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Abstract 35 

Single-cell spatial omics analysis requires consideration of biological functions and 36 

mechanisms in a microenvironment. However, microenvironment analysis using 37 

bioinformatic methods is limited by the need to detect histological morphology. In this 38 

study, we developed SpatialKNife (SKNY), an image-processing-based toolkit that 39 

detects spatial domains that potentially reflect histology and extends these domains to 40 

the microenvironment. The SKNY algorithm identified tumour spatial domains from 41 

spatial transcriptomic data of breast cancer, followed by clustering of these domains, 42 

trajectory estimation, and spatial extension to the tumour microenvironment (TME). 43 

The results of the trajectory estimation were consistent with the known mechanisms of 44 

cancer progression. We observed endothelial cell and macrophage infiltration into the 45 

TME at mid-stage progression. Our results suggest that analysis using the spatial 46 

domain as a unit reflects pathological mechanisms in the TME. This approach may be 47 

applicable to the biological estimation of diverse microenvironments.                                                                                                                                                                                               48 

 49 

 50 

  51 
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Introduction 52 

Single-cell spatial omics platforms, such as Xenium, CosMx1, and PhenoCycler2, offer 53 

opportunities for the investigation of hundreds or thousands of genes in various organs 54 

and tissue types. The resolution of these methods is at the single-cell level, providing 55 

deep insight into the localisation of the expression of multiple genes in a particular 56 

microenvironment, which includes not only cancer cells but also immune cells and non-57 

immune stromal cells. A key consideration in microenvironment analysis is the 58 

integration of gene expression and histological features to obtain a comprehensive 59 

understanding of biological functions and mechanisms. Classical methods that examine 60 

a microscope capture histological features through staining or fluorescence-based 61 

technologies, leading to the discovery of pathological mechanisms in the 62 

microenvironment3. However, in the current omics era, with the large number of 63 

specimens and gene panels, manual physical approaches are no longer sufficient.   64 

To address the high throughput of omics data, several third-party tools such as 65 

Seurat and Scanpy have been developed to efficiently analyse expression data from 66 

thousands of gene panels and samples4, 5, 6, 7, 8, 9, 10. Methods inherited from single-cell 67 

RNA-seq have been implemented, including cell clustering11, 12, 13, 14, trajectory 68 

analysis15, 16, 17, 18, and ligand-receptor analysis19, 20, 21. These analytical methods use 69 
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gene expression but do not consider molecular or cellular location. Hence, the 70 

integration of gene expression and location information is necessary for optimising 71 

spatial omics analysis of the microenvironment. 72 

 In response to this demand, several tools dedicated to spatial omics have been 73 

implemented, such as clustering analyses that integrate positional information with gene 74 

expression22 and ligand-receptor enrichment analysis at each spot in a space partitioned 75 

on a grid23. Although these methods are attractive for utilising spatial information, 76 

microenvironmental analysis is limited by the lack of direct histological information. 77 

Recently, the STARGATE algorithm24 was developed to detect spatial domains (i.e. 78 

regions with similar spatial expression patterns), and Sopa25 was constructed to extend 79 

‘spatial domain’ analysis to single-cell spatial omics data. These methods can detect 80 

spatial domains that reflect and functionally resemble tumour, stromal, and vascular 81 

histologies. 82 

 Here, we extended the concept of the spatial domain to the microenvironment, 83 

which encompasses inside, peri-, and outside sections of the spatial domain, with the 84 

aim of estimating the functions and mechanisms of the microenvironment (Fig. 1a). We 85 

constructed an image processing-based toolkit, SpatialKNifeY (SKNY), to analyse the 86 

spatial domains from spatial omics data (Output 1-3) and extend it to the 87 
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microenvironment (Output 4, 5) (Fig. 1b). Single-cell spatial transcriptomics data from 88 

Xenium26 was used to detect spatial domains of tumour for analysing the tumour 89 

microenvironment (TME) (Output 1: Detection) (Fig. 1c). Clustering of these spatial 90 

domains resulted in the formation of clusters consistent with the malignancy and 91 

subtypes (Output 2: Clustering), and the trajectory among spatial domains was 92 

estimated to represent the tumour progression process (Output 3: Trajectory estimation). 93 

