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Abstract

Single-cell spatial omics analysis requires consideration of biological functions and

mechanisms in a microenvironment. However, microenvironment analysis using

bioinformatic methods is limited by the need to detect histological morphology. In this

study, we developed SpatialKNife (SKNY), an image-processing-based toolkit that

detects spatial domains that potentially reflect histology and extends these domains to

the microenvironment. The SKNY algorithm identified tumour spatial domains from

spatial transcriptomic data of breast cancer, followed by clustering of these domains,

trajectory estimation, and spatial extension to the tumour microenvironment (TME).

The results of the trajectory estimation were consistent with the known mechanisms of

cancer progression. We observed endothelial cell and macrophage infiltration into the

TME at mid-stage progression. Our results suggest that analysis using the spatial

domain as a unit reflects pathological mechanisms in the TME. This approach may be

applicable to the biological estimation of diverse microenvironments.
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Introduction
Single-cell spatial omics platforms, such as Xenium, CosMx!, and PhenoCycler?, offer
opportunities for the investigation of hundreds or thousands of genes in various organs
and tissue types. The resolution of these methods is at the single-cell level, providing
deep insight into the localisation of the expression of multiple genes in a particular
microenvironment, which includes not only cancer cells but also immune cells and non-
immune stromal cells. A key consideration in microenvironment analysis is the
integration of gene expression and histological features to obtain a comprehensive
understanding of biological functions and mechanisms. Classical methods that examine
a microscope capture histological features through staining or fluorescence-based
technologies, leading to the discovery of pathological mechanisms in the
microenvironment®. However, in the current omics era, with the large number of
specimens and gene panels, manual physical approaches are no longer sufficient.

To address the high throughput of omics data, several third-party tools such as
Seurat and Scanpy have been developed to efficiently analyse expression data from
thousands of gene panels and samples* > 6 7-8.9 19 Methods inherited from single-cell
RNA-seq have been implemented, including cell clustering!!> 12 13:14 trajectory

15,16,17,18

analysis , and ligand-receptor analysis'® 2% 2!, These analytical methods use
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gene expression but do not consider molecular or cellular location. Hence, the
integration of gene expression and location information is necessary for optimising
spatial omics analysis of the microenvironment.

In response to this demand, several tools dedicated to spatial omics have been
implemented, such as clustering analyses that integrate positional information with gene
expression?? and ligand-receptor enrichment analysis at each spot in a space partitioned
on a grid®. Although these methods are attractive for utilising spatial information,
microenvironmental analysis is limited by the lack of direct histological information.
Recently, the STARGATE algorithm?* was developed to detect spatial domains (i.e.
regions with similar spatial expression patterns), and Sopa?> was constructed to extend
‘spatial domain’ analysis to single-cell spatial omics data. These methods can detect
spatial domains that reflect and functionally resemble tumour, stromal, and vascular
histologies.

Here, we extended the concept of the spatial domain to the microenvironment,
which encompasses inside, peri-, and outside sections of the spatial domain, with the
aim of estimating the functions and mechanisms of the microenvironment (Fig. 1a). We
constructed an image processing-based toolkit, SpatialKNifeY (SKNY), to analyse the

spatial domains from spatial omics data (Output 1-3) and extend it to the
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microenvironment (Output 4, 5) (Fig. 1b). Single-cell spatial transcriptomics data from
Xenium?® was used to detect spatial domains of tumour for analysing the tumour
microenvironment (TME) (Output 1: Detection) (Fig. 1¢). Clustering of these spatial
domains resulted in the formation of clusters consistent with the malignancy and
subtypes (Output 2: Clustering), and the trajectory among spatial domains was
estimated to represent the tumour progression process (Output 3: Trajectory estimation).
The analysis extended from the spatial domain into TME and assessed the infiltration of
endothelial cells into the tumour (Output 4: Spatial stratification). Furthermore, by
integrating the trajectory and spatial stratification analysis, the dynamics in the tumour
microenvironment were estimated, such as extracellular matrix degradation,
angiogenesis, and macrophage infiltration (Output 5: Spatiotemporal trajectory). These
results suggest that the SKNY can provide microenvironment analysis and may provide
essential insights into their pathological functions. The SKNY algorithm is available

under an open-source licence (https://github.com/shusakai/skny).

Results

SKNY detects tumour spatial domains from Xenium data on breast cancer.
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105  To detect the spatial domain with the SKNY, we used Xenium data for breast cancer
106  from a previous report?s. A haematoxylin and eosin (HE)-stained image of the specimen
107  from a previous report is shown (Fig. 2a). This specimen on a single slide contained
108  various tumour tissues, including ductal carcinoma in situ (DCIS) and invasive ductal
109  carcinoma (IDC). Using Xenium data, the SKNY algorithm was applied to detect

110 tumour spatial domains (yellow) and extract their boundaries (green) based on the

111 expression levels of the epithelial cell marker CDH1 (Fig. 2b). Independently, the

112 STARGATE algorithm?* was used to identify tumour spatial domains (Supplementary
113  Fig. la, b, and c¢), resulting in high concordance with the results of SKNY (Jaccard

