

Single-nucleus proteomics identifies regulators of protein transport

Jason Derks,^{1,2,✉} Tobias Jonson,¹ Andrew Leduc,¹ Saad Khan,¹ Luke Khoury,¹ Mahmoud-Reza Rafiee,¹ Nikolai Slavov^{1,2,✉}

¹Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Center, Northeastern University, Boston, MA 02115, USA

²Parallel Squared Technology Institute, Watertown, MA 02472, USA
∈ Data, code & protocols: scp.slavovlab.net

1 The physiological response of a cell to stimulation depends on its proteome configuration.
2 Therefore, the abundance variation of regulatory proteins across unstimulated single cells
3 can be associatively linked with their response to stimulation. Here we developed an ap-
4 proach that leverages this association across individual cells and nuclei to systematically
5 identify potential regulators of biological processes, followed by targeted validation. Specifi-
6 cally, we applied this approach to identify regulators of nucleocytoplasmic protein transport
7 in macrophages stimulated with lipopolysaccharide (LPS). To this end, we quantified the
8 proteomes of 3,412 individual nuclei, sampling the dynamic response to LPS treatment, and
9 linking functional variability to proteomic variability. Minutes after the stimulation, the pro-
10 tein transport in individual nuclei correlated strongly with the abundance of known protein
11 transport regulators, thus revealing the impact of natural protein variability on functional
12 cellular response. We found that simple biophysical constraints, such as the quantity of nu-
13 clear pores, partially explain the variability in LPS-induced nucleocytoplasmic transport.
14 Among the many proteins newly identified to be associated with the response, we selected 16
15 for targeted validation by knockdown. The knockdown phenotypes confirmed the inferences
16 derived from natural protein and functional variation of single nuclei, thus demonstrating
17 the potential of (sub-)single-cell proteomics to infer functional regulation. We expect this
18 approach to generalize to broad applications and enhance the functional interpretability of
19 single-cell omics data.

20

Introduction

21 Single-cell omics methods have rapidly scaled up^{1,2} and enabled the investigation of cellular heterogeneity and the creation of cell atlases³. However, the functional interpretation of such omics data has lagged behind⁴⁻⁷. To investigate the link between proteomic and functional variability across single-cells, we sought to develop an approach that associates the pre-existing differences in proteome configurations to their correspondingly variable cellular responses; such an approach may enable the inference of novel regulatory associations⁸. In particular, we aimed to investigate how pre-existing proteomic variability influences, and therefore explains the variability of, LPS-induced transport of proteins to and from the nucleus.

29 To quantify this variation between individual cells and individual nuclei, we built upon the conceptual and technological advances in single-cell mass spectrometry proteomics⁹⁻²¹. Specifically, 30 we used the framework of multiplexed data-independent acquisition (plexDIA) to implement the 31 isotopologous carrier suggestion^{22,23}, which generalizes the concept of isobaric carrier^{24,25} to plex- 32 DIA. Isotopologous carriers have already shown promise in some applications^{18,26,27}, and here we 33 used them to enable the first proteomic analysis of individual organelles isolated from human cells. 34 These methodological advances enabled global exploration of protein transport within individual 35 cells, which for decades has been studied by imaging fluorescent proteins²⁸⁻³². Our approach 36 allows for more comprehensive initial discovery, which can expand previous observations that 37 pro-inflammatory stimulation leads to heterogeneous nuclear import of transcription factors^{33,34}. 38 These discoveries can later be examined with much higher temporal resolution using fluorescent 39 imaging^{35,36}.

41 Here, we demonstrate a generalizable approach that enables the inference of functional regulators 42 from (sub-)single-cell proteomics data. Specifically, we identified proteins regulating subcellular 43 transport, including the differential contributions of the subunits of the nuclear pore complex. 44 Our inferences were derived from natural protein variation across single cells and nuclei. Subsequent 45 validation of these results by targeted knockdown experiments provide direct evidence for the 46 functional relevance of our inferential approach.

47 Results

48 Protein transport in bulk macrophage populations

49 To first study protein transport between the nucleus and the rest of the cell in bulk populations,
50 six biological replicates were generated using a model system of macrophage-like cells derived
51 from THP-1 monocytes treated with phorbol 12-myristate 13-acetate (PMA). Their nuclei were
52 extracted with mild detergent using methods adapted from an established workflow³⁷. This physi-
53 cal isolation produced sufficient nuclear enrichment as demonstrated by a 5 - 25-fold depletion of
54 proteins from non-nuclear cellular compartments from the nuclei, [Extended Data Fig. 1a](#).

55 Having validated the enrichment of the isolated nuclear fractions, we next sought to quantify
56 the LPS-induced dynamics of protein transport. To this end, we quantified differential protein
57 abundances for nuclei and whole-cells using MS-Empire³⁸. The abundance changes in the whole
58 cells reflect protein synthesis, degradation, and secretion; changes at the nuclear level also include
59 nucleocytoplasmic transport. As expected, changes mediated by protein synthesis and degradation
60 are slow compared to the kinetics of nucleocytoplasmic transport. Indeed, 60 minutes after LPS-
61 stimulation, the changes are dominated by transport with 15.7% of nuclear proteome exhibiting
62 differential abundance compared to only 2.3% of the whole-cell proteome, [Fig. 1a](#). This difference
63 is even more pronounced for earlier time points where changes affect less than 0.1% of the whole-
64 cell proteome 30 minutes after LPS stimulation, but 9.3% of the nuclear proteome.

65 Given that hundreds of proteins without innate immunity associations significantly changed
66 their nuclear abundance in response to LPS, we aimed to evaluate the temporal continuity of each
67 protein to further assess the confidence in these findings. As a quantifiable continuity metric,
68 we calculated a ranked version of von Neumann's ratio (RVN)³⁹ for each protein as shown in
69 [Extended Data Fig. 2a](#). Indeed, proteins found to be differentially abundant at 5% FDR for nuclei
70 and whole-cells were mostly monotonic and generally continuous, beyond the monotonicity of a
71 simulated null model where the same number of proteins were assigned random fold-changes and
72 RVN ratios were calculated, [Extended Data Fig. 2b,c](#). Therefore, the large proportion (~16%) of
73 nuclear proteins changing significantly in response to LPS exhibit mostly continuous dynamics,
74 which supports the validity of the findings.

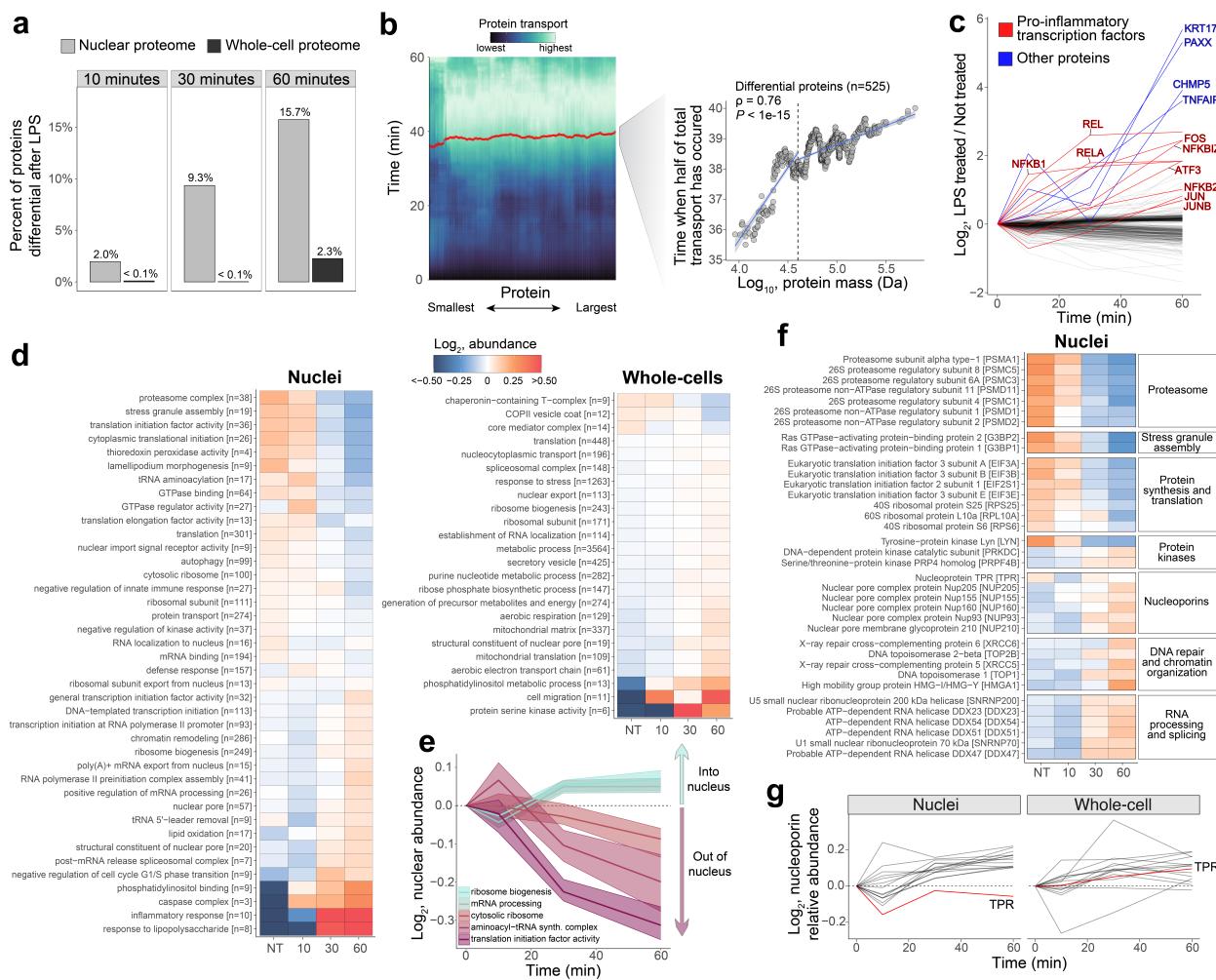


Figure 1 | Protein dynamics in whole cells and nuclei reveal coordinated spatiotemporal control of biological processes in bulk populations of macrophage-like cells. **a** Percent of differentially abundant proteins (5% FDR) in nuclear (grey) and whole-cell (black) proteomes after 10, 30, or 60 minute LPS treatments. **b** Differentially abundant proteins in the nucleus were analyzed to investigate the relationship between protein mass and transport kinetics. Transport dynamics for each protein were interpolated across the four time points, and ordered with respect to protein mass. The heatmap is colored according to each protein's absolute-valued magnitude of protein transport. Using a moving median approach to average the inherent biological variability, the data suggest smaller proteins achieve half of their total transport at earlier time points than larger proteins. The dashed black line marks a commonly recognized theoretical limit of passive diffusion (40 kDa). **c** Time-series data over the course of the LPS-treatment for differentially abundant proteins in the nucleus; pro-inflammatory transcription factors are labeled and highlighted in red, and other proteins with >4-fold change are highlighted in blue. **d** Protein set enrichment analysis of nuclei and whole-cell bulk samples for NT, 10 minute, 30 minute, and 60 minute LPS treated samples. Brackets correspond to the number of proteins included in computing the enrichment of Gene Ontology terms. **e** Gene Ontology terms associated with mediating gene-expression, which significantly change in nuclear abundance in response to LPS, are plotted. The 95% confidence intervals are derived from the change of all proteins which correspond to the respective Gene Ontology term. **f** Proteins were grouped thematically and plotted to show their change in nuclear abundance; all proteins were differentially abundant at 5% FDR in at least one time point. **g** Nucleoporins which were differentially abundant in the nucleus in at least one time point are plotted to display their change in nuclear and whole-cell abundance; TPR is highlighted in red.

75

Mass dependence of nucleocytoplasmic transport

76

The kinetics of nucleocytoplasmic transport is mass-dependent, and we sought to investigate this dependence in our data. There are two mechanisms by which transport occurs: passive diffusion and active transport^{40,41}. Molecules with masses less than 40 kDa have been reported to passively diffuse through nuclear pores with kinetics that are mass-dependent⁴². Kinetics of active transport are also dependent on the size of the cargo, but to a lesser degree, as the energy barrier is reduced through interactions with chaperones^{40,43}. We investigated this relationship in our data and found that protein transport was indeed negatively correlated with protein mass, as shown in [Extended Data Fig. 3](#). To increase the time resolution of this analysis, we interpolated protein transport across the 4 time points and found that smaller proteins achieved half their total transport at an earlier time than larger proteins, as shown as a heatmap and scatter plot in [Fig. 1b](#). While this analysis cannot conclude whether these trends reflect passive diffusion or simply mass-dependence in active transport, the results are consistent with more recent findings of passive diffusion occurring without a precise size threshold⁴⁴. Irrespective of the mechanism, these data corroborate the mass-dependence of protein transport kinetics globally in the natural response of macrophages to LPS.

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

Spatiotemporal control of inflammatory response in bulk cell populations

92

While pro-inflammatory transcription factors are known to be imported to the nucleus in response to LPS, we identify hundreds of additional proteins significantly changing in nuclear abundance, many of which have no prior association with LPS-response. As expected, transcription factors NF- κ B1, REL, RELA, and FOS increase in nuclear abundance by approximately 4-fold within 10-60 minutes of LPS-treatment^{29,32,33,45}, as shown in [Fig. 1c](#). Interestingly, hundreds of additional proteins experience monotonic or generally continuous changes in nuclear abundance; one of these proteins, PAXX—a protein required for Non-Homologous End-Joining (NHEJ) DNA repair^{46,47}, reached a 40-fold increase within 60 minutes of LPS-stimulation. This protein acts as a scaffold for the accumulation of XRCC5 and XRCC6 to facilitate NHEJ DNA repair⁴⁸. Likewise, XRCC5 and XRCC6 also increased significantly in the nucleus by 60 minutes, [Extended Data Fig. 4](#).

93

94

95

96

97

98

99

100

101

102 To characterize the effects of protein synthesis, degradation, and secretion, we computed protein set enrichment on whole-cell proteomes; similar analysis of nuclear proteomes would 103 additionally reflect nucleocytoplasmic transport, [Fig. 1d](#). LPS-stimulation induced whole-cell 104 proteome enrichment of Gene Ontology (GO) terms associated with gene-expression, such as “trans- 105 lation,” “spliceosomal complex,” and “ribosome biogenesis.” Interestingly, changes to the nuclear 106 proteome revealed spatiotemporal changes consistent with this whole-cell enrichment; specifically 107 GO terms whose sites of action are in the nucleus, such as “general transcription initiation fac- 108 tor activity” and “ribosome biogenesis” increased in nuclear abundance, while GO terms whose 109 sites of action are outside of the nucleus, such as “cytosolic ribosome” decreased in nuclear abun- 110 dance. These changes which reflect coordinated spatiotemporal rearrangement of proteins involved 111 in mediating gene-expression are shown for five GO terms in [Fig. 1e](#). Together, the whole-cell and 112 nuclear proteomic data provide complementary evidence which suggests macrophages increase 113 their capacity to mediate gene-expression in response to LPS, as observed through increases in the 114 absolute abundances of and the spatiotemporal rearrangement of proteins involved in this process. 115

116 To more closely investigate the concordance of changes in nuclear biological processes, dif- 117 ferentially abundant proteins were grouped thematically by function and plotted in [Fig. 1f](#). We 118 found concerted dynamics for proteasomal subunits and proteins associated with stress granule as- 119 sembly, which decreased in nuclear abundance in response to LPS. Proteins associated with DNA 120 repair, RNA processing, and nucleoporins were generally found to increase in nuclear abundance 121 following LPS stimulation. Intriguingly, of all nucleoporins which changed significantly in nuclear 122 abundance, only TPR—a negative regulator of NPC assembly⁴⁹—decreased, [Fig. 1g](#). Whole-cell 123 abundances of the same nucleoporins were generally found to increase, including TPR. Taken 124 together, these findings are consistent with LPS-induced upregulation of NPC assembly.

125 Benchmarking protein quantification of single nuclei

126 Using natural variation across single-cells to identify regulators of protein transport requires accu- 127 rate quantification of many proteins in single nuclei. To accomplish this, we used highly parallel 128 sample preparation by nPOP^{19,50} and the plexDIA framework combined with an isotopologous 129 carrier. This methodology is analogous to isobaric SCoPE-MS^{15,24,51}, thus we term it SCoPE-

130 DIA (Single Cell ProtEomics by Data-Independent Acquisition). As we previously suggested and
131 demonstrated with plexDIA, this framework uses the chromatographic coelution of peptides from
132 different samples to increase data-completeness^{22,23}. Thus, protein identification across all samples
133 can be enhanced by including a highly abundant sample, e.g., an isotopologous carrier, in parallel
134 to single-cells or single-organelles. This benefit was evident with the introduction of plexDIA²²
135 and has since been reproduced for single-cell analysis¹⁸. However, complex isotopologous carriers
136 might increase interferences and thus decrease quantitative accuracy. To evaluate these trade-offs
137 and find an optimal carrier level for acquiring single-nucleus data, we created and acquired data
138 from a mixed-species spike-in of *H. sapiens* nuclei and *S. cerevisiae* run with 0x, 1x, 5x, 10x, 25x,
139 or 50x carrier amounts, as shown in [Extended Data Fig. 5a](#). We found that intersected protein-level
140 quantitation was comparable across all carrier-levels, [Extended Data Fig. 5b](#). Thus, the potential
141 for interference by larger carriers has little effect on quantitative accuracy in our experiments,
142 which is likely due to the lower proteomic complexity of nuclei as compared to whole cells.

