

1 **Spatial domain analysis to estimate spatiotemporal pathological mechanisms in**
2 **microenvironment with single-cell spatial omics data**

3
4 Shunsuke A. Sakai^{1,2,3}, Ryosuke Nomura^{2,4}, Satoi Nagasawa^{4,5}, SungGi Chi¹, Ayako
5 Suzuki⁴, Yutaka Suzuki⁴, Shumpei Ishikawa^{6,7}, Katsuya Tsuchihara^{1,2}, Shun-Ichiro
6 Kageyama^{3,8*}, Riu Yamashita^{1,4*}

7
8 Affiliations:

9
10 ¹Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial
11 Center, National Cancer Center; Kashiwa, Chiba, 277-8577, Japan

12 ²Department of Integrated Biosciences, Graduate School of Frontier Sciences, The
13 University of Tokyo, Chiba, 277-8568 Japan

14 ³Department of Radiation Oncology, National Cancer Center Hospital East; Kashiwa,
15 Chiba, 277-8577, Japan

16 ⁴Department of Computational Biology and Medical Sciences, Graduate School of
17 Frontier Sciences, The University of Tokyo, Chiba, 277-8562, Japan

18 ⁵Department of Breast Surgery, National Cancer Center Hospital East; Kashiwa, Chiba,
19 277-8577, Japan

20 ⁶Department of Preventive Medicine, Graduate School of Medicine, The University of
21 Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan

22 ⁷Division of Pathology, National Cancer Center Exploratory Oncology Research &
23 Clinical Trial Center, Kashiwa, Chiba 277-8577, Japan

24 ⁸Division of Radiation Oncology and Particle Therapy, Exploratory Oncology Research
25 and Clinical Trial Center, National Cancer Center; Kashiwa, Chiba, 277-8577, Japan

26
27 *To whom correspondence should be addressed;

28 Riu Yamashita; Email: riuyamas@east.ncc.go.jp

29 Shun-Ichiro Kageyama; Email: skageyam@east.ncc.go.jp

30
31 Keywords: Xenium, spatial omics, breast cancer

32
33
34

35 **Abstract**

36 Single-cell spatial omics analysis requires consideration of biological functions and
37 mechanisms in a microenvironment. However, microenvironment analysis using
38 bioinformatic methods is limited by the need to detect histological morphology. In this
39 study, we developed SpatialKNife (SKNY), an image-processing-based toolkit that
40 detects spatial domains that potentially reflect histology and extends these domains to
41 the microenvironment. The SKNY algorithm identified tumour spatial domains from
42 spatial transcriptomic data of breast cancer, followed by clustering of these domains,
43 trajectory estimation, and spatial extension to the tumour microenvironment (TME).
44 The results of the trajectory estimation were consistent with the known mechanisms of
45 cancer progression. We observed endothelial cell and macrophage infiltration into the
46 TME at mid-stage progression. Our results suggest that analysis using the spatial
47 domain as a unit reflects pathological mechanisms in the TME. This approach may be
48 applicable to the biological estimation of diverse microenvironments.
49
50
51

52 **Introduction**

53 Single-cell spatial omics platforms, such as Xenium, CosMx¹, and PhenoCycler², offer
54 opportunities for the investigation of hundreds or thousands of genes in various organs
55 and tissue types. The resolution of these methods is at the single-cell level, providing
56 deep insight into the localisation of the expression of multiple genes in a particular
57 microenvironment, which includes not only cancer cells but also immune cells and non-
58 immune stromal cells. A key consideration in microenvironment analysis is the
59 integration of gene expression and histological features to obtain a comprehensive
60 understanding of biological functions and mechanisms. Classical methods that examine
61 a microscope capture histological features through staining or fluorescence-based
62 technologies, leading to the discovery of pathological mechanisms in the
63 microenvironment³. However, in the current omics era, with the large number of
64 specimens and gene panels, manual physical approaches are no longer sufficient.

65 To address the high throughput of omics data, several third-party tools such as
66 Seurat and Scanpy have been developed to efficiently analyse expression data from
67 thousands of gene panels and samples^{4, 5, 6, 7, 8, 9, 10}. Methods inherited from single-cell
68 RNA-seq have been implemented, including cell clustering^{11, 12, 13, 14}, trajectory
69 analysis^{15, 16, 17, 18}, and ligand-receptor analysis^{19, 20, 21}. These analytical methods use

70 gene expression but do not consider molecular or cellular location. Hence, the
71 integration of gene expression and location information is necessary for optimising
72 spatial omics analysis of the microenvironment.

73 In response to this demand, several tools dedicated to spatial omics have been
74 implemented, such as clustering analyses that integrate positional information with gene
75 expression²² and ligand-receptor enrichment analysis at each spot in a space partitioned
76 on a grid²³. Although these methods are attractive for utilising spatial information,
77 microenvironmental analysis is limited by the lack of direct histological information.

78 Recently, the STARGATE algorithm²⁴ was developed to detect spatial domains (i.e.
79 regions with similar spatial expression patterns), and Sopa²⁵ was constructed to extend
80 ‘spatial domain’ analysis to single-cell spatial omics data. These methods can detect
81 spatial domains that reflect and functionally resemble tumour, stromal, and vascular
82 histologies.

83 Here, we extended the concept of the spatial domain to the microenvironment,
84 which encompasses inside, peri-, and outside sections of the spatial domain, with the
85 aim of estimating the functions and mechanisms of the microenvironment (Fig. 1a). We
86 constructed an image processing-based toolkit, SpatialKNifeY (SKNY), to analyse the
87 spatial domains from spatial omics data (Output 1-3) and extend it to the

88 microenvironment (Output 4, 5) (Fig. 1b). Single-cell spatial transcriptomics data from
89 Xenium²⁶ was used to detect spatial domains of tumour for analysing the tumour
90 microenvironment (TME) (Output 1: *Detection*) (Fig. 1c). Clustering of these spatial
91 domains resulted in the formation of clusters consistent with the malignancy and
92 subtypes (Output 2: *Clustering*), and the trajectory among spatial domains was
93 estimated to represent the tumour progression process (Output 3: *Trajectory estimation*).
94 The analysis extended from the spatial domain into TME and assessed the infiltration of
95 endothelial cells into the tumour (Output 4: *Spatial stratification*). Furthermore, by
96 integrating the trajectory and spatial stratification analysis, the dynamics in the tumour
97 microenvironment were estimated, such as extracellular matrix degradation,
98 angiogenesis, and macrophage infiltration (Output 5: *Spatiotemporal trajectory*). These
99 results suggest that the SKNY can provide microenvironment analysis and may provide
100 essential insights into their pathological functions. The SKNY algorithm is available
101 under an open-source licence (<https://github.com/shusakai/skny>).
102

103 **Results**

104 *SKNY detects tumour spatial domains from Xenium data on breast cancer.*

105 To detect the spatial domain with the SKNY, we used Xenium data for breast cancer
106 from a previous report²⁶. A haematoxylin and eosin (HE)-stained image of the specimen
107 from a previous report is shown (Fig. 2a). This specimen on a single slide contained
108 various tumour tissues, including ductal carcinoma in situ (DCIS) and invasive ductal
109 carcinoma (IDC). Using Xenium data, the SKNY algorithm was applied to detect
110 tumour spatial domains (yellow) and extract their boundaries (green) based on the
111 expression levels of the epithelial cell marker *CDH1* (Fig. 2b). Independently, the
112 STARGATE algorithm²⁴ was used to identify tumour spatial domains (Supplementary
113 Fig. 1a, b, and c), resulting in high concordance with the results of SKNY (Jaccard
114 similarity coefficient=0.85). The results suggest that the image-processing-based spatial
115 domain extraction of the SKNY method is consistent with previous methods. The
116 inward/outward areas from the extracted spatial domain boundaries were measured
117 (Supplementary Fig. 2a), and the contour line was delineated at 30 μ m intervals to
118 spatially stratify the TME (Fig. 2c and Supplementary Fig. 2b). High-power field
119 images, including single (Fig. 2c, left panel), triple (Fig. 2c, middle panel), and multiple
120 spatial domains (Fig. 2c, right panel), showed visual concordance between the spatial
121 domains and HE staining images for tumour detection.

122 To confirm that these spatial domains are correctly partitioned between the

123 tumour and stroma, the expression levels of several marker genes were examined in the

124 stratified $(-90, -60]$ to $(+120, +150]$ sections in the total field. The results showed that

125 cancer cell marker genes, such as *CDH1*, *EPCAM*, *FOXA1* and *GATA3* were enriched

126 within the spatial domain (sections $(-120, -90]$, $(-90, -60]$, $(-60, -30]$ and $(-30, 0]$)

127 (Fig. 2d). The myoepithelial cell marker genes such as *KRT5*, *KRT14*, *MYLK* and

128 *ACTA2* were enriched around the spatial domain boundary (the section of $(0, +30]$), and

129 the macrophage, lymphocyte, endothelial cell, and stromal cell markers, such as *CD68*,

130 *TRAC*, *PECAMI* and *MMP2*, respectively, were enriched on the outside (the sections of

131 $(+30, +60]$, $(+60, +90]$, $(+90, +120]$, and $(+120, +150]$). The spatial localisation of gene

132 expression showed that *EPCAM* was overrepresented within the spatial domain, *ACTA2*

133 at the boundary, and *PECAMI*, *TRAC*, and *MMP* outside the domain (Fig. 2e). These

134 results suggest that the spatial domains stratified using the SKNY algorithm can be

135 divided into tumours, peritumours, and stroma.

