

1 **Engineering a novel probiotic toolkit in *Escherichia coli* Nissle1917 for sensing and**
2 **mitigating gut inflammatory diseases**

3
4 **Authors**

5 Nathalie Weibel^{1,†}, Martina Curcio^{1,†}, Atilla Schreiber^{1,†}, Gabriel Arriaga^{1,†}, Marine Mausy^{1,†},
6 Jana Mehdy¹, Lea Brüllmann¹, Andreas Meyer¹, Len Roth¹, Tamara Flury¹, Valerie Pecina¹,
7 Kim Starlinger¹, Jan Dernič², Kenny Jungfer³, Fabian Ackle⁴, Jennifer Earp⁴, Martin
8 Hausmann⁵, Martin Jinek³, Gerhard Rogler⁵, Cauã Antunes Westmann^{6,7*}

9
10 **Affiliations**

11 ¹ – University of Zürich, Campus Irchel, Winterthurerstrasse 190, 8057 Zürich

12 ² – Institute of Pharmacology and Toxicology, University of Zürich, Winterthurerstrasse 190,
13 CH-8057 Zürich, Switzerland

14 ³ – Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057,
15 Zürich, Switzerland

16 ⁴ – Institute of Medical Microbiology, University of Zürich, Gloriastrasse 28/30, CH-8006
17 Zürich, Switzerland

18 ⁵ - Department of Gastroenterology and Hepatology, University Hospital Zürich and Zürich
19 University, Rämistrasse 100, 8091, Zurich, Switzerland

20 ⁶ – Department of Evolutionary Biology and Environmental Studies, University of Zürich,
21 Winterthurerstrasse 190, Zürich CH-8057, Switzerland

22 ⁷ – Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, 1015 Lausanne,
23 Switzerland

24 [†] - Equal contribution

25 * - Corresponding author caua.westmann@ieu.uzh.ch

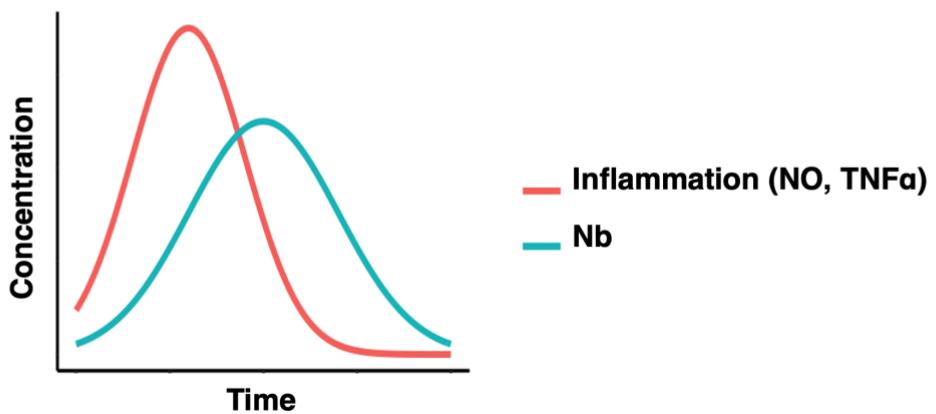
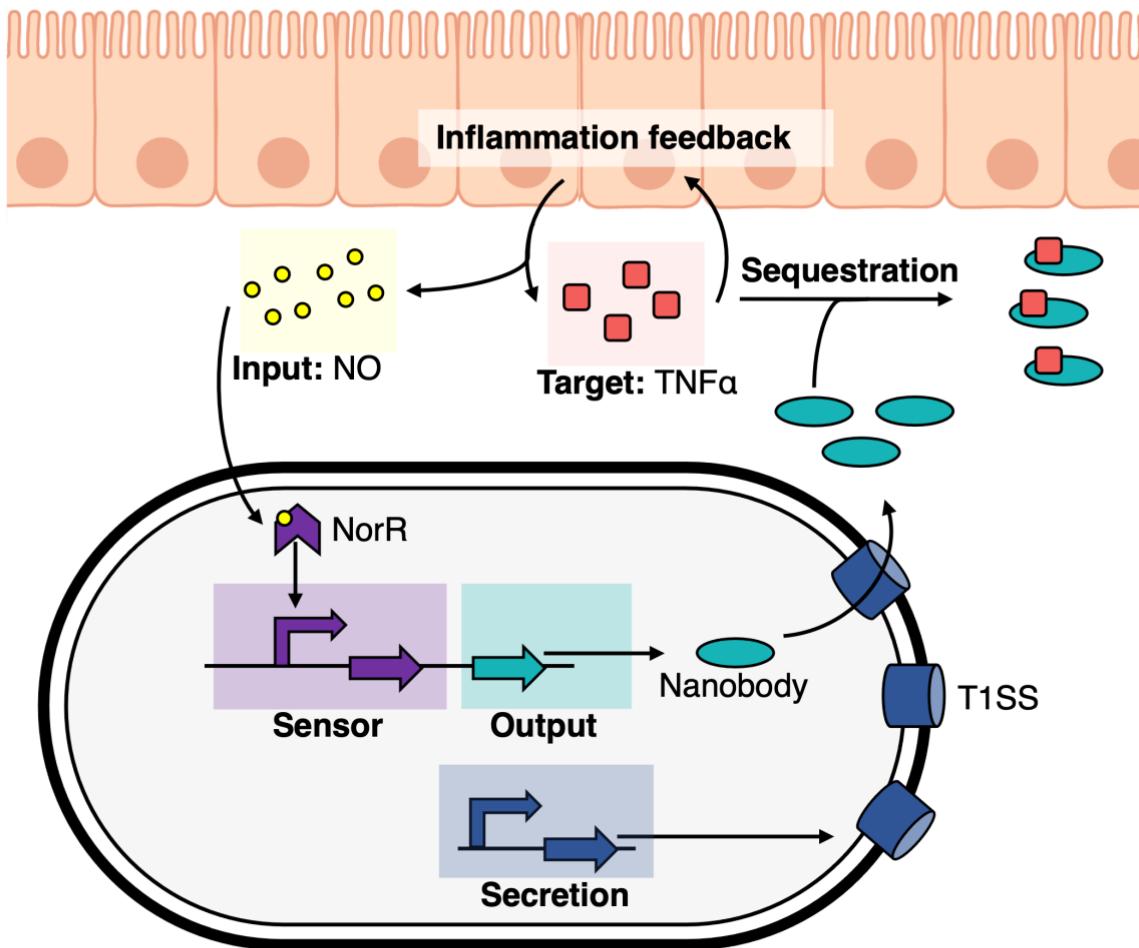
26
27

28 **Significance**

29 Probiotics can be engineered to detect and act upon extracellular disease indicators, optimizing
30 therapeutic outcomes. Particularly, self-regulating sense-and-respond genetic circuits have the
31 potential to enhance the accuracy, efficacy, and adaptability of treatment interventions. In this
32 study, we developed and characterized a new integrated and modular toolkit that detects a gut
33 inflammation biomarker, specifically nitric oxide, and responds to it in an inducible manner by
34 secreting humanized nanobodies targeting the pro-inflammatory molecule TNF α . We also
35 develop a coarse-grained mathematical framework for modelling engineered probiotic activity
36 in the gut. This novel system contributes to current efforts to develop new engineered probiotic
37 systems and holds promise for inspiring new treatments for gut inflammation associated with
38 various autoimmune diseases.

39

40 **Abstract**



41 Inflammatory Bowel Disease (IBD) is characterized by chronic intestinal inflammation with no
42 cure and limited treatment options that often have systemic side effects. In this study, we
43 developed a target-specific system to potentially treat IBD by engineering the probiotic
44 bacterium *Escherichia coli Nissle 1917* (EcN). Our modular system comprises three
45 components: a transcription factor-based sensor (NorR) capable of detecting the inflammation
46 biomarker nitric oxide, a type 1 hemolysin secretion system, and a therapeutic cargo consisting
47 of a library of humanized anti-TNF α nanobodies. Despite a reduction in sensitivity, our system
48 demonstrated a concentration-dependent response to nitric oxide, successfully secreting
49 functional nanobodies with binding affinities comparable to the commonly used drug
50 Adalimumab, as confirmed by ELISA and in vitro assays. This newly validated nanobody
51 library expands EcN therapeutic capabilities. The adopted secretion system, also characterized
52 for the first time in EcN, can be further adapted as a platform for screening and purifying
53 proteins of interest. Additionally, we provided a mathematical framework to assess critical
54 parameters in engineering probiotic systems, including the production and diffusion of relevant
55 molecules, bacterial colonization rates, and particle interactions. This integrated approach
56 expands the synthetic biology toolbox for EcN-based therapies, providing novel parts, circuits,
57 and a model for tunable responses at inflammatory hotspots.

58

59 **Keywords:** engineered probiotic, IBD, inflammation, *E. coli Nissle 1917* (EcN), nitric oxide,
60 TNF α , nanobodies

61

62 **Graphical abstract**

63

64 **Graphical Table of Contents. The engineered probiotic system:** Inflamed intestinal cells
65 release the inflammatory regulator TNF α (depicted as red squares), which promotes
66 inflammation through a positive feedback loop. Concurrently, these cells produce large amounts

67 of nitric oxide (NO, represented by yellow circles) during inflammation. Our custom-
68 engineered EcN biosensor can detect NO using a NorR-based sensor (in purple) and
69 subsequently trigger the production of nanobodies (in turquoise). These nanobodies are then
70 released into the extracellular environment via a specially engineered secretion system in the
71 bacterial host (shown in dark blue). Once outside the cell, the nanobodies attach to TNF α ,
72 effectively sequestering them and reducing inflammation. The graph at the bottom of this panel
73 illustrates the general behavior of our system: nanobody production starts upon reaching a
74 certain NO concentration threshold and continues in an NO-dependent fashion. As nanobodies
75 are produced, they capture TNF α , leading to a reduction in inflammation and a decrease in NO
76 production. This decrease in NO then halts the nanobody production.

77
78

79 **INTRODUCTION**

80

81 Inflammatory Bowel Diseases (IBD) are chronic relapsing inflammations of the gastrointestinal
82 tract that affect more than six million people worldwide ¹⁻⁵. Inflammation of the intestinal
83 mucosa compromises barrier function, exposing deeper gastrointestinal layers to luminal
84 antigens and microbiota, which triggers aberrant immune responses and maintains local and
85 systemic inflammation ². Current pharmacological interventions aim to induce clinical
86 remission by reducing mucosal inflammation and alleviating disease symptoms.

87

88 Among the approved therapies for IBD⁶, monoclonal antibodies against pro-inflammatory
89 cytokines like tumor necrosis factor (TNF α), IL-12/23, or integrins are particularly effective ⁶.
90 TNF α is a key pro-inflammatory mediator with elevated levels in inflamed gut tissue⁷, making
91 it an attractive drug target with demonstrated therapeutic benefit ^{6,8,9}. However, the systemic
92 action of these therapeutics can lead to immunosuppression, increasing the risk of serious
93 infections and lymphoma ^{8,10}. Therefore, there is a high demand for new therapeutic solutions
94 that target mucosal inflammation more precisely and are cost-effective ^{3,10,11}.

95

96 Engineered probiotics^{12,13} offer a potential solution for such treatments, being able to reach
97 inflammatory hotspots in the gut where the mucus barrier is compromised by chronic
98 inflammation ¹⁴. The probiotic *Escherichia coli* Nissle 1917 (EcN) ¹⁵⁻¹⁷ is naturally present in
99 the human gut and has been widely used to treat intestinal diseases due to its anti-inflammatory
100 and antimicrobial properties ¹⁷⁻²⁴. Thus, EcN is a promising chassis for targeted gut therapies
101 ²⁵. Over the last decade, this strain has been extensively engineered to produce biomolecules at
102 disease sites, particularly for treating intestinal diseases ²⁶⁻³³. However, despite recent
103 developments in expanding the tools and biological parts for engineering EcN, there remains a

104 shortage of self-regulating genetic circuits that can recognize specific biomarkers and respond
105 by producing therapeutic molecules³⁴.

106
107 To address this challenge and contribute to the expansion of the EcN Synthetic Biology toolbox,
108 we designed, engineered, and characterized a new genetic circuit for EcN to act as a
109 biotherapeutic against gut inflammation. This circuit detects nitric oxide (NO) as a biomarker
110 and responds by producing and secreting nanobodies to sequester TNF α and locally reduce
111 inflammation. To date, only one other study has created a similar functional system, however,
112 without a biomarker-induced expression and using alternative components in their circuitry³³.
113 The scarcity of such systems in EcN highlights the need for alternative systems such as the one
114 presented in our study.

115
116 Nitric oxide is a free radical synthesized by inducible nitric oxide synthase in gut epithelial cells,
117 with increased concentrations at inflamed sites^{35,36}. This small molecule can also penetrate
118 bacterial membranes without specialized surface receptors³⁷, making it an effective biomarker
119 for inflammation. In this study, we utilized a NO biosensor endogenous to *E. coli*, specifically
120 the NorR-pNorV system, which was previously modified and characterized by Xiaoyu J. Chen
121 et al.³⁸, to trigger the expression of the nanobody delivery system.

122
123 Nanobodies, single-domain antibodies that can bind specific antigens^{39,40}, are advantageous in
124 therapeutic applications due to their superior tissue penetration, stability, and ease of production
125 by bacteria³³. These nanobodies can be "humanized" to reduce immunogenicity by modifying
126 specific amino acids⁴¹. In this study, we used humanized nanobodies developed by Silence et
127 al.⁴², producing them for the first time in EcN.

128

129 The secretion of nanobodies is essential for TNF α inactivation since this cytokine is present in
130 the gut extracellular environment. Most secretion systems in gram-negative bacteria such as
131 EcN typically release proteins into the periplasmic space rather than the surrounding
132 environment⁴³. Thus, we utilized the Type I Hemolysin A Secretion System from uropathogenic
133 *E. coli*⁴⁴⁻⁴⁸. This system has the advantage of being one of the smallest secretion complexes in
134 gram-negative bacteria, and its functionality has not been described in EcN before.

135

136 Thus, in this study, we engineered a novel self-regulated system to produce and secrete anti-
137 TNF α nanobodies in response to NO, aiming to reduce intestinal inflammation. Our data shows
138 that although NO sensitivity was lower than reported in a previous study³⁸, our system
139 successfully expressed a variety of humanized nanobodies in an inducible manner. We also
140 demonstrate that the produced nanobodies can be effectively secreted to the extracellular
141 environment, retaining their functional capabilities to bind TNF α and reduce inflammation in
142 cell-based assays. This indicates that this system can also facilitate the screening and
143 purification of nanobodies or other proteins of interest in future studies using EcN. Lastly, we
144 developed a mathematical framework to investigate relevant parameters for gut inflammation
145 treatment, addressing the scarcity of modelling tools for such systems.

146

147 **RESULTS**

148

149 **Experimental design**

150 We designed our system by integrating two independent modules on separate plasmids: a
151 sensing module and a secretion module. The sensing module recognizes NO concentrations
152 through the NorR transcription regulator and promotes the production of nanobodies in an
153 inducible manner. The secretion module encodes a secretion system that allows the secretion of
154 nanobodies into the extracellular environment. We characterized each component of our system
155 independently before combining the complete engineered device. This allowed us not only to
156 provide a proof of concept for each subsystem but also to optimize some of them in an iterative
157 process. Firstly, we assessed different architectures of our sensing system through fluorescence
158 reporter-based assays, characterizing their limit of detection and output fold-change in response
159 to different NO concentrations. Secondly, we assessed the production and secretion of
160 nanobodies and their activity using in vitro and cell-based assays. Finally, we tested the whole
161 device and its ability to produce nanobodies in an induced manner. We complemented our study
162 with a simple yet insightful mathematical framework assessing the interactions between the
163 EcN and inflammation sites, focusing on the production rates of NO, the production rates of
164 TNF α and the bacterial response to NO through production of the anti-TNF α nanobodies.