143 To improve quantitative accuracy, the carrier channel was used as a reference to estimate quan-
144 titative compression and remove poorly quantified precursors similar to previous filters¹⁵. We
145 applied this filter at various levels to converge upon an optimal balance between coverage and ac-
146 curacy, [Extended Data Fig. 5c-e](#). Using this strategy, we compared the coverage and quantitative
147 accuracy and for all proteins identified at various carrier levels and found reduced quantitative ac-
148 curacy at higher carrier levels, [Extended Data Fig. 5f](#). This likely reflects the increasing proportion
149 of lowly abundant proteins, which naturally suffer from noisier quantitation. Indeed, the quantita-
150 tive accuracy for the subset of proteins quantified across all carrier levels is high even for the 50x
151 carrier, [Extended Data Fig. 5b](#). To summarize, large nuclear carriers were found to not worsen
152 quantitative accuracy, but rather enable quantification of additional lowly abundant proteins that
153 are naturally less well-quantified. Therefore, we chose to acquire single-nucleus data with 25x and
154 50x nuclear proteome carriers.

155 **Variability in LPS-induced nucleocytoplasmic transport across single nuclei**

156 Next, we sought to infer potential regulators of nucleocytoplasmic transport from the natural vari-
157 ability of macrophage proteomes prior to the LPS stimulation and its regulatory impact on the LPS

158 response. Using SCoPE-DIA, we acquired a dataset consisting of 3,412 nuclei across four biological
159 replicates, with a median of 1,366 proteins quantified per nucleus, [Fig. 2a](#). After filtering to
160 remove nuclei and precursors with poor quantitation ([Extended Data Fig. 6a-b](#)), and nuclei with
161 insufficient nuclear enrichment ([Extended Data Fig. 6c-d](#)), we retained 2,997 nuclei with a median
162 of 1,287 proteins per nucleus to be used in downstream analyses, [Fig. 2a](#).

163 Projecting the single-nuclei proteomes onto their principal components produced a partial separation
164 between NT and LPS-treated populations, [Fig. 2b](#). Aside from measurement error, three
165 compounding sources of variability may result in this observed partial separation: pre-existing
166 variability of protein abundances at the whole-cell level, pre-existing variability in subcellular protein
167 localization, and variability in nucleocytoplasmic transport in response to LPS. We sought to
168 overcome the first two sources of variability and investigate the latter, heterogeneity of nucleocyto-
169 plasmic transport. This presents a challenge as the pre-existing protein variability is large relative
170 to the magnitude of protein transport induced by a short LPS exposure.

171 To explore the variability of LPS-induced nucleocytoplasmic transport, we derived a metric
172 aiming to quantify the amount of protein transport experienced by each nucleus; however, given
173 that we did not measure proteomes of the same nuclei before and after stimulation, our estimate
174 cannot directly quantify protein transport. As a substitute, we derived a ‘transport score’ metric,
175 which quantifies the deviation of single LPS-treated nuclear proteomes from the proteome distri-
176 bution of untreated single nuclei. To mitigate noise, we used our bulk data to differentially apply
177 weights based on transporting proteins, as illustrated in [Extended Data Fig. 7](#). As expected, the
178 resulting distributions of transport scores for single nuclei indicate increased nucleocytoplasmic
179 transport for longer time-periods of LPS treatment, [Fig. 2c](#).

180 To link proteomic variability to functional variability in protein transport, we computed corre-
181 lations of relative protein abundances to transport scores for all LPS-treated single nuclei, [Fig. 2d](#);
182 two proteins, NUP205 ($\rho = 0.28$) and VIM ($\rho = -0.63$), which are among the most (anti-
183)correlated to protein transport, are highlighted. Protein-set-enrichment results on this ordered
184 vector indicate associations to cell division, cell adhesion, and other processes shown in [Extended](#)
185 [Data Fig. 8](#). To explore whether these associations are driven by pre-existing proteomic variabil-
186 ity or LPS-induced changes, we compared the protein abundance distributions before and after

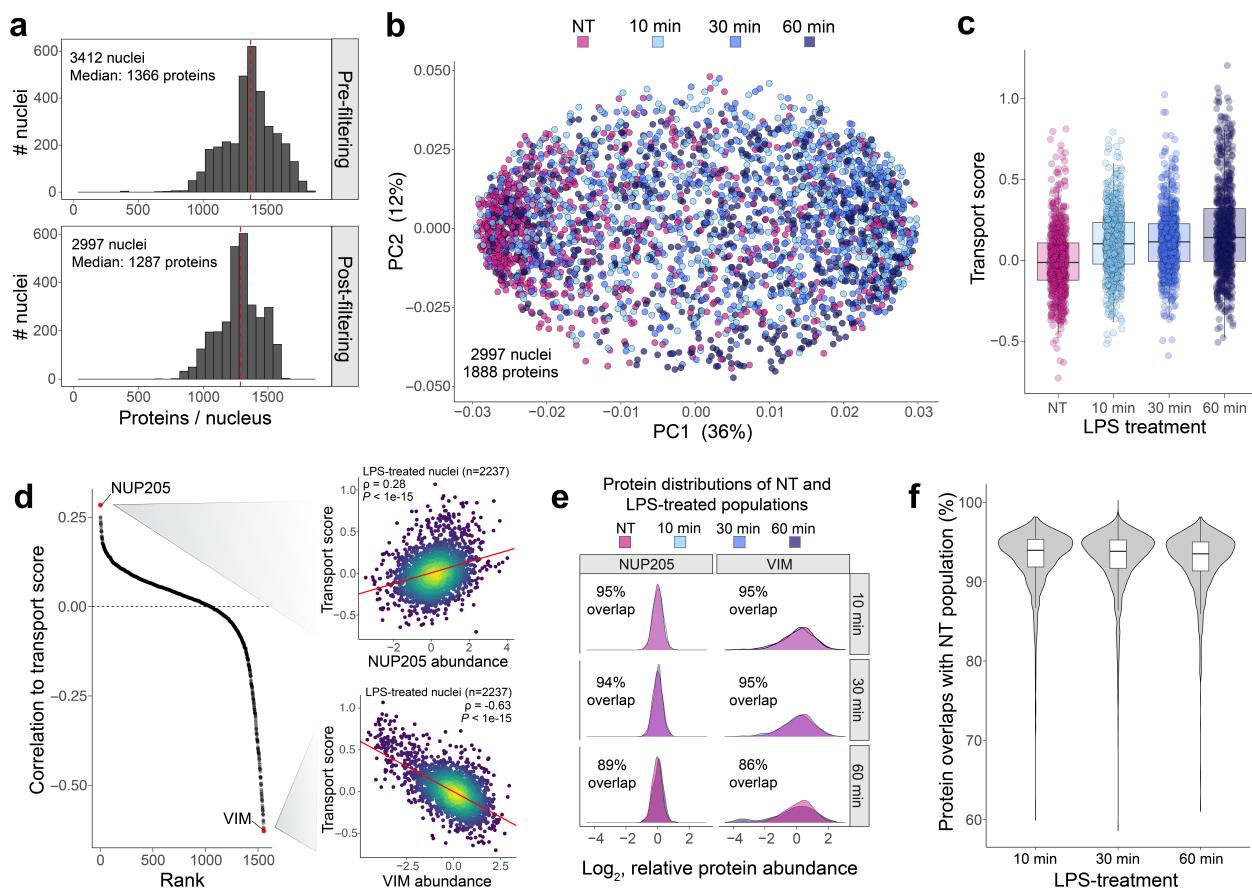


Figure 2 | Associating single-nucleus proteomic variability to heterogeneous LPS-induced nucleocytoplasmonic protein transport. **a** LC-MS/MS single-nucleus proteomics data was acquired with SCoPE-DIA for 3412 nuclei, quantifying a median of 1366 proteins per nucleus. Single nuclei which were insufficiently prepared, acquired, or depleted of non-nuclear proteins were removed, yielding 2997 nuclei with a median of 1287 proteins per nucleus post-filtering; these nuclei were used for downstream analyses. **b** Weighted PCA produced partial separation between LPS-treated (10, 30, and 60 minute) nuclei and not-treated (NT) nuclei. **c** Distribution of transport scores from single nuclei. Macrophages treated with LPS for longer durations yielded nuclei which had undergone more protein transport. **d** Rank sorted correlations between the transport score of each nucleus and its proteome. The underlying data used to compute these associations is shown for two proteins, NUP205 and VIM. **e** Distributions of relative protein abundances of NUP205 and VIM in the NT and LPS-treated populations of single nuclei. The overlap quantifies the proportion of commonality between the untreated and the treated populations. High values suggest pre-existing variability is much larger than LPS-induced changes. **f** Distribution of overlaps for all proteins between NT and LPS-treated populations of single nuclei.

187 LPS treatment, [Fig. 2e](#). The results indicate that LPS-induced changes are small relative to the
188 natural variation across untreated nuclei, [Fig. 2e,f](#). Therefore, our associations are dominated by
189 the pre-existing variation across proteomic configurations; this initial variability likely influences
190 the amount LPS-induced protein transport each cell undergoes. Thus, associations between single-
191 nucleus protein abundances and transport scores may be used to identify proteins whose abundance
192 affected nucleocytoplasmic protein transport.

193 **More nuclear pore complexes, more transport**

194 Nearly all nucleoporins were positively correlated to nucleocytoplasmic protein transport, [Fig. 3a](#),
195 suggesting nuclei with more nuclear pore complexes (NPCs) experience more transport. The only
196 exception was TPR, which has been reported to negatively regulate NPC assembly, as validated
197 through knockdowns of TPR yielding cells with more assembled NPCs⁴⁹, as well as in patient
198 fibroblasts with reduced TPR abundances⁵². Interestingly, our data support these previous results,
199 as TPR is the only nucleoporin whose abundance was negatively associated with protein trans-
200 port. To more clearly investigate this relationship, we collapsed all nucleoporin abundances to the
201 complex-level, and correlated these NPC abundances to transport scores in LPS-treated nuclei (n
202 = 2,237) and found a relatively strong and highly significant association ($\rho = 0.48$, $P < 10^{-15}$), as
203 shown in [Fig. 3b](#). Indeed, this suggests a highly significant association between NPC abundance
204 and nucleocytoplasmic transport.

205 Having uncovered this association between transport and NPC abundance in single nuclei, we
206 sought to additionally investigate whether the mass-dependence of nucleocytoplasmic transport
207 also changes as the number of NPCs varies across single nuclei; specifically, the nuclear envelope
208 should become more permeable to passive diffusion at higher pore densities. To test this hypoth-
209 esis, we first quantified the mass dependence of protein transport for each nucleus by regressing
210 the molecular masses of proteins on their absolute deviations from the NT-population of single
211 nuclei—a substitute for measuring protein-specific transport. The slopes of these regressions were
212 plotted against corresponding NPC abundances in single nuclei, [Fig. 3c](#). The results revealed a
213 modest association across all 2,237 LPS-treated nuclei ($\rho = -0.17$) with high statistical signifi-
214 cance ($P < 10^{-14}$). This association indicates that nucleocytoplasmic transport of smaller proteins

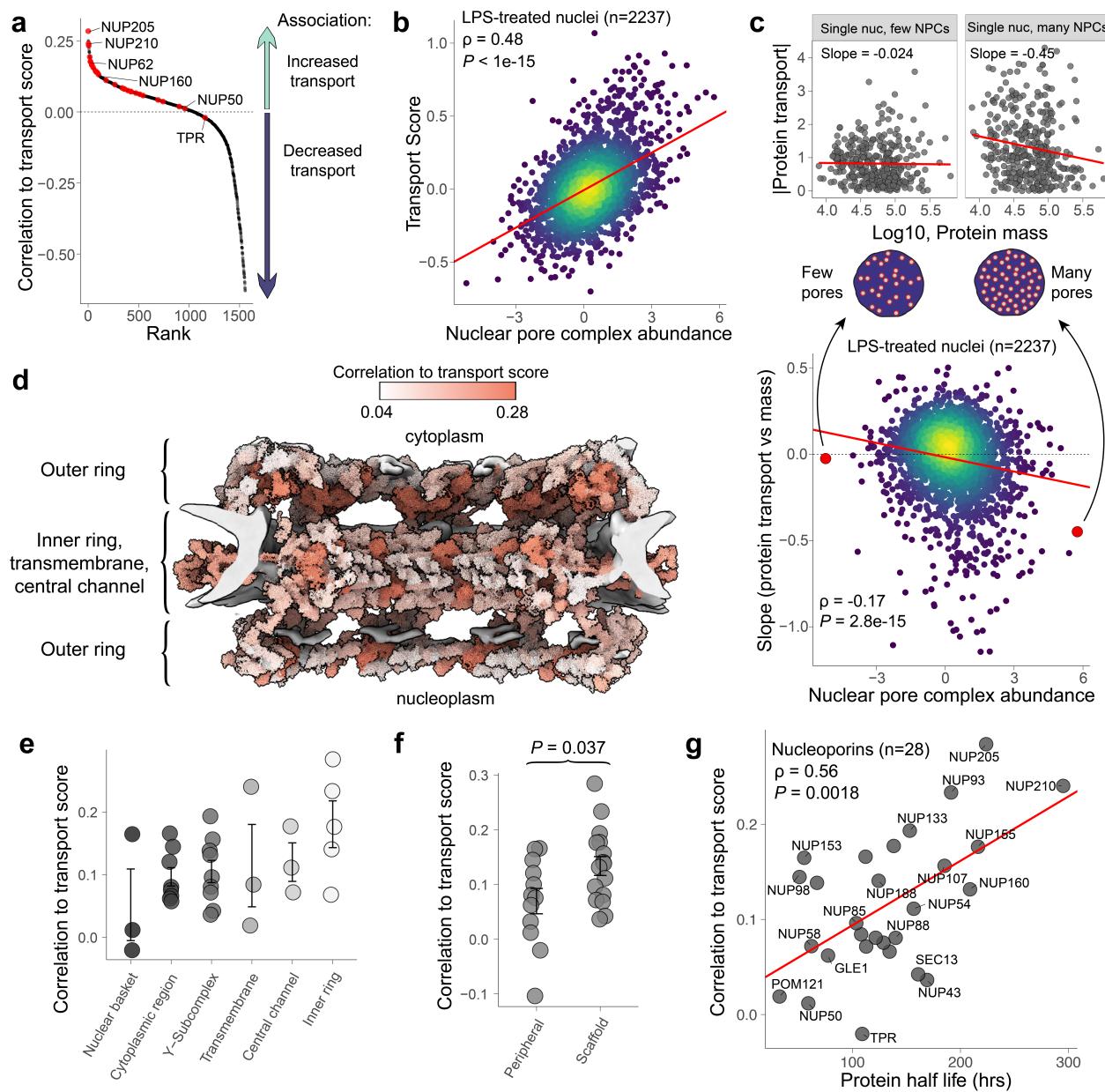


Figure 3 | Nucleoporin abundances and their associations to LPS-induced nucleocytoplasmic transport. **a** Nucleoporins are variably associated with LPS-induced nucleocytoplasmic protein transport. **b** Single nuclei with more nuclear pore complexes experience more LPS-induced nucleocytoplasmic protein transport ($P < 10^{-15}$, $\rho = 0.48$). **c** For each single LPS-treated nucleus, a slope of the absolute value of differentially abundant proteins vs protein mass was computed to quantify mass-dependence of transport for each single nucleus; single nuclei which had the least and greatest abundance of nuclear pore complexes are shown at the top of the panel. The resulting slopes were plotted against their respective nuclear pore complex abundances, as shown at the bottom of the panel. The data suggest protein transport becomes increasingly mass-dependent, favoring transport of smaller proteins, when nuclear pore complex abundances are high ($P < 10^{-14}$, $\rho = -0.17$). **d** Predicted human nuclear pore complex from Mosalaganti *et al.*, with nucleoporins colored by their correlations to transport score. **e** Distribution of each nucleoporin's correlation to transport score grouped by their localization inside the NPC. **f** Distribution of each nucleoporin's correlation to transport score grouped by whether it is a peripheral or scaffold protein in the NPC ($P = 0.037$). **g** Nucleoporins' correlations to transport are associated with their respective half lives (half-life data from Mathieson *et al.*).

increasingly outpaced transport of larger proteins, at least in part as a function of NPC abundance, **Fig. 3c**. Given that passive diffusion is highly mass-dependent, it may suggest that single nuclei with more NPCs experience more passive diffusion, thus providing empirical support for this theoretical expectation.

While the abundances of nearly all nucleoporin proteins correlate positively with transport scores, the magnitude of this correlation varies across nucleoporin proteins, as shown in **Fig. 3a**. To explore this variability, we investigated what might be associated with these differences. To visually inspect the structural dependence of the correlations, the predicted structure of the human nuclear pore complex from Mosalaganti *et al.*⁵³ was colored according to each proteins' correlation to the transport score, **Fig. 3d**. This was investigated more directly by grouping nucleoporins based on their localizations inside the nuclear pore complex, as shown in **Fig. 3e**, and according to whether the nucleoporins were peripheral or scaffold proteins of the NPC⁵⁴, as shown in **Fig. 3f**. The abundances of scaffold proteins were significantly more associated with nucleocytoplasmic transport than peripheral proteins of the NPC ($P = 0.037$). This variation across nucleoporins is further supported by a significant correlation with protein half-lives derived from Mathieson *et al.*'s SILAC turnover data⁵⁴ ($\rho = 0.56$, $P = 0.0018$), as shown in **Fig. 3g**, as scaffold nucleoporins have been reported to have longer half-lives than peripheral nucleoporins^{54,55}. These results suggest the observed variability in each nucleoporins' correlation to transport is significantly associated with the nucleoporin's localization inside the NPC and their respective half-lives.