136

137 *SKNY clusters the spatial domains with multiple mixed cell types into subclusters using*

138 *the UMAP algorithm.*

139 Next, to assess the diversity of cells within extracted spatial domains, we compared the
140 α -diversity index (Chao1) based on the gene expression between cancer cells and spatial
141 domains. The results indicated that the type of gene expression in the spatial domain
142 was significantly more diverse than that in the cancer cells ($P<0.001$) (Supplementary
143 Fig 3), suggesting that the spatial domains contain a variety of cells, not only cancer
144 cells. Moreover, diversity variance was greater in spatial domains (standard deviation
145 $[SD]=62.1$) than in cancer cells ($SD=34.2$). Hence, we hypothesised that the
146 heterogeneity among spatial domains originated not only from cancer cells but also
147 from diverse cells in the microenvironment. Here, we performed clustering of spatial
148 domains to evaluate the heterogeneity among intra-spatial domain microenvironments.
149 To obtain adequate gene expression data, 426 spatial domains larger than $1000 \mu\text{m}^2$
150 were selected. The gene expression data (313 genes) were dimensionally reduced by
151 principal component analysis (PCA), resulting in nine clusters (0-8) based on their
152 similarity in PCA space. Each spatial domain was placed in the two-dimensional space
153 using UMAP (Fig. 3a) and the original space (Fig. 3b). To annotate these clusters with
154 histology, we showed HE staining images based on the previous report (Fig. 3c).
155 Combining this histology on HE staining with the clusters shown in Fig. 3b, we found
156 that clusters 2, 3, 5, and 8 corresponded to non-invasive ductal carcinoma in situ

157 (DCIS), whereas clusters 0, 1, 4, 6, and 7 corresponded to invasive ductal carcinoma in
158 situ (IDC).

159 To provide detailed annotation of each spatial domain cluster, we examined the
160 expression of several marker genes. In clusters 0, 1, 4, 6, and 7 (IDC clusters), *MKI67*
161 and *ERBB2* were highly expressed. Conversely, in clusters 2, 3, 5, and 8 (DCIS
162 clusters), the myoepithelial cell markers *ACTA2*, *MYLK*, and *KRT14* were highly
163 expressed. These results suggest that gene expression in each spatial domain was
164 consistent with the histological annotation (Fig. 3d). Interestingly, cluster 1 showed
165 high expression of endothelial cell markers, including *PECAM1*, *VWF*, and *CD93*, as
166 well as chemokines and chemokine receptor genes associated with cell migration,
167 *CXCL12* and *CXCR4*. Furthermore, the expression of *MKI67*, *ABCC11*, and *FOXA1*
168 was moderate in cluster 1 compared to that in other IDC clusters (Fig. 3d). Given the
169 moderate expression of these cancer-associated genes and their midpoint in the UMAP
170 space (Fig. 3a), Cluster 1 may represent a spatial domain at an intermediate stage in the
171 transition from DCIS to IDC.

172

173 *SKNY estimates spatial domain trajectory, which reflects tumour progression.*

174 To estimate the spatial domain trajectory from DCIS to IDC, we used the partition-
175 based graph abstraction (PAGA) algorithm¹⁵ to construct an adjacency graph
176 representing the topology of expression patterns for each cluster (Fig. 4a). The
177 adjacency graph is divided into clusters 2, 3, 5, and 8 (DCIS) and clusters 0, 4, 6, and 7
178 (IDC), where cluster 1 connects the DCIS and IDC clusters. Additionally, cluster 3,
179 exhibiting the lowest tumour marker gene expression, as shown in Fig. 3d, was located
180 at the lower end. This structure is consistent with the hypothesis that the spatial domain
181 of DCIS clusters transitions to the IDC cluster via cluster 1. The pseudotime with
182 cluster 3 as the root was determined and placed in the two-dimensional space of the
183 PAGA algorithm and the original space (Fig. 4b left panel and Fig. 4c). We evaluated
184 the correlation between the pseudotime and *MKI67* ($r=0.52$, $P<0.001$, Pearson
185 coefficient)/*ACTA2* ($r=-0.47$, $P<0.001$). The pseudotime illustrated tumour progression
186 (Fig. 4b middle and right panels).
187 To identify characteristic gene expression at points on this pseudotime axis, we
188 hypothesised three tumour progression paths (cluster 3→8→1→7→4: IDC path #1,
189 3→5→1→7→4: IDC path #2, and cluster 3→2: DCIS path) and evaluated trends in
190 gene expression along these paths. In IDC paths #1 and #2, the expression of
191 myoepithelial cell markers (*ACTG2* and *MYLK*) tended to decrease in the early stages of

192 progression, whereas that of malignant markers (*ERBB2*) tended to increase in the later
193 stages (Fig. 4d). In contrast, these myoepithelial cell and malignant marker fluctuations
194 appeared to be moderate in the DCIS path. Moreover, in IDC paths #1 and #2, marker
195 genes for endothelial cells (*VWF* and *PECAM1*), lymphocytes (*CD4*), macrophages
196 (*CD68*), chemokines (*CXCL12* and *CCL5*), and chemokine receptors (*CXCR4*) were
197 highly expressed at the intermediate stages of cancer progression. Similarly, in the
198 DCIS path, *CD4*, *CD68*, and *CCL5* showed increased expression with progression.
199 These findings suggest that endothelial cells and chemokine signalling are involved in
200 the transition from DCIS to IDC. We also examined the spatial distribution of gene
201 expression within the region of interest (ROI) corresponding to the transition phase
202 from DCIS to IDC. The results showed a pattern in which *PECAM1*, *VWF*, *CXCR4*, and
203 *CXCL12* appeared to infiltrate into regions of the tumour delineated by HE staining and
204 *EPCAM* (Fig 4e). This also suggests that during the transition from DCIS to IDC,
205 endothelial cells may infiltrate tumours and activate chemokine signals.
206
207 *SKNY quantifies the infiltrating of endothelial cells to spatial domains in the*
208 *microenvironment.*

209 Next, we extended the spatial domains with their expression into their inner, peri-, and
210 outer sections, namely, microenvironments, to quantitatively compare endothelial cell
211 infiltration into tumours. We stratified the distance from the boundary of the spatial
212 domain into 30 μm sections and extracted $(-30, 0]$ (inner), $(0, +30]$ (peri-), and $(+30,$
213 $+60]$ (outer) sections of each cluster (Fig 5a). Although no significant differences in
214 expression levels were observed in the $(+30, +60]$ section, significant differences among
215 clusters were found in the $(-30, 0]$ section for endothelial cell markers *PECAMI* and
216 *VWF* ($P=0.0053$ and <0.001 , Kruskal–Wallis test, respectively), with relatively high
217 expression in cluster 1 (Fig 5b). To confirm the spatial expression patterns, ROIs
218 selected from clusters 3, 8, 1, and 0 were extracted, and the distribution of cancer cell
219 (*EPCAM* and *CDH1*) and endothelial cell (*VWF*, *PECAM*, *CD93*) markers was
220 examined using Xenium Explorer. In clusters 3 and 8 (DCIS cluster), endothelial cell
221 markers were localised outside the spatial domain, whereas in cluster 1 (DCIS-to-IDC
222 cluster), these markers were localised in the tumour spatial domain (Fig. 5c). Moreover,
223 cluster 0 (IDC cluster) appeared to remain in the gaps where the cancer cells had
224 migrated (Fig. 5c, right panel). These results demonstrate that the analysis, expanded
225 from the spatial domain to the microenvironment, could reflect the infiltration of
226 endothelial cells into the tumour.

227

228 *SKNY performs spatiotemporal trajectory analysis and estimates the mechanism of*
229 *tumour progression.*

230 Next, we analysed the spatiotemporal dynamics of gene expression by integrating the
231 spatial axis of the microenvironment with the temporal axis estimated from the
232 trajectory of tumour progression. We examined the changes over the pseudotime (IDC
233 path #1) in the expression of endothelial cells (*PECAMI*), macrophages (*CD68*), matrix
234 metalloproteinases (*MMP2*), chemokine receptors (*CXCR4*), and chemokines (*CXCL12*)
235 in each TME section at $(-30, 0]$ (inner), $(0, +30)$ (peri-), and $(+30, +60]$ (outer),
236 respectively. In the inner section, *PECAMI* ($P=0.023$), *CD68* ($P<0.001$), and *CXCR4*
237 ($P<0.001$) showed an increase during the transition period from DCIS to IDC (clusters
238 8, 1, and 7), whereas in the peri-section, *PECAMI* ($P=0.035$) and *CXCR4* ($P<0.0024$)
239 also showed an increase during that period (Kruskal-Wallis test, Bonferroni-corrected P
240 values) (Fig. 6a). In contrast, in the peri- and outer sections, *MMP2* ($P<0.001$ and
241 $P=0.020$, respectively) showed an increase in these peaks in early DCIS (cluster 3) and
242 late IDC (cluster 4).

243 Finally, we summarised the temporal sequences of the expression of these
244 genes. In the early stages of cancer progression, the expression of *MMP2* was

245 upregulated in the peri-tumour and outer regions (Fig. 6b). In the tumour progression
246 from non-invasive to invasive cancer, infiltration of endothelial cells (*PECAMI*) and
247 macrophages (*CD68*) was noted into the tumour interior, together with increased
248 chemokine signalling (*CXCR4*). After invasion, the expression of *MMP2* was
249 upregulated in the peritumour and outer regions. Therefore, we concluded that the
250 SKNY showed spatiotemporal sequences of interactions between tumours and other
251 components within the microenvironment.

252

253

254 **Discussion**

255 In this study, we applied the SKNY algorithm to Xenium data extracted from breast
256 cancer to estimate the cellular and molecular functions and mechanisms in the TME.
257 The TME includes diverse cells, such as cancer-associated fibroblasts, stromal cells, and
258 immune cells involved in cancer progression²⁷, and the concept of the TME has also
259 been incorporated into clinical research on breast cancer²⁸. For example,
260 immunohistochemical pathological analysis has shown that intratumoural macrophages
261 stained by CD68 correlate with malignancy^{29, 30} and that intertumoral microvessel
262 density assessed by CD31, which reflects angiogenesis, is an important poor prognostic
263 factor^{31, 32}. In breast cancer, high expression of *Ki67* and *HER2* is associated with
264 malignancy³³, whereas destruction of myoepithelial cells is associated with tumour
265 invasion³⁴. Consistent with these previous reports on the pathology, the results of
266 *spatial stratification* (Output 4) and *spatiotemporal trajectory* (Output 5) analyses,
267 which showed an overrepresentation of *CD68* and *PECAM1* (*CD31*) within the spatial
268 domain of the invasive tumour (Fig. 5 and 6), demonstrated the infiltration of
269 macrophages and endothelial cells into malignant cancer. Moreover, *MMP2* was
270 overexpressed in the early and late stages of tumour progression in the stromal area, and
271 *CXCR4* and *CXCL12* were enriched after mid-stage progression inside the tumour (Fig.
272 6). MMPs contribute to the sprouting of vascular endothelial cells by degrading the

273 vascular basement membrane and extracellular matrix in the early stages of tumour

274 angiogenesis³⁵, and CXCR4/CXCL12 signalling pathway mediates cell migration

275 signals and metastasis processes³⁶. These results are consistent with the previous

276 findings, suggesting that our algorithm can accurately estimate compatible biological

277 mechanisms in the TME.