The analysis extended from the spatial domain into TME and assessed the infiltration of 94 

endothelial cells into the tumour (Output 4: Spatial stratification). Furthermore, by 95 

integrating the trajectory and spatial stratification analysis, the dynamics in the tumour 96 

microenvironment were estimated, such as extracellular matrix degradation, 97 

angiogenesis, and macrophage infiltration (Output 5: Spatiotemporal trajectory). These 98 

results suggest that the SKNY can provide microenvironment analysis and may provide 99 

essential insights into their pathological functions. The SKNY algorithm is available 100 

under an open-source licence (https://github.com/shusakai/skny). 101 

 102 

Results 103 

SKNY detects tumour spatial domains from Xenium data on breast cancer. 104 
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To detect the spatial domain with the SKNY, we used Xenium data for breast cancer 105 

from a previous report26. A haematoxylin and eosin (HE)-stained image of the specimen 106 

from a previous report is shown (Fig. 2a). This specimen on a single slide contained 107 

various tumour tissues, including ductal carcinoma in situ (DCIS) and invasive ductal 108 

carcinoma (IDC). Using Xenium data, the SKNY algorithm was applied to detect 109 

tumour spatial domains (yellow) and extract their boundaries (green) based on the 110 

expression levels of the epithelial cell marker CDH1 (Fig. 2b). Independently, the 111 

STARGATE algorithm24 was used to identify tumour spatial domains (Supplementary 112 

Fig. 1a, b, and c), resulting in high concordance with the results of SKNY (Jaccard 113 

similarity coefficient=0.85). The results suggest that the image-processing-based spatial 114 

domain extraction of the SKNY method is consistent with previous methods. The 115 

inward/outward areas from the extracted spatial domain boundaries were measured 116 

(Supplementary Fig. 2a), and the contour line was delineated at 30 µm intervals to 117 

spatially stratify the TME (Fig. 2c and Supplementary Fig. 2b). High-power field 118 

images, including single (Fig. 2c, left panel), triple (Fig. 2c, middle panel), and multiple 119 

spatial domains (Fig. 2c, right panel), showed visual concordance between the spatial 120 

domains and HE staining images for tumour detection.  121 
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 To confirm that these spatial domains are correctly partitioned between the 122 

tumour and stroma, the expression levels of several marker genes were examined in the 123 

stratified (−90, −60] to (+120, +150] sections in the total field. The results showed that 124 

cancer cell marker genes, such as CDH1, EPCAM, FOXA1 and GATA3 were enriched 125 

within the spatial domain (sections (-120, -90], (−90, −60], (−60, −30] and (−30, 0]) 126 

(Fig. 2d). The myoepithelial cell marker genes such as KRT5, KRT14, MYLK and 127 

ACTA2 were enriched around the spatial domain boundary (the section of (0, +30]), and 128 

the macrophage, lymphocyte, endothelial cell, and stromal cell markers, such as CD68, 129 

TRAC, PECAM1 and MMP2, respectively, were enriched on the outside (the sections of 130 

(+30, +60], (+60, +90], (+90, +120], and (+120, +150]). The spatial localisation of gene 131 

expression showed that EPCAM was overrepresented within the spatial domain, ACTA2 132 

at the boundary, and PECAM1, TRAC, and MMP outside the domain (Fig. 2e). These 133 

results suggest that the spatial domains stratified using the SKNY algorithm can be 134 

divided into tumours, peritumours, and stroma. 135 

 136 

SKNY clusters the spatial domains with multiple mixed cell types into subclusters using 137 

the UMAP algorithm. 138 
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Next, to assess the diversity of cells within extracted spatial domains, we compared the 139 

α-diversity index (Chao1) based on the gene expression between cancer cells and spatial 140 

domains. The results indicated that the type of gene expression in the spatial domain 141 

was significantly more diverse than that in the cancer cells (P<0.001) (Supplementary 142 

Fig 3), suggesting that the spatial domains contain a variety of cells, not only cancer 143 

cells. Moreover, diversity variance was greater in spatial domains (standard deviation 144 

[SD]=62.1) than in cancer cells (SD=34.2). Hence, we hypothesised that the 145 

heterogeneity among spatial domains originated not only from cancer cells but also 146 

from diverse cells in the microenvironment. Here, we performed clustering of spatial 147 

domains to evaluate the heterogeneity among intra-spatial domain microenvironments. 148 

