

1 Diversifying selection and adaptive introgression of carotenoid-processing genes underlie the
2 evolution of bill color in the long-tailed finch

3

4 Daniel M. Hooper^{1,2}, Callum S. McDiarmid², Matthew J. Powers³, Nicholas M. Justyn⁴, Marek Kučka⁵,
5 Nathan S. Hart², Geoffrey E. Hill⁶, Peter Andolfatto⁷, Yingguang Frank Chan^{5,8}, and Simon C. Griffith²

6

7 ¹ Institute for Comparative Genomics and Richard Gilder Graduate School, American Museum of
8 Natural History, New York, NY 10024, USA

9 ² School of Natural Sciences, Macquarie University, Sydney, NSW, Australia

10 ³ Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA

11 ⁴ Department of Biosciences, Swansea University, Swansea, SA2 8PP, UK

12 ⁵ Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany

13 ⁶ Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA

14 ⁷ Department of Biological Sciences, Columbia University, New York, NY 10027, USA

15 ⁸ Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the
16 Netherlands

17

18 **Corresponding author:** Daniel M. Hooper, dhooper@amnh.org

19

20 **Keywords:** hybrid zone | selective sweep | carotenoids | population genetics | ancestral recombination
21 graph

22

23 **This PDF file includes:** Main text, Figures 1 to 7, Tables 1 of 1, Supplemental Figures 1 to 16

24 **Abstract**

25

26 Carotenoid pigmentation produces the yellow and red coloration of birds and other
27 vertebrates, but our understanding of the genetic architecture of carotenoid ornamentation is
28 largely limited to studies of novel color variants observed in captively bred populations. The
29 complexity of carotenoid-based color evolution in nature remains poorly characterized. Here,
30 we examine the long-tailed finch *Poephila acuticauda*, an Australian songbird with two
31 hybridizing subspecies that differ in bill coloration: yellow in western subspecies *acuticauda* and
32 red in eastern subspecies *hecki*. We characterize the carotenoid composition of each
33 subspecies and find that yellow bills can be explained by the loss of C(4)-oxidation, thus
34 blocking yellow dietary pigments from being metabolized to red. Combining linked-read
35 genomic sequencing and reflectance spectrophotometry measurements of bill color collected
36 from wild-sampled finches and laboratory crosses, we identify four loci that together explain
37 53% of variance in this trait. The two loci of largest effect contain the genes *CYP2J19*, an
38 essential enzyme for the ketolation via C(4)-oxidation of dietary carotenoids, and *TTC39B*, an
39 enhancer of ketocarotenoid production. Evolutionary genealogy reconstruction indicates that
40 the red-billed phenotype is ancestral and yellow alleles at both *CYP2J19* and *TTC39B* arose
41 and fixed in *acuticauda* approximately 100 kya. Yellow alleles then introgressed into *hecki* less
42 than 5 kya. Across all four loci, *acuticauda* derived variants show evidence of selective sweeps,
43 implying that yellow bill coloration has been favored by natural selection. Our study suggests
44 that the frequent adaptive evolutionary transitions between red and yellow ornamentation in
45 nature can have a simple genetic basis.

46

47 **Significance**

48

49 We studied variation in carotenoid ornamentation of an Australian songbird with two
50 hybridizing subspecies that differ in bill color: one yellow and the other red. We identified a
51 single metabolic process, C(4)-oxidation, underlying the distinct carotenoid composition of
52 these two bill colors. Genetic association mapping revealed four major effect loci that explained
53 most of the observed variation the trait, including the oxidative ketolation enzyme *CYP2J19*
54 and the carotenoid ketolation enhancer gene *TTC39B*. Evolutionary reconstruction indicates
55 that yellow alleles are derived, ancient (~100 kya), and under positive selection. This has driven
56 their recent (<5 kya) adaptive introgression across the hybrid zone. These findings have
57 important implications for understanding the role of natural selection in phenotypic evolution
58 in natural systems.

59 Introduction

60

61 Understanding the diversity of color displays in animals stands as a major challenge in
62 evolutionary biology (Cuthill et al. 2017; Price 2017). The yellow, orange, and red colors that
63 regularly adorn birds, fish, and reptiles are among the most conspicuous visual signals of
64 animals. Studies have shown that carotenoid-based coloration plays important and varied roles
65 in social and sexual selection (Svensson and Wong 2011; Hill and McGraw 2006). As such,
66 carotenoid coloration has been proposed to contribute to speciation via the establishment or
67 maintenance of reproductive isolation – for example via species recognition and mating
68 preferences (West-Eberhard 1983; Price 1998; Seddon et al., 2013; Gomes et al., 2016; Price-
69 Waldman et al., 2020).

70

71 Despite the importance of animal coloration in evolution, researchers have only recently
72 gained insights into the genetic mechanisms underlying the diversity of carotenoid
73 ornamentation among animals (Toews et al., 2017; Price-Waldman and Stoddard 2021). It has
74 long been known that the carotenoid pigments used to produce red and yellow coloration
75 cannot be synthesized by most vertebrates *de novo* but rather are sourced from their diets (Hill
76 and McGraw 2006; Sefc et al., 2014; Maoka 2020). Crucially, most of the carotenoid pigments
77 ingested by vertebrates are yellow, so red carotenoid coloration requires a metabolic
78 conversion. In the last decade, a combination of experimental and field-based studies has
79 identified a small set of genes essential to produce yellow and red carotenoid coloration. Key
80 among these newly discovered genes is 3-hydroxybutyrate dehydrogenase 1-like (*BDH1L*) and
81 cytochrome P450 2J19 (*CYP2J19*). When expressed without *CYP2J19*, *BDH1L* produces yellow
82 ϵ,ϵ -carotenoid pigments such as canary xanthophylls from dietary carotenoids like lutein and
83 zeaxanthin (Toomey et al., 2022a). When *CYP2J19* and *BDH1L* are expressed together, these
84 same dietary carotenoids are metabolized to ketocarotenoids, a group of carotenoids
85 responsible for red coloration (Mundy et al., 2016; Lopes et al., 2016; Toomey et al., 2022a).

86

87 While we have a growing understanding of the key enzymes involved in the production
88 of yellow and red coloration in birds and other vertebrates, most of these recent insights have
89 been drawn from studies of domesticated lineages subject to intense artificial selection for
90 novel color variation. For example, scavenger receptor B1 (*SCARB1*), a key carotenoid transport
91 gene, was discovered in a “white recessive” canary breed with entirely white plumage and a
92 congenital vitamin A deficiency due to splice donor site mutation in *SCARB1* (Toomey et al.,
93 2017). This mutation is also associated with a loss of female mating preferences for ornamental
94 coloration (Koch and Hill 2019). The role of tetracopeptide repeat protein 39B (*TTC39B*) as an
95 enhancer of carotenoid ketolation was identified in orange-mutant red-throated parrotfinches
96 *Erythrura psittacea*. This novel morph, created by bird fanciers, develop orange instead of red
97 plumage and plausibly experience impaired color vision due to a splice altering duplication

98 within *TTC39B* which compromises ketocarotenoid production in feathers and retinal cone
99 photoreceptors (Toomey et al., 2022a). The two studies that first identified the essential role of
100 *CYP2J19* in carotenoid ketolation also used color mutants not found in nature (Mundy et al.,
101 2016; Lopes et al., 2016). The *yellowbeak* morph of the zebra finch *Taeniopygia guttata* has
102 yellow bills and tarsi rather than the wildtype red due to a deletion of a functional *CYP2J19*
103 copy that renders them unable to synthesize red ketocarotenoids (Mundy et al. 2016). In “red
104 factor” canaries, bird fanciers purposefully moved a “red factor” (a *CYP2J19* allele) from a red-
105 feathered species, the red siskin *Spinus cucullatus*, to yellow common canaries *Serinus canaria*
106 via hybridization and serial backcrossing (Lopes et al., 2016). In both finches and canaries,
107 artificial selection overcame what would have been negative sexual selection because the novel
108 coloration made these individuals less attractive as mates (Simons and Verhulst 2011; Koch and
109 Hill 2019). Thus, the causative mechanisms underlying carotenoid-based color variation
110 identified from these avicultural forms are often highly pleiotropic mutations and primarily loss-
111 of-function mutations that would be deleterious to carriers in the wild. Almost nothing is
112 currently known about how carotenoid-based traits evolve in nature, the role of species
113 boundaries in the divergence of color traits, and the respective roles of natural and sexual
114 selection in the divergence of carotenoid ornamentation between species (Toews et al., 2017;
115 Price-Waldman and Stoddard 2021).

116

117 The long-tailed finch *Poephila acuticauda* is a songbird endemic to the northern tropics
118 of Australia and provides a unique opportunity to study the evolution of carotenoid-based
119 ornamental coloration in a natural system. It consists of two subspecies that differ prominently
120 in bill coloration: yellow in western subspecies *acuticauda* and red in eastern subspecies *hecki*
121 (Fig. 1A and 1B). The two subspecies form a hybrid zone at the edge of the Kimberley Plateau
122 in Western Australia. Notably, the transition from yellow to red ornamentation is displaced
123 relative to the genomic hybrid zone: the center of bill coloration admixture is located ~350 km
124 to the east of this within the Northern Territory (Griffith and Hooper 2017; Hooper et al., 2019).
125 This displacement between the centers of genomic and bill color admixture could be the result
126 of asymmetrical introgression of *acuticauda* color alleles into an otherwise *hecki* genetic
127 background. This makes the long-tailed finch an attractive system to study how natural and
128 sexual selection shape carotenoid ornamentation and the role of color displays as reproductive
129 barriers between species.

130

131 Our investigation involves four steps. First, we describe the distinct carotenoid
132 composition of the bills of each subspecies and screen for differences in the retinal cone cells
133 of the subspecies using birds reared in captivity under common garden conditions. Second, we
134 examine the genetic architecture of bill color variation using 508 phenotyped individuals from
135 across nearly the entire wild range of the species. Third, we utilize geographic and genomic
136 cline analyses to evaluate evidence of introgression of bill color alleles between subspecies.

137 Fourth, we leverage population scale linked-read sequencing to model the strength and timing
138 of selective sweeps on loci identified to contribute to variation of this carotenoid-based trait.
139

140 Results

141

142 **Evaluation of Bill Color Variation.** We first analyzed bill color variation using UV-vis reflectance
143 spectrophotometry from 948 adult wild-caught and 550 captive-bred long-tailed finches at
144 Macquarie University, Sydney, Australia. Bill color variation is geographically structured across
145 the range of the long-tailed finch into three distinct regions: phenotypically *acuticauda*-yellow
146 populations to the west of the Western Australia – Northern Territory border (~129.1° E),
147 phenotypically *hecki*-red populations to the east of the town of Katherine, Northern Territory
148 (14.5° S, 132.3° E); and phenotypically admixed populations in between (Higgins 2006; Griffith
149 and Hooper 2017; Hooper et al. 2019). We quantified bill hue using the colorimetric variable
150 H3, which is the midpoint between the minimum and maximum reflectance of a surface
151 between 400 and 700 nm (λ_{R50} ; Maia et al., 2019). This colorimetric variable efficiently
152 differentiated the yellow and red bills of the two subspecies in our common garden conditions
153 by 56.5 nm (H3: *acuticauda*: 526.1 ± 5 nm [mean \pm standard deviation], N = 151; *hecki*: 582.6
154 ± 6 nm, N = 173; Fig. 1C).

155

156 To discern broadscale genetic dominance between long-tailed finch subspecies we next
157 evaluated bill color variation in captive-crossed first-generation (F_1) hybrids. As a group, F_1
158 hybrids had substantially redder bills than might be expected if the allelic contribution of each
159 subspecies was entirely additive (all F_1 hybrids: 567.2 ± 8 nm, N = 226; hypothetical
160 intermediate: 554.4 nm). In birds, females are the heterogametic sex (i.e., ZW) and males the
161 homogametic sex (i.e., ZZ) so if a recessive Z-linked effect on bill color comes from one
162 subspecies, F_1 females with that subspecies father should differ from all other hybrids. F_1 hybrid
163 ZW females with an *acuticauda* father had significantly yellower bills (561.1 ± 7 nm, N = 66)
164 than F_1 hybrid females with a *hecki* father (571.3 ± 7 nm, N = 58) and both groups of F_1 hybrid
165 males (ZZ; *acuticauda* father: 567.5 ± 7 nm, N = 51; *hecki* father: 570.0 ± 7 nm, N = 51; $P <$
166 0.005 for all three comparisons; Fig. 1D). This confirms a recessive sex-linked contribution to
167 bill color, first noted by McDiarmid et al. (2023). There was no significant difference in bill color
168 between F_1 hybrid females with a *hecki* father and either group of F_1 hybrid males. The observed
169 interaction between hybrid cross direction and sex strongly suggests that the overall Z-linked
170 allelic contribution from yellow-billed *acuticauda* is recessive to that of red-billed *hecki* (Fig.
171 1D).

172

173 We expanded the analysis of variation in bill hue across the geographic ranges of both
174 subspecies, and the hybrid zone between them, using 948 wild-caught samples (Fig. 1E). Our
175 sampling includes phenotypically “pure” populations from each subspecies at either end of the

176 transect (i.e., >80% of member individuals within two standard deviations of the mean bill hue
177 of each subspecies measured in captive common garden conditions) and a set of populations
178 in between that span nearly the full range of potential color variation between them (Fig. 1F).
179 Only two populations sampled in the wild (pops. 24 and 25) exhibited a mean bill color like that
180 observed in our captive crossed F₁ hybrids (Fig. 1D and 1F). This suggests that recombination
181 between the allelic variation underlying bill color has been substantial. We leverage this
182 naturally occurring phenotypic variation to identify the underlying genetic basis.
183

184 **Each Subspecies has a Distinct Carotenoid Composition in the Bill.** We examined the
185 carotenoid composition in the bills of each long-tailed finch subspecies using high-performance
186 liquid chromatography (HPLC) which revealed highly distinctive differences between the two
187 (Fig. 2; [Fig S1](#)). We detected five primary carotenoid pigments in the yellow bills of subspecies
188 *acuticauda*: three dietary yellow-orange carotenoids (lutein, zeaxanthin, and β -cryptoxanthin),
189 a metabolized yellow carotenoid (anhydrolutein), and a dietary red carotenoid (lycopene). The
190 red bills of subspecies *hecki* were predominantly comprised of six carotenoid pigments: a
191 dietary yellow carotenoid (lutein), a metabolized yellow carotenoid (anhydrolutein), a dietary
192 red carotenoid (lycopene), and three metabolized red carotenoids (astaxanthin, α -
193 doradexanthin, and adonirubin). Notably, the three dietary yellow-orange carotenoids that
194 occur at highest abundance in *acuticauda* bills are each the direct antecedent of one of the
195 three metabolized red ketocarotenoids found at highest abundance in *hecki* bills (Fig. 2C).
196 Moreover, each of the ketocarotenoids present in the bills of *hecki* are a byproduct of the same
197 metabolic reaction in the form of C(4)-oxidation, a process in which a carbonyl group is added
198 to the C(4) position of a β -ring end group (LaFountain et al. 2015). A set of ε,ε -carotenoids,
199 canary xanthophylls a and b, were detected in low concentrations in yellow bills ([Fig. S1](#)). This
200 low concentration is likely to be an artefact, the result of a necessary saponification step used
201 during carotenoid pigment extraction (Toomey et al. 2022b). We therefore refrain from formally
202 comparing total carotenoid content in yellow bills to that in red bills. Altogether, these
203 observations identify C(4)-oxidation as the enzymatic process responsible for the difference in
204 bill color between long-tailed finch subspecies: specifically, a lack of C(4)-oxidation in the yellow
205 bills of *acuticauda*.
206

207 **Both Subspecies Synthesize Red Ketocarotenoids in the Retina.** We used brightfield
208 microscopy of long-tailed finch retinas to examine the composition of retinal cone
209 photoreceptor cell types in each subspecies and observed no difference between them (Fig.
210 2D). Most birds possess six subtypes of cone photoreceptor and five of these contain oil
211 droplets with distinctive autofluorescence signatures due to their carotenoid composition
212 (Toomey et al. 2015). The sixth subtype may or may not contain carotenoids, depending on
213 species and retinal location (Hart et al., 1998). We classified cone cell subtypes to identify
214 differences, if any, between the two subspecies in the occurrence of red oil droplets in long-

215 wavelength-sensitive red cone cells. These oil droplets contain the ketocarotenoid astaxanthin
216 (Goldsmith et al., 1984; Toomey et al., 2015), a metabolized byproduct of the dietary carotenoid
217 zeaxanthin (LaFountain et al., 2015; Fig. 2C). Strikingly, the retinas of *acuticauda* show no
218 difference from those of *hecki* in the occurrence of red oil droplet-containing single cone cells
219 (Fig. 2D). This contrasts with the case of the orange-mutant red-throated parrotfinches *Erythrura*
220 *psittacea*, which are constitutively unable to metabolize red ketocarotenoids, both in the
221 feathers and in retinal cone cells (Toomey et al. 2022a). Our results strongly suggest that the
222 genetic basis underlying the principal color difference between long-tailed finch subspecies is
223 regulatory as *acuticauda* can utilize C(4)-oxidation to convert dietary carotenoids into
224 metabolized red ketocarotenoids within the retina even though they do not do so in the bill
225 integument.

226

227 **Genomic Differentiation.** We used the haplotagging approach described in Meier et al. (2021)
228 to generate whole genome linked-read (LR) sequence data for the long-tailed finch and its
229 closely related allopatric sister species the black-throated finch *P. cincta* (diverged 1.8 million
230 years ago; Lopez et al. 2021). We sequenced 1133 *P. acuticauda* (both subspecies) and 96 *P.*
231 *cincta* samples in 96-plex batches to a median read coverage of 1.38 \times with samples both
232 individually and molecularly barcoded; see [Materials and Methods](#)). Across the 1204 samples
233 that had high molecular weight DNA available for haplotagging, we recovered a mean molecule
234 N50 of 12.2 kbp (\pm 4.1 kbp) with maximum molecule sizes averaging 106.3 kbp (\pm 22.1 kbp;
235 Fig. S2). Following variant calling and imputation, we retained a set of 29.3 million SNPs and
236 observed 3.9 million fixed differences in both *Poephila* species relative to the zebra finch
237 reference genome.

238

239 Background genomic differentiation between long-tailed finch subspecies is highly
240 skewed onto the Z chromosome (mean genetic distance F_{ST} for autosomes: 0.027; for chrZ:
241 0.551; Fig. 3A). This observation is consistent with a previous finding that differentiation is likely
242 associated with a large Z-linked inversion that acts as a barrier to gene flow between subspecies
243 (Hooper et al., 2019). We used a set of 649 linkage disequilibrium (LD) pruned ancestry
244 informative markers (defined as SNPs with an allele frequency (AF) difference > 0.8 between
245 allopatric pops. 1 – 7 and pops. 28 – 34) to calculate a hybrid index between subspecies. We
246 estimated the hybrid zone to be 126.9 km wide (107.8 – 148.7 km, 95% highest posterior
247 density interval) along the edge of the Kimberley Plateau, Western Australia (between
248 populations 8 and 19, see Fig. 1E and Fig. S3). Remarkably, individuals from hybrid zone
249 populations exhibit bill color that is on average just as yellow as individuals from pure
250 *acuticauda* populations (H3: *acuticauda* 535.2 ± 10 nm, $N = 265$; hybrid zone 534.7 ± 10 nm,
251 $N = 158$; $P = 0.9$, Tukey's HSD test). As a result, the long-tailed finch hybrid zone is effectively
252 cryptic with respect to bill color. As *hecki* alleles appear in aggregate to be dominant (Fig. 1D),
253 this would suggest that the *acuticauda* alleles for yellow bill coloration have asymmetrically

254 introgressed into *hecki* following secondary contact, resulting in populations featuring yellow-
255 billed *hecki* birds.

256

257 **Association Mapping.** We performed genome-wide association studies (GWAS) to identify loci
258 underlying bill hue while controlling for population structure by including an inter-individual
259 relatedness matrix, hybrid index scores, and sex as covariates. We found eleven association
260 peaks that together explained 93.8% of the variance in this trait (Table 1). Four of these
261 association peaks together account for 53% of variance (Fig. 3B). We describe each of these in
262 order of descending amount of variance explained.

263

264 The most strongly associated peak, located on chromosome 8, is composed of 54 SNPs
265 with association values above the genome-wide significance threshold. This peak spans three
266 protein-coding genes, including the oxidative ketolation gene *CYP2J19* (Fig. 3C and Table 1).
267 The SNP most significantly associated with bill hue (chr8:3144828, $P = 2.00e^{-33}$; Fig. 3D) explains
268 21.6% of variance ($\beta = 12.0$ nm) and is located 21.9 kbp upstream of *CYP2J19* within a long
269 non-coding RNA (lncRNA). This variant, and another 420 bp away, are the only two autosomal
270 SNPs with $F_{ST} > 0.95$ between allopatric populations of each subspecies. We found 10 SNPs
271 above genome-wide significance located within the genic domain of *CYP2J19*, all within
272 introns, and a further 13 SNPs located less than 20 kbp upstream. Previous laboratory-based
273 studies revealed that *CYP2J19* – together with *BDH1L* – is an essential component of
274 ketocarotenoid production in birds and other vertebrates (Lopes et al., 2016; Mundy et al.,
275 2016; Toomey et al., 2022a). Recent admixture mapping efforts in other natural avian systems
276 have also found an association between *CYP2J19* and carotenoid-based color variation
277 (Kirschel et al., 2020; Aguillon et al., 2021; Khalil et al., 2023).

278

279 The second most strongly associated peak, located on the Z chromosome, was
280 composed of 207 SNPs above our genome-wide significance threshold and contained seven
281 protein-coding genes, including the oxidative ketolation enhancer gene *TTC39B* (Fig. 3C and
282 Table 1). The most significant SNP in this association peak (chrZ:67547840, $P = 1.72e^{-26}$; Fig.
283 3D) is the second most significant SNP genome-wide and explains 18.9% of variance ($\beta = 11.6$
284 nm). The chrZ:67547840 SNP is located within the first intron of *TTC39B* and is fixed (i.e., $F_{ST} =$
285 1.0) between long-tailed finch subspecies. A total of 53 SNPs above genome-wide significance
286 were located within the genic domain of *TTC39B*, seven of which are 3' UTR variants and one
287 of which is a synonymous substitution. An additional 12 SNPs above genome-wide significance
288 were located less than 20 kbp upstream of the gene. When co-expressed with *CYP2J19*,
289 *TTC39B* greatly enhances the conversion of yellow dietary carotenoids to red ketocarotenoids
290 (Toomey et al., 2022a) and has been shown from admixture studies to be significantly associated
291 with yellow-red color variation in both birds and fish (Hooper et al., 2019; Ahi et al., 2020;
292 Toomey et al., 2022a).

293

294 A third association peak, also located on chromosome 8, includes 57 SNPs above
295 genome-wide significance, all of which are located within the genic domain of the protein
296 tyrosine phosphatase receptor type C gene *PTPRC* – also known as *CD45* (Fig. 3C and Table 1).
297 This large transmembrane glycoprotein, which has six isoforms in humans (Hermiston et al.
298 2003) and seven in the zebra finch (Rhie et al., 2021), is found on the cell surface of all
299 hematopoietic cells other than mature erythrocytes and plays a role in innate immune response
300 across different cell types (Al Barashdi et al. 2021). The most significant SNP in this association
301 peak (chr8:21738547, $P = 5.08e^{-14}$; Fig. 3C) explains 6.5% of variance ($\beta = 7.3$ nm). Eleven of
302 the associated SNPs are located within exons, but only two encode non-synonymous
303 substitutions (R401G and A864G), two are synonymous substitutions, and seven are in the 3'
304 UTR. While a prior study of the long-tailed finch also found SNPs near *PTPRC* to be associated
305 with bill color variation (Hooper et al., 2019), there have been no other direct links with
306 carotenoids or color variation in other systems. One possible causal association between *PTPRC*
307 and bill color comes from the fact that carotenoids – especially astaxanthin – have well-
308 established immune system functions in humans due to their potent antioxidant and anti-
309 inflammatory properties (Hussein et al., 2006; Fakhri et al., 2018), although the role of
310 carotenoids in immune function of birds has been challenged (Koch et al., 2018).

311

312 The fourth peak, located on chromosome 2, spans 23 SNPs and contains five protein-
313 coding genes (Fig. 3C and Table 1). One of these genes, *ABCB1*, is an ATP-binding cassette
314 (ABC) transporter that translocates phospholipids across cell membranes. Members of its gene
315 family (*ABCA1* and *ABCG1*) have been associated with the deposition of carotenoids in the
316 retina of chickens (Connor et al., 2007) and the red feathers of red-backed fairywrens (Khalil et
317 al., 2022), respectively. The most significant SNP in this association peak (chr2: 21479975, $P =$
318 $1.03e^{-13}$; Fig. 3D) explains 6.1% of variance ($\beta = 8.1$ nm) and is located 11.7 kbp downstream of
319 *ABCB1* and three SNPs above genome-wide significance are located within its third intron. Two
320 other genes of interest in this association peak, *OLAH* and *CROT*, are involved in the release of
321 free fatty acids from fatty acid synthetase (*FASN*) and mitochondrial fatty acid β -oxidation,
322 respectively. Two SNPs above genome-wide significance are located within an intron of *OLAH*.
323 While these two genes have no prior association with carotenoids or color variation, their role
324 in lipid metabolism within the mitochondria is notable as recent evidence suggests that
325 carotenoid ketolation and ornamentation is functionally linked to mitochondrial performance
326 (Cantarero and Alonso-Alvarez 2017; Cantarero et al., 2020; Hill et al., 2019). More specifically,
327 the ketolation of dietary carotenoids to red ketocarotenoids occurs through the addition of a
328 ketone (or carbonyl) group. Ketones are a metabolic byproduct of the mitochondrial fatty acid
329 β -oxidation pathway that *CROT* belongs to and as such may constitute a target for modulating
330 ketocarotenoid production (Houten and Wanders 2010).

331

332 In summary, we find variation in bill hue in the long-tailed finch is associated most
333 strongly with regions of the genome that include genes known to be involved in – or are
334 plausibly linked with – carotenoid processing. The top two association peaks contain *CYP2J19*
335 and *TTC39B*. *CYP2J19* is one of two essential enzymes for the conversion of dietary carotenoids
336 to red ketocarotenoids via C(4)-oxidation and *TTC39B* enhances carotenoid metabolism,
337 respectively (Toomey et al., 2022a). Each of the four top association peaks contained a locus of
338 major effect (i.e., PVE > 5%). We used outgroup information from the black-throated finch and
339 zebra finch to polarize alleles associated with bill color variation to their subspecies of origin.
340 We found that the *acuticauda* allele is the derived condition at the most significant SNP in three
341 of the four top association peaks – regions including *CYP2J19*, *PTRPRC*, and *TTC39B* (Fig. 3D).
342 In contrast, while the derived allele at the most significant SNP on chromosome 2 is common
343 in *hecki* (AF = 0.41) it is also found at similar frequency in the black-throated finch (AF = 0.36).
344 This suggests that the yellow bill color of *acuticauda* is the derived phenotypic condition in the
345 long-tailed finch.

