
In Supplementary Information, we show the identifiability of the causal effect (Supple-
mentary Proposition and the derivation of its estimand in multiple exposures and
multiple outcomes MR framework (Supplementary Proposition . We also show the
consistency of the effects of the regressions of each outcome and exposure on G (Supple-
mentary Proposition [1f), i.e., the estimated genetic effects on the outcomes and exposures

contain all information regarding the causal parameters of interest and the mediation
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parameters within the exposures and the outcomes.
Here, for a given DAG D, we report the IVW estimator of the causal effect of the

intervention in X, on Y}

eh,k = [(B;(—fra(h>B§(fd(h))_1B§(—|f—a(h)ﬁ;k]17 (3)

where the subscript indicates the first element of the solution of the linear least squares
(LLS) regression since fa(v) = vUpa(v), X sy denotes the exposures that are the family
of the exposure X} under intervention, ﬁ}fﬁ(m are the IVW estimated coefficients of the
regressions of each exposure in Xy, ) on G and ﬁ;k is the IVW estimated coefficient of a
regression of Y on G. resembles the standard IVW estimator of the causal effect that
approximates the estimate that would have been obtained if individual-level data were
available [3]. However, in contrast to general proposed solutions in MVMR, in the set

of regressors is with regard to the family of the exposure under intervention.

Dependency structure under the effect of unmeasured confounders

To estimate , structure learning of the graphical models needs to be performed to
detect the parents X,.p) of the exposure Xj under intervention. However, structure
learning assumes causal sufficiency [21], i.e., it requires that there are no hidden (or latent)
variables that are common causes of two or more traits. Instead, here we explicitly assume
that an unmeasured confounder U acts on both outcomes and exposures.

Links between the genetic correlation and MR causal effect estimate have been already
discussed in [23]. Here, we provide further connections with genetic covariance [24] which
is key to show that, by working with summary-level statistics, it is possible to recover the
dependency structure between the corresponding traits in the original (individual-level)
data unconfounded by U.

Let’s assume that the genetic effect on a phenotypic trait is linear and consider two

traits

Yk:GT,BYk+¢yU+EYk, ke K,
Xj:GT,BXj+¢XU+EXj, jGJ,

where G is a set of genetic variants, either spanning the whole genome, or region(s)-
specific or selected to be associated with a trait, By, and By, are the genetic effects, U
is an unmeasured confounder that affects both traits with ¢y and 1 x the effects sizes
and ey, and ey, are white noises which can be interpreted as environmental effects. We
assume that G L U and, similarly, G L ey, and G L ex;. Finally, we assume that
U L ey, and U L ex;, i.e., the unmeasured confounder U exerts its effect on both traits

and it is distinct from other environmental factors. Under this model, the phenotypic
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covariance is

COV(Yk, ) COV( Tﬁyk + wyU + €Y}, GTﬁX]. + wa + EX].)

4
= By, V(G)Bx, + Yyx V(U) + Cov(ey,, ex,). (4)

The phenotypic covariance can be decomposed into ¢,(Yy, X;.) = Cov(G' By, GTBXJ.) =
ﬁ;k V(G)Bx,, the genetic covariance between the two traits, i.e., the covariance between
the genetic components of the two traits, G' By, and GT,BXJ., and the environmental
covariance, i.e., the covariance between the environmental effects of two traits that we
have split into the effect of the unmeasured confounder, ¢, (Yy, Xi) = ¥y x V(U), and
other environmental factors, cc(Yy, Xi) = Cov(ey,,€x;). If the environmental factors
are trait-specific since U includes all common confounding factors, c.(Yx, Xx) = 0 and
shows that an estimand of the covariance between two traits unconfounded by U is
cg. From an MR perspective, by using MCC with G a set of IVs, in Supplementary
Proposition [5| we show that Cov(Yy, X}, | G = g) is unconfounded by U.

