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The physiological response of a cell to stimulation depends on its proteome configuration.
Therefore, the abundance variation of regulatory proteins across unstimulated single cells
can be associatively linked with their response to stimulation. Here we developed an ap-
proach that leverages this association across individual cells and nuclei to systematically
identify potential regulators of biological processes, followed by targeted validation. Specifi-
cally, we applied this approach to identify regulators of nucleocytoplasmic protein transport
in macrophages stimulated with lipopolysaccharide (LPS). To this end, we quantified the
proteomes of 3,412 individual nuclei, sampling the dynamic response to LPS treatment, and
linking functional variability to proteomic variability. Minutes after the stimulation, the pro-
tein transport in individual nuclei correlated strongly with the abundance of known protein
transport regulators, thus revealing the impact of natural protein variability on functional
cellular response. We found that simple biophysical constraints, such as the quantity of nu-
clear pores, partially explain the variability in LPS-induced nucleocytoplasmic transport.
Among the many proteins newly identified to be associated with the response, we selected 16
for targeted validation by knockdown. The knockdown phenotypes confirmed the inferences
derived from natural protein and functional variation of single nuclei, thus demonstrating
the potential of (sub-)single-cell proteomics to infer functional regulation. We expect this
approach to generalize to broad applications and enhance the functional interpretability of
single-cell omics data.
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Introduction

Single-cell omics methods have rapidly scaled up'~ and enabled the investigation of cellular het-
erogeneity and the creation of cell atlases®. However, the functional interpretation of such omics
data has lagged behind*’. To investigate the link between proteomic and functional variability
across single-cells, we sought to develop an approach that associates the pre-existing differences
in proteome configurations to their correspondingly variable cellular responses; such an approach

may enable the inference of novel regulatory associations®

. In particular, we aimed to investi-
gate how pre-existing proteomic variability influences, and therefore explains the variability of,
LPS-induced transport of proteins to and from the nucleus.

To quantify this variation between individual cells and individual nuclei, we built upon the con-
ceptual and technological advances in single-cell mass spectrometry proteomics’!. Specifically,
we used the framework of multiplexed data-independent acquisition (plexDIA) to implement the

22,23

isotopologous carrier suggestion’>>*, which generalizes the concept of isobaric carrier’** to plex-

18.26.27 "and here we

DIA. Isotopologous carriers have already shown promise in some applications
used them to enable the first proteomic analysis of individual organelles isolated from human cells.
These methodological advances enabled global exploration of protein transport within individual

28-32

cells, which for decades has been studied by imaging fluorescent proteins Our approach

allows for more comprehensive initial discovery, which can expand previous observations that
pro-inflammatory stimulation leads to heterogeneous nuclear import of transcription factors®*-**.
These discoveries can later be examined with much higher temporal resolution using fluorescent
imaging?>-%.

Here, we demonstrate a generalizable approach that enables the inference of functional regula-
tors from (sub-)single-cell proteomics data. Specifically, we identified proteins regulating subcel-
lular transport, including the differential contributions of the subunits of the nuclear pore complex.
Our inferences were derived from natural protein variation across single cells and nuclei. Subse-

quent validation of these results by targeted knockdown experiments provide direct evidence for

the functional relevance of our inferential approach.
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Results

Protein transport in bulk macrophage populations

To first study protein transport between the nucleus and the rest of the cell in bulk populations,
six biological replicates were generated using a model system of macrophage-like cells derived
from THP-1 monocytes treated with phorbol 12-myristate 13-acetate (PMA). Their nuclei were
extracted with mild detergent using methods adapted from an established workflow?’. This physi-
cal isolation produced sufficient nuclear enrichment as demonstrated by a 5 - 25-fold depletion of
proteins from non-nuclear cellular compartments from the nuclei, Extended Data Fig. 1a.

Having validated the enrichment of the isolated nuclear fractions, we next sought to quantify
the LPS-induced dynamics of protein transport. To this end, we quantified differential protein
abundances for nuclei and whole-cells using MS-EmpiRe*®. The abundance changes in the whole
cells reflect protein synthesis, degradation, and secretion; changes at the nuclear level also include
nucleocytoplasmic transport. As expected, changes mediated by protein synthesis and degradation
are slow compared to the kinetics of nucleocytoplasmic transport. Indeed, 60 minutes after LPS-
stimulation, the changes are dominated by transport with 15.7% of nuclear proteome exhibiting
differential abundance compared to only 2.3% of the whole-cell proteome, Fig. 1a. This difference
is even more pronounced for earlier time points where changes affect less than 0.1% of the whole-
cell proteome 30 minutes after LPS stimulation, but 9.3% of the nuclear proteome.

Given that hundreds of proteins without innate immunity associations significantly changed
their nuclear abundance in response to LPS, we aimed to evaluate the temporal continuity of each
protein to further assess the confidence in these findings. As a quantifiable continuity metric,

we calculated a ranked version of von Neumann’s ratio (RVN)*>

for each protein as shown in
Extended Data Fig. 2a. Indeed, proteins found to be differentially abundant at 5% FDR for nuclei
and whole-cells were mostly monotonic and generally continuous, beyond the monotonicity of a
simulated null model where the same number of proteins were assigned random fold-changes and
RVN ratios were calculated, Extended Data Fig. 2b,c. Therefore, the large proportion (~16%) of

nuclear proteins changing significantly in response to LPS exhibit mostly continuous dynamics,

which supports the validity of the findings.
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Figure 1 | Protein dynamics in whole cells and nuclei reveal coordinated spatiotemporal control of biological
processes in bulk populations of macrophage-like cells. a Percent of differentially abundant proteins (5% FDR) in
nuclear (grey) and whole-cell (black) proteomes after 10, 30, or 60 minute LPS treatments. b Differentially abundant
proteins in the nucleus were analyzed to investigate the relationship between protein mass and transport kinetics.
Transport dynamics for each protein were interpolated across the four time points, and ordered with respect to protein
mass. The heatmap is colored according to each protein’s absolute-valued magnitude of protein transport. Using
a moving median approach to average the inherent biological variability, the data suggest smaller proteins achieve
half of their total transport at earlier time points than larger proteins. The dashed black line marks a commonly
recognized theoretical limit of passive diffusion (40 kDa). ¢ Time-series data over the course of the LPS-treatment for
differentially abundant proteins in the nucleus; pro-inflammatory transcription factors are labeled and highlighted in
red, and other proteins with >4-fold change are highlighted in blue. d Protein set enrichment analysis of nuclei and
whole-cell bulk samples for NT, 10 minute, 30 minute, and 60 minute LPS treated samples. Brackets correspond to the
number of proteins included in computing the enrichment of Gene Ontology terms. e Gene Ontology terms associated
with mediating gene-expression, which significantly change in nuclear abundance in response to LPS, are plotted. The
95% confidence intervals are derived from the change of all proteins which correspond to the respective Gene Ontology
term. f Proteins were grouped thematically and plotted to show their change in nuclear abundance; all proteins were
differentially abundant at 5% FDR in at least one time point. g Nucleoporins which were differentially abundant in
the nucleus in at least one time point are plotted to display their change in nuclear and whole-cell abundance; TPR is
highlighted in red.
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Mass dependence of nucleocytoplasmic transport

The kinetics of nucleocytoplasmic transport is mass-dependent, and we sought to investigate this
dependence in our data. There are two mechanisms by which transport occurs: passive diffusion

and active transport**-!