To obtain adequate gene expression data, 426 spatial domains larger than 1000 µm2 149 

were selected. The gene expression data (313 genes) were dimensionally reduced by 150 

principal component analysis (PCA), resulting in nine clusters (0-8) based on their 151 

similarity in PCA space. Each spatial domain was placed in the two-dimensional space 152 

using UMAP (Fig. 3a) and the original space (Fig. 3b). To annotate these clusters with 153 

histology, we showed HE staining images based on the previous report (Fig. 3c). 154 

Combining this histology on HE staining with the clusters shown in Fig. 3b, we found 155 

that clusters 2, 3, 5, and 8 corresponded to non-invasive ductal carcinoma in situ 156 
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(DCIS), whereas clusters 0, 1, 4, 6, and 7 corresponded to invasive ductal carcinoma in 157 

situ (IDC).  158 

 To provide detailed annotation of each spatial domain cluster, we examined the 159 

expression of several marker genes. In clusters 0, 1, 4, 6, and 7 (IDC clusters), MKI67 160 

and ERBB2 were highly expressed. Conversely, in clusters 2, 3, 5, and 8 (DCIS 161 

clusters), the myoepithelial cell markers ACTA2, MYLK, and KRT14 were highly 162 

expressed. These results suggest that gene expression in each spatial domain was 163 

consistent with the histological annotation (Fig. 3d). Interestingly, cluster 1 showed 164 

high expression of endothelial cell markers, including PECAM1, VWF, and CD93, as 165 

well as chemokines and chemokine receptor genes associated with cell migration, 166 

CXCL12 and CXCR4. Furthermore, the expression of MKI67, ABCC11, and FOXA1 167 

was moderate in cluster 1 compared to that in other IDC clusters (Fig. 3d). Given the 168 

moderate expression of these cancer-associated genes and their midpoint in the UMAP 169 

space (Fig. 3a), Cluster 1 may represent a spatial domain at an intermediate stage in the 170 

transition from DCIS to IDC. 171 

 172 

SKNY estimates spatial domain trajectory, which reflects tumour progression. 173 
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To estimate the spatial domain trajectory from DCIS to IDC, we used the partition-174 

based graph abstraction (PAGA) algorithm15 to construct an adjacency graph 175 

representing the topology of expression patterns for each cluster (Fig. 4a). The 176 

adjacency graph is divided into clusters 2, 3, 5, and 8 (DCIS) and clusters 0, 4, 6, and 7 177 

(IDC), where cluster 1 connects the DCIS and IDC clusters. Additionally, cluster 3, 178 

exhibiting the lowest tumour marker gene expression, as shown in Fig. 3d, was located 179 

at the lower end. This structure is consistent with the hypothesis that the spatial domain 180 

of DCIS clusters transitions to the IDC cluster via cluster 1. The pseudotime with 181 

cluster 3 as the root was determined and placed in the two-dimensional space of the 182 

PAGA algorithm and the original space (Fig. 4b left panel and Fig. 4c). We evaluated 183 

the correlation between the pseudotime and MKI67 (r=0.52, P<0.001, Pearson 184 

coefficient)/ACTA2 (r=−0.47, P<0.001). The pseudotime illustrated tumour progression 185 

(Fig. 4b middle and right panels).  186 

To identify characteristic gene expression at points on this pseudotime axis, we 187 

hypothesised three tumour progression paths (cluster 3→8→1→7→4: IDC path #1, 188 

3→5→1→7→4: IDC path #2, and cluster 3→2: DCIS path) and evaluated trends in 189 

gene expression along these paths. In IDC paths #1 and #2, the expression of 190 

myoepithelial cell markers (ACTG2 and MYLK) tended to decrease in the early stages of 191 
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progression, whereas that of malignant markers (ERBB2) tended to increase in the later 192 

stages (Fig. 4d). In contrast, these myoepithelial cell and malignant marker fluctuations 193 

appeared to be moderate in the DCIS path. Moreover, in IDC paths #1 and #2, marker 194 

genes for endothelial cells (VWF and PECAM1), lymphocytes (CD4), macrophages 195 

(CD68), chemokines (CXCL12 and CCL5), and chemokine receptors (CXCR4) were 196 

highly expressed at the intermediate stages of cancer progression. Similarly, in the 197 

DCIS path, CD4, CD68, and CCL5 showed increased expression with progression. 198 

These findings suggest that endothelial cells and chemokine signalling are involved in 199 

the transition from DCIS to IDC. We also examined the spatial distribution of gene 200 

expression within the region of interest (ROI) corresponding to the transition phase 201 

from DCIS to IDC. The results showed a pattern in which PECAM1, VWF, CXCR4, and 202 