Assuming that the individuals for the two phenotypic traits are drawn from the same
population with LD matrix between the genetic variants V' = G" G, the sampling distri-
bution of the genetic effects are N%Q(B\Yk —By,.) A N, (0,08 V') and N)l(éz(axj —Bx;) A
Nn(O,Jg(jV_l), where “d” denotes convergence in distribution. Under infinite sample
sizes, Byk 2 By, and EX]. N Bx;, where “p” denotes convergence in probability, and an

estimator of the genetic covariance between the two traits is

(ka ) IBYk VIBX

In the finite sample sizes case, the estimates of By, and Bx, are noised and ¢, (Y%, X;) is
biased [24]

E(¢(Y, X)) = By, VBx, + v~ cu(Yi, Xj), (5)

Ny, NX
where N, is the sample size overlap between the two traits. However, even in the scenario
of complete overlap, the bias in is negligible if the sample sizes of the two traits are
large, as it usually happens in modern GWAS.

The same considerations can made for all phenotypic traits under investigation to

reconstruct their joint genetic covariance unconfounded by U

2YY ZYX

2XY 2XX

Y= (6)

| ByVBy BJVBy
| BIVBy B}VBy

where X x x, 3yy and Y xy are the genetic covariances within the exposures, the outcomes
and between them and By and By are the coefficients of the regressions of the outcomes

and the exposures on G, respectively.
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MrDAG model

Assuming that the individuals for two phenotypic traits Yj and X, are drawn from the
same population with LD matrix V', we have N;,f(gTByk - q'By,) LN N(O,J%k) and
N;(/J,Q(QTBXJ. — gT,BXj) a4 N(0, ag(j), where g are the observed IVs, gTEyk and gTBX]. are
the kth and the jth genetically predicted values of the outcome and exposure, i.e., Y3 and
)?k, respectively.

The joint distribution of all genetically predicted values of the outcomes and exposures
based on the IVs is

[gTBYgTBX]T ~ NQ-HD([QTBYQTBX]Tv 2)7

i.e., for large sample sizes they are normally distributed with mean [g" Byg' Bx|' and
covariance matrix 3 € Cp, the space of the symmetric positive definite covariance matrices
Markov with respect to the DAG D.

If we assume that IVW is performed on the estimated regression coefficients and 1Vs

are independent after pruning or clumping, i.e., V' = I,,, the MrDAG model becomes
9" Byg' By]" ~ Nyyy(lg' Byg ' BX]',3), (7)

where [g"B}g'B%|" = [g'0y'Byg' oy Bx]" with 531, = ¢ 'Y, V(By,) [2] and
similarly for [g" By.g' B%]". The covariance matrix can be can be partitioned into
Yy Eyx

* *
2XY 2XX

¥ =

)

where X% v, 33y and X%, are the genetic covariances within the exposures, the outcomes

and between them, and its inverse ([66], Theorem 8.5.11) into

—1
* * * *
QYY _QYYZYXEXX

Q* — 2*_1 — *71 N " *71 *,1 % % * *71
_EXXEXYQYY 2)()( + 2)()(ZAXYKZYYEYX'EX'X'

, (8)

with * € Pp, the space of the precision matrices Markov with respect to the DAG
D and Q%y = (2, — 25 % D%y ). However, since by partial ordering Qi =
QL 20 5 =0, becomes

O =
B Y90 S0 0 LAV 3o
XX&HXyShyy XX

By using ©*, Gaussian graphical models [17] can be used to estimate the conditional
dependence relationships between the traits in the original (individual-level) data uncon-

founded by U since genetically predicted outcomes and exposures depend only on the
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selected IVs.
Finally, for a given DAG D, the estimand of the causal effect under intervention [67]
is
9h,k = [E%kaz;z),fa(h)z%ka(h)7k}l> (9)

*

where 3¢ ) ¢,y indicates the submatrix of ¥* whose rows and columns are fa(h), k) k
indicates the subvector of ¥* whose rows are fa(h) and the column correspond to the kth
outcome, and where the subscript indicates the first element of the vector. By using @
which is a sufficient statistic for ©* after IVW and with V' = I,, (9) becomes

o * T * —1 * T *
9h7k: - [(BXfa(h)BXfa(h)) BXfa(h)BYk]17

where B}fa(h) are the IVW coefficients of the regressions of each exposure in Xy, on G
and 8y, is the IVW coefficient of a regression of Y} on G. The corresponding estimator
coincides with .