Targeted perturbations validate the single-nucleus derived associations

Having used single-nucleus proteomics data to infer novel regulators of LPS-induced nucleocytoplasmic protein transport, we aimed to directly test these potential enhancers and suppressors of nucleocytoplasmic transport through targeted perturbations. The highest ranking hypotheses from the single-nucleus proteomics analysis include proteins directly involved in transport such as nucleoporins and ribosomal export proteins such as MDN1⁵⁶. However, many other proteins without functional annotations for protein transport or innate immunity are also highly (anti-)correlated to transport. Perhaps some of these proteins influence LPS-induced protein transport, and these functional associations present discovery opportunities. We sought to test these associations ex-

243 perimentally through directed perturbations using siRNA mediated knock downs.

244 To test potential transport regulators, we chose to knock down 16 proteins spanning the con-
245 tinuum shown in [Fig. 4a](#) and quantified the change in LPS-induced nucleocytoplasmic protein
246 transport. The knockdowns were performed using siRNAs as shown in [Fig. 4b](#), and the de-
247 crease of the corresponding gene products was validated in whole-cell and nuclear bulk lysates, as
248 shown in [Supplementary Fig. 1](#) and [Supplementary Fig. 2](#). To quantify how each knockdown af-
249 fected LPS-induced nucleocytoplasmic protein transport, slopes were calculated from fold-changes
250 (LPS/NT) between the original bulk data and each siRNA condition, using the negative control
251 (non-targeting) siRNA as a reference for each biological replicate, as shown in [Fig. 4b](#). Results for
252 individual biological replicates are shown in [Supplementary Fig. 3](#). With this strategy, we aimed
253 to quantify the global change in nucleocytoplasmic transport as a result of each knockdown.

254 Associating relative protein abundances to function in single cells may serve as a means of
255 inferring regulatory potential. We sought to evaluate the predictive power of these associations
256 by computing the significance of protein correlations to transport from the single-nuclei data and
257 the significance of the change in transport from corresponding knockdowns, [Fig. 4c](#). Indeed, as
258 a result of the knockdowns, protein transport for 13/16 of the conditions was affected in the ex-
259 pected direction. Specifically, knockdowns of potential transport suppressors increased transport
260 in 7/7 cases; knockdowns of potential transport enhancers decreased transport in 6/9 cases. The
261 protein correlations to transport scores from the single-nucleus data were highly predictive of the
262 functional effects of the knockdowns ($\rho = -0.77$, $P < 5 \times 10^{-4}$). The slopes, which were used
263 for determining the change in LPS-induced nucleocytoplasmic transport, were computed from the
264 100 most differentially abundant proteins from the original bulk data. Various filtering levels were
265 applied to examine the robustness of the findings, as shown in [Extended Data Fig. 9](#), and all three
266 levels showed similar trends.

267 Knockdowns of IMMT, RPSA, HSD17B4, SND1, DHX15, and VIM were found to signifi-
268 cantly increase transport, whereas knockdowns of RBM6 and MYBBP1A were found to signifi-
269 cantly reduce transport. Therefore, 8/16 knockdowns significantly changed LPS-induced nucleo-
270 cytoplasmic transport, 7/8 of which changed nucleocytoplasmic transport in the expected direction.
271 The knockdown which most significantly affected transport was IMMT, a mitochondrial protein

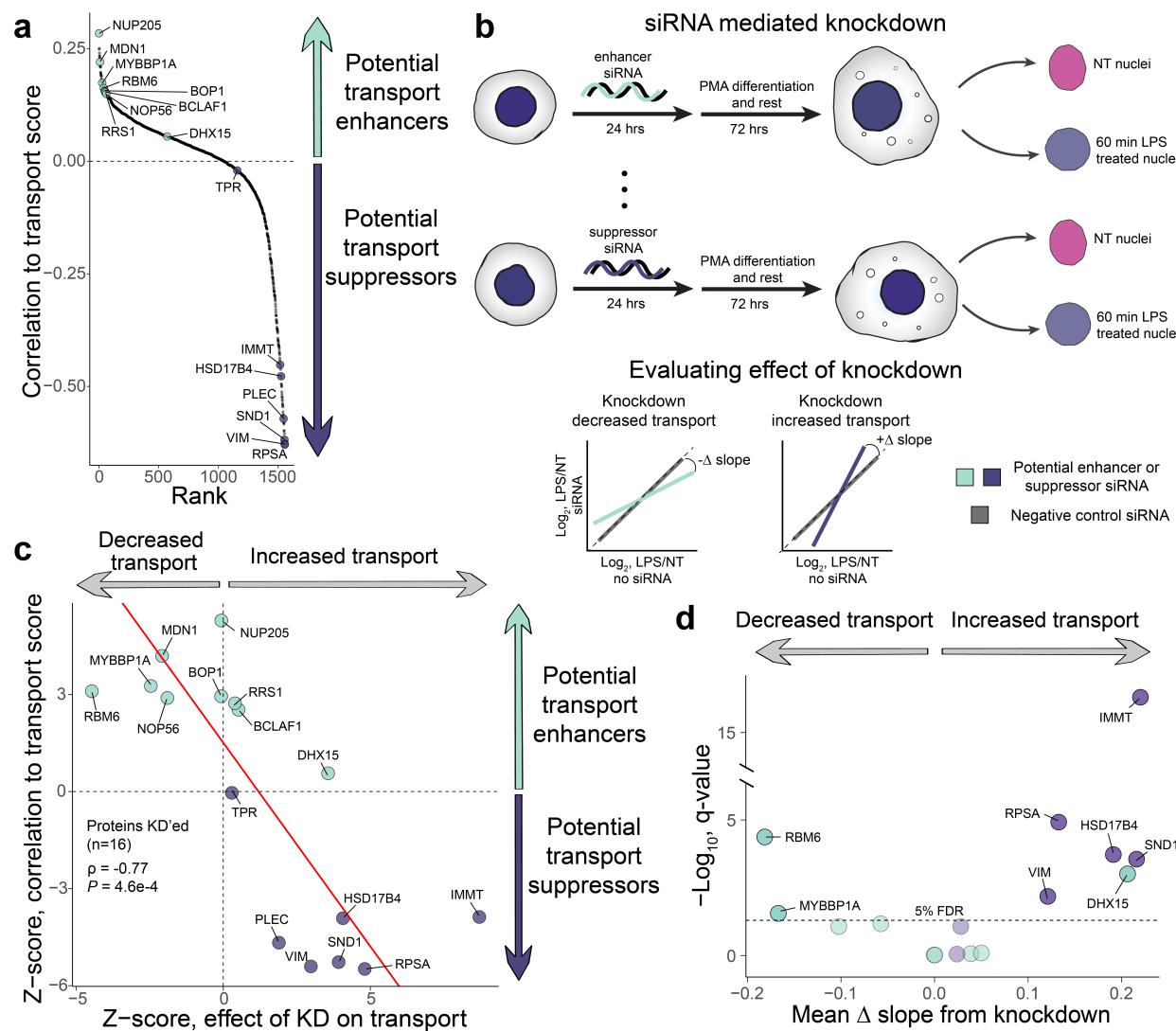


Figure 4 | Genetic perturbations validate single-nucleus-derived protein associations. **a** Correlations of protein abundances to transport score from single-nucleus data. 16 proteins were selected to be knocked-down and colored with green or purple depending on whether it is associated with increased or decreased transport. **b** Workflow for siRNA-mediated knockdowns in THP-1 monocytes, followed by differentiation to macrophages. A negative control (non-targeting) siRNA was included in each biological replicate, and used to compute a change in transport as the result of each siRNA knockdown (KD); change in transport was calculated as the difference in slopes between the negative control siRNA and a gene-targeting siRNA. **c** Here we evaluate the predictive power of the single-nucleus findings through experimental genetic perturbations in bulk data. The biological replicates from the single-nucleus data were used to compute significance of correlations to transport scores, shown on the y-axis; the x-axis measures the significance of how the knockdown affected nucleocytoplasmic protein transport. The single-nucleus associations were highly predictive of the functional effects in genetic perturbations ($P = 0.00046$, $\rho = -0.77$). **d** Significance of how individual gene knockdowns affect nucleocytoplasmic transport. Knockdowns of IMMT, RPSA, HSD17B4, SND1, DHX15, and VIM were found to globally increase LPS-induced nucleocytoplasmic protein transport; knockdowns of RBM6 and MYBBP1A were found to decrease transport.

272 without prior association to innate immunity or nucleocytoplasmic protein transport. Whole-cell
273 lysates of these knockdowns complementarily indicate a gradient of unpreparedness and primed-
274 ness to respond to LPS and facilitate nucleocytoplasmic transport, as shown in [Extended Data](#)
275 [Fig. 10](#). These findings validate the potential of (sub-)single-cell proteomics to identify novel
276 regulators of biological functions.

277 Discussion

278 Identifying functional regulators of complex biological processes is an ongoing challenge in proteomics data interpretation. Here we demonstrate an interpretation approach that exploits the natural
279 variability inherent in a population of single cells to empower inference of functional regulation.
280 It is conceptually similar to the identification of functional regulators through perturbation-induced
281 variability in bulk samples⁵⁷ but instead utilizes the natural variability across individual cells. In
282 our approach, we assumed that the initial proteomic states of single macrophages would explain
283 the variability in LPS-induced nucleocytoplasmic protein transport. Operating under this principle,
284 we quantified a metric (the transport score) from which we could evaluate the influence of resting
285 proteomic variability on this response. We found that simple biophysical constraints, such as the
286 quantity of nuclear pores, partially explain the variance in nucleocytoplasmic transport. Interest-
287 ingly, the abundance of scaffold subunits is more strongly associated with transport rates than the
288 abundance of peripheral subunits, which is consistent with modular and specialised structures of
289 the nuclear pore complex⁵⁸.

290 Beyond the role of nuclear pores, our analysis identified hundreds of additional proteins, many
291 of which without annotated associations to innate immunity or protein transport, yet whose abun-
292 dances were strongly correlated to the magnitude of nucleocytoplasmic protein transport expe-
293 rienced in single cells. We tested these protein-associations through genetic perturbations and
294 found that the associations derived from single-nucleus data were, as a whole, highly predictive
295 of their respective effects on LPS-induced nucleocytoplasmic transport. This work demonstrates
296 an approach which uses (sub-)single cell proteomics to infer functional regulators of complex bio-
297 logical processes, such as LPS-induced nucleocytoplasmic transport. We expect approaches such
298 as this will generalize to broad applications and support the functional interpretation of single-cell

300 proteomics data.

301 **Methods**

302 **Cell culture**

303 THP-1 monocytes (TIB-202, ATCC) were cultured in RPMI-1640 Medium (R8758, Sigma-Aldrich)
304 supplemented with 10% fetal bovine serum (10439016, Gibco) and 1% penicillin-streptomycin
305 (15140122, Gibco) and grown at 37°C and 5% CO₂. Cells were transferred to 100x15mm Nunclon
306 dishes (150350, Thermo Scientific) at a density of approximately 200,000 cells/mL and volume of
307 10 mL. Differentiation proceeded following an established protocol by Lund *et al.*⁵⁹; THP-1 cells
308 were incubated in the presence of 25 nM phorbol 12-myristate 13-acetate (PMA) for 48 hours, then
309 cells were detached with accutase, mixed to prevent any batch-effects resulting from differentia-
310 tion occurring in isolated plates, washed 2-times with PBS, centrifuging at 300g for 5 min to pellet
311 for washes. The cells were then allowed to incubate in growth media without PMA for 24 hours,
312 and in this time reattach to fresh 100x15mm Nunclon dishes. The resulting M0 macrophages were
313 either left not-treated (NT), or treated with 1 μ g/mL lipopolysaccharides from *Escherichia coli*
314 O111:B4 (L4391, MilliporeSigma) for 10 minutes, 30 minutes, or 60 minutes.

315 **Protein knockdowns**

316 Proteins of interest were knocked down via reverse transfection of Silencer siRNAs (Ambion)
317 and Silencer Select siRNAs (Ambion) into THP-1 monocytes using methodology adapted from
318 manufacturer instructions for RNAi transfection. Silencer siRNAs were transfected in 12-well
319 Nunclon plates and Silencer Select siRNAs were transfected in individual 60 mm dishes. For
320 Silencer siRNAs, 10 pmol of siRNA was complexed with 3 μ L of RNAiMAX. For Silencer Select
321 siRNAs, 55 pmol of siRNA was complexed with 17 μ L of RNAiMAX (Invitrogen) in 552 μ L of
322 serum-free RPMI (Sigma) in a 60 mm Nunclon dish (Thermo). siRNAs were complexed with the
323 RNAiMAX lipid reagent for 5 minutes at room temperature. THP-1 monocytes were added in
324 RPMI supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin to reach
325 a final density of 300,000 cells per mL. Samples were cultured at 37°C and 5% CO₂ for 24 hours

326

before adding PMA, at which point the same aforementioned cell culture process was followed.

327

Nuclear isolation

328

Macrophages were detached from Nunclon dishes with accutase on ice for approximately 20 minutes. The cells were washed twice with 1x PBS to remove media, centrifuging at 300g for 5 min each time. The cell concentration was measured with a hemocytometer. 15% of cells were retained as whole-cells for downstream analysis by resuspending the whole-cell pellet in LC-MS-grade water to a concentration of 3,000 cells/ μ L. These whole-cells were then stored at -80°C. The remaining 85% of cells were resuspended in 1 mL of ice-cold Lysis Buffer (0.1% NP-40, 250 mM sucrose, 25 mM KCl, 5 mM MgCl₂, 10 mM HEPES (pH = 7.4)) in a 2 mL Eppendorf tube, and left to lyse on ice for 20 min. At this point in the protocol, the cells are lysed but the nuclei are unlikely to be free from cellular debris and other organelles. To purify the nuclei, the 1 mL nuclei suspension was sheared through a 25G needle with even pressure, avoiding bubbling and foaming as much as possible. The shearing was repeated for a total of 5 times. Nuclei were visually inspected under a microscope with Trypan Blue staining to ensure sufficient shearing of subcellular organelles from nuclei.

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

After nuclei are sufficiently sheared, the suspension was centrifuged at 1000g for 8 min at 4 °C. The nuclear pellet was resuspended in 500 μ L of 250 mM sucrose, 25 mM KCl, 5 mM MgCl₂, 10 mM HEPES (pH = 7.4). The mixture was underlaid with 500 μ L of 350 mM sucrose, 25 mM KCl, 5 mM MgCl₂, 10 mM HEPES (pH = 7.4) to form a sucrose cushion, which was then centrifuged at 4,000g for 10 min (4 °C). The supernatant was removed, and the nuclear pellet was resuspended in 200 μ L of LC-MS water, gently flicking to mix. 4 μ L of nuclei suspension was mixed with 4 μ L of Trypan Blue, then counted with a hemocytometer to find the final concentration. 150 μ L of the bulk nuclei were stored at -80°C. The remaining 50 μ L was diluted to a concentration of roughly 400 nuclei/ μ L and used for single-nuclei sorting and sample preparation by nPOP^{19,50}.

350

Sample preparation for proteomic analysis

351

Bulk samples

352

Nuclei and whole-cell fractions, which were frozen at -80°C at a concentration of 3,000 cells/ μ L, were heated to 90°C for 10 minutes as part of the mPOP protocol⁶⁰. Trypsin Gold (V5280, Promega) was added to a final concentration of 20 ng/ μ L, in addition to final concentrations of 100 mM TEAB and 0.25 U/ μ L benzonase nuclease (E1014, Millipore Sigma). The cell lysates were digested at 37°C for 18 hours in a thermocycler. Samples were labeled with mTRAQ following manufacturer's instructions. In short, the labels, which arrived suspended in isopropyl alcohol at a concentration of 0.05 U/ μ L (where 1 unit labels 100 μ g), were added in a 1:2 proportion of label:peptide where the peptides were concentrated to 500 ng/ μ L in 100 mM TEAB. The labeling reaction was left at room temperature for 2 hours, and then quenched with 0.25% hydroxylamine for 1 hour.

353

354

355

356

357

358

359

360

361

362

Creating a mixed species standard to benchmark SCoPE-DIA

363

Digested protein lysate from THP-1 macrophage nuclei were mixed with digested *S. cerevisiae* protein lysate (V7461, Promega) to generate three samples. The proportions of Sample A ($\Delta 0$):Sample B ($\Delta 4$) was 4:1 for *S. cerevisiae* and 1:1 for *H. sapiens*. The unlabeled versions of these samples were mixed in a 1:1 ratio to generate a carrier sample which was then labeled with mTRAQ $\Delta 8$. Samples A and B were diluted such that the *H. sapiens* amount was 1 nucleus worth of protein (approximately 45 pg). The carrier sample was pooled with Samples A and B at 0x, 1x, 5x, 10x, 25x, and 50x concentrations to generate the SCoPE-DIA benchmarks.

364

365

366

367

368

369

370

Single nuclei

371

Single nuclei were prepared for proteomic analysis by nPOP as previously described by Leduc *et al.*^{19,50}. In short, single-nuclei were sorted by CellenOne into 8 nL droplets of 100% DMSO on a fluorocarbon-coated glass slide to lyse. The lysed nuclei were digested with Trypsin Gold at a concentration of 120 ng/ μ L and 5 mM HEPES (pH 8.5) and 200 mM TEAB buffer (pH 8.5). Peptides were then chemically labeled with mTRAQ $\Delta 0$ or $\Delta 4$. Single nuclei were pooled into

372

373

374

375

376 sets of $\Delta 0$ and $\Delta 4$, and dispensed into individual wells of a 384 well-plate. The pooled samples
377 in the 384 well-plate were then dried in a speed-vacuum then stored at -80°C until use. Before
378 sample loading for LC-MS/MS, a 25x or 50x nuclei carrier labeled with mTRAQ $\Delta 8$ was pooled
379 into each set to create the final $\Delta 0$, $\Delta 4$, and $\Delta 8$ SCoPE-DIA set. Four single-nucleus biological
380 replicates were prepared and acquired, for a total of 3412 single nuclei.