CXCL12 appeared to infiltrate into regions of the tumour delineated by HE staining and 203 

EPCAM (Fig 4e). This also suggests that during the transition from DCIS to IDC, 204 

endothelial cells may infiltrate tumours and activate chemokine signals. 205 

 206 

SKNY quantifies the infiltrating of endothelial cells to spatial domains in the 207 

microenvironment. 208 
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Next, we extended the spatial domains with their expression into their inner, peri-, and 209 

outer sections, namely, microenvironments, to quantitatively compare endothelial cell 210 

infiltration into tumours. We stratified the distance from the boundary of the spatial 211 

domain into 30 μm sections and extracted (−30, 0] (inner), (0, +30] (peri-), and (+30, 212 

+60] (outer) sections of each cluster (Fig 5a). Although no significant differences in 213 

expression levels were observed in the (+30, +60] section, significant differences among 214 

clusters were found in the (−30, 0] section for endothelial cell markers PECAM1 and 215 

VWF (P=0.0053 and <0.001, Kruskal−Wallis test, respectively), with relatively high 216 

expression in cluster 1 (Fig 5b). To confirm the spatial expression patterns, ROIs 217 

selected from clusters 3, 8, 1, and 0 were extracted, and the distribution of cancer cell 218 

(EPCAM and CDH1) and endothelial cell (VWF, PECAM, CD93) markers was 219 

examined using Xenium Explorer. In clusters 3 and 8 (DCIS cluster), endothelial cell 220 

markers were localised outside the spatial domain, whereas in cluster 1 (DCIS-to-IDC 221 

cluster), these markers were localised in the tumour spatial domain (Fig. 5c). Moreover, 222 

cluster 0 (IDC cluster) appeared to remain in the gaps where the cancer cells had 223 

migrated (Fig. 5c, right panel). These results demonstrate that the analysis, expanded 224 

from the spatial domain to the microenvironment, could reflect the infiltration of 225 

endothelial cells into the tumour. 226 
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 227 

SKNY performs spatiotemporal trajectory analysis and estimates the mechanism of 228 

tumour progression. 229 

Next, we analysed the spatiotemporal dynamics of gene expression by integrating the 230 

spatial axis of the microenvironment with the temporal axis estimated from the 231 

trajectory of tumour progression. We examined the changes over the pseudotime (IDC 232 

path #1) in the expression of endothelial cells (PECAM1), macrophages (CD68), matrix 233 

metalloproteinases (MMP2), chemokine receptors (CXCR4), and chemokines (CXCL12) 234 

in each TME section at (−30, 0] (inner), (0, +30) (peri-), and (+30, +60] (outer), 235 

respectively. In the inner section, PECAM1 (P=0.023), CD68 (P<0.001), and CXCR4 236 

(P<0.001) showed an increase during the transition period from DCIS to IDC (clusters 237 

8, 1, and 7), whereas in the peri-section, PECAM1 (P=0.035) and CXCR4 (P<0.0024) 238 

also showed an increase during that period (Kruskal-Wallis test, Bonferroni-corrected P 239 

values) (Fig. 6a). In contrast, in the peri- and outer sections, MMP2 (P<0.001 and 240 

P=0.020, respectively) showed an increase in these peaks in early DCIS (cluster 3) and 241 

late IDC (cluster 4). 242 

 Finally, we summarised the temporal sequences of the expression of these 243 

genes. In the early stages of cancer progression, the expression of MMP2 was 244 
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upregulated in the peri-tumour and outer regions (Fig. 6b). In the tumour progression 245 

from non-invasive to invasive cancer, infiltration of endothelial cells (PECAM1) and 246 

macrophages (CD68) was noted into the tumour interior, together with increased 247 

chemokine signalling (CXCR4). After invasion, the expression of MMP2 was 248 

upregulated in the peritumour and outer regions. Therefore, we concluded that the 249 

SKNY showed spatiotemporal sequences of interactions between tumours and other 250 

components within the microenvironment. 251 

 252 
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Discussion 254 

In this study, we applied the SKNY algorithm to Xenium data extracted from breast 255 

cancer to estimate the cellular and molecular functions and mechanisms in the TME. 256 