165

166 **Characterization of the NO sensing module**

167 To create an inducible system that can sense and respond to inflammation in the gut, we chose
168 a NO-sensitive genetic circuit based on the NorR regulator. NorR is an endogenous
169 transcription factor from *E. coli* responsible for sensing NO concentrations and modulating the
170 expression of genes that are essential for NO detoxification under anaerobic conditions ^{49,50}.
171 NorR interacts with NO through a non-haem iron center and binds cooperatively to three

172 enhancer sites at the pNorV promoter to regulate transcription of both *norVW* genes and its own
173 divergently transcribed gene (*norR*)⁴⁹⁻⁵¹. In *E. coli*, it thereby regulates the activity of the target
174 *norV* gene in a NO-dependent manner. At low NO concentrations, NorR is predominantly
175 present in its free form, which inhibits pNorV. However, at higher concentrations of NO, the
176 radical binds NorR, inducing a conformational change of this protein, which makes it now able
177 to promote σ 54-dependent translational activation⁵².

178

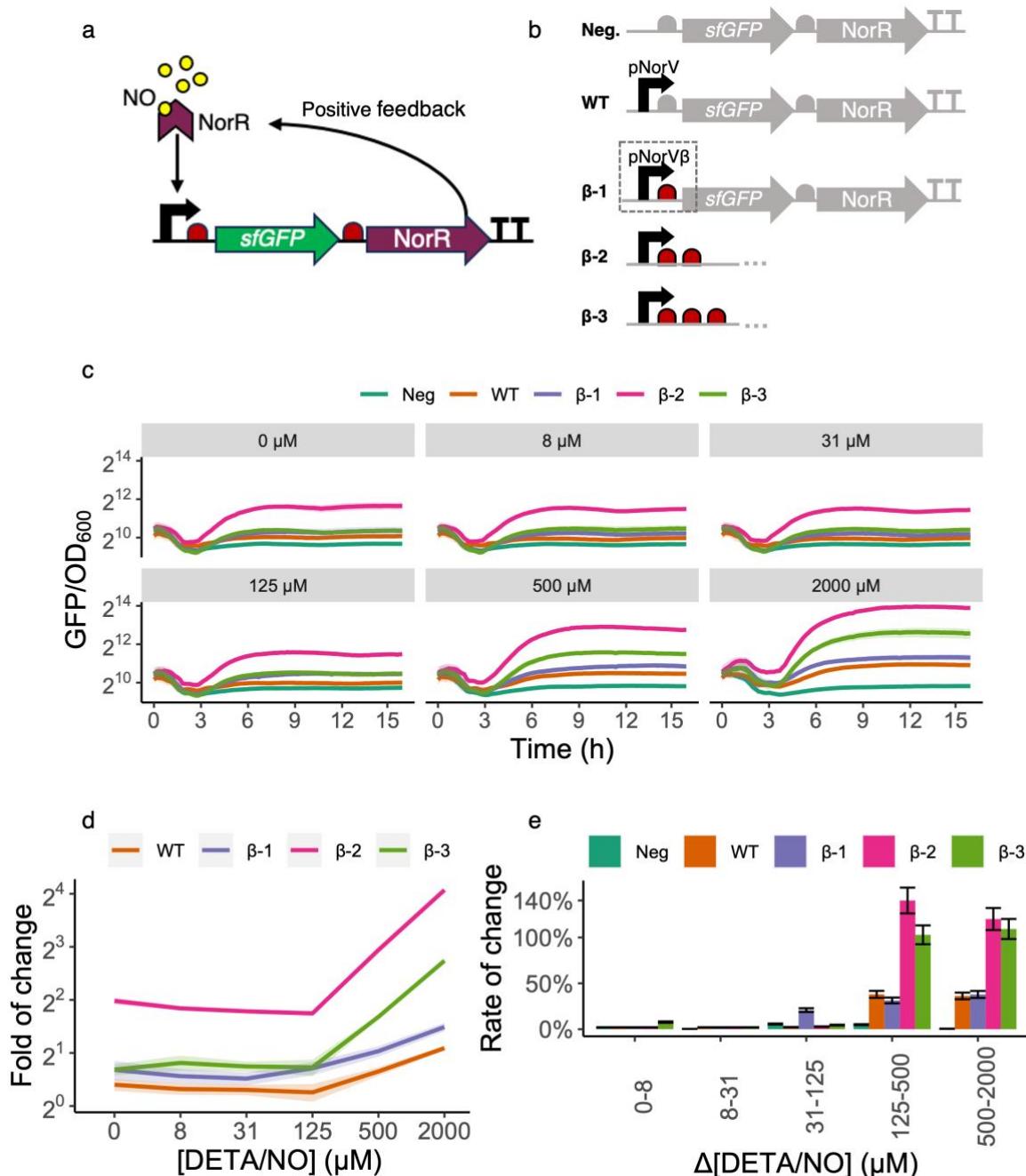
179 Our sensor was based on a previous study by Xiaoyu J. Chen et al.³⁸, consisting of the promoter
180 pNorV β , an optimized variant of the natural *E. coli* K-12 pNorV lacking the second integration
181 host factor (IHF) binding site³⁸. We placed the promoter upstream a bicistronic operon
182 containing genes encoding for a superfolder GFP (*sfGFP*)⁵³ and for the NorR regulator (*norR*),
183 in this order. The regulatory logic is based on a positive feedback loop that modulates NorR
184 availability in a NO-dependent manner³⁸ (**Figure 1a**, see **Supplementary Methods** and
185 **Supplementary Figures S1-S3** for more information about constructs and plasmids). This
186 architecture ensures low inhibitory NorR levels in the cells but high availability of activated
187 NorR in environments with a high NO concentration³⁸. Due to the potential cellular toxicity of
188 NO⁵⁴, we verified that the concentrations used did not influence EcN cell growth in our
189 experiments (**Supplementary Figure S4**). Removal of the positive feedback loop decreases the
190 induced expression of downstream genes (see **Supplementary Figure S5**). To characterize and
191 compare our NO-sensing constructs' limit of detection and dynamic range, we performed time-
192 lapse fluorescence plate reader assays. We performed these experiments using EcN cells.

193

194 We observed that the NorR circuit design with the best performance in the original study³⁸
195 featured three consecutive ribosome binding sites (RBSs) upstream of the *sfGFP* gene. To
196 investigate the impact of altering the number of consecutive RBSs on the sensitivity of our
197 system, we designed, constructed, and characterized three variants with one, two, or three

198 consecutive RBSs, respectively named β -1, β -2, and β -3 (**Figure 1b**). This approach allowed
199 us to assess the effect of varying the number of RBSs on the sensitivity of our system. To
200 account for background fluorescence, we systematically compared our constructs to a negative
201 control plasmid that did not contain any promoter (**Figure 1b**). We also compared our constructs
202 to the wild-type pNorV with a single RBS (**Figure 1b**).

203


204 **The number of Ribosome Binding Sites (RBSs) upstream of *sfGFP* influences its
205 expression levels and the leakiness of the construct**

206 Our first observation was that the pNorV β system exhibited higher fluorescence levels than the
207 wild-type, regardless of the NO concentration (**Figure 1c**), indicating this system is leakier than
208 the wild-type. By changing the number of RBSs, we observed differences in our detection limits
209 and the overall fluorescent reporter expression. We can observe in **Figure 1c** that our constructs
210 can be increasingly ranked regarding basal sfGFP expression as WT < β -1 < β -3 < β -2.
211 Interestingly, the consecutive addition of ribosome binding sites (RBSs) does not result in a
212 linear increase in sfGFP expression. We speculate that this phenomenon may be due to
213 structural consequences arising from repeating sequences in tandem, such as the potential
214 formation of secondary structures or hairpins⁵⁵. Additionally, ribosome stalling could occur,
215 where ribosomes pause or slow down due to interactions between ribosomes initiated at
216 different RBSs^{56,57}.

217

218 We observed that β -2 is highly leaky, showing higher sfGFP expression even in the absence of
219 induction ([NO] = 0). The higher expression baseline of β -2 sfGFP expression can also be
220 highlighted in **Figure 1d**, showing the fold-of change in sfGFP expression for each construct
221 at all tested NO concentrations. We also observed in **Figure 1d** that β -1 responds to a lower
222 concentration than the other constructs ([NO] = 125 μ M). This is further illustrated in **Figure**
223 **1e**, which shows the rate of change, a sensitivity metric for each genetic construct to variations

224 in NO levels, as measured by changes in sfGFP fluorescence. The percentage change in sfGFP
225 fluorescence intensity is calculated when the NO concentration shifts from an initial baseline
226 to a new value. This percentage is then normalized against the initial NO concentration,
227 providing a relative measure of change.

228
229 **Figure 1. Design and characterization of the NO detection module. a. NO-dependent**
230 **activation from NorR.** The NorR transcription factor (represented by the purple chevron)

231 binds its cognate binding site at the promoter pNorV β (black arrow). When not bound to nitric
232 oxide (yellow circles), NorR acts as a competitive inhibitor of its NO-bound form and represses
233 pNorV β . However, at high NO concentrations, the NO-bound form of NorR is predominant and
234 acts as a positive inducer of pNorV β . The presence of *norR* in the inducible operon generates a
235 positive feedback mechanism. Ribosomes are represented in red and the *sfGFP* gene in
236 green. **b. Construct variants characterized.** Our original construct β -1 consisted of *sfGFP*
237 and *norR*, preceded by one RBS each, and placed under the control of the optimized promoter
238 pNorV β . To avoid read-through, we placed a double-terminator at the end of the operon. We
239 normalized the responses of β -1, β -2, and β -3 to a negative control (Neg) and compared to a
240 positive control (WT). Neg consisted of *sfGFP* and *norR* genes, preceded by one RBS each,
241 and did not contain any promoter, accounting for the intrinsic leakiness of our module. WT
242 consisted of *sfGFP* and *norR* genes, preceded by one RBS each, and placed under the control
243 of the wild-type promoter pNorV.) **c. Time-lapse fluorescence assay for construct**
244 **characterization.** We have grown each construct for 16 hours (x-axis) on a microplate reader
245 where green fluorescence (arbitrary units) and measured the culture's OD₆₀₀ every 15 minutes.
246 The y-axis represents normalized fluorescence values (sfGFP/OD₆₀₀). Each panel grid
247 represents a different concentration of diethylenetriamine/nitric oxide (DETA/NO) used to test
248 individual constructs. The DETA/NO gradients we used were 0, 8, 31,125,500, and 2000 μ M.
249 Each line color represents a construct. Line shadings represent the standard deviation of our
250 biological replicates ($n=3$). We performed all measurements with both biological and technical
251 triplicates. Notice that measurements are on log₂ scale to facilitate data visualization. **d. Fold**
252 **of change for each construct.** Each curve represents the fold of change for each construct at T
253 = 8h along a gradient of NO concentrations. Line shadings represent the standard deviation of
254 our biological replicates ($n=3$). Notice that measurements are on the log₂ scale to facilitate data
255 visualization. **e. Rate of change for each construct.** The bar plots represent the rate of change
256 for each construct for each DETA/NO change of concentration at T = 8h. We calculated rates

257 of change as the relative increase in fluorescence (reported as percentages, y-axis) from an
258 initial NO concentration to the next incremental one. We have performed such calculations for
259 each consecutive pair of concentrations (x-axis). Error bars represent the standard deviation of
260 our biological replicates ($n=3$).

261

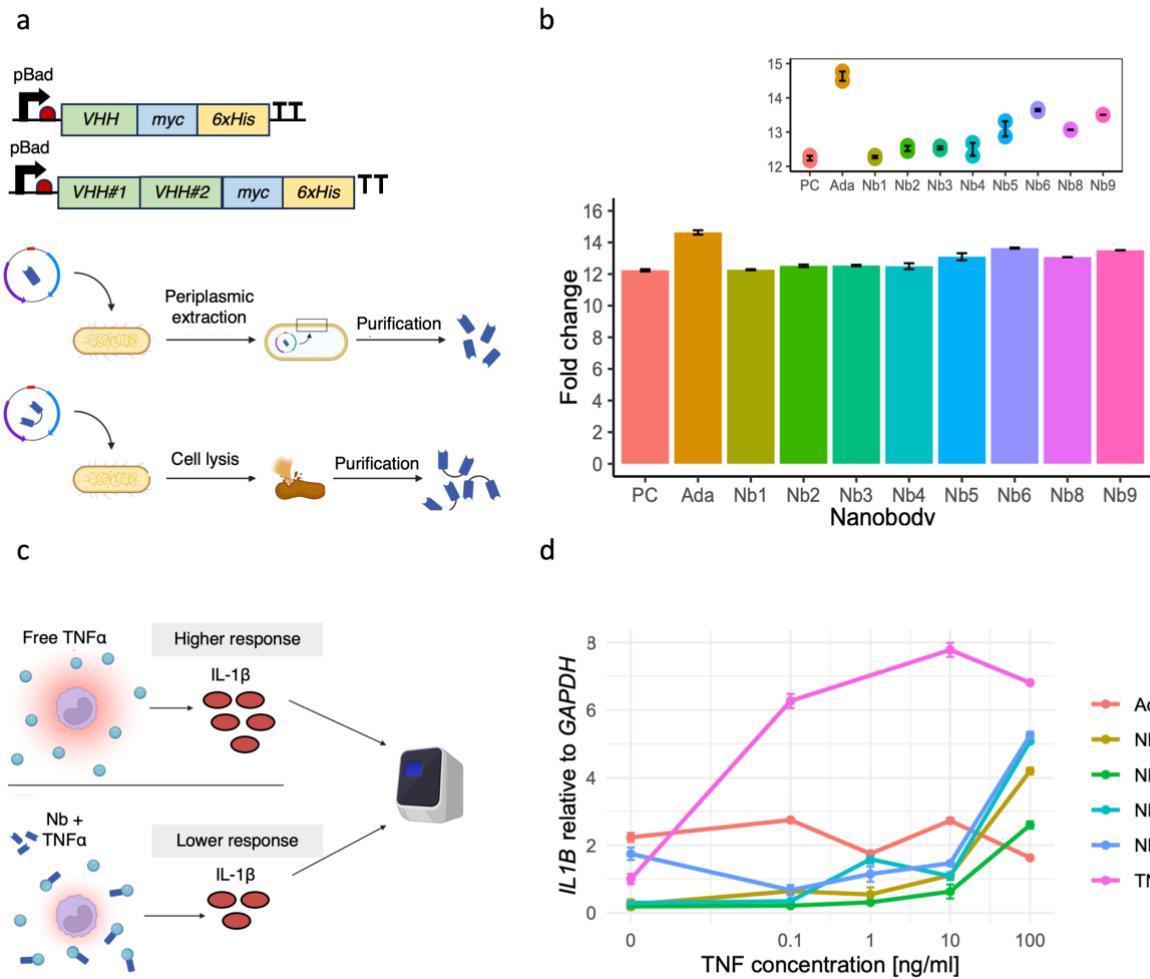
262 **Purified monovalent and bivalent anti-TNF α nanobodies efficiently capture TNF α ,**
263 **comparable to monoclonal antibodies used in the clinics.**

264 To develop the nanobody production module, we have selected three previously described anti-
265 TNF α humanized nanobody candidates⁴² and combined these to additionally produce bivalent
266 nanobodies, linked via a short peptide linker (EPKTPKPQPA; for monovalent and bivalent
267 nanobodies **see Materials and Methods Table 3**). Firstly, to assess the proper expression and
268 activity of our candidates, we cloned their sequences into the pSBinit⁵⁸ expression vector (**see**
269 **Materials and Methods, Table 2 and Supplementary Figures S6-S7**), allowing controlled
270 expression upon L-arabinose induction (**see Figure 2a**). We transformed the plasmids into the
271 expression strain *E. coli* MC1061 (**see Materials and Methods, Table 1**). After induction, we
272 performed periplasmic extraction for monovalent nanobodies and whole-cell lysis for bivalent
273 constructs (**Figure 2a**) and observed a quantitatively higher output of monovalent nanobodies
274 compared to the bivalent constructs (**Supplementary Figures S8-S9**).

