

BACTERIAL MEMBRANE VESICLES OF *PSEUDOMONAS AERUGINOSA* ACTIVATE AMPK SIGNALING THROUGH INHIBITION OF MITOCHONDRIAL COMPLEX III

Julia Müller^{1,2}, Marcel Kretschmer^{1,2}, Elise Opitsch^{1,2}, Svea Holland^{1,3}, José Manuel Borrero-de Acuña⁴, Dieter Jahn^{1,5}, Meina Neumann-Schaal^{1,3}, and Andre Wegner^{1,2}

¹Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany

²Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany

³Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstraße 7B, 38124 Braunschweig, Germany

⁴Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Av. de la Reina Mercedes 6, 41012 Sevilla, Spain

⁵Institute for Microbiology, Technische Universität Braunschweig, 38106 Braunschweig, Germany

*Corresponding Author

Andre Wegner

E-Mail: a.wegner@tu-bs.de

Keywords: bacterial membrane vesicles (BMVs) | membrane vesicles (MVs) | outer membrane vesicles (OMVs) | *Pseudomonas aeruginosa* | pathogen | metabolism | cholesterol | mitochondria | respiration | electron transport chain | AMPK | protein synthesis

1 **ABSTRACT**

2 Bacterial membrane vesicles (BMVs) are secreted by many pathogenic bacteria and known to
3 stimulate various host responses upon infection, thereby contributing to the pathogenicity of bacterial
4 pathogens like *Pseudomonas aeruginosa*. While the effects of BMVs on host immune responses are
5 well studied, little is known about their impact on cell metabolism and mitochondrial respiration. Here,
6 we show that *P. aeruginosa* BMVs (1) reprogram cell metabolism of human lung cells, (2) negatively
7 affect mitochondrial respiration by (3) specifically inhibiting complex III of the electron transport chain
8 leading to (4) the activation of AMP-activated protein kinase (AMPK) signaling which in turn results in
9 (5) AMPK-dependent inhibition of global protein synthesis.

10 **INTRODUCTION**

11 The opportunistic pathogen *Pseudomonas aeruginosa* causes milder local to severe systemic infec-
12 tions. These infections, caused by often multi-antibiotic resistant bacteria, are particularly prevalent in
13 immunocompromised patients, emphasizing its importance as a significant health concern in global
14 healthcare [1, 2]. During infection, *P. aeruginosa* secretes bacterial membrane vesicles (BMVs)
15 containing metabolites, nucleic acids and proteins, including virulence factors, which are delivered to
16 the host cell during infection and play a pivotal role in its pathogenicity [3–5]. BMVs are well known
17 for triggering host immune responses, capable of inducing the release of pro-inflammatory cytokines
18 like interleukin-8 [6, 7]. Notably, BMVs can also activate the AMP-activated protein kinase (AMPK)
19 within the host cell, leading to autophagy induction [8]. However, it remains unclear how the activation
20 of AMPK in response to BMVs is regulated.

21 Given that AMPK serves as a metabolic sensor, activated by mitochondrial dysfunction [9, 10], and
22 considering evidence of BMVs inhibiting mitochondrial activity in macrophages [11], it is conceivable
23 that mitochondrial dysfunction might be the primary event facilitating BMV-induced AMPK activation.
24 Some bacterial pathogens are known to affect mitochondrial function by specifically inhibiting protein
25 complexes of the electron transport chain (ETC) which is essential for oxidative phosphorylation
26 and ATP generation [12]. For *P. aeruginosa*, extracellular secreted factors like 1-hydroxyphenazine,
27 pyocyanin and exotoxin A have been described as possible inhibitors of the ETC leading to reduced
28 mitochondrial respiration [13–16]. However, the functional basis of mitochondrial dysfunction caused
29 by BMVs is still unknown.

30 Here, we show that treatment of human lung cells with BMVs isolated from the pathogenic *P.*
31 *aeruginosa* strain PA14 lead to metabolic reprogramming and impaired mitochondrial respiration by
32 specifically inhibiting complex III of the ETC, resulting in mitochondrial dysfunction. Moreover, this
33 event activates AMPK signaling, leading to AMPK-dependent inhibition of global protein synthesis in
34 the host cell.

35 **METHODS**

36 **Bacterial strains and isolation of BMVs**

37 The bacterial strains *Pseudomonas aeruginosa* PA14 [17] and *Pseudomonas putida* KT2440 [18]
38 were used in this study. Both strains were cultivated in lysogeny broth (LB) (Roth, X968.2) in flasks
39 with baffles. For vesicle isolation, bacterial cultures were inoculated with an optical density measured
40 at a wavelength of 600 nm (OD₆₀₀) of 0.05 and grown at 37 °C (*P. aeruginosa*) or 30 °C (*P. putida*) at
41 160 rpm until they reached the early-stationary phase of growth. BMVs were isolated from culture
42 media after removing bacterial cells by centrifugation at 4 °C and 8,000 x g for 30 min and filtration
43 through 0.22 µM PES filters (Corning, 431097). Supernatants were concentrated by ultrafiltration,
44 using Vivaspin 20 PES ultrafiltration units with a molecular weight cut-off (MWCO) of 100 kDa
45 (Sartorius, VS2041). BMVs were isolated by ultracentrifugation at 4 °C and 150,000 x g for 2 h.
46 Isolated vesicles were resuspended in 1X PBS (Gibco™, 18912-014) and sterile filtered. BMVs were
47 quantified by using the membrane lipid dye FM4-64 (Invitrogen, T13320) to calculate the vesicle load
48 per µL (VL/µL) as described before [19]. Vesicle samples were stored at 4 °C.

49 **Cell culture**

50 The cell lines A549 (DSMZ, ACC 107), HCC44 (DSMZ, ACC 534) and HBEPc (PromoCell, C-12640)
51 were used in this study. A549 cells were cultivated in DMEM medium (Gibco™, 11965-092) containing
52 25 mM glucose and 4 mM glutamine. HCC44 cells were cultivated in RPMI 1640 medium (Gibco™,
53 21875-034) containing 11 mM glucose and 2 mM glutamine. Both growth media were supplemented
54 with 10 % FBS (Bio&SELL, FBS.SAM.0500). HBEPc cells were cultivated in Airway Epithelial Cell
55 Growth Medium supplemented with Growth Medium SupplementMix (PromoCell, C-21060). All
56 cell lines were incubated in a humidified atmosphere with 5 % CO₂ at 37 °C. Cell detachment was
57 performed with 0.05 % trypsin-EDTA (Gibco™, 25300-054) for A549 and HCC44 cells or accutase
58 solution (Sigma-Aldrich, A6964) for HBEPc cells.

59 **Analysis of cell growth and viability**

60 To analyze cell growth of the proliferating cell lines A549 and HCC44, cell confluence was measured
61 in 6-well plates at 37 °C with a microplate reader (Tecan Spark®). For the analysis of cell viability of

62 non-proliferating HBEPc cells, the PrestoBlue™Cell Viability Reagent (Invitrogen™, A13261) was
63 used according to the user manual. Fluorescence signals were measured by using an excitation
64 wavelength of 560 nm and emission wavelength of 590 nm.