278 The *trajectory estimation* (Output 3) analysis was used to construct the tumour

279 progression trajectory of the spatial domains (Fig. 4). The interaction of various cells in

280 the TME is considered crucial in cancer progression²⁷; therefore, the progression

281 trajectory should be determined by integrating all cells in the TME rather than focusing

282 solely on cancer cells. Our results showed that during the transition from DCIS to IDC,

283 an over-representation of vascular endothelial cells expressing *PECAMI* and *VWF*, as

284 well as an increase in the *CXCL12* and *CXCR4* chemokine-chemokine receptor pair was

285 noted. These results are consistent with the known mechanisms by which cancer cells

286 acquire invasive potential through endothelial cells³⁷ and the associated induction of cell

287 migration signals from chemokines³⁶. Most importantly, gene expression from non-

288 cancer cells was the 'missing link' between DCIS and IDC in the trajectory, suggesting

289 the utility of this approach to integrate all cells within the spatial domain. Furthermore,

290 our data estimated the trajectory from the root to *PGR*-positive DCIS without

291 progression to IDC. Reduced *PGR* expression has been suggested as a surrogate marker
292 for *GATA3* mutations, one of the genetic factors involved in the progression of DCIS³⁸,
293 ³⁹. Paradoxically, these previous reports, combined with our results, suggest that the
294 transition to *PGR*-positive DCIS may slow cancer progression. The thin edge from
295 *PGR*-positive DCIS to other clusters in the PAGA graph also supports this hypothesis.

296 The *detection* algorithm (Output 1) delineated different tumour shapes based
297 on histological features (Fig. 2 and 3). The enrichment of cancer cells and stromal
298 markers within and outside the spatial domains indicates accurate separation of the
299 tumour and stroma. Myoepithelial cells surround the ductal epithelium for structural
300 support⁴⁰, and our results also showed that myoepithelial cell markers, including
301 *ACTA2*, *MYLK*, and *KRT14*, were enriched in the perispatial domain of the tumour,
302 suggesting high-quality detection of tumour contours using our algorithm. This high-
303 quality contour guaranteed subsequent SKNY analyses, including *clustering* (Output 2),
304 *trajectory estimation* (Output 3), and extension into the microenvironment (Outputs 4
305 and 5).

306 This study had some limitations. First, we used only one sample for this
307 analysis, and whether the SKNY would work with other samples remains to be
308 determined. Although our preliminary analysis of lung, kidney, colon, and skin samples

309 confirmed their quality (confidential), it is necessary to verify the performance of the
310 SKNY using a large number of samples. Second, in this analysis, the spatial omics data
311 was converted to grids of $10 \times 10 \mu\text{m}$, and this conversion may make it difficult to
312 detect thin tissues, such as monolayered epithelium. However, setting the grid data to a
313 smaller size should result in insufficient sensitivity of the marker genes on each grid.
314 Therefore, it is necessary to consider the balance between grid size and marker gene
315 sensitivity for each specimen and gene panel.

316 In conclusion, SKNY can be used in microenvironmental analyses to provide
317 valuable insights into its pathological functions. It should be applicable not only to the
318 TME but also to a wide range of microenvironments, such as tertiary lymphoid
319 structures and myocardial and neuronal microenvironments.

320

321

322

323

324 **Methods**

325 *Data acquisition and pre-processing*

326 Breast cancer data from Xenium were downloaded from a public repository

327 (<https://www.10xgenomics.com/jp/products/xenium-in-situ/preview-dataset-human->

328 breast). The 'ReadXenium' function from stlearn (v0.4.12) was utilised to read the HE

329 images (https://www.dropbox.com/s/th6tqqgbv27o3fk/CS1384_post-

330 CS0_H%26E_S1A_RGB-shlee-crop.png?dl=1) and files containing gene expression

331 and cell coordinates

332 (Xenium_FFPE_Human_Breast_Cancer_Rep1_cell_feature_matrix.h5 and

333 Xenium_FFPE_Human_Breast_Cancer_Rep1_cells.csv.gz). The 'tl.cci.grid' function in

334 stlearn was used to simplify the coordinate data into grid data ($Grid_{column, row}^{gene}, gene =$

335 $\{ABCC11, ACTA2, ACTG2, \dots, ZNF562\}, column = \{1, 2, 3, \dots, 752\}, row =$

336 $\{1, 2, 3, \dots, 547\}$) at the interval of 10 μm .

337

338 *Detection of spatial domain*

339 The pre-spatial domain (S_{pre}) was determined based on the expression of *CDH1* in each

340 grid. The SKNY program can detect prespatial domains based on user selection. For

341 example, a tumour is detected but normal epithelium is not detected upon logical

342 subtraction between a positive marker (e.g. *CDH1*) and a negative marker (e.g. *SFTPB*)

343 expression, which is described as follows:

344

$$345 S_{pre} = (Expr(G_{column, row}^{positive\ marker}) > 0) - (Expr(G_{column, row}^{negative\ marker}) > 0)$$

346

347 where *Expr* is defined as a function of extracting gene expression counts from the grid.

348 To remove noise from the pre-spatial domain, the "medianBlur" function (kernel size:

349 3×3) from the Python library opencv (v4.8.1) was applied, resulting in the formation of

350 a spatial domain (*S*) (Supplementary Material 1).

351 The STARGATE algorithm²⁴ was also used to extract spatial domain clusters

352 for comparison with the existing methods. To annotate the extracted spatial domain

353 clusters, the expression levels of epithelial markers (*CDH1*, *EPCAM*) were compared,

354 and cluster 1, 3, and 9, which showed overexpression, was extracted as the spatial

355 domain of the tumour. To assess the concordance between SKNY and STARGATE in

356 the spatial domains, the Jaccard coefficient, which indicates the percentage of

357 agreement between each lattice, was calculated.

358

359 *Measurement of distance from the spatial domain surfaces*

360 The edge grids were identified using the' findContours' function from opencv in the
361 spatial domain. All adjacent grids were connected by edges and weighted according to
362 the Euclidean distance: 1 for vertical and horizontal edges and 2 for diagonal edges
363 (Supplementary Material 2). The shortest path from the edge grids to the other grids was
364 measured using the multi-source Dijkstra method⁴¹ to determine the distance from the
365 spatial domain edges.

366

367 *Segmentation from a spatial domain to individual spatial domains*
368 The function 'connectedComponentsWithStats' from opencv was used to divide the
369 spatial domain (S) into individual spatial domains (S_d , $d = \{1,2,3, \dots, 426\}$) with an
370 area larger than $1000 \mu\text{m}^2$. The gene expression within each spatial domain was
371 averaged.

372

373 *Spatial stratification by spatial domains*
374 Using the measured distances, a stratification was performed with a half-open interval
375 of $30 \mu\text{m}$ to obtain the edge grid of the spatial domain ($P_{x < \mu \leq x + 30}, x = \{0,30\}$). The
376 rectangle that enclosed each S_d was then extracted, and the contour was enlarged by x
377 μm to produce a rectangle including each spatial domain ($R_{d,x < \mu \leq x + 30}, x = \{0,30\}, d =$

378 {1,2,3, ...,426}). The peri-spatial domain exclusive to each spatial domain

379 $PS_{d,x < \mu \leq x+30}$ was calculated as follows:

380

381
$$PS_{d,x < \mu \leq x+30} = P_{x < \mu \leq x+30} \wedge \neg \bigcup_{i=1}^{n-1} \bigcup_{j=i+1}^n (R_{i,x < \mu \leq x+30} \wedge R_{j,x < \mu \leq x+30})$$

382

383 where \wedge represents the product sum, and \bigcup represents the union set. The gene

384 expression of each $PS_{d,x < \mu \leq x+30}$ was defined as the average gene expression of the

385 grids within it.

386

387 *Diversity analysis in the spatial domain*

388 To compare the alpha diversity of gene expression between the segmented spatial

389 domains and previously annotated cancer cells²⁶, the 'diversity.alpha.chao1' in the

390 Python library scikit-bio was used to calculate Chao1⁴².

391

392 *Clustering of the spatial domains*

393 The 'pp.log1p' function from scanpy (v 1.9.8) was used to log-transform gene

394 expression in each spatial domain (S_d). Then, the 'pp.pca' function was used for

395 dimension reduction through principal component analysis. Fifty principal components

396 were extracted in the order of highest eigenvector. The 'pp.neighbours' and 'tl.leiden'

397 functions from the scanpy were adapted to form spatial domain clusters for Leiden

398 clustering. The function 'tl.umap' was used to place leiden embeddings on the UMAP

399 two-dimensional space.

400

401 *Trajectory estimation of the spatial domains*

402 For trajectory inference by the PAGA algorithm (ref), the "tl.paga" function of spanpy

403 was used to construct the neighbourhood graph of the spatial domain cluster, followed

404 by the estimation of the pseudotime by adapting the "tl.dpt" function.

405

406 *Statistical analysis*

407 Pearson's product-moment correlation coefficient was used to analyse the correlation

408 between the pseudotime and gene expression. Welch's t-test was used to compare alpha

409 diversity between the two groups. The Kruskal-Wallis test was used to compare gene

410 expression between multiple groups.

411

412 Visualization

413 For the visualisation of the Xenium data in space, Xenium Explororor (v1.3) or the

414 "pl.gene_plot" function in stlearn was used.