346

347 **Geographic and Genomic Clines Support Biased Introgression of Bill Color Alleles.** Focusing
348 on yellow billed variants, we observe clear evidence of introgression at *CYP2J19* and *TTC39B*
349 from yellow-billed *acuticauda* into red-billed *hecki*. The geographic cline centers for the two
350 SNPs most strongly associated with bill color variation are shifted 220.4 km (*CYP2J19*:
351 chr8:3144828, center = 868.0 km from most western sampled population [849.7 – 885.3 km
352 95% HPDI]) and 373.5 km (*TTC39B*: chrZ:67547840, center = 1021 km [993.7 – 1051.0 km 95%
353 HPDI]) to the east of the center of genomic admixture between subspecies (hybrid index, center
354 = 647.6 km [642.4 – 652.8 km 95% HPDI]), respectively (Figure 4). While the introgressing alleles
355 at both loci originated within subspecies *acuticauda*, they differ in notable aspects of their
356 respective clines and underlying allele frequencies in color-admixed populations (i.e.,
357 populations 20 – 27 located between dashed lines 1 and 2 in Figure 4A-C). First, the cline center
358 for *TTC39B* (chrZ:67547840) is located a further 153 km east of the center for *CYP2J19*
359 (chr8:3144828) (Figure 4D). Second, the *acuticauda* *CYP2J19* allele at SNP chr8:3144828 was
360 observed segregating at intermediate frequency within color-admixed populations: allele
361 frequencies ranging from 0.65 in the west [pop. 20] to 0.16 less than 80 km to the east [pop.
362 26] (Figure 4B). In contrast, the *acuticauda* *TTC39B* allele at SNP chrZ:67547840 was observed
363 as fixed or nearly fixed in these same populations (ranging from 1.00 to 0.86; Figure 4C). The
364 *acuticauda* allele of SNP chrZ:67547840 was never observed at a frequency less than 0.86 in
365 populations where both alleles were present.

366

367 Genomic cline analysis bolsters the significance of introgression of *acuticauda* yellow
368 alleles at bill color genes *CYP2J19* and *TTC39B* (Figure 4E). Of the 649 LD-pruned ancestry
369 informative markers (see Materials and Methods) used to calculate a hybrid index between
370 long-tailed finch subspecies, the three SNPs with the strongest support for introgression were

371 all located within 38 kbp of *CYP2J19* and the most significant was the top GWAS SNP
372 chr8:3144828 ($c = 0.994$, $P = 5.90e^{-201}$). The SNP with the fourth strongest support for
373 introgression was located within an intron of *TTC39B* (chrZ:67498406, $c = 1$, $P = 2.14e^{-71}$) and
374 was also significantly associated with bill color variation (GWAS $P = 5.92e^{-23}$). Due to LD-pruning,
375 the *TTC39B* SNP used in geographic cline analysis (chrZ:67547840) was not included in the set
376 of ancestry informative markers used for genomic cline analysis. Instead, another tightly linked
377 SNP, chrZ:67498406 (49.4 kbp away; $r^2 = 0.90$, $D' = 0.95$), is among the set of ancestry
378 informative markers. Three SNPs on chromosome 20 (Table 1) exhibited evidence of
379 introgression from *acuticauda* into *hecki*, one of which was also significantly associated with bill
380 hue variation (chr20:317305, $c = 0.997$, $P = 1.48e^{-56}$; GWAS $P = 4.1e^{-10}$). This SNP is located 1.2
381 kbp upstream of RNA-binding protein 39 (*RBM39*).
382

383 Taken together, results of geographic and genomic cline analyses showcase the
384 introgression of *acuticauda* alleles for yellow bill coloration into a genomic background that is
385 otherwise that of red-billed *hecki* (Figure 4E). The ~150 km separation between the geographic
386 cline centers for these two loci suggest in turn that each allele is introgressing under distinct
387 evolutionary regimes (Figure 4D). We did not perform clinal analyses within any other
388 association peak region (Table 1) because no SNPs within these were identified as ancestry
389 informative (i.e., $F_{ST} > 0.7$ and $\Delta AF > 0.80$ between allopatric populations). Without speculating
390 on the exact mechanism under which yellow bill color may have been favored by selection, the
391 evidence nonetheless suggests that yellow bill color, and/or a tightly linked trait, is conferring
392 a selective advantage that has promoted their asymmetrical introgression from *acuticauda* into
393 *hecki*.
394

395 **Evidence of Epistasis Between *CYP2J19* and *TTC39B*.** A biochemical relationship between
396 the products of *CYP2J19* and *TTC39B* has been established experimentally, which identified
397 the latter as a potent enhancer of ketocarotenoid biosynthesis (Toomey et al., 2022a). Toomey
398 et al. (2022a) proposed that *TTC39B* acts to facilitate the transport of carotenoids to or from
399 the location of enzymatic conversion. We leveraged the difference in cline centers to explore
400 epistatic effect on phenotype, if any, between *CYP2J19* and *TTC39B* in a natural system. To do
401 so, we quantified mean bill hue (H3) using the 508 individuals with phenotype data carrying
402 zero, one, or two copies of the *acuticauda* allele at chr8:3144828 (*CYP2J19*) and chrZ:67547840
403 (*TTC39B*). We found that the red *hecki* allele is dominant at *CYP2J19* and that *TTC39B* alleles
404 appear to be additive in their effect (Figure 4F). Individuals carrying a single copy of the red
405 *hecki* allele at *CYP2J19* were indistinguishable in hue from those carrying two copies if they
406 were also homozygous for the *hecki* allele at *TTC39B* (homozygous *hecki*, $H3 = 584.6$, $N = 99$;
407 heterozygous *hecki*, $H3 = 579.4$, $N = 13$, Figure 4F). Consistent with an epistatic effect on
408 phenotype between *CYP2J19* and *TTC39B*, individuals carrying at least one copy of the *hecki*
409 allele at *CYP2J19* exhibited an increase in bill hue of 10 to 15 nm for each copy of the *hecki*

410 allele they carried at *TTC39B* (Figure 4F). The recessive nature of the yellow *acuticauda* allele
411 of *CYP2J19* is consistent with the role of this enzyme as an oxidative ketolase while the additive
412 contribution of each *TTC39B* is consistent with its shown role as an enhancer of carotenoid
413 metabolism (Toomey et al., 2022a). The importance of considering the effect on bill hue of these
414 two loci together is made further evident by contrast with the seemingly additive contribution
415 of each *CYP2J19* allele when this locus is considered in isolation (see Figure 3D).

416

417 Results from naturally admixed birds are largely consistent with the inferences drawn
418 from bill color variation observed in captive crossed F₁ hybrids: namely that red *hecki* alleles are
419 net dominant to yellow *acuticauda* alleles (Figure 1D). While the net contribution of *acuticauda*
420 alleles on the Z chromosome appears to be recessive in captive-crossed F₁ hybrids (Figure 1D),
421 the *acuticauda* allele of Z-linked *TTC39B* appears to be additive in admixed birds in the wild
422 (Figure 4F). This difference is likely to represent the combined contribution of additional
423 autosomal and Z-linked loci of smaller effect on bill color variation we identified (Figure 3B and
424 Table 1).

425

426 **Signatures of Selection at Bill Color Associated Genes.** The initial divergence in bill color
427 between long-tailed finch subspecies and more recent introgression of bill color alleles from
428 *acuticauda* into *hecki* may have been driven by an adaptive benefit for individuals with yellower
429 bills. To explore this, we scanned for signatures of selective sweeps within each of the four
430 regions most strongly associated with bill color variation in haplotype homozygosity summary
431 statistics and by reconstructing local gene trees, to approximate the ancestral recombination
432 graph (ARG). Selective sweeps are expected to result in an increase in haplotype homozygosity
433 around a target of selection (Vitti et al., 2013) and a decrease in the time to coalescence for
434 haplotypes carrying a favored allele (Hejase et al. 2020; Stern et al. 2019). We focus on ARG-
435 based inference as these approaches are more informative and direct compared with haplotype
436 homozygosity statistics and site frequency spectrum (SFS) approaches; which are themselves
437 low-dimensional summaries of the ARG (Vitti et al. 2013; Speidel et al., 2019; Shipilina et al.
438 2022).

439

440 We phased all variants on chromosomes 2, 8, and Z in samples with linked-read
441 information using HapCUT2 (Edge et al. 2017). Linked-read (LR) information greatly increased
442 phasing performance: we recovered an 18-fold improvement in the length of phased blocks,
443 with a median N50 of 19.6 kbp using LR data (versus 1.1 kbp for short-read (SR) data; [Fig. S4](#)).
444 Of the 18 samples used as technical replicates, effectively controlling for variation in high-
445 molecular weight DNA quality, phased block N50s were on average 29-fold longer when
446 utilizing LR information (LR: 20.4 kbp, SR: 0.7 kbp) despite these samples having an average
447 depth of coverage 13-fold lower (LR: 2x depth, SR: 26x; [Fig. S4](#)). We next used this LR-phased
448 haplotype data to generate ARGs from our four top association peaks \pm 1 Mb using Relate v1.1

449 (Speidel et al. 2019) and screened for lineages carrying mutations that have spread faster than
450 competing lineages. As the Relate Selection Test assumes no population stratification (Speidel
451 et al. 2019), we evaluated support for selective sweeps in *acuticauda* (pops. 1 – 7) and *hecki*
452 (pops. 20 – 34) separately and did not test for selection within the hybrid zone populations
453 between them.

454

455 We found evidence of selective sweeps on SNPs associated with bill color variation in
456 the long-tailed finch. Within the genomic window on chromosome 8 containing *CYP2J19*, the
457 *acuticauda* derived variant at bill color associated SNP chr8:3094115 (GWAS $P = 5.45e^{-19}$)
458 exhibited evidence of strong selection in subspecies *hecki* (Fig. 5, $s = 0.0059$, $\text{logLR} = 34.2$).
459 The variant is nearly fixed within *acuticauda* (pops. 1 – 7, AF = 0.99) and the hybrid zone (pops.
460 8 – 19, AF = 0.99). It appears to be approaching fixation within color-admixed *hecki* (pops. 20
461 – 27, AF = 0.83) but is currently at much lower frequency in red-billed *hecki* (pops. 28 – 34, AF
462 = 0.21; Fig. 5B). Consistent with introgression following secondary contact, the sweeping
463 variant first appeared in *acuticauda* approximately 40 kya and has subsequently undergone a
464 rapid increase in frequency within *hecki* between 5 kya and the present day (Fig. 5C). Haplotype
465 homozygosity statistics offer insights into the complicated history of selection on the genomic
466 region encompassing *CYP2J19*. Consistent with a recent selective sweep, cross-population
467 extended haplotype homozygosity (xpEHH) is significantly greater in color-admixed compared
468 to red-billed populations of *hecki* at SNP chr8:3096231 ($-\text{log10}(P) = 13.4$; Fig. S9); a site only 2
469 kbp away from the SNP identified via ARG based inference above. The SNP most strongly
470 associated with bill color variation in the long-tailed finch (chr8:3144828; GWAS $P = 2.00e^{-33}$)
471 also had the greatest xpEHH support of any SNP between *acuticauda* and color-admixed
472 populations of *hecki* ($-\text{log10}(P) = 17.3$; Fig. S9). The increase in homozygosity for haplotypes
473 carrying the *acuticauda* derived allele is consistent with a selective sweep at this site, which is
474 located within a lncRNA gene 20 kbp upstream of *CYP2J19*. Extended haplotype homozygosity
475 (EHHS) inference is more consistent with the sweep having occurred within *acuticauda*.
476 Haplotypes carrying the derived variant were on average 3-9x longer in *acuticauda* than in
477 *hecki* (integrated EHH: *acuticauda* = 1596 bp, color-admixed = 472 bp, red-billed = 164 bp;
478 Fig. S13).

479

480 Variants within the genomic window on chromosome 8 containing *PTPRC* also exhibited
481 a recent increase in frequency consistent with a selective sweep. An *acuticauda* derived variant
482 at the bill color associated SNP chr8:21738547 (GWAS $P = 5.08e^{-14}$), located within an intron of
483 *PTPRC* and the most significantly associated SNP in this window, shows evidence of strong
484 selection within both subspecies (*acuticauda*, $s = 0.0054$, $\text{logLR} = 53.4$; *hecki*, $s = 0.0076$, logLR
485 = 75.3; Fig. S6). This variant is at high frequency in *acuticauda* (AF = 0.78), the hybrid zone (AF
486 = 0.90), and color-admixed *hecki* (AF = 0.83) but is relatively rare in red-billed *hecki* (AF = 0.15;
487 Fig. S6B). The variant appears to have increased in frequency first within *acuticauda* 4-5 kya and

488 has subsequently undergone a rapid ascent in frequency within color-admixed populations of
489 *hecki* between 3 kya and the present day (Fig. S6C). In concurrence with ARG based inference
490 of selection, the SNP with the greatest xpEHH support between color-admixed and red-billed
491 *hecki* populations (chr8:21746905, $-\log_{10}(P) = 18.1$; Fig. S10), is also located within an intron
492 of *PTPRC* and is significantly associated with bill color variation (GWAS $P = 2.79e^{-10}$). Consistent
493 with a recent selective sweep on *acuticauda* derived alleles of *PTPRC*, this SNP exhibits a strong
494 deviation of site-specific extended haplotype homozygosity (EHHS) between color-admixed
495 and red-billed *hecki* populations: 33× longer for carriers of the *acuticauda* derived variant in
496 the former (integrated EHH: *acuticauda* = 5751 bp, color-admixed = 11005 bp, red-billed =
497 334 bp; Fig. S14).

498

499 The genomic window on chromosome 2 containing several candidate carotenoid
500 affiliated genes also exhibited signatures of recent selective sweeps. We observed a sweep-like
501 signature in subspecies *acuticauda* associated with the gene *CROT* centered around SNP
502 chr2:21467694 ($s = 0.0071$, $\log LR = 37.6$; Fig. S7). The variant showing evidence of a sweep is
503 segregating at intermediate frequency within both *acuticauda* ($AF = 0.52$) and the hybrid zone
504 ($AF = 0.56$). It is found at lower frequency within color-admixed *hecki* ($AF = 0.14$) – increasing
505 in local abundance with proximity to the hybrid zone – and is entirely absent within red-billed
506 *hecki* ($AF = 0.00$; Fig. S7B). Allele trajectories indicate that this *acuticauda* derived variant has
507 increased in frequency between 4 kya and the present (Fig. S7C). Consistent with this sweep-
508 like signature on *CROT*, a SNP located within intron six (chr2:21456972) had the greatest xpEHH
509 support in *acuticauda* against color-admixed ($-\log_{10}(P) = 28.4$) and red-billed *hecki* ($-\log_{10}(P)$
510 = 15.9; Fig. S11). The derived variant exhibited a strong signature of site-specific extended
511 haplotype homozygosity (EHHS) against *hecki* populations: >12× longer for carriers of the
512 derived variant in *acuticauda* (integrated EHH: *acuticauda* = 3896 bp, color-admixed *hecki* =
513 283 bp, red-billed *hecki* = 333 bp; Fig. S15).

514

515 Compared to autosomal loci, evidence for selective sweeps was more difficult to
516 interpret on the Z chromosome. Despite patterns consistent with selection from geographic
517 and genomic cline analyses (Fig. 4), neither chrZ:67498406 nor chrZ:67547840 shows evidence
518 of selection in *hecki* based on ARG analysis. This appears to be the result of the degree of
519 haplotype divergence between subspecies in this genomic window and the size of the
520 introgressing region (Fig. S8). Indeed, a highly differentiated region approximately 0.4 Mbp in
521 length (from 67.5 to 67.9 Mb, mean allopatric $F_{ST} = 0.75$), encompassing *TTC39B*, shows
522 evidence of introgression from *acuticauda* into *hecki* (Fig. S12). Ancestral recombination graph
523 approaches for detecting natural selection may be poorly suited in cases of adaptive
524 introgression between highly divergent taxa (Hejase et al., 2020), as such cases violate
525 assumptions regarding the recent coalescence for haplotypes carrying selected alleles, and this
526 problem might be especially pronounced for genomic regions with reduced rates of

527 recombination such as avian sex chromosomes. Haplotype homozygosity statistics also failed
528 to detect any signatures of selective sweeps within this region of the Z chromosome (Fig. S12).
529 However, these methods become power limited as variants approach fixation between focal
530 populations (Stern et al., 2021), as is the case for most variants in this region of the Z
531 chromosome. For example, in populations of color-admixed *hecki*, haplotypes carrying the
532 *acuticauda* derived allele at chrZ:67547840 were nearly fixed (AF = 0.94) and had extended
533 haplotype homozygosity (EHHS) twice the length of those carrying the ancestral allele
534 (ancestral: 8246 bp, derived: 17004 bp) (Fig. S16). Comparison with *acuticauda* and red-billed
535 *hecki* populations is made difficult, however, due to the fixation of alternative alleles at this
536 locus (i.e., $F_{ST} = 1.0$).
537

538 Notably, however, a variant of the bill color associated SNP chrZ:67480260 (GWAS P =
539 $1.8e^{-15}$) linked with *TTC39B* does show evidence of selection within subspecies *hecki* ($s =$
540 0.0039, logLR = 8.6; Fig 6). This variant is nearly fixed within color-admixed *hecki* (AF = 0.90)
541 and at intermediate frequency within the hybrid zone (AF = 0.41) but – strikingly – is at low
542 frequency within both *acuticauda* (AF = 0.03) and red-billed *hecki* (AF = 0.03). The present
543 geographic distribution of this variant and its inferred genealogy strongly suggests that it did
544 not originate in allopatric populations of either subspecies but instead arose in what are now
545 populations of color-admixed *hecki* (Fig. 6B). The genetic background on which this variant is
546 found is definitively *acuticauda*. Within populations of color-admixed *hecki*, this variant is
547 strongly linked with the *acuticauda* allele of the SNP on the Z chromosome most significantly
548 associated with bill color variation (chrZ:67547840, $r^2 = 0.80$, $D' = 0.92$) and with the SNP
549 exhibiting greatest genomic cline evidence of introgression from *acuticauda* into *hecki*
550 (chrZ:67498406, $r^2 = 0.87$, $D' = 0.96$). Allele trajectories indicate that the derived variant at
551 chrZ:67480260 has rapidly increased in frequency between 3 kya and the present day (Fig. 6C).
552 We hypothesize that the SNP showing evidence of a selective sweep from ARG-based inference
553 (chrZ:67480260) arose on – and is currently hitchhiking with – the much older *acuticauda*
554 haplotype of *TTC39B* (represented by chrZ:67498406 and chrZ:67547840) that is the actual
555 target of selection within subspecies *hecki* (see Fig. 6 and Fig. S8).
556

557 Discussion

558 Carotenoid coloration, and particularly coloration produced from metabolized carotenoids,
559 serves as a signal of individual condition in many bird species (Hill and McGraw 2006; Weaver
560 et al., 2018). At the same time, visual signals including carotenoid coloration are hypothesized
561 to serve as important markers of species recognition, competition between males, and mate
562 choice in birds (West-Eberhard 1983; Price 1998; Seddon et al., 2013; Gomes et al., 2016; Price-
563 Waldman et al., 2020) and some experimental work supports these hypotheses (Hill and
564 McGraw 2004). These are patterns observed in contemporary species, but the evolutionary
565

566 paths to them are only now beginning to be understood. Insights into the evolution of
567 carotenoid ornamentation from natural systems are critical because color variants observed in
568 avian avicultural populations are dominated by highly pleiotropic loss-of-function mutations
569 that are unlikely to persist in the wild (Toews et al., 2017; Price-Waldman et al., 2020; Toomey
570 et al. 2022a).

571

572 Here, we report the molecular composition, genetic architecture, and evolutionary
573 history of naturally occurring bill color variation between hybridizing subspecies of the long-
574 tailed finch. We identified C(4)-oxidation as the metabolic process differentiating the two
575 subspecies. The loss of red bill coloration in subspecies *acuticauda* has been achieved via a
576 regulatory change in C(4)-oxidation that halts production of red pigments in the bill but not in
577 the retina. We find that variation in bill hue is most strongly associated with a small number of
578 genes that include *CYP2J19*, an enzyme required for C(4)-oxidation of dietary carotenoids into
579 red ketocarotenoids, and *TTC39B*, a known enhancer of carotenoid metabolism. Genealogical
580 reconstructions indicate that a red-billed phenotype is ancestral in this species. Allelic variation
581 inducing yellow rather than red bills is ancient for both *CYP2J19* and *TTC39B* – on the order of
582 hundreds of thousands of generations – and derived within yellow-billed *acuticauda*. The allelic
583 forms of *CYP2J19* and *TTC39B* that enable yellow bill coloration exhibit signatures of adaptive
584 introgression from *acuticauda* into red-billed *hecki* between 5 kya and the present day. Evidence
585 of selective sweeps on carotenoid processing genes suggest that yellower bill color is favored
586 in the long-tailed finch. Importantly, our evidence argues against a simple alternative frequency-
587 dependent selection (or the related assortative mating) scenario where the most frequent local
588 morph is preferred. Such a scenario is inconsistent with the eastward introgression of the yellow-
589 billed alleles across multiple loci. Taken together, we show that evolutionary transitions between
590 yellow and red color ornamentation, which occur frequently in birds (Ligon et al., 2016;
591 Friedman et al., 2014), can be achieved by natural selection acting upon regulatory mutations
592 of large effect on a small set of genes involved in carotenoid metabolism.

593

594 The presence of ketocarotenoids in red cone oil droplets of the retina suggests that
595 subspecies *acuticauda* evolved a yellow bill by suppressing C(4)-oxidation specifically within the
596 bill integument. This simple observation belies a much greater significance for understanding
597 the evolution of carotenoid-based color ornamentation in birds more broadly. Nearly all diurnal
598 birds have red cone oil droplets in their retinas, which means that they can synthesize red
599 ketocarotenoids from dietary carotenoid precursors, but comparatively few have red bills or
600 feathers (Goldsmith et al., 1984; Vorobyev 2003). Indeed, it has been posited that carotenoid
601 ketolation in reptiles originally evolved in the context of color vision before only later being co-
602 opted to produce color ornamentation (Twyman et al., 2016). In groups of birds with carotenoid-
603 based plumage and bill coloration, transitions between yellow ornamentation produced by
604 modified yellow carotenoids and red ornamentation produced from modified red carotenoids

605 can often evolve dynamically (Ligon et al., 2016; Friedman et al., 2014) but the underlying
606 genetic mechanisms responsible have rarely been characterized (Twyman et al., 2018). One
607 working hypothesis is that such evolutionary transitions can be achieved by regulatory changes
608 to where and when *CYP2J19* expression occurs [while leaving *BDH1L* expression unchanged]
609 (Toomey et al. 2022a). Consistent with this regulatory hypothesis, we observed an abundance
610 of strongly associated upstream variants and a lack of coding level differences between
611 *acuticauda* and *hecki* alleles of *CYP2J19*. We found no evidence that *BDH1L* was associated
612 with color variation in this system. We posit that the evolutionary transition from red to yellow
613 bill coloration in the long-tailed finch has arisen largely through regulatory changes to where
614 expression of *CYP2J19* – and thus C(4)-oxidation – occurs. This mechanism may be widely
615 responsible for the frequent evolutionary transitions between carotenoid-color ornamentation
616 observed in closely related species.

617

618 Identifying which tissues are involved in carotenoid ketolation is a critical step for
619 evaluating any potential benefits or costs associated with the production of ketocarotenoid
620 ornamentation. In avian species with red feathers, *CYP2J19* activity appears to predominately
621 occur in the liver while activity is largely restricted to the periphery in species with red bare parts
622 (i.e., bill and legs) (Alonso-Alvarez et al., 2022). However, variation in the location of carotenoid
623 metabolism exists even between species with similar ornamentation. For example, both the
624 red-billed quelea *Quelea quelea* and the zebra finch have ketocarotenoid-rich red bills and tarsi
625 but have distinct modes of producing them: in the former, carotenoid metabolism is
626 concentrated in the liver and ketocarotenoids are then shuttled to their site of deposition while,
627 in the latter, ketolation is absent from the liver and instead appears restricted to the peripheral
628 sites of carotenoid deposition (Twyman et al., 2018; Mundy et al., 2016). In the zebra finch, this
629 regionalization of carotenoid metabolism is achieved in part via a tandem duplication of
630 *CYP2J19*; with one copy expressed only in the retina and the other in both bill and retina (Mundy
631 et al., 2016). We find no evidence for a second copy of *CYP2J19* in the long-tailed finch (see
632 [Materials and Methods](#)) and only one copy has been found in other species of bird examined
633 to date (Twyman et al., 2018; Emerling et al., 2018). Further work is therefore required to
634 ascertain the biochemical mechanisms by which the long-tailed finch (namely subspecies
635 *acuticauda*) regulates the metabolism and deposition of carotenoids between different bodily
636 regions.

637

638 Both *CYP2J19* and *TTC39B*, the two genes that together explain 40.5% of variance in
639 bill hue, exhibited clear signatures of adaptive introgression from yellow-billed *acuticauda* into
640 red-billed *hecki*. Recent experimental work shows that *CYP2J19* and *TTC39B* interact
641 epistatically, potentially by *TTC39B* modulating the rate of transport of carotenoid substrates
642 to or from the site of enzymatic conversion by *CYP2J19* (Toomey et al., 2022a). An epistatic
643 relationship between these two genes appears evident in the long-tailed finch (Fig. 4F). For

644 individuals from an otherwise *hecki* genomic background (i.e., from pops. 20 – 34, N = 234), a
645 linear model containing genotype information for both loci provided a significantly better fit for
646 bill hue variation than models containing only one locus ($\Delta\text{AICc} > 45$). We therefore predict that
647 the yellow bills of subspecies *acuticauda* are largely a result of an absence of *CYP2J19*
648 expression and a suppression of *TTC39B* expression within the bill integument (Fig. 7A).
649

650 Clinal evidence of introgression of yellow alleles derived in *acuticauda* into an otherwise
651 *hecki* genomic background is clear. What evolutionary forces propelled their spread? Selective
652 sweep analyses confirm a history of natural selection on bill color in the long-tailed finch. All
653 four of the top association peak regions carry the hallmark signatures of selective sweeps. Allelic
654 variation derived within yellow-billed *acuticauda* and associated with *CYP2J19*, *TTC39B*, and
655 *PTPRC* have increased in frequency in *hecki* under moderate to strong selection (i.e., $s > 0.003$)
656 between 5 kya and the present. Evolutionary reconstructions suggest that allelic divergence
657 between subspecies at both *CYP2J19* and *TTC39B* is ancient: gene trees including the two
658 SNPs most strongly associated with bill color variation coalesce approximately 100 kya (Fig. 7B;
659 [Fig. S5](#), [Fig. S8](#)). The temporal discrepancy between the age of *CYP2J19* and *TTC39B* alleles
660 (on the order hundreds of thousands of generations) and the inferred timing of selection on
661 them within *hecki* (on the order of thousands of generations ago) is consistent with a model of
662 allopatric divergence between long-tailed finch subspecies in Pleistocene refugia that
663 preceeded introgression following secondary contact (Bowman et al. 2010; Fig. 7B). Evidence
664 of natural selection associated with *PTPRC* was initiated much more recently: first within
665 subspecies *acuticauda* 4-5 kya and then within color-admixed populations of *hecki* between 3
666 kya and the present (Fig. 7B; [Fig. S6](#), [Fig. S10](#)). In contrast, the signature of a selective sweep
667 centered on the gene *CROT* has been restricted to subspecies *acuticauda* and occurred
668 between 4 kya and the present ([Fig. S7](#), [S11](#), and [S15](#)). Consistent with lines of evidence from
669 geographic and genomic cline analyses, the rapid increase in frequency of allelic variation
670 associated with bill hue suggests that the spread of yellow coloration has been adaptive.
671

672 One tantalizing hypothesis to explain the spread of yellow bill color alleles is that long-
673 tailed finches – of both subspecies – prefer partners with yellower bills. This argument for a role
674 of sexual selection, however, has little empirical support. A behavioral assay performed in
675 controlled captive conditions found that female long-tailed finches exhibit an assortative mate
676 preference: i.e., red-billed females prefer to spend time with red-billed males over yellow-billed
677 males, and vice versa (McDiarmid et al., 2023). Moreover, experimental manipulation of bill
678 color, done to control for potential differences between subspecies in song or other aspects of
679 male courtship behavior, eroded the strength of assortative mate preference to non-
680 significance. Together this suggests that bill coloration is just one trait of many used by these
681 birds to evaluate and select a mate. Long-tailed finches used in these experiments were sourced
682 from allopatric populations of each subspecies where bill color variation is low (see Fig. 1D) and

683 so they may potentially not have been well-suited to address whether bill color affects mate
684 choice or mating success. It would be more appropriate to address these questions in nature
685 using populations with the greatest individual variation in bill color (e.g., color-admixed pops.
686 20 – 27).