. Molecules with masses less than 40 kDa have been reported to passively
diffuse through nuclear pores with kinetics that are mass-dependent*’. Kinetics of active transport
are also dependent on the size of the cargo, but to a lesser degree, as the energy barrier is reduced
through interactions with chaperones*’**. We investigated this relationship in our data and found
that protein transport was indeed negatively correlated with protein mass, as shown in Extended
Data Fig. 3. To increase the time resolution of this analysis, we interpolated protein transport
across the 4 time points and found that smaller proteins achieved half their total transport at an
earlier time than larger proteins, as shown as a heatmap and scatter plot in Fig. 1b. While this anal-
ysis cannot conclude whether these trends reflect passive diffusion or simply mass-dependence in
active transport, the results are consistent with more recent findings of passive diffusion occur-
ring without a precise size threshold**. Irrespective of the mechanism, these data corroborate the

mass-dependence of protein transport kinetics globally in the natural response of macrophages to

LPS.

Spatiotemporal control of inflammatory response in bulk cell populations

While pro-inflammatory transcription factors are known to be imported to the nucleus in response
to LPS, we identify hundreds of additional proteins significantly changing in nuclear abundance,
many of which have no prior association with LPS-response. As expected, transcription factors
NF-xB1, REL, RELA, and FOS increase in nuclear abundance by approximately 4-fold within
10-60 minutes of LPS-treatment®>*>33%as shown in Fig. Ic. Interestingly, hundreds of additional
proteins experience monotonic or generally continuous changes in nuclear abundance; one of these
proteins, PAXX—a protein required for Non-Homologous End-Joining (NHEJ) DNA repair*®*/,
reached a 40-fold increase within 60 minutes of LPS-stimulation. This protein acts as a scaffold

for the accumulation of XRCC5 and XRCC6 to facilitate NHEJ DNA repair*®. Likewise, XRCC5

and XRCC6 also increased significantly in the nucleus by 60 minutes, Extended Data Fig. 4.


https://doi.org/10.1101/2024.06.17.599449
http://creativecommons.org/licenses/by-nc-nd/4.0/

102

103

104

105

106

107

108

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.17.599449; this version posted June 18, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

To characterize the effects of protein synthesis, degradation, and secretion, we computed pro-
tein set enrichment on whole-cell proteomes; similar analysis of nuclear proteomes would ad-
ditionally reflect nucleocytoplasmic transport, Fig. 1d. LPS-stimulation induced whole-cell pro-
teome enrichment of Gene Ontology (GO) terms associated with gene-expression, such as “trans-

29 46

lation,” “spliceosomal complex,” and “ribosome biogenesis.” Interestingly, changes to the nuclear
proteome revealed spatiotemporal changes consistent with this whole-cell enrichment; specifically
GO terms whose sites of action are in the nucleus, such as “general transcription initiation fac-
tor activity” and “ribosome biogenesis” increased in nuclear abundance, while GO terms whose
sites of action are outside of the nucleus, such as “cytosolic ribosome” decreased in nuclear abun-
dance. These changes which reflect coordinated spatiotemporal rearragment of proteins involved
in mediating gene-expression are shown for five GO terms in Fig. le. Together, the whole-cell and
nuclear proteomic data provide complementary evidence which suggests macrophages increase
their capacity to mediate gene-expression in response to LPS, as observed through increases in the
absolute abundances of and the spatiotemporal rearrangement of proteins involved in this process.

To more closely investigate the concordance of changes in nuclear biological processes, dif-
ferentially abundant proteins were grouped thematically by function and plotted in Fig. 1f. We
found concerted dynamics for proteasomal subunits and proteins associated with stress granule as-
sembly, which decreased in nuclear abundance in response to LPS. Proteins associated with DNA
repair, RNA processing, and nucleoporins were generally found to increase in nuclear abundance
following LPS stimulation. Intriguingly, of all nucleoporins which changed significantly in nuclear
abundance, only TPR—a negative regulator of NPC assembly*’—decreased, Fig. 1g. Whole-cell

abundances of the same nucleoporins were generally found to increase, including TPR. Taken

together, these findings are consistent with LPS-induced upregulation of NPC assembly.

Benchmarking protein quantification of single nuclei

Using natural variation across single-cells to identify regulators of protein transport requires accu-

rate quantification of many proteins in single nuclei. To accomplish this, we used highly parallel

P19,5()

sample preparation by nPO and the plexDIA framework combined with an isotopologous

carrier. This methodology is analogous to isobaric SCOPE-MS'>**! " thus we term it SCoPE-
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DIA (Single Cell ProtEomics by Data-Independent Acquisition). As we previously suggested and
demonstrated with plexDIA, this framework uses the chromatographic coelution of peptides from
different samples to increase data-completeness®>**. Thus, protein identification across all samples
can be enhanced by including a highly abundant sample, e.g., an isotopologous carrier, in parallel
to single-cells or single-organelles. This benefit was evident with the introduction of plexDIA*
and has since been reproduced for single-cell analysis'®. However, complex isotopologous carriers
might increase interferences and thus decrease quantitative accuracy. To evaluate these trade-offs
and find an optimal carrier level for acquiring single-nucleus data, we created and acquired data
from a mixed-species spike-in of H. sapiens nuclei and S. cerevisiae run with 0x, 1x, 5x, 10x, 25x,
or 50x carrier amounts, as shown in Extended Data Fig. 5a. We found that intersected protein-level
quantitation was comparable across all carrier-levels, Extended Data Fig. 5b. Thus, the potential
for interference by larger carriers has little effect on quantitative accuracy in our experiments,
which is likely due to the lower proteomic complexity of nuclei as compared to whole cells.

To improve quantitative accuracy, the carrier channel was used as a reference to estimate quan-
titative compression and remove poorly quantified precursors similar to previous filters'>. We
applied this filter at various levels to converge upon an optimal balance between coverage and ac-
curacy, Extended Data Fig. 5c-e. Using this strategy, we compared the coverage and quantitative
accuracy and for all proteins identified at various carrier levels and found reduced quantitative ac-
curacy at higher carrier levels, Extended Data Fig. 5f. This likely reflects the increasing proportion
of lowly abundant proteins, which naturally suffer from noisier quantitation. Indeed, the quantita-
tive accuracy for the subset of proteins quantified across all carrier levels is high even for the 50x
carrier, Extended Data Fig. 5b. To summarize, large nuclear carriers were found to not worsen
quantitative accuracy, but rather enable quantification of additional lowly abundant proteins that
are naturally less well-quantified. Therefore, we chose to acquire single-nucleus data with 25x and

50x nuclear proteome carriers.

Variability in LPS-induced nucleocytoplasmic transport across single nuclei

Next, we sought to infer potential regulators of nucleocytoplasmic transport from the natural vari-

ability of macrophage proteomes prior to the LPS stimulation and its regulatory impact on the LPS
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response. Using SCoPE-DIA, we acquired a dataset consisting of 3,412 nuclei across four biolog-
ical replicates, with a median of 1,366 proteins quantified per nucleus, Fig. 2a. After filtering to
remove nuclei and precursors with poor quantitation (Extended Data Fig. 6a-b), and nuclei with
insufficient nuclear enrichment (Extended Data Fig. 6¢-d), we retained 2,997 nuclei with a median
of 1,287 proteins per nucleus to be used in downstream analyses, Fig. 2a.

Projecting the single-nuclei proteomes onto their principal components produced a partial sep-
aration between NT and LPS-treated populations, Fig. 2b. Aside from measurement error, three
compounding sources of variability may result in this observed partial separation: pre-existing
variability of protein abundances at the whole-cell level, pre-existing variability in subcellular pro-
tein localization, and variability in nucleocytoplasmic transport in response to LPS. We sought to
overcome the first two sources of variability and investigate the latter, heterogeneity of nucleocyto-
plasmic transport. This presents a challenge as the pre-existing protein variability is large relative
to the magnitude of protein transport induced by a short LPS exposure.