415

416

417 **Code availability**

418 The code used in this study has been deposited in the documentation of the SKNY

419 library (https://skny.readthedocs.io/en/latest/notebooks/single-TME_analysis.html).

420

421 **References**

- 422 1. He, S. et al. High-plex Multiomic Analysis in FFPE at Subcellular Level by Spatial
423 Molecular Imaging. *bioRxiv*, 2021.2011.2003.467020 (2022).
- 424 2. Goltsev, Y. et al. Deep Profiling of Mouse Splenic Architecture with CODEX
425 Multiplexed Imaging. *Cell* **174**, 968-981.e915 (2018).
- 426 3. Kim, S.-W., Roh, J. & Park, C.-S. Immunohistochemistry for pathologists: Protocols,
427 pitfalls, and tips. *Journal of Pathology and Translational Medicine* **50**, 411-418 (2016).
- 428 4. Hao, Y. et al. Dictionary learning for integrative, multimodal and scalable single-cell
429 analysis. *Nature Biotechnology* **42**, 293-304 (2024).
- 430 5. Hao, Y. et al. Integrated analysis of multimodal single-cell data. *Cell* **184**, 3573-
431 3587.e3529 (2021).
- 432 6. Stuart, T. et al. Comprehensive Integration of Single-Cell Data. *Cell* **177**, 1888-
433 1902.e1821 (2019).
- 434 7. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell
435 transcriptomic data across different conditions, technologies, and species. *Nature
436 Biotechnology* **36**, 411-420 (2018).
- 437 8. Satija, R., Farrell, J.A., Gennert, D., Schier, A.F. & Regev, A. Spatial reconstruction of
438 single-cell gene expression data. *Nature Biotechnology* **33**, 495-502 (2015).
- 439 9. Wolf, F.A., Angerer, P. & Theis, F.J. SCANPY: large-scale single-cell gene expression
440 data analysis. *Genome Biology* **19**, 15 (2018).
- 441 10. Virshup, I. et al. The scverse project provides a computational ecosystem for single-cell

442 omics data analysis. *Nature Biotechnology* **41**, 604-606 (2023).

443 11. Cheng, C. et al. Latent cellular analysis robustly reveals subtle diversity in large-scale

444 single-cell RNA-seq data. *Nucleic Acids Research* **47**, e143-e143 (2019).

445 12. Lin, P., Troup, M. & Ho, J.W.K. CIDR: Ultrafast and accurate clustering through

446 imputation for single-cell RNA-seq data. *Genome Biology* **18**, 59 (2017).

447 13. Wan, S., Kim, J. & Won, K.J. SHARP: hyperfast and accurate processing of single-cell

448 RNA-seq data via ensemble random projection. *Genome Research* **30**, 205-213 (2020).

449 14. Yu, L., Cao, Y., Yang, J.Y.H. & Yang, P. Benchmarking clustering algorithms on

450 estimating the number of cell types from single-cell RNA-sequencing data. *Genome*

451 *Biology* **23**, 49 (2022).

452 15. Wolf, F.A. et al. PAGA: graph abstraction reconciles clustering with trajectory inference

453 through a topology preserving map of single cells. *Genome Biology* **20**, 59 (2019).

454 16. Saelens, W., Cannoodt, R., Todorov, H. & Saeys, Y. A comparison of single-cell trajectory

455 inference methods. *Nature Biotechnology* **37**, 547-554 (2019).

456 17. Street, K. et al. Slingshot: cell lineage and pseudotime inference for single-cell

457 transcriptomics. *BMC Genomics* **19**, 477 (2018).

458 18. Cannoodt, R. et al. SCORPIUS improves trajectory inference and identifies novel

459 modules in dendritic cell development. *bioRxiv*, 079509 (2016).

460 19. Jin, S. et al. Inference and analysis of cell-cell communication using CellChat. *Nature*

461 *Communications* **12**, 1088 (2021).

462 20. Armingol, E., Officer, A., Harismendy, O. & Lewis, N.E. Deciphering cell-cell

463 interactions and communication from gene expression. *Nature Reviews Genetics* **22**, 71-

464 88 (2021).

465 21. Nagai, J.S., Leimkühler, N.B., Schaub, M.T., Schneider, R.K. & Costa, I.G. CrossTalkeR:

466 analysis and visualization of ligand-receptor networks. *Bioinformatics* **37**, 4263-4265

467 (2021).

468 22. Palla, G. et al. Squidpy: a scalable framework for spatial omics analysis. *Nature Methods*

469 **19**, 171-178 (2022).

470 23. Pham, D. et al. Robust mapping of spatiotemporal trajectories and cell-cell interactions

471 in healthy and diseased tissues. *Nature Communications* **14**, 7739 (2023).

472 24. Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved

473 transcriptomics with an adaptive graph attention auto-encoder. *Nature Communications*

474 **13**, 1739 (2022).

475 25. Blampey, Q. et al. Sopa: a technology-invariant pipeline for analyses of image-based

476 spatial-omics. *bioRxiv*, 2023.2012.2022.571863 (2023).

477 26. Janesick, A. et al. High resolution mapping of the tumor microenvironment using

478 integrated single-cell, spatial and in situ analysis. *Nature Communications* **14**, 8353
479 (2023).

480 27. de Visser, K.E. & Joyce, J.A. The evolving tumor microenvironment: From cancer
481 initiation to metastatic outgrowth. *Cancer Cell* **41**, 374-403 (2023).

482 28. Li, J.J., Tsang, J.Y. & Tse, G.M. Tumor Microenvironment in Breast Cancer-Updates on
483 Therapeutic Implications and Pathologic Assessment. *Cancers (Basel)* **13** (2021).

484 29. Larionova, I. et al. Interaction of tumor-associated macrophages and cancer
485 chemotherapy. *Oncoimmunology* **8**, 1596004 (2019).

486 30. Mahmoud, S.M.A. et al. Tumour-infiltrating macrophages and clinical outcome in breast
487 cancer. *Journal of Clinical Pathology* **65**, 159-163 (2012).

488 31. Choi, W.W.L. et al. Angiogenic and lymphangiogenic microvessel density in breast
489 carcinoma: correlation with clinicopathologic parameters and VEGF-family gene
490 expression. *Modern Pathology* **18**, 143-152 (2005).

491 32. Arapandoni-Dadioti, P., Giatromanolaki, A., Trihia, H., Harris, A.L. & Koukourakis, M.I.
492 Angiogenesis in ductal breast carcinoma. Comparison of microvessel density between
493 primary tumour and lymph node metastasis. *Cancer Letters* **137**, 145-150 (1999).

494 33. Synnestvedt, M. et al. Combined analysis of vascular invasion, grade, HER2 and Ki67
495 expression identifies early breast cancer patients with questionable benefit of systemic
496 adjuvant therapy. *Acta Oncologica* **52**, 91-101 (2013).

497 34. Pandey, P.R., Saidou, J. & Watabe, K. Role of myoepithelial cells in breast tumor
498 progression. *Frontiers in Bioscience (Landmark Ed)* **15**, 226-236 (2010).

499 35. Potente, M., Gerhardt, H. & Carmeliet, P. Basic and Therapeutic Aspects of
500 Angiogenesis. *Cell* **146**, 873-887 (2011).

501 36. Domanska, U.M. et al. A review on CXCR4/CXCL12 axis in oncology: No place to hide.
502 *European Journal of Cancer* **49**, 219-230 (2013).

503 37. De Palma, M., Biziato, D. & Petrova, T.V. Microenvironmental regulation of tumour
504 angiogenesis. *Nature Reviews Cancer* **17**, 457-474 (2017).

505 38. Takaku, M. et al. GATA3 zinc finger 2 mutations reprogram the breast cancer
506 transcriptional network. *Nature Communications* **9**, 1059 (2018).

507 39. Nagasawa, S. et al. Genomic profiling reveals heterogeneous populations of ductal
508 carcinoma in situ of the breast. *Communications Biology* **4**, 438 (2021).

509 40. Balachander, N., Masthan, K.M., Babu, N.A. & Anbazhagan, V. Myoepithelial cells in
510 pathology. *Journal of Pharmacy and Bioallied Sciences* **7**, S190-193 (2015).

511 41. Dijkstra, E.W. A note on two problems in connexion with graphs. *Numerische
512 Mathematik* **1**, 269-271 (1959).

513 42. Chao, A. Nonparametric Estimation of the Number of Classes in a Population.

514 *Scandinavian Journal of Statistics* **11**, 265-270 (1984).