687

688 Color ornamentation differences – and sometimes little else – can be key components
689 of reproductive isolation between closely related bird species (Toews et al., 2016; Campagna
690 et al., 2017; Stryjewski and Sorenson 2017). In the long-tailed finch, bill coloration does not
691 appear to play such a role. Rather than acting as a trait that inhibits genetic exchange,
692 introgression of yellow bill color alleles appears to have been favored by natural selection and
693 has progressed to such an extent that the genomic hybrid zone between long-tailed finch
694 subspecies is phenotypically cryptic. Indeed, the recent increase in frequency of yellow bill color
695 alleles within *hecki* may plausibly be replicating today the very selective sweeps that drove
696 these alleles to fixation within *acuticauda* long ago. Evidence of introgression of genes
697 associated with ornamentation differences between allopatric populations is not without
698 precedent and many cases have been associated with sexual selection. In birds, the
699 asymmetrical introgression of color alleles between hybridizing taxa due to mate preference for
700 the introgressing phenotype has been reported in fairywrens (Baldassarre et al., 2014),
701 mannikins (Parsons et al., 1993; McDonald et al., 2001; Stein and Uy 2006), tinkerbirds (Kirschel
702 et al., 2020), and wagtails (Semenov et al., 2021). A particularly striking example of this in
703 deeper time comes from new world warblers in the genus *Setophaga*, where alleles of the
704 carotenoid-cleaving beta-carotene oxygenase 2 gene (*BCO2*) conferring yellow plumage show
705 evidence of having repeatedly been exchanged between distantly related species (Baiz et al.,
706 2021). Determining the fitness effects of divergent metabolic programs for the processing of
707 carotenoids, which ultimately manifests as yellow or red bill coloration in long-tailed finches,
708 will be key to understanding the putatively adaptive evolution of bill coloration in these birds.
709 The increasing accessibility of linked-read population-scale genomic data provides evolutionary
710 biologists with a better toolkit than ever before with which to examine the genes, evolutionary
711 history, and role of diversifying selection underlying the diversity of colorful ornamentation of
712 birds and other animals.

713

714 Materials and Methods

715

716 **Animal care and use.** All experimental procedures described in this study were approved by
717 the applicable ethics committee or authorities at Macquarie University, Australia. The study and
718 sampling of finches has been approved by the Australian government. Long-tailed finch
719 *Poephila acuticauda* individuals of each subspecies were bred in captivity from wild-derived
720 stocks established less than ten generations prior. The population of subspecies *acuticauda* was
721 descended from individuals collected from two locations in Western Australia in 2009: Mt.

722 House (17°02'S, 125°35'E) and Nelson's Hole (15°49'S, 127°30'E). The population of subspecies
723 hecki was descended from individuals collected from October Creek (16°37'S, 134°51'E) in the
724 Northern Territory in 2010. Populations of each subspecies were kept reproductively isolated
725 from one another save for the purpose of experimentally producing F₁ hybrids.
726

727 **Bill color phenotyping.** Bill color was measured via UV-vis reflectance spectrophotometry for
728 wild-caught and captive-bred adult long-tailed finches following protocols published in prior
729 studies (Griffith and Hooper 2017; McDiarmid et al., 2023). In brief, spectral reflectance of the
730 upper mandible from three consecutive scans per individual were averaged and smoothed
731 using the R package Pavo 2 (Maia et al., 2019). Spectra were then normalized by their maximum
732 and minimum reflectance values, and the colorimetric variable H3 was calculated for all
733 samples. H3 is a measure of bill hue that represents the wavelength midway between the
734 minimum and maximum reflectance of a surface, which we bounded between 400 and 700 nm
735 (Maia et al., 2019) and has previously been shown to effectively differentiate the bill colors of
736 the two long-tailed finch subspecies and their hybrids (McDiarmid et al., 2023). To supplement
737 reflectance data first examined by Griffith and Hooper (2017) and McDiarmid et al. (2023) we
738 measured bill color for an additional 165 wild-caught and 137 captive-bred samples in this study
739 for a total of 948 wild and 550 captive samples with reflectance data (N = 1498 total).
740

741 **Evaluation of bill carotenoid composition with HPLC.** Carotenoids were isolated from the bill
742 tissue of five individuals of each subspecies following procedures adapted from McGraw et al.
743 2002 and McGraw and Toomey, 2010. Thin slices of integument (0.002-0.01 g) were shaved
744 from the outer bill using a razor. Carotenoids were extracted from the shavings in the presence
745 of solvent (5–6 mL hexane: tert butyl methyl ether, 1:1, v/v) using a mortar and pestle. Ground
746 tissue and solvent were centrifuged, and the supernatant recovered for saponification to
747 remove esterification that impedes elution and accurate quantification of carotenoids via HPLC
748 (McGraw and Toomey, 2010). Importantly, while this method increases recovery of
749 ketocarotenoids and dietary carotenoids, it does result in the loss of canary xanthophylls a and
750 b (Toomey et al. 2022b). To saponify carotenoid samples, the supernatant was evaporated to
751 dryness and the carotenoids resuspended in 100 µL of 100% ETOH. Next, we added 100 µL of
752 0.02M KOH in MeOH, vortexed for 30 seconds, capped with N₂ gas, and incubated the extract
753 at RT in the dark overnight. After incubation, 250 µL H₂O, 500 µL TBME (100%), and 250 µL
754 hexane (100%) were added sequentially, with vortexing after the addition of the H₂O and
755 hexane. Finally, esters were precipitated from the extract with the addition of 100 µL saturated
756 saltwater (pure NaCl) and 30 seconds of vortexing. The saponified carotenoids were moved to
757 a new tube and evaporated to dryness before resuspension in 200 µL of acetone for immediate
758 HPLC injection.
759

760 Carotenoid samples were analyzed via HPLC using a Shimadzu Prominence UPLC
761 system. Extracts were injected in 10 μ L volumes into a Sonoma C18 column (10 μ m, 250 x 4.6
762 mm, ES Technologies, New Jersey, USA) fitted with a C18 guard cartridge. Separation and
763 elution of carotenoids was done using an adapted tertiary mobile phase (adapted from Wright
764 et al. 1991). The mobile phases used here were: A) 80:20 methanol: 0.5M ammonium acetate;
765 B) 90:10 acetonitrile: H₂O; and C) ethyl acetate. We used a tertiary linear gradient with a flow
766 rate of 1mL min⁻¹ that consisted of 100% A to 100% B over 4 min, then 80% C: 20% B over 14
767 minutes, then 100% B over 3 minutes, ending with 100% A over 11 minutes to re-equilibrate
768 the column. Samples were run consecutively with an autosampler fitted with an internal cleaning
769 port with 1:1 v/v MeOH:H₂O to remove cross-contamination. Carotenoids were detected using
770 a Prominence UV/Vis detector set to 450 nm. Carotenoids were identified based on
771 comparisons to pure standards, an internal system database of retention times, and published
772 accounts.

773
774 **Retinal imaging and cone photoreceptor subtype classification.** Eyes were obtained from
775 frozen and/or freshly deceased long tailed finches that had been culled for a complementary
776 project. Three yellow-billed *P. a. acuticauda* and three red-billed *P. a. hecki* birds were examined.
777 The left eye of each finch was removed and hemisected at the equator using a scalpel blade.
778 The posterior segment of the eye was placed into phosphate buffered saline (PBS; pH 7.4;
779 340 mOsmol kg⁻¹) to facilitate dissection of the retina. Small pieces (~2x2 mm) of retina from
780 the dorsal or ventral retinal periphery were dissected away and mounted on a glass microscope
781 slide in a drop of PBS, and a top coverslip applied and sealed with clear nail varnish. The retina
782 was viewed under bright-field illumination using an Olympus $\times 100/NA$ 1.4 oil immersion
783 objective on an Olympus BX-53 microscope fitted with DIC optics. Images were captured using
784 an Olympus DP74 digital camera and cellSens software.

785
786 **Reference genome assemblies.** Zebra finch *Taeniopygia guttata* v1.4 (GCF_003957565.2).
787
788 **Enrichment for high-molecular weight DNA.** We performed high-molecular weight (HMW)
789 DNA enrichment to compensate for the high level of degradation in most of the gDNA samples.
790 Here, we chose a cut-off of >8 kbp. Briefly, 50 μ l of gDNA in modified Ampure bead buffer
791 (10mM Tris pH=8, 0.1mM EDTA, 18% PEG8000, 2.5M NaCl) was gently mixed with 64 μ l of the
792 size selection beads (Cytiva, 65152105050250) in size selection buffer (20 mM Tris pH=8, 6%
793 PEG8000, 833 mM NaCl, 70 mM MgCl₂). Size selection reaction was then incubated 25 min at
794 65°C. Beads were then washed on magnetic stand twice with 80% ethanol and the enriched
795 HMW gDNA was eluted with TE buffer at 45°C for 30 minutes.
796
797 **Sequencing library construction.** Linked-read (LR) genomic libraries were prepared for 1229
798 samples following published protocols from Meier et al. (2021) with the following modifications

799 to the 96-plex “haplotagging” protocol. Briefly, 0.375 ng of each HMW DNA sample was
800 tagged with 1.25 μ l of haplotagging beads from an expanded panel of 3 separate 96-well
801 Haplotag bead plates, each carrying a different i7/i5-barcode ligation overhang: “T/G” or
802 “C/T”, in addition to the original “A/C” overhang in (Meier et al., 2021). This expanded panel
803 enabled sequencing of 288 samples (3 x 96) per NovaSeq sequencing lane. Subsampling of
804 beads after tagmentation was carried out at a 1:5.6 ratio to maintain high reads-per-molecules
805 ratio across the individuals. This corresponds to approximately 1.6e⁶ beads (barcodes) to 67 pg
806 DNA per sample, or 135 haploid copies of the long-tailed finch genome. Pooled and
807 subsampled beads of each of the plates, carrying a total of 6.4 ng DNA per library (96 x 67 pg),
808 were split into two equal samples and incubated at 50°C for 25 minutes with exonuclease 1
809 (NEB, M0293) to remove unintegrated barcoded transposon adapters. Each plate’s DNA library
810 was then amplified in two 50 μ l Q5 High-Fidelity DNA Polymerase reactions (New England
811 BioLabs) for 11 thermocycles, then twice size selected with Ampure beads at 0.45x followed
812 by 0.85x bead:sample ratios to remove >1 kbp library and <300 bp fragments, respectively.
813 The set of samples with LR data included 1133 long-tailed finches: 982 from across the
814 geographic distribution of the species in the wild and 171 captive reared individuals descended
815 from wild-caught individuals of each subspecies held in aviaries at Macquarie University in
816 Sydney, Australia. We also prepared LR libraries for 96 black-throated finches *Poephila cincta*
817 (48 *P. c. cincta* and 48 *P. c. atropygialis*). This allopatric sister species to the long-tailed finch was
818 used as a closely related outgroup in population genetic analyses. Bill color phenotype data
819 was available for 508 of the sequenced samples.
820

821 Short-read (SR) genomic libraries were prepared for 22 samples (5 *P. a. acuticauda*, 15 *P.
822 a. hecki*, 1 *P. c. cincta*, and 1 *P. c. atropygialis*) using an Illumina TruSeq DNA Library Preparation
823 Kit (Illumina, San Diego). The 20 long-tailed finch samples with SR libraries were used as
824 technical replicates for evaluating genotype imputation accuracy and phasing performance with
825 LR data.
826

827 **Sequencing and demultiplexing.** LR libraries were sequenced on a NovaSeq 6000 2x150bp S4
828 flow cell (Illumina, San Diego) from a commercial service provider (MedGenome, Foster City,
829 USA) with a 151+13+13+151 cycle run setting for a total of 3.3 TBases of sequencing data. Raw
830 CBCL sequencing data was converted to fastq using bcl2fastq (Illumina) without sample sheet
831 and with parameters --use-bases-mask=Y151,I13,I13,Y151 --minimum-trimmed-read-length=1
832 --masked-short-adapter-reads=1 --create-fastq-for-index-reads. beadTag demultiplexing was
833 performed using a demultiplexing c++ script to decode each of the four barcodes and saved
834 as BX:Z tag information in modified fastq files. Reads were subsequently split into plates based
835 on the combination of ligation overhangs. Demultiplexing information is available at
836 <https://github.com/evolgenomics/haplotagging>. Reads were trimmed to remove adapter
837 sequences and low-quality bases (Cutadapt; <https://doi.org/10.14806/ej.17.1.200>), mapped to

838 the zebra finch reference genome using BWA mem (Li 2013), and PCR duplicates removed
839 under barcode-aware mode Picard's MarkDuplicates module
840 (<http://broadinstitute.github.io/picard/>). We recovered an average of 8.4 million paired end
841 reads and a median depth of coverage of 1.38 \times for the 1229 samples with LR data.
842

843 We included data from 20 additional wild-caught long-tailed finch samples generated in
844 a previous study (10 *P. a. acuticauda* and 10 *P. a. hecki*; standard SR genomic sequence from
845 ENA Study: PRJEB10586; Singhal et al., 2015). Reads (2x150) from all SR data samples were
846 processed as above, except without barcode-aware duplicate marking. The 42 samples with SR
847 sequence data had an average of 150 million paired end reads and a mean depth of coverage
848 of 26.1 \times .
849

850 **Variant discovery and genotyping.** We generated an initial set of variants with bcftools mpileup
851 using the full set of 1249 samples. A subset of biallelic SNVs were then selected after bcftools
852 filtering for proximity to indels (i.e., -g3) and based on variant quality and sequencing error
853 artefacts (%QUAL<500 || AC<2 %QUAL<50 || %MAX(AD)/%MAX(DP)<=0.3 || RPB<0.1 &&
854 %QUAL<50). This quality-filtered subset of variants was then pruned of sites that overlapped
855 with annotated repetitive regions of the zebra finch genome called by repeatMasker (Smit et al.
856 2013-2015; Flynn et al. 2020). A total of 37.69 million SNVs remained after initial quality filtering
857 and repeat masking.
858

859 Genotype calling and imputation with this set of SNVs was performed using read data in
860 BAM format from all 1249 samples in 1 Mb windows using STITCH version 1.6.6 (Davies et al.
861 2016) in pseudohaploid mode with the following parameters: K=100, nGen=1000,
862 shuffle_bin_radius=100, niterations=40, switchModelIterations=25, buffer=50000. Based on
863 the significant negative relationship between chromosome size and per bp recombination rate
864 in birds (Singhal, Leffler et al. 2015), STITCH was run across three chromosome classes using
865 the following recombination rate tuning (i.e., >25 Mb, expRate = 1.0; <25 Mb, expRate = 5.0,
866 and < 10 Mb, expRate = 10.0). Microchromosomes smaller than 2.6 Mb (a set of 9 chromosomes
867 encompassing <1.5% of the genome) were excluded from further analysis due to poor
868 imputation performance likely resulting from their high per bp rate of recombination. A final set
869 of 33.23 million SNVs with high information content (INFO_SCORE > 0.4) were retained for
870 downstream analyses (88.2% of the initial set of variants identified).
871

872 **Population genetic analyses.** We calculated F_{ST} between allopatric populations of each
873 subspecies (i.e., 110 *acuticauda* from pops. 1 – 7 and 110 *hecki* from pops. 28 – 34 in Figure 1)
874 for all SNPs with a minor allele count of at least 2 and in 20 kb windows along each chromosome
875 with a step size of 10 kb using VCFtools version 0.1.16. We quantified F_{ST} on the Z chromosome
876 using a subset of allopatric males (70 *acuticauda* and 69 *hecki* samples) to circumvent any effects

877 of female hemizygosity. We investigated fine-scale patterns of introgression between
878 subspecies by calculating ΔF_{ST} in 10 kb windows with 5 kb steps using a set of color admixed
879 samples from pops. 20 – 27 as follows:

880

$$881 \Delta F_{ST} = F_{ST}(ACU \times \text{admixed HEC}) - F_{ST}(ACU \times \text{allopatric HEC})$$

882

883 After removing windows with less than 50 variants on each chromosome (and less than
884 20 variants on the Z chromosome) we classified genomic regions in the 0.5th and 99.5th
885 percentile of the ΔF_{ST} distribution as showing potential evidence of introgression from
886 *acuticauda* into *hecki* and from *hecki* into *acuticauda*, respectively.

887 We performed hybrid index estimation using a set of linkage-disequilibrium (LD) pruned
888 ancestry informative SNP markers. We defined a set of ancestry informative markers as the 755
889 autosomal SNPs above an F_{ST} threshold of 0.7 and the 42668 Z chromosome SNPs above an
890 F_{ST} threshold of 0.95 between allopatric populations. We used PLINK v.1.9 to LD-prune SNPs in
891 this marker set above an r^2 of 0.2 within 100 kb windows and a 10 kb step size (--indep-pairwise
892 100 10 0.2) and with any amount of missing data across samples (--geno 0.0). Of the 43423
893 ancestry informative SNP markers, 1137 SNPs remained after LD pruning. We used the R
894 package gghybrid (Bailey 2023; <https://doi.org/10.5281/zenodo.3676498>) to perform Bayesian
895 MCMC hybrid index estimation on a set of 649 ancestry informative SNPs remaining after
896 further filtering for an AF difference of at least 0.8 between allopatric populations and a MAF
897 of less than 0.05 in one of the two allopatric populations. This set of markers included 99
898 autosomal SNPs and 550 Z-linked SNPs. We modeled the ancestry proportion of all 1153 wild
899 and captive long-tailed finch samples as the h posterior mode from gghybrid function hindlabel.

900

901

902 **GWAS.** We performed a genome-wide association study (GWAS) for bill color using a measure
903 of bill hue: H3. As described above, the colorimetric variable H3 was quantified from reflectance
904 spectrophotometer readings as the wavelength midway between the minimum and maximum
905 reflectance of light reflected off a bird's upper mandible. We retained a total of 508 individuals
906 with bill color phenotype data for association mapping. We investigated the genetic basis of
907 bill color using the Wald test implemented in Gemma version 0.98.5 (Zhou and Stephens 2014).
908 We fit a univariate linear mixed model to test for an association between phenotype and each
909 SNP genotype. We included a relatedness matrix to correct for population structure and
910 because hybrid sex (McDiarmid et al. 2023) and genome-wide hybrid index are significantly
911 correlated with bill hue (Spearman's $r = 0.66$, $p < 2.2 \times 10^{-16}$) we also included these as covariates
912 during modeling. Keeping only variants with a minor allele frequency above 2%, genome-wide
913 data from a total of 17,566,649 variants were analyzed (mean of 17.3 SNPs / kbp).

914

915 We evaluated the genome-wide threshold for significance at a false discovery rate of 1%
916 ($\alpha = 0.01$) in two ways. First, using a Bonferroni correction on the total number of SNPs tested
917 (threshold = 9.24; $P = 5.69e^{-10}$) and second, as the 99th percentile across the distribution of
918 differences following 1,000 permutations of bill hue onto observed genotypes (threshold =
919 9.03; $P = 9.29e^{-10}$). As results were qualitatively identical with respect to using either significance
920 threshold approach (523 versus 576 significant SNPs), we adopted the permutation derived
921 threshold as it preserves important features of the data while making fewer assumptions. Results
922 were visualized by log-transforming the p-values, changing their signs, and generating
923 Manhattan plots using the R package fastman (<https://github.com/kaustubhad/fastman>).
924

925 We defined association peaks as clusters of at least five SNPs above our genome-wide
926 significance threshold that were separated by <50 kb from the next significant SNP. We scanned
927 for protein-coding genes within 100 kb upstream and downstream of each association peak in
928 R using the annotation file for the zebra finch reference genome (GCF_003957565.2). Of the
929 eleven identified association peaks (Table 1), we focused subsequent attention on the three
930 autosomal peaks and the single Z chromosome peak that contained the most SNPs significantly
931 associated with color variation genome-wide, included SNPs observed to be highly
932 differentiated between subspecies, and encompassed genes previously associated with or
933 plausibly linked to carotenoid-based color variation. The functional significance of all SNPs
934 above genome-wide significance was evaluated using SnpEff v5.2a (Cingolani et al. 2012).
935

936 Following Zhou et al. (2013), the proportion of genetic variance explained (i.e., PVE) by
937 the most strongly associated SNP variant in each association peak was estimated as:
938

$$PVE = \sigma_g^2 * (\beta^2 + SE^2) / \sigma_p^2$$

939 Where genotypic variance was represented by σ_g^2 and phenotypic variance by σ_p^2 , respectively.
940 Estimates of allelic effect size (β) and its standard error (SE) were inferred for each SNP by
941 GEMMA.
942

943 **CYP2J19 copy number evaluation.** The study of the zebra finch that first identified CYP2J19
944 as a candidate oxidative ketolation enzyme (Mundy et al., 2016) reported two copies of this
945 gene on chromosome 8. The authors proposed that the second copy had arisen due to tandem
946 duplication with one specialized for color vision (denoted CYP2J19A) and the other for color
947 ornamentation (CYP2J19B) (Mundy et al., 2016). To our knowledge, only a single copy of
948 CYP2J19 has been detected in any other avian genome (Twyman et al. 2018; Emerling 2018)
949 and only a single copy of CYP2J19 is present in the zebra finch reference genome
950 (GCF_003957565.2). We examined whether there is any evidence of two copies of CYP2J19 in
951 the long-tailed finch and black-throated finch by evaluating deviations in depth of coverage
952
953

954 along chromosome 8. Specifically, we evaluated whether samples exhibited an increase in
955 depth of coverage in 1 kb sliding windows across *CY2PJ19* (chr8:3167181-3178161) that would
956 indicate that reads from two copies of this gene were mapping to the same genomic location:
957 a ~2x increase in coverage would be expected if this was the case. We did not detect any
958 increase in depth of coverage for reads mapping to *CYP2J19* in the zebra finch reference
959 genome that might indicate this gene exists in more than one copy in the genus *Poephila*.
960

961 **Geographic clinal analysis.** One-dimensional Bayesian analyses of cline position and shape
962 were performed using a subset of 30 transect populations with at least $2N = 10$ samples
963 available using the R package BAHZ (Thurman 2019; <https://github.com/tjthurman/BAHZ>).
964 Geographic clines were modeled for the most strongly associated SNP in each of the four focal
965 GWAS association peaks and for genome-wide hybrid index. We determined the best-fitting
966 cline model based on changes in allele frequencies across our sampling transect using two
967 parameters, cline center and width.
968

969 **Genomic clinal analysis.** We evaluated our set of 649 ancestry informative markers in linkage
970 equilibrium (see population genetic analyses above) for evidence of biased introgression
971 between long-tailed finch subspecies using the ggcline function of gghybrid (Bailey 2023). We
972 used our genome-wide hybrid index and genotype data from 982 wild-caught samples to
973 model the genomic cline center (*c*) and steepness (*v*) for each SNP marker.
974

975 **Phasing.** Molecular phasing of SNPs on chromosomes 2, 8, and Z was performed using
976 haplotagging LR molecular barcode information with HapCUT2 (Edge et al. 2017). Phasing was
977 performed using a BAM file containing LRs mapped to the zebra finch reference genome and
978 a VCF file containing variant calls and diploid genotypes for the same individual. As female
979 samples are hemizygous for the Z chromosome, and as a result are expected to already be
980 phased apart from the pseudo-autosomal region, we did not include them in our HapCUT2
981 pipeline. Phasing performance, measured as N50 haplotype length, was evaluated as follows.
982 We first compared the distribution of individual N50 haplotype lengths for each chromosome
983 between the 1229 samples with LR data and low sequencing depth (e.g., 1.4x) against the 40
984 samples with standard short-read data and deep sequencing depth (e.g., 30.0x). We next
985 directly compared N50 haplotype lengths for the 20 individuals in our dataset that were
986 sequenced using both linked-read and short-read approaches to control for the effects of
987 sample quality.
988

989 **Selection.** Scans for signatures of selection were performed on four regions of the genome
990 containing the GWAS association peaks most strongly associated with variation in bill color. We
991 defined each region as a genomic window 1 Mb downstream and upstream of each association
992 peak. The mean size of each association peak was 0.13 Mb (range from 0.03 to 0.33 Mb) while

993 the mean genomic window evaluated was 2.13 Mb (range from 2.03 to 2.33 Mb), respectively.
994 This approach allowed us to evaluate evidence of selective sweeps at each association peak
995 against the genomic background they were located upon. Evidence of positive selection was
996 evaluated based on summary statistics of haplotype structure and Ancestral Recombination
997 Graph (ARG) inference to test for and estimate the strength and timing of selection, as well as
998 estimate the full allele frequency trajectory.
999

1000 We evaluated long-range haplotype homozygosity within populations using the
1001 integrated haplotype homozygosity score (iHS) and compared haplotype homozygosity
1002 between populations using cross-population extended haplotype homozygosity (xpEHH). Both
1003 statistics were calculated with phased genotype data using the R package rehh (Gautier et al.,
1004 2017; Klassmann and Gautier 2022). We focused on three groups of sampled populations for
1005 calculating summary statistics based on haplotype structure: (i) allopatric yellow-billed
1006 *acuticauda* (pops. 1 – 7), (ii) color-admixed *hecki* (pops. 20 – 27), and (iii) allopatric red-billed
1007 *hecki* (pops. 28 – 34). We did not include hybrid zone populations (pops. 8 – 19) in these
1008 calculations because of their demographic composition of recent generation hybrids.
1009

1010 We leveraged the LR supported phasing in our dataset using RELATE version 1.1 (Speidel
1011 et al., 2019) to examine evidence of positive selection at the four genomic regions
1012 encompassing bill color association peaks. We first converted phased VCFs to the haps/sample
1013 file format used by Relate with the RelateFileFormats.sh script and prepared the input files using
1014 PrepareInputFiles.sh (both part of the Relate package). We ran Relate on 1928 haplotypes from
1015 males and females for autosomal chromosomes 2 and 8 and on 1206 haplotypes from males
1016 for the Z chromosome. We used the zebra finch reference sequence (GCF_003957565.2) to
1017 polarize variants as ancestral or derived. We ran Relate with options -m 6.25e-9 -N 5e5 for the
1018 autosomal chromosomes and -m 6.94e-9 -N 2e5 for the Z chromosome to account for the
1019 difference in germline mutation rate and effective population size between these chromosome
1020 classes (de Manuel et al., 2022; Bergeron et al., 2023). We supplied genetic maps for each
1021 chromosome generated from genotype calls from 70 allopatric *acuticauda* males using
1022 ReLERNN version 1.0.0 (Adrion et al., 2020), a deep learning approach that uses recurrent
1023 neural networks. ReLERNN was run using the simulate, train, predict, and bscorrect modules
1024 with default settings apart from the mutation rates specified above and a generation time of
1025 two years. Inferred recombination rates were averaged in 1 Mb blocks in 50 kb sliding windows.
1026 We used the Relate script EstimatePopulationSize.sh with options -m 6.25e-9 (autosomal) or -
1027 m 6.94e-9 (chrZ) and -years_per_gen 2.
1028

1029 We extracted the genealogies of each of our focal groups (i.e., *acuticauda* pops. 1-7 and
1030 *hecki* pops. 20-34), re-estimated population size history for them, and used the output of the
1031 previous step as input for the Relate Selection Tests script DetectSelection.sh. This approach

1032 tests for evidence of positive selection on a particular variant based on the speed at which
1033 lineages carrying it spread relative to other 'competing' lineages (Speidel et al., 2019). We
1034 accounted for the demographic history of each group using the same tuning for mutation rate
1035 and generation time differences between chromosome classes as above. From the .Sele files
1036 generated, we extracted p-values from the column "when_mutation_has_freq2" which tests for
1037 evidence of selection over the lifetime of a particular variant.