To explore the variability of LPS-induced nucleocytoplasmic transport, we derived a metric
aiming to quantify the amount of protein transport experienced by each nucleus; however, given
that we did not measure proteomes of the same nuclei before and after stimulation, our estimate
cannot directly quantify protein transport. As a substitute, we derived a ‘transport score’ metric,
which quantifies the deviation of single LPS-treated nuclear proteomes from the proteome distri-
bution of untreated single nuclei. To mitigate noise, we used our bulk data to differentially apply
weights based on transporting proteins, as illustrated in Extended Data Fig. 7. As expected, the
resulting distributions of transport scores for single nuclei indicate increased nucleocytoplasmic
transport for longer time-periods of LPS treatment, Fig. 2c.

To link proteomic variability to functional variability in protein transport, we computed corre-
lations of relative protein abundances to transport scores for all LPS-treated single nuclei, Fig. 2d;
two proteins, NUP205 (p = 0.28) and VIM (p = —0.63), which are among the most (anti-
)correlated to protein transport, are highlighted. Protein-set-enrichment results on this ordered
vector indicate associations to cell division, cell adhesion, and other processes shown in Extended
Data Fig. 8. To explore whether these associations are driven by pre-existing proteomic variabil-

ity or LPS-induced changes, we compared the protein abundance distributions before and after
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Figure 2 | Associating single-nucleus proteomic variability to heterogeneous LPS-induced nucleocytoplasmic
protein transport. a LC-MS/MS single-nucleus proteomics data was acquired with SCoPE-DIA for 3412 nuclei,
quantifying a median of 1366 proteins per nucleus. Single nuclei which were insufficiently prepared, acquired, or
depleted of non-nuclear proteins were removed, yielding 2997 nuclei with a median of 1287 proteins per nucleus
post-filtering; these nuclei were used for downstream analyses. b Weighted PCA produced partial separation between
LPS-treated (10, 30, and 60 minute) nuclei and not-treated (NT) nuclei. ¢ Distribution of transport scores from single
nuclei. Macrophages treated with LPS for longer durations yielded nuclei which had undergone more protein transport.
d Rank sorted correlations between the transport score of each nucleus and its proteome. The underlying data used to
compute these associations is shown for two proteins, NUP205 and VIM. e Distributions of relative protein abundances
of NUP205 and VIM in the NT and LPS-treated populations of single nuclei. The overlap quantifies the proportion of
commonality between the untreated and the treated populations. High values suggest pre-existing variability is much
larger than LPS-induced changes. f Distribution of overlaps for all proteins between NT and LPS-treated populations
of single nuclei.


https://doi.org/10.1101/2024.06.17.599449
http://creativecommons.org/licenses/by-nc-nd/4.0/

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.17.599449; this version posted June 18, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

LPS treatment, Fig. 2e. The results indicate that LPS-induced changes are small relative to the
natural variation across untreated nuclei, Fig. 2e,f. Therefore, our associations are dominated by
the pre-exisiting variation across proteomic configurations; this initial variability likely influences
the amount LPS-induced protein transport each cell undergoes. Thus, associations between single-
nucleus protein abundances and transport scores may be used to identify proteins whose abundance

affected nucleocytoplasmic protein transport.

More nuclear pore complexes, more transport

Nearly all nucleoporins were positively correlated to nucleocytoplasmic protein transport, Fig. 3a,
suggesting nuclei with more nuclear pore complexes (NPCs) experience more transport. The only
exception was TPR, which has been reported to negatively regulate NPC assembly, as validated
through knockdowns of TPR yielding cells with more assembled NPCs*’, as well as in patient
fibroblasts with reduced TPR abundances’. Interestingly, our data support these previous results,
as TPR is the only nucleoporin whose abundance was negatively associated with protein trans-
port. To more clearly investigate this relationship, we collapsed all nucleoporin abundances to the
complex-level, and correlated these NPC abundances to transport scores in LPS-treated nuclei (n
= 2,237) and found a relatively strong and highly significant association (p = 0.48, P < 107'°), as
shown in Fig. 3b. Indeed, this suggests a highly significant association between NPC abundance
and nucleocytoplasmic transport.

Having uncovered this association between transport and NPC abundance in single nuclei, we
sought to additionally investigate whether the mass-dependence of nucleocytoplasmic transport
also changes as the number of NPCs varies across single nuclei; specifically, the nuclear envelope
should become more permeable to passive diffusion at higher pore densities. To test this hypoth-
esis, we first quantified the mass dependence of protein transport for each nucleus by regressing
the molecular masses of proteins on their absolute deviations from the NT-population of single
nuclei—a substitute for measuring protein-specific transport. The slopes of these regressions were
plotted against corresponding NPC abundances in single nuclei, Fig. 3c. The results revealed a
modest association across all 2,237 LPS-treated nuclei (p = —0.17) with high statistical signifi-

cance (P < 10~'%). This association indicates that nucleocytoplasmic transport of smaller proteins
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protein transport becomes increasingly mass-dependent, favoring transport of smaller proteins, when nuclear pore
complex abundances are high (P< 10~**, p = —0.17). d Predicted human nuclear pore complex from Mosalaganti et
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increasingly outpaced transport of larger proteins, at least in part as a function of NPC abundance,
Fig. 3c. Given that passive diffusion is highly mass-dependent, it may suggest that single nu-
clei with more NPCs experience more passive diffusion, thus providing empirical support for this
theoretical expectation.

While the abundances of nearly all nucleoporin proteins correlate positively with transport
scores, the magnitude of this correlation varies across nucleoporin proteins, as shown in Fig. 3a.
To explore this variability, we investigated what might be associated with these differences. To
visually inspect the structural dependence of the correlations, the predicted structure of the human
nuclear pore complex from Mosalaganti et al.”® was colored according to each proteins’ correlation
to the transport score, Fig. 3d. This was investigated more directly by grouping nucleoporins
based on their localizations inside the nuclear pore complex, as shown in Fig. 3e, and according to
whether the nucleoporins were peripheral or scaffold proteins of the NPC>*, as shown in Fig. 3f.
The abundances of scaffold proteins were significantly more associated with nucleocytoplasmic
transport than peripheral proteins of the NPC (P = 0.037). This variation across nucleoporins is
further supported by a significant correlation with protein half-lives derived from Mathieson et al.’s
SILAC turnover data™ (p=0.56, P =0.0018), as shown in Fig. 3g, as scaffold nucleoporins have
been reported to have longer half-lives than peripheral nucleoporins®*°. These results suggest the
observed variability in each nucleoporins’ correlation to transport is significantly associated with

the nucleoporin’s localization inside the NPC and their respective half-lives.

Targeted perturbations validate the single-nucleus derived associations

Having used single-nucleus proteomics data to infer novel regulators of LPS-induced nucleocyto-
plasmic protein transport, we aimed to directly test these potential enhancers and suppressors of
nucleocytoplasmic transport through targeted perturbations. The highest ranking hypotheses from
the single-nucleus proteomics analysis include proteins directly involved in transport such as nu-

cleoporins and ribosomal export proteins such as MDN1°°

. However, many other proteins without
functional annotations for protein transport or innate immunity are also highly (anti-)correlated
to transport. Perhaps some of these proteins influence LPS-induced protein transport, and these

functional associations present discovery opportunities. We sought to test these associations ex-
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perimentally through directed perturbations using siRNA mediated knock downs.