381 **Data acquisition**

382 All single nuclei and bulk samples were resuspended in 0.01% n-Dodecyl β -d-maltoside (DDM)⁶¹
383 with 0.1% formic acid. Sample pickup occurred out of a 384 well-plate for single-nucleus sam-
384 ples, or from glass vials for bulk samples. Peptides were separated for LC-MS acquistion using a
385 Neo Vanquish UHPLC and 25 cm \times 75 μ m IonOpticks Aurora Series UHPLC columns (AUR2-
386 25075C18A) at a flow-rate of 200 nL/min. LC was run with the following settings: Direct Injec-
387 tion, nano/cap flow, maximum pressure = 1500 bar, maximum pressure change = 1000 bar/min.
388 Sample loading had the following settings: 1 μ L injection with 1.2 μ L loading volume, "Pressure
389 Control" mode with maximum pressure set to 1450 bar, and fast loading enabled. Wash and equi-
390 libration settings: "Pressure Control" mode with maximum pressure set to 1450 bar, equilibration
391 factor = 4.0, and fast equilibration was enabled.

392 The LC gradient proceeded as follows: Ramp from 2.5%B to 6.5%B over 0.2 minutes, to
393 11.5%B over 0.9 minutes, to 21.0%B over 3.1 minutes, to 31.5%B over 6.2 minutes, to 40%B over
394 2.8 minutes, to 55%B over 1.7 minutes, to 95%B over 0.65 minutes and then hold at 95%B for 4
395 minutes. This method allows for approximately 15 minutes of active chromatography, at a through-
396 put of approximately 45 runs/day (90 single nuclei/day with SCoPE-DIA or 135 bulk samples/day
397 with plexDIA) after accounting for sample loading and column equilibration overheads.

398 All data were acquired on a Bruker timsTOF SCP using captive spray, dia-PASEF scan mode^{62,63},
399 and positive polarity. The duty cycle consisted of 8 total PASEF frames, 26 Th MS2 windows with
400 1 Th overlaps. To improve temporal sampling of the MS1-elution profiles which are used for quan-
401 tification, an MS1 scan was taken every 2 PASEF frames, for a total of 4 MS1 scans per duty cycle.
402 MS2 scan range: 300 m/z-1000 m/z, MS1 scan range: 100 m/z-1700 m/z, 1/K0 start: 0.64, 1/K0
403 end: 1.20, ramp and accumulation times: 100 ms. The estimated duty cycle time is 1.28 seconds.

404 Collision energy settings were 20 eV at $1/K_0 = 0.60$ and 59 eV at $1/K_0 = 1.60$. Collision RF was
405 set to 2000 Vpp.

406 **Raw data searching with DIA-NN**

407 Empirical spectral libraries of mTRAQ-labeled nuclei and whole-cells were generated from dia-
408 PASEF runs on the timsTOF SCP, searching with a DIA-NN in-silico-predicted Swiss-Prot *H.*
409 *sapiens* FASTA (canonical & isoform). Similarly, a combined *H. sapiens* and *S. cerevisiae* library
410 was generated for searching SCoPE-DIA benchmarks.

411 DIA-NN (version 1.8.1) was used to search raw data as previously implemented^{22,64}. The
412 following search settings were used: `{-fixed-mod mTRAQ 140.0949630177, nK}`, `{-channels`
413 `mTRAQ, 0, nK, 0:0; mTRAQ, 4, nK, 4.0070994:4.0070994; mTRAQ, 8, nK, 8.0141988132:8.0141988132}`,
414 `{-original-mods}`, `{-peak-translation}`, `{-report-lib-info}`, `{-qvalue 0.01}`, `{-mass-acc-ms1 5.0}`,
415 `{-mass-acc 15.0}`, `{-mass-acc-quant 5.0}`, `{-reanalyse}`, `{-rt-profiling}`, and `{-peak-height}`.

416 **Computational data analysis**

417 **Nuclear enrichment**

418 To assess nuclear enrichment, the first two bulk biological replicates were acquired in a plexDIA
419 set of whole-cell and nuclear fractions. The fractions were subset for histones, which should only
420 be present in the nucleus, and both fractions were normalized by a scalar such that histone pro-
421 teins between whole-cells and nuclear fractions were in a 1:1 ratio. Ratios of MaxLFQ protein
422 abundances for protein markers from The Human Protein Atlas for endoplasmic reticulum (ER),
423 nuclear compartments, mitochondria, plasma membrane, cytosol, and Golgi were calculated be-
424 tween nuclear and whole-cell fractions to assess nuclear protein enrichment^{65–67}.

425 **Differential protein abundance analysis**

426 Precursor quantities acquired by plexDIA and analyzed by DIA-NN were corrected for isotopic en-
427 velope carryover, as previously performed²². These precursor quantities were filtered for Lib.PG.Q.Value
428 < 0.01 and Q.Value < 0.01 for bulk data from all six biological replicates and their corresponding

429 nested technical replicates. The bulk data used to generate weights for single-nuclei analyses were
430 taken from cell-batches that corresponded to those single nuclei, in this case, biological replicates
431 1, 2, 3, and 6; the bulk data used for single-nucleus weighting were further filtered for Translated
432 Q-value and Channel Q-value < 0.05.

433 Differential protein abundance was calculated through the MS-Empire workflow³⁸ for each
434 biological replicate. Precursors used for analysis were required to be quantified in at least two
435 replicates per condition. Data normalization was performed using operations from the MS-Empire
436 workflow, as described by Ammar *et al.*³⁸. Differential abundance analysis collapsed precursors to
437 gene-level annotations; this produced p-values calculated after outlier correction for each protein
438 for each biological replicate; Stouffer's method was applied to collapse multiple p-values from
439 several biological replicates to a single combined p-value. Briefly, this involved converting p-
440 values for each protein from each biological replicate to z-scores, multiplying by the sign of the
441 fold-change, summing the signed z-scores, then dividing by the square root of the number of
442 observations for that protein, and finally converting that z-score back to a single p-value for each
443 protein. The resulting p-values were corrected for multiple hypothesis testing using the Benjamini-
444 Hochberg (BH) correction⁶⁸.

445 **Protein set enrichment analysis**

446 Protein set enrichment analysis was performed using the g:GOSt R package^{69,70}. An ordered vector
447 of gene names was used as the input. Results were filtered at 1% FDR, and the relative abundance
448 for the Gene Ontology terms was computed across all samples from the intersect of protein abun-
449 dances to represent the relative abundance of a given Gene Ontology term. Calculating the relative
450 abundance of a Gene Ontology term from the subset of intersected proteins allowed for fairer com-
451 parisons of enrichment between samples. Specifically regarding the analysis of whole-cell bulk
452 knockdowns shown in [Extended Data Fig. 10](#), in some cases this was performed on data in which
453 NT and 60 minute LPS-treated cell-lysates were combined. These samples were experimentally
454 combined for ease of labor and due to the minimal impact of 60 minute LPS-treatment on the
455 whole-cell proteome.

456

Evaluating relationship of protein mass and transport

457

Protein masses were downloaded from Uniprot⁷¹, and matched to proteins which we found significantly increased or decreased in response to LPS (Q-value < 0.05) in nuclear fractions. The absolute value of the \log_2 fold-change was plotted with the mass of the protein to statistically evaluate the relationship between protein mass and the amount of transport that occurred as a result of LPS treatment. Because the masses are purely based on gene-encoded sequences, this analysis does not account for changes in mass as the result of proteolytic cleavage or the transport of protein complexes.

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

Additionally, the dynamics of protein transport were interpolated from the four data points (NT, 10 min, 30 min, and 60 min LPS) using a 3rd degree polynomial for each of the proteins that was found to significantly change in at least one of the conditions relative to NT. A total of 300 time points were predicted from the fit, ranging from 0 to 60 minutes. The proteins were arranged from smallest to largest and a moving median of the absolute value of the \log_2 fold-change from NT was calculated for each time point from that protein's adjacent 40 smaller and 40 larger proteins. In this way, biological differences between proteins could be averaged to generally assess the influence of protein mass on transport kinetics. For each protein's averaged kinetics, the time when half of the total absolute value \log_2 fold-change had occurred was marked. This was plotted against the protein mass and a Spearman correlation was calculated.

474

Benchmarking SCoPE-DIA quantification

475

476

477

478

479

480

481

To benchmark how different levels of carrier affect protein-level quantitation of SCoPE-DIA as shown in [Extended Data Fig. 5f](#), precursors were intersected across all carrier levels, and thus proteins as well; precursor quantities were collapsed to protein-level quantities using MaxLFQ, and then ratio values between $\Delta 0$ and $\Delta 4$ were computed, normalizing *H. sapiens* to a be median-centered at a 1:1 ratio to account for systematic differences in loading amounts, if any exist. To compare quantitation at different carrier levels for all proteins, as shown in [Extended Data Fig. 5f](#), the same process was performed without intersecting.

482

In regards to compression filtering, acquiring single cell (or nucleus) data with a constant,

483 known amount of carrier is useful to identify precursors which have systematically interfered
484 quantification. Precursors which have systematically compressed quantification across all samples
485 relative to the expected carrier amount, are unlikely to be well-quantified and can be removed. To
486 identify which precursors to remove, a ratio for each precursor from the single-nucleus channels to
487 its respective carrier channel was calculated. Precursors with median ratios > 6 -fold greater than
488 the theoretical ratio (e.g. 1:50 is expected for a 50x carrier) were considered to be systematically
489 poorly quantified and were excluded from downstream analyses.

490 **Single-nucleus quality control**

491 To identify which single nuclei were successfully prepared and acquired, precursors were filtered
492 for Channel and Translated Q-values < 0.1 and the number of remaining high quality precursors
493 was counted. Single nuclei with ≥ 50 high quality precursors were retained for downstream anal-
494 ysis as this threshold was sufficiently separable from negative controls. Precursors were required
495 to be quantified in $\geq 1\%$ of single nuclei, and have $< 6x$ ratio compression to be retained for
496 downstream analysis.

497 Single nuclei were further filtered to ensure sufficient depletion of non-nuclear proteins. To
498 quantify the nuclear purity of each single-nucleus, the nuclear proteomes were scaled to a reference
499 bulk nuclear fraction, and compared to a ratio of whole-cell to nuclear fraction. A 3rd degree
500 polynomial was used to fit a curve for each single-nucleus, and an absolute value of the AUC was
501 computed. This value was used to identify single-nuclei which were insufficiently pure. Only
502 single nuclei with AUCs < 5 were used in downstream analyses.

503 **Single-nucleus protein quantification, imputation, and batch correction**

504 Precursor abundances from single nuclei were normalized to their respective carrier channel, which
505 serves as a reference similar to the isobaric SCoPE-MS workflow^{15,24}. For each precursor across
506 all carrier samples, the mean abundance was calculated and used to scale the data of the single
507 nuclei, to be compatible for MaxLFQ protein quantification⁶⁵. The resulting protein-level data of
508 each nucleus was normalized by its respective median protein abundance to account for differences
509 in absolute abundances, then each protein was normalized by the mean abundance across single

510 nuclei. The \log_2 -transformed data was imputed using a weighted kNN approach (k=5), where
511 the weights were proportional to the similarity to its nearest neighbors. Finally, the data was
512 batch-corrected using ComBat^{72,73} to account for mTRAQ label-biases, LC-batches, and biological
513 replicates.

514 **Weighted Principal Component Analysis (PCA)**

515 The variance of single-nucleus protein data was weighted based on protein correlations, bulk dif-
516 ferential abundance, and bulk continuity of spatiotemporal trends. Effectively these weights assign
517 higher variance based on: 1) how correlated a protein's abundance is to other proteins abundances,
518 2) how differentially abundant the protein was in the bulk data, and 3) how continuous the trend
519 was in its spatiotemporal response to LPS.

520 Specifically, the bulk differential abundance data computed from MS-Empire³⁸ analysis had
521 p-values which were converted to signed Z-scores. Using Stouffer's method they were combined
522 for all the bulk biological replicates that correspond to the single-nucleus replicates, in this case,
523 biological replicates 1, 2, 3, and 6. The resulting Z-score for each protein was squared, then used
524 to weight the variance of that protein in the single-nucleus data. Additionally, the inverse of the
525 ranked version of the von-Neuman Ratio (RVN) calculated from bulk data was used to weight
526 the variance of each respective protein in the single-nucleus data.

527 **Computing single-nucleus transport scores**

528 Directly measuring protein transport in a cell using LC-MS/MS was not possible with this experi-
529 mental design as we did not measure the same nucleus before and after LPS stimulation. However,
530 we derived a 'transport score' metric to serve as a substitute which serves to quantify the devi-
531 ation of single LPS-treated nuclei from the population of single NT nuclei. The transport score
532 accounts for pre-existing variability in the not-treated (NT) population of single nuclei for each
533 protein by converting protein abundances for each LPS-treated nucleus to a Z-score in reference
534 to the NT-population. For each nucleus, the resulting vector of Z-scores is weighted based on
535 the signed-Z-scores of the differential protein abundances in the bulk data. Therefore, a protein's
536 contribution to the transport score is weighted by its significance in the bulk data, where more

537 differential proteins carry greater weights. The mean component of the resulting vector of each
538 nucleus is taken as that nucleus' transport score.

539 **Computing protein overlap coefficients between populations of single nuclei**

540 The overlap between the distributions of relative protein abundances between populations of single
541 nuclei was computed to quantify the commonality of protein abundances pre-stimulation and post-
542 LPS stimulation. This overlap coefficient was computed by the overlap function of bayestestR⁷⁴.
543 It is computed by modeling the distribution of relative protein abundances as densities for two
544 populations and then computing the proportion that is shared. For example, a protein that has
545 high-overlap between abundances in NT and LPS-treated populations, is one that is minimally
546 transported relative to its natural variability.

547 **Quantifying nuclear pore complex abundances and dependence on mass**

548 To quantify nuclear pore complex abundances in each single-nucleus, relative abundances of nu-
549 cleoporins were converted to Z-scores and combined for all nucleoporins using Stouffer's method.
550 Mass dependence as a function of NPC abundance was computed for each LPS-treated single-
551 nucleus based on the slopes (protein Z-scores vs \log_{10} -transformed protein mass) of differentially
552 abundant proteins in the single-nucleus data.

553 **Investigating the association between nucleoporin half-lives and their correlations to trans-
554 port score**

555 Half-lives were derived from SILAC turnover data of primary monocytes, NK cells, neurons, hep-
556 atocytes, and B-cells from Mathieson *et al.*⁵⁴. Specifically, the half-lives of all replicates for each
557 cell-type was collapsed to the mean, then the mean of all cell-types was collapsed to a final value,
558 which was used as the half-life in our analysis.

559

Visualizing the nuclear pore complex

560

The predicted structure of the human nuclear pore complex (PDB Entry: 7r5k)⁵³ from Mosalaganti *et al.* was used to visualize the NPC. The nucleoporins were colored by their respective correlations to transport score using ChimeraX (v1.6.1)⁷⁵.

561

562

563

Quantifying the effect of protein knockdowns on transport

564

To quantify how each protein knockdown affected LPS-induced nucleocytoplasmic transport, each biological replicate included a matched negative (non-targeting) siRNA control to account for how much transport would have occurred without the knockdown. A slope was calculated from the 100 most differentially abundant proteins in the original (no knockdown) bulk data to the data for each knockdown. The fold-changes for proteins used for computing these slopes were weighted by their associated Z-score significance of differential abundances from the original bulk data; this serves to weight each protein's contribution to the slope-calculation based on its significance. The difference in slopes between the negative control (non-targeting) siRNA and the knockdown was computed. This difference in slope is interpreted as the extent to which nucleocytoplasmic transport changed as a result of the knockdown. Additionally, the associated standard error of each slope was used between the negative control and experimental knockdown to derive a Z-score for the significance of the difference in transport. Significance from additional biological replicates were combined using Stouffer's method to arrive at a cumulative Z-score. To assess the significance of the effect on transport of individual knockdowns, this Z-score was converted to a p-value and adjusted for multiple testing hypotheses using a BH-correction.

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

Calculating significance of correlation to transport score

580

To derive a metric for the significance of protein correlations to the transport score, a rank-based normalization approach (Rankit) was used to transform the correlations into a standard normal distribution. The resulting Z-scores were combined using Stouffer's method to arrive at a final Z-score for each protein, as shown on the y-axis of Fig. 4c. This approach was chosen as an alternative to a traditional Z-score operation given that the distribution of correlations to transport

581

582

583

584

585

scores were non-Gaussian and have a skewed tail.

586

Availability

587

All data are reported and deposited in accordance with the community guidelines¹³. Raw data, 588 spectral libraries, FASTAs, and DIA-NN search outputs are available at MassIVE: [MSV000094829](https://www.ebi.ac.uk/msv/resource/MSV000094829). 589 Code, processed data, supporting files, supplementary figures, and interactive supplementary analyses (e.g. volcano plots and time-series data) are available at scp.slavovlab.net/Derks_et_al_2024. 590

591

Acknowledgments: We thank H. Specht, R. Huffman, A. Petelski, D. Perlman, and E. Emmott for 592 discussions pertaining to experimental methodology for single-nucleus proteomics. We thank M. 593 Rout and T. Eeuwen for thoughtful discussions regarding nuclear pore complexes. And finally, we 594 thank I. Zanoni and M. Di Gioia for discussions regarding LPS-response in macrophages and early 595 experimental work. The work was funded by an Allen Distinguished Investigator award through 596 The Paul G. Allen Frontiers Group to N.S., a Bits to Bytes award from MLSC to N.S., an NIGMS 597 award R01GM144967 to N.S., and a MIRA award from the NIGMS of the NIH (R35GM148218) 598 to N.S.