114 similarity coefficient=0.85). The results suggest that the image-processing-based spatial
115 domain extraction of the SKNY method is consistent with previous methods. The

116  inward/outward areas from the extracted spatial domain boundaries were measured

117 (Supplementary Fig. 2a), and the contour line was delineated at 30 um intervals to

118  spatially stratify the TME (Fig. 2¢ and Supplementary Fig. 2b). High-power field

119  images, including single (Fig. 2c¢, left panel), triple (Fig. 2c, middle panel), and multiple
120  spatial domains (Fig. 2c, right panel), showed visual concordance between the spatial

121 domains and HE staining images for tumour detection.
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To confirm that these spatial domains are correctly partitioned between the

tumour and stroma, the expression levels of several marker genes were examined in the

stratified (—90, —60] to (+120, +150] sections in the total field. The results showed that

cancer cell marker genes, such as CDHI, EPCAM, FOXAI and GATA3 were enriched

within the spatial domain (sections (-120, -90], (—90, —60], (—60, —30] and (—30, 0])

(Fig. 2d). The myoepithelial cell marker genes such as KRTS5, KRT14, MYLK and

ACTA2 were enriched around the spatial domain boundary (the section of (0, +30]), and

the macrophage, lymphocyte, endothelial cell, and stromal cell markers, such as CD68,

TRAC, PECAMI and MMP?2, respectively, were enriched on the outside (the sections of

(+30, +60], (+60, +90], (+90, +120], and (+120, +150]). The spatial localisation of gene

expression showed that EPCAM was overrepresented within the spatial domain, ACTA2

at the boundary, and PECAM1, TRAC, and MMP outside the domain (Fig. 2e). These

results suggest that the spatial domains stratified using the SKNY algorithm can be

divided into tumours, peritumours, and stroma.

SKNY clusters the spatial domains with multiple mixed cell types into subclusters using

the UMAP algorithm.
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139  Next, to assess the diversity of cells within extracted spatial domains, we compared the
140  o-diversity index (Chaol) based on the gene expression between cancer cells and spatial
141 domains. The results indicated that the type of gene expression in the spatial domain
142 was significantly more diverse than that in the cancer cells (P<0.001) (Supplementary
143  Fig 3), suggesting that the spatial domains contain a variety of cells, not only cancer
144 cells. Moreover, diversity variance was greater in spatial domains (standard deviation
145  [SD]=62.1) than in cancer cells (SD=34.2). Hence, we hypothesised that the

146  heterogeneity among spatial domains originated not only from cancer cells but also
147  from diverse cells in the microenvironment. Here, we performed clustering of spatial
148  domains to evaluate the heterogeneity among intra-spatial domain microenvironments.
149  To obtain adequate gene expression data, 426 spatial domains larger than 1000 pm?
150  were selected. The gene expression data (313 genes) were dimensionally reduced by
151 principal component analysis (PCA), resulting in nine clusters (0-8) based on their

152 similarity in PCA space. Each spatial domain was placed in the two-dimensional space
153  using UMAP (Fig. 3a) and the original space (Fig. 3b). To annotate these clusters with
154  histology, we showed HE staining images based on the previous report (Fig. 3c).

155  Combining this histology on HE staining with the clusters shown in Fig. 3b, we found

156  that clusters 2, 3, 5, and 8 corresponded to non-invasive ductal carcinoma in situ
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(DCIS), whereas clusters 0, 1, 4, 6, and 7 corresponded to invasive ductal carcinoma in

situ (IDC).

To provide detailed annotation of each spatial domain cluster, we examined the

expression of several marker genes. In clusters 0, 1, 4, 6, and 7 (IDC clusters), MKI167

and ERBB?2 were highly expressed. Conversely, in clusters 2, 3, 5, and 8 (DCIS

clusters), the myoepithelial cell markers ACTA2, MYLK, and KRT14 were highly

expressed. These results suggest that gene expression in each spatial domain was

consistent with the histological annotation (Fig. 3d). Interestingly, cluster 1 showed

high expression of endothelial cell markers, including PECAM1, VWF, and CD93, as

well as chemokines and chemokine receptor genes associated with cell migration,

CXCL12 and CXCR4. Furthermore, the expression of MK167, ABCC11, and FOXA1

was moderate in cluster 1 compared to that in other IDC clusters (Fig. 3d). Given the

moderate expression of these cancer-associated genes and their midpoint in the UMAP

space (Fig. 3a), Cluster 1 may represent a spatial domain at an intermediate stage in the

transition from DCIS to IDC.

SKNY estimates spatial domain trajectory, which reflects tumour progression.
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To estimate the spatial domain trajectory from DCIS to IDC, we used the partition-
based graph abstraction (PAGA) algorithm!® to construct an adjacency graph
representing the topology of expression patterns for each cluster (Fig. 4a). The
adjacency graph is divided into clusters 2, 3, 5, and 8 (DCIS) and clusters 0, 4, 6, and 7
(IDC), where cluster 1 connects the DCIS and IDC clusters. Additionally, cluster 3,
exhibiting the lowest tumour marker gene expression, as shown in Fig. 3d, was located
at the lower end. This structure is consistent with the hypothesis that the spatial domain
of DCIS clusters transitions to the IDC cluster via cluster 1. The pseudotime with
cluster 3 as the root was determined and placed in the two-dimensional space of the
PAGA algorithm and the original space (Fig. 4b left panel and Fig. 4c). We evaluated
the correlation between the pseudotime and MKI67 (r=0.52, P<0.001, Pearson
coefficient)/ACTA2 (r=—0.47, P<0.001). The pseudotime illustrated tumour progression
(Fig. 4b middle and right panels).