To test potential transport regulators, we chose to knock down 16 proteins spanning the con-
tinuum shown in Fig. 4a and quantified the change in LPS-induced nucleocytoplasmic protein
transport. The knockdowns were performed using siRNAs as shown in Fig. 4b, and the de-
crease of the corresponding gene products was validated in whole-cell and nuclear bulk lysates, as
shown in Supplementary Fig. 1 and Supplementary Fig. 2. To quantify how each knockdown af-
fected LPS-induced nucleocytoplasmic protein transport, slopes were calculated from fold-changes
(LPS/NT) between the original bulk data and each siRNA condition, using the negative control
(non-targeting) siRNA as a reference for each biological replicate, as shown in Fig. 4b. Results for
individual biological replicates are shown in Supplementary Fig. 3. With this strategy, we aimed
to quantify the global change in nucleocytoplasmic transport as a result of each knockdown.

Associating relative protein abundances to function in single cells may serve as a means of
inferring regulatory potential. We sought to evaluate the predictive power of these associations
by computing the significance of protein correlations to transport from the single-nuclei data and
the significance of the change in transport from corresponding knockdowns, Fig. 4c. Indeed, as
a result of the knockdowns, protein transport for 13/16 of the conditions was affected in the ex-
pected direction. Specifically, knockdowns of potential transport suppressors increased transport
in 7/7 cases; knockdowns of potential transport enhancers decreased transport in 6/9 cases. The
protein correlations to transport scores from the single-nucleus data were highly predictive of the
functional effects of the knockdowns (p = —0.77, P < 5 x 10~*). The slopes, which were used
for determining the change in LPS-induced nucleocytoplasmic transport, were computed from the
100 most differentially abundant proteins from the original bulk data. Various filtering levels were
applied to examine the robustness of the findings, as shown in Extended Data Fig. 9, and all three
levels showed similar trends.

Knockdowns of IMMT, RPSA, HSD17B4, SND1, DHX15, and VIM were found to signifi-
cantly increase transport, whereas knockdowns of RBM6 and MYBBPIA were found to signifi-
cantly reduce transport. Therefore, 8/16 knockdowns significantly changed LPS-induced nucleo-
cytoplasmic transport, 7/8 of which changed nucleocytoplasmic transport in the expected direction.

The knockdown which most significantly affected transport was IMMT, a mitochondrial protein
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Figure 4 | Genetic perturbations validate single-nucleus-derived protein associations. a Correlations of protein
abundances to transport score from single-nucleus data. 16 proteins were selected to be knocked-down and colored
with green or purple depending on whether it is associated with increased or decreased transport. b Workflow for
siRNA-mediated knockdowns in THP-1 monocytes, followed by differentiation to macrophages. A negative control
(non-targeting) siRNA was included in each biological replicate, and used to compute a change in transport as the
result of each siRNA knockdown (KD); change in transport was calculated as the difference in slopes between the
negative control siRNA and a gene-targeting siRNA. ¢ Here we evaluate the predictive power of the single-nucleus
findings through experimental genetic perturbations in bulk data. The biological replicates from the single-nucleus
data were used to compute significance of correlations to transport scores, shown on the y-axis; the x-axis measures
the significance of how the knockdown affected nucleocytoplasmic protein transport. The single-nucleus associations
were highly predictive of the functional effects in genetic perturbations (P = 0.00046, p = —0.77). d Significance
of how individual gene knockdowns affect nucleocytoplasmic transport. Knockdowns of IMMT, RPSA, HSD17B4,
SND1, DHX15, and VIM were found to globally increase LPS-induced nucleocytoplasmic protein transport; knock-
downs of RBM6 and MYBBPI1A were found to decrease transport.
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without prior association to innate immunity or nucleocytoplasmic protein transport. Whole-cell
lysates of these knockdowns complementarily indicate a gradient of unpreparedness and primed-
ness to respond to LPS and facilitate nucleocytoplasmic transport, as shown in Extended Data
Fig. 10. These findings validate the potential of (sub-)single-cell proteomics to identify novel

regulators of biological functions.

Discussion

Identifying functional regulators of complex biological processes is an ongoing challenge in pro-
teomics data interpretation. Here we demonstrate an interpretation approach that exploits the natu-
ral variability inherent in a population of single cells to empower inference of functional regulation.
It is conceptually similar to the identification of functional regulators through perturbation-induced
variability in bulk samples®’ but instead utilizes the natural variability across individual cells. In
our approach, we assumed that the initial proteomic states of single macrophages would explain
the variability in LPS-induced nucleocytoplasmic protein transport. Operating under this principle,
we quantified a metric (the transport score) from which we could evaluate the influence of resting
proteomic variability on this response. We found that simple biophysical constraints, such as the
quantity of nuclear pores, partially explain the variance in nucleocytoplasmic transport. Interest-
ingly, the abundance of scaffold subunits is more strongly associated with transport rates than the
abundance of peripheral subunits, which is consistent with modular and specialised structures of
the nuclear pore complex’®.

Beyond the role of nuclear pores, our analysis identified hundreds of additional proteins, many
of which without annotated associations to innate immunity or protein transport, yet whose abun-
dances were strongly correlated to the magnitude of nucleocytoplasmic protein transport expe-
rienced in single cells. We tested these protein-associations through genetic perturbations and
found that the associations derived from single-nucleus data were, as a whole, highly predictive
of their respective effects on LPS-induced nucleocytoplasmic transport. This work demonstrates
an approach which uses (sub-)single cell proteomics to infer functional regulators of complex bio-
logical processes, such as LPS-induced nucleocytoplasmic transport. We expect approaches such

as this will generalize to broad applications and support the functional interpretation of single-cell
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proteomics data.

Methods

Cell culture

THP-1 monocytes (TIB-202, ATCC) were cultured in RPMI-1640 Medium (R8758, Sigma-Aldrich)
supplemented with 10% fetal bovine serum (10439016, Gibco) and 1% penicillin-streptomycin
(15140122, Gibco) and grown at 37°C and 5% CO,. Cells were transferred to 100x15mm Nunclon
dishes (150350, Thermo Scientific) at a density of approximately 200,000 cells/mL and volume of
10 mL. Differentiation proceeded following an established protocol by Lund et al.’’; THP-1 cells
were incubated in the presence of 25 nM phorbol 12-myristate 13-acetate (PMA) for 48 hours, then
cells were detached with accutase, mixed to prevent any batch-effects resulting from differentia-
tion occurring in isolated plates, washed 2-times with PBS, centrifuging at 300g for 5 min to pellet
for washes. The cells were then allowed to incubate in growth media without PMA for 24 hours,
and in this time reattach to fresh 100x15mm Nunclon dishes. The resulting MO macrophages were
either left not-treated (NT), or treated with 1 pug/mL lipopolysaccharides from Escherichia coli
O111:B4 (L4391, MilliporeSigma) for 10 minutes, 30 minutes, or 60 minutes.

Protein knockdowns

Proteins of interest were knocked down via reverse transfection of Silencer siRNAs (Ambion)
and Silencer Select siRNAs (Ambion) into THP-1 monocytes using methodology adapted from
manufacturer instructions for RNAI transfection. Silencer siRNAs were transfected in 12-well
Nunclon plates and Silencer Select siRNAs were transfected in individual 60 mm dishes. For
Silencer siRNAs, 10 pmol of siRNA was complexed with 3 ;L of RNAIMAX. For Silencer Select
siRNAs, 55 pmol of siRNA was complexed with 17 ;L. of RNAIMAX (Invitrogen) in 552 pL of
serum-free RPMI (Sigma) in a 60 mm Nunclon dish (Thermo). siRNAs were complexed with the
RNAiIMAX lipid reagent for 5 minutes at room temperature. THP-1 monocytes were added in
RPMI supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin to reach
a final density of 300,000 cells per mL. Samples were cultured at 37°C and 5% CO,, for 24 hours
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before adding PMA, at which point the same aforementioned cell culture process was followed.