An important aspect of the MrDAG model is that the genetically predicted values of
the outcomes and exposures do not need to be calculated since MrDAG uses as input
@ the sufficient statistic for ¥*. The only information that would be required from the
original (individual-level) data is the LD matrix V. However, this information is not
necessary in MrDAG summary-level MR design since independent genetic variants are

considered after pruning or clumping and thus V' = I,,.

MrDAG algorithm

Markov Equivalent Class, Completed Partially DAGs, Essential Graphs and
Partially DAGs

The estimation of a DAG from observational data suffers the known problem of identi-
fiability, i.e., it is not possible to estimate uniquely the underlying true DAG since its
conditional independencies can be encoded in several alternative DAGs. This set of DAGs
that hold the same conditional independencies is known as Markov Equivalent Class and
the best that can be done from observational data is to estimate this class. All DAGs with
the same conditional independencies can be represented by a Completed Partially DAG
(CPDAG) [68] or Essential Graph (EG) [69]. EGs are Chain Graphs (CGs) whose chain
components are decomposable undirected graphs [17]. A CPDAG or EG is a partially
directed graph that might contain both directed and undirected edges without directed
cycles. Finally, Partially DAG (PDAG) contain both directed and undirected edges and
directed cycles might be present.
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Posterior probability of edge inclusion

Technical details of the algorithm for graphical models exploration that we used to develop
MrDAG algorithm are presented in [70]. Briefly, it is based on a Markov chain Monte Carlo
(MCMC) algorithm devised to explore the space of EGs whose enumeration is infeasible
since their number grows super-exponentially with the number of nodes. The EG G is
sampled from a proposal distribution which is accepted with a probability given by a
Metropolis-Hastings (M-H) ratio defined to guarantee the convergence of the algorithm
to the correct posterior distribution. The key ingredient in the M-H ratio is a closed-
form expression for the marginal likelihood mg(data). This is based on a non-informative
prior coupled with a fractional Bayes factor methodology and compatible priors building
procedure. In practice, a specific DAG D(G), which belongs to the Markov Equivalent
Class whose unique representative chain graph is the EG G, is proposed and, if accepted,
its information stored as an adjacent matrix at each sweep of the MCMC algorithm.

In MrDAG algorithm, we added an acceptance/rejection step to guarantee that D(G)
satisfies the partial ordering that corresponds to the orientation of the edges from the
exposures to the outcomes, see Figure [[[E. To check the efficiency of this step, we also
monitor its acceptance rate. We also included a tempering scheme [71] by considering
an annealing parameter 7" in the M-H ratio to facilitate the convergence of the MCMC
algorithm to the target distribution and the exploration of regions of high posterior mass.
The temperature 1/7 exponentiates the M-H ratio and its value increases linearly during
the burn-in until 7"=1 at the end of the burn-in.

Sparsity is enforced by assigning a prior to G and specifically on GY, the skeleton of

G which contains the same edges of G but without orientation
edge 1i.d. edge
Gy | 7% "X Ber(n*%°), 1=1,...,(¢+p)g+p—1)/2, (10)

where gg) is the [th element of the vectorized lower triangular part of the adjacency matrix
of GY and (q+p)(g+p—1)/2 is the maximum number of edges in an EG on ¢+ p nodes.
The posterior distribution of G is

mg(data) P(G)
> ges,,, Mg(data) P(G)

P(G | data) = (11)

with S, the set of all EGs with ¢ + p nodes. The posterior probability of edge inclusion
(PPels) is defined as

P, ,,(data) = deSHU P(G | data)

s s (12)
~ 2300 Iy (D(GE),

where S,_,, is the set of EGs containing the directed edge z — v, S is the number of
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sweeps after burn-in and HD(g(s))(D(gg‘iv)) is the indicator function that is equal to one
if the specific DAG considered at the sth sweep D(G®)) contains the directed edge z — v
and zero otherwise.

Note that, although MrDAG explores the space of EGs and stores a specific DAG that
belongs to the sampled EG, the graphs obtained by thresholding the PPels might give
rise to a PDAG [70].