515

516

517 **Acknowledgements**

518 JST SPRING JPMJSP2108.

519

520 **Author Contributions**

521 Conception: SA.S., R.Y. and S-I.K.

522 Construction of algorithm: SA.S.

523 Data analysis: SA.S.

524 Validation analysis: R.N.

525 Implementation of Python library: SA.S.

526 Pathological consultation: S.N. and S-I.K.

527 Algorithm consultation: R.Y., Y.S., and A.S.

528 Discussion per week: SA. S., R.Y., S-I.K., K.T., R.N., and S.C.

529 Writing original manuscript: SA.S.

530 Manuscript revision: R.Y., S-I. K., K.T., S.N., Y.S., A.S., R.N., and S.C.

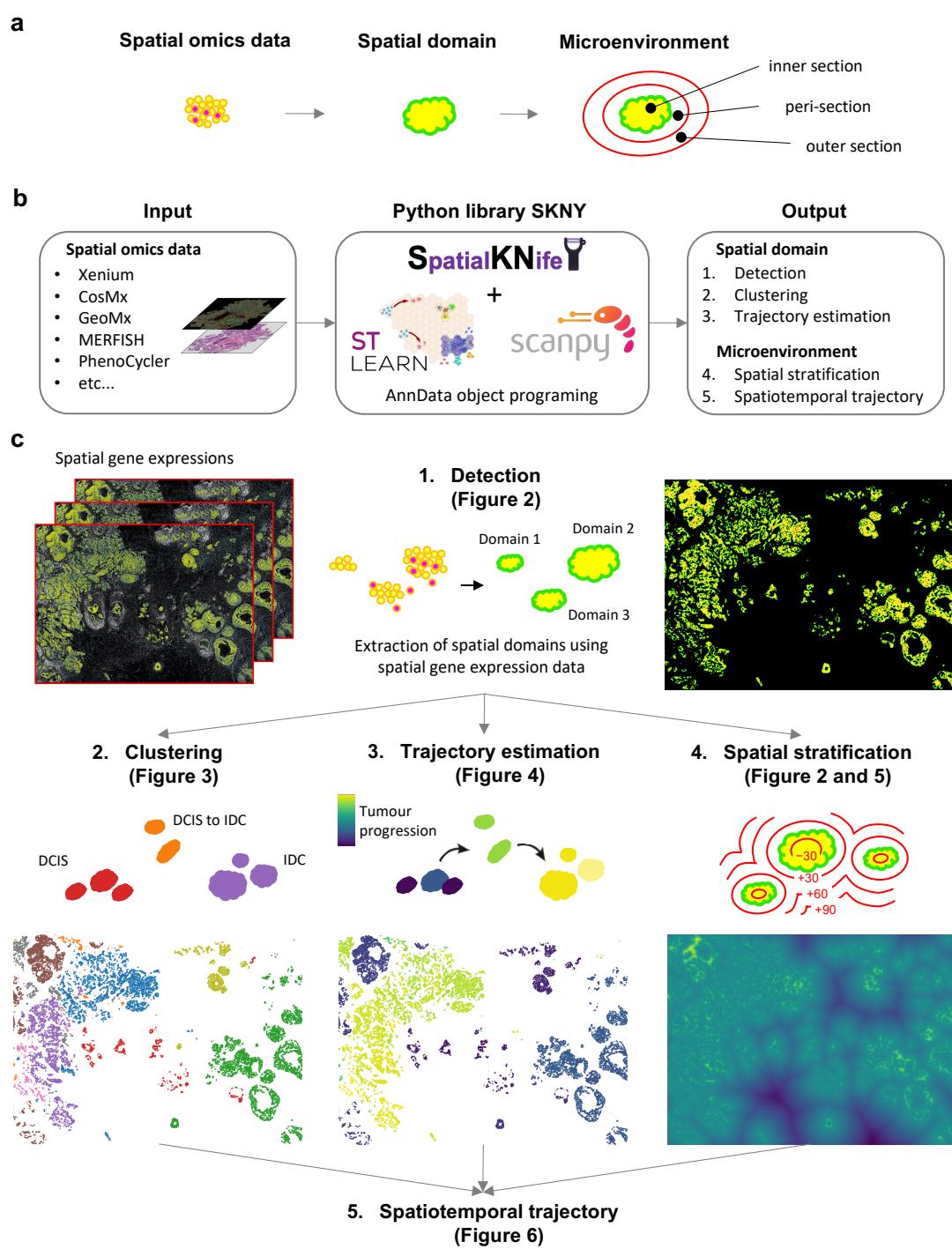
531 Research supervision (corresponding): S-I.K. and R.Y.

532

533 **Competing Interests**

534 The authors report no competing interests.

536 **Figures**

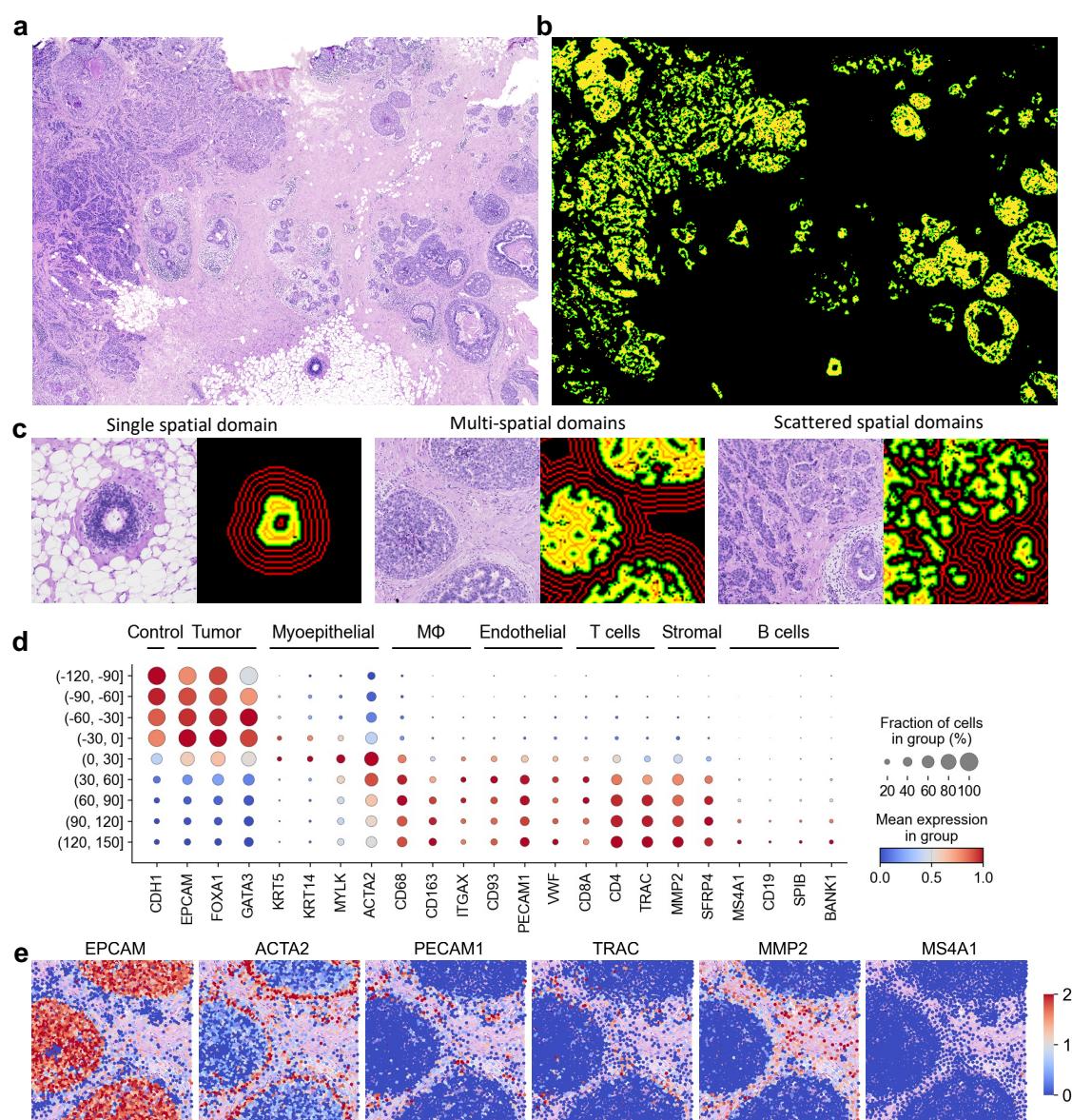


537

538 **Fig. 1. Landscape of SpatialKNifeY analysis.**

539 (a) The concept of the extension from spatial omics data and spatial domain to
540 microenvironment. (b) The implementation of SpatialKNifeY (SKNY). A Python
541 library of SKNY depends on scikit-learn²³ and scanpy⁹ functions (see “Methods”) and
542 AnnData object programming¹⁰. (c) The outputs from SKNY analysis. *Detection* (Output
543 1, see “Fig. 2”) delineates spatial domains based on a user’s positive and negative
544 marker gene expressions. *Clustering* (Output 2, see “Fig. 3”) makes clusters of spatial
545 domain units based on the mean expression of each gene. *Trajectory estimation* (Output
546 3, see “Fig. 4”) infers to the trajectory among spatial domains and pseudotime. *Spatial
547 stratification* (Output 4, see “Fig. 5”) measures the distance from tumour boundary to
548 each coordinate on the space and makes contour lines based on the distance.
549 *Spatiotemporal trajectory* (Output 5, see “Fig. 6”) integrates pseudotime by *trajectory
550 estimation* and contour lines by *spatial stratification* to estimate function and
551 mechanism within the microenvironment.

552



553

554 **Fig. 2. Detection of spatial domain with Xenium data accurately discriminates**

555 **between the tumour and stromal region.**

556 **(a)** H&E staining image of breast cancer. **(b)** Detected spatial domains. The yellow and

557 green colors indicate spatial domains and the boundary, respectively. **(c)** H&E staining

558 images and spatial domain(s) from three ROIs. The red contour lines indicate distance

559 from the surface of spatial domains at the interval of 30 μ m. **(d)** Dotplot showing

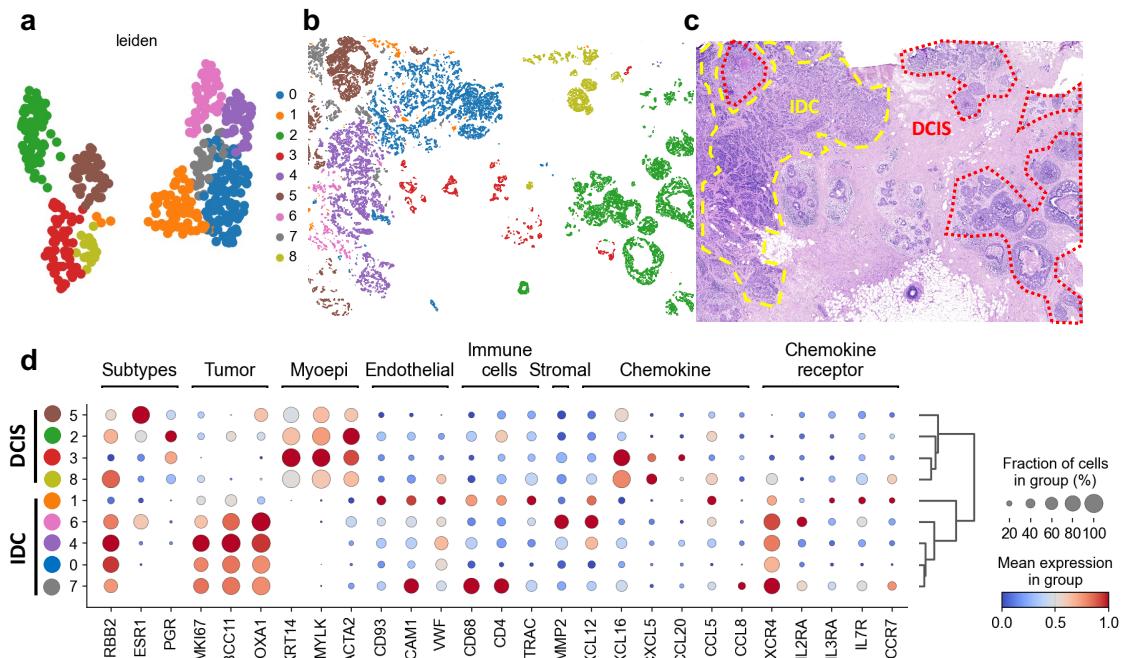
560 marker genes of each cell type. The color bar indicates the scaled mean count, and the

561 size indicates the percentages of these gene expressions. **(e)** Spatial expression

562 distribution of cell marker genes in the ROI. The color bar indicates the scaled mean

563 count.