Nuclear isolation

Macrophages were detached from Nunclon dishes with accutase on ice for approximately 20 min-
utes. The cells were washed twice with 1x PBS to remove media, centrifuging at 300g for 5
min each time. The cell concentration was measured with a hemocytometer. 15% of cells were
retained as whole-cells for downstream analysis by resuspending the whole-cell pellet in LC-MS-
grade water to a concentration of 3,000 cells/; L. These whole-cells were then stored at -80°C.
The remaining 85% of cells were resuspended in 1 mL of ice-cold Lysis Buffer (0.1% NP-40, 250
mM sucrose, 25 mM KCI, 5 mM MgCl,, 10 mM HEPES (pH = 7.4)) in a 2 mL Eppendorf tube,
and left to lyse on ice for 20 min. At this point in the protocol, the cells are lysed but the nuclei are
unlikely to be free from cellular debris and other organelles. To purify the nuclei, the 1 mL nuclei
suspension was sheared through a 25G needle with even pressure, avoiding bubbling and foaming
as much as possible. The shearing was repeated for a total of 5 times. Nuclei were visually in-
spected under a microscope with Trypan Blue staining to ensure sufficient shearing of subcellular
organelles from nuclei.

After nuclei are sufficiently sheared, the suspension was centrifuged at 1000g for 8 min at 4 °C.
The nuclear pellet was resuspended in 500 puL of 250 mM sucrose, 25 mM KCl, 5 mM MgCl,, 10
mM HEPES (pH =7.4). The mixture was underlayed with 500 uL of 350 mM sucrose, 25 mM KCl,
5 mM MgCl,, 10 mM HEPES (pH = 7.4) to form a sucrose cushion, which was then centrifuged
at 4,000g for 10 min (4 °C). The supernatant was removed, and the nuclear pellet was resuspended
in 200 pL of LC-MS water, gently flicking to mix. 4 puL of nuclei suspension was mixed with 4 uLL
of Trypan Blue, then counted with a hemocytometer to find the final concentration. 150 pL of the
bulk nuclei were stored at -80°C. The remaining 50 uL was diluted to a concentration of roughly

400 nuclei/pL and used for single-nuclei sorting and sample preparation by nPOP'*-".
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Sample preparation for proteomic analysis
Bulk samples

Nuclei and whole-cell fractions, which were frozen at -80°C at a concentration of 3,000 cells/uL,
were heated to 90°C for 10 minutes as part of the mPOP protocol®. Trypsin Gold (V5280,
Promega) was added to a final concentration of 20 ng/uL, in addition to final concentrations of
100 mM TEAB and 0.25 U/uL benzonase nuclease (E1014, Millipore Sigma). The cell lysates
were digested at 37°C for 18 hours in a thermocycler. Samples were labeled with mTRAQ follow-
ing manufacturer’s instructions. In short, the labels, which arrived suspended in isopropyl alcohol
at a concentration of 0.05 U/uLL (where 1 unit labels 100 pg), were added in a 1:2 proportion of
label:peptide where the peptides were concentrated to 500 ng/uL in 100 mM TEAB. The labeling
reaction was left at room temperature for 2 hours, and then quenched with 0.25% hydroxylamine

for 1 hour.

Creating a mixed species standard to benchmark SCoPE-DIA

Digested protein lysate from THP-1 macrophage nuclei were mixed with digested S. cerevisiae

protein lysate (V7461, Promega) to generate three samples. The proportions of Sample A (A0):Sample

B (A4) was 4:1 for S. cerevisiae and 1:1 for H. sapiens. The unlabeled versions of these samples
were mixed in a 1:1 ratio to generate a carrier sample which was then labeled with mTRAQ AS.
Samples A and B were diluted such that the H. sapiens amount was 1 nucleus worth of protein
(approximately 45 pg). The carrier sample was pooled with Samples A and B at Ox, 1x, 5x, 10x,

25x, and 50x concentrations to generate the SCoPE-DIA benchmarks.

Single nuclei

Single nuclei were prepared for proteomic analysis by nPOP as previously described by Leduc et
al."°, In short, single-nuclei were sorted by CellenOne into 8 nL droplets of 100% DMSO on
a fluorocarbon-coated glass slide to lyse. The lysed nuclei were digested with Trypsin Gold at
a concentration of 120 ng/uL. and 5 mM HEPES (pH 8.5) and 200 mM TEAB buffer (pH 8.5).

Peptides were then chemically labeled with mTRAQ A0 or A4. Single nuclei were pooled into
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376 sets of A0 and A4, and dispensed into individual wells of a 384 well-plate. The pooled samples
377 in the 384 well-plate were then dried in a speed-vacuum then stored at -80°C until use. Before
a78 sample loading for LC-MS/MS, a 25x or 50x nuclei carrier labeled with mMTRAQ A8 was pooled
379 into each set to create the final A0, A4, and A8 SCoPE-DIA set. Four single-nucleus biological
380 replicates were prepared and acquired, for a total of 3412 single nuclei.

381 Data acquisition

382 All single nuclei and bulk samples were resuspended in 0.01% n-Dodecyl 3-d-maltoside (DDM)®
383 with 0.1% formic acid. Sample pickup occurred out of a 384 well-plate for single-nucleus sam-
384 ples, or from glass vials for bulk samples. Peptides were separated for LC-MS acquistion using a
35 Neo Vanquish UHPLC and 25 cm x 75 pm IonOpticks Aurora Series UHPLC columns (AUR2-
386 25075C18A) at a flow-rate of 200 nL/min. LC was run with the following settings: Direct Injec-
387 tion, nano/cap flow, maximum pressure = 1500 bar, maximum pressure change = 1000 bar/min.
388 Sample loading had the following settings: 1uL injection with 1.2 uL loading volume, “Pressure
389 Control” mode with maximum pressure set to 1450 bar, and fast loading enabled. Wash and equi-
390 libration settings: ”Pressure Control” mode with maximum pressure set to 1450 bar, equilibration
301 factor = 4.0, and fast equilibration was enabled.

302 The LC gradient proceeded as follows: Ramp from 2.5%B to 6.5%B over 0.2 minutes, to
393 11.5%B over 0.9 minutes, to 21.0%B over 3.1 minutes, to 31.5%B over 6.2 minutes, to 40%B over
304 2.8 minutes, to 55%B over 1.7 minutes, to 95%B over 0.65 minutes and then hold at 95%B for 4
305 minutes. This method allows for approximately 15 minutes of active chromatography, at a through-
396 put of approximately 45 runs/day (90 single nuclei/day with SCoPE-DIA or 135 bulk samples/day
307 with plexDIA) after accounting for sample loading and column equilibration overheads.

398 All data were acquired on a Bruker timsTOF SCP using captive spray, dia-PASEF scan mode®>®,
399 and positive polarity. The duty cycle consisted of 8 total PASEF frames, 26 Th MS2 windows with
400 1 Th overlaps. To improve temporal sampling of the MS1-elution profiles which are used for quan-
401 tification, an MS1 scan was taken every 2 PASEF frames, for a total of 4 MS1 scans per duty cycle.
402 MS2 scan range: 300 m/z-1000 m/z, MS1 scan range: 100 m/z-1700 m/z, 1/KO start: 0.64, 1/KO
403 end: 1.20, ramp and accumulation times: 100 ms. The estimated duty cycle time is 1.28 seconds.
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404 Collision energy settings were 20 eV at 1/K0 = 0.60 and 59 eV at 1/KO = 1.60. Collision RF was
405 set to 2000 Vpp.