Bayesian causal effects estimation

Here, we summarise the results reported in [67] that we employed to derive the Bayesian
estimation of the causal effects under unmeasured confounders.
Let’s rewrite as

l9'Byg ' Bx]' | =5 ~ Nyyy(lg' Byrg' Bx]',55),

where X7, € Cp, the space of s.p.d. covariance matrices Markov with respect to D. In
the following, for ease of notation, we refer to [gTﬁg'}gTﬁ}'}]T as the “data” and we also
drop the subscript D.

Let @ = X* ' = L*D* ' L*7 be the modified Cholesky decomposition of the precision
Q*. The DAG Cholesky parametrization of €2* is given by the node-parameters w; =
(Dy, Lfa(l)), l=1,...,q+ p, with

* * * *71 *
Dy = Ell|pa(l)? Lfa(l) == pa(l)zfa(l)7

where 2;‘) a(l

For a given DAG D, [67] derive the posterior distribution of w;, [ =1,...,¢+ p, in

) indicates the submatrix of 3* whose rows and columns are pa(l).

an objective Bayes framework which has the advantage of not depending on priors hyper-
parameters. In turn, the posterior draws of the Cholesky parameters w; provide posterior
draws from (Q* | data) = (L"‘D"‘_IL*T | data) and finally, by using (9], posterior samples
of the causal effects between the exposures and the outcomes.

In contrast to frequentist approaches [72] where, for an estimated EG G, the causal
effects are calculated averaging over all (if numerical feasible) or a subset of DAGs within
the Markov Equivalent Class G, here, we also consider the uncertainty related to the
estimation of the EGs. Let {G,,v =1,...,V} the set of unique visited EGs by MrDAG.
Based on , the posterior probability of G, can be approximated by

mg, (data) P(G,)

P(G, | data) =~ .
(G [ date) & e (data) P(Gy)

(13)

Averaging over the unique visited EGs, the posterior causal effect under intervention in
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the hth exposures on the kth outcomes is

O | data = 32V E(0,,(D(G,)) | data, G,) P(G, | data), he J ke K,

~ L3S 00k(D(GY)), (14

where G, is one of the unique EGs visited during the MCMC, E(6,(D(G,)) | data, G,) is
the posterior expectation of the causal effect given G, i.e., over all D(G,), P(G, | data) is
defined in (13)) and 6, x(D(G®) is the posterior causal effect conditioned on the recorded
DAG at the sth sweep.

Finally, by a suitable modification of (14), credible intervals of the causal effects

between the exposures and outcomes can be derived.

Simulation study

We share several aspects of the simulation study with [2]. Tt is formulated in a two-sample
summary-level MR design, where N = 100, 000 independent individuals are simulated, of
which Ny = 50,000 are used to compute the genetic associations with the exposures and
Nx = 50,000 to compute the genetic associations with the outcomes. Thus, we assume
that the quantitative exposures X, j € J = {1,...,p}, and the quantitative responses
Yi, k€ K ={1,...,q}, are measured on the same individuals Ny and Ny, respectively,
with 100% sample overlap, but independent of each other.

In all simulated scenarios, we consider p = 15 exposures, ¢ = 5 outcomes and n = 100
independent genetic variants as IVs. Genotypes for the ith genetic variant and each
individual ¢ are simulated independently according to a binomial distribution with minor
allele frequency (MAF) equal to 0.05, i.e., ge; R Bin(2,0.05), ¢ € L = {1,...,N},
i €I ={1,...,n}. The resulting matrix of genotypes G is split into two equally sized
groups, Gx and Gy, of dimension Nx x n and Ny X n, respectively. Thus, no IVW is
needed in the simulation study given that the same MAF at 5% is used to simulate the
genotypes.

Overall, the data generation process consists of two stages. In the first stage, the
raw data for the exposures X and the outcomes Y are simulated. Then, in the second

X

stage, summary-level statistics are obtained as the linear regression coefficients 3;". from

a univariable linear regression in which the jth exposure is regressed on the ith g?enetic
variant in sample one and the linear regression coefficients BZY . from a univariable linear
regression in which the kth outcome is regressed on the ith genetic variant in sample two.