65 **Stable isotope labeling**

66 For stable isotope labeling, 150,000 cells/well (A549), 100,000 cells/well (HCC44) or 70,000 cells/well
67 (HBEPc) were seeded in 6-well plates (Greiner Bio-One, 657160) and incubated at 37 °C and 5 %
68 CO₂ overnight. The next day, cells were washed with 1X PBS and treated as indicated in the figure
69 legends in the following labeling media: A549 cells were cultivated in DMEM medium (Gibco™,
70 A14430-01) supplemented with 25 mM unlabeled glucose or [U-¹³C₆]-glucose and 4 mM [U-¹³C₅]-
71 glutamine or unlabeled glutamine and 10 % dFBS. HCC44 cells were cultivated in SILAC RPMI 1640
72 medium (Gibco™, A24942-01) supplemented with 11.1 mM unlabeled glucose or [U-¹³C₆]-glucose,
73 2.05 mM [U-¹³C₅]-glutamine or unlabeled glutamine, 0.22 mM lysine, 1.15 mM arginine and 10 %
74 dFBS. HBEPc cells were cultivated in DMEM medium (Gibco™, A14430-01) supplemented with
75 25 mM unlabeled glucose or [U-¹³C₆]-glucose, 4 mM [U-¹³C₅]-glutamine or unlabeled glutamine and
76 2 % Growth Medium SupplementMix (PromoCell, C-39165).

77 **Metabolite extraction and GC/MS analysis**

78 For GC/MS analysis of intracellular metabolites, 150,000 cells/well (A549) or 70,000 cells/well
79 (HBEPc) were seeded in 6-well plates (Greiner Bio-One, 657160) and incubated at 37 °C and 5 %
80 CO₂ overnight. The next day, cells were washed with 1X PBS and treated as indicated in the figure
81 legends. Treated cells were extracted as described by Sapcariu et al. [20]. Briefly, cells were
82 washed with 2 mL/well 0.9 % sodium chloride and 400 µL/well methanol (-20 °C) was added. Then,
83 400 µL/well water (4 °C), containing 1 µg/mL glutaric acid-d₆ as an internal standard, was added.
84 Cells were mechanically detached, the cell suspension transferred into 400 µL chloroform (-20 °C)
85 and mixed at 4 °C and 1,400 rpm for 20 min. To separate polar and non-polar phases, samples
86 were centrifuged at 4 °C and 17,000 x g for 5 min. The upper polar phase was transferred in GC/MS
87 vials and dried in a speedvac at 4 °C overnight. Dried samples were derivatized with 15 µL of 2 %
88 (w/v) methoxyamine-hydrochloride solved in pyridine by shaking at 40 °C for 90 min and additional

89 15 µL of *N*-methyl-*N*-(trimethylsilyl)trifluoroacetamide (MSTFA) by shaking at 40 °C for 30 min or
90 *N*-*tert*-butyldimethylsilyl-*N*-methyltrifluoroacetamide (MTBSTFA) by shaking at 55 °C for 60 min. The
91 derivatized samples (1 µL) were injected into a SSL injector in splitless mode and heated up to 270 °C.
92 GC/MS measurements were performed with an Agilent Technologies 7890B GC system including a
93 30 m Phenomenex ZB-35 and 5 m Duraguard capillary column, connected to an Agilent Technologies
94 5977B MSD, under electron ionization at 70 eV. The MS source temperature was held at 230 °C
95 and the quadrupole temperature at 150 °C. Helium was used as a carrier gas with a flow rate of
96 1 mL/min. The temperature profile of the GC oven depended on the used measuring method. For the
97 measurement of MTBSTFA-derivatized samples, the GC oven temperature was held at 100 °C for
98 2 min, then increased up to 300 °C at 10 °C/min and held at 300 °C for 4 min. For the measurement
99 of MSTFA-derivatized samples, the GC oven temperature was held at 80 °C for 6 min, then increased
100 up to 300 °C at 6 °C/min, held at 300 °C for 10 min, raised to 325 °C at 10 °C/min and held at 325 °C
101 for 4 min. The total abundances of metabolites and distributions of mass isotopomers were calculated
102 by the integration of mass fragments and corrected for natural isotope abundances by using the
103 software MetaboliteDetector as previously described [21].

104 **Quantitative PCR analysis**

105 RNA was isolated from the interphase of extracted cells as described before [20] by using the
106 NucleoSpin® RNA kit (MACHEREY-NAGEL, 740955.50). Isolated RNA was converted to cDNA
107 by using the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems™, 4368813).
108 RNA and cDNA concentrations were measured with a microplate reader (Tecan Spark®). For
109 quantitative PCR (qPCR) analysis, TaqMan™gene expression assays (Applied Biosystems™) for
110 the housekeeping gene 18S (Hs99999901_s1) and target genes HMGCR (Hs00168352_m1) and
111 SREBF2 (Hs01081784_m1) were used, together with the iTaq™Universal Probes Supermix (Bio-
112 Rad, 1725132) and the QuantStudio™5 Real-Time PCR system (Applied Biosystems™). Data was
113 analyzed with the QuantStudio™design and analysis software.

114 **Analysis of uptake and secretion rates**

115 Glucose uptake and lactate secretion were measured by using the YSI 2950 biochemistry analyzer.
116 To that end, medium samples were collected before metabolite extraction, centrifuged at 4 °C and
117 17,000 xg for 5 min and 200 µL of each sample was transferred in a 96-well microplate. For calibration,
118 a standard solution containing 28 mM glucose and 15 mM lactate was measured in a dilution series
119 of 5, 10, 20, 40, 60, 80 and 100 %.