275

276 We proceeded by performing an ELISA with the purified nanobodies to test their capability to
277 bind TNF α (**see Materials and Methods**). The **Figure 2b** shows the fold change in the binding
278 capacity of our different nanobody candidates compared to our negative control. The bivalent
279 nanobodies exhibit a statistically significant enhancement in binding efficiency, demonstrating
280 an average 1.3-fold increase over the monovalent nanobodies (**see Supplementary Figure S10**).
281 The bivalent constructs show a mean TNF α binding capacity of 13.5 ± 0.1 (mean \pm s.d.),
282 compared to 12.3 ± 0.2 for the monovalent constructs. Adalimumab, an approved monoclonal

283 anti-TNF α antibody that is already used in the clinic to treat IBD (see **Materials and Methods**
284 for antibody purification), is used as a positive control and our bivalent nanobody constructs
285 show a similar binding capability to this therapeutic.


286

287 **Anti-TNF α nanobodies show anti-inflammatory effects on stimulated human monocytes
288 in vitro**

289 To evaluate the effect of anti-TNF α nanobodies on the immune response of cells to an
290 inflammatory stimulus in vitro, we stimulated THP-1 human monocytes with increasing
291 concentrations of recombinant TNF α (rTNF α) and subsequently added our purified nanobody
292 candidates (see **Materials and Methods**). We performed real-time quantitative PCR analysis
293 and measured the relative amount of *IL1B* expressed by immune cells as a response to
294 inflammation through TNF α signaling (**Figure 2c, Supplementary Methods**). The cytokine
295 IL-1 β is an important inflammation mediator and, therefore, a good marker to prove functional
296 TNF α -inhibition⁵⁹.

297

298 We were able to observe an up to 4-fold decrease in *IL1B* expression of stimulated monocytes
299 when different nanobodies were added compared to the control cells that only received the
300 inflammatory stimulus (**Figure 2d**). This experiment shows that tested nanobodies have the
301 same capability to lower inflammation as monoclonal antibodies, which are already used in the
302 clinic to treat IBD patients. However, with increasing TNF α concentrations, the anti-
303 inflammatory effect that the nanobodies have on the monocytes seems to slowly decline,
304 indicating that higher concentrations of nanobodies are required to maintain low *IL1B*
305 expression levels. This decline is not observable with the available drug Adalimumab⁶⁰. It is
306 also important to note that the difference between monovalent and bivalent nanobody constructs
307 does not seem to be of great influence on the inflammatory response of triggered monocytes.

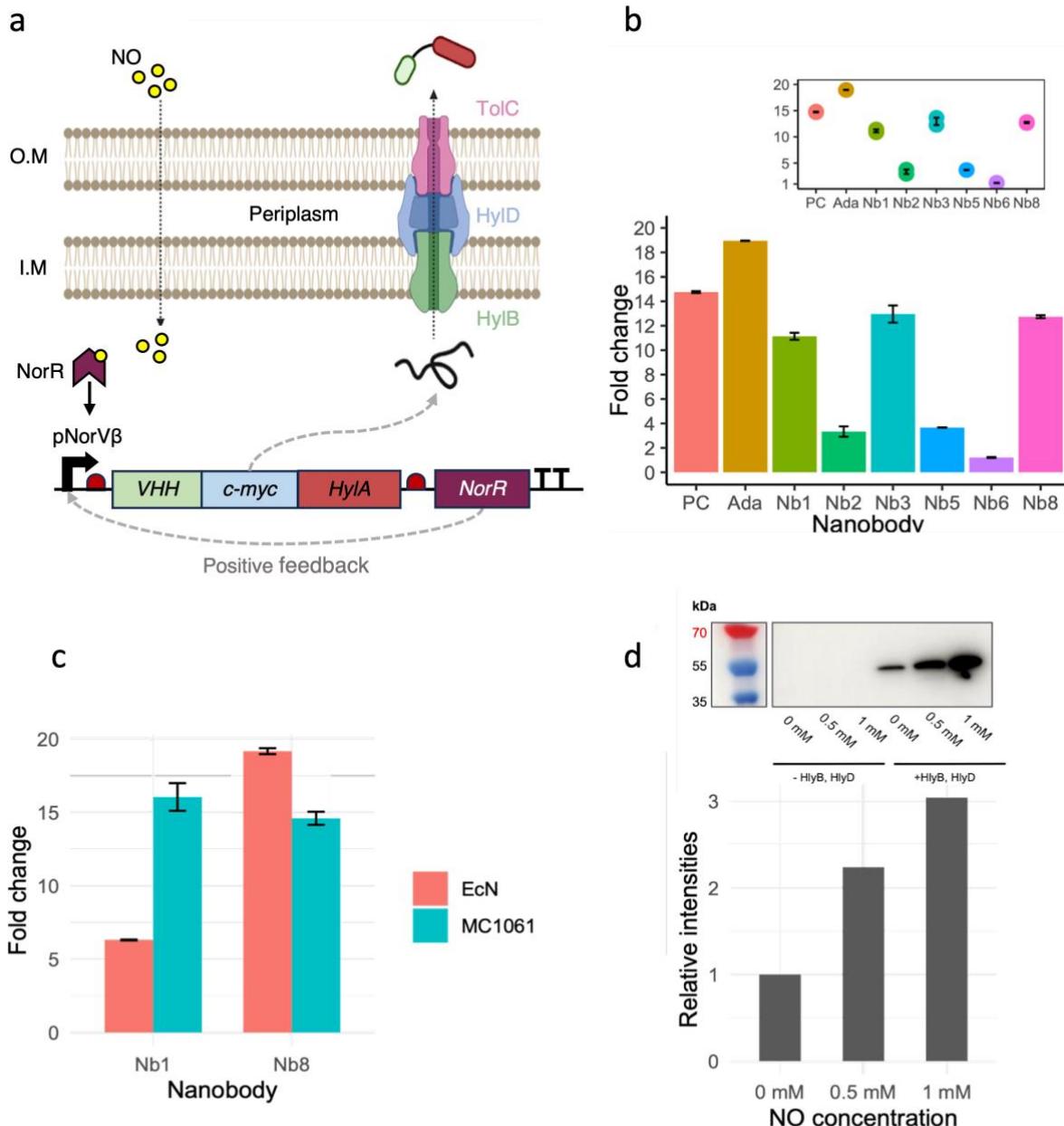
308

309 **Figure 2. Design and characterization of the purified anti-TNF α nanobodies. a. Design of**
310 **monovalent and bivalent anti-TNF α nanobodies.** We linked bivalent nanobody constructs
311 via a short peptide linker (EPKTPKPQPAAA). To characterize the nanobodies, we added a
312 myc-tag and a his-tag to their C-terminal sites. Their expression was under the control of the
313 inducible pBad system, which relies on the addition of L-arabinose. We induced the expression
314 of nanobodies with the pBad inducible system. We harvested monovalent nanobodies via
315 periplasmic extraction and bivalent nanobodies through whole-cell lysis. We purified all
316 nanobodies by immobilized metal anion chromatography (IMAC). **b. Testing binding**
317 **capability of purified nanobodies with enzyme-linked immunosorbent assay.** We tested
318 TNF α -binding using an ELISA by capturing the purified nanobodies via their myc-tag. Then,
319 we visualized the binding of nanobodies to biotinylated TNF α with the streptavidin-peroxidase.

320 We measured the absorbance of each well with a plate reader and analyzed the fold change with
321 R studio. **c. Principle of the cell assay used to determine anti-inflammatory properties of**
322 **purified anti-TNF α nanobodies.** We incubated Human THP-1 monocytes with rTNF α and
323 different purified anti-TNF α nanobodies. We assessed the immune response of the monocytic
324 cell line to rTNF α by quantitatively determining the *IL1B* expression levels with the use of RT-
325 qPCR. The binding of the nanobodies to rTNF α is supposed to inhibit the inflammatory effect
326 observed in untreated but stimulated THP-1 cells. **d. *IL1B* expression compared to *GAPDH***
327 **in human THP-1 monocytic cell line.** Quantitative analysis of the inflammatory *IL1B*
328 expression levels revealed a decreased immune response of rTNF α -stimulated cells when
329 purified nanobodies were added, compared to untreated cells (labeled as “TNF”, pink line).
330 Adalimumab is an anti-TNF α monoclonal antibody frequently used in the clinic to treat IBD
331 patients and served in this experiment as a positive control.

332

333 **Anti-TNF α nanobodies can be secreted from *EcN***


334 In order for EcN to deliver nanobodies to its environment, it must be able to secrete them
335 without impacting their function. To achieve this, we engineered the HlyA secretion system^{47,48}
336 into EcN along with fusing the nanobodies to the HlyA-tag, marking them for selective export
337 (**Figure 3a, Supplementary Figure S11**). As a first step, we tested the functionality of the
338 nanobodies after expression and secretion in *E. coli MC1061*. We performed a double
339 transformation of *E. coli MC1061* with two plasmids: our secretion plasmid (**Supplementary**
340 **Figure S11**) and the pSBinit expression plasmid, which allows for nanobody expression upon
341 L-arabinose induction (**Supplementary Figure S7**). After overnight induction, we harvested
342 the supernatant from the cell culture, and performed a western blot and ELISA to quantify the
343 presence and TNF α binding of the secreted nanobodies (**Figure 3b**). In EcN, the nanobody Nb1
344 and the bivalent nanobody Nb8 were successfully secreted, and their binding affinities were
345 maintained (**Figure 3c, (Supplementary Figures S13-S14)**).

346 **Nitric oxide can be used to trigger anti-TNF α nanobody expression**

347 To create a system capable of sensing NO and thereby triggering the production and secretion
348 of nanobodies, we built a new plasmid, where the monovalent nanobody Nb1 was cloned
349 downstream of the aforementioned pNorV β promoter (see **Table 2, Supplementary Methods**
350 **and Supplementary Figure S15**). We used the circuit with two RBS (β -2) upstream of the
351 cloned nanobodies, as it presented the highest expression levels. We used DETA/NO for
352 induction and allowed cells to express nanobodies overnight. We then quantified the presence
353 of nanobodies in the supernatant by western blot, in which we detected secreted nanobodies
354 using a C-terminal myc-tag. The western blot showed that while EcN could sense NO and
355 increase the expression and secretion of anti-TNF α nanobodies, there was still a high-level
356 baseline expression without NO (see **Supplementary Figure S16**).

357

358 Despite the high levels of baseline expression, the secreted nanobodies maintained their
359 functionality, as shown in ELISA assays (see **Supplementary Figure S16**). To reduce baseline
360 expression, we tested an alternative circuit differing by having a single RBS (β -1) upstream of
361 the nanobody coding region. This had previously shown less expression leakage. The single
362 RBS system yielded a more dynamic response to NO concentration in *E. coli* MC1061 after 8
363 hours of expression. Relative expression showed a threefold increase from baseline to a 1 mM
364 NO concentration (**Figure 3d**). It is worth noting that we observed a basal production of
365 nanobodies even without the addition of the NO inducer (**Figure 3d, rightmost western blot**
366 **and its corresponding bar plot**). Lastly, the control with no secretion system shows no
367 presence of nanobodies in the supernatant. This confirms the need for a secretion system to
368 export the nanobodies, as cell death does not appear to result in the release of functional
369 nanobodies.

370

371 **Figure 3. Design and characterisation of arabinose- and NO-induced anti-TNF α**
 372 **nanobodies secretion in *E. coli* Nissle 1917 and *E. coli* MC1061. a. Principle of NO-induced**
 373 **nanobody secretion with the Hemolysin A secretion system.** Nitric oxide is a small organic
 374 molecule able to surpass the double membrane of *E. coli*. NO binding to the PnorV- β promoter
 375 induces the expression of the monovalent nanobody candidate Nb1, which is tagged with a
 376 myc- and HlyA-tag. NorR expressions result in a positive feedback loop, enhancing the
 377 nanobody expression further. Thanks to the HlyA-tag, the produced nanobodies are secreted by

378 the hemolysin A secretion system in a one-step manner into the extracellular space. **b.**

379 **Arabinose-induced secretion of monovalent and bivalent nanobodies with *E. coli MC1061*.**

380 Western blot and ELISA analysis revealed successful secretion of functional monovalent and

381 bivalent nanobodies upon overnight arabinose induction in *E. coli MC1061*. **c. Arabinose-**

382 **induced secretion of monovalent and bivalent anti-TNF α nanobodies in *EcN* and *MC1061*.**

383 ELISA analysis shows a successful secretion of functional monovalent Nb1 and bivalent Nb8

384 nanobodies upon overnight arabinose induction, retaining their TNF α -binding capabilities

385 regardless of the HlyA-tag. **d. NO-induced secretion of monovalent anti-TNF α nanobodies**

386 **with a single-RBS system in *E. coli MC1061*.** The NO-induced monovalent nanobody

387 secretion was achieved using the single-RBS system (β -1). This yielded a more dynamic

388 response to NO than the previous two-RBS system (β -2) (**Supplementary Figure S16**) and a

389 lower baseline expression of monovalent nanobody candidate Nb1 in *E. coli MC1061*. The

390 absence of the two secretion system components (HlyB and HlyD) resulted, as expected, in no

391 secretion of nanobodies. With increasing NO-levels, higher nanobody expression can be

392 observed. A baseline expression in the absence of NO is still present yet weaker than in the β -2

393 system (**Supplementary Figure S16**).

394

395 **A coarse-grained model for engineered probiotics in the gut**

396 To support the experimental claims, we constructed a two-dimensional lattice-based reaction-

397 diffusion model^{61–65} of the gut environment, as in-vivo testing in the gut microbiome is outside

398 the scope of this study. The model is illustrated in **Figure 5a**.

399

400 The model's primary objective was to examine the interactions between EcN and inflammation

401 sites in a simplified manner, specifically focusing on the NO concentrations⁶⁶, the production

402 rates of TNF α ⁶⁷ and the bacterial response to NO through the production of the TNF α -binding

403 nanobodies⁶⁸. Model methods and an in-depth description of the parameters used can be found

404 in the model section of the appendix. Through cycles of diffusion, decay, and reemission, we
405 provided a preliminary outlook on the efficacy of our proposed treatment and its potential for
406 healthcare applications. We note that the model is a coarse-grained one, and faithfully
407 representing the gut environment was out of its scope. We focused on identifying the crucial
408 parameters to tune in future work to optimize the treatment before heading into a further testing
409 stage.

410

411 To favor interpretability, generalization, and to promote ease of access and collaboration, the
412 model follows a simplicity-based design. The model interprets a 1mm^2 area of the gut surface
413 as a 2D grid, with each grid cell representing a $1\mu\text{m}^3$ volume, containing the local concentration
414 values for each parameter. The model operates in discrete time steps, with adaptations to make
415 it approach a continuous time scale.

416

417 **Estimating the minimum number of bacteria for effective treatment**

418 To get an overview of the importance of the different parameters, we performed a series of
419 simulations where we swept two variables at the same time over the range of our expected
420 values and simulated for 60-second time steps.