In the following, we detail each stage and how we simulate the quantities involved.

We start with the first stage which is divided into two steps.

e In the first step, the exposures are generated as follows

z; = GxBx, + Uxux +€x,, JjEJ (15)
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where Gx and wy are the genotypes of the n IVs and the values of the confounder
U measured on the same Ny individuals, respectively, and where Bx; and ¢ x are
the corresponding genetic and confounding effects. € x; ~ Ny (0,h x; I Ny ) With A X;
the jth diagonal element of the (p x p)-dimensional matrix

1—w X

Hy = Ux (GxBx + wXUXlg)T«;XBX + wXqu;)’ (16)

where vy is the desired level of heritability, or how much variation G can explain
of X, fixed at 10% for all exposures and in all simulated scenarios. In (1€]), By =
{Bx;}jes is an (n X p)-dimensional matrix of the effects of the genetic variants on

the exposures.

The confounder U is drawn from a multivariate standard Gaussian distribution, i.e.,
u ~ Ny (0, Iy) and, then, split into two equally sized vectors ux and uy with effect

Yy impacting all exposures and 1)y effecting all outcomes.

The effects Bx; of the n genetic variants on the jth exposure are drawn following
[70]. We randomly generate a topologically ordered DAG among the p exposures
with a probability of edge inclusion p50&° = 2/(p—1) using the function randomDAG ()
in the R package pcalg [27]. Thus, the resulting DAG implies the following system
of equations [18]

Bx, = Z ViniBx, + €x, (17)

hepa(j)

with ex, ~ N(0,1I,). For each j € J, the effect within the exposures %)ij are
uniformly chosen in the interval [—1.17x, —0.97x|U[0.97x, 1.1rx]|. This construction
procedure for Bx,; corresponds to the simulated scenario that we call “DAGx”,
1.e., Directed Acyclic Graph within X, which, in turn, is paired with two different
simulated scenarios for the effects By, described in the second step (first stage) of

the simulation study.

We also simulate the effects Bx, following [2]. Specifically, we simulate By, ~
N,.(0, Rx), where Ry is the (p X p)-dimensional Toeplitz matrix with r'f{jll for
j,j" € J. The matrix Ry implies a tridiagonal sparse inverse correlation matrix
Qx = R;'. The interpretation of non-zero elements of x coincides with the effects
simulated in . We call this second scenario for the effects of the genotypes on
the exposures “UGx”, i.e., Undirected Graph within X.

In both simulated scenarios for X, we use different levels of rx, ranging from in-
dependence to a strong dependence, i.e., rx = {0,0.2,0.4,0.6,0.8}, where ry = 0.6

represents a medium dependence between the genetic associations with the expos-

ures. We use this value in the figures presented in Section {Simulation studyf.

e In the second step (first stage) of the simulation study, the outcomes are generated
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on another independent set of Ny individuals based on the following set of equations

yk:XOk—k Z ’Y;}:’kyh—i-d}yu—i-EYk, /{IEK, (18)
hepa(k)

where X is the (Nx X p)-dimensional matrix of exposures simulated using ,
0r = (O1g,...,0,k)" is p-dimensional (sparse) vector the causal effects from the
exposures to the kth outcome and where 9y is the effect of the confounder U on
the outcomes. €y, ~ Ny, (0,hy,In,) with hy, the kth diagonal element of the

(g x q)-dimensional matrix

HY = 1;;1?/ (Xok + ZhEpa(k) ’Y}L/,kyh + wYu + eYk)T
(Xok + Zhepa(k) Vixzikyh + wY'U’ + eYk)a

where vy is the desired level of the proportion of variance explained, fixed at 25%

for all outcomes and in all simulated scenarios.

In , the term Ehepa(k) ’VhY,kYﬁ depends on a randomly generated topologically
ordered DAG among the ¢ outcomes with probability of edge inclusion pi’ﬁige =
1/(q—1). For each k € K, the effects within the outcomes v, are uniformly drawn
in the interval [0.9my, 1.1my|. In analogy with the first step, we call this scenario
“DAGy”, i.e., Directed Acyclic Graph within Y.