The TME includes diverse cells, such as cancer-associated fibroblasts, stromal cells, and 257 

immune cells involved in cancer progression27, and the concept of the TME has also 258 

been incorporated into clinical research on breast cancer28. For example, 259 

immunohistochemical pathological analysis has shown that intratumoural macrophages 260 

stained by CD68 correlate with malignancy29, 30 and that intertumoral microvessel 261 

density assessed by CD31, which reflects angiogenesis, is an important poor prognostic 262 

factor31, 32. In breast cancer, high expression of Ki67 and HER2 is associated with 263 

malignancy33, whereas destruction of myoepithelial cells is associated with tumour 264 

invasion34. Consistent with these previous reports on the pathology, the results of 265 

spatial stratification (Output 4) and spatiotemporal trajectory (Output 5) analyses, 266 

which showed an overrepresentation of CD68 and PECAM1 (CD31) within the spatial 267 

domain of the invasive tumour (Fig. 5 and 6), demonstrated the infiltration of 268 

macrophages and endothelial cells into malignant cancer. Moreover, MMP2 was 269 

overexpressed in the early and late stages of tumour progression in the stromal area, and 270 

CXCR4 and CXCL12 were enriched after mid-stage progression inside the tumour (Fig. 271 

6). MMPs contribute to the sprouting of vascular endothelial cells by degrading the 272 
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vascular basement membrane and extracellular matrix in the early stages of tumour 273 

angiogenesis35, and CXCR4/CXCL12 signalling pathway mediates cell migration 274 

signals and metastasis processes36. These results are consistent with the previous 275 

findings, suggesting that our algorithm can accurately estimate compatible biological 276 

mechanisms in the TME. 277 

The trajectory estimation (Output 3) analysis was used to construct the tumour 278 

progression trajectory of the spatial domains (Fig. 4). The interaction of various cells in 279 

the TME is considered crucial in cancer progression27; therefore, the progression 280 

trajectory should be determined by integrating all cells in the TME rather than focusing 281 

solely on cancer cells. Our results showed that during the transition from DCIS to IDC, 282 

an over-representation of vascular endothelial cells expressing PECAM1 and VWF, as 283 

well as an increase in the CXCL12 and CXCR4 chemokine-chemokine receptor pair was 284 

noted. These results are consistent with the known mechanisms by which cancer cells 285 

acquire invasive potential through endothelial cells37 and the associated induction of cell 286 

migration signals from chemokines36. Most importantly, gene expression from non-287 

cancer cells was the 'missing link' between DCIS and IDC in the trajectory, suggesting 288 

the utility of this approach to integrate all cells within the spatial domain. Furthermore, 289 

our data estimated the trajectory from the root to PGR-positive DCIS without 290 
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progression to IDC. Reduced PGR expression has been suggested as a surrogate marker 291 

for GATA3 mutations, one of the genetic factors involved in the progression of DCIS38, 292 

39. Paradoxically, these previous reports, combined with our results, suggest that the 293 

transition to PGR-positive DCIS may slow cancer progression. The thin edge from 294 

PGR-positive DCIS to other clusters in the PAGA graph also supports this hypothesis. 295 

The detection algorithm (Output 1) delineated different tumour shapes based 296 

on histological features (Fig. 2 and 3). The enrichment of cancer cells and stromal 297 

markers within and outside the spatial domains indicates accurate separation of the 298 

tumour and stroma. Myoepithelial cells surround the ductal epithelium for structural 299 

support40, and our results also showed that myoepithelial cell markers, including 300 

ACTA2, MYLK, and KRT14, were enriched in the perispatial domain of the tumour, 301 

suggesting high-quality detection of tumour contours using our algorithm. This high-302 

quality contour guaranteed subsequent SKNY analyses, including clustering (Output 2), 303 

trajectory estimation (Output 3), and extension into the microenvironment (Outputs 4 304 

and 5). 305 

This study had some limitations. First, we used only one sample for this 306 

analysis, and whether the SKNY would work with other samples remains to be 307 

determined. Although our preliminary analysis of lung, kidney, colon, and skin samples 308 
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confirmed their quality (confidential), it is necessary to verify the performance of the 309 

SKNY using a large number of samples. Second, in this analysis, the spatial omics data 310 

was converted to grids of 10 × 10 μm, and this conversion may make it difficult to 311 

detect thin tissues, such as monolayered epithelium. However, setting the grid data to a 312 

smaller size should result in insufficient sensitivity of the marker genes on each grid. 313 

Therefore, it is necessary to consider the balance between grid size and marker gene 314 

sensitivity for each specimen and gene panel. 315 

In conclusion, SKNY can be used in microenvironmental analyses to provide 316 

valuable insights into its pathological functions. It should be applicable not only to the 317 