406 Raw data searching with DIA-NN

407 Empirical spectral libraries of mTRAQ-labeled nuclei and whole-cells were generated from dia-
408 PASEF runs on the timsTOF SCP, searching with a DIA-NN in-silico-predicited Swiss-Prot H.
409 sapiens FASTA (canonical & isoform). Similarly, a combined H. sapiens and S. cerevisiae library
410 was generated for searching SCoPE-DIA benchmarks.

411 DIA-NN (version 1.8.1) was used to search raw data as previously implemented*>**. The
a12 following search settings were used: {—fixed-mod mTRAQ 140.0949630177, nK}, {—channels
413 mTRAQ, 0, nK, 0:0; mTRAQ, 4, nK, 4.0070994:4.0070994; mTRAQ, 8, nK, 8.0141988132:8.0141988132},
414 {-original-mods}, {—peak-translation}, {-report-lib-info}, {—qvalue 0.01}, {-mass-acc-ms1 5.0},
415 {-mass-acc 15.0}, {-mass-acc-quant 5.0}, {-reanalyse}, {-rt-profiling}, and {-peak-height}.

416 Computational data analysis

417 Nuclear enrichment

418 To assess nuclear enrichment, the first two bulk biological replicates were acquired in a plexDIA
419 set of whole-cell and nuclear fractions. The fractions were subset for histones, which should only
420 be present in the nucleus, and both fractions were normalized by a scalar such that histone pro-
421 teins between whole-cells and nuclear fractions were in a 1:1 ratio. Ratios of MaxLFQ protein
422 abundances for protein markers from The Human Protein Atlas for endoplasmic reticulum (ER),
423 nuclear compartments, mitochondria, plasma membrane, cytosol, and Golgi were calculated be-
424 tween nuclear and whole-cell fractions to assess nuclear protein enrichment®~¢7,

425 Differential protein abundance analysis

426 Precursor quantities acquired by plexDIA and analyzed by DIA-NN were corrected for isotopic en-
427 velope carryover, as previously performed??. These precursor quantities were filtered for Lib.PG.Q. Value
428 < 0.01 and Q.Value < 0.01 for bulk data from all six biological replicates and their corresponding

20


https://doi.org/10.1101/2024.06.17.599449
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.17.599449; this version posted June 18, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

429 nested technical replicates. The bulk data used to generate weights for single-nuclei analyses were
430 taken from cell-batches that corresponded to those single nuclei, in this case, biological replicates
431 1, 2, 3, and 6; the bulk data used for single-nucleus weighting were further filtered for Translated
432 Q-value and Channel Q-value < 0.05.

433 Differential protein abundance was calculated through the MS-Empire workflow for each
434 biological replicate. Precursors used for analysis were required to be quantified in at least two
435 replicates per condition. Data normalization was performed using operations from the MS-Empire
436 workflow, as described by Ammar et al.*®. Differential abundance analysis collapsed precursors to
437 gene-level annotations; this produced p-values calculated after outlier correction for each protein
438 for each biological replicate; Stouffer’s method was applied to collapse multiple p-values from
439 several biological replicates to a single combined p-value. Briefly, this involved converting p-
440 values for each protein from each biological replicate to z-scores, multiplying by the sign of the
441 fold-change, summing the signed z-scores, then dividing by the square root of the number of
442 observations for that protein, and finally converting that z-score back to a single p-value for each
443 protein. The resulting p-values were corrected for multiple hypothesis testing using the Benjamini-
444 Hochberg (BH) correction®.

445 Protein set enrichment analysis

446 Protein set enrichment analysis was performed using the g:GOSt R package®’". An ordered vector
447 of gene names was used as the input. Results were filtered at 1% FDR, and the relative abundance
448 for the Gene Ontology terms was computed across all samples from the intersect of protein abun-
449 dances to represent the relative abundance of a given Gene Ontology term. Calculating the relative
450 abundance of a Gene Ontology term from the subset of intersected proteins allowed for fairer com-
451 parisons of enrichment between samples. Specifically regarding the analysis of whole-cell bulk
452 knockdowns shown in Extended Data Fig. 10, in some cases this was performed on data in which
453 NT and 60 minute LPS-treated cell-lysates were combined. These samples were experimentally
454 combined for ease of labor and due to the minimal impact of 60 minute LPS-treatment on the
455 whole-cell proteome.
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456 Evaluating relationship of protein mass and transport

457 Protein masses were downloaded from Uniprot’!, and matched to proteins which we found sig-
458 nificantly increased or decreased in response to LPS (Q-value < 0.05) in nuclear fractions. The
459 absolute value of the log, fold-change was plotted with the mass of the protein to statistically eval-
460 uate the relationship between protein mass and the amount of transport that occurred as a result
461 of LPS treatment. Because the masses are purely based on gene-encoded sequences, this analysis
462 does not account for changes in mass as the result of proteolytic cleavage or the transport of protein
463 complexes.

464 Additionally, the dynamics of protein transport were interpolated from the four data points (NT,
465 10 min, 30 min, and 60 min LPS) using a 3rd degree polynomial for each of the proteins that was
466 found to significantly change in at least one of the conditions relative to NT. A total of 300 time
467 points were predicted from the fit, ranging from 0 to 60 minutes. The proteins were arranged from
468 smallest to largest and a moving median of the absolute value of the log, fold-change from NT was
469 calculated for each time point from that protein’s adjacent 40 smaller and 40 larger proteins. In this
470 way, biological differences between proteins could be averaged to generally assess the influence
a7 of protein mass on transport kinetics. For each protein’s averaged kinetics, the time when half of
a2 the total absolute value log, fold-change had occurred was marked. This was plotted against the
473 protein mass and a Spearman correlation was calculated.

474 Benchmarking SCoPE-DIA quantification

475 To benchmark how different levels of carrier affect protein-level quantitation of SCoPE-DIA as
476 shown in Extended Data Fig. 5f, precursors were intersected across all carrier levels, and thus
477 proteins as well; precursor quantities were collapsed to protein-level quantities using MaxLFQ,
478 and then ratio values between A0 and A4 were computed, normalizing H. sapiens to a be median-
479 centered at a 1:1 ratio to account for systematic differences in loading amounts, if any exist. To
480 compare quantitation at different carrier levels for all proteins, as shown in Extended Data Fig. 5f,
481 the same process was performed without intersecting.

482 In regards to compression filtering, acquiring single cell (or nucleus) data with a constant,
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483 known amount of carrier is useful to identify precursors which have systematically interfered
484 quantification. Precursors which have systematically compressed quantification across all samples
485 relative to the expected carrier amount, are unlikely to be well-quantified and can be removed. To
486 identify which precursors to remove, a ratio for each precursor from the single-nucleus channels to
487 its respective carrier channel was calculated. Precursors with median ratios > 6-fold greater than
488 the theoretical ratio (e.g. 1:50 is expected for a 50x carrier) were considered to be systematically
489 poorly quantified and were excluded from downstream analyses.

490 Single-nucleus quality control

491 To identify which single nuclei were successfully prepared and acquired, precursors were filtered
492 for Channel and Translated Q-values < 0.1 and the number of remaining high quality precursors
493 was counted. Single nuclei with > 50 high quality precursors were retained for downstream anal-
494 ysis as this threshold was sufficiently separable from negative controls. Precursors were required
495 to be quantified in > 1% of single nuclei, and have < 6x ratio compression to be retained for
496 downstream analysis.