421

422 In our first series of simulations, illustrated in **Figure 5b**, we estimated the minimum number
423 of bacteria needed to provide effective treatment and evaluated the densities on a great range
424 of biologically plausible $\text{TNF}\alpha$ concentrations. The results show that around 20 bacteria per
425 mm^2 should be enough to cover the inflamed gut area and sufficiently combat the inflammation
426 for the expected $\text{TNF}\alpha$ concentrations. For higher concentrations of $\text{TNF}\alpha$, however, the
427 nanobodies produced are not sufficient to combat inflammation, and larger bacterial
428 populations are needed. The graphs suggest a rough relationship of a doubling in bacterial
429 density being able to combat a magnitude higher $\text{TNF}\alpha$ concentration. Bacterial density

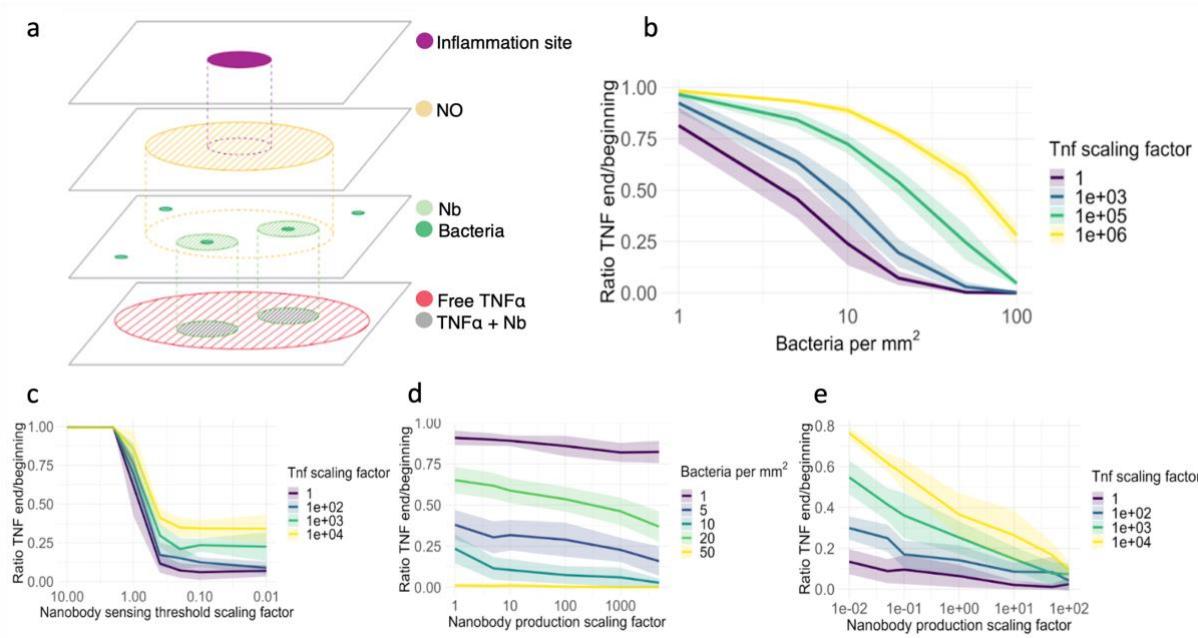
430 estimates place this requirement at a feasible replacement value of 20 out of 10^4 gut bacteria
431 per mm^2 ^{69,70} and thus the required colonization should be feasible and in further experiments
432 we assume that this threshold will be reached. In **Figure 5e**, we investigate whether increasing
433 the nanobody production could also be a viable solution.

434

435 **Nitric oxide detection threshold and nanobody production:**

436 In our study, the threshold for NO detection, the minimum amount of NO required for nanobody
437 production, is essential for ensuring an inflammation-dependent response. In **Figure 5c**, we
438 evaluated a range of these sensing thresholds and the amount of $\text{TNF}\alpha$ at the inflammation sites.
439 As our threshold closely aligns with the expected NO concentration of around $15 \mu\text{M}^{36}$ (**for**
440 **details, see Supplementary Methods and Supplementary Figure S17**), even slight decreases
441 in sensitivity lead from the absence of inflammation reduction to complete reduction, even with
442 higher than expected amounts of $\text{TNF}\alpha$. Increased sensitivity of the bacteria towards NO gives
443 diminishing returns, as this mostly affects bacteria in edge regions that detect trace amounts of
444 NO but do not produce nanobodies at the affected location. In turn, there will be an excess
445 production of nanobodies in these regions that hardly contribute to combating inflammation. It
446 is important to note that in our simulations, we kept the amount of NO produced at inflammation
447 sites constant, even for higher $\text{TNF}\alpha$ concentrations. In a patient setting, however, NO levels
448 might vary significantly.

449


450 **Comparison between bacterial number and nanobody production:**

451 In **Figure 5d**, we assessed the importance of the number of bacteria we can introduce against
452 the nanobody production of a single bacteria. For our expected $\text{TNF}\alpha$ values, the number of
453 bacteria has a far greater effect than the amount of nanobodies produced per bacteria. This is
454 most likely due to the nanobodies being spread locally, and even at the same amount of net
455 nanobodies produced, greater coverage of gut-inflamed areas ensures that the nanobodies are

456 produced where they need to be. This trade-off also guarantees that no excess amount of
457 nanobodies is produced which could lead to possible side effects. In vivo testing is required to
458 assess the actual viability of our engineered bacteria, and further optimization should be based
459 on this.

460

461 In **Figure 5e**, we investigate whether higher TNF α concentrations can be mitigated by
462 increasing nanobody production. The results demonstrate that, with a bacterial density of at
463 least 20 per mm 2 , an increase in nanobody production effectively reduces TNF α levels.
464 However, this effect is less pronounced compared to increasing the number of bacteria, as
465 shown in **Figure 5b**, which more effectively reduces even higher concentrations of TNF α .
466 Nevertheless, increasing nanobody production might be easier to achieve and still offers a
467 viable approach to combating elevated TNF α concentrations.

468

469 **Figure 4. The reaction-diffusion model was evaluated on key parameters.** The model's
470 purpose was to explore which parameters could be essential for the efficacy of our system.
471 Parameters that are not varied are set to their default value, except for the sensing threshold,
472 which we decreased by a factor of 10 during simulations as done in a recent study³⁸, for

473 visibility reasons. We simulated each parameter configuration 10 times. Line shadings represent
474 the standard deviation. **a. Illustration of the components of the reaction-diffusion model. b.**
475 **Relationship between bacterial density and TNF α concentrations. (n = 240). c.**
476 **Relationship between sensing threshold and TNF α concentrations. (n=280) d.**
477 **Relationship between nanobody production and bacterial density. (n = 300) e.**
478 **Relationship between nanobody production and TNF α concentrations. (n = 380)**
479

480 **DISCUSSION**

481

482 Here, we describe the development of an integrated molecular system in EcN for the local
483 sensing of gut inflammation and the production/delivery of high-specificity effectors to mitigate
484 such inflammation. Specifically, we have engineered both laboratory and non-
485 pathogenic/probiotic human *E. coli* strains with a coupled system that can secrete nanobodies
486 in a regulated manner upon NO induction. Secretion is achieved through the adoption of an
487 exogenous Type I Hemolysin A Secretion System, which has been characterized in EcN for the
488 first time in this study. We have also characterized a new library of humanized nanobodies in
489 EcN, demonstrating that they can be successfully secreted and retain their functionality in vitro
490 and in cell assays, binding to TNF α as efficiently as conventional drugs used for targeting this
491 pro-inflammatory molecule. Modularity is a key strength of our system. The regulator can be
492 easily swapped, allowing the detection of different biomarkers^{27,34}. The cargo (nanobody in our
493 case) can also be replaced in a straightforward manner with other therapeutic proteins, such as
494 small peptides and colonization-increasing factors.

495

496 Although mathematical models regarding gut colonization are available^{71–75}, they are mostly
497 focused on host-pathogen interactions and not on the colonization-sensing-delivery process
498 from engineered probiotics. Thus, we also developed a simplified yet insightful modelling
499 framework to investigate relevant parameters on probiotic engineering and its subsequent
500 colonization in the gut. Specifically, we investigated the interactions between the probiotic
501 bacteria and inflammation sites, focusing on biomarker (NO) concentration detection
502 thresholds, therapeutic molecule production rates (TNF α), and the bacterial response in terms
503 of therapeutic-target interactions (nanobody-TNF α). We observed that approximately 20
504 bacteria per mm² are sufficient to manage inflammation. Bacterial density estimates place this
505 requirement at a feasible replacement value of 20 out of 10⁴ gut bacteria per mm²^{69,70}. However,

506 at higher TNF α levels, increased bacterial densities are necessary, suggesting a rough doubling
507 of bacterial density for each magnitude increase in TNF α concentration.

508
509 The current understanding of nitric oxide concentrations at inflammation sites within the gut
510 across various patient demographics is limited, with most data focused on serum concentrations
511³⁶. It is estimated that a baseline concentration of around 14 μ M NO is typically necessary to
512 detect gut inflammation³⁶. However, we anticipate that the luminal NO concentrations in the
513 gut, particularly at sites of active inflammation, are likely to be considerably higher than this
514 threshold. This expectation is based on the fact that NO, with its notably short half-life and
515 rapid diffusion rates within the body^{76,77}, would be more concentrated in regions immediately
516 adjacent to inflammation sites. In light of the scarce available data on serum NO concentrations
517³⁶, our simulations suggest that an optimal concentration for nanobody production in response
518 to NO is approximately 15 μ M. We also observed that enhancing bacterial sensitivity to NO
519 beyond this threshold may lead to diminishing returns. Specifically, this could result in the
520 overproduction of nanobodies in peripheral areas, where they might not contribute effectively
521 to inflammation reduction.

522
523 When comparing the impact of the bacterial number on nanobody production per bacterium
524 through simulations, our results indicate that the number of bacteria plays a more critical role
525 than the number of nanobodies produced by each bacterium. This is likely due to the localized
526 distribution of nanobodies, suggesting that a broader gut coverage by bacteria is more effective
527 than increasing the production rate of nanobodies per bacterium. This balance is crucial to avoid
528 the production of excess nanobodies, which could lead to potential side effects and metabolic
529 burden on the bacterial host⁷⁸⁻⁸⁰. We highlight that a mathematical model is an
530 oversimplification of reality and does not capture many complexities of the in vivo environment.
531 Future developments in our modelling approach should include important variables such as the

532 consequences of gene expression noise (heterogeneity in gene expression)^{81,82}, the reevaluation
533 of the assumptions regarding gut geometry, an enhancement of the diffusion model to
534 encompass three dimensions and the consequences of microenvironmental gut conditions on
535 bacterial growth⁸³. Moreover, conducting *in vivo* studies of the treatment will be instrumental
536 in refining the model as this iterative process of model refinement is essential for advancing
537 our understanding of engineered probiotics^{84,85}.

538

539 The experimental characterization of our NorR-based circuit revealed that the NO detection
540 threshold in our constructs was higher than the one reported in the original study where this
541 circuit was designed³⁸. This discrepancy could stem from several factors. Firstly, the plasmid
542 used in our experiments differed from that in the referenced study³⁸, and we were unable to
543 access the complete sequences of their constructs, which may have influenced our results.
544 Additionally, our experiments were conducted under aerobic conditions. Previous research has
545 shown that anaerobic environments, akin to the gut's natural state, can decrease the NO
546 detection threshold of the NorR system by at least five-fold, due to interactions between oxygen
547 and the iron center of NorR⁴⁹. Consequently, while our sensor system in EcN has been
548 characterized and improved under aerobic conditions, there is substantial potential to enhance
549 its sensitivity to lower, more physiologically relevant NO concentrations. Future studies could
550 achieve this through advanced protein and promoter engineering techniques (e.g., directed
551 evolution and combinatorial designs coupled with fluorescence-based screening methods⁸⁶⁻⁸⁹)
552 and by transitioning to anaerobic assays.

553

554 We highlight that although our results support the potential of our system for biotherapeutic
555 applications, the transition from test tubes to translational applications faces many challenges⁹⁰⁻
556⁹³, from consistent therapeutic delivery methods to the long-term maintenance of engineered
557 bacteria in the gut. The stable colonization of engineered probiotics in the gut can be negatively

558 impacted by metabolic burden—the allocation of resources towards the engineered system—
559 which can hinder bacterial growth in the complex microbiome environment⁷⁹. Moreover,
560 evolutionary changes might disrupt circuit functionality over short time periods ⁹⁴. The
561 heterogeneity in bacterial expression due to background genetic mutations or expression noise
562 might also lead to variability in treatment efficacy⁹⁴. Additionally, the interactions between the
563 host immune system and engineered probiotics require thorough investigation to ensure long-
564 term efficacy and safety^{95,96}. To address some of these challenges, strategies such as integrating
565 the genetic circuit into the genome can enhance the stability and robustness of the device's
566 functionality^{78,94}. Combining whole-cell and host-microbiome metabolic models with in vivo
567 assays of viability and prevalence of engineered probiotics is also important for predicting the
568 long-term maintenance of such systems ^{93,97–101}. Moreover, incorporating antibiotic resistance-
569 free plasmids ¹⁰² and containment modules ^{93,103} is important to prevent the unintended spread
570 of engineered bacteria and antibiotic resistance genes.

571
572 Despite the aforementioned challenges, Synthetic Biology is rapidly transitioning from
573 laboratory experiments to tangible, real-world applications^{104–106}. In 2019, ZBiotics Company,
574 USA, pioneered this field by being the first to produce and sell genetically engineered probiotic
575 products, marking the beginning of a burgeoning industry. In a recent notable study, researchers
576 developed a novel system within EcN (PROT3EcT) and validated it in an animal model³³. They
577 demonstrated effective colonization of the mouse gut with constitutive production of
578 nanobodies targeting TNF α , resulting in localized inflammation mitigation. Although our
579 system employs different components—specifically, a biomarker-dependent sensing module,
580 distinct nanobodies, and an alternate secretion system—their results are highly encouraging,
581 suggesting the potential functionality of our system in animal models. In this rapidly
582 progressing landscape, our study focused on providing new parts, a new modular system, and

583 a mathematical framework to expand EcN's Synthetic Biology toolbox and support ongoing
584 efforts in the probiotic engineering community.

585

586 **MATERIALS AND METHODS**

587

588 **Media and buffers**

589 M9 medium is advantageous due to its low cost, low auto-fluorescence (when excited at 488
590 nm), and low absorbance. We used M9 medium, supplemented with specific amino acids or
591 other metabolites (such as thiamine or casamino acids), for experiments measuring sfGFP
592 fluorescence to ensure minimal auto-fluorescence and absorbance of the samples. To prepare a
593 50 mL volume of M9 medium, we added the reagents in the following order: 10 mL of M9 salt
594 (5x), 100 μ L of MgSO₄ (1M), 50 μ L of CaCl₂ (0.1M), 1.5 mL of Cas Aa (2%), and 1 mL of
595 Glucose (20%), then added water to reach a final volume of 50 mL. If necessary, we
596 supplemented M9 medium with the appropriate antibiotic at a 1:1000 ratio. We conducted all
597 preparation steps under sterile conditions.