120 **Protein extraction and immunoblotting**

121 For protein analysis, A549 (1,000,000 cells), HCC44 (500,000 cells) and HBEPc cells (500,000 cells)
122 were plated in 10 cm (A549 and HCC44 cells) or 6 cm (HBEPc cells) cell culture dishes (Greiner
123 Bio-One) in growth medium and incubated at 37 °C and 5 % CO₂ overnight. The next day, cells
124 were treated as indicated in the figure legends. After treatment, cells were lysed with the M-PER
125 extraction reagent (Thermo Scientific, 78501) containing 1X Halt protease and phosphatase inhibitors
126 (Thermo Scientific, 78441), mixed at 4 °C and 1,400 rpm for 10 min and centrifuged at 4 °C and
127 14,000 xg for 10 min. Supernatants containing protein were stored at -20 °C. Protein quantification
128 was performed by using the Pierce BCA protein assay kit (Thermo Scientific, 23227) according to
129 the user manual. Samples were loaded with a 5X Laemmli buffer, incubated at 95 °C for 5 min and
130 centrifuged at 16,000 xg for 1 min. 25 µg of total protein was separated on 4-20 % precast SDS-PAGE
131 gels (Bio-Rad). Depending on the protein size, a prestained protein marker covering the range
132 of 10-180 kDa (Thermo Scientific, 26616) or 43-315 kDa (Cell Signaling Technology, 12949) was
133 used. Proteins were transferred onto a 0.45 µm PVDF membrane (Carl Roth, T830.1) by using the
134 Trans-Blot® SD Semi-Dry Transfer Cell (Bio-Rad). The membrane was blocked with 5 % BSA (w/v)
135 (Biomol, 01400.100) in Tris-buffered saline with 0.1 % Tween 20 (TBS-T) for 1 h. Primary antibodies
136 diluted in 1X TBS-T with 5 % BSA (Table 1) were added to the membranes and incubated at room
137 temperature for 1 h. Membranes were then incubated with secondary antibodies diluted in 1X TBS-T
138 with 5 % BSA (Table 2) at room temperature for 1 h. For signal detection, the Immobilon Classico
139 Western HRP substrate (Millipore, WBLUC0500) was used and imaged with a Bio-Rad ChemiDoc
140 imaging system. Band intensities were analyzed by using the ImageJ 1.53k software.

Table 1: Primary antibodies.

Primary antibody	Catalog no.	Company	Dilution
Mouse monoclonal anti- β -actin	A5441	Merck	1:5,000
Rabbit polyclonal anti-ACC1	21923-1-AP	Proteintech	1:4,000
Rabbit polyclonal anti-phospho-ACC1 (Ser79)	29119-1-AP	Proteintech	1:1,000
Rabbit polyclonal anti-eEF2K	13510-1-AP	Proteintech	1:1,000
Rabbit polyclonal anti-phospho-eEF2K (Ser366)	29032-1-AP	Proteintech	1:2,000
Rabbit polyclonal anti-eEF2	20107-1-AP	Proteintech	1:10,000
Rabbit polyclonal anti-phospho-eEF2 (Thr56)	E-AB-51049	Elabscience	1:1,000

Table 2: Secondary antibodies.

Primary antibody	Catalog no.	Company	Dilution
Goat anti-mouse, HRP-conjugated	R-05071-500	Advansta	1:20,000
Goat anti-rabbit, HRP-conjugated	R-05072-500	Advansta	1:20,000

141 **Analysis of global protein synthesis**

142 For the analysis of global protein synthesis, 30,000 cells/well (A549) were seeded in black 96-well
143 microplates (Greiner Bio-One, 655090) in growth medium and incubated at 37 °C and 5 % CO₂
144 overnight. The next day, treatments were performed as indicated in the figure legends. Protein
145 synthesis of treated cells was measured by using the Protein Synthesis Assay Kit (Cayman Chemical,
146 601100) according to the user manual.

147 **Measurement of interleukin-8 secretion**

148 To analyze IL-8 secretion, 150,000 cells/well (A549) or 100,000 cells/well (HBEpC) were seeded in
149 6-well plates in growth medium and incubated at 37 °C and 5 % CO₂ overnight. The next day, cells
150 were treated with 25 VL/mL isolated PA14 WT vesicles and incubated at 37 °C and 5 % CO₂ for 24 h.
151 After treatment, medium was collected and centrifuged at 4 °C and 17,000 x g for 5 min to remove
152 cell debris. IL-8 concentration in medium samples was measured by using the ELISA MAX Deluxe
153 Set Human IL-8 (BioLegend, 431504) according to the user manual.

154 **RNA-Sequencing analysis**

155 Cells were seeded in 6-well plates and incubated at 37 °C and 5 % CO₂ overnight. The next day,
156 cells were washed with 1X PBS, treated with BMVs and incubated at 37 °C and 5 % CO₂ for 24 h.
157 RNA isolation was performed by using the NucleoSpin® RNA kit (MACHEREY-NAGEL, 740955.50)
158 as described above. cDNA synthesis was performed and libraries were constructed using NEBNext
159 Ultra II Directional RNA Library Prep Kit for Illumina at the Genome Analytics at Helmholtz Centre for
160 Infection Research. Libraries were sequenced using a NovaSeq 6000 instrument (Illumina) generating
161 50-bp reads in paired-end mode. Reads mapping and differential expression analysis were performed
162 using the galaxy platform (<https://usegalaxy.org/>) [22]. Reads were mapped to the human genome
163 hg19 with Hisat2 [23]. EdgeR was used to identify differential expression and calculate the P values
164 with an exact test based on the dispersion generated by the quantile-adjusted conditional maximum
165 likelihood (qCML) method [24].

166 **Respirometry**

167 Cell respiration was measured by using an Agilent Seahorse XFe96 Analyzer together with Seahorse
168 XFe96 Extracellular Flux Assay Kits. Cells were seeded in Seahorse XF96 V3 PS Cell Culture
169 Microplates (Agilent, 101085-004) and cultured in growth medium at 37 °C and 5 % CO₂ overnight. At
170 the same time, the sensor cartridge (Agilent, 103792-100) was incubated with sterile water together
171 with the Seahorse XF Calibrant Solution (Agilent, 100840-000) at 37 °C and 0 % CO₂. The next
172 day, the medium was replaced with Seahorse XF DMEM medium, pH 7.4 (Agilent, 103575-100)
173 supplemented with 10 mM glucose, 2 mM glutamine and 10 % dFBs and incubated at 37 °C and
174 0 % CO₂ for 60 min. For sensor cartridge calibration, the water was replaced with Seahorse XF
175 Calibrant Solution and incubated at 37 °C and 0 % CO₂ for 45 min. To assess mitochondrial function,
176 the oxygen consumption rate (pmol O₂/min) was measured and normalized to basal respiration.
177 Mitochondrial respiratory chain deficiencies were analyzed based on the study of Jaber et al. [25].