497 Single nuclei were further filtered to ensure sufficient depletion of non-nuclear proteins. To
498 quantify the nuclear purity of each single-nucleus, the nuclear proteomes were scaled to a reference
499 bulk nuclear fraction, and compared to a ratio of whole-cell to nuclear fraction. A 3rd degree
500 polynomial was used to fit a curve for each single-nucleus, and an absolute value of the AUC was
501 computed. This value was used to identify single-nuclei which were insufficiently pure. Only
502 single nuclei with AUCs < 5 were used in downstream analyses.

503 Single-nucleus protein quantification, imputation, and batch correction

504 Precursor abundances from single nuclei were normalized to their respective carrier channel, which
505 serves as a reference similar to the isobaric SCoPE-MS workflow!>?*, For each precursor across
506 all carrier samples, the mean abundance was calculated and used to scale the data of the single
507 nuclei, to be compatible for MaxLFQ protein quantification®. The resulting protein-level data of
508 each nucleus was normalized by its respective median protein abundance to account for differences
509 in absolute abundances, then each protein was normalized by the mean abundance across single
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nuclei. The log,-transformed data was imputed using a weighted kNN approach (k=5), where
the weights were proportional to the similarity to its nearest neighbors. Finally, the data was
batch-corrected using ComBat’>"* to account for mTRAQ label-biases, LC-batches, and biological

replicates.

Weighted Principal Component Analysis (PCA)

The variance of single-nucleus protein data was weighted based on protein correlations, bulk dif-
ferential abundance, and bulk continuity of spatiotemporal trends. Effectively these weights assign
higher variance based on: 1) how correlated a protein’s abundance is to other proteins abundances,
2) how differentially abundant the protein was in the bulk data, and 3) how continuous the trend
was in its spatiotemporal response to LPS.

Specifically, the bulk differential abundance data computed from MS-Empire*® analysis had
p-values which where converted to signed Z-scores. Using Stouffer’s method they were combined
for all the bulk biological replicates that correspond to the single-nucleus replicates, in this case,
biological replicates 1, 2, 3, and 6. The resulting Z-score for each protein was squared, then used
to weight the variance of that protein in the single-nucleus data. Additionally, the inverse of the
ranked version of the von-Neumman Ratio (RVN) calculated from bulk data was used to weight

the variance of each respective protein in the single-nucleus data.

Computing single-nucleus transport scores

Directly measuring protein transport in a cell using LC-MS/MS was not possible with this experi-
mental design as we did not measure the same nucleus before and after LPS stimulation. However,
we derived a ’transport score’ metric to serve as a substitute which serves to quantify the devi-
ation of single LPS-treated nuclei from the population of single NT nuclei. The transport score
accounts for pre-existing variability in the not-treated (NT) population of single nuclei for each
protein by converting protein abundances for each LPS-treated nucleus to a Z-score in reference
to the NT-population. For each nucleus, the resulting vector of Z-scores is weighted based on
the signed-Z-scores of the differential protein abundances in the bulk data. Therefore, a protein’s

contribution to the transport score is weighted by its significance in the bulk data, where more
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differential proteins carry greater weights. The mean component of the resulting vector of each

nucleus is taken as that nucleus’ transport score.

Computing protein overlap coefficients between populations of single nuclei

The overlap between the distributions of relative protein abundances between populations of single
nuclei was computed to quantify the commonality of protein abundances pre-stimulation and post-
LPS stimulation. This overlap coefficient was computed by the overlap function of bayestestR”*.
It is computed by modeling the distribution of relative protein abundances as densities for two
populations and then computing the proportion that is shared. For example, a protein that has
high-overlap between abundances in NT and LPS-treated populations, is one that is minimally

transported relative to its natural variability.

Quantifying nuclear pore complex abundances and dependence on mass

To quantify nuclear pore complex abundances in each single-nucleus, relative abundances of nu-
cleoporins were converted to Z-scores and combined for all nucleoporins using Stouffer’s method.
Mass dependence as a function of NPC abundance was computed for each LPS-treated single-
nucleus based on the slopes (protein Z-scores vs log;-transformed protein mass) of differentially

abundant proteins in the single-nucleus data.

Investigating the association between nucleoporin half-lives and their correlations to trans-

port score

Half-lives were derived from SILAC turnover data of primary monocytes, NK cells, neurons, hep-
atocytes, and B-cells from Mathieson et al.”*. Specifically, the half-lives of all replicates for each
cell-type was collapsed to the mean, then the mean of all cell-types was collapsed to a final value,

which was used as the half-life in our analysis.
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Visualizing the nuclear pore complex

The predicted structure of the human nuclear pore complex (PDB Entry: 7r5k)>* from Mosalaganti
et al. was used visualize the NPC. The nucleoporins were colored by their respective correlations

to transport score using ChimeraX (v1.6.1)".

Quantifying the effect of protein knockdowns on transport

To quantify how each protein knockdown affected LPS-induced nucleocytoplasmic transport, each
biological replicate included a matched negative (non-targeting) siRNA control to account for how
much transport would have occurred without the knockdown. A slope was calculated from the 100
most differentially abundant proteins in the original (no knockdown) bulk data to the data for each
knockdown. The fold-changes for proteins used for computing these slopes were weighted by their
associated Z-score significance of differential abundances from the original bulk data; this serves to
weight each protein’s contribution to the slope-calculation based on its significance. The difference
in slopes between the negative control (non-targeting) siRNA and the knockdown was computed.
This difference in slope is interpreted as the extent to which nucleocytoplasmic transport changed
as a result of the knockdown. Additionally, the associated standard error of each slope was used
between the negative control and experimental knockdown to derive a Z-score for the significance
of the difference in transport. Significance from additional biological replicates were combined
using Stouffer’s method to arrive at a cumulative Z-score. To assess the significance of the effect
on transport of individual knockdowns, this Z-score was converted to a p-value and adjusted for

multiple testing hypotheses using a BH-correction.

Calculating significance of correlation to transport score

To derive a metric for the significance of protein correlations to the transport score, a rank-based
normalization approach (Rankit) was used to transform the correlations into a standard normal
distribution. The resulting Z-scores were combined using Stouffer’s method to arrive at a final
Z-score for each protein, as shown on the y-axis of Fig. 4c. This approach was chosen as an

alternative to a traditional Z-score operation given that the distribution of correlations to transport

26


https://doi.org/10.1101/2024.06.17.599449
http://creativecommons.org/licenses/by-nc-nd/4.0/

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

602

603

604

605

606

607

608

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.17.599449; this version posted June 18, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

scores were non-Gaussian and have a skewed tail.

Availability

All data are reported and deposited in accordance with the community guidelines'’. Raw data,
spectral libraries, FASTAs, and DIA-NN search outputs are available at MassIVE: MSV000094829.
Code, processed data, supporting files, supplementary figures, and interactive supplementary anal-

yses (e.g. volcano plots and time-series data) are available at scp.slavovlab.net/Derks et _al 2024.
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Extended Data Fig. 1 | Evaluating nuclear enrichment of bulk samples. Proteins markers from The Human
Protein Atlas were used to benchmark the enrichment of nuclear proteins, and the depletion of non-nuclear proteins in
nuclear lysate relative to whole-cell lysate.
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Extended Data Fig. 2 | Assessing the continuity of time-series data for LPS-induced differentially abundant
proteins. a Calculation for the ranked version of von Neumann’s ratio (RVN). b Distribution of RVN ratios for
differentially abundant proteins (5% FDR) in nuclei (“Sig. proteins”) compared to a simulated null model. ¢ Same as

b, but for whole-cells.
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Extended Data Fig. 3 | Fold-change of LPS-induced protein transport is mass-dependent. Absolute value fold-
changes between LPS-treated and NT nuclear proteomes, and molecular masses are plotted for differentially abundant
proteins (5% FDR). Smaller proteins tend to have greater fold-changes than larger proteins. Spearman correlations
and associated statistical significance are noted.
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Extended Data Fig. 4 | Change in the nuclear abundance of proteins associated with DNA repair complex in
response to 1,g/mL LPS. Time series trends of DNA repair complex proteins computed from up to 6 bulk biological
replicates. Proteins shown in red are differentially abundant at 5% FDR, otherwise they are shown in black.