599

Competing interests: N.S. is a founding director and CEO of Parallel Squared Technology Institute, 600 which is a nonprofit research institute.

601

Author contributions

602

Experimental design: J.D., T.J., and N.S.

603

Data analysis: J.D.

604

LC-MS/MS: J.D. and T.J.

605

Sample preparation: J.D., T.J., A.L., L.K., S.K., and M.R.

606

Raising funding: N.S.

607

Supervision: N.S.

608

Initial draft: J.D., T.J., and N.S.

609

Writing: All authors approved the final manuscript.

610

References

1. Macosko, E. Z. *et al.* Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. *Cell* **161**, 1202–1214 (2015).
2. Slavov, N. Scaling Up Single-Cell Proteomics. *Molecular & Cellular Proteomics* **21**, 100179 (2022).
3. Quake, S. R. A decade of molecular cell atlases.
4. Symmons, O. & Raj, A. What's Luck Got to Do with It: Single Cells, Multiple Fates, and Biological Nondeterminism. *Molecular cell* **62**, 788–802 (2016).
5. Slavov, N. Unpicking the proteome in single cells. *Science* **367**, 512–513 (2020).
6. Weinreb, C., Wolock, S., Tusi, B. K., Socolovsky, M. & Klein, A. M. Fundamental limits on dynamic inference from single-cell snapshots. *Proceedings of the National Academy of Sciences* **115**, E2467–E2476 (2018).
7. Leduc, A., Harens, H. & Slavov, N. Modeling and interpretation of single-cell proteogenomic data. *arXiv*. eprint: [2308.07465](https://arxiv.org/abs/2308.07465) (2023).
8. Slavov, N. Learning from natural variation across the proteomes of single cells. *PLOS Biology* **20**, 1–4 (Jan. 2022).
9. Kelly, R. T. Single-Cell Proteomics: Progress and Prospects. *Molecular & Cellular Proteomics* (2020).
10. Peters-Clarke, T. M. *et al.* Boosting the Sensitivity of Quantitative Single-Cell Proteomics with Infrared-Tandem Mass Tags. *J. Proteome Res.* (May 2024).
11. Peters-Clarke, T. M., Coon, J. J. & Riley, N. M. Instrumentation at the Leading Edge of Proteomics. *Analytical Chemistry*.
12. Slavov, N. Driving Single Cell Proteomics Forward with Innovation. *Journal of Proteome Research* **20**, 4915–4918 (2021).
13. Gatto, L. *et al.* Initial recommendations for performing, benchmarking, and reporting single-cell proteomics experiments. *Nat. Methods* **20**, 375–386 (2023).
14. Slavov, N. Single-cell protein analysis by mass spectrometry. *Current Opinion in Chemical Biology* **60**, 1–9 (2020).
15. Specht, H. *et al.* Single-cell proteomic and transcriptomic analysis of macrophage heterogeneity using SCoPE2. *Genome Biology* **22**, 50. (2021) (Jan. 2021).
16. Cong, Y. *et al.* Ultrasensitive single-cell proteomics workflow identifies > 1000 protein groups per mammalian cell. *Chemical Science* (2020).

642 17. Huffman, R. G. *et al.* Prioritized mass spectrometry increases the depth, sensitivity and
643 data completeness of single-cell proteomics. en. *Nature Methods* **20**, 714–722. (2024) (May
644 2023).

645 18. Thielert, M. *et al.* Robust dimethyl-based multiplex-DIA doubles single-cell proteome depth
646 via a reference channel. *Mol. Syst. Biol.* **19**, e11503 (Sept. 2023).

647 19. Leduc, A., Huffman, R. G., Cantlon, J., Khan, S. & Slavov, N. Exploring functional protein
648 covariation across single cells using nPOP. *Genome Biology* **23**, 261. (2023) (Dec. 2022).

649 20. Orsburn, B. C., Yuan, Y. & Bumpus, N. N. Insights into protein post-translational modi-
650 fication landscapes of individual human cells by trapped ion mobility time-of-flight mass
651 spectrometry. en. *Nature Communications* **13**, 7246. (2024) (Nov. 2022).

652 21. Papalexis, E. & Satija, R. Single-cell RNA sequencing to explore immune cell heterogeneity.
653 en. *Nature Reviews Immunology* **18**, 35–45. (2024) (Jan. 2018).

654 22. Derkx, J. *et al.* Increasing the throughput of sensitive proteomics by plexDIA. en. *Nat. Biotech-*
655 *nol.* (July 2022).

656 23. Derkx, J. & Slavov, N. Strategies for increasing the depth and throughput of protein analysis
657 by plexDIA. *Journal of Proteome Research* **22**, 697–705 (2023).

658 24. Budnik, B., Levy, E., Harmange, G. & Slavov, N. SCoPE-MS: mass spectrometry of sin-
659 gle mammalian cells quantifies proteome heterogeneity during cell differentiation. *Genome*
660 *Biology* **19**, 161. (2024) (Oct. 2018).

661 25. Specht, H. & Slavov, N. Optimizing Accuracy and Depth of Protein Quantification in Ex-
662 periments Using Isobaric Carriers. *Journal of Proteome Research* **20**, 880–887. (2021) (Jan.
663 2021).

664 26. Welter, A. S. *et al.* Combining data independent acquisition with spike-in SILAC (DIA-SiS)
665 improves proteome coverage and quantification. *bioRxiv* (2024).

666 27. Van Bentum, M. *et al.* *Spike-in enhanced phosphoproteomics uncovers synergistic signaling*
667 *responses to MEK inhibition in colon cancer cells* en. May 2024. (2024).

668 28. Tay, S. *et al.* Single-cell NF- κ B dynamics reveal digital activation and analogue information
669 processing. *Nature* **466**, 267–271 (2010).

670 29. Son, M. *et al.* Spatiotemporal NF- κ B dynamics encodes the position, amplitude, and duration
671 of local immune inputs. *Sci Adv* **8**, eabn6240 (Sept. 2022).

672 30. Levy, E. & Slavov, N. Single cell protein analysis for systems biology. *Essays In Biochem-*
673 *istry* **62** (4 2018).

674 31. Wang, A. G., Son, M., Kenna, E., Thom, N. & Tay, S. NF- κ B memory coordinates transcrip-
675 tional responses to dynamic inflammatory stimuli. *Cell reports* **40** (2022).

676 32. Zhang, Q. *et al.* NF- κ B dynamics discriminate between TNF doses in single cells. *Cell sys-*
677 *tems* **5**, 638–645 (2017).

678 33. Lee, R. E. C., Walker, S. R., Savery, K., Frank, D. A. & Gaudet, S. Fold change of nuclear
679 NF-B determines TNF-induced transcription in single cells. eng. *Molecular Cell* **53**, 867–879
680 (Mar. 2014).

681 34. Noursadeghi, M. *et al.* Quantitative imaging assay for NF- κ B nuclear translocation in
682 primary human macrophages. eng. *Journal of Immunological Methods* **329**, 194–200 (Jan.
683 2008).

684 35. Sakai, N. *et al.* Direct Visualization of the Translocation of the -Subspecies of Protein Kinase
685 C in Living Cells Using Fusion Proteins with Green Fluorescent Protein. *Journal of Cell
686 Biology* **139**, 1465–1476. (2024) (Dec. 1997).

687 36. Wang, Y., Shyy, J. Y.-J. & Chien, S. Fluorescence Proteins, Live-Cell Imaging, and Mechanobi-
688 ology: Seeing Is Believing. en. *Annual Review of Biomedical Engineering* **10**, 1–38. (2024)
689 (Aug. 2008).

690 37. Krishnaswami, S. R. *et al.* Using single nuclei for RNA-seq to capture the transcriptome of
691 postmortem neurons. en. *Nature Protocols* **11**, 499–524. (2024) (Mar. 2016).

692 38. Ammar, C., Gruber, M., Csaba, G. & Zimmer, R. MS-EmpiRe Utilizes Peptide-level Noise
693 Distributions for Ultra-sensitive Detection of Differentially Expressed Proteins[S]. English.
694 *Molecular & Cellular Proteomics* **18**, 1880–1892. (2024) (Sept. 2019).

695 39. Bartels, R. The Rank Version of von Neumann’s Ratio Test for Randomness. *Journal of the
696 American Statistical Association* **77**, 40–46. (2024) (1982).

697 40. Ghavami, A., van der Giessen, E. & Onck, P. R. Energetics of Transport through the Nuclear
698 Pore Complex. *PLoS ONE* **11**, e0148876. (2024) (Feb. 2016).

699 41. Wing, C. E., Fung, H. Y. J. & Chook, Y. M. Karyopherin-mediated nucleocytoplasmic trans-
700 port. en. *Nature Reviews Molecular Cell Biology* **23**, 307–328. (2024) (May 2022).

701 42. Kemerer, O. & Peters, R. Permeability of single nuclear pores. *Biophysical Journal* **77**, 217–
702 228. (2024) (July 1999).

703 43. Paci, G., Zheng, T., Caria, J., Zilman, A. & Lemke, E. A. Molecular determinants of large
704 cargo transport into the nucleus. *eLife* **9** (eds Singer, R. H. & Pfeffer, S. R.) e55963. (2024)
705 (July 2020).

706 44. Timney, B. L. *et al.* Simple rules for passive diffusion through the nuclear pore complex.
707 *Journal of Cell Biology* **215**, 57–76. (2023) (Oct. 2016).

708 45. Zhou, H.-R., Islam, Z. & Pestka, J. J. Kinetics of lipopolysaccharide-induced transcription
709 factor activation/inactivation and relation to proinflammatory gene expression in the murine
710 spleen. *Toxicology and Applied Pharmacology* **187**, 147–161. (2024) (Mar. 2003).

711 46. Ochi, T. *et al.* PAXX, a paralog of XRCC4 and XLF, interacts with Ku to promote DNA
712 double-strand break repair. *Science (New York, N.Y.)* **347**, 185–188. (2024) (Jan. 2015).

713 47. Xing, M. *et al.* Interactome analysis identifies a new parologue of XRCC4 in non-homologous
714 end joining DNA repair pathway. en. *Nature Communications* **6**, 6233. (2024) (Feb. 2015).

715 48. Liu, X., Shao, Z., Jiang, W., Lee, B. J. & Zha, S. PAXX promotes KU accumulation at DNA
716 breaks and is essential for end-joining in XLF-deficient mice. *Nature Communications* **8**,
717 13816. (2024) (Jan. 2017).

718 49. McCloskey, A., Ibarra, A. & Hetzer, M. W. Tpr regulates the total number of nuclear pore
719 complexes per cell nucleus. *Genes & Development* **32**, 1321–1331. (2023) (Oct. 2018).

720 50. Leduc, A., Koury, L., Cantlon, J. & Slavov, N. *Massively parallel sample preparation for*
721 *multiplexed single-cell proteomics using nPOP* en. Nov. 2023. (2024).

722 51. Petelski, A. A. *et al.* Multiplexed single-cell proteomics using SCoPE2. *Nature Protocols* **16**,
723 5398–5425 (2021).

724 52. Van Bergen, N. J. *et al.* Pathogenic variants in nucleoporin TPR (translocated promoter re-
725 gion, nuclear basket protein) cause severe intellectual disability in humans. *Human Molecu-
726 lar Genetics* **31**, 362–375. (2024) (Feb. 2022).

727 53. Mosalaganti, S. *et al.* AI-based structure prediction empowers integrative structural analysis
728 of human nuclear pores. *Science* **376**, eabm9506. (2024) (June 2022).

729 54. Mathieson, T. *et al.* Systematic analysis of protein turnover in primary cells. *Nature Commu-
730 nications* **9**, 689. (2024) (Feb. 2018).

731 55. Savas, J. N., Toyama, B. H., Xu, T., Yates, J. R. & Hetzer, M. W. Extremely Long-lived
732 Nuclear Pore Proteins in the Rat Brain. *Science (New York, N.y.)* **335**, 942. (2024) (Feb.
733 2012).

734 56. Raman, N., Weir, E. & Müller, S. The AAA ATPase MDN1 Acts as a SUMO-Targeted Regu-
735 lator in Mammalian Pre-ribosome Remodeling. English. *Molecular Cell* **64**, 607–615. (2024)
736 (Nov. 2016).

737 57. Schink, S., Ammar, C., Chang, Y.-F., Zimmer, R. & Basan, M. Analysis of proteome adap-
738 tation reveals a key role of the bacterial envelope in starvation survival. *Molecular Systems
739 Biology* **18**, e11160. (2024) (Dec. 2022).

740 58. Ori, A. *et al.* Cell type-specific nuclear pores: a case in point for context-dependent sto-
741 chiometry of molecular machines. *Molecular systems biology* **9**, 648 (2013).

742 59. Lund, M. E., To, J., O'Brien, B. A. & Donnelly, S. The choice of phorbol 12-myristate
743 13-acetate differentiation protocol influences the response of THP-1 macrophages to a pro-
744 inflammatory stimulus. *Journal of Immunological Methods* **430**, 64–70. (2023) (Mar. 2016).

745 60. Specht, H. *et al.* Automated sample preparation for high-throughput single-cell proteomics
746 en. Aug. 2018. (2022).

747 61. Dou, M. *et al.* Automated Nanoflow Two-Dimensional Reversed-Phase Liquid Chromatogra-
748 phy System Enables In-Depth Proteome and Phosphoproteome Profiling of Nanoscale Sam-
749 ples. *Analytical Chemistry* **91**, 9707–9715. (2024) (Aug. 2019).

750 62. Meier, F. *et al.* diaPASEF: parallel accumulation–serial fragmentation combined with data-
751 independent acquisition. en. *Nature Methods* **17**, 1229–1236. (2024) (Dec. 2020).

752 63. Demichev, V. *et al.* dia-PASEF data analysis using FragPipe and DIA-NN for deep pro-
753 teomics of low sample amounts. en. *Nature Communications* **13**, 3944. (2024) (July 2022).

754 64. Demichev, V., Messner, C. B., Vernardis, S. I., Lilley, K. S. & Ralser, M. DIA-NN: neural
755 networks and interference correction enable deep proteome coverage in high throughput.
756 *Nature methods* **17**, 41–44 (2020).

757 65. Cox, J. *et al.* Accurate Proteome-wide Label-free Quantification by Delayed Normalization
758 and Maximal Peptide Ratio Extraction, Termed MaxLFQ. *Molecular & Cellular Proteomics*
759 : *MCP* **13**, 2513–2526. (2022) (Sept. 2014).

760 66. Thul, P. J. & Lindskog, C. The human protein atlas: A spatial map of the human proteome.
761 *Protein Science : A Publication of the Protein Society* **27**, 233–244. (2021) (Jan. 2018).

762 67. Pontén, F., Jirström, K. & Uhlen, M. The Human Protein Atlas—a tool for pathology. en.
763 *The Journal of Pathology* **216**, 387–393. (2008) (2008).

764 68. Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A Practical and Power-
765 ful Approach to Multiple Testing. *Journal of the Royal Statistical Society. Series B (Method-
766 ological)* **57**, 289–300. (2004) (1995).

767 69. Reimand, J., Kull, M., Peterson, H., Hansen, J. & Vilo, J. g:Profiler—a web-based toolset for
768 functional profiling of gene lists from large-scale experiments. en. *Nucleic Acids Research*
769 **35**, W193–W200. (2007) (July 2007).

770 70. Kolberg, L. *et al.* g:Profiler—interoperable web service for functional enrichment analysis
771 and gene identifier mapping (2023 update). en. *Nucleic Acids Research* **51**, W207–W212.
772 (2023) (July 2023).

773 71. The UniProt Consortium. UniProt: the Universal Protein Knowledgebase in 2023. *Nucleic
774 Acids Research* **51**, D523–D531. (2023) (Jan. 2023).

775 72. Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data
776 using empirical Bayes methods. eng. *Biostatistics (Oxford, England)* **8**, 118–127 (Jan. 2007).

777 73. Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package
778 for removing batch effects and other unwanted variation in high-throughput experiments.
779 *Bioinformatics* **28**, 882–883. (2012) (Mar. 2012).

780 74. Makowski, D., Ben-Shachar, M. S. & Lüdecke, D. bayestestR: Describing Effects and their
781 Uncertainty, Existence and Significance within the Bayesian Framework. en. *Journal of Open
782 Source Software* **4**, 1541. (2019) (Aug. 2019).

783 75. Goddard, T. D. *et al.* UCSF ChimeraX: Meeting modern challenges in visualization and
784 analysis. en. *Protein Science* **27**, 14–25. (2018).