178 **RESULTS AND DISCUSSION**

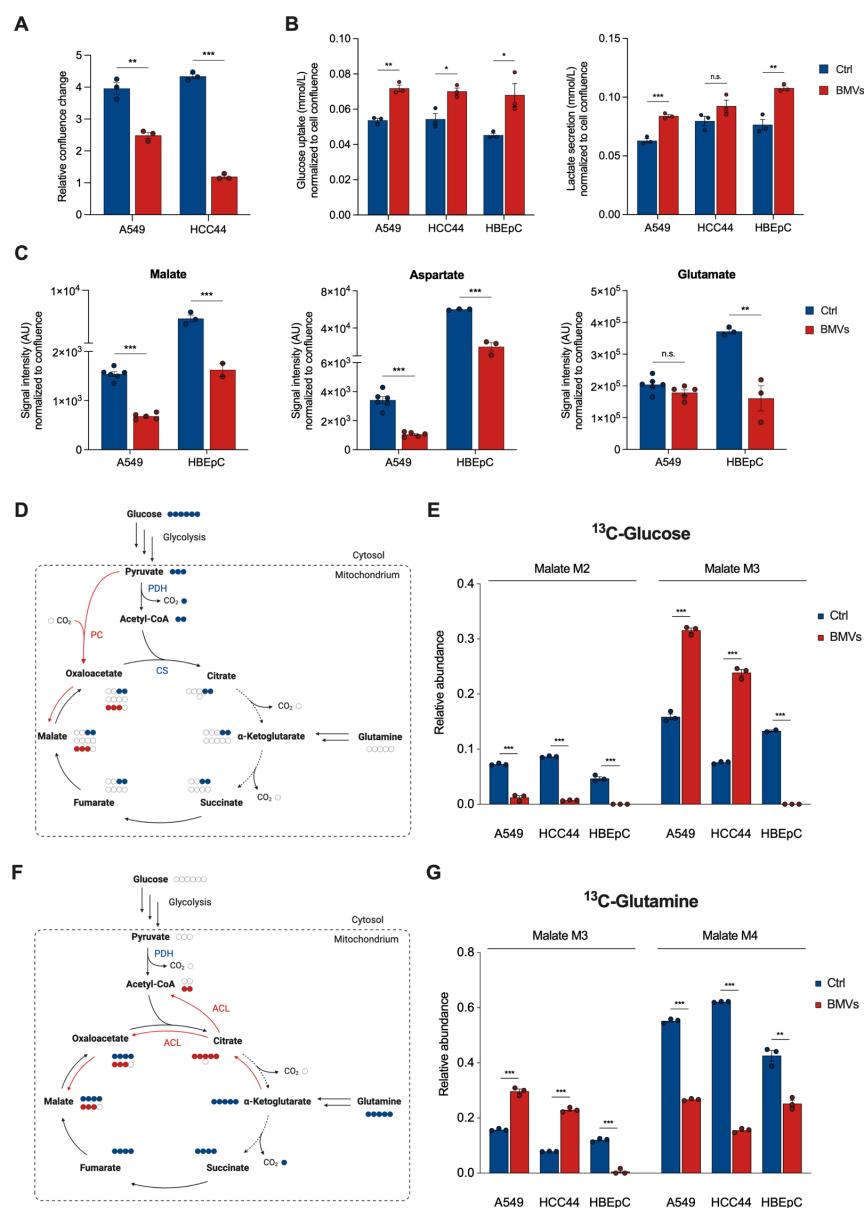
179 ***P. aeruginosa* BMVs inhibit proliferation and viability of human lung cells.**

180 BMVs from several bacterial species are reported to inhibit the proliferation of different host cell types
181 [19, 26–28]. Thus, we aimed to explore the impact of *P. aeruginosa* BMVs on the proliferation of
182 human lung cells in initial experiments. To this end, we treated A549 and HCC44 lung cancer cells
183 with BMVs isolated from the pathogenic *P. aeruginosa* strain PA14 and monitored their cell confluence
184 over 72 hours. Moreover, we analyzed the effects of PA14 BMVs on the viability of primary bronchial
185 epithelial cells (HBEpC) by fluorescently labeling living cells, as these cells are non-proliferating. For
186 all cell lines, we observed a significant decrease in confluence (Figure 1A) or cell viability (Figure S1A)
187 after vesicle treatment, highlighting the pathogenic potential of PA14 BMVs. In contrast, treatment with
188 BMVs isolated from the non-pathogenic strain *Pseudomonas putida* KT2440 resulted in a significantly
189 weaker effect (Figure S1A and B). This suggests that the specific cargo of the pathogenic PA14 BMVs
190 was responsible for the host reaction, rather than BMVs in general. However, the precise molecular
191 mechanism of the observed anti-proliferative effect remains unknown.

192 ***P. aeruginosa* BMVs induce rapid metabolic reprogramming by modulating TCA cycle activity.**

193 BMVs have been recognized for modulating the host immune response during *P. aeruginosa* in-
194 fection [6, 7]. However, the underlying molecular dynamics remain elusive. Given the close link
195 between cellular functions and cell metabolism, investigating the metabolic responses of the host cell
196 induced by PA14 BMVs would be revealing for the understanding of the host-pathogen interaction
197 of *P. aeruginosa*. Recently, we developed a method for the isolation and quantification of BMVs in
198 order to analyze vesicle-induced metabolic changes in mammalian cell cultures [19]. To ascertain
199 the potential metabolic effects induced by BMVs, we initially examined changes in glucose uptake
200 and lactate secretion of vesicle-treated lung cancer cells as well as primary bronchial epithelial cells.
201 We observed a significant increase in glucose uptake and lactate secretion for all tested cell lines
202 (Figure 1B), indicating increased glycolytic activity. This phenomenon is known for various bacterial
203 and viral infections, especially in immune cells, presumably to provide biosynthetic intermediates for
204 the synthesis of nucleotides, amino acids and lipids to support host cell proliferation [29–31].

205 To further investigate BMV-induced metabolic shifts in host cells, we employed gas chromatography
206 coupled with mass spectrometry (GC/MS) to analyze BMV-treated A549, HCC44 and HBEpC cells.
207 Our results indicate broad metabolic reprogramming of both lung cancer and primary lung cells.
208 Specifically, we observed decreased levels of TCA cycle-associated metabolites like malate, aspartate
209 and glutamate in cells treated with PA14 BMVs (Figure 1C). Analogous to cell growth, these effects
210 were significantly reduced when cells were treated with BMVs of the non-pathogenic *P. putida* KT2440
211 strain (Figure S1C). Conversely, the levels of most amino acids were increased in A549 cells after
212 BMV treatment, presumably due to autophagy induction, as previously reported [19].
213 To understand the metabolic pathways contributing to these observations, we used stable isotope-
214 assisted metabolomics. By feeding cells with [$U-^{13}C_6$]-glucose and [$U-^{13}C_5$]-glutamine during ves-
215 cle exposure, we noted significant shifts in the mass isotopomer distribution (MID) of TCA cycle-
216 associated metabolites, exemplified by malate. As glucose can enter the TCA cycle via acetyl-CoA,
217 the use of the [$U-^{13}C_6$]-glucose tracer results in the formation of M2 citrate (Figure 1D) and, for the
218 oxidative TCA cycle flux, in M2 malate. Interestingly, the formation of M2 malate was significantly
219 decreased in all tested cell lines after vesicle treatment (Figure 1E, $p < 0.001$). For A549 and HCC44
220 cells, we also observed an increased formation of M3 malate from [$U-^{13}C_6$]-glucose, involving the
221 conversion of fully labeled pyruvate to oxaloacetate by carboxylation via pyruvate carboxylase (PC). In
222 this step, free unlabeled CO_2 gets incorporated into oxaloacetate resulting in M3 malate (Figure 1D).
223 The significantly increased formation of M3 malate in A549 and HCC44 cells after BMV treatment
224 (Figure 1E, $p < 0.001$) suggests a shift towards increased PC activity, presumably to compensate
225 for the reduced oxidative TCA cycle flux. However, we did not observe this effect in HBEpC cells,
226 indicating an inactive PC and no possibility to evade the affected flux.
227 Using [$U-^{13}C_5$]-glutamine as a substrate, active oxidative TCA cycle flux results in M4 malate (Figure
228 1F). After BMV treatment, we observed decreased formation of M4 malate from [$U-^{13}C_5$]-glutamine
229 for all tested cell lines (Figure 1G), confirming the ^{13}C -glucose results. Moreover, the formation of M3
230 malate significantly increased in A549 and HCC44 cells (Figure 1G, $p < 0.001$), explained by a shift
231 to the reductive TCA cycle flux [32], resulting in M5 citrate that can be converted to M2 acetyl-CoA
232 and M3 oxaloacetate via ATP-citrate lyase (ACL, Figure 1F). Similar to the glucose labeling results,