564

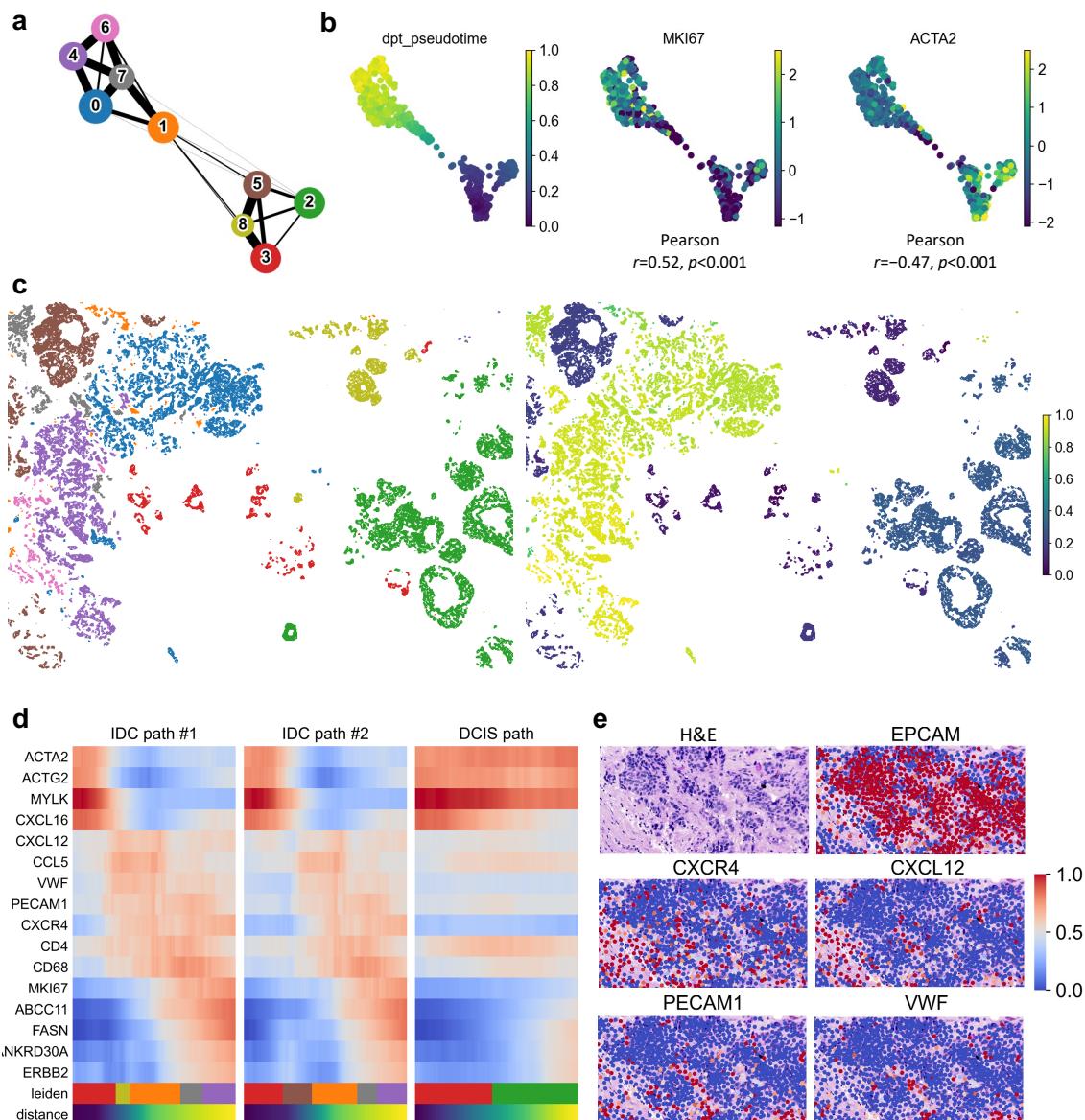


565

566 **Fig. 3. Clustering and annotation of spatial domain based on gene expressions.**

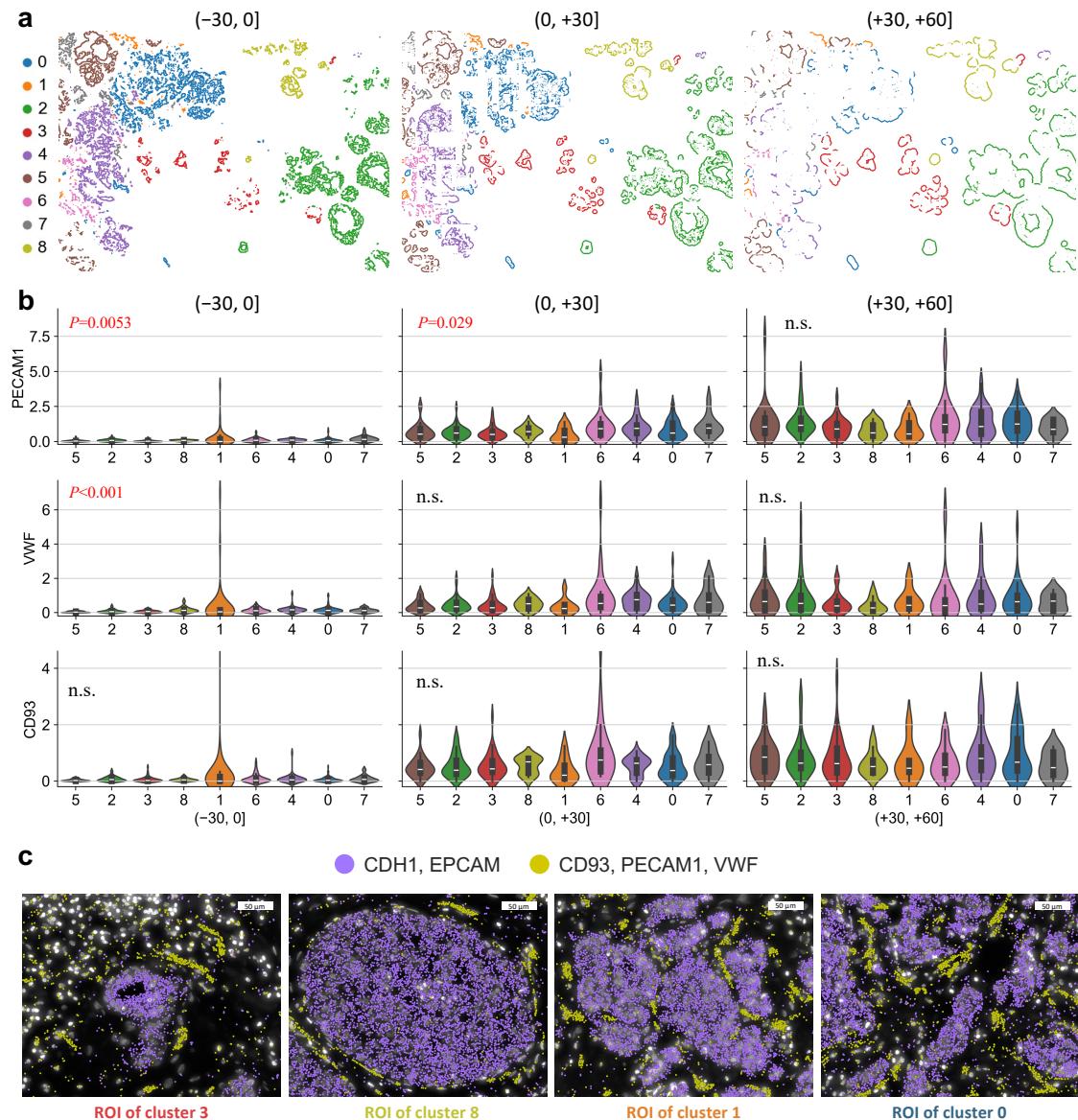
567 **(a)** Two-dimensional plot using UMAP loadings of gene expression of spatial domains.
 568 The colors indicate clusters. **(b)** Spatial distribution of each cluster. **(c)** H&E image with
 569 the histological annotations. **(d)** Dotplot showing markers of cell types and expression
 570 patterns of genes associated with tumour subtypes.

571



579 (c) Spatial distribution of clusters and pseudotimes. (d) Heatmap showing gene
580 expression level along with pseudotimes on three progression paths. (e) Representative
581 images of HE staining and gene expressions on the ROI. The color bar indicates the
582 scaled mean count.