598

599 **Table 1. List of bacterial strains used in this study:**

Name	Genotype	Selective antibiotics	T, °C	Description
<i>E. coli</i> Nissle 1917	Unavailable	None	37°C	First described on ^{15,16} . Obtained from Mutaflor® (Heredecke, Germany)
<i>E. coli</i> MC1061	F ⁻ <i>hsdR</i> (rK ⁻ , mK ⁺) <i>araD139</i> <i>Δ(araABC-leu)7679 galU galK</i> <i>ΔlacX74 rpsL(StrR) thi mcrB / P3:</i> Kan ^R Amp ^R (am) Tet ^R (am)	Streptomycin, Kanamycin, Ampicillin, Tetracycline	37°C	Commercially obtained from Thermofisher (C66303)
<i>E. coli</i> Mach1	F ⁻ <i>φ80lacZΔM15</i> <i>ΔlacX74 hsdR(rK⁻, mK⁺)</i> <i>ΔrecA1398 endA1 tonA</i>	None	37°C	Commercially obtained from Thermofisher (C862003)

600

601 **Table 2. List of plasmids used in this study:**

Name	Description
piGEM1	This study. Negative control. Encodes for <i>sfGFP</i> and <i>norR</i> , does not contain any promoter.
piGEM3	This study. Encodes for <i>sfGFP</i> and <i>norR</i> under the control of the already characterized inducible promoter pNorV.
piGEM2.1	This study. Encodes for <i>sfGFP</i> and <i>norR</i> under the control of the inducible promoter pNorV β . This construct contains 1 RBS directly upstream of <i>sfGFP</i> .
piGEM2.2	This study. Encodes for <i>sfGFP</i> and <i>norR</i> under the control of the inducible promoter pNorV β . This construct contains 2 RBS and a spacer upstream of <i>sfGFP</i> .
piGEM2.3	This study. Encodes for <i>sfGFP</i> and <i>norR</i> under the control of the inducible promoter pNorV β . This construct contains 3 RBS and a spacer upstream of <i>sfGFP</i> .
piGEM2.2N	This study. Encodes for <i>sfGFP</i> under the control of the inducible promoter pNorV β . This construct contains 2 RBS and a spacer upstream of <i>sfGFP</i> . This construct does not contain <i>norR</i> .
pSBinit	Retrieved from ⁵⁸ , Addgene #110100. E.coli entry and expression vector for FX cloning system, N-terminal pelB signal sequence and C-terminal myc and 6xHisTag
purNb1	This study. Nanobody candidate VHH#2B cloned into pSBinit expression vector via FX cloning
purNb2	This study. Nanobody candidate VHH#3E cloned into pSBinit expression vector via FX cloning
purNb3	This study. Nanobody candidate VHH#12B cloned into pSBinit expression vector via FX cloning
purNb4	This study. Nanobody candidate VHH#2B-VHH#2B cloned into pSBinit expression vector via FX cloning
purNb5	This study. Nanobody candidate VHH#3E-VHH#3E cloned into pSBinit expression vector via FX cloning
purNb6	This study. Nanobody candidate VHH#12B-VHH#12B cloned into pSBinit expression vector via FX cloning
purNb7	This study. Nanobody candidate VHH#2B-VHH#3E cloned into pSBinit expression vector via FX cloning
purNb8	This study. Nanobody candidate VHH#2B-VHH#12B cloned into pSBinit expression vector via FX cloning

purNb9	This study. Nanobody candidate VHH#3E-VHH#12B cloned into pSBinit expression vector via FX cloning
pSS	This study. Plasmid encoding HlyB and HlyD required for the HlyA secretion system under a constitutive promoter (J23100). Contains chloramphenicol resistance gene.
pNb	This study. Plasmid encoding HlyA and myc-tag under inducible pBad promoter with restriction sites allowing the cloning of the different nanobodies in front of the two tags. Contains ampicillin resistance gene.
pNb1	This study. Nanobody candidate VHH#2B cloned into pNb plasmid via FX cloning
pNb2	This study. Nanobody candidate VHH#3E cloned into pNb plasmid via FX cloning
pNb3	This study. Nanobody candidate VHH#12B cloned into pNb plasmid via FX cloning
pNb5	This study. Nanobody candidate VHH#3E-VHH#3E cloned into pNb plasmid via FX cloning
pNb7	This study. Nanobody candidate VHH#2B-VHH#3E cloned into pNb plasmid via FX cloning
pNb8	This study. Nanobody candidate VHH#2B-VHH#12B cloned into pSBinit expression vector via FX cloning
pNO1_Nb1	This study. Nanobody candidate VHH#2B cloned into piGEM2.1 plasmid via Gibson
pNO3_Nb1	This study. Nanobody candidate VHH#2B cloned into piGEM2.3 plasmid via Gibson

603 **Table 3: Nanobodies used in this study**

Nb ID	Mono or Bivalent	Nb parts	Reference
Nb1	monovalent	VHH#2B	Patent ⁴²
Nb2	monovalent	VHH#3E	Patent ⁴²
Nb3	monovalent	VHH#12B	Patent ⁴²
Nb4	bivalent	VHH#2B	Patent ⁴²
Nb5	bivalent	VHH#3E	Patent ⁴²
Nb6	bivalent	VHH#12B	Patent ⁴²
Nb7	bivalent	VHH#2B+VHH#3E	Patent ⁴²
Nb8	bivalent	VHH#2B+VHH#12B	Patent ⁴²
Nb9	bivalent	VHH#3E+VHH#12B	Patent ⁴²

604

605 **Plate reader fluorescence assay**

606 To measure the activity of all constructs, we transformed plasmids into *E. coli Nissle 1917*. We
607 grew freshly plated single colonies in LB medium supplemented with ampicillin and incubated
608 cultures at 37°C and 220 rpm. On the day of the assay, we spun down the bacteria from the
609 overnight cultures, resuspended them in M9 medium supplemented with ampicillin (M9-Amp)
610 and diluted cultures to OD₆₀₀=0.5. We then assayed the cultures (20 µL) in a 96-well microplate
611 with 170 µL of M9-Amp and 10 µL of the different compounds tested. We used five different
612 concentrations (8 µM, 31 µM, 125 µM, 500 µM and 2000 µM) of the NO donor
613 diethylenetriamine/nitric oxide (DETA/NO) diluted in ddH₂O as the inducer. We quantified cell
614 growth (OD₆₀₀) and sfGFP fluorescence using a Tecan Spark 10M plate reader. We calculated
615 the responsiveness of the genetic circuit as arbitrary units using the ratio between fluorescence
616 levels and the optical density at 600 nm (reported as sfGFP/OD₆₀₀) after background correction.
617 As a control for the inducer, we also measured all constructs in the absence of DETA/NO. As a
618 control for cellular autofluorescence background, we also assayed *E. coli Nissle 1917*
619 transformed with the same plasmid but without a promoter to drive sfGFP expression. We
620 measured fluorescence and absorbance at 10-minute intervals for 16 hours at 37 °C and under
621 constant shaking (orbital shaking, 0.1mm orbital averaging). We performed all experiments in
622 technical and biological triplicates. We processed raw data using an ad hoc R script
623 (<https://www.r-project.org/>).

624

625 **Flow Cytometry Analysis**

626 We conducted a high-throughput single-cell analysis of bacteria containing variants of the NO
627 detection module and a negative control plasmid (promoterless *sfGFP*) as follows: first, we
628 selected single colonies of the transformed strain (*EcN*) and cultivated them overnight in LB
629 medium supplemented with ampicillin at 37 °C and 220 rpm. Next, we diluted overnight-grown
630 cells in a ratio of 1:10 in fresh LB and grew them overnight at 37 °C and 220 rpm with different

631 concentrations of the DETA/NO inducer (0 mM, 1 mM, 1.5 mM, 2 mM). We diluted overnight-
632 grown cells in a ratio of 1:100 in 1mL of filtered cold Dulbecco's PBS (Sigma-Aldrich #D8537)
633 in 15 mL FACS tubes and immediately stored them on ice to halt metabolic processes.

634

635 We set measurements on a BD FACSCantoII machine with the BD FACSDiva 6.1.3 Software
636 after calibration with both CS&T IVD beads and Rainbow Calibration beads (8 peaks, 107/mL,
637 3.0-3.4 μ m, RCP-30-5A) for conversion of arbitrary fluorescence units into MEFL. Excitation
638 and emission filters utilized were 488nm and 530/30 nm, respectively. We adjusted side-scatter
639 (SSC) and forward-scatter (FSC) PMT voltages using bacteria from the negative control, until
640 the distribution of each parameter was centered on the scale. We adjusted FITC/GFP PMT
641 voltage using bacteria from the positive control until the upper edge of the “bell curve” from
642 the fluorescent population was one order of magnitude below the upper end of the scale. We
643 acquired a total of 50,000 events for each biological triplicate and washed cells with PBS before
644 measuring when the bacterial density was too high to avoid the formation of aggregates.

645

646 **Nanobodies purification**

647 We transformed *E. coli* MC1061 with the pSBinit plasmids containing our 9 different nanobody
648 candidates. The expression vector contains an FX cloning site to insert our different nanobody
649 fragments ordered. The C-terminal myc and 6xHis-tags are included on the plasmid backbone
650 and automatically added in case of a successful FX cloning (Figure 2a). We grew the cells in
651 600 ml liquid cultures (1:1000 dilution of antibiotic) at 37°C until an OD of 0.4 to 0.7 was
652 reached. We then induced the expression by the addition of 0.02% L-arabinose and allowed
653 bacteria to express the nanobodies for 16 hours at 22°C. We spun down cells at 4'500 rpm for
654 15 min at 4°C and transferred the resulting supernatant to a bottle with 20 nM imidazole pH
655 7.5. To extract the nanobodies from the solution, we performed a batch binding using 5 ml Ni-
656 NTA resin for 2 hours while shaking. We poured the resin into gravity flow columns and washed

657 them with TBS pH 7.5, 30 mM imidazole. We eluted nanobodies with 10 ml TBS pH 7.5 and
658 30 mM imidazole and collected them into fractions, which we measured with the NanoDrop
659 spectrophotometer (Thermo Fisher Scientific). We pooled the fractions with low concentrations
660 and further concentrated them using concentration columns (spun at 2'500 g in 10 kDa
661 concentrators). Lastly, we loaded the purified nanobody candidates on the Sepax in TBS (pH
662 7.5).

663

664 **Cultivation of THP-1 non-adherent human monocytes**

665 We substituted growth medium (RPMI 1640, Gibco) with 10% fetal bovine serum (FBS) and
666 stored at 4°C. We maintained cell densities between 0.1 and 1.0×10^6 cells/ml, splitting them
667 at a ratio of 1:2 or 1:3 (approximately 0.5×10^6 cells/ml) every 3 to 4 days. THP-1 cells display
668 a doubling time of roughly 35 -50 hours. During splitting, we transferred cells into 50ml falcon
669 tubes and centrifuged them at 1700 rpm for 5 minutes. We removed the supernatant and
670 resuspended cells in fresh media. After counting the cells, we seeded them at the optimal density.

671

672 **Cell Assay**

673 Before the beginning of the actual cell assay, we centrifuged THP-1 cells and resuspended them
674 in starvation media (RPMI 1640 without FBS) and seeded at a density of 1×10^6 cells / ml in a
675 96-well plate (final volume: 200 μ l). We then incubated cells for 24 hours at 37°C with 5%
676 CO₂, according to the cell specific cultivation protocol.

677

678 The next day, we prepared a TNF α dilution series (100 ng/ml, 50 ng/ml, 10 ng/ml, 5 ng/ml, 1
679 ng/ml, 0.5 ng/ml, 0.1 ng/ml) and kept them on ice. Additionally, we diluted the nanobodies to
680 a final concentration of approximately 100 nM and stored them on ice. After starving the cells
681 for 24 hours, we added the diluted nanobodies to the well plate and gently shook the plate before
682 incubating it for 30 minutes. Afterwards, we stimulated the cells with rTNF α and incubated

683 them for 24 hours at 37°C with 5% CO₂. We then harvested the cells, transferred them to
684 Eppendorf tubes, and centrifuged them at 3.5g for 10 minutes at 4°C. After removing the
685 supernatant, we froze the cell pellet with liquid nitrogen and stored it at -80°C for further
686 quantitative RT-qPCR analysis.

687

688 **Induction of Nanobody Production and Secretion**

689 We inoculated successfully double-transformed bacteria in 5 ml precultures with a 1:1000
690 antibiotic dilution and incubated them at 37°C overnight while shaking at 120 r.p.m. The next
691 day, we transferred the cells to 10 ml TB with a 1:1000 antibiotic dilution and grew them at
692 37°C while shaking until an OD₆₀₀ of approximately 0.6 was reached. To induce secretion, we
693 added either L-arabinose (final concentration: 0.02%) or diethylenetriamine/nitric oxide
694 (DETA/NO) (testing different concentrations), depending on the transformed cells and their
695 nanobody plasmid. We incubated the cultures at 37°C overnight to allow them to express and
696 secrete nanobodies. We then spun down the cells and collected 2 ml of supernatant for testing
697 via Western Blot or ELISA.

698

699 If we needed to test the cell lysate, we first resuspended the cells in TBS and transferred them
700 to a screw-lid microcentrifuge tube. We added one PCR tube of glass beads and lysed the cells
701 using the maxiprep machine at 4 m/s for 20 seconds. We placed the cells on ice for 5 minutes
702 for recovery. We then repeated the shaking process twice, with 5-minute rest intervals in
703 between.

704

705 **ELISA**

706 The night before the experiment, we coated a 96-well Nunc Maxicrop immunoplate with 100
707 µl of protein A solution (1:1000 dilution in PBS) in each well, sealed the plate, and incubated
708 it at 4°C overnight. Before starting the experiment, we freshly prepared the buffers according

709 to the following specifications for ELISA: Tris-buffered saline (TBS) at 1x concentration; TBS-
710 BSA, which is TBS supplemented with 0.5% Bovine Serum Albumin (BSA, weight/volume);
711 TBS-D, consisting of TBS supplemented with a detergent of choice at an amount equivalent to
712 three times the Critical Micelle Concentration (CMC) of the chosen detergent; and TBS-BSA-
713 D, combining TBS with both 0.5% BSA and 0.1% of the chosen detergent (weight/volume).
714 We washed each well with 250 μ l TBS and then blocked them with 250 μ l TBS-BSA for 30
715 minutes. We washed the plate three times with 250 μ l TBS per well. Then, we added 100 μ l of
716 1:2000 diluted monoclonal anti-c-myc antibody (diluted in TBS-BSA-D) to each well and
717 incubated for 20 minutes. We washed the plate three times with 250 μ l TBS-D and added
718 samples diluted in TBS-BSA-D (20 μ l in 80 μ l solvent for supernatant or periplasmic extraction,
719 or approximately 50 nM for purified nanobodies). We washed the plate three times with 250 μ l
720 TBS-D, then added 100 μ l of 50 nM biotinylated TNF α in TBS-BSA-D and incubated for 20
721 minutes. We washed the plate three times with 250 μ l TBS-D before adding 100 μ l of 1:5000
722 diluted streptavidin-peroxidase polymer solutions (diluted in TBS-BSA-D) and incubating for
723 20 minutes. After washing the plate three times with 250 μ l TBS-D, we added 100 μ l of ELISA
724 developing buffer and incubated until individual wells turned blue, which took between 5 to 15
725 minutes. We then measured the absorbance at 650 nm using a plate reader. ELISA signals as
726 small as 1.5-fold above the background can indicate a high-affinity binder.

727 **ASSOCIATED CONTENT**

728

729 **Supplementary Information** is linked to the online version of the paper

730

731 **Acknowledgements:**

732 We extend our gratitude to the UZurich 2022 iGEM team for their collective efforts in
733 developing this study. Special thanks to Timothy Kurrer for his support throughout the
734 competition, and to Yen Way Isabell Trinh and Christian Andres Ramos Uria for their insights
735 on our mathematical model. We also thank the UZH flow cytometry facility for their technical
736 support and the gastroenterologists from IBD Net for their feedback. Lastly, we appreciate
737 Professors Markus Seeger from UZH for welcoming us in his group, and Richard Murray from
738 Caltech for sharing his expertise and protocols related to *Escherichia coli Nissle*.

739

740 **Author contributions:** All authors conceived the study and designed experiments.

741 **L.B., J.M., K.J. and C.A.W.** carried out NO-induced fluorescent reporter assays,
742 analyzed data, and generated figures.

743 **G.A., N.W., F.A. and J.E.** carried out nanobody production, purification and activity assays,
744 analyzed data, and generated figures.

745 **G.A., N.W., F.A. and J.E.** carried out NO-induced anti-TNF nanobodies secretion assays,
746 analyzed data, and generated figures.

747 **A.M. and A.S** carried out modelling, simulations, and generated figures.

748 **N. W., M. C., A. S., G. A. and M. M.**, contributed with the writing and editing of the paper.

749 **C.A.W.** wrote the final version of the paper.

750

751 **Data availability:** The data generated in this study will be deposited in a public repository upon
752 manuscript acceptance.

753

754 **Computer code:** The computer code will be shared in a public repository upon manuscript
755 acceptance.

756

757 **Competing interests:** The authors declare no competing interest.