To identify characteristic gene expression at points on this pseudotime axis, we
hypothesised three tumour progression paths (cluster 3—8—1—7—4: IDC path #I,
3—5—1—-7—4: IDC path #2, and cluster 3—2: DCIS path) and evaluated trends in
gene expression along these paths. In IDC paths #1 and #2, the expression of

myoepithelial cell markers (ACTG2 and MYLK) tended to decrease in the early stages of
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192 progression, whereas that of malignant markers (ERBB?2) tended to increase in the later

193  stages (Fig. 4d). In contrast, these myoepithelial cell and malignant marker fluctuations

194  appeared to be moderate in the DCIS path. Moreover, in IDC paths #1 and #2, marker

195  genes for endothelial cells (VWF and PECAM1), lymphocytes (CD4), macrophages

196  (CD68), chemokines (CXCLI2 and CCLY5), and chemokine receptors (CXCR4) were

197  highly expressed at the intermediate stages of cancer progression. Similarly, in the

198  DCIS path, CD4, CD68, and CCL5 showed increased expression with progression.

199  These findings suggest that endothelial cells and chemokine signalling are involved in

200 the transition from DCIS to IDC. We also examined the spatial distribution of gene

201  expression within the region of interest (ROI) corresponding to the transition phase

202  from DCIS to IDC. The results showed a pattern in which PECAM1, VWF, CXCR4, and

203  CXCLI12 appeared to infiltrate into regions of the tumour delineated by HE staining and

204  EPCAM (Fig 4e). This also suggests that during the transition from DCIS to IDC,

205  endothelial cells may infiltrate tumours and activate chemokine signals.

206

207  SKNY quantifies the infiltrating of endothelial cells to spatial domains in the

208 microenvironment.
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Next, we extended the spatial domains with their expression into their inner, peri-, and

outer sections, namely, microenvironments, to quantitatively compare endothelial cell

infiltration into tumours. We stratified the distance from the boundary of the spatial

domain into 30 um sections and extracted (—30, 0] (inner), (0, +30] (peri-), and (+30,

+60] (outer) sections of each cluster (Fig 5a). Although no significant differences in

expression levels were observed in the (+30, +60] section, significant differences among

clusters were found in the (=30, 0] section for endothelial cell markers PECAM1 and

VWF (P=0.0053 and <0.001, Kruskal-Wallis test, respectively), with relatively high

expression in cluster 1 (Fig 5b). To confirm the spatial expression patterns, ROIs

selected from clusters 3, 8, 1, and 0 were extracted, and the distribution of cancer cell

(EPCAM and CDH1) and endothelial cell (VWF, PECAM, CD93) markers was

examined using Xenium Explorer. In clusters 3 and 8 (DCIS cluster), endothelial cell

markers were localised outside the spatial domain, whereas in cluster 1 (DCIS-to-IDC

cluster), these markers were localised in the tumour spatial domain (Fig. 5¢). Moreover,

cluster 0 (IDC cluster) appeared to remain in the gaps where the cancer cells had

migrated (Fig. 5Sc, right panel). These results demonstrate that the analysis, expanded

from the spatial domain to the microenvironment, could reflect the infiltration of

endothelial cells into the tumour.
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2217

228  SKNY performs spatiotemporal trajectory analysis and estimates the mechanism of

229  tumour progression.

230  Next, we analysed the spatiotemporal dynamics of gene expression by integrating the

231  spatial axis of the microenvironment with the temporal axis estimated from the

232  trajectory of tumour progression. We examined the changes over the pseudotime (IDC

233  path #1) in the expression of endothelial cells (PECAM1), macrophages (CD68), matrix

234  metalloproteinases (MMP?2), chemokine receptors (CXCR4), and chemokines (CXCL12)

235 in each TME section at (—30, 0] (inner), (0, +30) (peri-), and (+30, +60] (outer),

236  respectively. In the inner section, PECAM1 (P=0.023), CD68 (P<0.001), and CXCR4

237  (P<0.001) showed an increase during the transition period from DCIS to IDC (clusters

238 8,1, and 7), whereas in the peri-section, PECAM1 (P=0.035) and CXCR4 (P<0.0024)

239  also showed an increase during that period (Kruskal-Wallis test, Bonferroni-corrected P

240  values) (Fig. 6a). In contrast, in the peri- and outer sections, MMP2 (P<0.001 and

241 P=0.020, respectively) showed an increase in these peaks in early DCIS (cluster 3) and

242  late IDC (cluster 4).