We also simulate a simplified scenario where

Yi = ’Y}{kyh + ¢Y'U/ + €y, (19)

1.e., a randomly selected outcome k is completed mediated by another randomly
selected response chosen between the remaining ones. We call this scenario “Medy”,
i.e., complete mediation of an outcome, since in the previous scenario “DAGy”
partial mediations [73] are likely simulated, while here we exclude this case. In this
second simulated scenario for the outcomes, the matrix Hy is calculated according
to . Moreover, we use different levels of my, ranging from small to a strong
level of (partial or complete) mediation, i.e., my = {0.25,0.50,0.75,1,1.5,2}, where

my = 1 represents a medium (partial or complete) mediation effect. We use this

value in the figures presented in Section {Simulation studyf.

Finally, the causal effects 8; are drawn independently from a multivariate Gaussian
distribution, i.e., Oy ~ N, (0, I,).

In both simulated scenarios for Y, we consider a (¢ X p)-dimensional sparse matrix
of causal effects ® = {0y} ek, where 30 cells of the matrix are non-zero and where
several exposures are either shared or distinct for the outcomes. Specifically, we

select at random the same proportion of cells in the matrix ® and assign them the
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simulated values, while the other cells are set to zero.

After the first stage, four scenarios are created by combining the simulations for X and
Y: (i) “UndGx-Medy”, i.e., undirected graph within X and complete mediation of an
outcome in Y'; (ii) DAGx-Medy, i.e., topologically ordered DAG within X and complete
mediation of a response within Y; (iii) UndGx-DAGy, i.e., undirected graph within
X and topologically ordered DAG within Y; (iv) DAGx-DAGy, topologically ordered
DAGs within X and Y. In (ii) and (iv) the overall DAGs, obtained by combining different
simulation patterns for X and Y, are fully oriented while in (i) and (iii) they are partially
oriented.

After creating the data at the individual level, in the second stage, we compute the
summary-level statistics from the two independent groups of individuals. The input data
for the simulation study are the summary-level statistics Bx = {352}161 jes, an (n X p)-
dimensional matrix, and By = {5’3/,6}1e I. ke, an (n x g)-dimensional matrix, derived from
a univariable linear regression model, where each genetic variant G; is regressed against

each exposure X, and each outcome Y}, at-a-time.

Real data application: Pre-processing and data preparation

The first step of the data processing merges the summary-level data (beta regression
coefficients, their standard errors and associated p-values) of all exposures by their unique
“rs” identifier and aligns the effect direction of the genetic associations with each exposure
according to the same effect allele. As IVs, we select the genetic variants which are
associated with any of the exposures at genome-wide significance (minimum p-value <
5x 1078 across all exposures). Next, we merge the genetic variants selected as IVs with the
outcome data by their unique “rs” identifier and align the effect direction of the genetic
associations with each outcome according to the same effect allele. Finally, we clump the
genetic variants to be independent at r? < 0.01 using a European reference panel [74].
This results in n = 708 independent genetic variants selected as IVs. See Supplementary
Table [1] for the description of the summary-level statistics, the data sources, the number
of non-unique IVs which were genome-wide significant for each exposure along with the
contribution (%) of each exposure on the selected IVs.

Finally, we perform reverse causation using the same traits with mental health phen-
otypes as exposures and lifestyle and behavioural traits as outcomes. We apply the same
procedure described above resulting in 470 IVs. See Supplementary Table [I] for details
regarding the number of non-unique IVs which were genome-wide significant for each

exposure along with the contribution (%) of each exposure on the selected IVs.
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Data availability

Data sources are presented in Supplementary Information with associated URL links. So-
cial Science Genetic Association Consortium (SSGAC) summary-level statistics are avail-

able through a standard registration procedure (https://thessgac.com/register/).

Code availability

The Mendelian randomization with Directed Acyclic Graph learning R package MrDAG
is freely available on https://github.com/1b664/MrDAG/. It includes the data of the
real data examples and how to run the algorithm. Post-processing routines to estimate
the posterior causal effects presented in the manuscript are also included along with the

Posterior Probability of Edge Inclusion.
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