758

759 **Corresponding authors:** Correspondence to caua.westmann@ieu.uzh.ch

760

761 **Supporting Information:** The general methods employed in this study include PCR (Section
762 1.1), real-time quantitative PCR (Section 1.2), preparation of calcium-competent EcN (Section
763 1.3), heat-shock transformation of calcium-competent EcN (Section 1.4), Gibson assembly
764 (Section 1.5), preparation of electrocompetent EcN (Section 1.6), electroporation (Section 1.7),
765 and Western Blot (Section 1.8). The plasmid design and construction cover secretion plasmid
766 design (Section 2.1), NO-sensing plasmid design (Section 2.2), and plasmid cloning (Section
767 2.3). Model supplementary methods include assumptions and parameters (Section 3.1), number
768 of inflammatory sites (Section 3.2), number of bacteria (Section 3.3), emission coefficients
769 (Section 3.4), diffusion coefficients (Section 3.5), emission dynamics (Section 3.6), and
770 diffusion dynamics (Section 3.7). Supplementary tables list oligonucleotides used (Table S1).
771 Supplementary figures feature the plasmid map of the negative control (Figure S1), the plasmid
772 map of the engineered nitric oxide sensor construct piGEM2 (β -1) (Figure S2), the plasmid map
773 of the engineered nitric oxide sensor construct piGEM3 (WT) (Figure S3), the effect of
774 DETA/NO on cellular growth (Figure S4), the impact of removing the plasmid-expressed NorR
775 on NO sensitivity and response strength (Figure S5), the plasmid map of the nanobody
776 purification plasmid (Figure S6), the plasmid map of the arabinose-induced nanobody
777 expression plasmid (Figure S7), the plasmid map of the secretion system plasmid (Figure S8),

778 the plasmid map of the NO-induced nanobody expression plasmid (β -2) (Figure S9), the
779 purification of monovalent and bivalent anti-TNF α nanobodies from *E. coli* MC1061 (Figure
780 S10), the comparison of over day to overnight arabinose-induced nanobody secretion in *E. coli*
781 MC1061 (Figure S11), the arabinose-induced anti-TNF α nanobody production in *E. coli*
782 MC1061 (Figure S12), the arabinose-induced anti-TNF α nanobody production in *E. coli* Nissle
783 1917 (Figure S13), the analysis of ELISA comparing the binding capabilities of purified and
784 secreted monovalent and bivalent anti-TNF α nanobodies in *E. coli* Nissle 1917 and *E. coli*
785 MC1061 (Figure S14), the NO-induced monovalent anti-TNF α nanobody expression in *E. coli*
786 Nissle 1917 (Figure S15), and a visual comparison between diffusion models (Figure S16).
787 (PDF).

788 **Funding:** This study was supported by multiple funding sources. Academic funding was
789 provided by the University of Zurich through the UZH Alumni Science, the Faculty of Science
790 (MNF), the Faculty of Medicine, the Vice President Research, and the President's Services.
791 Private sponsorship was provided by Pierre Fabre, Microsynth, the Swiss Academy of Sciences
792 (SCNAT), and Promega. Additionally, this publication was funded by the University of Zurich
793 and the Consortium of Swiss Academic Libraries, making it available as open access.

794

795 REFERENCES

796

797 (1) Szigethy, E.; McLafferty, L.; Goyal, A. Inflammatory Bowel Disease. *Child Adolesc Psychiatr Clin N Am* **2010**, *19* (2), 301–318. <https://doi.org/10.1016/j.chc.2010.01.007>.

798 (2) Guan, Q. A Comprehensive Review and Update on the Pathogenesis of Inflammatory

799 Bowel Disease. *J Immunol Res* **2019**, *2019*, 1–16. <https://doi.org/10.1155/2019/7247238>.

800 (3) Ng, S. C.; Shi, H. Y.; Hamidi, N.; Underwood, F. E.; Tang, W.; Benchimol, E. I.;

801 Panaccione, R.; Ghosh, S.; Wu, J. C. Y.; Chan, F. K. L.; Sung, J. J. Y.; Kaplan, G. G.

802 Worldwide Incidence and Prevalence of Inflammatory Bowel Disease in the 21st

803 Century: A Systematic Review of Population-Based Studies. *The Lancet* **2017**, *390*

804 (10114), 2769–2778. [https://doi.org/10.1016/S0140-6736\(17\)32448-0](https://doi.org/10.1016/S0140-6736(17)32448-0).

805 (4) Alatab, S.; Sepanlou, S. G.; Ikuta, K.; Vahedi, H.; Bisignano, C.; Safiri, S.; Sadeghi, A.;

806 Nixon, M. R.; Abdoli, A.; Abolhassani, H.; Alipour, V.; Almadi, M. A. H.; Almasi-

807 Hashiani, A.; Anushiravani, A.; Arabloo, J.; Atique, S.; Awasthi, A.; Badawi, A.; Baig, A.

808 A. A.; Bhala, N.; Bijani, A.; Biondi, A.; Borzì, A. M.; Burke, K. E.; Carvalho, F.; Daryani,

809 A.; Dubey, M.; Eftekhari, A.; Fernandes, E.; Fernandes, J. C.; Fischer, F.; Haj-Mirzaian,

810 A.; Haj-Mirzaian, A.; Hasanzadeh, A.; Hashemian, M.; Hay, S. I.; Hoang, C. L.; Househ,

811 M.; Ilesanmi, O. S.; Jafari Balalami, N.; James, S. L.; Kengne, A. P.; Malekzadeh, M.

812 M.; Merat, S.; Meretoja, T. J.; Mestrovic, T.; Mirrakhimov, E. M.; Mirzaei, H.;

813 Mohammad, K. A.; Mokdad, A. H.; Monasta, L.; Negoi, I.; Nguyen, T. H.; Nguyen, C.

814 T.; Pourshams, A.; Poustchi, H.; Rabiee, M.; Rabiee, N.; Ramezanadeh, K.; Rawaf, D.

815 L.; Rawaf, S.; Rezaei, N.; Robinson, S. R.; Ronfani, L.; Saxena, S.; Sepehrimanesh, M.;

816 Shaikh, M. A.; Sharafi, Z.; Sharif, M.; Siabani, S.; Sima, A. R.; Singh, J. A.; Soheili, A.;

817 Sotoudehmanesh, R.; Suleria, H. A. R.; Tesfay, B. E.; Tran, B.; Tsoi, D.; Vacante, M.;

818 Wondmieneh, A. B.; Zarghi, A.; Zhang, Z.-J.; Dirac, M.; Malekzadeh, R.; Naghavi, M.

819 The Global, Regional, and National Burden of Inflammatory Bowel Disease in 195

820 Countries and Territories, 1990–2017: A Systematic Analysis for the Global Burden of

821 Disease Study 2017. *Lancet Gastroenterol Hepatol* **2020**, *5* (1), 17–30.

822 [https://doi.org/10.1016/S2468-1253\(19\)30333-4](https://doi.org/10.1016/S2468-1253(19)30333-4).

823 (5) Zhang, Y.-Z. Inflammatory Bowel Disease: Pathogenesis. *World J Gastroenterol* **2014**,

824 *20* (1), 91. <https://doi.org/10.3748/wjg.v20.i1.91>.

825 (6) Cai, Z.; Wang, S.; Li, J. Treatment of Inflammatory Bowel Disease: A Comprehensive

826 Review. *Front Med (Lausanne)* **2021**, *8*. <https://doi.org/10.3389/fmed.2021.765474>.

827 (7) Genaro, L. M.; Gomes, L. E. M.; Franceschini, A. P. M. de F.; Ceccato, H. D.; de Jesus,

828 R. N.; Lima, A. P.; Nagasako, C. K.; Fagundes, J. J.; Ayrizono, M. de L. S.; Leal, R. F.

829 Anti-TNF Therapy and Immunogenicity in Inflammatory Bowel Diseases: A

830 Translational Approach. *Am J Transl Res* **2021**, *13* (12), 13916–13930.

831 (8) Sands, B. E.; Kaplan, G. G. The Role of TNF α in Ulcerative Colitis. *The Journal of*

832 *Clinical Pharmacology* **2007**, *47* (8), 930–941.

833 <https://doi.org/10.1177/0091270007301623>.

834 (9) Rutgeerts, P.; Sandborn, W. J.; Feagan, B. G.; Reinisch, W.; Olson, A.; Johanns, J.;

835 Travers, S.; Rachmilewitz, D.; Hanauer, S. B.; Lichtenstein, G. R.; de Villiers, W. J. S.;

836 Present, D.; Sands, B. E.; Colombel, J. F. Infliximab for Induction and Maintenance

837 Therapy for Ulcerative Colitis. *New England Journal of Medicine* **2005**, *353* (23), 2462–

838 2476. <https://doi.org/10.1056/NEJMoa050516>.

839 (10) Windsor, J. W.; Kaplan, G. G. Evolving Epidemiology of IBD. *Curr Gastroenterol Rep*

840 **2019**, *21* (8), 40. <https://doi.org/10.1007/s11894-019-0705-6>.

841 (11) Elhag, D. A.; Kumar, M.; Saadaoui, M.; Akobeng, A. K.; Al-Mudahka, F.; Elawad, M.;

842 Al Khodor, S. Inflammatory Bowel Disease Treatments and Predictive Biomarkers of

843

844 Therapeutic Response. *Int J Mol Sci* **2022**, *23* (13), 6966.
845 <https://doi.org/10.3390/ijms23136966>.

846 (12) Pedrolli, D. B.; Ribeiro, N. V.; Squizato, P. N.; de Jesus, V. N.; Cozetto, D. A.
847 Engineering Microbial Living Therapeutics: The Synthetic Biology Toolbox. *Trends
848 Biotechnol* **2018**, *0* (0). <https://doi.org/10.1016/j.tibtech.2018.09.005>.

849 (13) Cubillos-Ruiz, A.; Guo, T.; Sokolovska, A.; Miller, P. F.; Collins, J. J.; Lu, T. K.; Lora, J.
850 M. Engineering Living Therapeutics with Synthetic Biology. *Nat Rev Drug Discov* **2021**,
851 *20* (12), 941–960. <https://doi.org/10.1038/s41573-021-00285-3>.

852 (14) Shan, Y.; Lee, M.; Chang, E. B. The Gut Microbiome and Inflammatory Bowel Diseases.
853 *Annu Rev Med* **2022**, *73* (1), 455–468. <https://doi.org/10.1146/annurev-med-042320-021020>.

854 (15) Nissle, A. Weiteres Über Grundlagen Und Praxis Der Mutaflorbehandlung. *DMW-
855 Deutsche Medizinische Wochenschrift* **1925**, *51* (44), 1809–1813.

856 (16) Nissle, A. Die Antagonistische Behandlung Chronischer Darmstörungen Mit
857 Colibakterien. *Med Klin* **1918**, *2*, 29–33.

858 (17) Sonnenborn, U.; Schulze, J. The Non-Pathogenic *Escherichia Coli* Strain Nissle 1917 –
859 Features of a Versatile Probiotic. *Microb Ecol Health Dis* **2009**, *21* (3–4), 122–158.
860 <https://doi.org/10.3109/08910600903444267>.

861 (18) Torres, J.; [ECCO], on behalf of the E. C. and C. O.; Bonovas, S.; [ECCO], on behalf of
862 the E. C. and C. O.; Doherty, G.; [ECCO], on behalf of the E. C. and C. O.; Kucharzik,
863 T.; [ECCO], on behalf of the E. C. and C. O.; Gisbert, J. P.; [ECCO], on behalf of the E.
864 C. and C. O.; Raine, T.; [ECCO], on behalf of the E. C. and C. O.; Adamina, M.; [ECCO],
865 on behalf of the E. C. and C. O.; Armuzzi, A.; [ECCO], on behalf of the E. C. and C. O.;
866 Bachmann, O.; [ECCO], on behalf of the E. C. and C. O.; Bager, P.; [ECCO], on behalf
867 of the E. C. and C. O.; Biancone, L.; [ECCO], on behalf of the E. C. and C. O.;
868 Bokemeyer, B.; [ECCO], on behalf of the E. C. and C. O.; Bossuyt, P.; [ECCO], on
869 behalf of the E. C. and C. O.; Burisch, J.; [ECCO], on behalf of the E. C. and C. O.;
870 Collins, P.; [ECCO], on behalf of the E. C. and C. O.; El-Hussuna, A.; [ECCO], on behalf
871 of the E. C. and C. O.; Ellul, P.; [ECCO], on behalf of the E. C. and C. O.; Frei-Lanter,
872 C.; [ECCO], on behalf of the E. C. and C. O.; Furfaro, F.; [ECCO], on behalf of the E.
873 C. and C. O.; Gingert, C.; [ECCO], on behalf of the E. C. and C. O.; Gionchetti, P.;
874 [ECCO], on behalf of the E. C. and C. O.; Gomollon, F.; [ECCO], on behalf of the E. C.
875 and C. O.; González-Lorenzo, M.; [ECCO], on behalf of the E. C. and C. O.; Gordon,
876 H.; [ECCO], on behalf of the E. C. and C. O.; Hlavaty, T.; [ECCO], on behalf of the E.
877 C. and C. O.; Juillerat, P.; [ECCO], on behalf of the E. C. and C. O.; Katsanos, K.;
878 [ECCO], on behalf of the E. C. and C. O.; Kopylov, U.; [ECCO], on behalf of the E. C.
879 and C. O.; Krustins, E.; [ECCO], on behalf of the E. C. and C. O.; Lytras, T.; [ECCO],
880 on behalf of the E. C. and C. O.; Maaser, C.; [ECCO], on behalf of the E. C. and C. O.;
881 Magro, F.; [ECCO], on behalf of the E. C. and C. O.; Kenneth Marshall, J.; [ECCO], on
882 behalf of the E. C. and C. O.; Myrelid, P.; [ECCO], on behalf of the E. C. and C. O.;
883 Pellino, G.; [ECCO], on behalf of the E. C. and C. O.; Rosa, I.; [ECCO], on behalf of the
884 E. C. and C. O.; Sabino, J.; [ECCO], on behalf of the E. C. and C. O.; Savarino, E.;
885 [ECCO], on behalf of the E. C. and C. O.; Spinelli, A.; [ECCO], on behalf of the E. C.
886 and C. O.; Stassen, L.; [ECCO], on behalf of the E. C. and C. O.; Uzzan, M.; [ECCO],
887 on behalf of the E. C. and C. O.; Vavricka, S.; [ECCO], on behalf of the E. C. and C. O.;
888 Verstockt, B.; [ECCO], on behalf of the E. C. and C. O.; Warusavitarne, J.; [ECCO], on
889 behalf of the E. C. and C. O.; Zmora, O.; [ECCO], on behalf of the E. C. and C. O.;
890 Fiorino, G.; [ECCO], on behalf of the E. C. and C. O. ECCO Guidelines on Therapeutics
891 in Crohn's Disease: Medical Treatment. *J Crohns Colitis* **2020**, *14* (1), 4–22.
892 <https://doi.org/10.1093/ECCO-JCC/JJZ180>.

893

894 (19) Raine, T.; Bonovas, S.; Burisch, J.; Kucharzik, T.; Adamina, M.; Annese, V.; Bachmann,
895 O.; Bettenworth, D.; Chaparro, M.; Czuber-Dochan, W.; Eder, P.; Ellul, P.; Fidalgo, C.;
896 Fiorino, G.; Gionchetti, P.; Gisbert, J. P.; Gordon, H.; Hedin, C.; Holubar, S.; Iacucci, M.;
897 Karmiris, K.; Katsanos, K.; Kopylov, U.; Lakatos, P. L.; Lytras, T.; Lyutakov, I.; Noor,
898 N.; Pellino, G.; Piovani, D.; Savarino, E.; Selvaggi, F.; Verstockt, B.; Spinelli, A.; Panis,
899 Y.; Doherty, G. ECCO Guidelines on Therapeutics in Ulcerative Colitis: Medical
900 Treatment. *J Crohns Colitis* **2022**, *16* (1), 2–17. <https://doi.org/10.1093/ECCO-JCC/JJAB178>.

901 (20) Gordon, H.; Biancone, L.; Fiorino, G.; Katsanos, K. H.; Kopylov, U.; Al Sulais, E.;
902 Axelrad, J. E.; Balandran, K.; Burisch, J.; De Ridder, L.; Derikx, L.; Ellul, P.; Greuter,
903 T.; Iacucci, M.; Di Jiang, C.; Kapizioni, C.; Karmiris, K.; Kirchgesner, J.; Laharie, D.;
904 Lobatón, T.; Molnár, T.; Noor, N. M.; Rao, R.; Saibeni, S.; Scharl, M.; Vavricka, S. R.;
905 Raine, T. ECCO Guidelines on Inflammatory Bowel Disease and Malignancies. *J Crohns
906 Colitis* **2023**, *17* (6), 827–854. <https://doi.org/10.1093/ECCO-JCC/JJAC187>.