785

Extended Data Figures

786

Single-nucleus proteomics identifies regulators of protein transport

788

Jason Derks,^{1,2,✉} Tobias Jonson,¹ Andrew Leduc,¹ Saad Khan,¹ Luke Khoury,¹
789 Mahmoud-Reza Rafiee,¹ Nikolai Slavov^{1,2,✉}

790

¹Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Center, Northeastern University, Boston, MA 02115, USA

791

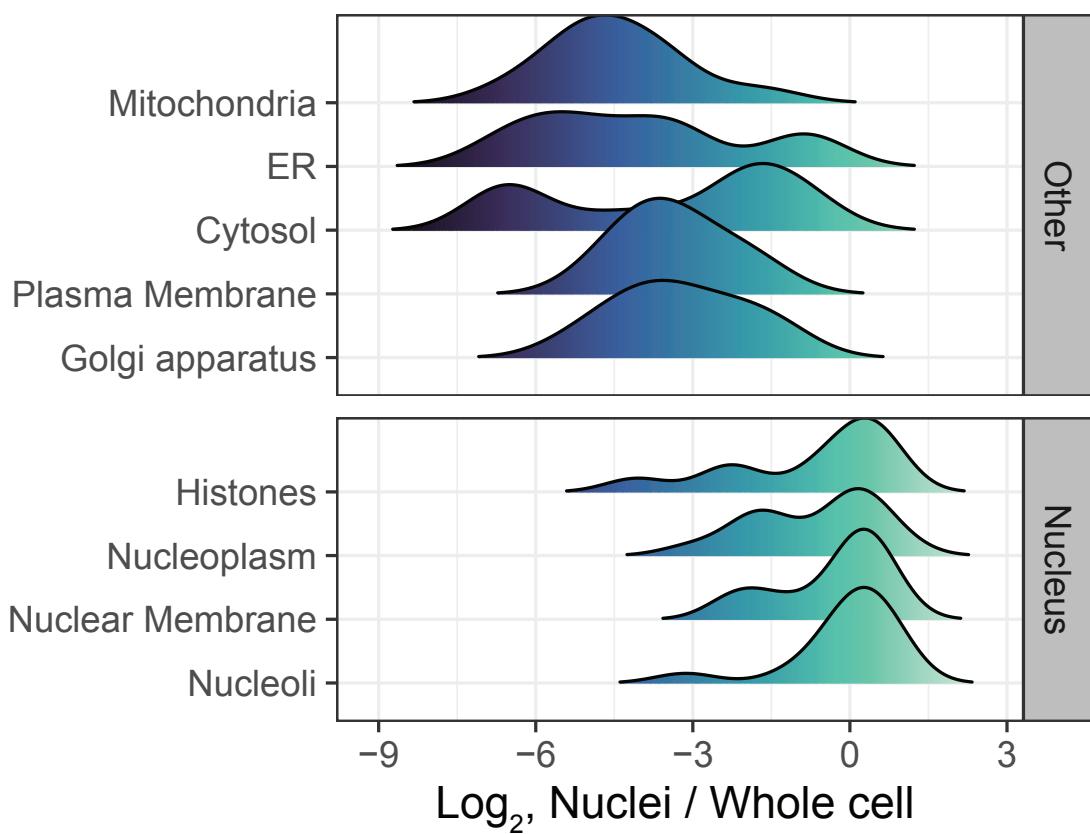
²Parallel Squared Technology Institute, Watertown, MA 02472, USA

792

∈ Data, code & protocols: scp.slavovlab.net

793

794



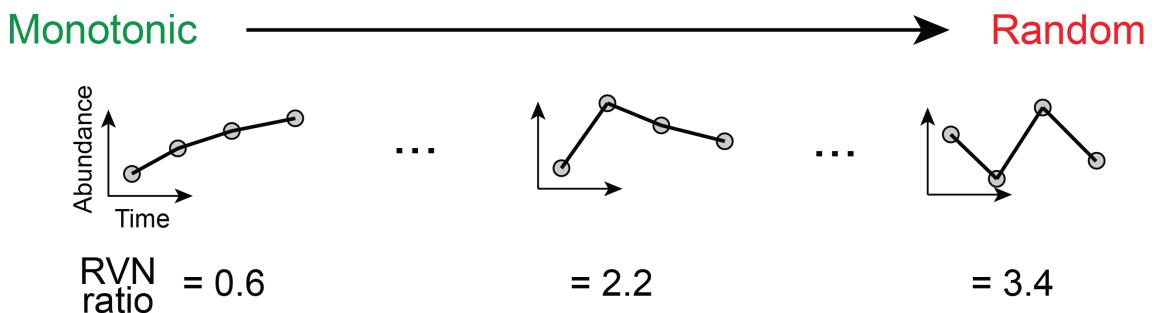
Extended Data Fig. 1 | Evaluating nuclear enrichment of bulk samples. Proteins markers from The Human Protein Atlas were used to benchmark the enrichment of nuclear proteins, and the depletion of non-nuclear proteins in nuclear lysate relative to whole-cell lysate.

a

Evaluating time-series trends
with Bartel's rank test

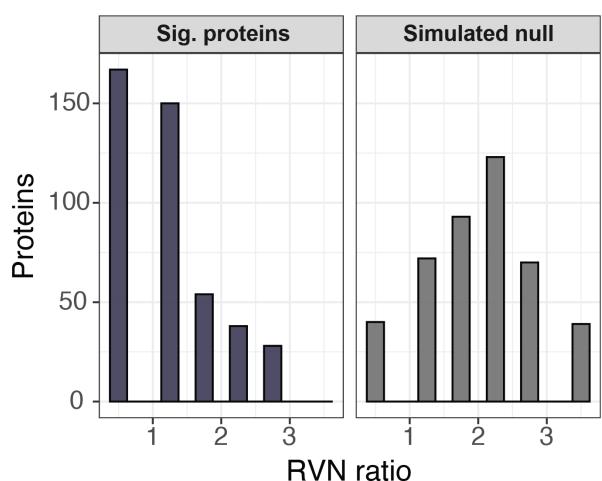
$$RVN \text{ ratio} = \frac{\sum_{i=1}^{n-1} (R_i - R_{i+1})^2}{\sum_{i=1}^n (R_i - (n+1)/2)^2}$$

R = ranked abundance
 n = total number of data points
 i = data point in the time - series



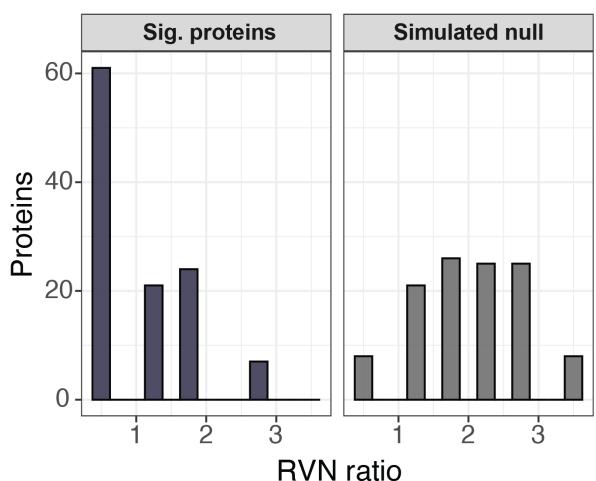
b

Nuclei

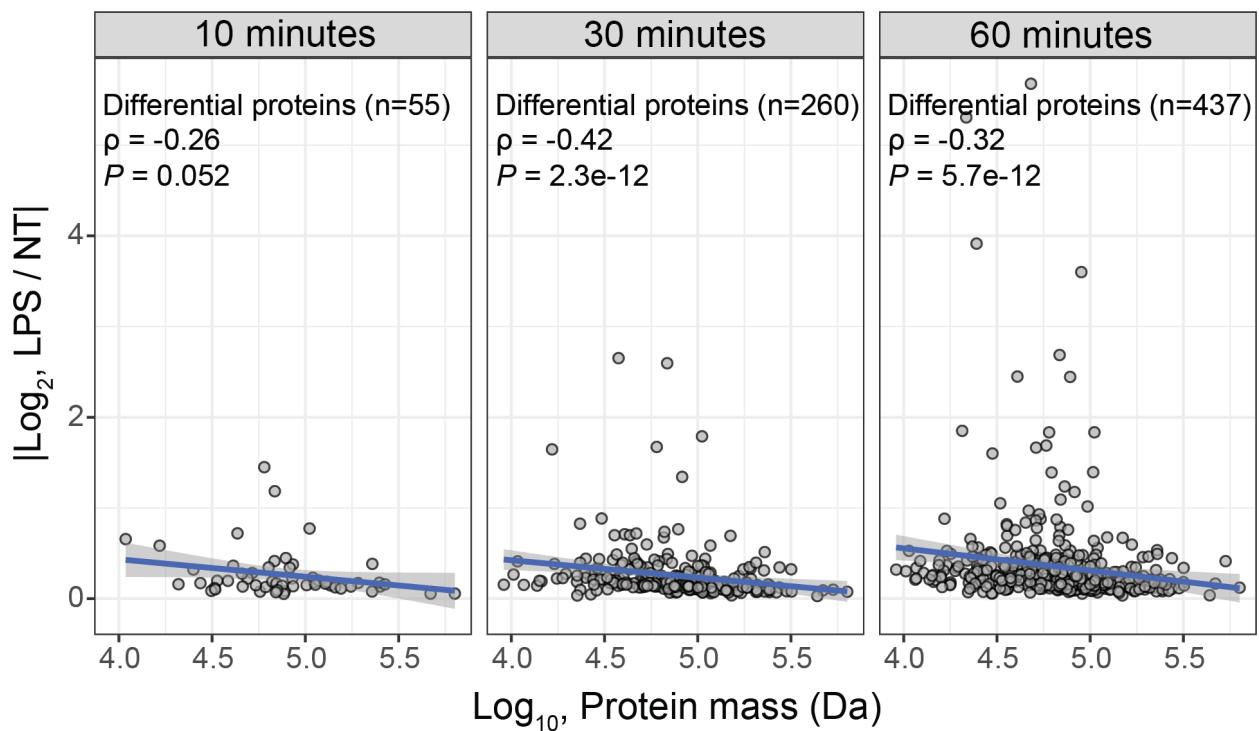


c

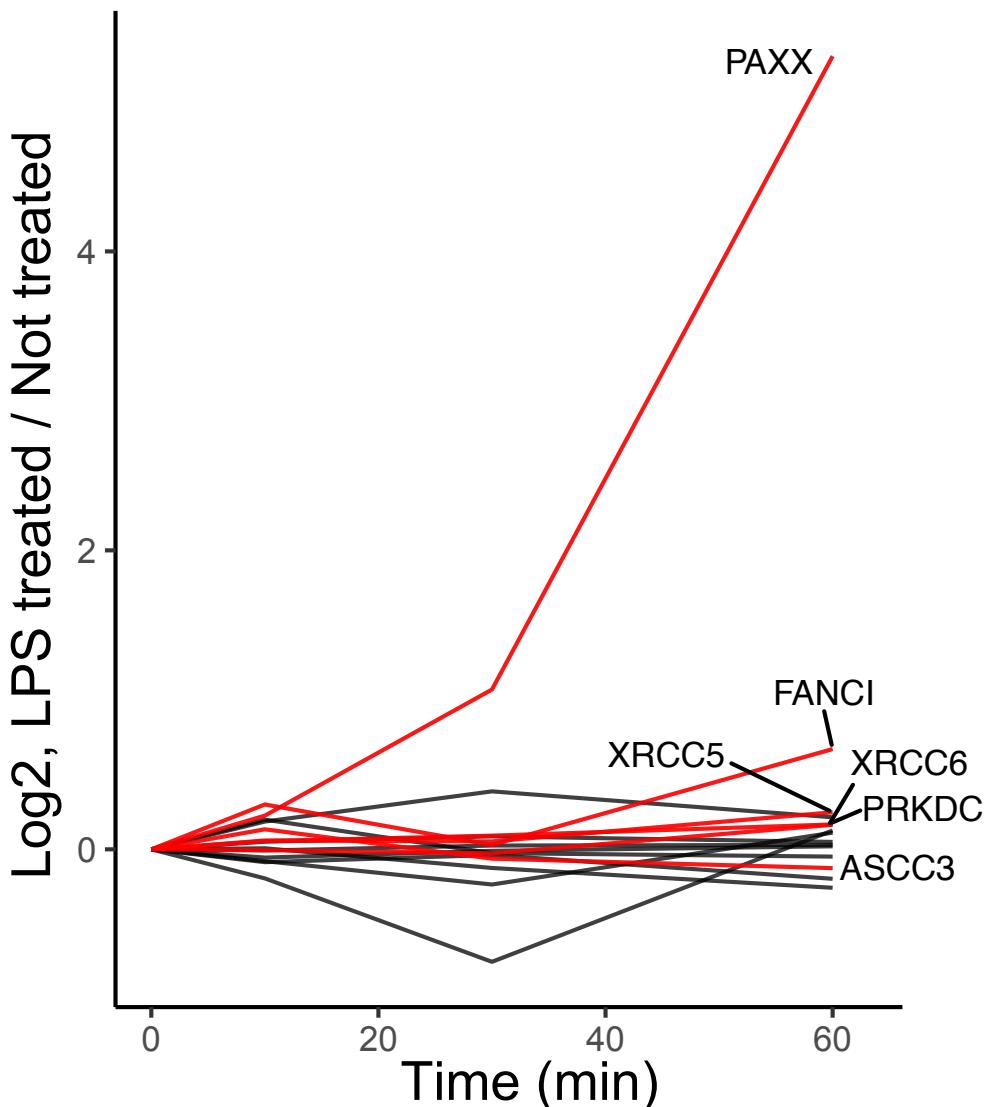
Whole-cells



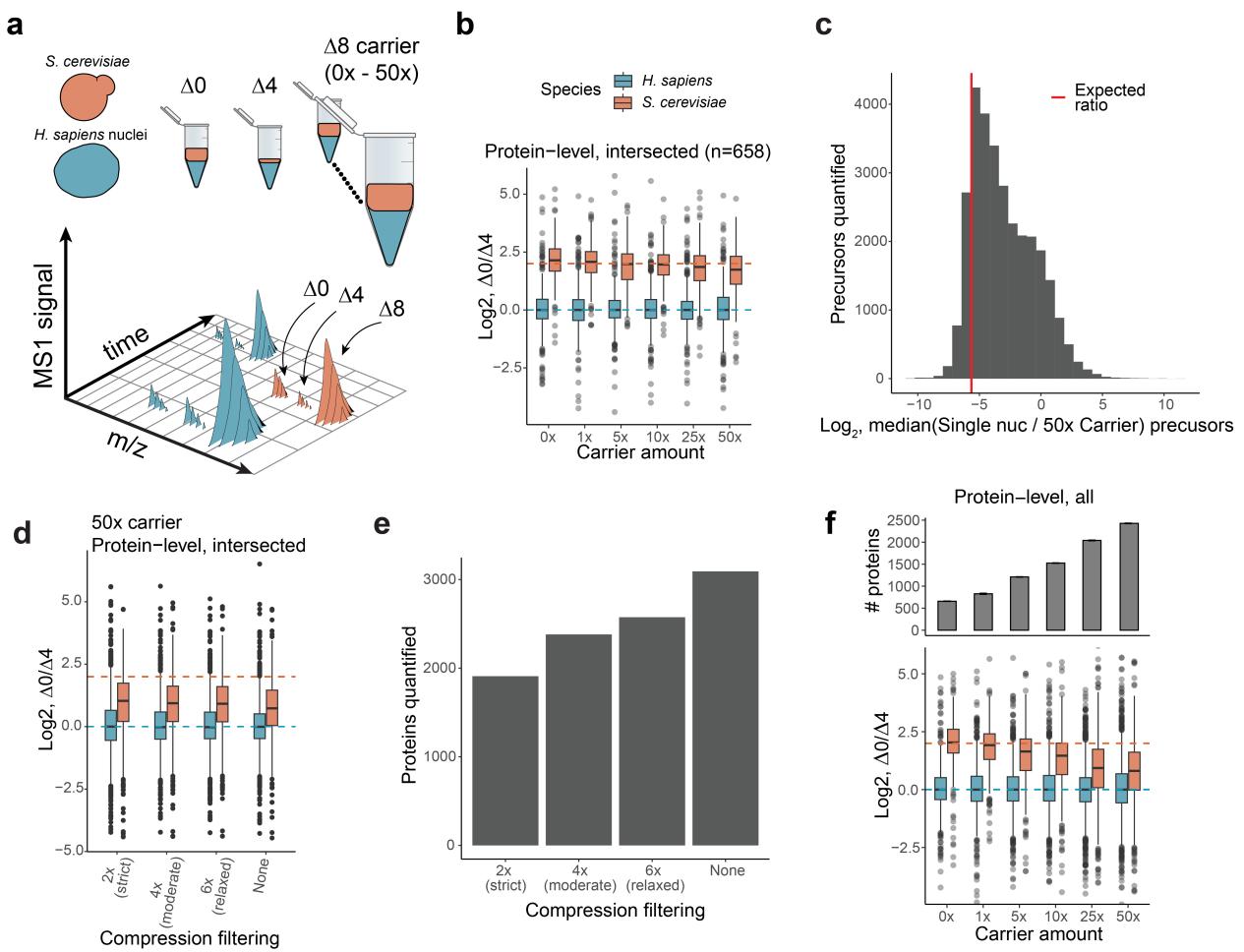
Extended Data Fig. 2 | Assessing the continuity of time-series data for LPS-induced differentially abundant proteins. **a** Calculation for the ranked version of von Neumann's ratio (RVN). **b** Distribution of RVN ratios for differentially abundant proteins (5% FDR) in nuclei ("Sig. proteins") compared to a simulated null model. **c** Same as **b**, but for whole-cells.