1038

1039 We further investigated the evolutionary history of each variant found to show evidence
1040 of positive selection within our four association peak regions using CLUES (Stern et al., 2019).
1041 We used the Relate script SampleBranchLengths.sh on the genealogies of each of our groups
1042 to sample branch lengths from the posterior and account for uncertainty. We ran 100 samples
1043 (-num_samples 100) and accounted for the demographic history of each group using the .coal
1044 files output from EstimatePopulationSize.sh. We then ran CLUES (inference.py script) with the
1045 option -coal to account for demographic history. We fine-mapped variants using the likelihood
1046 ratio statistic generated by CLUES as suggested by Stern et al. (2019) and focused on the
1047 variants within each association peak that show moderate to strong selection ($s > 0.003$). We
1048 used the plot_traj.py script to plot the results. As evidence from population genetic, geographic
1049 cline, and genomic cline analyses together suggested that allelic variation associated with bill
1050 color variation has predominately introgressed from subspecies *acuticauda* into subspecies
1051 *hecki*, we focused attention on estimating the strength and timing of selection, as well as the
1052 full allele frequency trajectory, within subspecies *hecki* (i.e., pops. 20-34).

1053

1054 Data and Code Availability

1055

1056 All analytical code will be deposited in GitHub, <https://github.com/dhooper1/Long-tailed->
1057 [Finch](#). The genomic data will be archived in GenBank (BioProject ID PRJNAXXXXX).
1058 Phenotypic and collection data for all *Poephila* samples are given in Supplemental Tables.

1059

1060 Acknowledgements

1061

1062 This work was funded by ARC- DP-180101783 to DMH and SCG and NSF-IOS-2037741 to GEH.
1063 DMH was supported by the Gerstner Scholars Fellowship and the Gerstner Family Foundation,
1064 the Richard Gilder Graduate School at the American Museum of Natural History, and a Research
1065 Initiatives in Science and Engineering (RISE) award to PA from Columbia University. CSM was
1066 funded by a Macquarie University Research Excellence scholarship, a Fulbright Future
1067 Fellowship, and a Holsworth Wildlife Research Endowment from Equity Trustees Charitable
1068 Foundation and the Ecological Society of Australia. MK was supported by ERC POC Grant
1069 #101069216, HAPLOTAGGING awarded to YFC. YFC was supported by the Max Planck Society.
1070 Tissue loans were generously provided by the Australian National Wildlife Collection. We wish

1071 to thank Andrew Blunsden, Skye Davis, Emma Greig, Eva van der Heijden, Laura Hurley, Kyle
1072 Kostrzewa, Elise McCarthy, and Clément Rul for their assistance with fieldwork. Col Roberts and
1073 Adam Hunter suggested finching sites in Western Australia. Kelsie Lopez helped with DNA
1074 extractions, Amanda Carpenter helped with carotenoid analysis, Andrew Vaughn provided
1075 advice on selective sweep analyses. Trevor Price and Vicens Vila-Coury provided excellent
1076 feedback on the manuscript.

1077

1078 **Author Contributions**

1079

1080 DMH and SCG designed research; DMH, CSM, MJP, NMJ, MK, and NH performed research;
1081 DMH analyzed genomic data; MJP and NMJ analyzed carotenoid data; DMH contributed tables
1082 and figures; YFC, GEH, PA, and SCG provided critical resources; and DMH wrote the paper with
1083 input from all authors.

1084

1085 **ORCID Details:** DMH: 0000-0002-4198-4320, CSM: 0000-0003-2938-7176, MJP: 0000-0003-
1086 3499-0877, NMJ: 0000-0002-6561-9889, MK: 0000-0002-0928-4914, NSH: 0000-0002-7289-
1087 9399, GEH: 0000-0001-8864-6495, PA: 0000-0003-3393-4574, YFC: 0000-0001-6292-9681,
1088 SCG: 0000-0001-7612-4999

1089

1090 **Competing Interest Statement**

1091

1092 The authors declare no competing interests.

1093 References

1094

1095 Adrión, J. R., Galloway, J. G., & Kern, A. D. (2020). Predicting the landscape of recombination using deep
1096 learning. *Molecular biology and evolution*, 37(6), 1790-1808.

1097

1098 Aguillon, S. M., Walsh, J., & Lovette, I. J. (2021). Extensive hybridization reveals multiple coloration genes
1099 underlying a complex plumage phenotype. *Proceedings of the Royal Society B*, 288(1943), 20201805.

1100

1101 Ahi, E. P., Lecaudey, L. A., Ziegelbecker, A., Steiner, O., Goessler, W., & Sefc, K. M. (2020). Expression levels of the
1102 tetratricopeptide repeat protein gene ttc39b covary with carotenoid-based skin colour in cichlid fish. *Biology
1103 letters*, 16(11), 20200629.

1104

1105 Al Barashdi, M. A., Ali, A., McMullin, M. F., & Mills, K. (2021). Protein tyrosine phosphatase receptor type C (PTPRC
1106 or CD45). *Journal of clinical pathology*.

1107

1108 Alonso-Alvarez, C., Andrade, P., Cantarero, A., Morales, J., & Carneiro, M. (2022). Relocation to avoid costs: A
1109 hypothesis on red carotenoid-based signals based on recent CYP2J19 gene expression data. *BioEssays*, 44(12),
1110 2200037.

1111

1112 Amengual, J., Widjaja-Adhi, M. A. K., Rodriguez-Santiago, S., Hessel, S., Golczak, M., Palczewski, K., & Von Lintig,
1113 J. (2013). Two Carotenoid Oxygenases Contribute to Mammalian Provitamin A Metabolism*. *Journal of Biological
1114 Chemistry*, 288(47), 34081-34096.

1115

1116 Bailey, R. I. (2024). Bayesian hybrid index and genomic cline estimation with the R package gghybrid. *Molecular
1117 Ecology Resources*, 24(2), e13910.

1118

1119 Baiz, M. D., Wood, A. W., Brelsford, A., Lovette, I. J., & Toews, D. P. (2021). Pigmentation genes show evidence of
1120 repeated divergence and multiple bouts of introgression in Setophaga warblers. *Current Biology*, 31(3), 643-649.

1121

1122 Baldassarre, D. T., White, T. A., Karubian, J., & Webster, M. S. (2014). Genomic and morphological analysis of a
1123 semipermeable avian hybrid zone suggests asymmetrical introgression of a sexual signal. *Evolution*, 68(9), 2644-
1124 2657.

1125

1126 Beckman, E. J., & Witt, C. C. (2015). Phylogeny and biogeography of the New World siskins and goldfinches:
1127 Rapid, recent diversification in the Central Andes. *Molecular phylogenetics and evolution*, 87, 28-45.

1128

1129 Bergeron, L. A., Besenbacher, S., Zheng, J., Li, P., Bertelsen, M. F., Quintard, B., ... & Zhang, G. (2023). Evolution
1130 of the germline mutation rate across vertebrates. *Nature*, 615(7951), 285-291.

1131

1132 Bowman, D. M., Brown, G. K., Braby, M. F., Brown, J. R., Cook, L. G., Crisp, M. D., ... & Ladiges, P. Y. (2010).
1133 Biogeography of the Australian monsoon tropics. *Journal of Biogeography*, 37(2), 201-216.

1134

1135 Campagna, L., Repenning, M., Silveira, L. F., Fontana, C. S., Tubaro, P. L., & Lovette, I. J. (2017). Repeated divergent
1136 selection on pigmentation genes in a rapid finch radiation. *Science advances*, 3(5), e1602404.

1137

1138 Cantarero, A., & Alonso-Alvarez, C. (2017). Mitochondria-targeted molecules determine the redness of the zebra
1139 finch bill. *Biology letters*, 13(10), 20170455.

1140

1141 Cantarero, A., Andrade, P., Carneiro, M., Moreno-Borrallo, A., & Alonso-Alvarez, C. (2020). Testing the carotenoid-
1142 based sexual signalling mechanism by altering CYP2J19 gene expression and colour in a bird species. *Proceedings*
1143 of the Royal Society B, 287(1938), 20201067.

1144

1145 Cingolani, P., Platts, A., Wang, L. L., Coon, M., Nguyen, T., Wang, L., ... & Ruden, D. M. (2012). A program for
1146 annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of
1147 *Drosophila melanogaster* strain w1118; iso-2; iso-3. *fly*, 6(2), 80-92.

1148

1149 Connor, W. E., Duell, P. B., Kean, R., & Wang, Y. (2007). The prime role of HDL to transport lutein into the retina:
1150 evidence from HDL-deficient WHAM chicks having a mutant ABCA1 transporter. *Investigative ophthalmology &*
1151 *visual science*, 48(9), 4226-4231.

1152

1153 Cuthill, I. C., Allen, W. L., Arbuckle, K., Caspers, B., Chaplin, G., Hauber, M. E., ... & Caro, T. (2017). The biology of
1154 color. *Science*, 357(6350), eaan0221.

1155

1156 Davies, R. W., Flint, J., Myers, S., & Mott, R. (2016). Rapid genotype imputation from sequence without reference
1157 panels. *Nature genetics*, 48(8), 965-969.

1158

1159 Edge, P., Bafna, V., & Bansal, V. (2017). HapCUT2: robust and accurate haplotype assembly for diverse sequencing
1160 technologies. *Genome research*, 27(5), 801-812.

1161

1162 Emerling, C. A. (2018). Independent pseudogenization of CYP2J19 in penguins, owls and kiwis implicates gene in
1163 red carotenoid synthesis. *Molecular phylogenetics and evolution*, 118, 47-53.

1164

1165 Fakhri, S., Abbaszadeh, F., Dargahi, L., & Jorjani, M. (2018). Astaxanthin: A mechanistic review on its biological
1166 activities and health benefits. *Pharmacological research*, 136, 1-20.

1167

1168 Flynn, J. M., Hubley, R., Goubert, C., Rosen, J., Clark, A. G., Feschotte, C., & Smit, A. F. (2020). RepeatModeler2
1169 for automated genomic discovery of transposable element families. *Proceedings of the National Academy of*
1170 *Sciences*, 117(17), 9451-9457.

1171

1172 Friedman, N. R., McGraw, K. J., & Omland, K. E. (2014). Evolution of carotenoid pigmentation in caciques and
1173 meadowlarks (Icteridae): repeated gains of red plumage coloration by carotenoid C4-
1174 oxygenation. *Evolution*, 68(3), 791-801.

1175

1176 Gautier, M., Klassmann, A., & Vitalis, R. (2017). rehh 2.0: a reimplementation of the R package rehh to detect
1177 positive selection from haplotype structure. *Molecular ecology resources*, 17(1), 78-90.

1178

1179 Goldsmith, T. H., Collins, J. S., & Licht, S. (1984). The cone oil droplets of avian retinas. *Vision research*, 24(11),
1180 1661-1671.

1181

1182 Gomes, A. C. R., Sorenson, M. D., & Cardoso, G. C. (2016). Speciation is associated with changing ornamentation
1183 rather than stronger sexual selection. *Evolution*, 70(12), 2823-2838.

1184

1185 Griffith, S. C., & Hooper, D. M. (2017). Geographical variation in bill colour in the Long-tailed Finch: evidence for
1186 a narrow zone of admixture between sub-species. *Emu-Austral Ornithology*, 117(2), 141-150.

1187

1188 Hart, N. S., Partridge, J. C., & Cuthill, I. C. (1998). Visual pigments, oil droplets and cone photoreceptor distribution
1189 in the European starling (*Sturnus vulgaris*). *Journal of Experimental Biology*, 201(9), 1433-1446.

1190

1191 Hejase, H. A., Salman-Minkov, A., Campagna, L., Hubisz, M. J., Lovette, I. J., Gronau, I., & Siepel, A. (2020).
1192 Genomic islands of differentiation in a rapid avian radiation have been driven by recent selective sweeps.
1193 *Proceedings of the National Academy of Sciences*, 117(48), 30554-30565.

1194

1195 Hermiston, M. L., Xu, Z., & Weiss, A. (2003). CD45: a critical regulator of signaling thresholds in immune
1196 cells. *Annual review of immunology*, 21(1), 107-137.

1197

1198 Higgins, P. (Ed.). (2006). *Handbook of Australian, New Zealand and Antarctic Birds: Volume 7 Boatbill to Starlings: Part B Dunnock to Starlings*. Oxford University Press.

1200

1201 Hill, G. E., & Johnson, J. D. (2012). The vitamin A-redox hypothesis: a biochemical basis for honest signaling via
1202 carotenoid pigmentation. *The American Naturalist*, 180(5), E127-E150.

1203

1204 Hill, G. E., & McGraw, K. J. (2004). Correlated changes in male plumage coloration and female mate choice in
1205 cardueline finches. *Animal Behaviour*, 67(1), 27-35.

1206

1207 Hill, G. E., & McGraw, K. J. (Eds.). (2006). *Bird coloration* (Vol. 1). Harvard University Press.

1208

1209 Hill, G. E., Hood, W. R., Ge, Z., Grinter, R., Greening, C., Johnson, J. D., ... & Zhang, Y. (2019). Plumage redness
1210 signals mitochondrial function in the house finch. *Proceedings of the Royal Society B*, 286(1911), 20191354.

1211

1212 Hooper, D. M., Griffith, S. C., & Price, T. D. (2019). Sex chromosome inversions enforce reproductive isolation
1213 across an avian hybrid zone. *Molecular ecology*, 28(6), 1246-1262.

1214

1215 Houten, S. M., & Wanders, R. J. (2010). A general introduction to the biochemistry of mitochondrial fatty acid β -
1216 oxidation. *Journal of inherited metabolic disease*, 33, 469-477.

1217

1218 Hussein, G., Sankawa, U., Goto, H., Matsumoto, K., & Watanabe, H. (2006). Astaxanthin, a carotenoid with potential
1219 in human health and nutrition. *Journal of natural products*, 69(3), 443-449.

1220

1221 Khalil, S., Enbody, E. D., Frankl-Vilches, C., Welklin, J. F., Koch, R. E., Toomey, M. B., ... & Karubian, J. (2023).
1222 Testosterone coordinates gene expression across different tissues to produce carotenoid-based red
1223 ornamentation. *Molecular Biology and Evolution*, 40(4), msad056.

1224

1225 Kirschel, A. N., Nwankwo, E. C., Pierce, D. K., Lukhele, S. M., Moysi, M., Ogolowa, B. O., ... & Brelsford, A. (2020).
1226 CYP2J19 mediates carotenoid colour introgression across a natural avian hybrid zone. *Molecular ecology*, 29(24),
1227 4970-4984.

1228

1229 Klassmann, A., & Gautier, M. (2022). Detecting selection using extended haplotype homozygosity (EHH)-based
1230 statistics in unphased or unpolarized data. *PLoS one*, 17(1), e0262024.

1231

1232 Koch, R. E., Kavazis, A. N., Hasselquist, D., Hood, W. R., Zhang, Y., Toomey, M. B., & Hill, G. E. (2018). No evidence
1233 that carotenoid pigments boost either immune or antioxidant defenses in a songbird. *Nature communications*, 9(1), 491.

1234

1235 Koch, R. E., & Hill, G. E. (2019). Loss of Carotenoid Plumage Coloration Is Associated With Loss of Choice for
1236 Coloration in Domestic Canaries. *Frontiers in Ecology and Evolution*, 7, 106.

1237

1238 LaFountain, A. M., Prum, R. O., & Frank, H. A. (2015). Diversity, physiology, and evolution of avian plumage
1239 carotenoids and the role of carotenoid–protein interactions in plumage color appearance. *Archives of Biochemistry
1240 and Biophysics*, 572, 201-212.

1241

1242 Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. *arXiv preprint
1243 arXiv:1303.3997*.

1244

1245 Ligon, R. A., Simpson, R. K., Mason, N. A., Hill, G. E., & McGraw, K. J. (2016). Evolutionary innovation and
1246 diversification of carotenoid-based pigmentation in finches. *Evolution*, 70(12), 2839-2852.

1247

1248 Lopes, R. J., Johnson, J. D., Toomey, M. B., Ferreira, M. S., Araujo, P. M., Melo-Ferreira, J., ... & Carneiro, M. (2016).
1249 Genetic basis for red coloration in birds. *Current Biology*, 26(11), 1427-1434.

1250

1251 Lopez, K. A., McDiarmid, C. S., Griffith, S. C., Lovette, I. J., & Hooper, D. M. (2021). Evaluating evidence of
1252 mitonuclear incompatibilities with the sex chromosomes in an avian hybrid zone. *Evolution*, 75(6), 1395-1414.

1253

1254 Maia, R., Gruson, H., Endler, J. A., & White, T. E. (2019). pavo 2: new tools for the spectral and spatial analysis of
1255 colour in R. *Methods in Ecology and Evolution*, 10(7), 1097-1107.

1256

1257 de Manuel, M., Wu, F. L., & Przeworski, M. (2022). A paternal bias in germline mutation is widespread in amniotes
1258 and can arise independently of cell division numbers. *Elife*, 11, e80008.

1259

1260 Maoka, T. (2020). Carotenoids as natural functional pigments. *Journal of natural medicines*, 74(1), 1-16.

1261

1262 McDiarmid, C. S., Finch, F., Peso, M., van Rooij, E., Hooper, D. M., Rowe, M., & Griffith, S. C. (2023). Experimentally
1263 testing mate preference in an avian system with unidirectional bill color introgression. *Ecology and Evolution*, 13(2),
1264 e9812.

1265

1266 McDonald, D. B., Clay, R. P., Brumfield, R. T., & Braun, M. J. (2001). Sexual selection on plumage and behavior in
1267 an avian hybrid zone: experimental tests of male-male interactions. *Evolution*, 55(7), 1443-1451.

1268

1269 McGraw, K. J., Adkins-Regan, E., & Parker, R. S. (2002). Anhydrolutein in the zebra finch: a new, metabolically
1270 derived carotenoid in birds. *Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular
1271 Biology*, 132(4), 811-818.

1272

1273 McGraw, K. J., & Toomey, M. B. (2010). Carotenoid accumulation in the tissues of zebra finches: predictors of
1274 integumentary pigmentation and implications for carotenoid allocation strategies. *Physiological and Biochemical
1275 Zoology*, 83(1), 97-109.

1276

1277

1278 Meier, J. I., Salazar, P. A., Kučka, M., Davies, R. W., Dréau, A., Aldás, I., ... & Chan, Y. F. (2021). Haplotype tagging
1279 reveals parallel formation of hybrid races in two butterfly species. *Proceedings of the National Academy of
1280 Sciences*, 118(25), e2015005118.

1281

1282 Mundy, N. I., Stapley, J., Bennison, C., Tucker, R., Twyman, H., Kim, K. W., ... & Slate, J. (2016). Red carotenoid
1283 coloration in the zebra finch is controlled by a cytochrome P450 gene cluster. *Current Biology*, 26(11), 1435-1440.

1284

1285 Parsons, T. J., Olson, S. L., & Braun, M. J. (1993). Unidirectional spread of secondary sexual plumage traits across
1286 an avian hybrid zone. *Science*, 260(5114), 1643-1646.

1287

1288 Price, T. (1998). Sexual selection and natural selection in bird speciation. *Philosophical Transactions of the Royal
1289 Society of London. Series B: Biological Sciences*, 353(1366), 251-260.

1290

1291 Price, T. D. (2017). Sensory drive, color, and color vision. *The American Naturalist*, 190(2), 157-170.

1292

1293 Price-Waldman, R. M., Shultz, A. J., & Burns, K. J. (2020). Speciation rates are correlated with changes in plumage
1294 color complexity in the largest family of songbirds. *Evolution*, 74(6), 1155-1169.

1295

1296 Price-Waldman, R., & Stoddard, M. C. (2021). Avian coloration genetics: recent advances and emerging questions.
1297 *Journal of Heredity*, 112(5), 395-416.

1298

1299 Rhie, A., McCarthy, S. A., Fedrigo, O., Damas, J., Formenti, G., Koren, S., ... & Jarvis, E. D. (2021). Towards
1300 complete and error-free genome assemblies of all vertebrate species. *Nature*, 592(7856), 737-746.

1301

1302 Seddon, N., Botero, C. A., Tobias, J. A., Dunn, P. O., MacGregor, H. E., Rubenstein, D. R., ... & Safran, R. J. (2013).
1303 Sexual selection accelerates signal evolution during speciation in birds. *Proceedings of the Royal Society B:
1304 Biological Sciences*, 280(1766), 20131065.

1305

1306 Sefc, K. M., Brown, A. C., & Clotfelter, E. D. (2014). Carotenoid-based coloration in cichlid fishes. *Comparative
1307 Biochemistry and Physiology Part A: Molecular & Integrative Physiology*, 173, 42-51.

1308

1309 Semenov, G. A., Linck, E., Enbody, E. D., Harris, R. B., Khaydarov, D. R., Alström, P., ... & Taylor, S. A. (2021).
1310 Asymmetric introgression reveals the genetic architecture of a plumage trait. *Nature Communications*, 12(1), 1019.

1311

1312 Shipilina, D., Pal, A., Stankowski, S., Chan, Y. F., & Barton, N. H. (2023). On the origin and structure of haplotype
1313 blocks. *Molecular Ecology*, 32(6), 1441-1457.

1314

1315 Simons, M. J., & Verhulst, S. (2011). Zebra finch females prefer males with redder bills independent of song rate—
1316 a meta-analysis. *Behavioral Ecology*, 22(4), 755-762.

1317

1318 Singhal, S., Leffler, E. M., Sannareddy, K., Turner, I., Venn, O., Hooper, D. M., ... & Przeworski, M. (2015). Stable
1319 recombination hotspots in birds. *Science*, 350(6263), 928-932.

1320

1321 Speidel, L., Forest, M., Shi, S., & Myers, S. R. (2019). A method for genome-wide genealogy estimation for
1322 thousands of samples. *Nature genetics*, 51(9), 1321-1329.

1323

1324 Stein, A. C., & Uy, J. A. C. (2006). Unidirectional introgressions of a sexually selected trait across an avian hybrid
1325 zone: a role for female choice?. *Evolution*, 60(7), 1476-1485.

1326

1327 Stern, A. J., Wilton, P. R., & Nielsen, R. (2019). An approximate full-likelihood method for inferring selection and
1328 allele frequency trajectories from DNA sequence data. *PLoS Genetics*, 15(9), e1008384.

1329

1330 Stryjewski, K. F., & Sorenson, M. D. (2017). Mosaic genome evolution in a recent and rapid avian radiation. *Nature
1331 Ecology & Evolution*, 1(12), 1912-1922.

1332

1333 Svensson, & Wong. (2011). Carotenoid-based signals in behavioural ecology: a review. *Behaviour*, 148(2), 131-189.

1334

1335 Thurman, T. J. (2019). *bahz: Bayesian analysis of hybrid zones. R package*.

1336

1337 Toews, D. P., Taylor, S. A., Vallender, R., Brelsford, A., Butcher, B. G., Messer, P. W., & Lovette, I. J. (2016). Plumage
1338 genes and little else distinguish the genomes of hybridizing warblers. *Current Biology*, 26(17), 2313-2318.

1339

1340 Toews, D. P., Hofmeister, N. R., & Taylor, S. A. (2017). The evolution and genetics of carotenoid processing in
1341 animals. *Trends in Genetics*, 33(3), 171-182.

1342

1343 Toomey, M. B., Collins, A. M., Frederiksen, R., Cornwall, M. C., Timlin, J. A., & Corbo, J. C. (2015). A complex
1344 carotenoid palette tunes avian colour vision. *Journal of the Royal Society Interface*, 12(111), 20150563.

1345

1346 Toomey, M. B., Lind, O., Frederiksen, R., Curley Jr, R. W., Riedl, K. M., Wilby, D., ... & Corbo, J. C. (2016).
1347 Complementary shifts in photoreceptor spectral tuning unlock the full adaptive potential of ultraviolet vision in
1348 birds. *Elife*, 5, e15675.

1349

1350 Toomey, M. B., & Corbo, J. C. (2017). Evolution, development and function of vertebrate cone oil
1351 droplets. *Frontiers in Neural Circuits*, 11, 97.

1352

1353 Toomey, M. B., Lopes, R. J., Araújo, P. M., Johnson, J. D., Gazda, M. A., Afonso, S., ... & Carneiro, M. (2017). High-
1354 density lipoprotein receptor SCARB1 is required for carotenoid coloration in birds. *Proceedings of the National
1355 Academy of Sciences*, 114(20), 5219-5224.

1356

1357 Toomey, M. B., Marques, C. I., Araújo, P. M., Huang, D., Zhong, S., Liu, Y., ... & Corbo, J. C. (2022a). A mechanism
1358 for red coloration in vertebrates. *Current Biology*, 32(19), 4201-4214.

1359

1360 Toomey, M. B., Smith, D. J., Gonzales, D. M., & McGraw, K. J. (2022b). Methods for extracting and analyzing
1361 carotenoids from bird feathers. *Methods in enzymology*, 670, 459-497.

1362

1363 Twyman, H., Valenzuela, N., Literman, R., Andersson, S., & Mundy, N. I. (2016). Seeing red to being red: conserved
1364 genetic mechanism for red cone oil droplets and co-option for red coloration in birds and turtles. *Proceedings of
1365 the Royal Society B: Biological Sciences*, 283(1836), 20161208.

1366

1367 Twyman, H., Prager, M., Mundy, N. I., & Andersson, S. (2018). Expression of a carotenoid-modifying gene and
1368 evolution of red coloration in weaverbirds (Ploceidae). *Molecular ecology*, 27(2), 449-458.