233 we did not observe the increased formation of M3 malate in HBEpC cells (Figure 1G). Deregulation
234 of enzymes like PC and ATP-citrate lyase, associated with the reductive TCA cycle flux, is known for
235 various pathological conditions like cancer, but also in infection [33, 34]. Our results suggest that the
236 shift towards a higher activity of these enzymes after BMV treatment is specific for lung cancer cell
237 metabolism and does not occur in primary lung cells. To investigate whether these effects are caused
238 by specific virulence agents of PA14 BMVs or vesicles in general, we also analyzed the effects of
239 BMVs isolated from the non-virulent *P. putida* KT2440 strain. We observed much smaller effects
240 when cells were treated with these vesicles which further suggests that the effects are due to specific
241 factors contained in BMVs isolated from the pathogenic *P. aeruginosa* PA14 strain (Figure S1C, D,
242 and E).

243 To analyze how fast the observed metabolic changes appear after BMV treatment, we analyzed
244 the effects after different treatment times (15, 60, and 240 minutes). We observed rapid metabolic
245 reprogramming following BMV treatment, with decreased M2 and increased M3 malate already
246 observable after 15 minutes in A549 cells (Figure S2A). Moreover, the cellular malate levels were
247 reduced by 20 % at this time (Figure S2B).

248 Our results indicate a rapid PA14 vesicle-driven impact on cell metabolism, evidenced by the de-
249 creased oxidative TCA cycle flux following BMV treatment. The swift onset of this effect suggests that
250 the observed metabolic changes are not due to prior cellular alterations, such as changes at gene
251 expression level. Instead, this indicates the presence of a vesicle-associated factor that triggers an
252 immediate effect on cellular respiration.

253 ***P. aeruginosa* BMVs impair mitochondrial respiration of human lung cells by inhibiting electron
254 transport chain complex III.**

255 The aforementioned metabolic changes indicate a reduced oxidative TCA cycle flux after BMV treat-
256 ment, resulting in decreased generation of NADH and FADH₂, which are essential for mitochondrial
257 respiration and ATP production. Deo et al. have previously demonstrated the inhibitory effects of *P.*
258 *aeruginosa* BMVs on mitochondrial activity in macrophages, leading to mitochondrial apoptosis and
259 inflammation [11]. Consistent with these results, we observed a significantly higher NADH/NAD⁺
260 ratio, and decreased ATP levels in A549 and HCC44 cells after BMV treatment (Figure 2A and B).

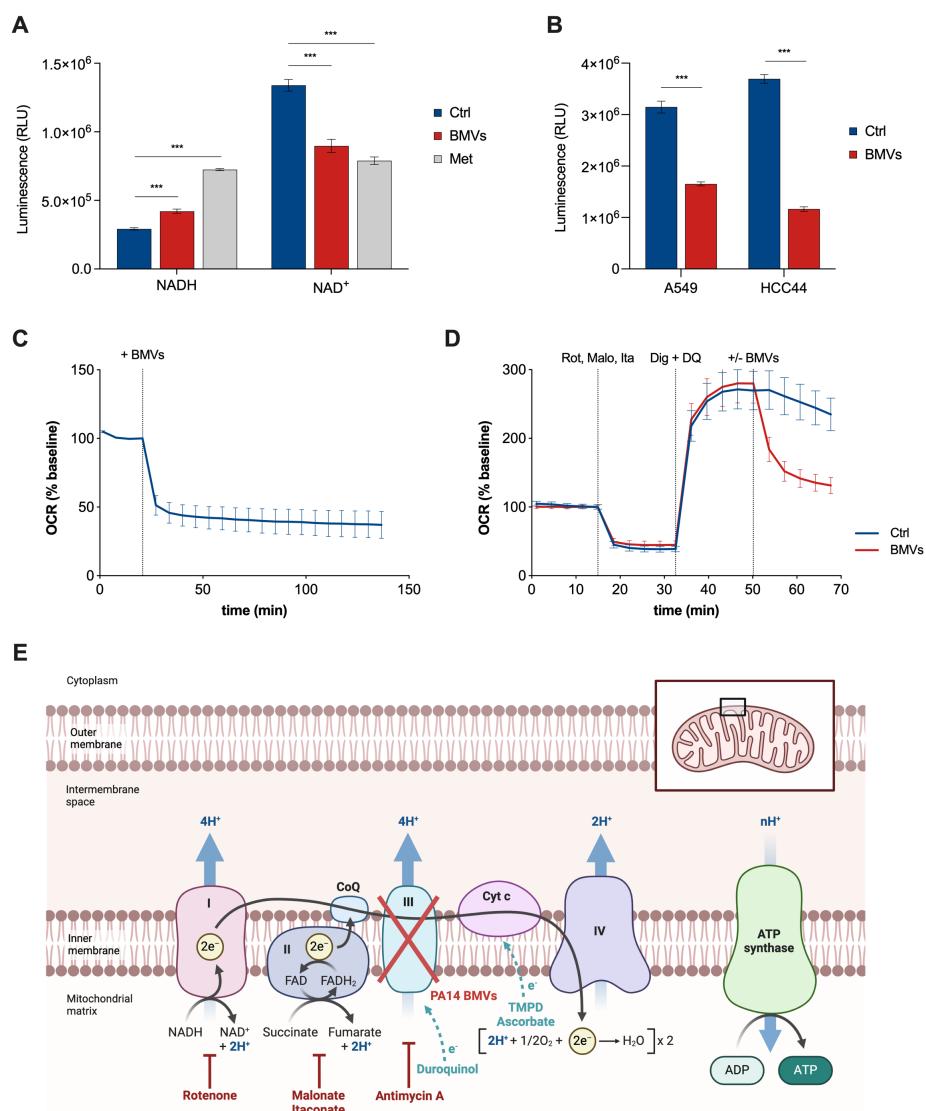
Figure 1: Metabolic reprogramming in host cells after PA14 BMV treatment. **(A)** Confluence of A549 and HCC44 cells after treatment with 25 VL/mL BMVs for 72 h. Data were obtained from 3 biological replicates. **(B)** Glucose uptake and lactate secretion of A549, HCC44 and HBEPc cells after treatment with 25 VL/mL BMVs for 24 h. Data were obtained from 3 biological replicates. **(C)** Signal intensities (AU) of malate, aspartate and glutamate in A549 and HBEPc cells after vesicle treatment (25 VL/mL for 24 h). Data were obtained from 5 - 6 (A549) or 2 - 3 (HBEPc) biological replicates and normalized to cell confluence. **(D)** Schematic overview of the incorporation of a $[U-^{13}\text{C}_6]$ -glucose tracer into metabolites of the TCA cycle. Created with BioRender.com. **(E)** Malate MIDs after $[U-^{13}\text{C}_6]$ -glucose labeling of BMV-treated cells. A549 and HCC44 cells were treated for 24 h and HBEPc cells for 6 h with 25 VL/mL. Data were obtained from 2 or 3 biological replicates. **(F)** Schematic overview of the incorporation of a $[U-^{13}\text{C}_5]$ -glutamine tracer into metabolites of the TCA cycle. Created with BioRender.com. **(G)** Malate MIDs after $[U-^{13}\text{C}_5]$ -glutamine labeling of BMV-treated cells. A549 and HCC44 cells were treated for 24 h and HBEPc cells for 6 h with 25 VL/mL. Data were obtained from 2 or 3 biological replicates. All bar plots in this Figure are depicted as mean \pm SEM. All significance levels were determined by Student's t-test (n.s. = not significant, * = $p < 0.05$, ** = $p < 0.01$, *** = $p < 0.001$).