243 Finally, we summarised the temporal sequences of the expression of these

244  genes. In the early stages of cancer progression, the expression of MMP2 was


https://doi.org/10.1101/2024.06.18.599475
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.18.599475; this version posted June 22, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

245  upregulated in the peri-tumour and outer regions (Fig. 6b). In the tumour progression

246  from non-invasive to invasive cancer, infiltration of endothelial cells (PECAM1) and

247  macrophages (CD68) was noted into the tumour interior, together with increased

248  chemokine signalling (CXCR4). After invasion, the expression of MMP2 was

249  upregulated in the peritumour and outer regions. Therefore, we concluded that the

250  SKNY showed spatiotemporal sequences of interactions between tumours and other

251  components within the microenvironment.

252

253
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254  Discussion

255  In this study, we applied the SKNY algorithm to Xenium data extracted from breast

256  cancer to estimate the cellular and molecular functions and mechanisms in the TME.
257  The TME includes diverse cells, such as cancer-associated fibroblasts, stromal cells, and
258  immune cells involved in cancer progression?’, and the concept of the TME has also

259  been incorporated into clinical research on breast cancer?. For example,

260 immunohistochemical pathological analysis has shown that intratumoural macrophages

29.30 and that intertumoral microvessel

261  stained by CD68 correlate with malignancy
262  density assessed by CD31, which reflects angiogenesis, is an important poor prognostic
263  factor’! . In breast cancer, high expression of Ki67 and HER? is associated with

264  malignancy??, whereas destruction of myoepithelial cells is associated with tumour

265 invasion®*. Consistent with these previous reports on the pathology, the results of

266  spatial stratification (Output 4) and spatiotemporal trajectory (Output 5) analyses,

267  which showed an overrepresentation of CD68 and PECAM1 (CD31) within the spatial
268  domain of the invasive tumour (Fig. 5 and 6), demonstrated the infiltration of

269  macrophages and endothelial cells into malignant cancer. Moreover, MMP2 was

270  overexpressed in the early and late stages of tumour progression in the stromal area, and

271 CXCR4 and CXCL12 were enriched after mid-stage progression inside the tumour (Fig.

272  6). MMPs contribute to the sprouting of vascular endothelial cells by degrading the
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vascular basement membrane and extracellular matrix in the early stages of tumour
angiogenesis*, and CXCR4/CXCL12 signalling pathway mediates cell migration
signals and metastasis processes®. These results are consistent with the previous
findings, suggesting that our algorithm can accurately estimate compatible biological
mechanisms in the TME.

The trajectory estimation (Output 3) analysis was used to construct the tumour
progression trajectory of the spatial domains (Fig. 4). The interaction of various cells in
the TME is considered crucial in cancer progression?’; therefore, the progression
trajectory should be determined by integrating all cells in the TME rather than focusing
solely on cancer cells. Our results showed that during the transition from DCIS to IDC,
an over-representation of vascular endothelial cells expressing PECAM1 and VWF, as
well as an increase in the CXCL12 and CXCR4 chemokine-chemokine receptor pair was
noted. These results are consistent with the known mechanisms by which cancer cells
acquire invasive potential through endothelial cells®*” and the associated induction of cell
migration signals from chemokines®. Most importantly, gene expression from non-
cancer cells was the 'missing link' between DCIS and IDC in the trajectory, suggesting
the utility of this approach to integrate all cells within the spatial domain. Furthermore,

our data estimated the trajectory from the root to PGR-positive DCIS without
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progression to IDC. Reduced PGR expression has been suggested as a surrogate marker
for GATA3 mutations, one of the genetic factors involved in the progression of DCIS®
39, Paradoxically, these previous reports, combined with our results, suggest that the
transition to PGR-positive DCIS may slow cancer progression. The thin edge from
PGR-positive DCIS to other clusters in the PAGA graph also supports this hypothesis.

The detection algorithm (Output 1) delineated different tumour shapes based
on histological features (Fig. 2 and 3). The enrichment of cancer cells and stromal
markers within and outside the spatial domains indicates accurate separation of the
tumour and stroma. Myoepithelial cells surround the ductal epithelium for structural
support*’, and our results also showed that myoepithelial cell markers, including
ACTA2, MYLK, and KRT14, were enriched in the perispatial domain of the tumour,
suggesting high-quality detection of tumour contours using our algorithm. This high-
quality contour guaranteed subsequent SKNY analyses, including clustering (Output 2),
trajectory estimation (Output 3), and extension into the microenvironment (Outputs 4
and 5).

This study had some limitations. First, we used only one sample for this
analysis, and whether the SKNY would work with other samples remains to be

determined. Although our preliminary analysis of lung, kidney, colon, and skin samples
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309  confirmed their quality (confidential), it is necessary to verify the performance of the

310  SKNY using a large number of samples. Second, in this analysis, the spatial omics data

311 was converted to grids of 10 x 10 um, and this conversion may make it difficult to

312 detect thin tissues, such as monolayered epithelium. However, setting the grid data to a

313  smaller size should result in insufficient sensitivity of the marker genes on each grid.

314  Therefore, it is necessary to consider the balance between grid size and marker gene

315 sensitivity for each specimen and gene panel.

316 In conclusion, SKNY can be used in microenvironmental analyses to provide

317  valuable insights into its pathological functions. It should be applicable not only to the

318  TME but also to a wide range of microenvironments, such as tertiary lymphoid

319  structures and myocardial and neuronal microenvironments.