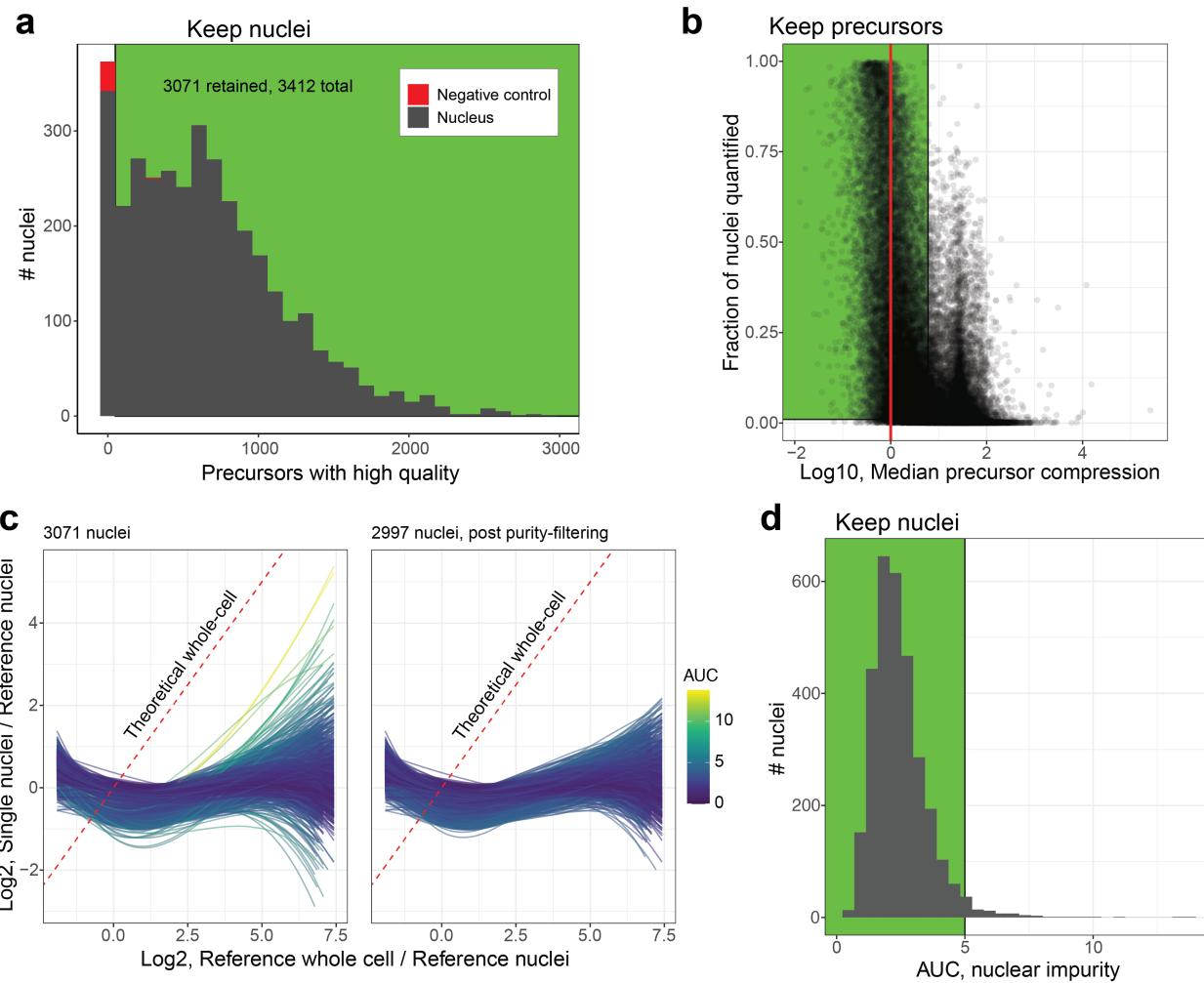
Extended Data Fig. 3 | Fold-change of LPS-induced protein transport is mass-dependent. Absolute value fold-changes between LPS-treated and NT nuclear proteomes, and molecular masses are plotted for differentially abundant proteins (5% FDR). Smaller proteins tend to have greater fold-changes than larger proteins. Spearman correlations and associated statistical significance are noted.



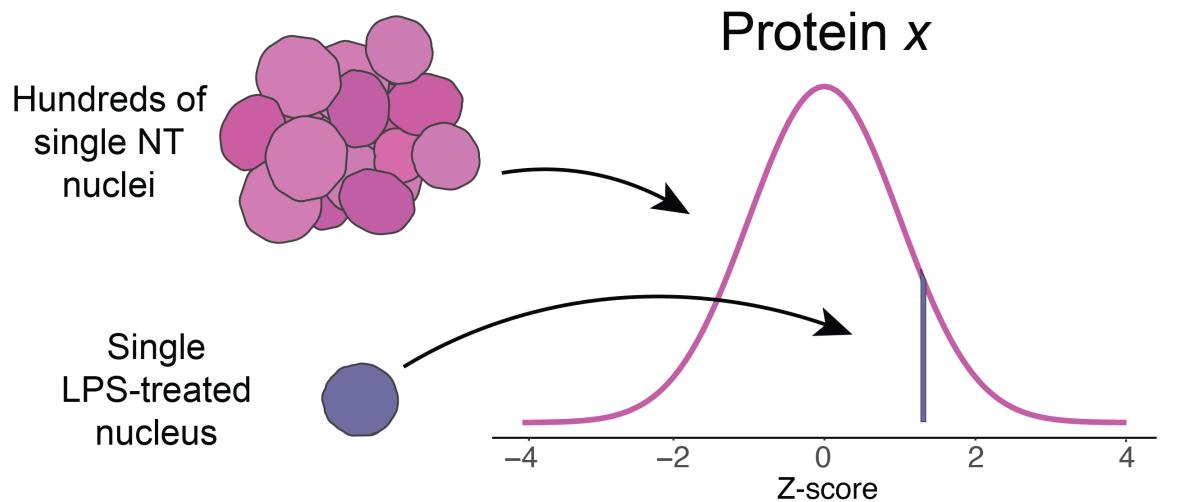
Extended Data Fig. 4 | Change in the nuclear abundance of proteins associated with DNA repair complex in response to 1 μ g/mL LPS. Time series trends of DNA repair complex proteins computed from up to 6 bulk biological replicates. Proteins shown in red are differentially abundant at 5% FDR, otherwise they are shown in black.



Extended Data Fig. 5 | Benchmarking SCoPE-DIA for single nucleus proteomics. **a** We sought to test whether acquiring single nucleus data in parallel with a more abundant carrier sample may improve protein coverage with minimal effect to quantitative accuracy. To test this, a mixed-species spike-in of 4:1 *S. cerevisiae* and 1:1 *H. sapiens* was created at 0x, 1x, 5x, 10x, 25x, and 50x carrier amounts. **b** Quantitative accuracy of proteins quantified across all carrier-levels (n=658) remains accurate despite the potential for increased interference. Dashed lines correspond to the theoretical expectation of the spike-in ratio. **c** Median ratios of precursor abundances to the carrier were computed and plotted as a histogram. Precursors with systematically compressed ratios from the theoretical expectation of the carrier level (e.g. 1:50) are likely poorly quantified, and were removed from downstream analysis. **d** Quantitative accuracy for intersected proteins at 4 filtering thresholds with the 50x carrier. Filtering precursors based on observed compression relative to the carrier improves quantitative accuracy. **e** Number of protein ratios quantified between $\Delta 0$ and $\Delta 4$ with 50x carrier after various filtering thresholds. **f** After filtering to remove poorly quantified precursors, the 50x carrier still enables nearly 4-fold greater proteomic coverage. The protein-level quantitative accuracy for all proteins is shown in the bottom panel. The data indicate that the overall quantitative accuracy decreases as the carrier enables identification of otherwise unidentifiable proteins; naturally, these proteins are lowly abundant and thus poorly quantified.



Extended Data Fig. 6 | Single nucleus quality control. **a** Single nuclei and negative controls were filtered for Translated and Channel Q-values < 0.1 , and the number of precursors quantified was counted and plotted as a histogram. Successfully prepared and acquired nuclei, which were separable from negative controls, were retained for downstream analysis (highlighted in green). **b** Single nuclei were acquired with either a 25x or 50x carrier, and the median ratio of precursor intensities from single nuclei to normalized carrier was computed for each precursor. Only precursors with < 6 -fold compression were retained for downstream analysis (highlighted in green). **c** Nuclear purity was assessed for each single nucleus to a reference bulk nuclear fraction, shown in the y-axis, and a 3rd degree polynomial was fit for expected protein enrichment in the x-axis. Each line denotes the 3rd degree polynomial fit for a given single nucleus, and is colored by the computed area under the curve (AUC). Single nuclei with greater AUC reflect nuclei which are generally less pure (more whole-cell like). Only nuclei with $AUC < 5$ were retained for down-stream analysis. **d** Similar to the previous plot, this shows the distribution of AUCs for single nuclei. Only relatively pure nuclei ($AUC < 5$) were retained for downstream analysis.



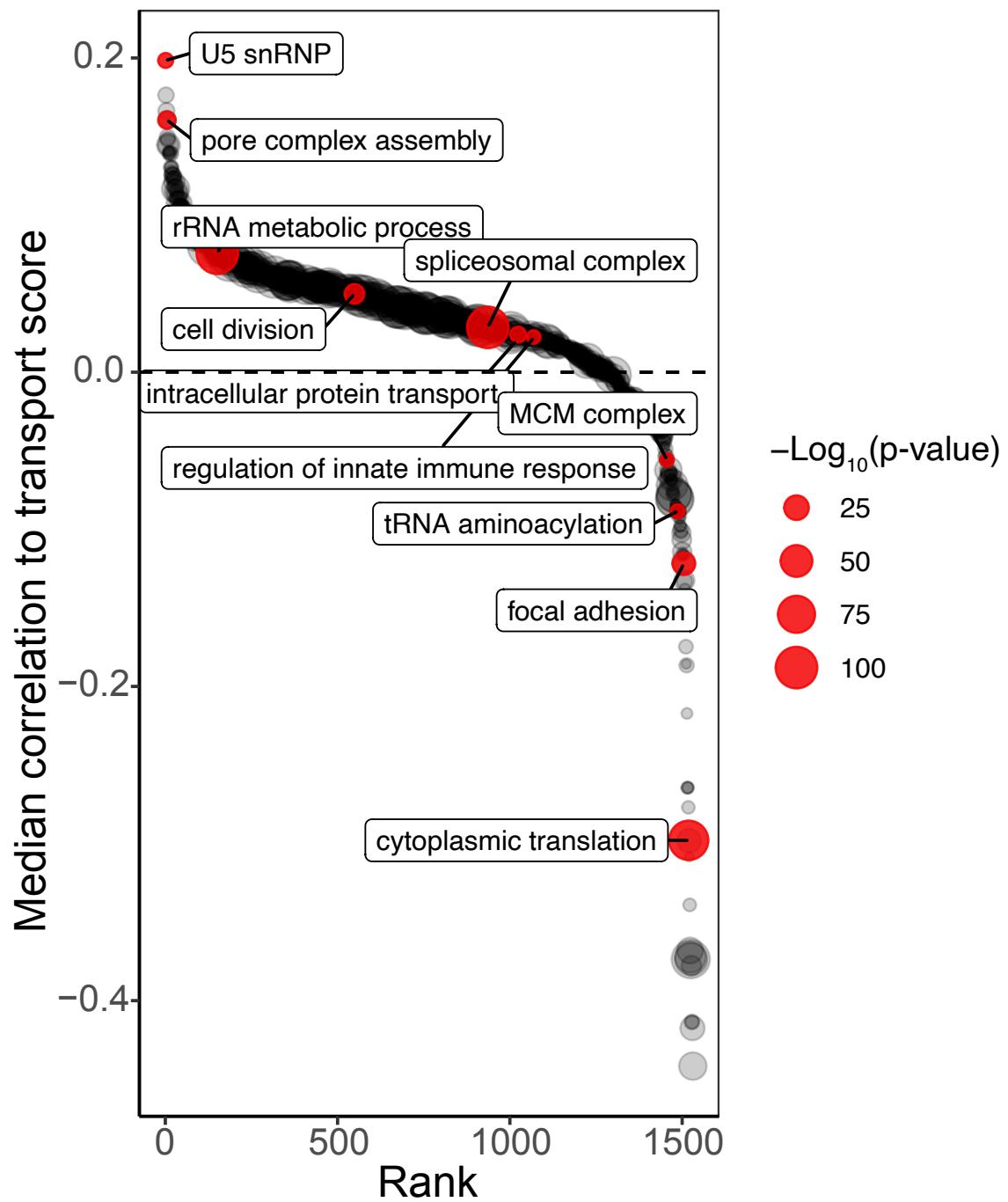
B = Bulk protein z-scores (diagonal matrix)

\vec{v} = Single nucleus protein z-scores (vector)

$$\text{Transport score} = \frac{1}{n} \sum_{i=1}^n B \vec{v} = \text{mean} \left(\begin{matrix} B \\ \vec{v} \end{matrix} \right) = \text{mean} \left(\begin{matrix} x & \begin{bmatrix} 4.2 & 0 & \dots & 0 \\ 0 & -0.2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ z & \begin{bmatrix} 0 & 0 & \dots & -2.1 \end{bmatrix} \end{bmatrix} \\ \vec{v} & \begin{bmatrix} 1.3 \\ 0.5 \\ \vdots \\ -1.5 \end{bmatrix} \end{matrix} \right)$$

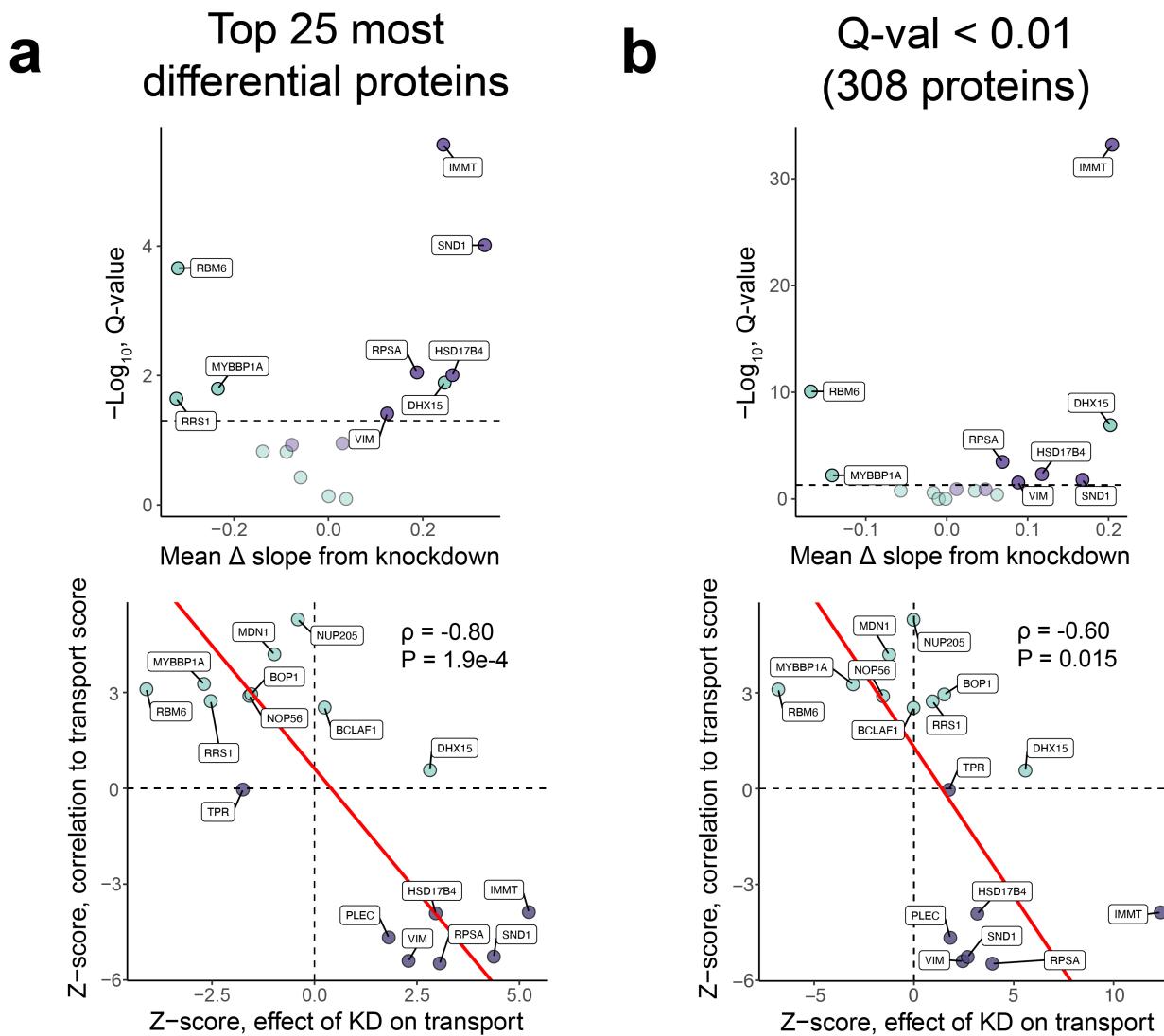
(example)

Extended Data Fig. 7 | Computing the transport score of single nuclei. Single-nucleus protein transport cannot be directly quantified in our analysis due to the lack of measurements before and after LPS stimulation for the same nucleus. Here, we derive a metric, we term ‘transport score,’ that serves as an approximation. Deviations of protein abundances from the NT-population of single-nuclei are calculated globally, for all proteins, for each LPS-treated nucleus. The resulting vectors are weighted according to the differential protein abundances derived from the original bulk data presented in Figure 1. The mean component of the resulting vector is the weighted deviation of a single-nucleus from the NT-population of single-nuclei; we use this metric (transport score) to infer the magnitude of protein transport.