261 To validate, if *P. aeruginosa* BMVs alter mitochondrial respiration in human lung cells, we analyzed
262 changes of cellular respiration by measuring the oxygen consumption rate (OCR) in BMV-infected
263 A549 cells. We observed an decreased OCR immediately after vesicle treatment (Figure 2C), indicating
264 a rapid effect on mitochondrial respiration (< 7 minutes) which might explain the swift metabolic
265 adaptation discussed above.

266 Mitochondrial respiration relies on oxidative phosphorylation, which requires the electron transport
267 chain (ETC) located in the inner mitochondrial membrane and composed of complexes I, II, III and
268 IV, as well as proteins like Cytochrome *c*. It is well known that some bacterial pathogens are able to
269 inhibit complexes of the ETC [12]. For *P. aeruginosa*, the extracellular secreted factors exotoxin A, 1-
270 hydroxyphenazine and pyocyanin have been reported to affect mitochondrial respiration, presumably
271 by disrupting the ETC [13–16].

272 To determine whether *P. aeruginosa* BMVs specifically impair one of the ETC complexes, leading to
273 the observed respiratory deficit, we followed the protocol by Jaber et al. [25]. This protocol involves
274 a stepwise series of experiments to map the location of electron transport deficiencies, beginning
275 with Cytochrome *c*. If BMVs cause a Cytochrome *c* deficit, then adding exogenous Cytochrome *c*
276 should rescue respiration. Because Cytochrome *c* cannot cross the plasma membrane, we selectively
277 permeabilized the plasma membrane using digitonin. However, we did not observe a rescue effect in
278 the OCR of BMV-treated A549 cells supplemented with Cytochrome *c* (Figure S3A), suggesting that
279 a deficit in another component of the ETC is limiting respiration.

280 After excluding Cytochrome *c* deficiency, we functionally isolated the individual complexes of the electron
281 transport chain by selectively limiting electron entry to each complex and determining whether
282 the deficiency can still be observed. Since complexes I to IV function in series, a dysfunctional
283 complex would affect subsequent complexes. For this reason, we started with complex IV.


284 To functionally isolate complex IV, we inhibited complex III with Antimycin A (Figure 2E), which
285 interrupts electron transfer to complex IV, leading to a decreased OCR (Figure S3B). We then added
286 N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) and its reducing agent ascorbate to restore electron
287 transfer to complex IV, bypassing complex III (Figure 2E). We observed that complex IV activity
288 was not affected by BMVs (Figure S3B), leaving complexes I to III as potential targets.

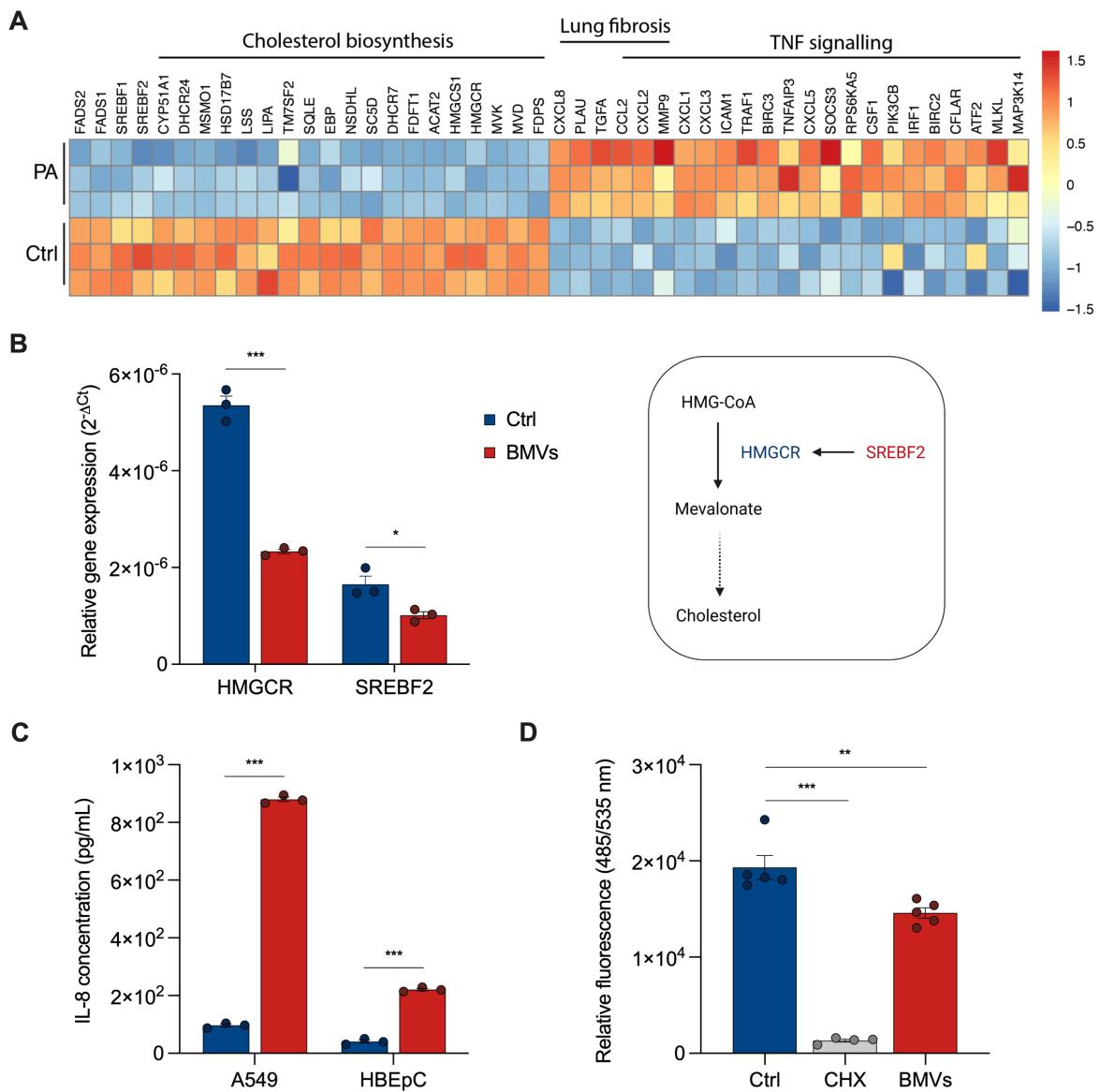
289 Next, we analyzed complex III activity by inhibiting complex I with rotenone and complex II with
290 malonate and itaconate (Figure 2E) [35, 36]. To ensure electron transfer to complex III, we added the
291 electron donor duroquinol, which recovers respiration by feeding electrons into complex III (Figure 2E).
292 Interestingly, we observed impaired complex III activity immediately after vesicle addition, indicating
293 specific inhibition of this complex by PA14 BMVs (Figure 2D). Moreover, we observed impairment of
294 complexes I and II, presumably as a consequence of complex III inhibition (Figure S3C and D).
295 Overall, these findings suggest that PA14 BMVs specifically target complex III of the ETC, leading
296 to a cascade of inhibition that affects complexes I and II, thereby impairing overall mitochondrial
297 respiration.