907 (21) Schultz, M. Clinical Use of *E. Coli* Nissle 1917 in Inflammatory Bowel Disease. *Inflamm
908 Bowel Dis* **2008**, *14* (7), 1012–1018. <https://doi.org/10.1002/ibd.20377>.

909 (22) Ukena, S. N.; Singh, A.; Dringenberg, U.; Engelhardt, R.; Seidler, U.; Hansen, W.; Bleich,
910 A.; Bruder, D.; Franzke, A.; Rogler, G.; Suerbaum, S.; Buer, J.; Gunzer, F.; Westendorf,
911 A. M. Probiotic *Escherichia Coli* Nissle 1917 Inhibits Leaky Gut by Enhancing Mucosal
912 Integrity. *PLoS One* **2007**, *2* (12), e1308. <https://doi.org/10.1371/journal.pone.0001308>.

913 (23) Matthes, H.; Krummenerl, T.; Giensch, M.; Wolff, C.; Schulze, J. Clinical Trial: Probiotic
914 Treatment of Acute Distal Ulcerative Colitis with Rectally Administered *Escherichia
915 Coli* Nissle 1917 (EcN). *BMC Complement Altern Med* **2010**, *10* (1), 13.
916 <https://doi.org/10.1186/1472-6882-10-13>.

917 (24) Kruis, W. Maintaining Remission of Ulcerative Colitis with the Probiotic *Escherichia
918 Coli* Nissle 1917 Is as Effective as with Standard Mesalazine. *Gut* **2004**, *53* (11), 1617–
919 1623. <https://doi.org/10.1136/gut.2003.037747>.

920 (25) Dong, Y.; Xu, T.; Xiao, G.; Hu, Z.; Chen, J. Opportunities and Challenges for Synthetic
921 Biology in the Therapy of Inflammatory Bowel Disease. *Front Bioeng Biotechnol* **2022**,
922 *10*. <https://doi.org/10.3389/fbioe.2022.909591>.

923 (26) Lynch, J. P.; Goers, L.; Lesser, C. F. Emerging Strategies for Engineering *Escherichia
924 Coli* Nissle 1917-Based Therapeutics. *Trends Pharmacol Sci* **2022**, *43* (9), 772–786.
925 <https://doi.org/10.1016/j.tips.2022.02.002>.

926 (27) Ba, F.; Zhang, Y.; Ji, X.; Liu, W.; Ling, S.; Li, J. Expanding the Toolbox of Probiotic
927 *Escherichia Coli* Nissle 1917 for Synthetic Biology. *Biotechnol J* **2023**.
928 <https://doi.org/10.1002/biot.202300327>.

929 (28) Kurtz, C. B.; Millet, Y. A.; Puurunen, M. K.; Perreault, M.; Charbonneau, M. R.; Isabella,
930 V. M.; Kotula, J. W.; Antipov, E.; Dagon, Y.; Denney, W. S.; Wagner, D. A.; West, K. A.;
931 Degar, A. J.; Brennan, A. M.; Miller, P. F. An Engineered *E. Coli* Nissle Improves
932 Hyperammonemia and Survival in Mice and Shows Dose-Dependent Exposure in
933 Healthy Humans. *Sci Transl Med* **2019**, *11* (475).
934 <https://doi.org/10.1126/scitranslmed.aau7975>.

935 (29) Isabella, V. M.; Ha, B. N.; Castillo, M. J.; Lubkowicz, D. J.; Rowe, S. E.; Millet, Y. A.;
936 Anderson, C. L.; Li, N.; Fisher, A. B.; West, K. A.; Reeder, P. J.; Momin, M. M.; Bergeron,
937 C. G.; Guilmain, S. E.; Miller, P. F.; Kurtz, C. B.; Falb, D. Development of a Synthetic
938 Live Bacterial Therapeutic for the Human Metabolic Disease Phenylketonuria. *Nat
939 Biotechnol* **2018**, *36* (9), 857–864. <https://doi.org/10.1038/nbt.4222>.

940 (30) Praveschotinunt, P.; Duraj-Thatte, A. M.; Gelfat, I.; Bahl, F.; Chou, D. B.; Joshi, N. S.
941 Engineered *E. Coli* Nissle 1917 for the Delivery of Matrix-Tethered Therapeutic
942 Domains to the Gut. *Nat Commun* **2019**, *10* (1), 5580. [https://doi.org/10.1038/s41467-019-13336-6](https://doi.org/10.1038/s41467-
943 019-13336-6).

944

945 (31) Gelfat, I.; Aqeel, Y.; Tremblay, J. M.; Jaskiewicz, J. J.; Shrestha, A.; Lee, J. N.; Hu, S.;
946 Qian, X.; Magoun, L.; Sheoran, A.; Bedenice, D.; Giem, C.; Manjula-Basavanna, A.;
947 Pulsifer, A. R.; Tu, H. X.; Li, X.; Minus, M. L.; Osburne, M. S.; Tzipori, S.; Shoemaker,
948 C. B.; Leong, J. M.; Joshi, N. S. Single Domain Antibodies against Enteric Pathogen
949 Virulence Factors Are Active as Curli Fiber Fusions on Probiotic *E. Coli* Nissle 1917.
950 *PLoS Pathog* **2022**, *18* (9). <https://doi.org/10.1371/JOURNAL.PPAT.1010713>.

951 (32) Zou, Z. P.; Du, Y.; Fang, T. T.; Zhou, Y.; Ye, B. C. Biomarker-Responsive Engineered
952 Probiotic Diagnoses, Records, and Ameliorates Inflammatory Bowel Disease in Mice.
953 *Cell Host Microbe* **2023**, *31* (2), 199-212.e5.
954 <https://doi.org/10.1016/J.CHOM.2022.12.004>.

955 (33) Lynch, J. P.; González-Prieto, C.; Reeves, A. Z.; Bae, S.; Powale, U.; Godbole, N. P.;
956 Tremblay, J. M.; Schmidt, F. I.; Ploegh, H. L.; Kansra, V.; Glickman, J. N.; Leong, J. M.;
957 Shoemaker, C. B.; Garrett, W. S.; Lesser, C. F. Engineered *Escherichia Coli* for the in
958 Situ Secretion of Therapeutic Nanobodies in the Gut. *Cell Host Microbe* **2023**, *31* (4),
959 634-649.e8. <https://doi.org/10.1016/j.chom.2023.03.007>.

960 (34) Liu, Y.; Zhu, Z.; Jiang, L. Programming Therapeutic Probiotics by Self-Tunable Sense-
961 and-Respond Genetic Circuits. *Trends Microbiol* **2023**, *31* (11), 1099–1101.
962 <https://doi.org/10.1016/j.tim.2023.08.001>.

963 (35) Soufli, I.; Toumi, R.; Rafa, H.; Touil-Boukoffa, C. Overview of Cytokines and Nitric
964 Oxide Involvement in Immuno-Pathogenesis of Inflammatory Bowel Diseases. *World J
965 Gastrointest Pharmacol Ther* **2016**, *7* (3), 353. <https://doi.org/10.4292/wjgpt.v7.i3.353>.

966 (36) Avdagić, N.; Zaćiragić, A.; Babić, N.; Hukić, M.; Šeremet, M.; Lepara, O.; Nakaš-Ićindić,
967 E. Nitric Oxide as a Potential Biomarker in Inflammatory Bowel Disease. *Bosn J Basic
968 Med Sci* **2013**, *13* (1), 5. <https://doi.org/10.17305/bjbms.2013.2402>.

969 (37) Schairer, D. O.; Chouake, J. S.; Nosanchuk, J. D.; Friedman, A. J. The Potential of Nitric
970 Oxide Releasing Therapies as Antimicrobial Agents. *Virulence* **2012**, *3* (3), 271–279.
971 <https://doi.org/10.4161/viru.20328>.

972 (38) Chen, X. J.; Wang, B.; Thompson, I. P.; Huang, W. E. Rational Design and
973 Characterization of Nitric Oxide Biosensors in *E. Coli* Nissle 1917 and Mini SimCells.
974 *ACS Synth Biol* **2021**, *10* (10), 2566–2578. <https://doi.org/10.1021/acssynbio.1c00223>.

975 (39) Muyllemans, S. Nanobodies: Natural Single-Domain Antibodies. *Annu Rev Biochem*
976 **2013**, *82*, 775–797. <https://doi.org/10.1146/ANNUREV-BIOCHEM-063011-092449>.

977 (40) Hamers-Casterman, C.; Atarhouch, T.; Muyllemans, S.; Robinson, G.; Hammers, C.;
978 Songa, E. B.; Bendahman, N.; Hammers, R. Naturally Occurring Antibodies Devoid of
979 Light Chains. *Nature* **1993** *363*:6428 **1993**, *363* (6428), 446–448.
980 <https://doi.org/10.1038/363446a0>.

981 (41) Vincke, C.; Loris, R.; Saerens, D.; Martinez-Rodriguez, S.; Muyllemans, S.; Conrath,
982 K. General Strategy to Humanize a Camelid Single-Domain Antibody and Identification
983 of a Universal Humanized Nanobody Scaffold. *Journal of Biological Chemistry* **2009**,
984 *284* (5), 3273–3284. <https://doi.org/10.1074/jbc.M806889200>.

985 (42) Silence, K.; Lauwereys, M.; De Haard, H. Single Domain Antibodies Directed against
986 Tumour Necrosis Factor-Alpha and Uses Therefor. US20090022721A1, 2003.

987 (43) Dalbey, R. E.; Kuhn, A. Protein Traffic in Gram-Negative Bacteria – How Exported and
988 Secreted Proteins Find Their Way. *FEMS Microbiol Rev* **2012**, *36* (6), 1023–1045.
989 <https://doi.org/10.1111/J.1574-6976.2012.00327.X>.

990 (44) Holland, I. B.; Kenny, B.; Blight, M. Haemolysin Secretion from *E Coli*. *Biochimie* **1990**,
991 *72* (2–3), 131–141. [https://doi.org/10.1016/0300-9084\(90\)90138-7](https://doi.org/10.1016/0300-9084(90)90138-7).

992 (45) Blight, M. A.; Chervaux, C.; Holland, I. B. Protein Secretion Pathways in *Escherichia
993 Coli*. *Curr Opin Biotechnol* **1994**, *5* (5), 468–474. [https://doi.org/10.1016/0958-1669\(94\)90059-0](https://doi.org/10.1016/0958-1669(94)90059-0).

995 (46) Green, E. R.; Mecsas, J. Bacterial Secretion Systems: An Overview. *Microbiol Spectr*
996 **2016**, *4* (1). <https://doi.org/10.1128/microbiolspec.VMBF-0012-2015>.

997 (47) Fraile, S.; Muñoz, A.; De Lorenzo, V.; Fernández, L. A. Secretion of Proteins with
998 Dimerization Capacity by the Haemolysin Type I Transport System of *Escherichia Coli*.
999 *Mol Microbiol* **2004**, *53* (4), 1109–1121. <https://doi.org/10.1111/j.1365-2958.2004.04205.x>.

1000 (48) Ruano-Gallego, D.; Fraile, S.; Gutierrez, C.; Fernández, L. Á. Screening and Purification
1001 of Nanobodies from *E. Coli* Culture Supernatants Using the Hemolysin Secretion System.
1002 *Microp Cell Fact* **2019**, *18* (1), 47. <https://doi.org/10.1186/s12934-019-1094-0>.

1003 (49) Hutchings, M. I.; Mandhana, N.; Spiro, S. The NorR Protein of *Escherichia Coli*
1004 Activates Expression of the Flavorubredoxin Gene *NorV* in Response to Reactive
1005 Nitrogen Species. *J Bacteriol* **2002**, *184* (16), 4640–4643.
1006 <https://doi.org/10.1128/JB.184.16.4640-4643.2002>.

1007 (50) Gardner, A. M.; Gessner, C. R.; Gardner, P. R. Regulation of the Nitric Oxide Reduction
1008 Operon (NorRVW) in *Escherichia Coli*. *Journal of Biological Chemistry* **2003**, *278* (12),
1009 10081–10086. <https://doi.org/10.1074/jbc.M212462200>.

1010 (51) D'Autréaux, B.; Tucker, N. P.; Dixon, R.; Spiro, S. A Non-Haem Iron Centre in the
1011 Transcription Factor NorR Senses Nitric Oxide. *Nature* **2005**, *437* (7059), 769–772.
1012 <https://doi.org/10.1038/nature03953>.

1013 (52) Tucker, N. P.; D'Autréaux, B.; Spiro, S.; Dixon, R. Mechanism of Transcriptional
1014 Regulation by the *Escherichia Coli* Nitric Oxide Sensor NorR. *Biochem Soc Trans* **2006**,
1015 *34* (1), 191–194. <https://doi.org/10.1042/BST0340191>.

1016 (53) Pédelacq, J. D.; Cabantous, S.; Tran, T.; Terwilliger, T. C.; Waldo, G. S. Engineering and
1017 Characterization of a Superfolder Green Fluorescent Protein. *Nat Biotechnol* **2006**, *24*
1018 (1), 79–88. <https://doi.org/10.1038/nbt1172>.

1019 (54) Mancinelli, R. L.; McKay, C. P. Effects of Nitric Oxide and Nitrogen Dioxide on
1020 Bacterial Growth. *Appl Environ Microbiol* **1983**, *46* (1), 198–202.
1021 <https://doi.org/10.1128/AEM.46.1.198-202.1983>.

1022 (55) Korostelev, A. A. The Structural Dynamics of Translation. *Annu Rev Biochem* **2022**, *91*
1023 (Volume 91, 2022), 245–267. <https://doi.org/10.1146/ANNUREV-BIOCHEM-071921-122857/CITE/REFWORKS>.

1024 (56) Gingold, H.; Pilpel, Y. Determinants of Translation Efficiency and Accuracy. *Mol Syst
1025 Biol* **2011**, *7*. <https://doi.org/10.1038/MSB.2011.14>.

1026 (57) Unoson, C.; Gerhart, E.; Wagner, H.; Gerhart, / E. Dealing with Stable Structures at
1027 Ribosome Binding Sites: Bacterial Translation and Ribosome Standby. *RNA Biol* **2007**,
1028 *4* (3), 113–117. <https://doi.org/10.4161/RNA.4.3.5350>.

1029 (58) Zimmermann, I.; Egloff, P.; Hutter, C. A.; Arnold, F. M.; Stohler, P.; Bocquet, N.; Hug,
1030 M. N.; Huber, S.; Siegrist, M.; Hetemann, L.; Gera, J.; Gmür, S.; Spies, P.; Gygax, D.;
1031 Geertsma, E. R.; Dawson, R. J.; Seeger, M. A. Synthetic Single Domain Antibodies for
1032 the Conformational Trapping of Membrane Proteins. *eLife* **2018**, *7*.
1033 <https://doi.org/10.7554/eLife.34317>.

1034 (59) Lee, S. H.; Kwon, J. eun; Cho, M.-L. Immunological Pathogenesis of Inflammatory
1035 Bowel Disease. *Intest Res* **2018**, *16* (1), 26. <https://doi.org/10.5217/ir.2018.16.1.26>.

1036 (60) Scheinfeld, N. Adalimumab (HUMIRA): A Review. *J Drugs Dermatol* **2003**, *2* (4), 375–
1037 377.

1038 (61) Schöneberg, J.; Ullrich, A.; Noé, F. Simulation Tools for Particle-Based Reaction-
1039 Diffusion Dynamics in Continuous Space. *BMC Biophys* **2014**, *7* (1), 11.
1040 <https://doi.org/10.1186/s13628-014-0011-5>.

1041 (62) Andrews, S. S.; Bray, D. Stochastic Simulation of Chemical Reactions with Spatial
1042 Resolution and Single Molecule Detail. *Phys Biol* **2004**, *1* (3), 137–151.
1043 <https://doi.org/10.1088/1478-3967/1/3/001>.