320
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Methods

Data acquisition and pre-processing

Breast cancer data from Xenium were downloaded from a public repository
(https://www.10xgenomics.com/jp/products/xenium-in-situ/preview-dataset-human-
breast). The 'ReadXenium' function from stlearn (v0.4.12) was utilised to read the HE
images (https://www.dropbox.com/s/th6tqqgbv2703fk/CS1384 post-

CSO0 _H%26E_S1A RGB-shlee-crop.png?dl=1) and files containing gene expression
and cell coordinates

(Xenium_FFPE Human Breast Cancer Repl cell feature matrix.h5 and

Xenium_FFPE Human Breast Cancer Repl cells.csv.gz). The 'tl.cci.grid’ function in

gene

stlearn was used to simplify the coordinate data into grid data (Grid ., mn row g€NE =

{ABCC11,ACTA2,ACTG2, ...,ZNF562}, column = {1,2,3, ...,752}, row =

{1,2,3,...,547}) at the interval of 10 pm.

Detection of spatial domain
The pre-spatial domain (S,,.) was determined based on the expression of CDHI in each
grid. The SKNY program can detect prespatial domains based on user selection. For

example, a tumour is detected but normal epithelium is not detected upon logical
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subtraction between a positive marker (e.g. CDHI) and a negative marker (e.g. SFTPB)
expression, which is described as follows:

Spre = (Bpr (G ™) > 0) = (Bxpr(GLagms ™) > 0
where Expr is defined as a function of extracting gene expression counts from the grid.
To remove noise from the pre-spatial domain, the "medianBlur" function (kernel size:
3%3) from the Python library opencv (v4.8.1) was applied, resulting in the formation of
a spatial domain (S) (Supplementary Material 1).

The STARGATE algorithm?* was also used to extract spatial domain clusters
for comparison with the existing methods. To annotate the extracted spatial domain
clusters, the expression levels of epithelial markers (CDH1, EPCAM) were compared,
and cluster 1, 3, and 9, which showed overexpression, was extracted as the spatial
domain of the tumour. To assess the concordance between SKNY and STARGATE in

the spatial domains, the Jaccard coefficient, which indicates the percentage of

agreement between each lattice, was calculated.

Measurement of distance from the spatial domain surfaces
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The edge grids were identified using the’ findContours’ function from opencv in the
spatial domain. All adjacent grids were connected by edges and weighted according to
the Euclidean distance: 1 for vertical and horizontal edges and 2 for diagonal edges
(Supplementary Material 2). The shortest path from the edge grids to the other grids was
measured using the multi-source Dijkstra method*! to determine the distance from the

spatial domain edges.

Segmentation from a spatial domain to individual spatial domains

The function 'connectedComponents WithStats' from opencv was used to divide the
spatial domain (S) into individual spatial domains (S;, d = {1,2,3, ...,426}) with an
area larger than 1000 pm?. The gene expression within each spatial domain was

averaged.

Spatial stratification by spatial domains

Using the measured distances, a stratification was performed with a half-open interval
of 30 um to obtain the edge grid of the spatial domain (Py<y<x+30, X = {0,30}). The
rectangle that enclosed each S; was then extracted, and the contour was enlarged by x

um to produce a rectangle including each spatial domain (Rg<,<x+30, ¥ = {0,30}, d =
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{1,2,3,...,426}). The peri-spatial domain exclusive to each spatial domain

PSg x<u<x+30 Wwas calculated as follows:

n-1 n
PSd,x<usx+3O = Px<,usx+30 A~ U U (Ri,x<usx+30 A Rj,x<usx+30)
i=1 j=i+1

where A represents the product sum, and U represents the union set. The gene
expression of each PSy , <, <x+30 Was defined as the average gene expression of the

grids within it.

Diversity analysis in the spatial domain

To compare the alpha diversity of gene expression between the segmented spatial
domains and previously annotated cancer cells?®, the ‘diversity.alpha.chaol” in the
Python library scikit-bio was used to calculate Chaol*.

Clustering of the spatial domains

The 'pp.loglp' function from scanpy (v 1.9.8) was used to log-transform gene
expression in each spatial domain (S;). Then, the 'pp.pca’ function was used for

dimension reduction through principal component analysis. Fifty principal components
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396  were extracted in the order of highest eigenvector. The 'pp.neighbours' and 'tl.leiden’

397  functions from the scanpy were adapted to form spatial domain clusters for Leiden

398  clustering. The function 'tl.umap' was used to place leiden embeddings on the UMAP

399  two-dimensional space.

400

401  Trajectory estimation of the spatial domains

402  For trajectory inference by the PAGA algorithm (ref), the "tl.paga" function of spanpy

403  was used to construct the neighbourhood graph of the spatial domain cluster, followed

404 by the estimation of the pseudotime by adapting the "tl.dpt" function.

405

406  Statistical analysis

407  Pearson’s product-moment correlation coefficient was used to analyse the correlation

408  between the pseudotime and gene expression. Welch's t-test was used to compare alpha

409  diversity between the two groups. The Kruskal-Wallis test was used to compare gene

410  expression between multiple groups.