298 ***P. aeruginosa* BMVs suppress cholesterol biosynthesis and global protein synthesis while
299 inducing inflammation.**

300 Since BMVs are able to induce drastic effects on host cell metabolism, we assumed that other general
301 cellular processes would also be impaired. To gain an overview of altered cellular functions, we
302 performed RNA-Sequencing analysis followed by pathway enrichment analysis. We identified the
303 suppression of cholesterol biosynthesis as the most affected pathway in A549 cells treated with PA14
304 BMVs (Figure S4). Suppression of cholesterol biosynthesis is well-documented in viral infections
305 [37], but less explored in bacterial infections. Strikingly, we observed a downregulation of all genes
306 associated with the cholesterol biosynthesis pathway (Figure 3A). For further validation, we analyzed
307 the expression of selected downregulated genes by using quantitative PCR (Figure 3B). We observed
308 a significantly decreased expression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR,
309 $p < 0.001$) and sterol regulatory element binding transcription factor 2 (SREBF2, $p < 0.05$) after 24 h
310 of BMV exposure. HMGCR is the rate-limiting enzyme of the cholesterol synthesis pathway [38], and
311 its expression can be activated by SREBF2 which regulates various key enzymes associated with
312 cholesterol and fatty acid synthesis [39, 40].

313 We also observed an upregulation of markers associated with inflammation (TNF signaling) and
314 disease (lung fibrosis) after vesicle treatment (Figure 3A). For example, we determined a higher
315 expression of interleukin-8 (IL-8, CXCL8) which plays a key role in acute inflammation [41]. Bauman
316 and Kuehn have previously shown that vesicles isolated from the *P. aeruginosa* PAO1 strain induce

Figure 2: PA14 BMVs induce mitochondrial dysfunction in host cells. **(A)** NADH and NAD⁺ levels of A549 cells after treatment with 25 VL/mL BMVs and 1 mM metformin (Met) for 24 h measured as luminescence intensities (RLU). Data were obtained from 15 biological replicates. **(B)** ATP levels of A549 and HCC44 cells after BMV treatment (25 VL/mL for 24 h) measured as luminescence intensities (RLU). Data were obtained from 10 biological replicates. **(C)** OCR of A549 cells after BMV treatment. 25 VL/mL BMVs were added at the depicted time point. Data were obtained from 15 biological replicates. **(D)** Respirometry test for complex III activity of the ETC of A549 cells after BMV treatment (25 VL/mL). Isolation of complex III was performed by the addition of 2 μ M rotenone (Rot), 40 μ M malonate (Malo), 2 mM itaconate (Ita), 25 μ g/mL digitonin (Dig) and 1 mM duroquinol (DQ) at the depicted time points. Data were obtained from 30 biological replicates. All OCR values in this Figure were normalized to the baseline and depicted as mean \pm SEM. **(E)** Location of electron transport deficiencies by functionally isolating Cytochrome c and the complexes of the ETC to test their activity after vesicle treatment. Rotenone, malonate and itaconate or Antimycin A are added to inhibit complex I, II or III which interrupts the electron transfer to the following complexes. The electron transport can be restored by the addition of the electron donor duroquinol for complex III or TMPD and its reducing agent ascorbate for Cytochrome c. PA14 BMVs are able to specifically inhibit complex III of the ETC. All bar plots in this Figure are depicted as mean \pm SEM. Significance levels were determined by Student's t-test (** = $p < 0.001$).