37


https://doi.org/10.1101/2024.06.17.599449
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.17.599449; this version posted June 18, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

a _ c
s - A8 carrier
. cerevisiae
0x - 50x i
AO A ( ) Species B H. sapiens Expected
E3 S. cerevisiae 4000 ~ ratio
H. sapiens nuclei . .
Protein-level, intersected (n=658) 3
£ 3000
5.0 S
=
s o
< . »
32s i £ 2000
E = ) 5
c < 3
D 0.0 -H1- = 1000
® C -
S .
0 I
2 -2.5 : o
-10 -5 0 5 10

Ox 1x

5x  10x 25x 50x

Carrier amount

Log,, median(Single nuc / 50x Carrier) precusors

Protein-level, all

d 50x carrier f 2500
Protein-level, intersected £ 2000
. 2 1500
. . 3000 5 1000
%0t ;: SN P # 500 .I
.
! [} 3 0 7
< = .
T A AL ; E 2000 50] g 3" "o I
< % Y] ' g [ ] .
o pd < H H
oot & -Hf- HF - 2 < 254§
p} ‘© 3 TF - - [
‘5 1000 3
<]
& -
-25 ! SootHe H-B1- -
s ' H S H
. ] [ ] .
1 3 e3 e :
-5.0 — 0 25 H ' ° '
&féj g g § 2x 4x 6x None s so 8
5 x5 S8 =2 (strict)  (moderate) (relaxed) H 3
g £ Compression filtering Ok Tx 5% 10x 25x 50x

Compression filtering Carrier amount

Extended Data Fig. 5 | Benchmarking SCoPE-DIA for single nucleus proteomics. a We sought to test whether
acquiring single nucleus data in parallel with a more abundant carrier sample may improve protein coverage with
minimal effect to quantitative accuracy. To test this, a mixed-species spike-in of 4:1 S. cerevisiae and 1:1 H. sapiens
was created at 0x, 1x, 5x, 10x, 25x, and 50x carrier amounts. b Quantitative accuracy of proteins quantified across
all carrier-levels (n=658) remains accurate despite the potential for increased interference. Dashed lines correspond to
the theoretical expectation of the spike-in ratio. ¢ Median ratios of precursor abundances to the carrier were computed
and plotted as a histogram. Precursors with systematically compressed ratios from the theoretical expectation of the
carrier level (e.g. 1:50) are likely poorly quantified, and were removed from downstream analysis. d Quantitative
accuracy for intersected proteins at 4 filtering thresholds with the 50x carrier. Filtering precursors based on observed
compression relative to the carrier improves quantitative accuracy. € Number of protein ratios quantified between AO
and A4 with 50x carrier after various filtering thresholds. f After filtering to remove poorly quantified precursors,
the 50x carrier still enables nearly 4-fold greater proteomic coverage. The protein-level quantitative accuracy for all
proteins is shown in the bottom panel. The data indicate that the overall quantitative accuracy decreases as the carrier
enables identification of otherwise unidentifiable proteins; naturally, these proteins are lowly abundant and thus poorly
quantified.
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Extended Data Fig. 6 | Single nucleus quality control. a Single nuclei and negative controls were filtered for
Translated and Channel Q-values < 0.1, and the number of precursors quantified was counted and plotted as a his-
togram. Successfully prepared and acquired nuclei, which were separable from negative controls, were retained for
downstream analysis (highlighted in green). b Single nuclei were acquired with either a 25x or 50x carrier, and the
median ratio of precursor intensities from single nuclei to normalized carrier was computed for each precursor. Only
precursors with <6-fold compression were retained for downstream analysis (highlighted in green). ¢ Nuclear purity
was assessed for each single nucleus to a reference bulk nuclear fraction, shown in the y-axis, and a 3rd degree polyno-
mial was fit for expected protein enrichment in the x-axis. Each line denotes the 3rd degree polynomial fit for a given
single nucleus, and is colored by the computed area under the curve (AUC). Single nuclei with greater AUC reflect
nuclei which are generally less pure (more whole-cell like). Only nuclei with AUC < 5 were retained for down-stream
analysis. d Similar to the previous plot, this shows the distribution of AUCs for single nuclei. Only relatively pure
nuclei (AUC < 5) were retained for downstream analysis.
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Extended Data Fig. 7 | Computing the transport score of single nuclei. Single-nucleus protein transport cannot
be directly quantified in our analysis due to the lack of measurements before and after LPS stimulation for the same
nucleus. Here, we derive a metric, we term ‘transport score,” that serves as an approximation. Deviations of protein
abundances from the NT-population of single-nuclei are calculated globally, for all proteins, for each LPS-treated
nucleus. The resulting vectors are weighted according to the differential protein abundances derived from the original
bulk data presented in Figure 1. The mean component of the resulting vector is the weighted deviation of a single-
nucleus from the NT-population of single-nuclei; we use this metric (transport score) to infer the magnitude of protein
transport.
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Extended Data Fig. 8 | Protein set enrichment analysis on protein correlations to transport score. The vector
of ordered protein correlations to transport score were analyzed for enriched protein sets (Gene-Ontology terms). The
results for which are shown at 1% FDR, ordered by their relative enrichment, some of which are highlighted.
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Extended Data Fig. 9 | Predictive power of correlations to transport remain similar at different filtering
levels. To assess the robustness of our findings, changes in transport were either calculated based on a the 25 most
differentially abundant proteins in the original bulk data, or b all differentially abundant proteins at 1% FDR (308
proteins). The trends are similar, but with decreasing predictive power as proteins with less biological signal are
included for computing the slopes.
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Extended Data Fig. 10 | Protein-set enrichment analysis of whole-cells as a result of each siRNA knockdown.
The abundances of differentially enriched Gene-Ontology terms are plotted (y-axis) for each siRNA condition (x-axis);
the x-axis is ordered based on each knocked-down protein’s correlation to transport score. knockdowns of potential
transport suppressors are generally enriched for macrophage-like processes and nucleocytoplasmic transport compared
to knockdowns of potential transport enhancers.
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Supplementary Fig. 1 | Volcano plots to validate siRNA mediated knockdowns in whole-cells. Differential
abundance analysis comparing knockdown to negative control (non-targeting) knockdown, shown as volcano plots
from the whole-cell fractions of THP-1 derived macrophages. Plots highlight and label the knocked-down protein.
All knocked-down proteins are less abundant in the knockdown condition than in the negative control and 6/16 are

statistically significant.
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Supplementary Fig. 2 | Volcano plots to validate siRNA mediated knockdowns in nuclei. Differential abun-
dance analysis comparing knockdown to negative control (non-targeting) knockdown, shown as volcano plots from
the nuclear fractions of THP-1 macrophages. Plots highlight and label the knocked-down protein. All knocked-down
proteins are less abundant in the knockdown condition than in the negative control and 13/16 are statistically signifi-

cant.
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Supplementary Fig. 3 | Differences in protein transport for each biological replicate. All biological replicates for
each siRNA-mediated gene-knockdown are shown. Slopes for each experimental condition are calculated with respect
to the original bulk data (x-axis). The difference in slopes, which we infer as the change in global protein transport as
a result of the knockdown, is annotated for each biological replicate and quantified relative to its respective matched
biological replicate negative control (non-targeting) siRNA.
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