411

412  Visualization
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For the visualisation of the Xenium data in space, Xenium Explororor (v1.3) or the

"pl.gene plot" function in stlearn was used.

Code availability

The code used in this study has been deposited in the documentation of the SKNY

library (https://skny.readthedocs.io/en/latest/notebooks/single-TME _analysis.html).

References

1. He, S. et al. High-plex Multiomic Analysis in FFPE at Subcellular Level by Spatial
Molecular Imaging. bioRxiv, 2021.2011.2003.467020 (2022).

2. Goltsev, Y. et al. Deep Profiling of Mouse Splenic Architecture with CODEX
Multiplexed Imaging. Cel/174, 968-981.915 (2018).

3. Kim, S.-W., Roh, ]J. & Park, C.-S. Immunohistochemistry for pathologists: Protocols,
pitfalls, and tips. Journal of Pathology and Translational Medicine 50, 411-418 (2016).

4. Hao, Y. et al. Dictionary learning for integrative, multimodal and scalable single-cell
analysis. Nature Biotechnology 42, 293-304 (2024).

5. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cel/184, 3573-
3587.3529 (2021).

6. Stuart, T. et al. Comprehensive Integration of Single-Cell Data. Ce//177, 1888-
1902.e1821 (2019).

7. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell

transcriptomic data across different conditions, technologies, and species. Nature
Biotechnology 36, 411-420 (2018).

8. Satija, R., Farrell, J.A., Gennert, D., Schier, A.F. & Regev, A. Spatial reconstruction of
single-cell gene expression data. Nature Biotechnology 33, 495-502 (2015).

9. Wolf, F.A., Angerer, P. & Theis, F.J. SCANPY: large-scale single-cell gene expression
data analysis. Genome Biology 19, 15 (2018).

10. Virshup, 1. et al. The scverse project provides a computational ecosystem for single-cell


https://doi.org/10.1101/2024.06.18.599475
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.18.599475; this version posted June 22, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

442 omics data analysis. Nature Biotechnology 41, 604-606 (2023).

443  11. Cheng, C. et al. Latent cellular analysis robustly reveals subtle diversity in large-scale
444 single-cell RNA-seq data. Nucleic Acids Research47, e143-e143 (2019).

445  12. Lin, P., Troup, M. & Ho, ].W.K. CIDR: Ultrafast and accurate clustering through

446 imputation for single-cell RNA-seq data. Genome Biology 18, 59 (2017).

447  13. Wan, S., Kim, J. & Won, K.J. SHARP: hyperfast and accurate processing of single-cell
448 RNA-seq data via ensemble random projection. Genome Research 30, 205-213 (2020).
449 14 Yu, L., Cao, Y., Yang, ].Y.H. & Yang, P. Benchmarking clustering algorithms on

450 estimating the number of cell types from single-cell RNA-sequencing data. Genome
451 Biology 23, 49 (2022).

452  15. Wolf, F.A. et al. PAGA: graph abstraction reconciles clustering with trajectory inference
453 through a topology preserving map of single cells. Genome Biology 20, 59 (2019).

454  1le. Saelens, W., Cannoodt, R., Todorov, H. & Saeys, Y. A comparison of single-cell trajectory
455 inference methods. Nature Biotechnology 37, 547-554 (2019).

456  17. Street, K. et al. Slingshot: cell lineage and pseudotime inference for single-cell

457 transcriptomics. BMC Genomics 19, 477 (2018).

458  18. Cannoodst, R. et al. SCORPIUS improves trajectory inference and identifies novel

459 modules in dendritic cell development. bioRxiv, 079509 (2016).

460 19. Jin, S. et al. Inference and analysis of cell-cell communication using CellChat. Nature
461 Communications 12, 1088 (2021).

462 20. Armingol, E., Officer, A., Harismendy, O. & Lewis, N.E. Deciphering cell—cell

463 interactions and communication from gene expression. Nature Reviews Genetics 22, 71-
464 88 (2021).

465 21. Nagai, ].S., Leimkiihler, N.B., Schaub, M.T., Schneider, R.K. & Costa, I.G. CrossTalkeR:
466 analysis and visualization of ligand-receptorne tworks. Bioinformatics 37, 4263-4265
467 (2021).

468 22. Palla, G. et al. Squidpy: a scalable framework for spatial omics analysis. Nature Methods
469 19, 171-178 (2022).

470  23. Pham, D. et al. Robust mapping of spatiotemporal trajectories and cell—cell interactions
471 in healthy and diseased tissues. Nature Communications 14, 7739 (2023).

472 24, Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved

473 transcriptomics with an adaptive graph attention auto-encoder. Nature Communications
474 13,1739 (2022).

475  25. Blampey, Q. et al. Sopa: a technology-invariant pipeline for analyses of image-based
476 spatial-omics. bioRxiv, 2023.2012.2022.571863 (2023).

477  26. Janesick, A. et al. High resolution mapping of the tumor microenvironment using


https://doi.org/10.1101/2024.06.18.599475
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.18.599475; this version posted June 22, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

made available under aCC-BY 4.0 International license.

integrated single-cell, spatial and in situ analysis. Nature Communications 14, 8353
(2023).

de Visser, K.E. & Joyce, J.A. The evolving tumor microenvironment: From cancer
initiation to metastatic outgrowth. Cancer Cell41, 374-403 (2023).