583

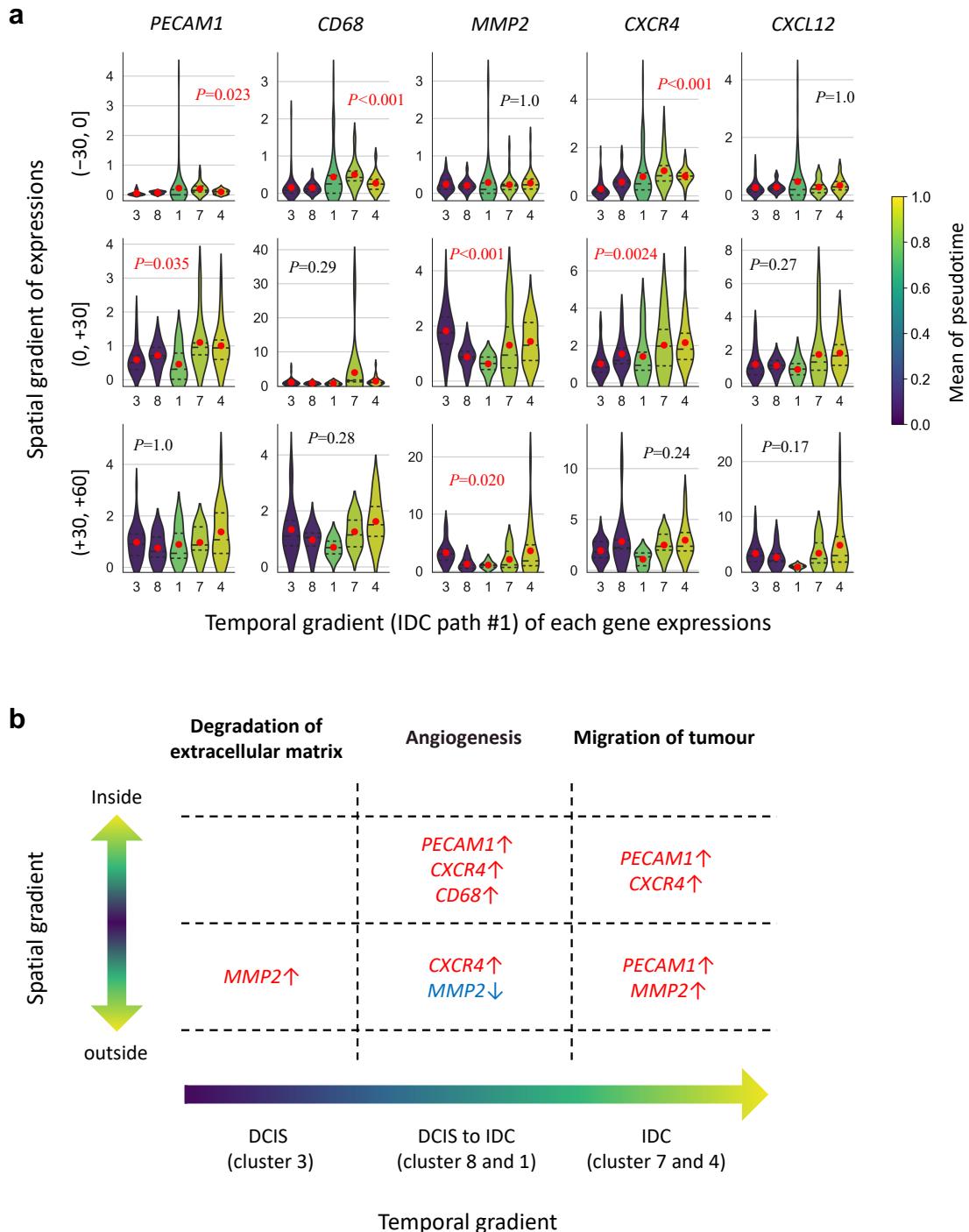


591 gene expression levels. The annotated values are the *P* values of the significance test.

592 **(c)** Representative images of DAPI with epithelial cell markers (*CDH1* and *EPCAM*)

593 and endothelial cell markers (*CD93*, *PECAM1*, and *VWF*) expressions for four ROIs.

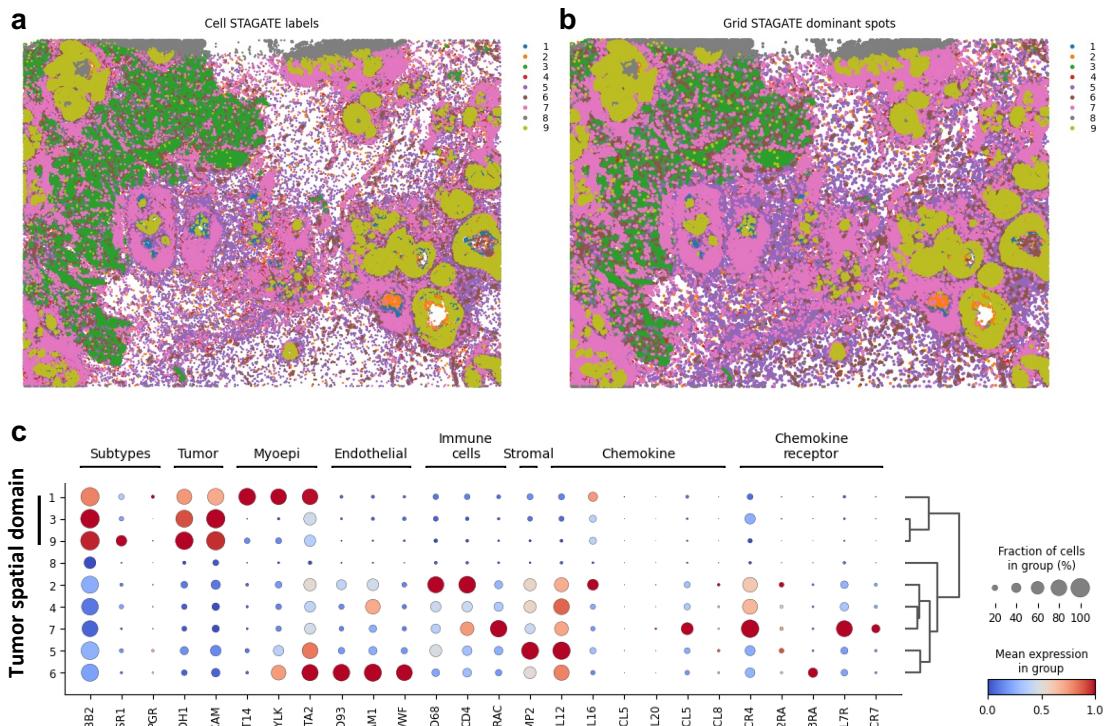
594



595

596 **Fig. 6. Spatiotemporal trajectory analysis illustrating the progression flow of the**
 597 **tumour microenvironment.**

598 (a) Violin plots showing the marker expressions of *PECAM1*, *CD68*, *MMP2*, *CXCR4*,
599 and *CXCL12* on the estimated trajectory path (IDC path #1) in the $(-30, 0]$, $(0, +30]$,
600 and $(+30, +60]$ sections. The color scale indicates the mean of pseudotimes in each
601 cluster. The annotated values represent the *P* values of the significance test. The red
602 dots in the figures indicate the mean of the gene expression level. (b) Summary of the
603 dynamics of the gene expressions. The red and blue colours indicate the
604 overrepresentation and underrepresentation of the gene expressions.
605