1369

1370 Vorobyev, M. (2003). Coloured oil droplets enhance colour discrimination. *Proceedings of the Royal Society of*
1371 *London. Series B: Biological Sciences*, 270(1521), 1255-1261.

1372

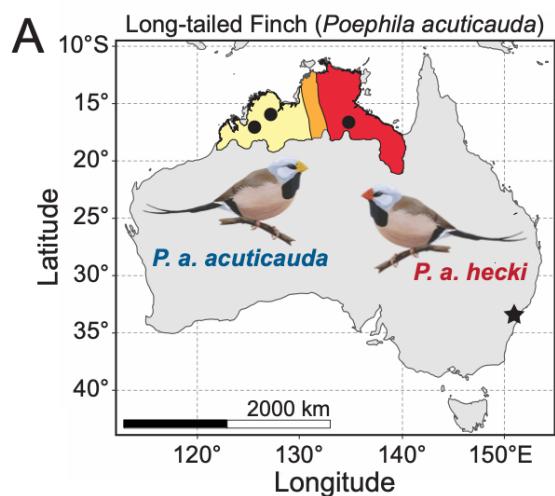
1373 Weaver, R. J., Santos, E. S., Tucker, A. M., Wilson, A. E., & Hill, G. E. (2018). Carotenoid metabolism strengthens
1374 the link between feather coloration and individual quality. *Nature communications*, 9(1), 73.

1375

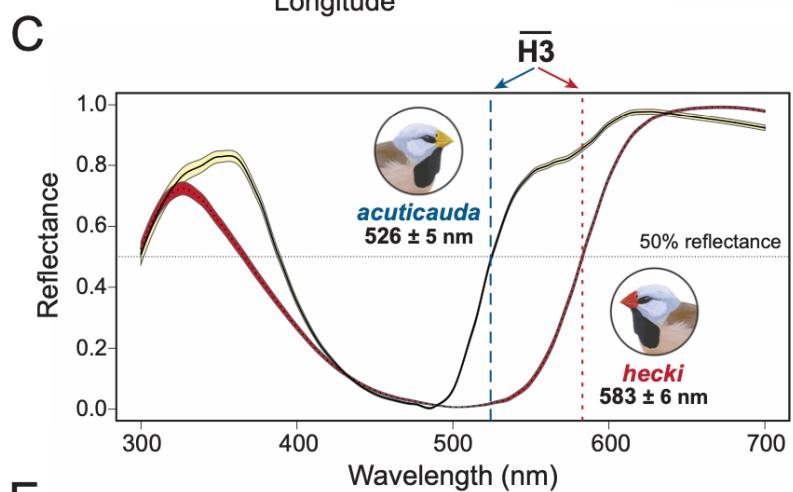
1376 West-Eberhard, M. J. (1983). Sexual selection, social competition, and speciation. *The quarterly review of biology*,
1377 58(2), 155-183.

1378

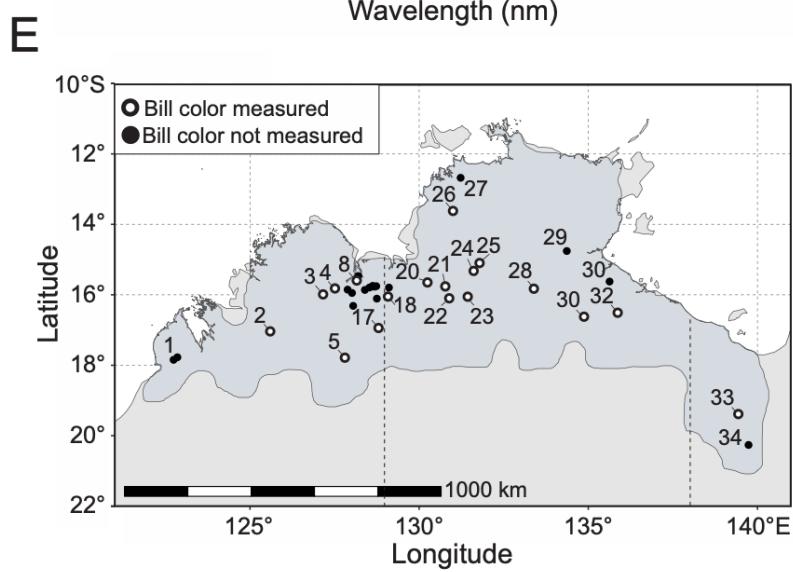
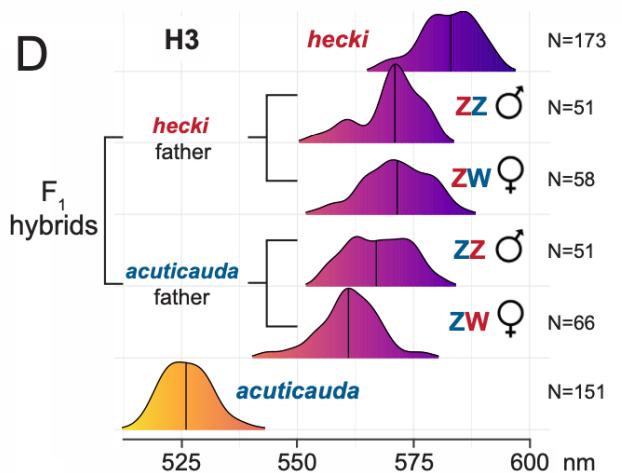
1379 Wright, S. W., Jeffrey, S. W., Mantoura, R. F. C., Llewellyn, C. A., Bjørnland, T., Repeta, D., & Welschmeyer, N.
1380 (1991). Improved HPLC method for the analysis of chlorophylls and carotenoids from marine
1381 phytoplankton. *Marine ecology progress series*, 183-196.

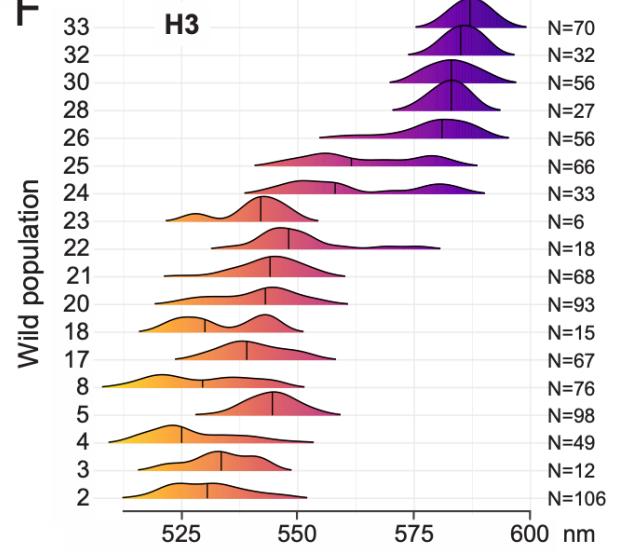

1382

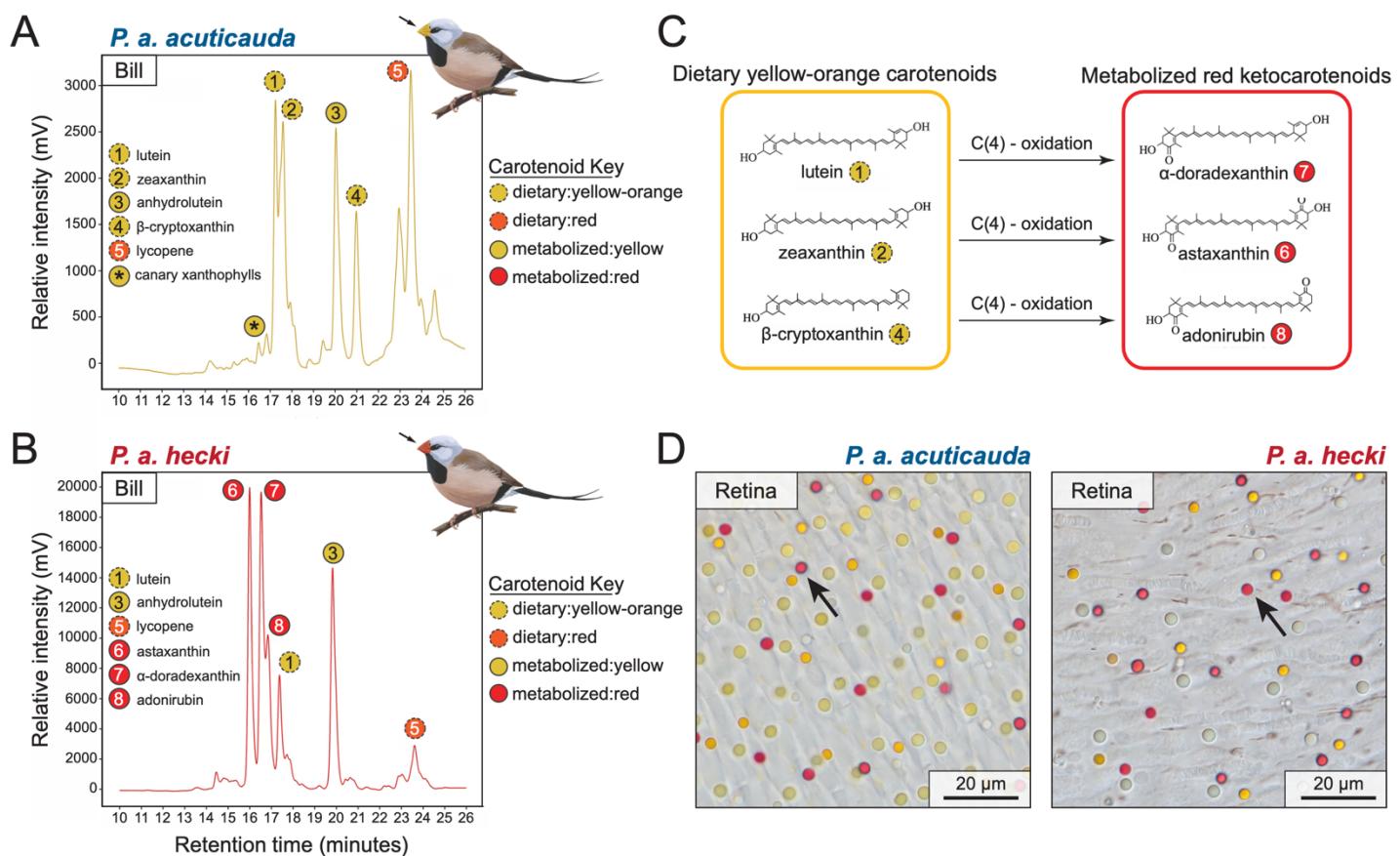
1383 Zhou, X., Carbonetto, P., & Stephens, M. (2013). Polygenic modeling with Bayesian sparse linear mixed models.
1384 *PLoS genetics*, 9(2), e1003264.


1385

1386 Zhou, X., & Stephens, M. (2014). Efficient multivariate linear mixed model algorithms for genome-wide association
1387 studies. *Nature methods*, 11(4), 407-409.



1388


B


D

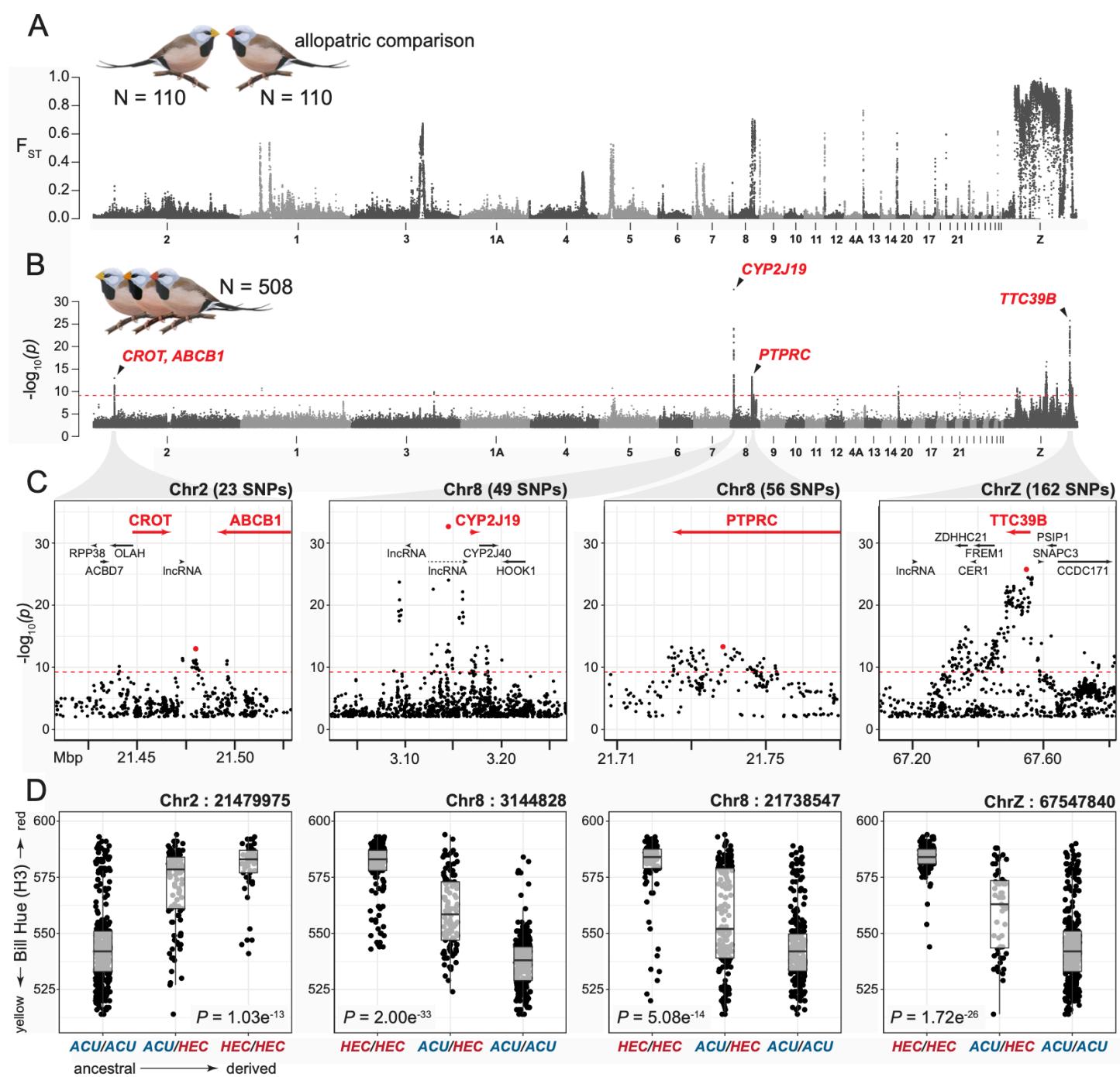

F

Fig. 1. Bill color differentiation between subspecies of the long-tailed finch. (A) Approximate geographic distribution of bill color variation across the range of the long-tailed finch. Western populations have subspecies *acuticauda*-type yellow bills, eastern populations have subspecies *hecki*-type red bills, and a region of phenotypic admixture with individuals bearing orange bills is located in between. The source locations for birds used to establish the captive research colony at Macquarie University in Sydney, NSW, are represented as black circles and a black star, respectively (see [Materials and Methods](#) for exact locations). (B) Representative photograph taken of long-tailed finches of each subspecies from our research colony: from left, subspecies *acuticauda*, subspecies *hecki*. (C) Standardized reflectance spectra for bills from individuals of subspecies *acuticauda* ($N = 71$) and *hecki* ($N = 80$) reared in common garden conditions and measured via UV-vis reflectance spectrophotometry are shown as mean (solid line) and standard error (yellow and red shading, respectively). The mean and standard deviation for bill hue (colorimetric variable $H3$ or λ_{R50} ; the wavelength midway between maximum and minimum reflectance between 400 and 700 nm) is given for each subspecies with vertical dashed lines representing the population mean. (D) Variation in bill hue ($H3$) observed for parental individuals of both subspecies and their first generation (F_1) hybrids. Hybrids are grouped by the direction of hybrid cross and sex (ZZ: males; ZW: females). (E) Geographic distribution of populations sampled in this study across the range of the long-tailed finch (shown in blue). Of the 34 populations sampled, the 18 where bill color was measured via reflectance spectrophotometry are shown as hollow circles. (F) Variation in bill hue ($H3$) observed across the range of the long-tailed finch. Populations arranged from bottom to the top along our west-to-east transect across the range of the species. The number of individuals measured in each population is shown to the right of each ridgeline plot. A total of 948 individuals were measured in the wild.

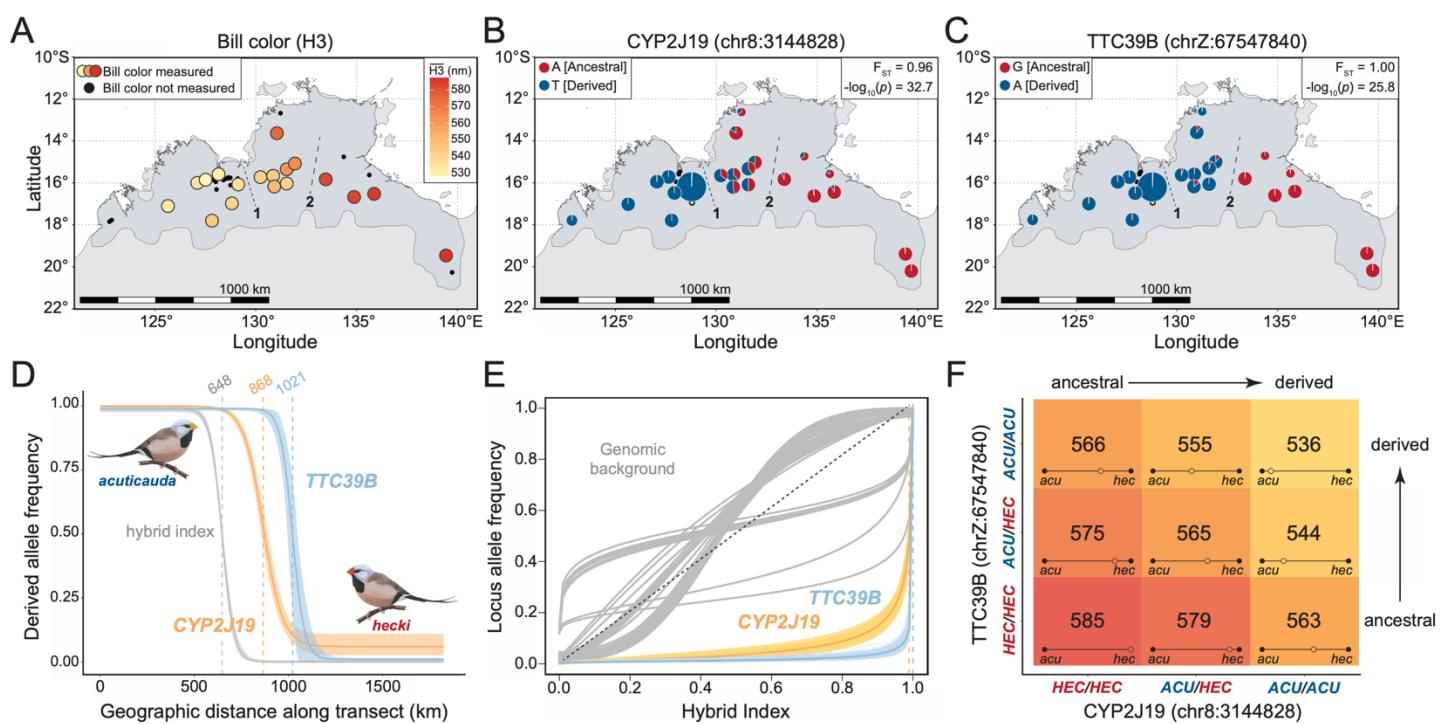
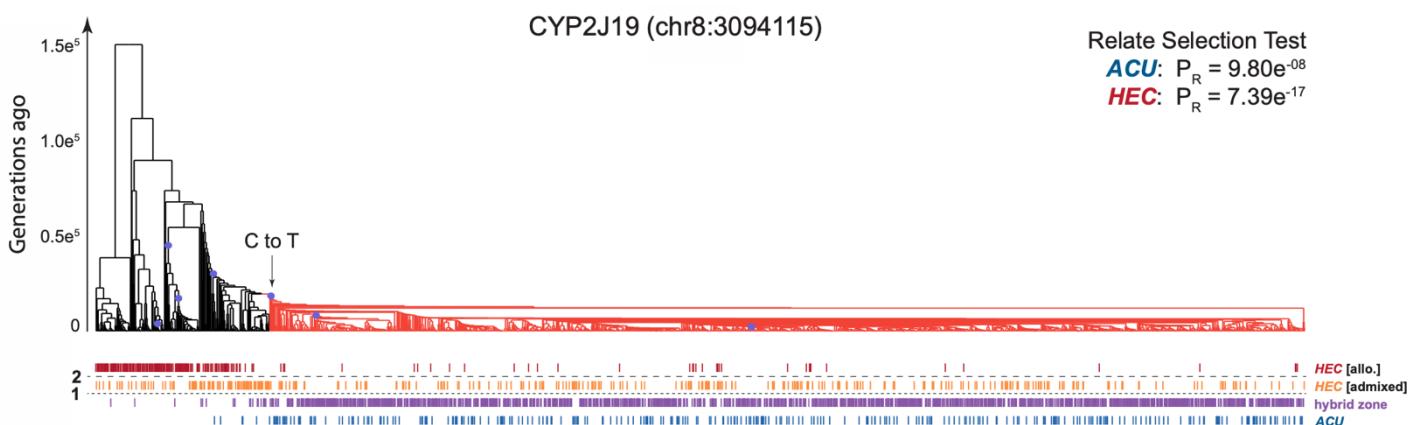


Fig. 2. Carotenoid composition of long-tailed finch bills and retinal cone oil droplets. (A and B) High performance liquid chromatography chromatogram for carotenoids isolated from bill tissue integument from individuals of subspecies *acuticauda* (A) and *hecki* (B). Carotenoids were identified via comparison with known standards. Each unique carotenoid has been numerically annotated from left to right first in *acuticauda* and then in *hecki* with each carotenoid labeled as dietary yellow-orange (yellow dashed circle), dietary red (red dashed circle), metabolized yellow (solid yellow circle), or metabolized red (solid red circle). The bills of subspecies *acuticauda* also contained a set of metabolized ϵ,ϵ -carotenoids not found in the bills of subspecies *hecki*: canary xanthophylls a and b, which are annotated with an * within a solid yellow circle in panel A. Canary xanthophylls are known to be artificially depleted by the saponification step used during pigment extraction. (C) Metabolic conversions utilized by birds to produce the three red ketocarotenoids found in *hecki* bills from the three dietary yellow-orange carotenoids observed in *acuticauda* bills. All three biosynthetic pathways utilize C(4)-oxidation. (D) Retinal wholemounts of the two subspecies of long-tailed finch: *acuticauda*, on left, and *hecki*, on right. Red cone photoreceptor oil droplets of both subspecies contain the ketocarotenoid astaxanthin, a metabolic byproduct from C(4)-oxidation of the dietary carotenoid zeaxanthin.


Fig. 3. Genome wide association studies identify four regions underlying most variation of bill color in the long-tailed finch. (A) Genomic differentiation (F_{ST}) between allopatric *acuticauda* (pops. 1-7; N = 110) and allopatric *hecki* (pops. 28-34; N = 110) is concentrated on the Z chromosome. F_{ST} was calculated after excluding singleton sites in 20 kb windows with 10 kb step size. Chromosomes are ordered from left to right as the largest to smallest autosome and then the Z chromosome. Only male samples were used to calculate F_{ST} on the Z chromosome (*acuticauda*: N = 70; *hecki*: N = 69) to circumvent any potential issues with hemizygosity in females. (B) Manhattan plot for GWAS of bill color hue (H3) from

508 long-tailed finches identified eleven association peaks. Association support plotted as the $-\log_{10}(P_{\text{wald}})$. Dashed red line denotes the genome-wide significance threshold. Genes with carotenoid processing function are annotated in red for the top four association peaks. (C) Zoom-in to the top four association peaks in (B). Genes within each window are annotated and those linked with carotenoid processing shown in red. The most strongly associated SNP in each window is indicated with a red circle. (D) Genotype by phenotype (H3) boxplots for the most strongly associated SNP in each window in (C). Genotypes are given with alleles polarized ancestral or derived from left to right with bill color hue (H3) given in nanometers on the y-axis. The GWAS p-value is given for each SNP as an inset.

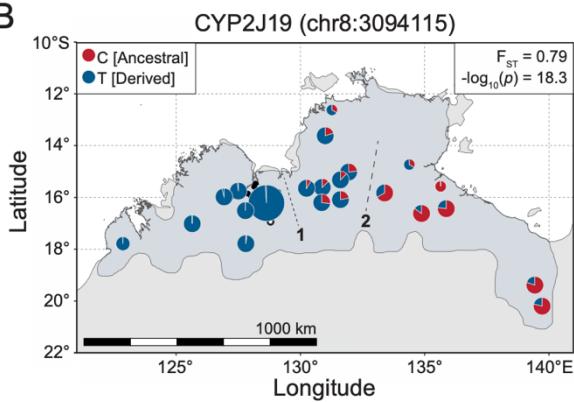
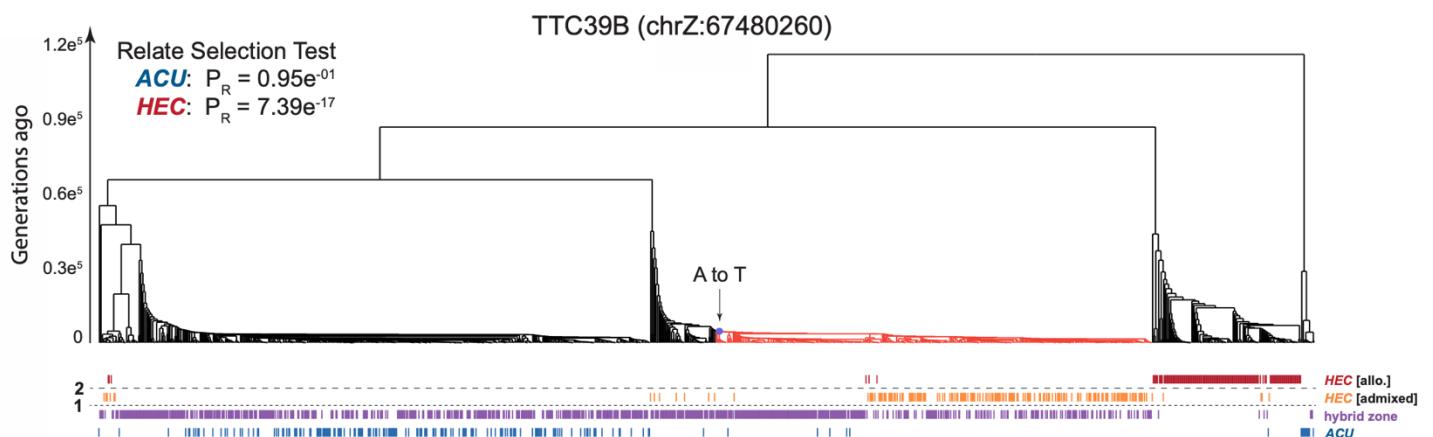


Fig. 4. Evidence from geographic and genomic clines support an epistatic relationship between CYP2J19 and TTC39B. (A) Geographic variation in bill hue (H3) across the 18 populations of the long-tailed finch where bill color was measured. Populations between dashed lines 1 and 2 represent color-admixed *hecki* (pops. 20-27) subject to introgression from subspecies *acuticauda*. Immediately west of dashed line 1 are yellow-billed populations from the genomic hybrid zone between subspecies. Immediately east of dashed line 2 are populations from red-billed *hecki* (pops. 28-34). (B and C) Population allele frequencies for the two SNPs most strongly associated with color variation. Derived and ancestral alleles are color-coded blue and red, respectively. F_{ST} and GWAS significance given in top right inset of each panel. (D) Geographic clines for genome-wide hybrid index (grey cline), CYP2J19 (chr8:3144828, orange cline), and TTC39B (chrZ:67547840, blue cline). Best fit clines shown as solid clines with 95% HPDI shading. Vertical dashed lines with values in kilometers atop represent inferred cline centers. (E) Genomic cline analysis indicates that introgression of variants associated with CYP2J19 (chr8:3144828, orange) and TTC39B (chrZ:67498406, blue) has been significant relative to genomic background (grey). Genomic background represented as genomic clines for 100 randomly drawn ancestry-informative markers used to infer hybrid index. (F) Allelic dominance and evidence of epistasis between CYP2J19 and TTC39B. Each grid cell represents a genotype combination observed in long-tailed finches at the two SNPs most strongly associated with color variation. The mean bill hue (H3) for each genotype combination is given within each grid cell in nanometers (nm). The phenotypic position of each genotype combination is shown along the 55 nm color gradient between yellow-billed *acuticauda* (mean H3 = 530 nm, N = 243, pops. 2-10) and red-billed *hecki* (mean H3 = 585 nm, N = 185, pops. 28-33).