Li, J.J., Tsang, ]J.Y. & Tse, G.M. Tumor Microenvironment in Breast Cancer-Updates on
Therapeutic Implications and Pathologic Assessment. Cancers (Basel) 13 (2021).
Larionova, 1. et al. Interaction of tumor-associated macrophages and cancer
chemotherapy. Oncoimmunology 8, 1596004 (2019).

Mahmoud, S.M.A. et al. Tumour-infiltrating macrophages and clinical outcome in breast
cancer. Journal of Clinical Pathology 65, 159-163 (2012).

Choi, W.W.L. et al. Angiogenic and lymphangiogenic microvessel density in breast
carcinoma: correlation with clinicopathologic parameters and VEGF-family gene
expression. Modern Pathology 18, 143-152 (2005).

Arapandoni-Dadioti, P., Giatromanolaki, A., Trihia, H., Harris, A.L. & Koukourakis, M.I.
Angiogenesis in ductal breast carcinoma. Comparison of microvessel density between
primary tumour and lymph node metastasis. Cancer Letters 137, 145-150 (1999).
Synnestvedt, M. et al. Combined analysis of vascular invasion, grade, HER2 and Ki67
expression identifies early breast cancer patients with questionable benefit of systemic
adjuvant therapy. Acta Oncologica52, 91-101 (2013).

Pandey, P.R., Saidou, J. & Watabe, K. Role of myoepithelial cells in breast tumor
progression. Frontiers in Bioscience (Landmark Ed) 15, 226-236 (2010).

Potente, M., Gerhardt, H. & Carmeliet, P. Basic and Therapeutic Aspects of
Angiogenesis. Cell146, 873-887 (2011).

Domanska, U.M. et al. A review on CXCR4/CXCL12 axis in oncology: No place to hide.
European Journal of Cancer49, 219-230 (2013).

De Palma, M., Biziato, D. & Petrova, T.V. Microenvironmental regulation of tumour
angiogenesis. Nature Reviews Cancer 17, 457-474 (2017).

Takaku, M. et al. GATA3 zinc finger 2 mutations reprogram the breast cancer
transcriptional network. Nature Communications 9, 1059 (2018).

Nagasawa, S. et al. Genomic profiling reveals heterogeneous populations of ductal
carcinoma in situ of the breast. Communications Biology 4, 438 (2021).

Balachander, N., Masthan, K.M., Babu, N.A. & Anbazhagan, V. Myoepithelial cells in
pathology. Journal of Pharmacy and Bioallied Sciences 7, S190-193 (2015).

Dijkstra, E.W. A note on two problems in connexion with graphs. Numerische
Mathematik 1, 269-271 (1959).

Chao, A. Nonparametric Estimation of the Number of Classes in a Population.


https://doi.org/10.1101/2024.06.18.599475
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.18.599475; this version posted June 22, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

514 Scandinavian Journal of Statistics 11, 265-270 (1984).
515

516


https://doi.org/10.1101/2024.06.18.599475
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.18.599475; this version posted June 22, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

517  Acknowledgements

518  JST SPRING JPMJSP2108.

519

520  Author Contributions

521  Conception: SA.S., R.Y. and S-L.K.

522  Construction of algorithm: SA.S.

523  Data analysis: SA.S.

524  Validation analysis: R.N.

525  Implementation of Python library: SA.S.

526  Pathological consultation: S.N. and S-1.K.

527  Algorithm consultation: R.Y., Y.S., and A.S.

528  Discussion per week: SA. S.,R.Y., S-LK., K.T., R.N., and S.C.

529  Writing original manuscript: SA.S.

530  Manuscript revision: R.Y., S-I. K., K.T., S.N., Y.S., A.S., R.N,, and S.C.

531  Research supervision (corresponding): S-I.K. and R.Y.

232

233  Competing Interests

534  The authors report no competing interests.


https://doi.org/10.1101/2024.06.18.599475
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.18.599475; this version posted June 22, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

239


https://doi.org/10.1101/2024.06.18.599475
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.18.599475; this version posted June 22, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY 4.0 International license.

936  Figures
a . . . .
Spatial omics data Spatial domain Microenvironment
inner section
R ., O ) peri-section
outer section
b .
Input Python library SKNY Output
Spatial omics data . . Spatial domain
Xenium SpatlalKlee? 1. Detection
CosMx oy + 2. Clustering
GeoMx 2 ! o‘ 3. Trajectory estimation
MERFISH ST “N s ? ' _
PhenoCycler LEARN §s§ Mlcrognwronm.ent.
etc... 4. Spatial stratification
AnnData object programing 5. Spatiotemporal trajectory
(o]
Spatial gene expressions
1. Detection
(Figure 2)
. Domain 2
Domain 1
@ S O
. . ' >
¢ : Domain 3
Extraction of spatial domains using
spatial gene expression data
2. Clustering 3. Trajectory estimation 4. Spatial stratification
(Figure 3) (Figure 4) (Figure 2 and 5)
Tumour
@ bCiSto IDC I progression /-( \/\
DCis Py [ 4 @ ® IDC ~ N
+30
o % @ o® (@) "=
S0 ~—
5. Spatiotemporal trajectory
(Figure 6)
537
538