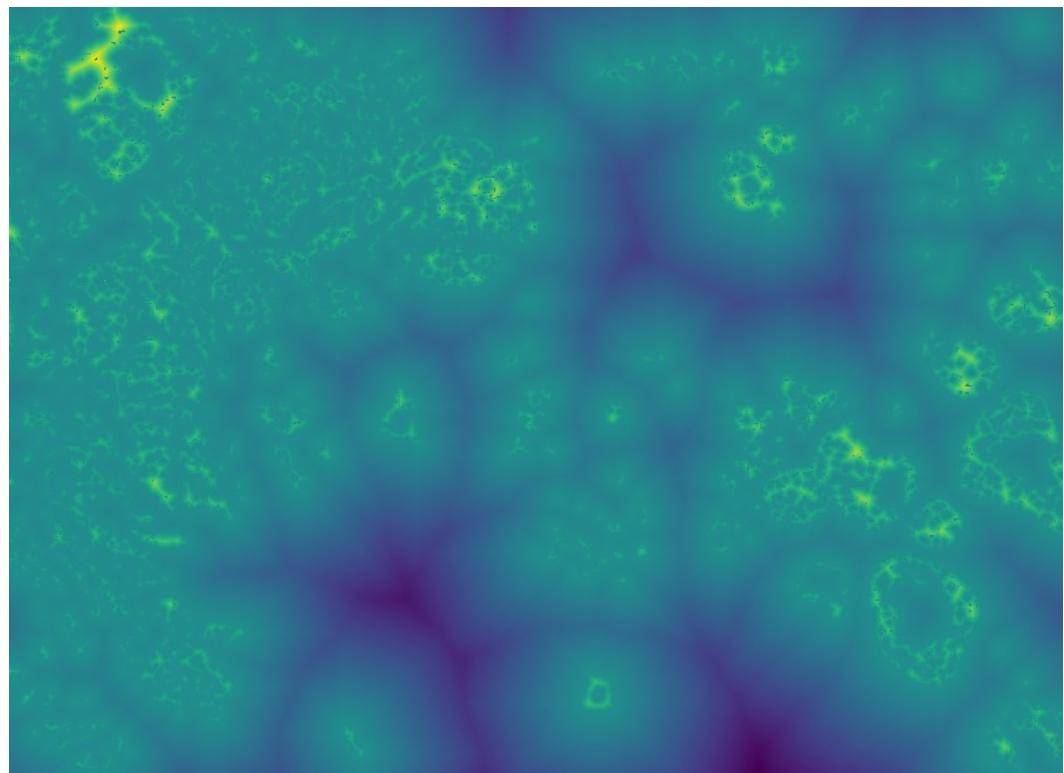


606

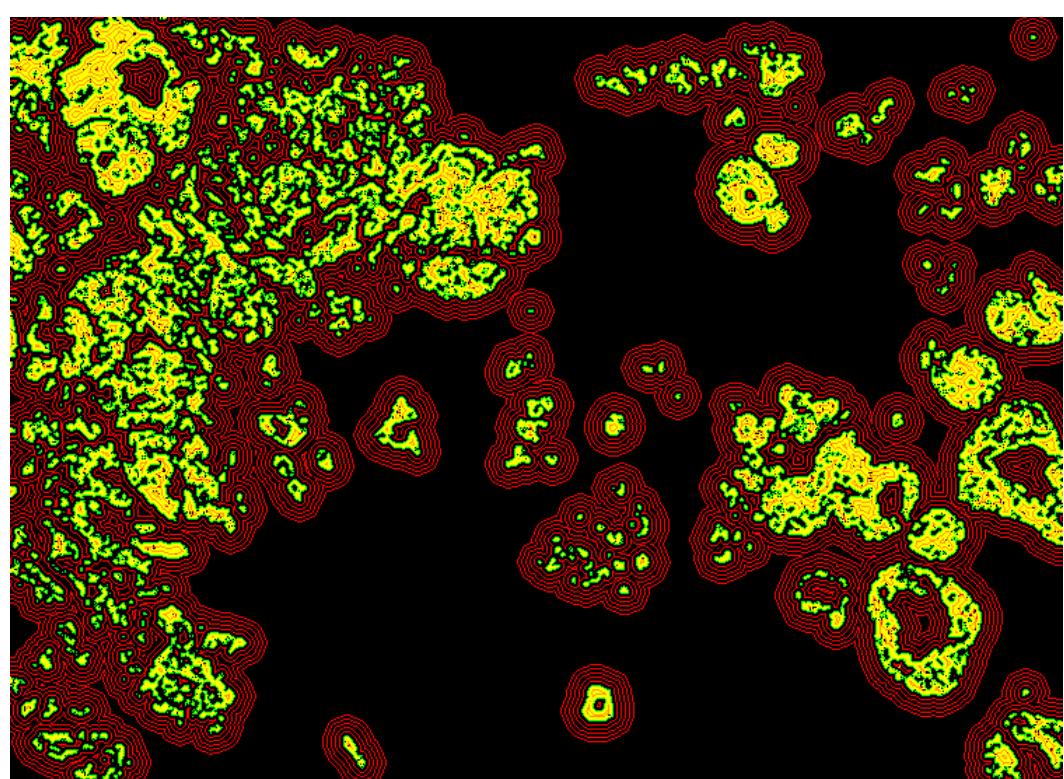
607 **Supplementary Fig. 1. Annotation of the spatial domain using the STARGATE**
 608 **algorithm**

609 Spatial distribution of each cluster by STARGATE algorithm at **(a)** single-cell level and
 610 **(b)** grid level. **(c)** Dotplot showing markers of cell types and expression patterns of
 611 genes associated with tumour subtypes. Clusters 1, 3, and 9 correspond to the tumour
 612 spatial domain.
 613

a



b



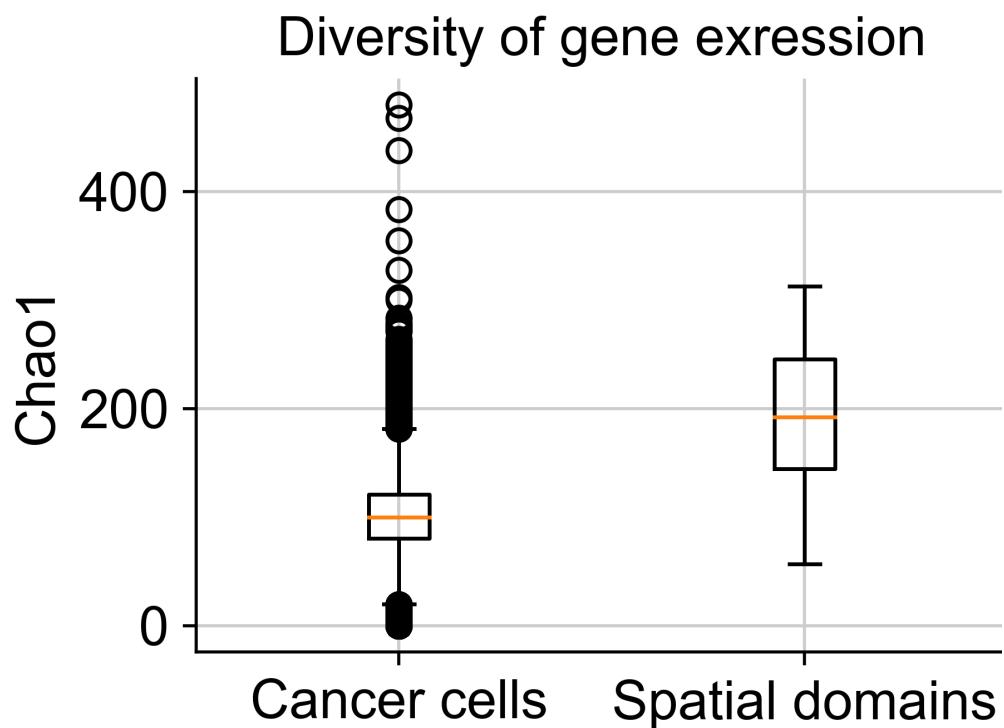
615 **Supplementary Fig. 2. Measurement of distance from the surface of spatial**

616 **domains**

617 **(a)** Heatmap indicating distance from surfaces of spatial domains. **(b)** The red contour

618 lines indicate distance from the surface of spatial domains at the interval of 30 μm .

619



620

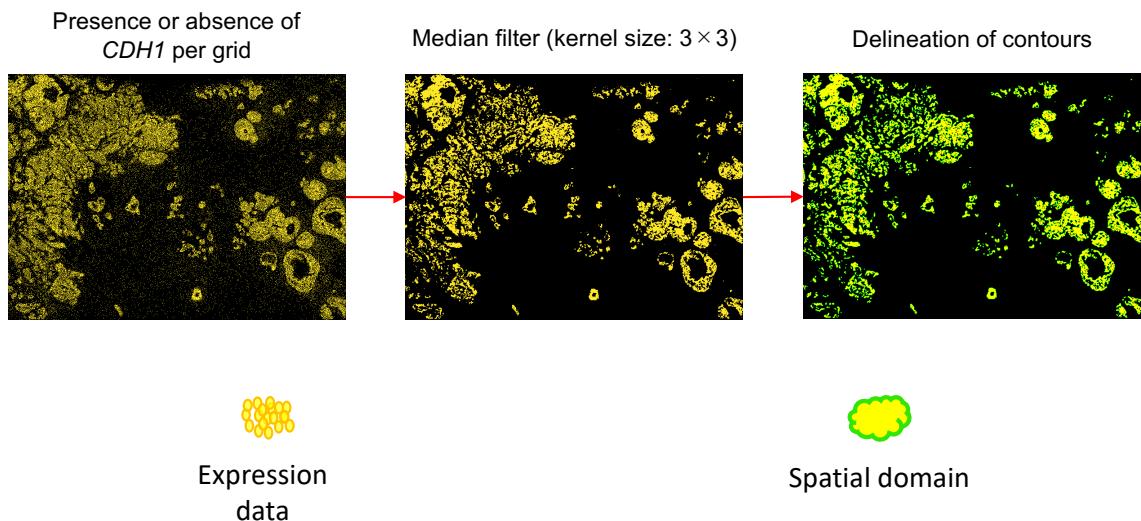
621 **Supplementary Fig. 3. Comparison of alpha-diversity index based on gene**

622 **expression**

623 Box plot of alpha-diversity index between cancer cells and spatial domains.

624

625

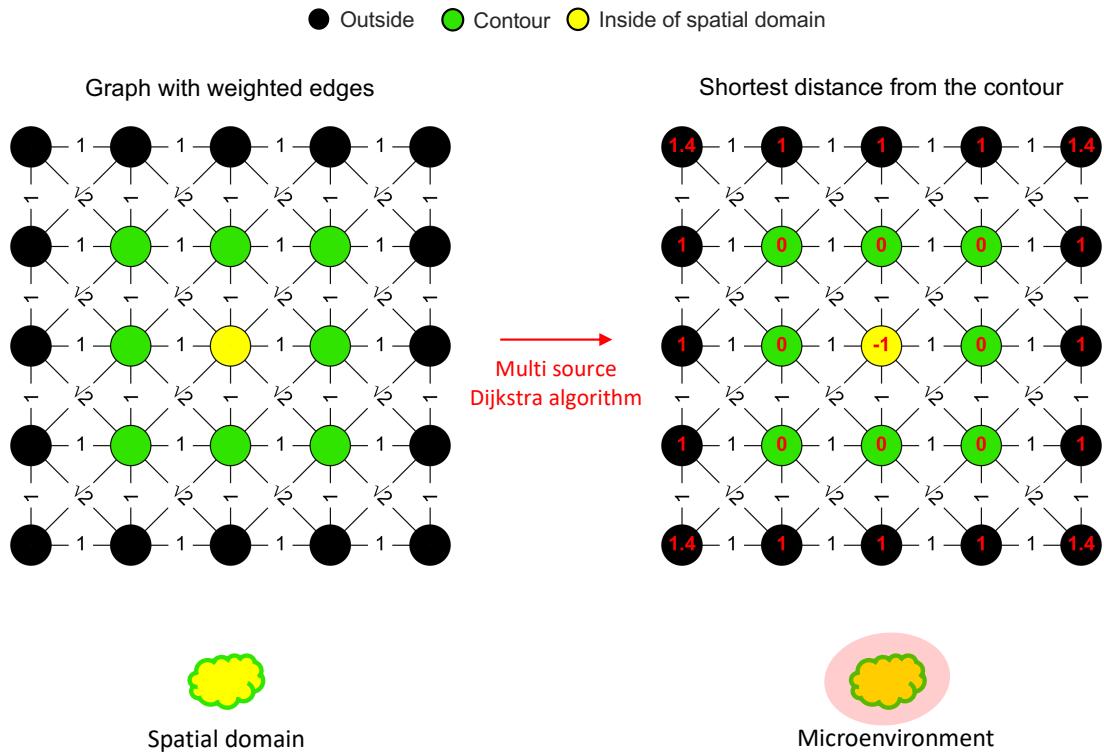


626

627 **Supplementary Material 1 Generation of spatial domain by image processing of**

628 **gene expression data**

629



630

631 Supplementary Material 2 Measurement of shortest distance from contour of

632 spatial domains

633