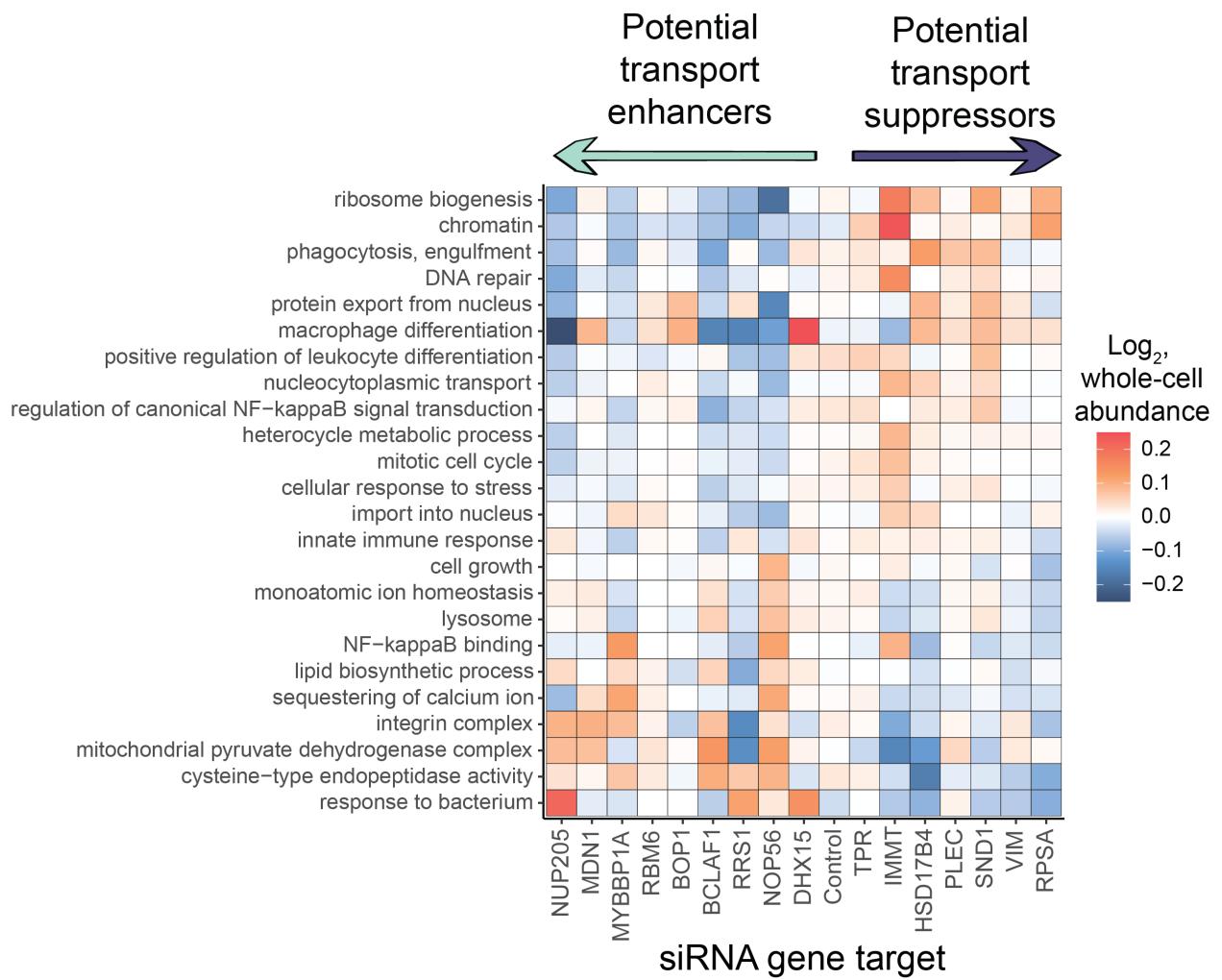


Extended Data Fig. 8 | Protein set enrichment analysis on protein correlations to transport score. The vector of ordered protein correlations to transport score were analyzed for enriched protein sets (Gene-Ontology terms). The results for which are shown at 1% FDR, ordered by their relative enrichment, some of which are highlighted.

Differential proteins used to compute effect of KD on transport (slope)



Extended Data Fig. 9 | Predictive power of correlations to transport remain similar at different filtering levels. To assess the robustness of our findings, changes in transport were either calculated based on **a** the 25 most differentially abundant proteins in the original bulk data, or **b** all differentially abundant proteins at 1% FDR (308 proteins). The trends are similar, but with decreasing predictive power as proteins with less biological signal are included for computing the slopes.



Extended Data Fig. 10 | Protein-set enrichment analysis of whole-cells as a result of each siRNA knockdown. The abundances of differentially enriched Gene-Ontology terms are plotted (y-axis) for each siRNA condition (x-axis); the x-axis is ordered based on each knocked-down protein's correlation to transport score. Knockdowns of potential transport suppressors are generally enriched for macrophage-like processes and nucleocytoplasmic transport compared to knockdowns of potential transport enhancers.

795

Supplementary Figures

796

Single-nucleus proteomics identifies regulators of protein transport

797

Jason Derks,^{1,2,✉} Tobias Jonson,¹ Andrew Leduc,¹ Saad Khan,¹ Luke Khoury,¹
Mahmoud-Reza Rafiee,¹ Nikolai Slavov^{1,2,✉}

800

¹Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Center, Northeastern University, Boston, MA 02115, USA

801

²Parallel Squared Technology Institute, Watertown, MA 02472, USA

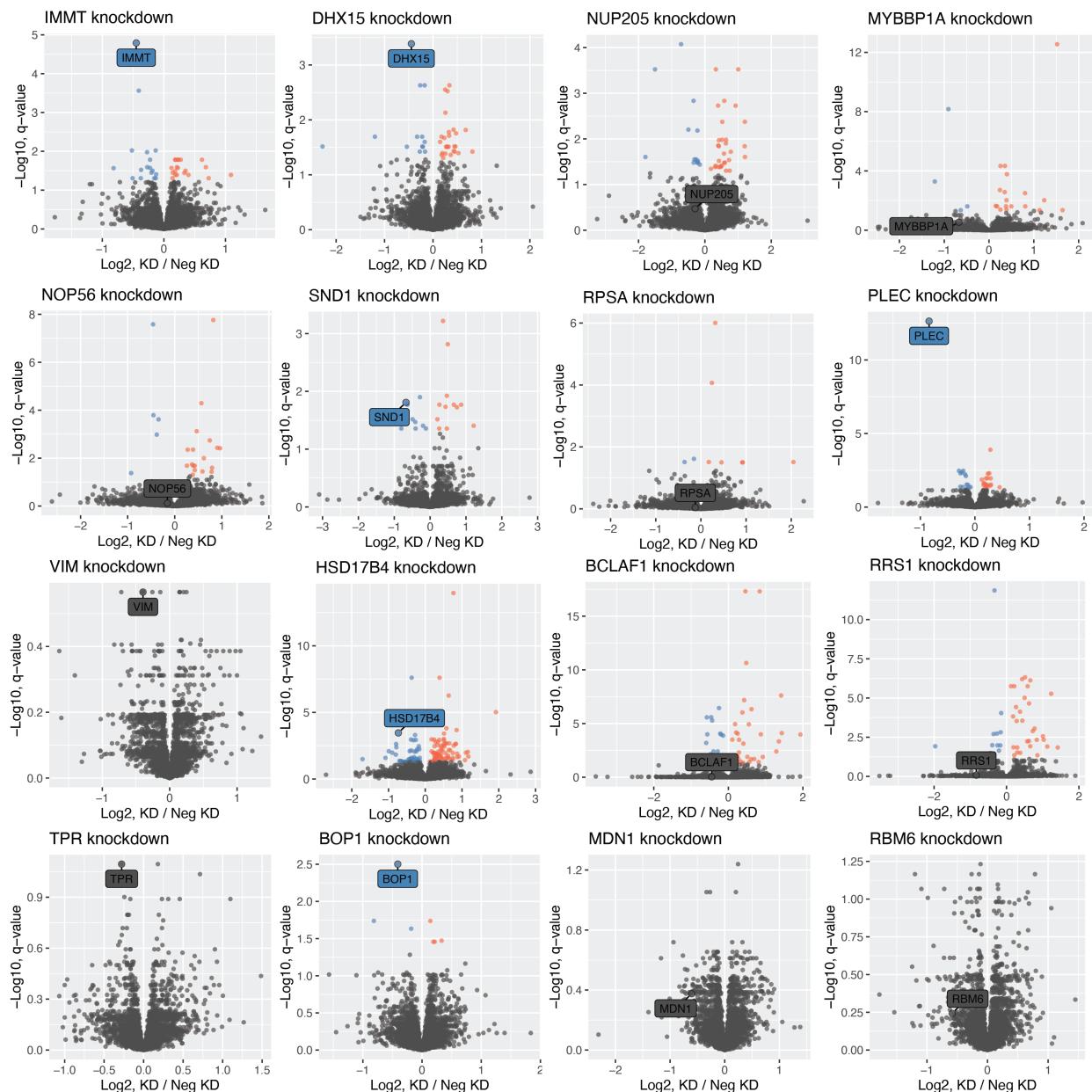
802

∈ Data, code & protocols: scp.slavovlab.net

803

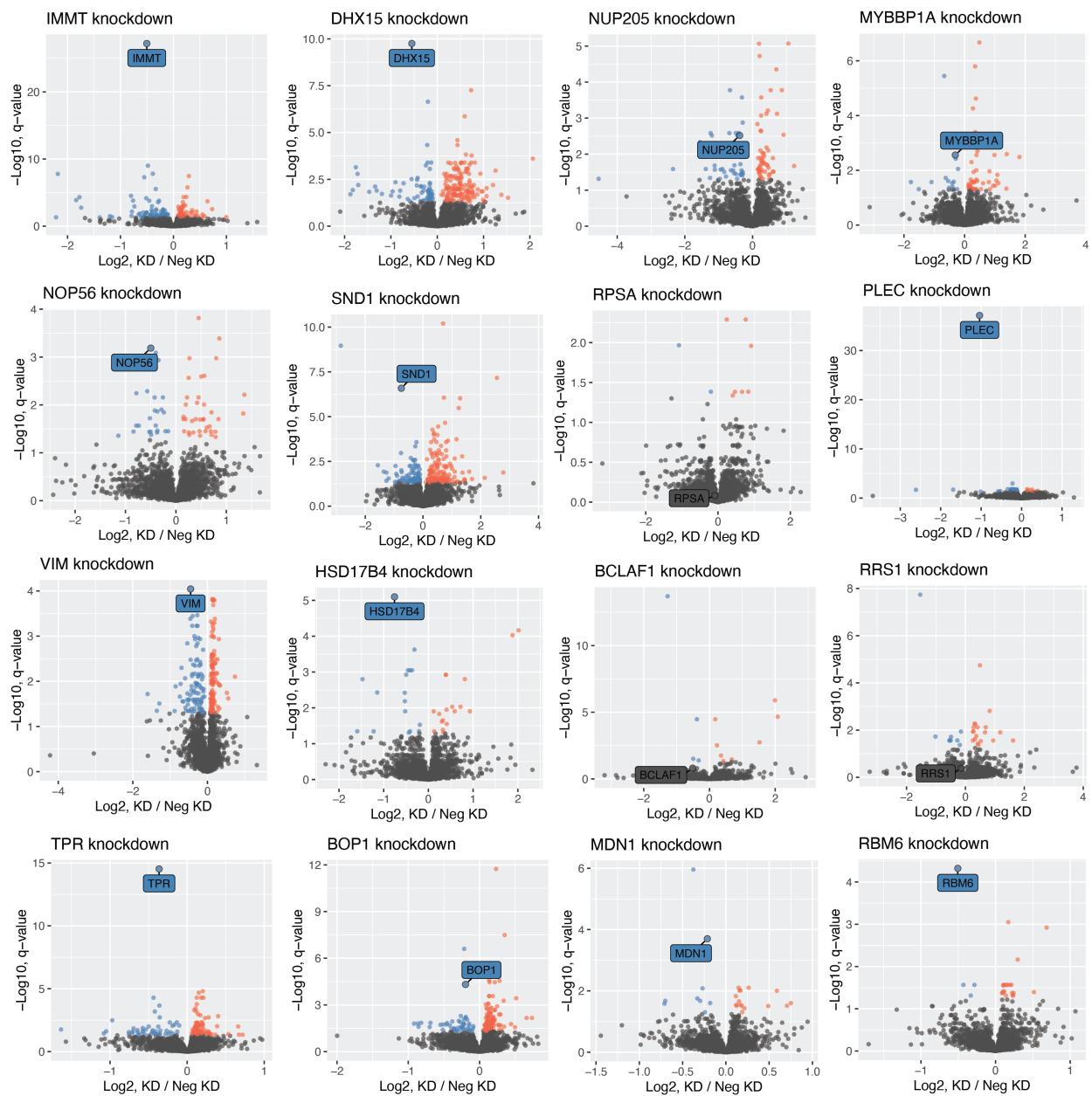
804

siRNA mediated knockdowns, whole-cells

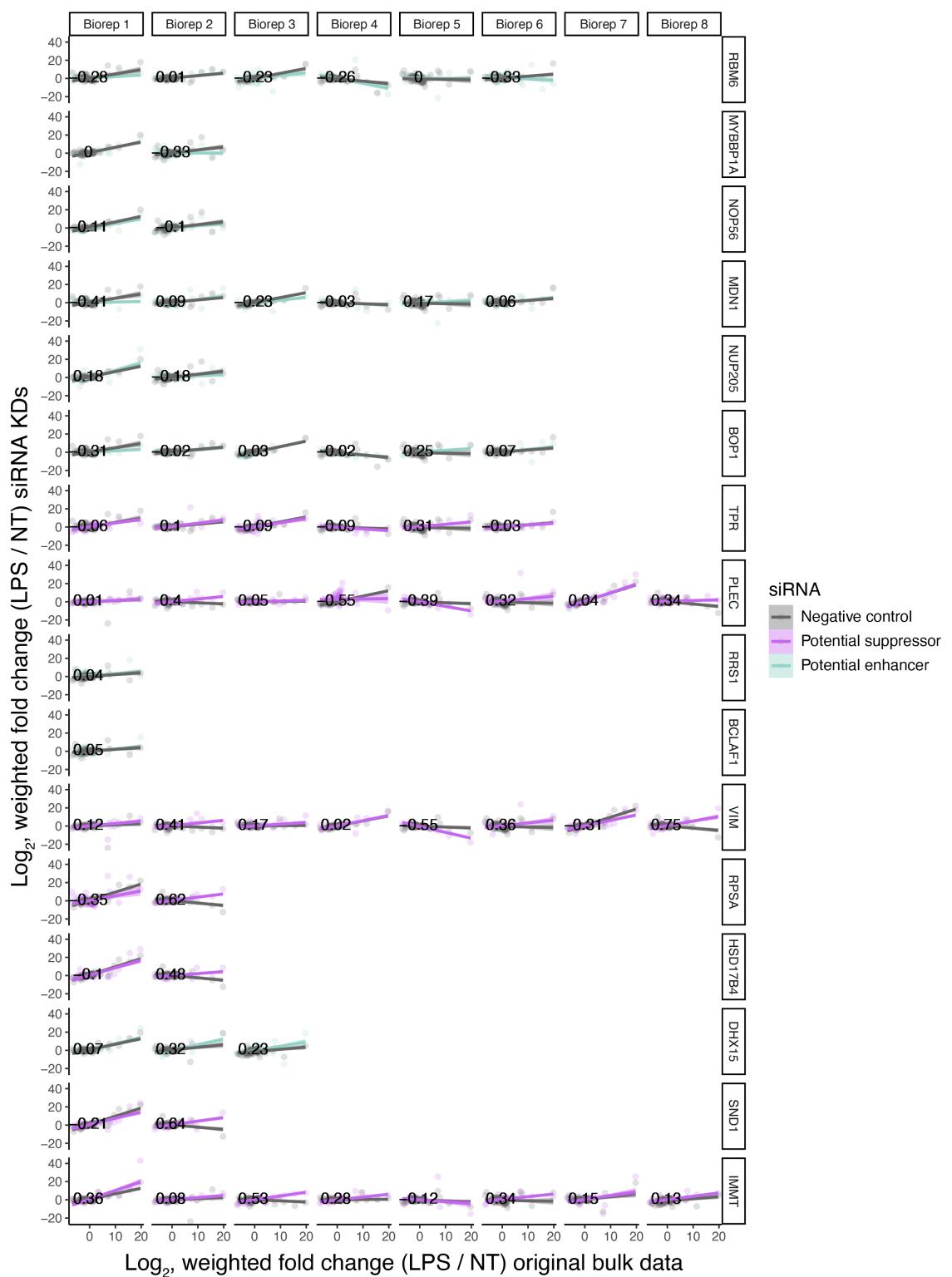


Supplementary Fig. 1 | Volcano plots to validate siRNA mediated knockdowns in whole-cells. Differential abundance analysis comparing knockdown to negative control (non-targeting) knockdown, shown as volcano plots from the whole-cell fractions of THP-1 derived macrophages. Plots highlight and label the knocked-down protein. All knocked-down proteins are less abundant in the knockdown condition than in the negative control and 6/16 are statistically significant.

siRNA mediated knockdowns, nuclei



Supplementary Fig. 2 | Volcano plots to validate siRNA mediated knockdowns in nuclei. Differential abundance analysis comparing knockdown to negative control (non-targeting) knockdown, shown as volcano plots from the nuclear fractions of THP-1 macrophages. Plots highlight and label the knocked-down protein. All knocked-down proteins are less abundant in the knockdown condition than in the negative control and 13/16 are statistically significant.



Supplementary Fig. 3 | Differences in protein transport for each biological replicate. All biological replicates for each siRNA-mediated gene-knockdown are shown. Slopes for each experimental condition are calculated with respect to the original bulk data (x-axis). The difference in slopes, which we infer as the change in global protein transport as a result of the knockdown, is annotated for each biological replicate and quantified relative to its respective matched biological replicate negative control (non-targeting) siRNA.