A

B



C

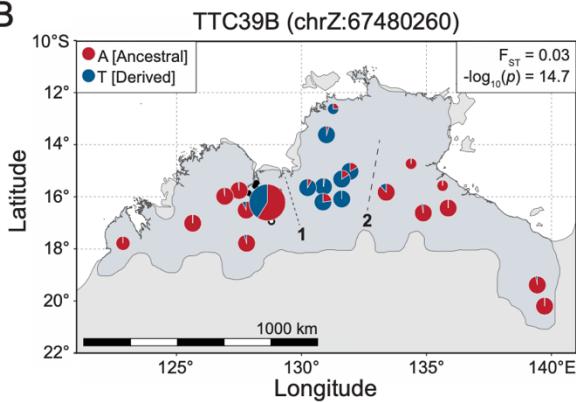
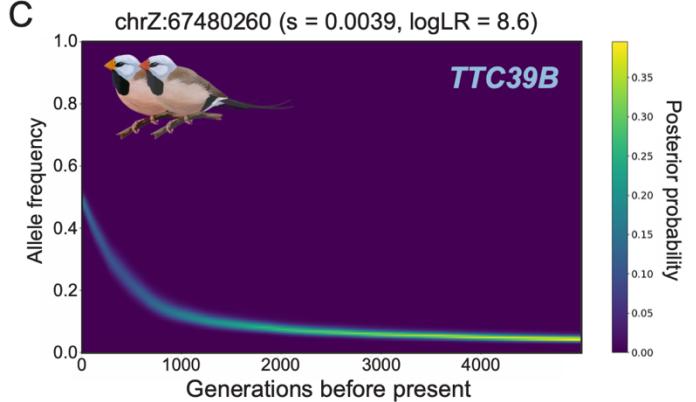
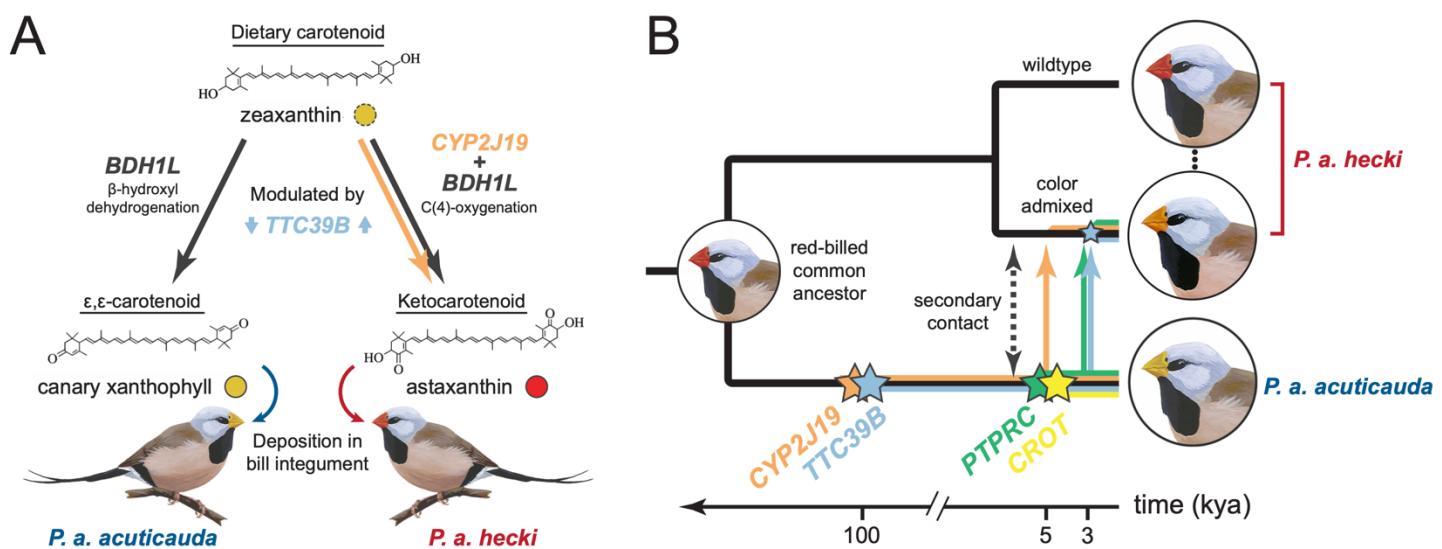


Fig. 5. Evidence of selection on CYP2J19 from ancestral recombination graph (ARG) inference. (A) Relate marginal tree for bill color variation associated SNP chr8:3094115 ($2N = 1928$ haplotypes). Branches colored in light red represent haplotypes carrying the derived allele at this site. Relate Selection Test evidence for selection over the lifetime of the mutation (P_R) shown in top right for subspecies *acuticauda* (ACU: pops. 1-7, $2N = 282$) and subspecies *hecki* (HEC: pops. 20-34, $2N = 522$). Vertical hash marks beneath tips of marginal tree represent haplotypes from allopatric red-billed *hecki* (dark red, pops. 28-34), color-admixed *hecki* (orange, pops. 20-27), the hybrid zone (purple, pops. 8-19), and allopatric yellow-billed *acuticauda* (pops. 1-7). Horizontal dashed lines 1 and 2, as seen in panel (B), represent geographic breaks between the hybrid zone and color-admixed *hecki* (line 1) and between color-admixed and red-billed *hecki* (line 2). (B) Population allele frequencies for SNP chr8:3094115. Derived and ancestral alleles are color-coded blue and red, respectively. F_{ST} and GWAS significance given in top right inset of panel. (C) Historical allele trajectory of the *acuticauda*-derived allele at chr8:3094115 in subspecies *hecki*. A generation time of two years was used to infer timing of selection. Allele trajectories inferred from posterior distribution of marginal trees, inferred with Relate version 1.1 (Speidel et al., 2019), using CLUES (Stern et al., 2019). s , selection coefficient.


A


B

C

Fig. 6. Evidence of selection on *TTC39B* from ancestral recombination graph (ARG) inference. (A) Relate marginal tree for bill color variation associated SNP chrZ:67480260 (2N = 1206 haplotypes). Branches colored in light red represent haplotypes carrying the derived allele at this site. Relate Selection Test evidence for selection over the lifetime of the mutation (P_R) shown in top right for subspecies *acuticauda* (ACU: pops. 1-7, 2N = 178) and subspecies *hecki* (HEC: pops. 20-34, 2N = 312). Vertical hash marks beneath tips of marginal tree represent haplotypes found in males (i.e., with two copies of the Z chromosome) from allopatric red-billed *hecki* (dark red, pops. 28-34), color-admixed *hecki* (orange, pops. 20-27), the hybrid zone (purple, pops. 8-19), and allopatric yellow-billed *acuticauda* (pops. 1-7). Horizontal dashed lines 1 and 2, as seen in panel (B), represent geographic breaks between the hybrid zone and color-admixed *hecki* (line 1) and between color-admixed and red-billed *hecki* (line 2). (B) Population allele frequencies for SNP chrZ:67480260. Derived and ancestral alleles are color-coded blue and red, respectively. F_{ST} and GWAS significance given in top right inset of panel. (C) Historical allele trajectory of the derived allele at chrZ:67480260 in subspecies *hecki*, which is highly linked with *acuticauda*-derived SNPs associated with carotenoid ketolation enhancer gene *TTC39B*. A generation time of two years was used to infer timing of selection. s , selection coefficient.

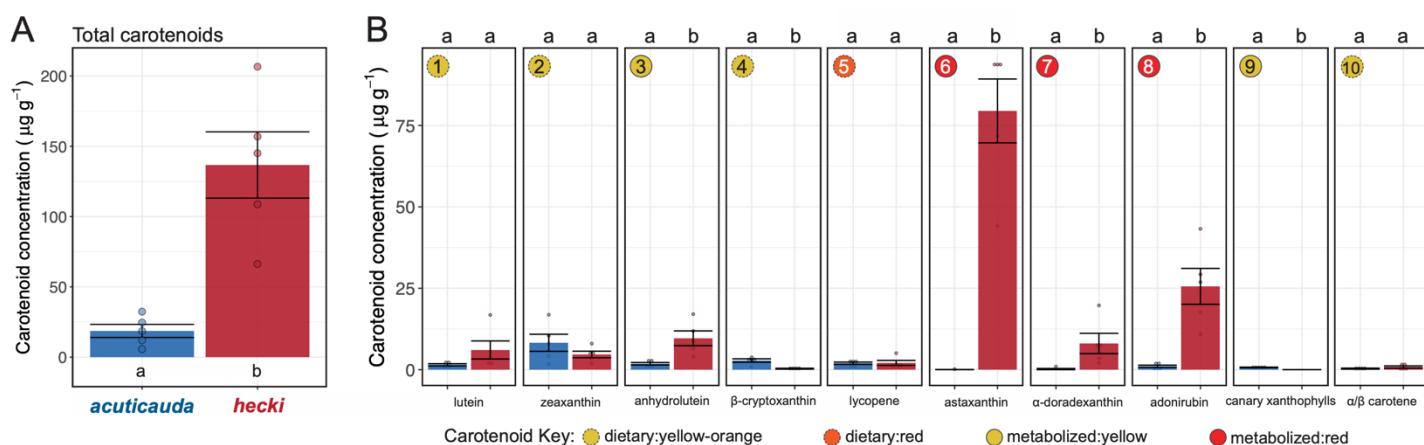
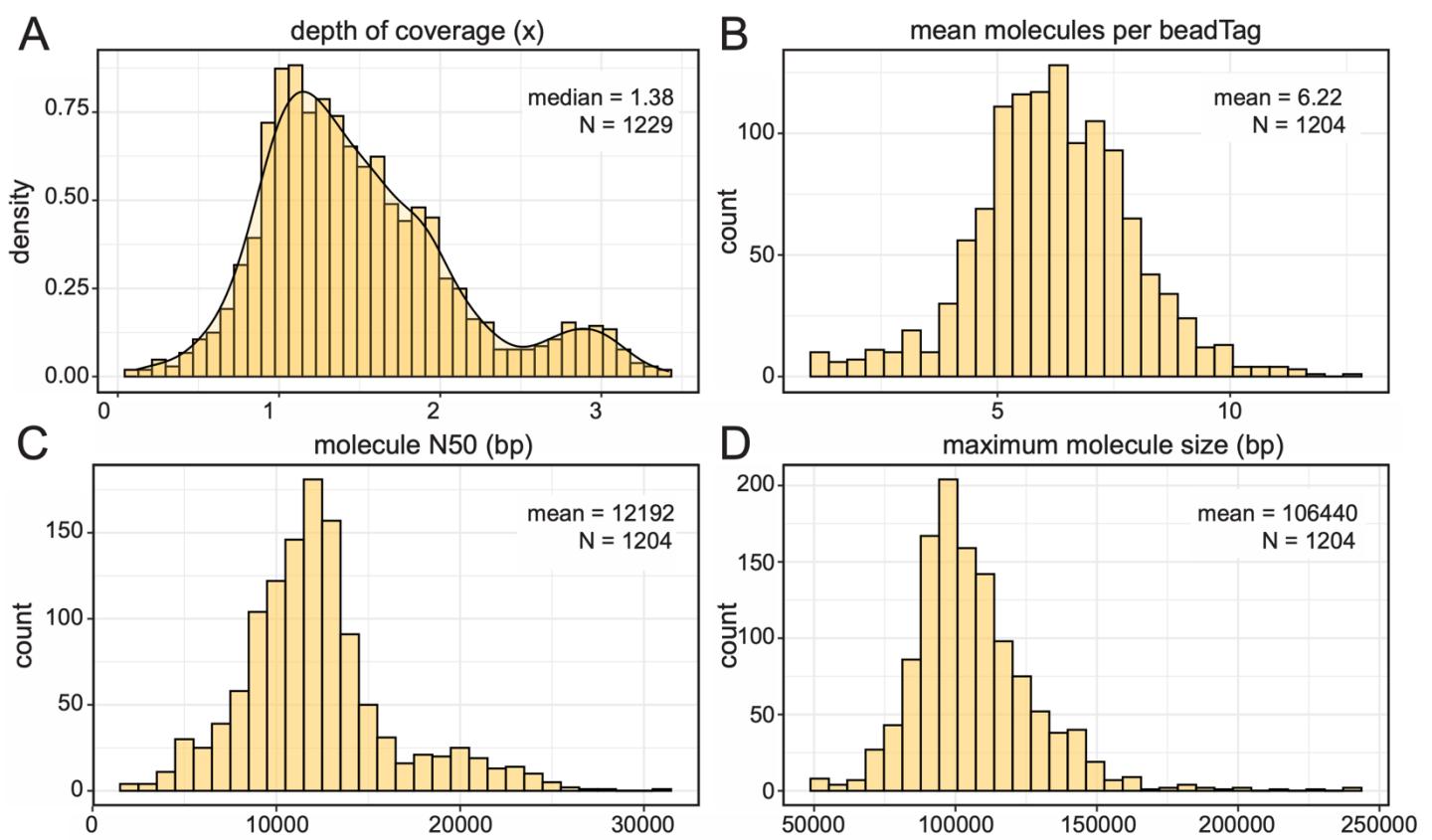
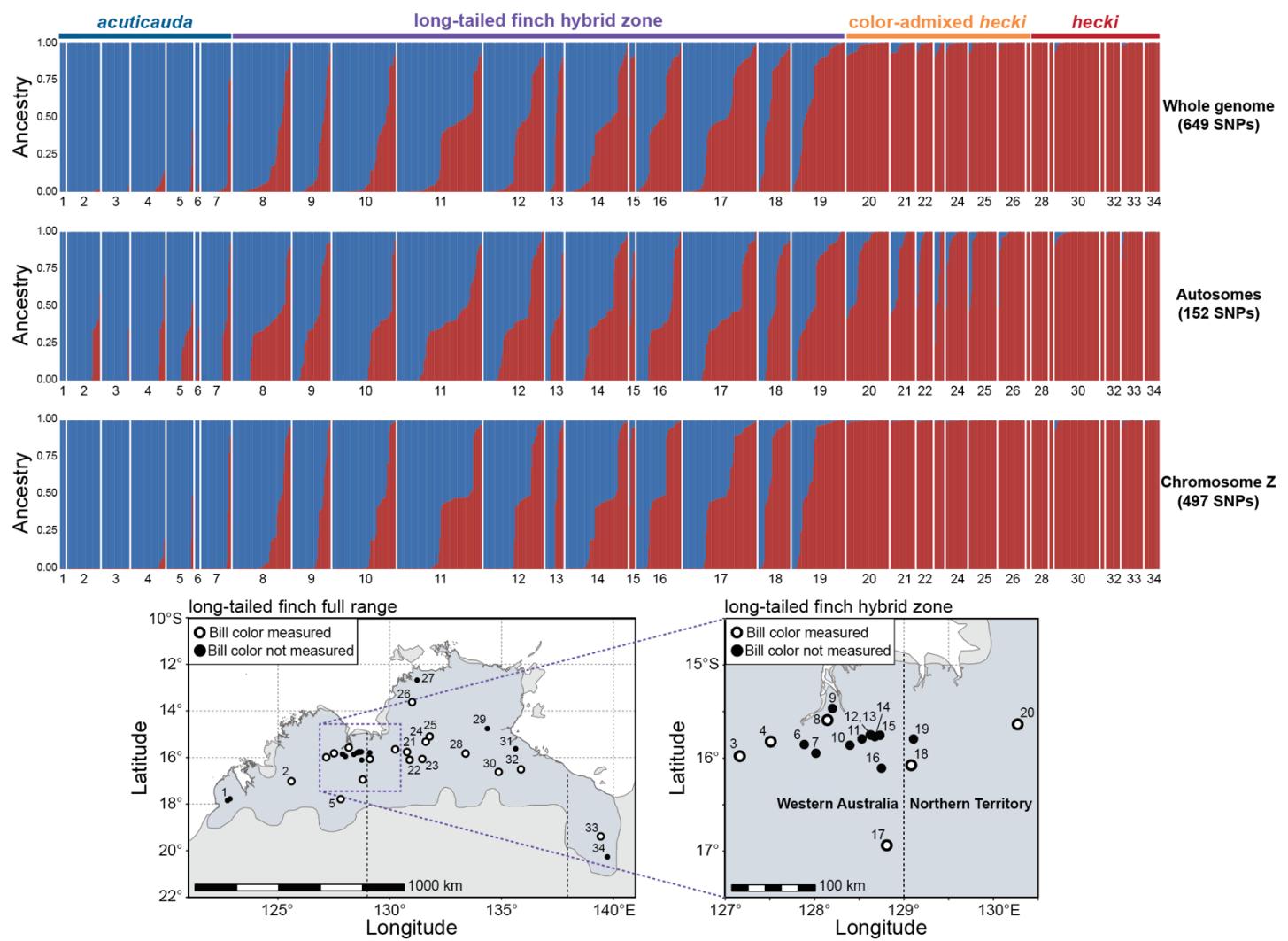


Fig. 7. Summary of bill color regulation and evolution in the long-tailed finch. (A) In birds and fish, the production of red ketocarotenoids requires the enzymatic activity of both *CYP2J19* and *BDH1L* while the production of ϵ, ϵ -carotenoids occurs without *CYP2J19* (Toomey et al. 2022a). The absence of ketocarotenoids in the bill integument of yellow-billed *acuticauda* is most likely due to a lack of expression of *CYP2J19*, which thereby precludes C(4)-oxidation of dietary carotenoids like zeaxanthin into red ketocarotenoids like astaxanthin. The detection of canary xanthophylls, a class of ϵ, ϵ -carotenoid, in yellow bills suggest that *BDH1L* – and not *CYP2J19* – is enzymatically active in *acuticauda*. We predict that the *acuticauda* allele of *TTC39B*, a known modulator of carotenoid metabolic efficiency (Toomey et al. 2022a), suppresses the rate of carotenoid metabolism while the *hecki* allele enhances it. The contribution to carotenoid processing of *PTPRC* and *CROT* are not yet known. (B) Hypothesized evolutionary history of four loci in genomic regions associated with bill color variation exhibiting evidence of selective sweeps. Colored stars represent the approximate age and lineage of origin of each allele as inferred by ARG-based inference: orange (*CYP2J19*), blue (*TTC39B*), green (*PTPRC*), and yellow (*CROT*). The polarization of derived change within yellow-billed *acuticauda* suggest that the most recent common ancestor of long-tailed finch subspecies had a red bill. The alleles most strongly associated with bill color variation at *CYP2J19* (e.g., chr8:3144828) and *TTC39B* (e.g., chrZ:67547840) arose approximately 100 kya in subspecies *acuticauda*, presumably during a period of allopatric divergence. Alleles at both loci have subsequently introgressed into subspecies *hecki* following secondary contact, and they have rapidly increased in frequency between 5 and 3 kya and the present day, respectively. The small blue star on the branch representing color-admixed *hecki* denotes the *TTC39B* variant at chrZ:67480260 that bears the signatures of a selective sweep on an *acuticauda* haplotype background. Alleles associated with *PTPRC* first underwent a rapid increase in frequency within *acuticauda* approximately 5 kya before introgressing into subspecies *hecki* and rapidly increasing in frequency between 3 kya and the present day. Selective sweeps on *acuticauda*-derived alleles at *TTC39B* and *PTPRC* appear to have initiated in *hecki* at approximately the same time (~3 kya). Evidence suggests


that a selective sweep in *acuticauda* on alleles within the gene *CROT* occurred between 4 kya and the present day and have not introgressed across the long-tailed finch hybrid zone.

Chrom.	Window (Mb)	Window size (kbp)	SNPs	Candidate Genes	Top SNP	F_{ST}	AF	β	P-value	Genetic Variance
chr2	21.44 - 21.50	55.43	23	<i>CROT / ABCB1</i>	chr2:21479975	0.419	0.219	8.09	1.03e ⁻¹³	0.061
chr8	3.09 – 3.20	112.37	54	<i>CYP2J19</i>	chr8:3144828	0.952	0.402	11.99	2.00e ⁻³³	0.216
chr8	21.72 – 21.75	29.02	57	<i>PTPRC</i>	chr8:21738547	0.547	0.336	7.31	5.08e ⁻¹⁴	0.065
chr20	0.32 – 0.47	153.16	5	<i>RBM39 / PHF20</i>	chr20:365722	0.786	0.336	6.91	7.77e ⁻¹²	0.057
chrZ	13.32 – 13.48	167.95	15	<i>RORB</i>	chrZ:13402137	0.176	0.342	-6.37	1.89e ⁻¹¹	0.059
chrZ	42.99 – 43.77	782.32	80	<i>SLC45A2</i>	chrZ:43673992	0.015	0.240	-8.6	2.56e ⁻¹⁷	0.086
chrZ	54.11 – 54.46	346.60	42	<i>MAST4 / CD180</i>	chrZ:54299700	0.058	0.267	-6.86	1.79e ⁻¹²	0.058
chrZ	67.29 – 67.62	329.61	207	<i>TTC39B</i>	chrZ:67547840	1.000	0.273	11.57	1.72e ⁻²⁶	0.189
chrZ	67.73 – 67.87	144.57	17	<i>CCDC171</i>	chrZ:67725101	0.884	0.316	7.36	4.60e ⁻¹³	0.017
chrZ	68.07 – 68.22	146.76	23	<i>BNC2</i>	chrZ:68132346	0.103	0.327	-7.52	6.48e ⁻¹⁵	0.082
chrZ	70.12 – 70.40	278.26	39		chrZ:70241903	0.020	0.210	-6.86	1.67e ⁻¹¹	0.048


Table 1. Summary of eleven bill color association peaks identified by genome-wide association studies. Association peak window size determined based on the location of the first and last SNP above genome-wide significance separated by less than 50 kbp. Candidate genes in bold are those which are discussed in this manuscript. F_{ST} is reported between allopatric populations of each subspecies. Results from GEMMA analysis are provided for the most-significant SNP in each window.

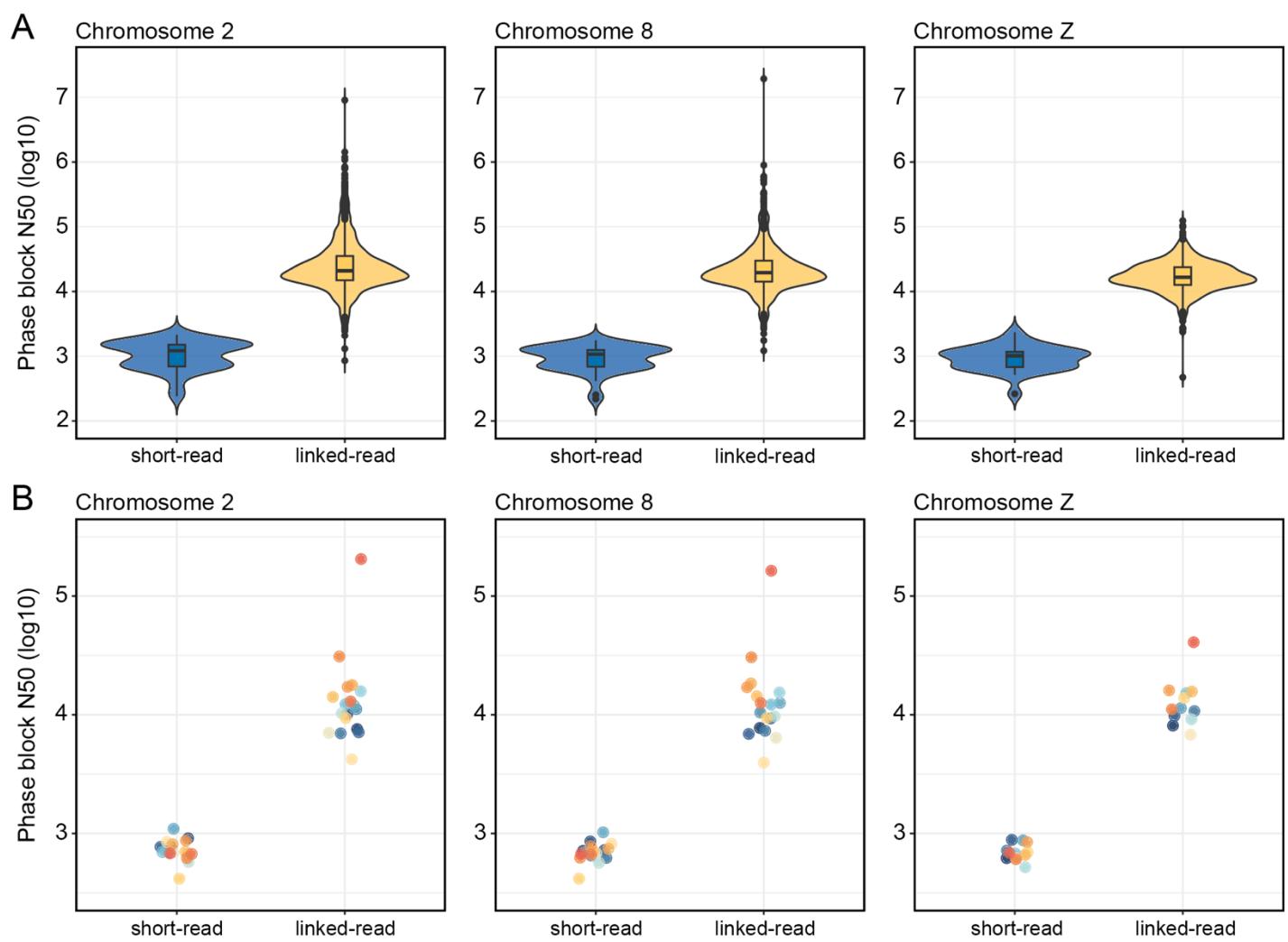

Fig. S1. Bill integument carotenoid composition of each long-tailed finch subspecies. (A) Total carotenoid concentration in five individuals of subspecies *acuticauda* (blue) and *hecki* (red) as quantified via HPLC. (B) The concentration of ten distinct dietary and metabolized carotenoids observed in each subspecies. As in Fig. 2, each unique carotenoid has been numerically annotated from left to right and labeled in the top left of each panel as dietary yellow-orange (yellow dashed circle), dietary red (red dashed circle), metabolized yellow (solid yellow circle), or metabolized red (solid red circle). While the saponification method utilized in this study increases the recovery of ketocarotenoids and dietary carotenoids, it does result in the loss of canary xanthophylls a and b (metabolized yellow carotenoid #9) (Toomey et al. 2022b). As such, the inferred concentration of canary xanthophylls in the yellow bills of subspecies *acuticauda* is almost surely an underestimate. Boxplots represent subspecies means and whiskers represent subspecies mean and standard deviation, respectively. Notably, while canary xanthophylls were detected at low concentration in the yellow bills of subspecies *acuticauda*, no canary xanthophylls were detected in the red bills of subspecies *hecki*. The letters 'a' and 'b' above each plot indicate statistical significance between subspecies.