1044

1045

1046 (63) Chew, W.-X.; Kaizu, K.; Watabe, M.; Muniandy, S. V.; Takahashi, K.; Arjunan, S. N. V.
1047 Surface Reaction-Diffusion Kinetics on Lattice at the Microscopic Scale. *Phys Rev E*
1048 **2019**, *99* (4), 042411. <https://doi.org/10.1103/PhysRevE.99.042411>.

1049 (64) Kerr, R. A.; Bartol, T. M.; Kaminsky, B.; Dittrich, M.; Chang, J.-C. J.; Baden, S. B.;
1050 Sejnowski, T. J.; Stiles, J. R. Fast Monte Carlo Simulation Methods for Biological
1051 Reaction-Diffusion Systems in Solution and on Surfaces. *SIAM Journal on Scientific
1052 Computing* **2008**, *30* (6), 3126–3149. <https://doi.org/10.1137/070692017>.

1053 (65) Radhakrishnan, K.; Halász, Á.; McCabe, M. M.; Edwards, J. S.; Wilson, B. S.
1054 Mathematical Simulation of Membrane Protein Clustering for Efficient Signal
1055 Transduction. *Ann Biomed Eng* **2012**, *40* (11), 2307–2318.
1056 <https://doi.org/10.1007/s10439-012-0599-z>.

1057 (66) Avdagić, N.; Začiragić, A.; Babić, N.; Hukić, M.; Šeremet, M.; Lepara, O.; Nakaš-Ićindić,
1058 E. Nitric Oxide as a Potential Biomarker in Inflammatory Bowel Disease. *Bosn J Basic
1059 Med Sci* **2013**, *13* (1), 5. <https://doi.org/10.17305/bjbms.2013.2402>.

1060 (67) Lacruz-Guzmán, D.; Torres-Moreno, D.; Pedrero, F.; Romero-Cara, P.; García-Tercero,
1061 I.; Trujillo-Santos, J.; Conesa-Zamora, P. Influence of Polymorphisms and TNF and IL1 β
1062 Serum Concentration on the Infliximab Response in Crohn's Disease and Ulcerative
1063 Colitis. *Eur J Clin Pharmacol* **2013**, *69* (3), 431–438. <https://doi.org/10.1007/s00228-012-1389-0>.

1065 (68) Iwaki, T.; Hara, K.; Umemura, K. Nanobody Production Can Be Simplified by Direct
1066 Secretion from Escherichia Coli. *Protein Expr Purif* **2020**, *170*, 105607.
1067 <https://doi.org/10.1016/j.pep.2020.105607>.

1068 (69) Sender, R.; Fuchs, S.; Milo, R. Revised Estimates for the Number of Human and Bacteria
1069 Cells in the Body. *PLoS Biol* **2016**, *14* (8), e1002533.
1070 <https://doi.org/10.1371/journal.pbio.1002533>.

1071 (70) McCallum, G.; Tropini, C. The Gut Microbiota and Its Biogeography. *Nat Rev Microbiol*
1072 **2023**. <https://doi.org/10.1038/s41579-023-00969-0>.

1073 (71) Stein, R. R.; Tanoue, T.; Szabady, R. L.; Bhattacharai, S. K.; Olle, B.; Norman, J. M.; Suda,
1074 W.; Oshima, K.; Hattori, M.; Gerber, G. K.; Sander, C.; Honda, K.; Bucci, V. Computer-
1075 Guided Design of Optimal Microbial Consortia for Immune System Modulation. *Elife*
1076 **2018**, *7*. <https://doi.org/10.7554/elife.30916>.

1077 (72) Aogo, R. A.; Tanaka, M. M.; Penington, C. J. Spatial Dynamics of Inflammation-Causing
1078 and Commensal Bacteria in the Gastrointestinal Tract. *J Theor Biol* **2022**, *548*, 111194.
1079 <https://doi.org/10.1016/j.jtbi.2022.111194>.

1080 (73) Labarthe, S.; Polizzi, B.; Phan, T.; Goudon, T.; Ribot, M.; Laroche, B. A Mathematical
1081 Model to Investigate the Key Drivers of the Biogeography of the Colon Microbiota. *J
1082 Theor Biol* **2019**, *462*, 552–581. <https://doi.org/10.1016/j.jtbi.2018.12.009>.

1083 (74) Arciero, J. C.; Ermentrout, G. B.; Upperman, J. S.; Vodovotz, Y.; Rubin, J. E. Using a
1084 Mathematical Model to Analyze the Role of Probiotics and Inflammation in Necrotizing
1085 Enterocolitis. *PLoS One* **2010**, *5* (4), e10066.
1086 <https://doi.org/10.1371/journal.pone.0010066>.

1087 (75) Maria Spagnuolo, A.; DiRita, V.; Kirschner, D. A Model for Vibrio Cholerae
1088 Colonization of the Human Intestine. *J Theor Biol* **2011**, *289*, 247–258.
1089 <https://doi.org/10.1016/j.jtbi.2011.08.028>.

1090 (76) Thomas, D. D.; Liu, X.; Kantrow, S. P.; Lancaster, J. R. The Biological Lifetime of Nitric
1091 Oxide: Implications for the Perivascular Dynamics of NO and O₂. *Proceedings of the
1092 National Academy of Sciences* **2001**, *98* (1), 355–360.
1093 <https://doi.org/10.1073/pnas.98.1.355>.

1094 (77) Malinski, T.; Taha, Z.; Grunfeld, S.; Patton, S.; Kapturczak, M.; Tomboulian, P. Diffusion
1095 of Nitric Oxide in the Aorta Wall Monitored in Situ by Porphyrinic Microsensors.

1096 *Biochem Biophys Res Commun* **1993**, *193* (3), 1076–1082.
1097 <https://doi.org/10.1006/bbrc.1993.1735>.

1098 (78) Triassi, A. J.; Fields, B. D.; Monahan, C. E.; Means, J. M.; Park, Y.; Doosthosseini, H.;
1099 Padmakumar, J. P.; Isabella, V. M.; Voigt, C. A. Redesign of an Escherichia Coli Nissle
1100 Treatment for Phenylketonuria Using Insulated Genomic Landing Pads and Genetic
1101 Circuits to Reduce Burden. *Cell Syst* **2023**, *14* (6), 512-524.e12.
1102 <https://doi.org/10.1016/j.cels.2023.05.004>.

1103 (79) Wu, G.; Yan, Q.; Jones, J. A.; Tang, Y. J.; Fong, S. S.; Koffas, M. A. G. Metabolic Burden:
1104 Cornerstones in Synthetic Biology and Metabolic Engineering Applications. *Trends
1105 Biotechnol* **2016**, *34* (8), 652–664. <https://doi.org/10.1016/J.TIBTECH.2016.02.010>.

1106 (80) Borkowski, O.; Ceroni, F.; Stan, G. B.; Ellis, T. Overloaded and Stressed: Whole-Cell
1107 Considerations for Bacterial Synthetic Biology. *Curr Opin Microbiol* **2016**, *33*, 123–130.
1108 <https://doi.org/10.1016/J.MIB.2016.07.009>.

1109 (81) Elowitz, M. B.; Levine, A. J.; Siggia, E. D.; Swain, P. S. Stochastic Gene Expression in
1110 a Single Cell. *Science* (1979) **2007**, *297* (2002), 1183–1186.
1111 <https://doi.org/10.1126/science.1070919>.

1112 (82) Bandiera, L.; Furini, S.; Giordano, E. Phenotypic Variability in Synthetic Biology
1113 Applications: Dealing with Noise in Microbial Gene Expression. *Frontiers in
1114 Microbiology* **2016**. <https://doi.org/10.3389/fmicb.2016.00479>.

1115 (83) Tropini, C.; Earle, K. A.; Huang, K. C.; Sonnenburg, J. L. The Gut Microbiome:
1116 Connecting Spatial Organization to Function. *Cell Host Microbe* **2017**, *21* (4), 433–442.
1117 <https://doi.org/10.1016/J.CHOM.2017.03.010>.

1118 (84) Del Vecchio, D.; Qian, Y.; Murray, R. M.; Sontag, E. D. Future Systems and Control
1119 Research in Synthetic Biology. *Annu Rev Control* **2018**, *45*, 5–17.
1120 <https://doi.org/10.1016/J.ARCONTROL.2018.04.007>.

1121 (85) Choudhary, R.; Mahadevan, R. Toward a Systematic Design of Smart Probiotics. *Curr
1122 Opin Biotechnol* **2020**, *64*, 199–209. <https://doi.org/10.1016/J.COPBIO.2020.05.003>.

1123 (86) Rohlhill, J.; Sandoval, N. R.; Papoutsakis, E. T. Sort-Seq Approach to Engineering a
1124 Formaldehyde-Inducible Promoter for Dynamically Regulated Escherichia Coli Growth
1125 on Methanol. *ACS Synth Biol* **2017**, *6* (8), 1584–1595.
1126 [https://doi.org/10.1021/ACSSYNBIO.7B00114/SUPPL_FILE/SB7B00114_LIVESLID
ES.MP4](https://doi.org/10.1021/ACSSYNBIO.7B00114/SUPPL_FILE/SB7B00114_LIVESLID
1127 ES.MP4).

1128 (87) Cobb, R. E.; Sun, N.; Zhao, H. Directed Evolution as a Powerful Synthetic Biology Tool.
1129 *Methods* **2013**, *60* (1), 81–90. <https://doi.org/10.1016/j.ymeth.2012.03.009>.

1130 (88) Westmann, C. A.; Guazzaroni, M.-E.; Silva-Rocha, R. Engineering Complexity in
1131 Bacterial Regulatory Circuits for Biotechnological Applications. *mSystems* **2018**, *3* (2),
1132 e00151-17. <https://doi.org/10.1128/mSystems.00151-17>.

1133 (89) Westmann, C. A.; Goldbach, L.; Wagner, A. The Highly Rugged yet Navigable
1134 Regulatory Landscape of the Bacterial Transcription Factor TetR. *bioRxiv* **2023**,
1135 2023.08.25.554764. <https://doi.org/10.1101/2023.08.25.554764>.

1136 (90) Moon, T. S. Probiotic and Microbiota Engineering for Practical Applications. *Curr Opin
1137 Food Sci* **2024**, *56*, 101130. <https://doi.org/10.1016/J.COFS.2024.101130>.

1138 (91) Barra, M.; Danino, T.; Garrido, D. Engineered Probiotics for Detection and Treatment of
1139 Inflammatory Intestinal Diseases. *Front Bioeng Biotechnol* **2020**, *8*, 521594.
1140 <https://doi.org/10.3389/FBIOE.2020.00265/BIBTEX>.

1141 (92) Brooks, S. M.; Alper, H. S. Applications, Challenges, and Needs for Employing
1142 Synthetic Biology beyond the Lab. *Nature Communications* **2021** *12:1* **2021**, *12* (1), 1–
1143 16. <https://doi.org/10.1038/s41467-021-21740-0>.

1144 (93) Kumar, S.; Hasty, J. Stability, Robustness, and Containment: Preparing Synthetic
1145 Biology for Real-World Deployment. *Curr Opin Biotechnol* **2023**, *79*, 102880.
1146 <https://doi.org/10.1016/j.copbio.2022.102880>.

1147 (94) Ingram, D.; Stan, G. B. Modelling Genetic Stability in Engineered Cell Populations.
1148 *Nature Communications* 2023 14:1 **2023**, 14 (1), 1–12. <https://doi.org/10.1038/s41467-023-38850-6>.

1149 (95) Olier, M.; Marcq, I.; Salvador-Cartier, C.; Secher, T.; Dobrindt, U.; Boury, M.; Bacquié,
1150 V.; Penary, M.; Gaultier, E.; Nougayrède, J. P.; Fioramonti, J.; Oswald, E. Genotoxicity
1151 of Escherichia Coli Nissle 1917 Strain Cannot Be Dissociated from Its Probiotic Activity.
1152 *Gut Microbes* 2012, 3 (6), 501. <https://doi.org/10.4161/GMIC.21737>.

1153 (96) Nougayrède, J.-P.; Chagneau, C. V.; Motta, J.-P.; Bossuet-Greif, N.; Belloy, M.; Taieb,
1154 F.; Gratadoux, J.-J.; Thomas, M.; Langella, P.; Oswald, E. A Toxic Friend: Genotoxic
1155 and Mutagenic Activity of the Probiotic Strain Escherichia Coli Nissle 1917. *mSphere*
1156 2021, 6 (4). <https://doi.org/10.1128/MSPHERE.00624-21>.

1157 (97) Tramontano, M.; Andrejev, S.; Pruteanu, M.; Klünemann, M.; Kuhn, M.; Galardini, M.;
1158 Jouhnen, P.; Zelezniak, A.; Zeller, G.; Bork, P.; Typas, A.; Patil, K. R. Nutritional
1159 Preferences of Human Gut Bacteria Reveal Their Metabolic Idiosyncrasies. *Nature
1160 Microbiology* 2018 3:4 **2018**, 3 (4), 514–522. <https://doi.org/10.1038/s41564-018-0123-9>.

1161 (98) A Heinken, G. A. D. R. J. H. M. N. O. O. AGORA2: Large Scale Reconstruction of the
1162 Microbiome Highlights Wide-Spread Drug-Metabolising Capacities. *bioRxiv* **2020**.
1163 <https://doi.org/10.1101/2020.11.09.375451>.

1164 (99) van 't Hof, M.; Mohite, O. S.; Monk, J. M.; Weber, T.; Palsson, B. O.; Sommer, M. O.
1165 A. High-Quality Genome-Scale Metabolic Network Reconstruction of Probiotic
1166 Bacterium Escherichia Coli Nissle 1917. *BMC Bioinformatics* **2022**, 23 (1), 1–23.
1167 <https://doi.org/10.1186/S12859-022-05108-9/FIGURES/4>.

1168 (100) Nørholm, M. H. H. Meta Synthetic Biology: Controlling the Evolution of Engineered
1169 Living Systems. *Microb Biotechnol* **2018**, 1751-7915.13350.
1170 <https://doi.org/10.1111/1751-7915.13350>.

1171 (101) Mays, Z. J. S.; Chappell, T. C.; Nair, N. U. Quantifying and Engineering Mucus
1172 Adhesion of Probiotics. *ACS Synth Biol* **2020**, 9 (2), 356–367.
1173 <https://doi.org/10.1021/acssynbio.9b00356>.

1174 (102) Kan, A.; Gelfat, I.; Emani, S.; Praveschotinunt, P.; Joshi, N. S. Plasmid Vectors for *in*
1175 *Vivo* Selection-Free Use with the Probiotic *E. Coli* Nissle 1917. *ACS Synth Biol* **2021**,
1176 10 (1), 94–106. <https://doi.org/10.1021/acssynbio.0c00466>.

1177 (103) Sundaram, L. S.; Ajioka, J. W.; Molloy, J. C. Synthetic Biology Regulation in Europe:
1178 Containment, Release and Beyond. *Synth Biol* **2023**, 8 (1).
1179 <https://doi.org/10.1093/synbio/ysad009>.

1180 (104) Donati, S.; Barbier, I.; García-Soriano, D. A.; Grasso, S.; Handal-Marquez, P.; Malci, K.;
1181 Marlow, L.; Westmann, C.; Amara, A. Synthetic Biology in Europe: Current Community
1182 Landscape and Future Perspectives. *Biotechnology Notes* **2022**, 3, 54–61.
1183 <https://doi.org/10.1016/J.BIOTNO.2022.07.003>.

1184 (105) Karabin, J.; Mansfield, I.; Frow, E. K. Exploring Presentations of Sustainability by US
1185 Synthetic Biology Companies. *PLoS One* **2021**, 16 (9), e0257327.
1186 <https://doi.org/10.1371/JOURNAL.PONE.0257327>.

1187 (106) Voigt, C. A. Synthetic Biology 2020–2030: Six Commercially-Available Products That
1188 Are Changing Our World. *Nat Commun* **2020**, 11 (1), 6379.
1189 <https://doi.org/10.1038/s41467-020-20122-2>.

1190
1191
1192