TME but also to a wide range of microenvironments, such as tertiary lymphoid 318 

structures and myocardial and neuronal microenvironments.  319 

 320 

 321 

 322 
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Methods 324 

Data acquisition and pre-processing 325 

Breast cancer data from Xenium were downloaded from a public repository 326 

(https://www.10xgenomics.com/jp/products/xenium-in-situ/preview-dataset-human-327 

breast). The 'ReadXenium' function from stlearn (v0.4.12) was utilised to read the HE 328 

images (https://www.dropbox.com/s/th6tqqgbv27o3fk/CS1384_post-329 

CS0_H%26E_S1A_RGB-shlee-crop.png?dl=1) and files containing gene expression 330 

and cell coordinates 331 

(Xenium_FFPE_Human_Breast_Cancer_Rep1_cell_feature_matrix.h5 and 332 

Xenium_FFPE_Human_Breast_Cancer_Rep1_cells.csv.gz). The 'tl.cci.grid' function in 333 

stlearn was used to simplify the coordinate data into grid data (𝐺𝑟𝑖𝑑!"#$%&,(")
*+&+ , 𝑔𝑒𝑛𝑒 =334 

{𝐴𝐵𝐶𝐶11, 𝐴𝐶𝑇𝐴2, 𝐴𝐶𝑇𝐺2,… , 𝑍𝑁𝐹562}, 𝑐𝑜𝑙𝑢𝑚𝑛 = {1,2,3, … ,752}, 𝑟𝑜𝑤 =335 

{1,2,3, … ,547}) at the interval of 10 µm. 336 

 337 

Detection of spatial domain 338 

The pre-spatial domain (𝑆,(+) was determined based on the expression of CDH1 in each 339 

grid. The SKNY program can detect prespatial domains based on user selection. For 340 

example, a tumour is detected but normal epithelium is not detected upon logical 341 
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subtraction between a positive marker (e.g. CDH1) and a negative marker (e.g. SFTPB) 342 

expression, which is described as follows: 343 

 344 

𝑆,(+ = (𝐸𝑥𝑝𝑟(𝐺!"#$%&,(")
,"-./.0+	%2(3+() > 0	) − (𝐸𝑥𝑝𝑟(𝐺!"#$%&,(")

&+*2/.0+	%2(3+() > 0) 345 

 346 

where Expr is defined as a function of extracting gene expression counts from the grid. 347 

To remove noise from the pre-spatial domain, the "medianBlur" function (kernel size: 348 

3×3) from the Python library opencv (v4.8.1) was applied, resulting in the formation of 349 

a spatial domain (S) (Supplementary Material 1). 350 

 The STARGATE algorithm24 was also used to extract spatial domain clusters 351 

for comparison with the existing methods. To annotate the extracted spatial domain 352 

clusters, the expression levels of epithelial markers (CDH1, EPCAM) were compared, 353 

and cluster 1, 3, and 9, which showed overexpression, was extracted as the spatial 354 

domain of the tumour. To assess the concordance between SKNY and STARGATE in 355 

the spatial domains, the Jaccard coefficient, which indicates the percentage of 356 

agreement between each lattice, was calculated.  357 

 358 

Measurement of distance from the spatial domain surfaces 359 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 22, 2024. ; https://doi.org/10.1101/2024.06.18.599475doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.18.599475
http://creativecommons.org/licenses/by/4.0/


The edge grids were identified using the’ findContours’ function from opencv in the 360 

spatial domain. All adjacent grids were connected by edges and weighted according to 361 

the Euclidean distance: 1 for vertical and horizontal edges and 2 for diagonal edges 362 

(Supplementary Material 2). The shortest path from the edge grids to the other grids was 363 

measured using the multi-source Dijkstra method41 to determine the distance from the 364 

spatial domain edges. 365 

 366 

Segmentation from a spatial domain to individual spatial domains 367 

The function 'connectedComponentsWithStats' from opencv was used to divide the 368 

spatial domain (S) into individual spatial domains (𝑆4 , 𝑑 = {1,2,3, … ,426}) with an 369 

area larger than 1000 μm2. The gene expression within each spatial domain was 370 

averaged.  371 

 372 

Spatial stratification by spatial domains 373 

Using the measured distances, a stratification was performed with a half-open interval 374 

of 30 µm to obtain the edge grid of the spatial domain (𝑃567859:;, 𝑥 = {0,30}). The 375 

rectangle that enclosed each 𝑆4 was then extracted, and the contour was enlarged by x 376 