Fig. S2. Sequencing effort and linked-read (LR) performance with haplotagging. (A) Depth of coverage as mapped to zebra finch reference bTaeGut1.4 (GCF_003957565.2) across 1133 long-tailed finch *Poephila acuticauda* and 96 black-throated finch *Poephila cincta* samples (N = 1229 samples total). (B) Distribution of per sample mean number of molecules per beadTag for 1204 samples with high molecular weight DNA (hmwDNA) available during LR library preparation. (C) Distribution of per sample molecule N50. (D) Distribution of per sample maximum molecule size.

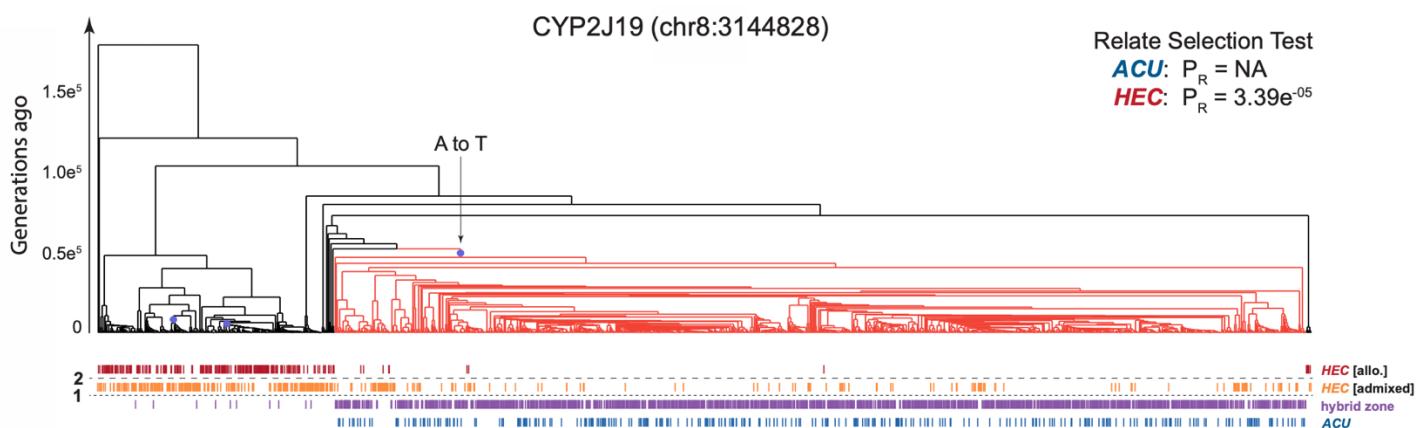


Fig. S3. Genomic admixture between long-tailed finch subspecies *acuticauda* (blue) and *hecki* (red) is concentrated within a phenotypically cryptic hybrid zone between populations 8 and 19 located along the edge of the Kimberley Plateau on the western side of the Western Australia – Northern Territory border. Populations of color-admixed *hecki* (pops. 20-27) exhibit minimal *acuticauda* ancestry. Hybrid index scores were for 983 wild-sampled individuals were inferred with *gghybrid* using a set of LD-pruned ancestry informative markers genome-wide (N = 649 SNPs, top panel), on the autosomes (N = 152 SNPs, middle panel), and on the Z chromosome (N = 497 SNPs, bottom panel). The geographic location of each sampled population given in long-tailed finch range map and hybrid zone inset.

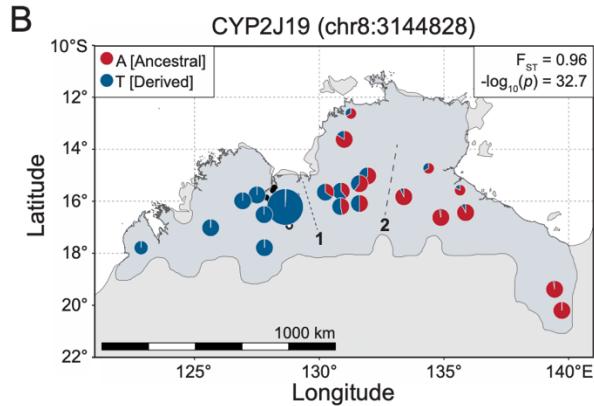
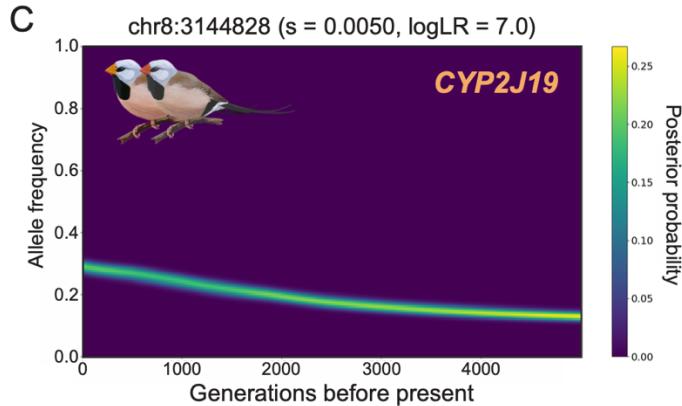
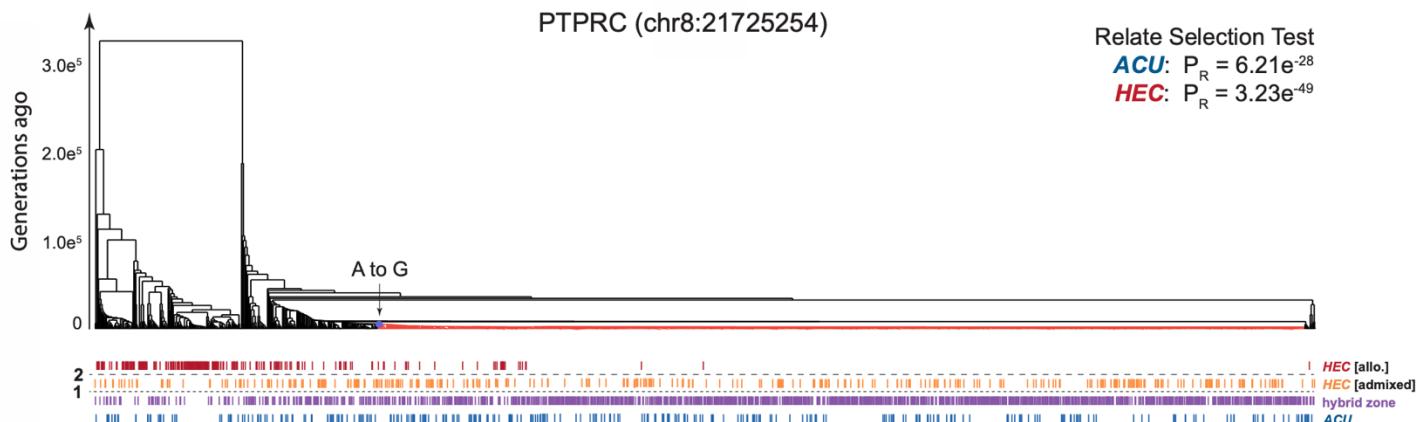


Fig. S4. Comparison of phasing performance utilizing short-read (SR) and linked-read (LR) data. Phase block N50 calculated for 42 samples with SR WGS data and 1204 samples with LR data prepared using haplotagging chromosome 2, 8, and Z using HapCUT2 (Edge et al. 2017). (A) Distribution of phase block N50 by library type. Phasing performance substantially improved with LR data (median phase block N50, chr2 = 20.91 kbp, chr8 = 19.56 kbp, chrZ = 16.60 kbp) compared to phasing with SR data (median phase block N50, chr2 = 1.22 kbp, chr8 = 1.07 kbp, chrZ = 1.01 kbp). Only males used to evaluate phasing performance on chromosome Z (LR: N = 772, SR: N = 27). (B) Eighteen samples were available as technical replicates for evaluating phasing performance based on library type. Phase block N50s were on average two orders of magnitude larger when utilizing LR information (median phase block N50, chr2 = 11.57 kbp, chr8 = 11.32 kbp, chrZ = 11.25 kbp) compared to phasing with SR data (median phase block N50, chr2 = 0.70 kbp, chr8 = 0.69 kbp, chrZ = 0.68 kbp). Only 12 males were available as technical replicates for chromosome Z.


A

B



C

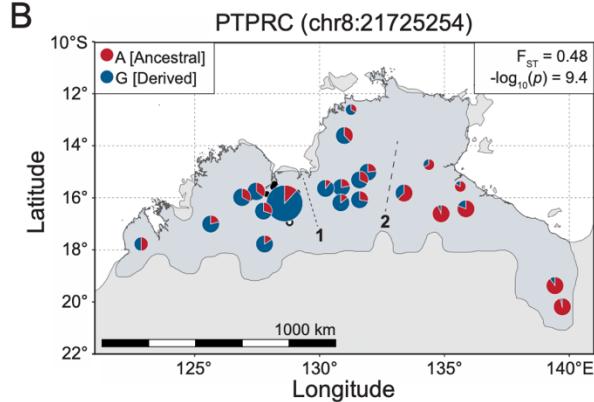
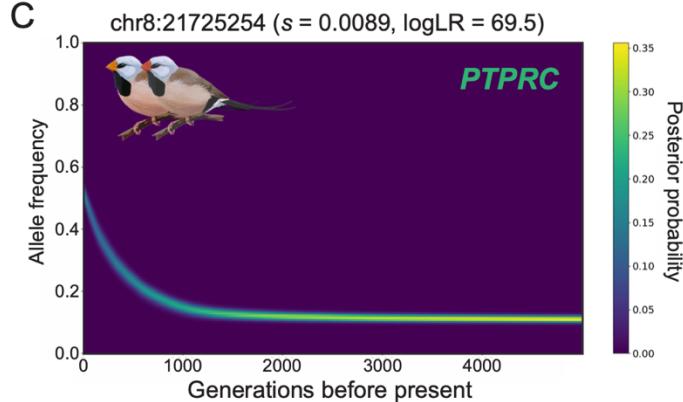
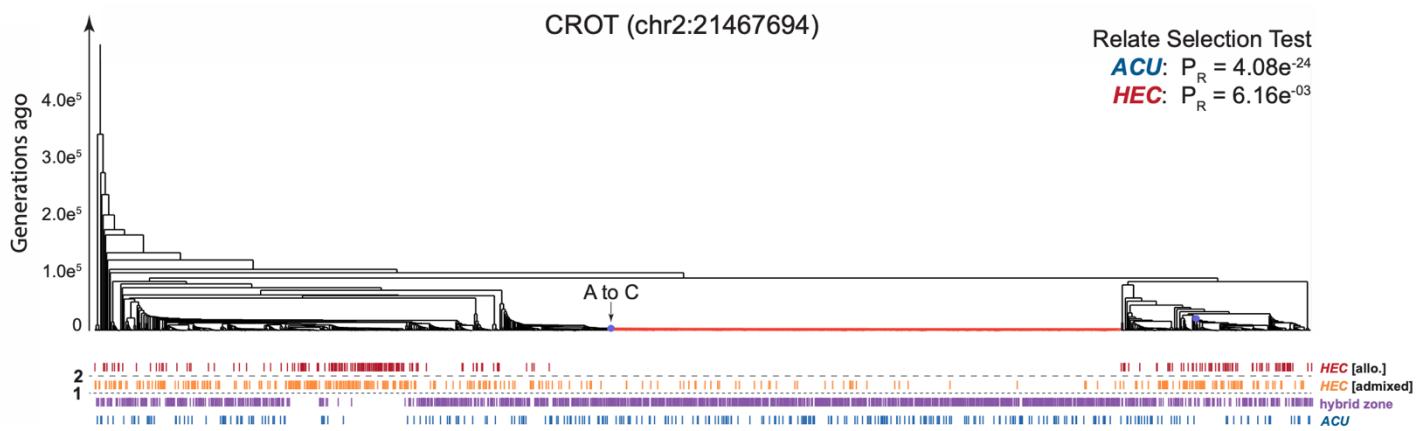


Fig. S5. Evidence of selection on *CYP2J19* from ancestral recombination graph (ARG) inference is complicated by the age of the introgressing allele. (A) Relate marginal tree for the SNP most significantly associated with bill color variation: chr8:3144828 (2N = 1928 haplotypes). Branches colored in light red represent haplotypes carrying the derived allele at this site. Relate Selection Test evidence for selection over the lifetime of the mutation (P_R) shown in top right for subspecies *acuticauda* (ACU: pops. 1-7, 2N = 282) and subspecies *hecki* (HEC: pops. 20-34, 2N = 522). Vertical hash marks beneath tips of marginal tree represent haplotypes from allopatric red-billed *hecki* (dark red, pops. 28-34), color-admixed *hecki* (orange, pops. 20-27), the hybrid zone (purple, pops. 8-19), and allopatric yellow-billed *acuticauda* (pops. 1-7). Horizontal dashed lines 1 and 2, as seen in panel (B), represent geographic breaks between the hybrid zone and color-admixed *hecki* (line 1) and between color-admixed and red-billed *hecki* (line 2). (B) Population allele frequencies for SNP chr8:3144828. Derived and ancestral alleles are color-coded blue and red, respectively. F_{ST} and GWAS significance given in top right inset of panel. (C) Historical allele trajectory of the *acuticauda*-derived allele at chr8:3144828 in subspecies *hecki*, which is associated with carotenoid ketolation enzyme *CYP2J19*. s , selection coefficient.


A

B



C

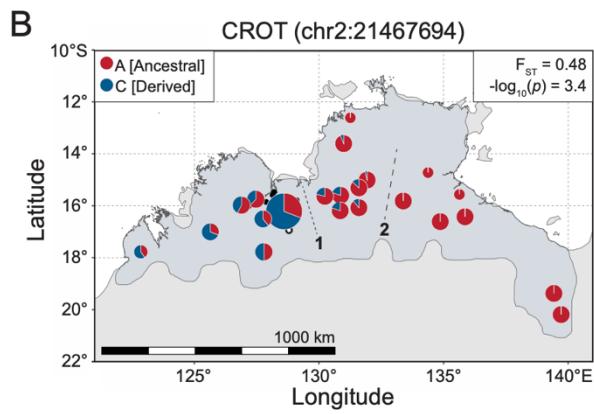
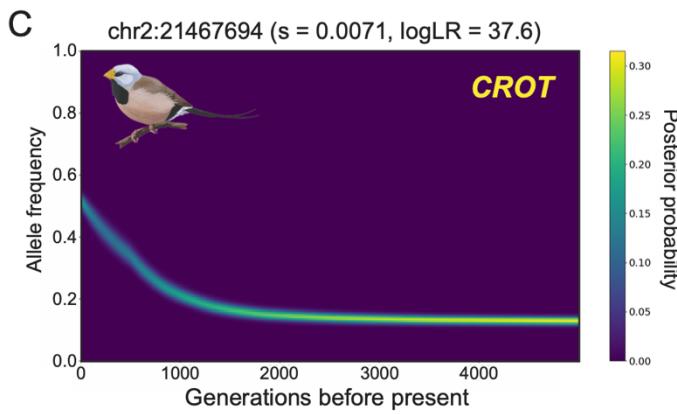
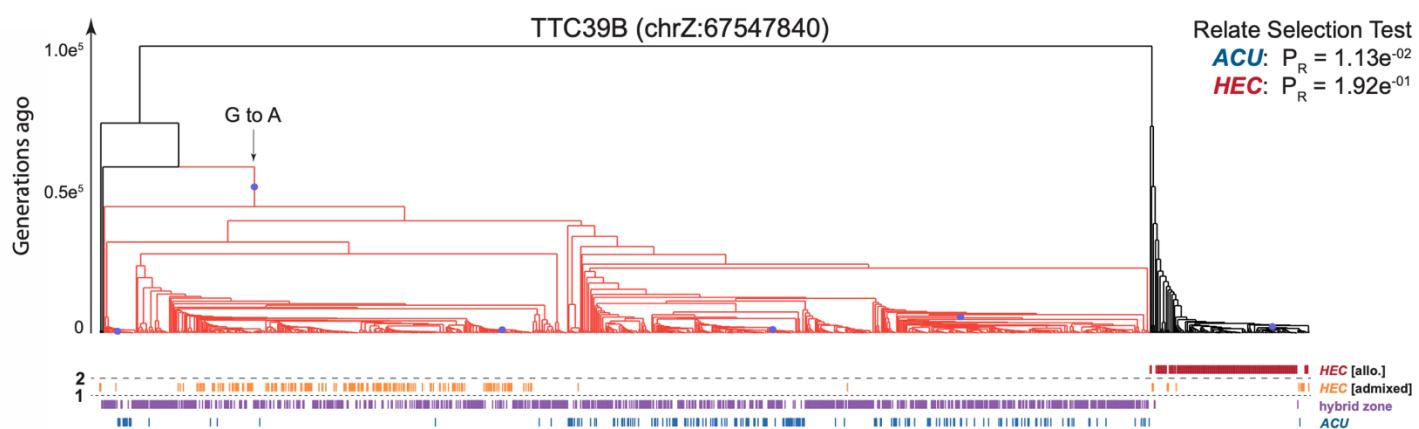


Fig. S6. Evidence of selection on *PTPRC* from ancestral recombination graph (ARG) inference. (A) Relate marginal tree for bill color variation associated SNP chr8:21725254 (2N = 1928 haplotypes). Branches colored in light red represent haplotypes carrying the derived allele at this site. Relate Selection Test evidence for selection over the lifetime of the mutation (P_R) shown in top right for subspecies *acuticauda* (ACU: pops. 1-7, 2N = 282) and subspecies *hecki* (HEC: pops. 20-34, 2N = 522). Vertical hash marks beneath tips of marginal tree represent haplotypes from allopatric red-billed *hecki* (dark red, pops. 28-34), color-admixed *hecki* (orange, pops. 20-27), the hybrid zone (purple, pops. 8-19), and allopatric yellow-billed *acuticauda* (pops. 1-7). Horizontal dashed lines 1 and 2, as seen in panel (B), represent geographic breaks between the hybrid zone and color-admixed *hecki* (line 1) and between color-admixed and red-billed *hecki* (line 2). (B) Population allele frequencies for SNP chr8:21725254. Derived and ancestral alleles are color-coded blue and red, respectively. F_{ST} and GWAS significance given in top right inset of panel. (C) Historical allele trajectory of the *acuticauda*-derived allele at chr8:21725254 in subspecies *hecki*, which is associated with the tyrosine phosphatase receptor *PTPRC*. s , selection coefficient.


A

B



C

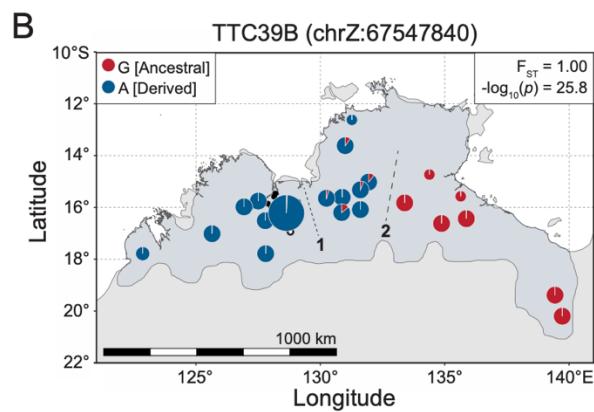
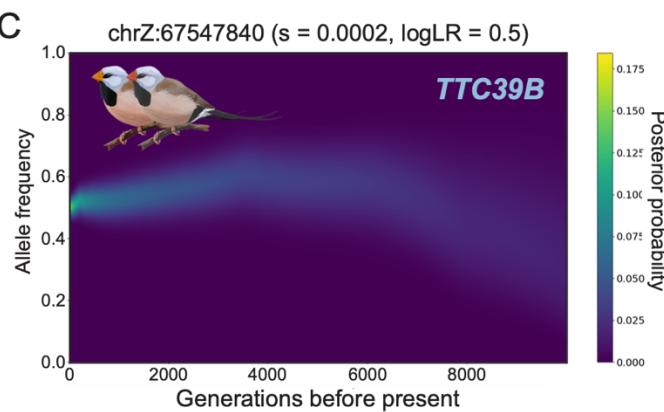
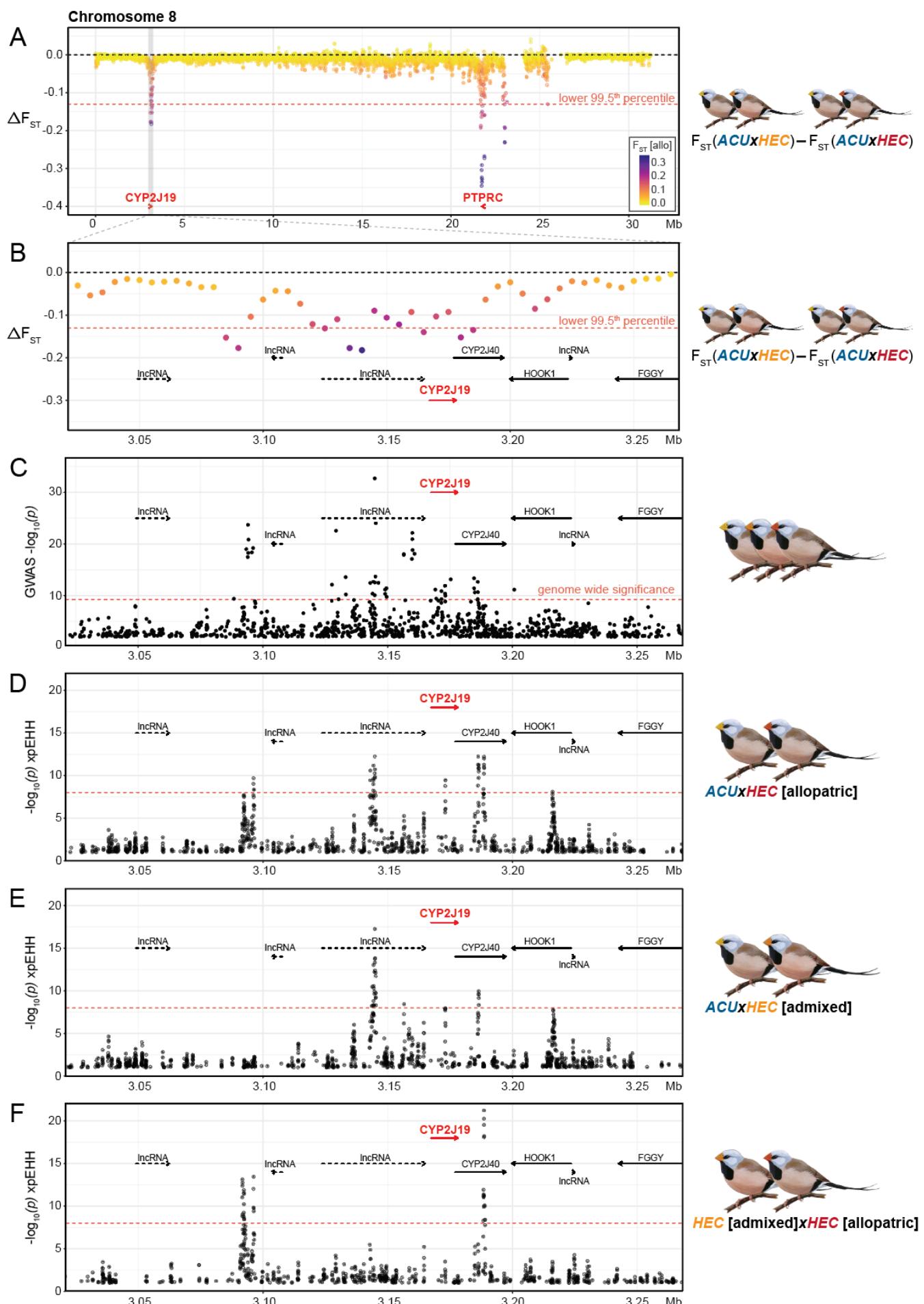
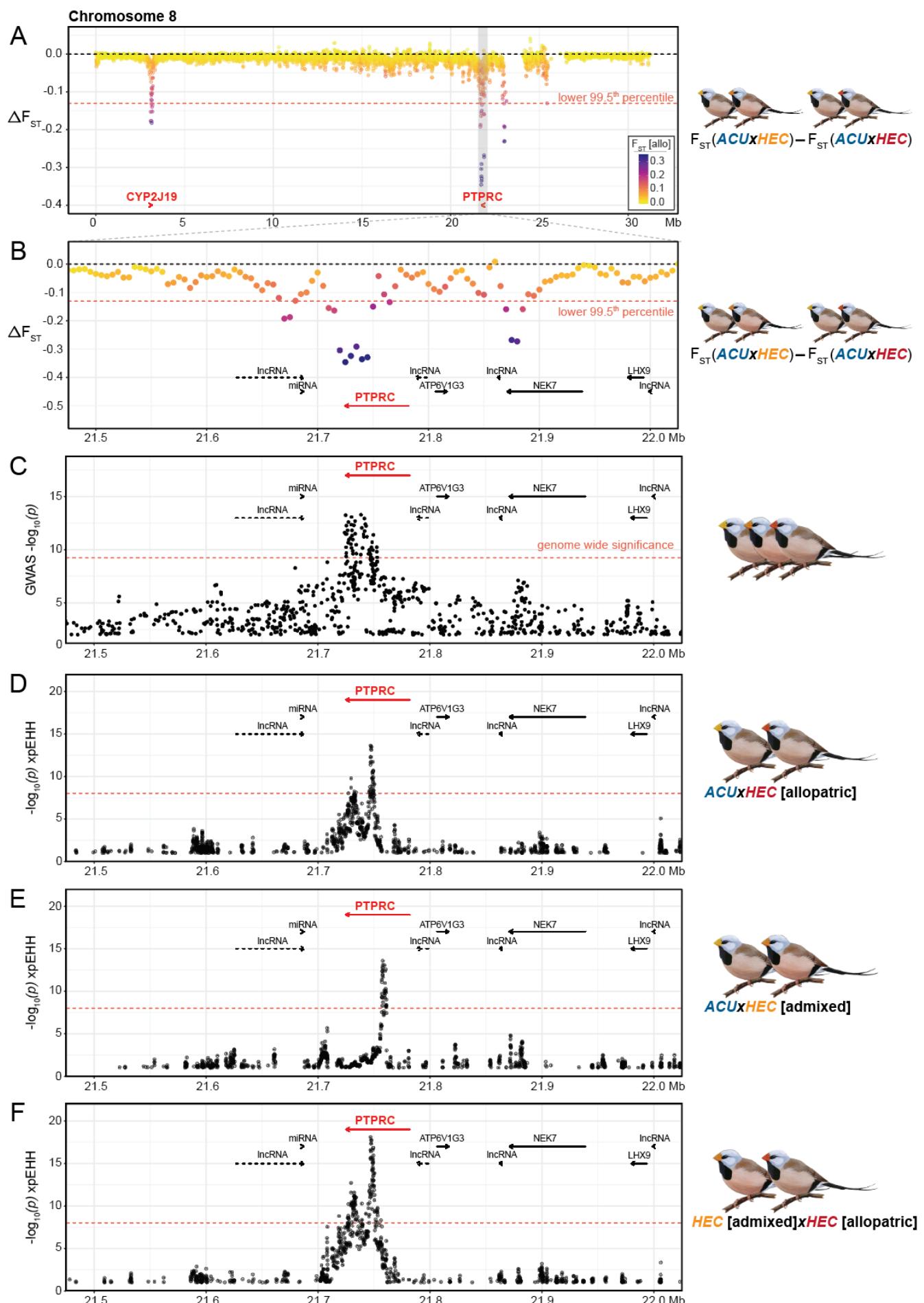
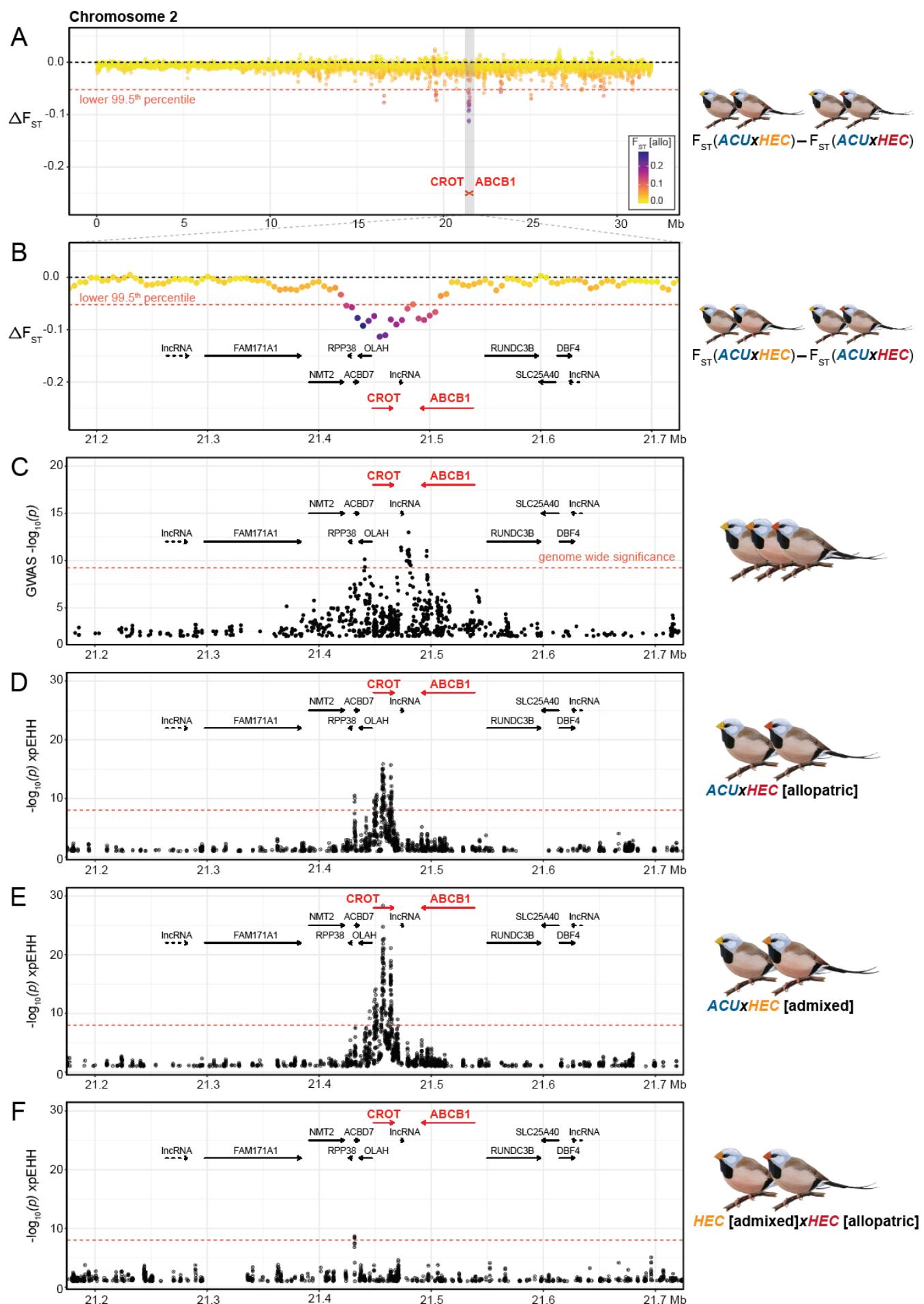