Fig. 1. Landscape of SpatialKNifeY analysis.
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539  (a) The concept of the extension from spatial omics data and spatial domain to

9540  microenvironment. (b) The implementation of SpatialKNifeY (SKNY). A Python

541  library of SKNY depends on stlearn®* and scanpy”’ functions (see “Methods”) and

542  AnnData object programing!®. (¢c) The outputs from SKNY analysis. Detection (Output
943 1, see “Fig. 2”) delineates spatial domains based on a user’s positive and negative

944  marker gene expressions. Clustering (Output 2, see “Fig. 3”’) makes clusters of spatial
945  domain units based on the mean expression of each gene. Trajectory estimation (Output
946 3, see “Fig. 4”) infers to the trajectory among spatial domains and pseudotime. Spatial
947  stratification (Output 4, see “Fig. 5”) measures the distance from tumour boundary to
548  each coordinate on the space and makes contour lines based on the distance.

949  Spatiotemporal trajectory (Output 5, see “Fig. 6”) integrates pseudotime by trajectory
950  estimation and contour lines by spatial stratification to estimate function and

551 mechanism within the microenvironment.
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254  Fig. 2. Detection of spatial domain with Xenium data accurately discriminates

959  between the tumour and stromal region.

956  (a) H&E staining image of breast cancer. (b) Detected spatial domains. The yellow and
957  green colors indicate spatial domains and the boundary, respectively. (¢) H&E staining
558  images and spatial domain(s) from three ROIs. The red contour lines indicate distance

559  from the surface of spatial domains at the interval of 30 pm. (d) Dotplot showing
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marker genes of each cell type. The color bar indicates the scaled mean count, and the

size indicates the percentages of these gene expressions. (e) Spatial expression

distribution of cell marker genes in the ROI. The color bar indicates the scaled mean

count.
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Fig. 3. Clustering and annotation of spatial domain based on gene expressions.

(a) Two-dimensional plot using UMAP loadings of gene expression of spatial domains.
The colors indicate clusters. (b) Spatial distribution of each cluster. (¢) H&E image with
the histological annotations. (d) Dotplot showing markers of cell types and expression

patterns of genes associated with tumour subtypes.
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Fig. 4. Estimating spatial domain trajectory reveals temporal gene expression

gradient along with cancer progression.

(a) PAGA graph constructed by the expression data of the spatial domains. (b) PAGA-

initialized spatial domain embeddings with estimated pseudotimes, MK167, and ACTA2

expressions. Pearson’s correlation coefficients and the P values were used to evaluate

the linear relationship between pseudotimes and scaled expression of MKI67/ACTA?2.
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(¢) Spatial distribution of clusters and pseudotimes. (d) Heatmap showing gene

expression level along with pseudotimes on three progression paths. (e) Representative

images of HE staining and gene expressions on the ROI. The color bar indicates the

scaled mean count.
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Fig. 5. Spatial stratification of each spatial domain cluster elucidating endothelial
cell invasion into the tumour.

(a) Spatial distributions of stratified spatial domain clusters into (—30, 0], (0, +30], and
(+30, +60] sections. (b) Violin plots showing the endothelial cell marker gene
expressions (PECAM1, VWF, and CD93) for each cluster in the (—30, 0], (0, +30], and

(+30, +60] sections. The x-axes indicate cluster numbers, and the y-axes indicate scaled
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gene expression levels. The annotated values are the P values of the significance test.
(c) Representative images of DAPI with epithelial cell markers (CDHI and EPCAM)

and endothelial cell markers (CD93, PECAM1, and VWF) expressions for four ROIs.
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(a) Violin plots showing the marker expressions of PECAM1, CD68, MMP2, CXCR4,

and CXCL 12 on the estimated trajectory path (IDC path #1) in the (=30, 0], (0, +30],

and (+30, +60] sections. The color scale indicates the mean of pseudotimes in each

cluster. The annotated values represent the P values of the significance test. The red

dots in the figures indicate the mean of the gene expression level. (b) Summary of the

dynamics of the gene expressions. The red and blue colours indicate the

overrepresentation and underrepresentation of the gene expressions.
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606

607  Supplementary Fig. 1. Annotation of the spatial domain using the STARGATE
608 algorithm

609  Spatial distribution of each cluster by STARGATE algorithm at (a) single-cell level and
610  (b) grid level. (¢) Dotplot showing markers of cell types and expression patterns of

611  genes associated with tumour subtypes. Clusters 1, 3, and 9 correspond to the tumour

612  spatial domain.
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619

Supplementary Fig. 2. Measurement of distance from the surface of spatial

domains

(a) Heatmap indicating distance from surfaces of spatial domains. (b) The red contour

lines indicate distance from the surface of spatial domains at the interval of 30 um.
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621  Supplementary Fig. 3. Comparison of alpha-diversity index based on gene
622  expression
623  Box plot of alpha-diversity index between cancer cells and spatial domains.
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Supplementary Material 1 Generation of spatial domain by image processing of

gene expression data
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