μm to produce a rectangle including each spatial domain (𝑅4,567859:;, 𝑥 = {0,30}, 𝑑 =377 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 22, 2024. ; https://doi.org/10.1101/2024.06.18.599475doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.18.599475
http://creativecommons.org/licenses/by/4.0/


{1,2,3, … ,426}). The peri-spatial domain exclusive to each spatial domain 378 

𝑃𝑆4,567859:; was calculated as follows: 379 

 380 

𝑃𝑆4,567859:; = 𝑃567859:;	⋀	¬O O (𝑅.,567859:;		⋀	𝑅<,567859:;)
&

<=.9>

&?>

.=>

 381 

 382 

where ⋀ represents the product sum, and ⋃ represents the union set. The gene 383 

expression of each 𝑃𝑆4,567859:; was defined as the average gene expression of the 384 

grids within it. 385 

 386 

Diversity analysis in the spatial domain 387 

To compare the alpha diversity of gene expression between the segmented spatial 388 

domains and previously annotated cancer cells26, the ‘diversity.alpha.chao1’ in the 389 

Python library scikit-bio was used to calculate Chao142. 390 

 391 

Clustering of the spatial domains 392 

The 'pp.log1p' function from scanpy (v 1.9.8) was used to log-transform gene 393 

expression in each spatial domain (𝑆4). Then, the 'pp.pca' function was used for 394 

dimension reduction through principal component analysis. Fifty principal components 395 
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were extracted in the order of highest eigenvector. The 'pp.neighbours' and 'tl.leiden' 396 

functions from the scanpy were adapted to form spatial domain clusters for Leiden 397 

clustering. The function 'tl.umap' was used to place leiden embeddings on the UMAP 398 

two-dimensional space.  399 

 400 

Trajectory estimation of the spatial domains 401 

For trajectory inference by the PAGA algorithm (ref), the "tl.paga" function of spanpy 402 

was used to construct the neighbourhood graph of the spatial domain cluster, followed 403 

by the estimation of the pseudotime by adapting the "tl.dpt" function. 404 

 405 

Statistical analysis 406 

Pearson’s product-moment correlation coefficient was used to analyse the correlation 407 

between the pseudotime and gene expression. Welch's t-test was used to compare alpha 408 

diversity between the two groups. The Kruskal-Wallis test was used to compare gene 409 

expression between multiple groups. 410 

 411 

Visualization 412 
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For the visualisation of the Xenium data in space, Xenium Explororor (v1.3) or the 413 

"pl.gene_plot" function in stlearn was used. 414 

 415 

 416 

Code availability 417 

The code used in this study has been deposited in the documentation of the SKNY 418 

library (https://skny.readthedocs.io/en/latest/notebooks/single-TME_analysis.html).  419 

 420 
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(a) The concept of the extension from spatial omics data and spatial domain to 539 

microenvironment. (b) The implementation of SpatialKNifeY (SKNY). A Python 540 

library of SKNY depends on stlearn23 and scanpy9 functions (see “Methods”) and 541 

AnnData object programing10. (c) The outputs from SKNY analysis. Detection (Output 542 

1, see “Fig. 2”) delineates spatial domains based on a user’s positive and negative 543 

marker gene expressions. Clustering (Output 2, see “Fig. 3”) makes clusters of spatial 544 

domain units based on the mean expression of each gene. Trajectory estimation (Output 545 

3, see “Fig. 4”) infers to the trajectory among spatial domains and pseudotime. Spatial 546 

stratification (Output 4, see “Fig. 5”) measures the distance from tumour boundary to 547 

each coordinate on the space and makes contour lines based on the distance. 548 

Spatiotemporal trajectory (Output 5, see “Fig. 6”) integrates pseudotime by trajectory 549 

estimation and contour lines by spatial stratification to estimate function and 550 

mechanism within the microenvironment. 551 
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 553 

Fig. 2. Detection of spatial domain with Xenium data accurately discriminates 554 

between the tumour and stromal region.  555 

(a) H&E staining image of breast cancer. (b) Detected spatial domains. The yellow and 556 

green colors indicate spatial domains and the boundary, respectively. (c) H&E staining 557 

images and spatial domain(s) from three ROIs. The red contour lines indicate distance 558 

from the surface of spatial domains at the interval of 30 μm. (d) Dotplot showing 559 