Fig. S7. Evidence of selection on *CROT* from ancestral recombination graph (ARG) inference. (A) Relate marginal tree for bill color variation associated SNP chr2:21467694 (2N = 1928 haplotypes). Branches colored in light red represent haplotypes carrying the derived allele at this site. Relate Selection Test evidence for selection over the lifetime of the mutation (P_R) shown in top right for subspecies *acuticauda* (ACU: pops. 1-7, 2N = 282) and subspecies *hecki* (HEC: pops. 20-34, 2N = 522). Vertical hash marks beneath tips of marginal tree represent haplotypes from allopatric red-billed *hecki* (dark red, pops. 28-34), color-admixed *hecki* (orange, pops. 20-27), the hybrid zone (purple, pops. 8-19), and allopatric yellow-billed *acuticauda* (pops. 1-7). Horizontal dashed lines 1 and 2, as seen in panel (B), represent geographic breaks between the hybrid zone and color-admixed *hecki* (line 1) and between color-admixed and red-billed *hecki* (line 2). (B) Population allele frequencies for SNP chr2:21467694. Derived and ancestral alleles are color-coded blue and red, respectively. F_{ST} and GWAS significance given in top right inset of panel. (C) Historical allele trajectory of the *acuticauda*-derived allele at chr2:21467694 in subspecies *acuticauda*, which is associated with mitochondrial fatty acid β -oxidation enzyme *CROT*. s , selection coefficient.


A


B


C


Fig S8. Evidence of selection on *TTC39B* from ancestral recombination graph (ARG) inference is complicated by the age of the introgressing allele. (A) Relate marginal tree for the second most significant SNP associated with bill color variation: chrZ:67547840 (2N = 1206 haplotypes). Branches colored in light red represent haplotypes carrying the derived allele at this site. Relate Selection Test evidence for selection over the lifetime of the mutation (P_R) shown in top right for subspecies *acuticauda* (ACU: pops. 1-7, 2N = 178) and subspecies *hecki* (HEC: pops. 20-34, 2N = 312). Vertical hash marks beneath tips of marginal tree represent haplotypes found in males (i.e., with two copies of the Z chromosome) from allopatric red-billed *hecki* (dark red, pops. 28-34), color-admixed *hecki* (orange, pops. 20-27), the hybrid zone (purple, pops. 8-19), and allopatric yellow-billed *acuticauda* (pops. 1-7). Horizontal dashed lines 1 and 2, as seen in panel (B), represent geographic breaks between the hybrid zone and color-admixed *hecki* (line 1) and between color-admixed and red-billed *hecki* (line 2). (B) Population allele frequencies for SNP chrZ:67547840. Derived and ancestral alleles are color-coded blue and red, respectively. F_{ST} and GWAS significance given in top right inset of panel. (C) Historical allele trajectory of the derived allele at chrZ: 67547840 in subspecies *hecki*, which is located within an intron of carotenoid ketolation enhancer gene *TTC39B*. s , selection coefficient.

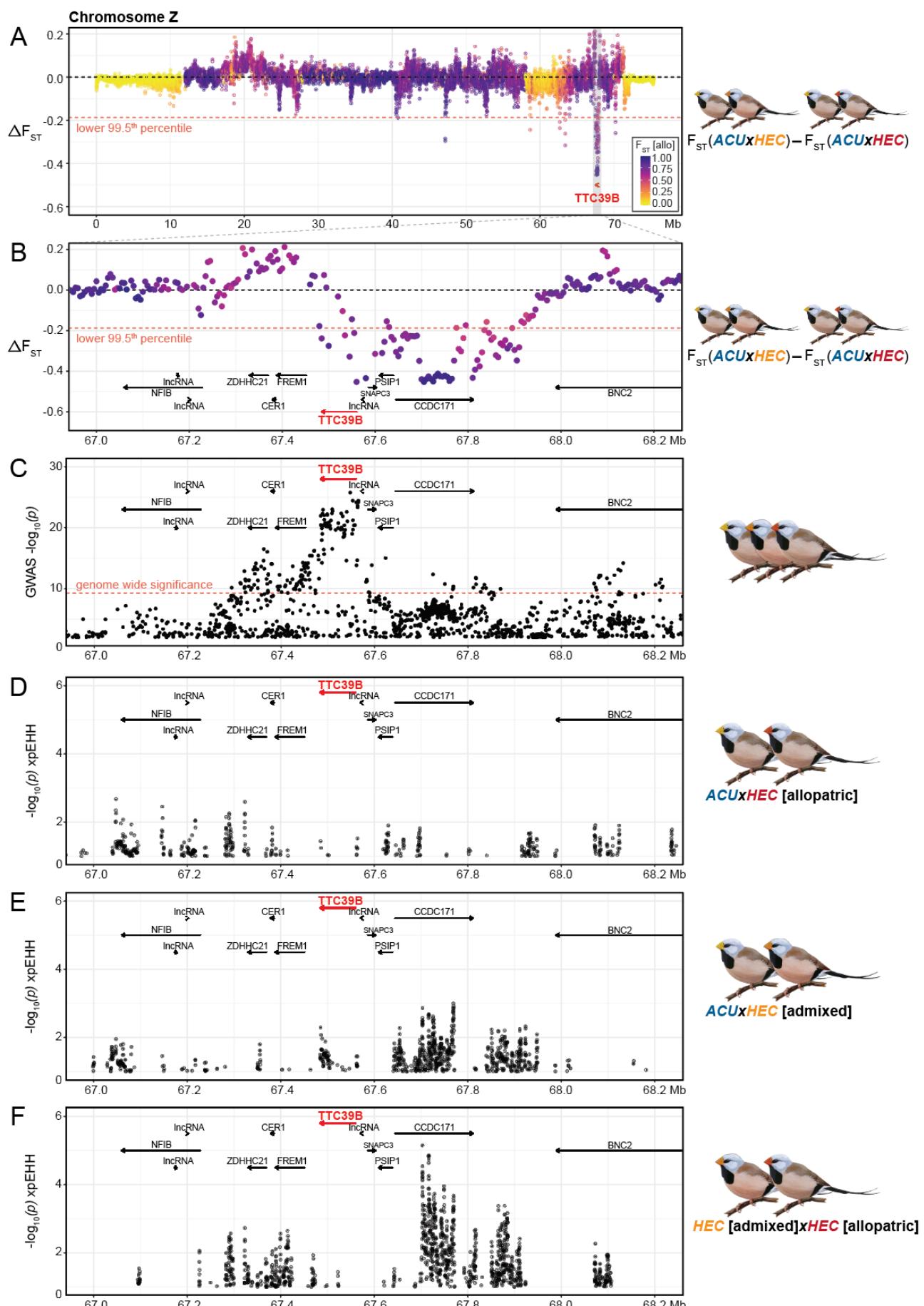

Fig. S9. Evidence of introgression and selection on chromosome 8 associated with the carotenoid ketolation enzyme *CYP2J19*. (A) Chromosome wide ΔF_{ST} in 10 kb windows with 5 kb step size. Points are color-coded by F_{ST} between allopatric populations of each subspecies. ΔF_{ST} outliers below the 99.5th percentile – denoted as a horizontal dashed red line – represent regions that have introgressed from *acuticauda* into *hecki*. The location of *CYP2J19* and *PTPRC* are shown as red arrows. (B) Zoom-in of the introgression outlier window encompassing *CYP2J19*. (C) GWAS results for SNPs within this window. (D to F) Cross-population extended haplotype homozygosity (xpEHH) statistical significance between allopatric *acuticauda* and allopatric *hecki* (D), between allopatric *acuticauda* and color-admixed *hecki* (E), and between color-admixed *hecki* and allopatric *hecki* (F).

Fig. S10. Evidence of introgression and selection on chromosome 8 associated with the tyrosine phosphatase receptor *PTPRC*. (A) Chromosome wide ΔF_{ST} in 10 kb windows with 5 kb step size. Points are color-coded by F_{ST} between allopatric populations of each subspecies. ΔF_{ST} outliers below the 99.5th percentile – denoted as a horizontal dashed red line – represent regions that have introgressed from *acuticauda* into *hecki*. The location of *CYP2J19* and *PTPRC* are shown as red arrows. (B) Zoom-in of the introgression outlier window encompassing *PTPRC*. (C) GWAS results for SNPs within this window. (D to F) Cross-population extended haplotype homozygosity (xpEHH) statistical significance between allopatric *acuticauda* and allopatric *hecki* (D), between allopatric *acuticauda* and color-admixed *hecki* (E), and between color-admixed *hecki* and allopatric *hecki* (F).

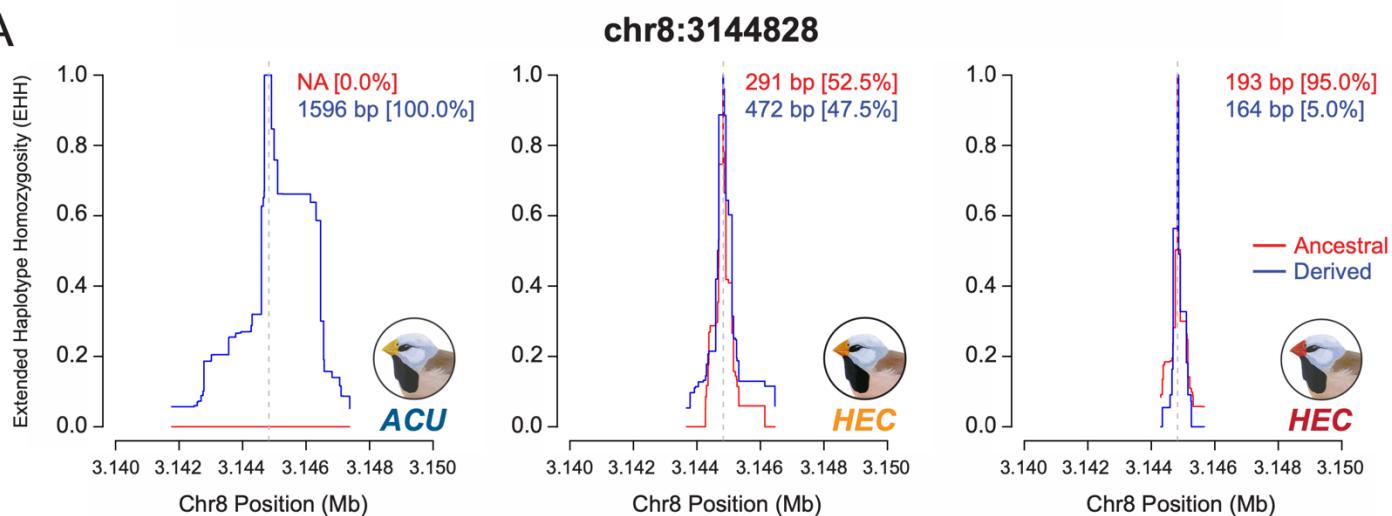
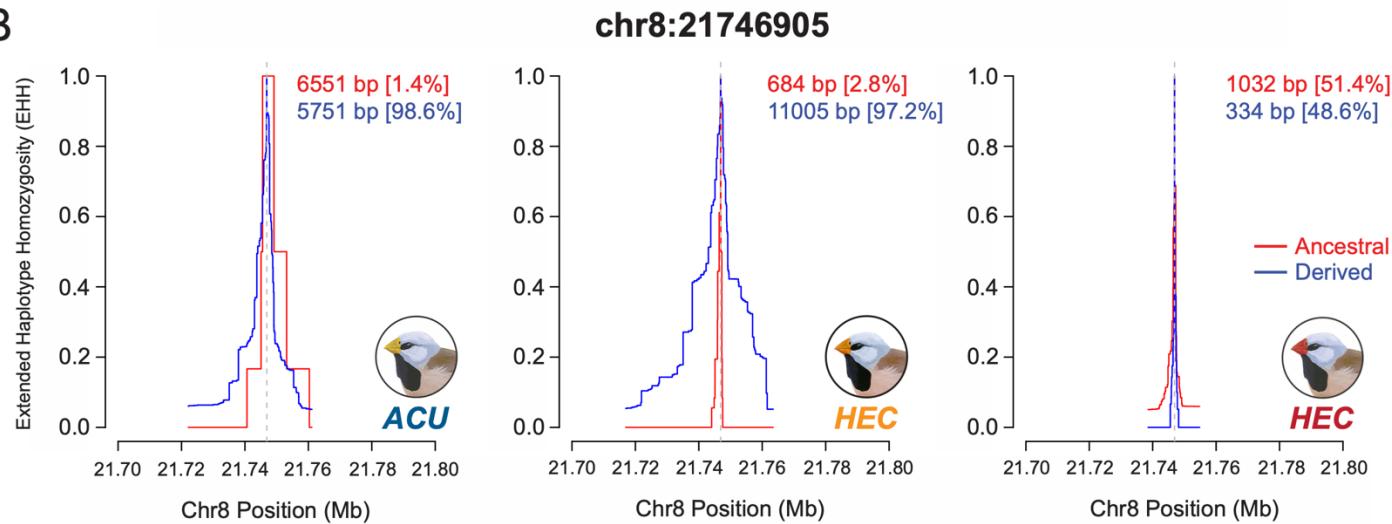
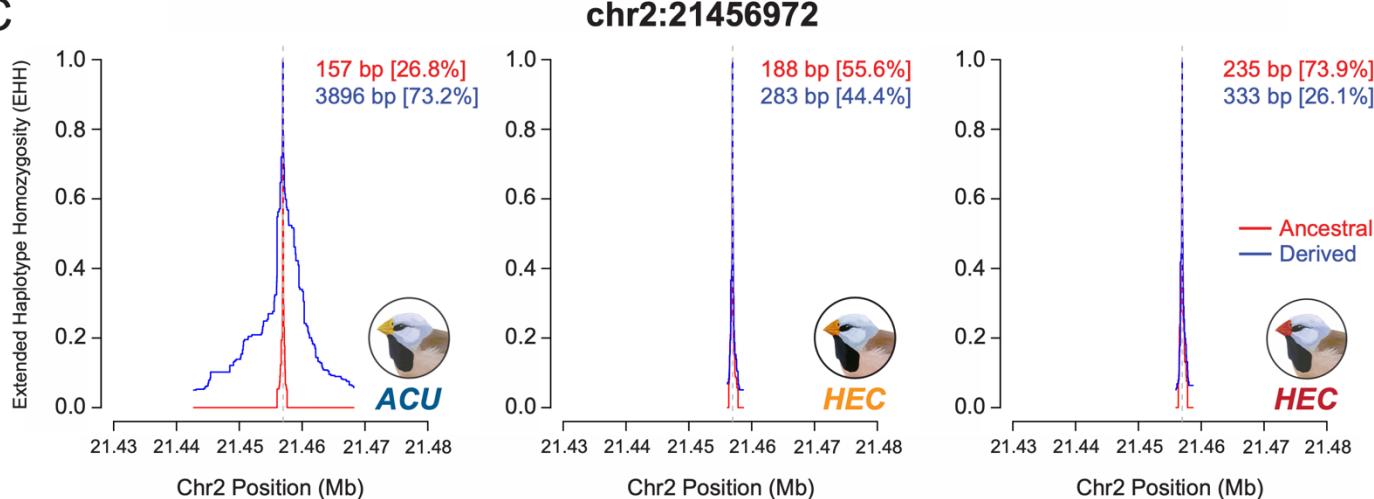


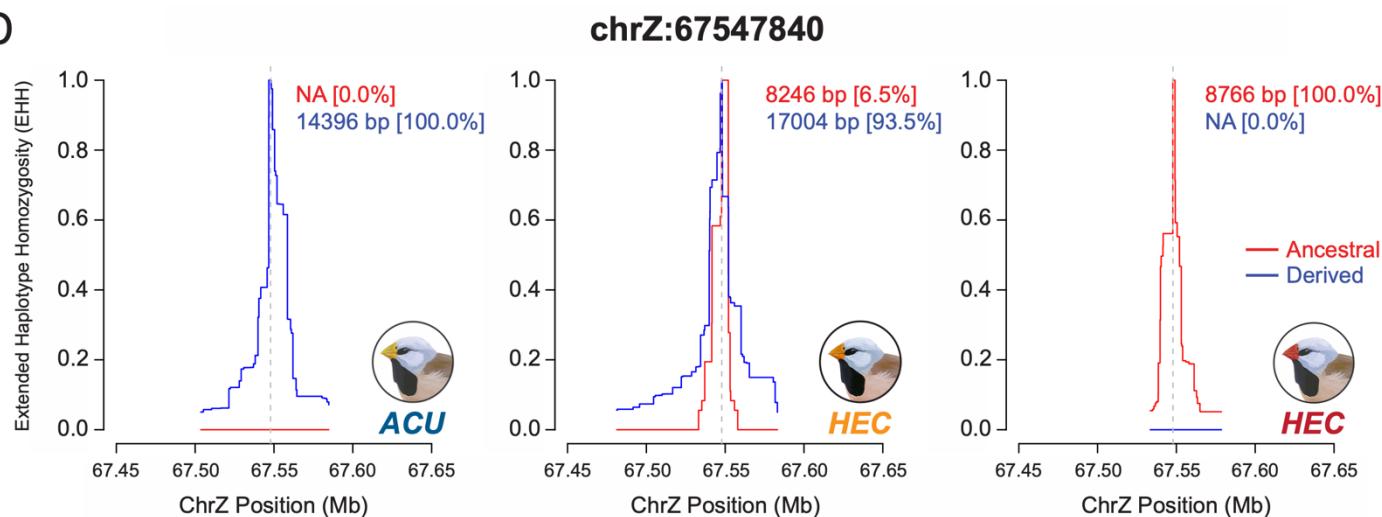
Fig. S11. Evidence of introgression and selection on chromosome 2 associated with mitochondrial fatty acid β -oxidation enzyme *CROT*. (A) Chromosome wide ΔF_{ST} in 10 kb windows with 5 kb step size (chromosome 2 is shown truncated from 0 to 35 Mb for clarity). Points are color-coded by F_{ST} between allopatric populations of each subspecies. ΔF_{ST} outliers below the 99.5th percentile – denoted as a horizontal dashed red line – represent regions that have introgressed from *acuticauda* into *hecki*. The location of *CROT* and *ABCB1* are shown as red arrows. (B) Zoom-in of the introgression outlier window encompassing *CROT* and *ABCB1*. (C) GWAS results for SNPs within this window. (D to F) Cross-population extended haplotype homozygosity (xpEHH) statistical significance between allopatric *acuticauda* and allopatric *hecki* (D), between allopatric *acuticauda* and color-admixed *hecki* (E), and between color-admixed *hecki* and allopatric *hecki* (F).


Fig. S12. Evidence of introgression and selection on chromosome Z associated with carotenoid ketolation enhancer gene *TTC39B*. (A) Chromosome wide ΔF_{ST} in 10 kb windows with 5 kb step size. Points are color-coded by F_{ST} between allopatric populations of each subspecies. ΔF_{ST} outliers below the 99.5th percentile – denoted as a horizontal dashed red line – represent regions that have introgressed from *acuticauda* into *hecki*. The location of *TTC39B* is shown as a red arrow. (B) Zoom-in of the introgression outlier window encompassing *TTC39B*. (C) GWAS results for SNPs within this window. (D to F) Cross-population extended haplotype homozygosity (xpEHH) statistical significance between allopatric *acuticauda* and allopatric *hecki* (D), between allopatric *acuticauda* and color-admixed *hecki* (E), and between color-admixed *hecki* and allopatric *hecki* (F).

A


Fig S13. Extended haplotype homozygosity (EHH) summaries for bill hue associated SNP chr8:3144828, located ~20 kbp upstream of *CYP2J19*, which has xpEHH support of a selective sweep in *acuticauda* relative to both color-admixed ($-\log_{10}(P) = 17.3$) and red-billed hecki ($-\log_{10}(P) = 9.9$). From left, EHH was calculated using phased haplotype data from *acuticauda* (pops. 1 – 7, $2N = 276$), color-admixed *hecki* (pops. 20 – 27, $2N = 320$), and red-billed *hecki* (pops. 28 – 34, $2N = 202$).

B


Fig S14. Extended haplotype homozygosity (EHH) summaries for bill hue associated SNP chr8:21746905, located within an intron of *PTPRC*, which has xpEHH support of a selective sweep in color-admixed *hecki* relative to red-billed *hecki* ($-\log_{10}(P) = 18.1$). From left, EHH was calculated using phased haplotype data from *acuticauda* (pops. 1 – 7, $2N = 276$), color-admixed *hecki* (pops. 20 – 27, $2N = 320$), and red-billed *hecki* (pops. 28 – 34, $2N = 202$).

C

Fig. S15. Extended haplotype homozygosity (EHH) summaries for bill hue associated SNP chr2:21456972, located within an intron of *CROT*, which has xpEHH support of a selective sweep in *acuticauda* relative to both color-admixed ($-\log_{10}(P) = 28.4$) and red-billed *hecki* ($-\log_{10}(P) = 15.9$). From left, EHH was calculated using phased haplotype data from *acuticauda* (pops. 1 – 7, $2N = 276$), color-admixed *hecki* (pops. 20 – 27, $2N = 320$), and red-billed *hecki* (pops. 28 – 34, $2N = 202$).

D

Fig. S16. Extended haplotype homozygosity (EHH) summaries for bill hue associated SNP chrZ:67547840, located within an intron of *TTC39B*. This locus demonstrates the difficulty of calculating xpEHH between focal populations due to their difference in allele frequencies. In populations of color-admixed *hecki*, center panel, haplotype homozygosity is $>2\times$ greater for carriers of the *acuticauda*-derived variant at this locus, consistent with a selective sweep following introgression across the long-tailed finch hybrid zone. From left, EHH was calculated using phased haplotype data from males in *acuticauda* (pops. 1 – 7, $2N = 160$), color-admixed *hecki* (pops. 20 – 27, $2N = 168$), and red-billed *hecki* (pops. 28 – 34, $2N = 128$).