Single spatial domain Multi-spatial domains Scattered spatial domains

a b
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marker genes of each cell type. The color bar indicates the scaled mean count, and the 560 

size indicates the percentages of these gene expressions. (e) Spatial expression 561 

distribution of cell marker genes in the ROI. The color bar indicates the scaled mean 562 

count.  563 

  564 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 22, 2024. ; https://doi.org/10.1101/2024.06.18.599475doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.18.599475
http://creativecommons.org/licenses/by/4.0/


 565 

Fig. 3. Clustering and annotation of spatial domain based on gene expressions. 566 

(a) Two-dimensional plot using UMAP loadings of gene expression of spatial domains. 567 

The colors indicate clusters. (b) Spatial distribution of each cluster. (c) H&E image with 568 

the histological annotations. (d) Dotplot showing markers of cell types and expression 569 

patterns of genes associated with tumour subtypes.  570 
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 572 

Fig. 4. Estimating spatial domain trajectory reveals temporal gene expression 573 

gradient along with cancer progression. 574 

(a) PAGA graph constructed by the expression data of the spatial domains. (b) PAGA-575 

initialized spatial domain embeddings with estimated pseudotimes, MKI67, and ACTA2 576 

expressions. Pearson’s correlation coefficients and the P values were used to evaluate 577 

the linear relationship between pseudotimes and scaled expression of MKI67/ACTA2. 578 

Pearson
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(c) Spatial distribution of clusters and pseudotimes. (d) Heatmap showing gene 579 

expression level along with pseudotimes on three progression paths. (e) Representative 580 

images of HE staining and gene expressions on the ROI. The color bar indicates the 581 

scaled mean count. 582 
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 584 

Fig. 5. Spatial stratification of each spatial domain cluster elucidating endothelial 585 

cell invasion into the tumour. 586 

(a) Spatial distributions of stratified spatial domain clusters into (−30, 0], (0, +30], and 587 

(+30, +60] sections. (b) Violin plots showing the endothelial cell marker gene 588 

expressions (PECAM1, VWF, and CD93) for each cluster in the (−30, 0], (0, +30], and 589 

(+30, +60] sections. The x-axes indicate cluster numbers, and the y-axes indicate scaled 590 
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gene expression levels. The annotated values are the P values of the significance test. 591 

(c) Representative images of DAPI with epithelial cell markers (CDH1 and EPCAM) 592 

and endothelial cell markers (CD93, PECAM1, and VWF) expressions for four ROIs.  593 
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 595 

Fig. 6. Spatiotemporal trajectory analysis illustrating the progression flow of the 596 

tumour microenvironment. 597 
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(a) Violin plots showing the marker expressions of PECAM1, CD68, MMP2, CXCR4, 598 

and CXCL12 on the estimated trajectory path (IDC path #1) in the (−30, 0], (0, +30], 599 

and (+30, +60] sections. The color scale indicates the mean of pseudotimes in each 600 

cluster. The annotated values represent the P values of the significance test. The red 601 

dots in the figures indicate the mean of the gene expression level. (b) Summary of the 602 

dynamics of the gene expressions. The red and blue colours indicate the 603 

overrepresentation and underrepresentation of the gene expressions.  604 

  605 



 606 

Supplementary Fig. 1. Annotation of the spatial domain using the STARGATE 607 

algorithm 608 

Spatial distribution of each cluster by STARGATE algorithm at (a) single-cell level and 609 

(b) grid level. (c) Dotplot showing markers of cell types and expression patterns of 610 

genes associated with tumour subtypes. Clusters 1, 3, and 9 correspond to the tumour 611 

spatial domain. 612 
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Supplementary Fig. 2. Measurement of distance from the surface of spatial 615 

domains 616 

(a) Heatmap indicating distance from surfaces of spatial domains. (b) The red contour 617 

lines indicate distance from the surface of spatial domains at the interval of 30 μm.  618 
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 620 

Supplementary Fig. 3. Comparison of alpha-diversity index based on gene 621 

expression 622 

Box plot of alpha-diversity index between cancer cells and spatial domains. 623 

 624 
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 626 

Supplementary Material 1 Generation of spatial domain by image processing of 627 

gene expression data  628 
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 630 

Supplementary Material 2 Measurement of shortest distance from contour of 631 

spatial domains  632 
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