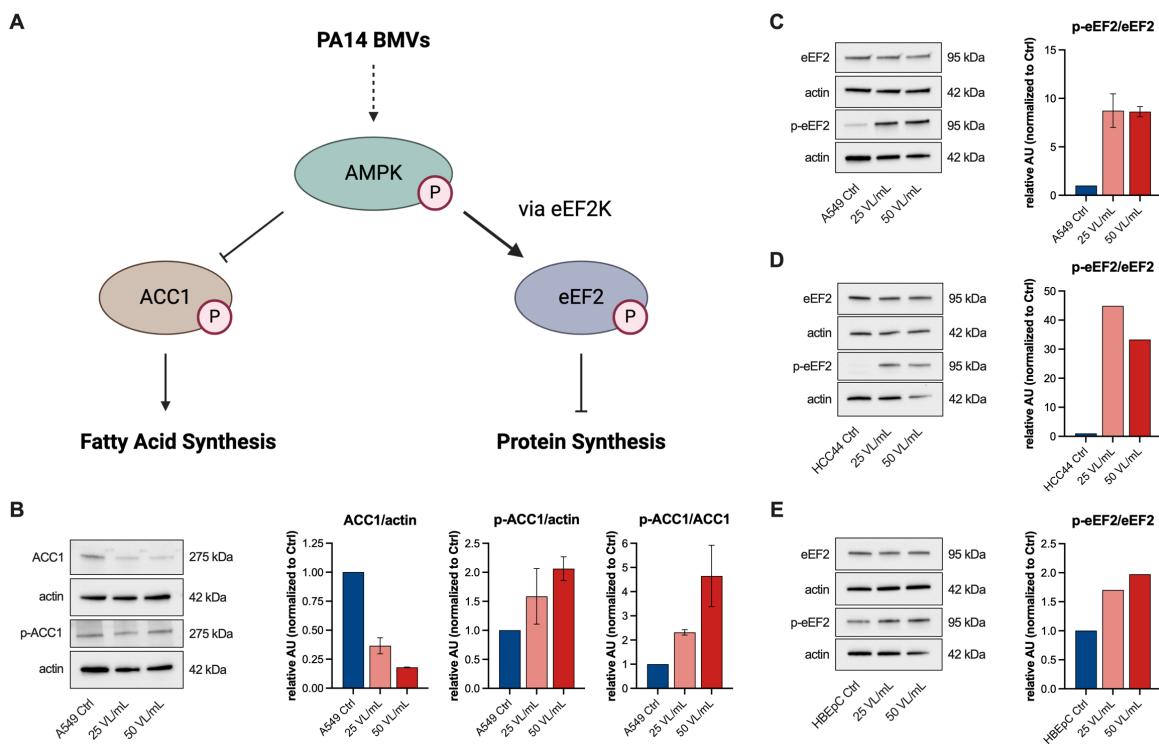

317 IL-8 activation in lung epithelial cells [6]. To confirm this result using PA14 BMVs, we exposed lung
318 cancer cells (A549) and primary lung cells (HBEpC) to BMVs for 24 h and measured their IL-8
319 secretion (Figure 3C). We observed a significantly increased IL-8 secretion for both cell lines ($p <$
320 0.001). The stronger effect in A549 cells could be explained by the general importance of IL-8 in
321 cancer progression [42].

322 Next, we analyzed whether vesicles affect not only transcription, but also translation in the host
323 cell, since there are known bacterial regulators of protein translation, such as the exotoxin A of *P.*
324 *aeruginosa* [43]. Moreover, inhibition of protein synthesis by BMVs has already been described
325 in macrophages due to mitochondrial stress [11]. To confirm similar changes in human lung cells,
326 we labeled newly translated proteins of A549 cells with a fluorescent dye and analyzed their signal
327 intensities after treatment with the translation inhibitor cycloheximide (CHX) and PA14 BMVs. We
328 observed a significantly decreased fluorescence signal for both treatments already after 30 minutes,
329 indicating the inhibition of global protein synthesis by PA14 BMVs in A549 cells (Figure 3D).

330 ***P. aeruginosa* BMVs activate AMPK signaling through mitochondrial dysfunction, leading to
331 global protein synthesis inhibition.**

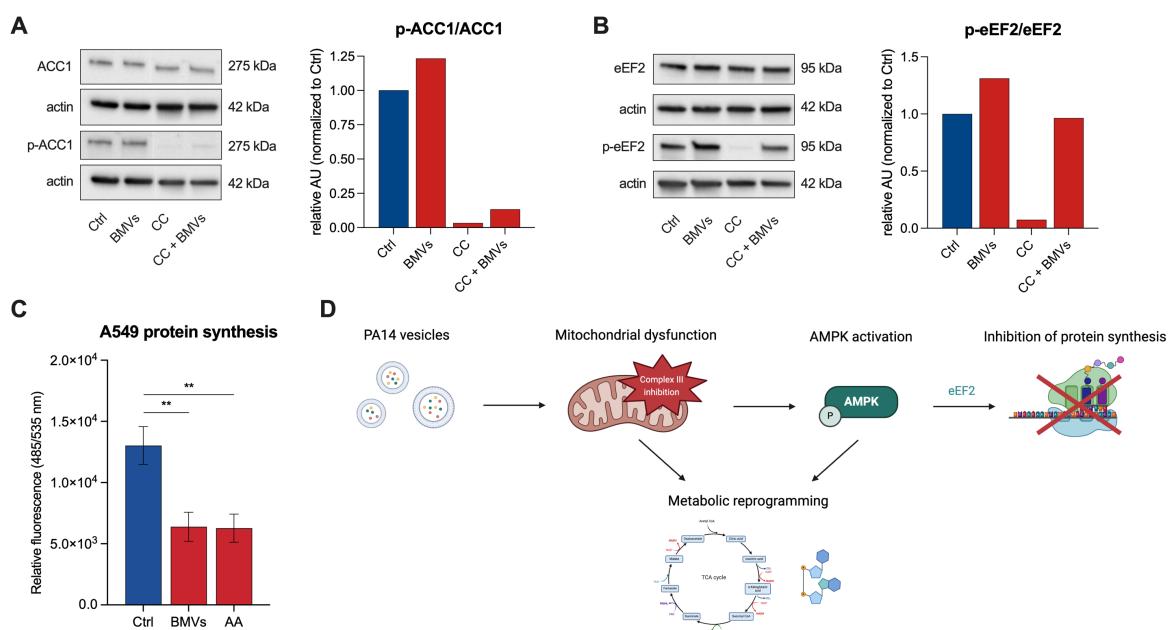
332 We showed that PA14 BMVs are able to affect general cellular functions of the host cell, suggesting
333 the activation of a global signaling pathway inside the cell. The AMP-activated protein kinase (AMPK)
334 is known to function as a metabolic sensor that can be activated e.g. by mitochondrial dysfunction,
335 sensing decreased ATP levels caused by ETC inhibition [44]. Moreover, mitochondria-localized AMPK
336 is known to enable mitochondrial function [45]. Losier et al. demonstrated that AMPK is stimulated by
337 the detection of BMVs during infection with the pathogen *Salmonella enterica* serovar Typhimurium,
338 resulting in autophagy induction [8]. Interestingly, AMPK activation is known to downregulate HMGCR
339 which in turn suppresses cholesterol synthesis [46], aligning with our result that HMGCR gene
340 expression is decreased after BMV treatment (Figure 3A and B).

341 To confirm whether AMPK signaling is activated by PA14 BMVs, we treated A549 cells with *P.*
342 *aeruginosa* BMVs and analyzed the activation of the AMPK target enzyme acetyl-CoA carboxylase 1
343 (ACC1, Figure 4A) by determining its phosphorylation via western blot analysis. When phosphorylated,
344 ACC1 inhibits the conversion of acetyl-CoA to malonyl-CoA, which is needed for fatty acid synthesis


Figure 3: PA14 BMVs affect transcription and translation of the host cell. (A) RNA-Sequencing analysis of A549 cells treated with PA14 BMVs for 24 h. **(B)** Relative gene expression of HMGCR and SREBF2 in A549 cells after treatment with 25 VL/mL BMVs for 24 h. Data were obtained from 3 biological replicates. **(C)** IL-8 secretion of A549 and HBEpC cells after BMV treatment (25 VL/mL for 24 h). Data were obtained from 3 biological replicates. **(D)** Global protein synthesis of A549 cells after treatment with 50 µg/mL cycloheximide (CHX) and 25 VL/mL BMVs for 30 min (+ 30 min pre-treatment). Data were obtained from 4 or 5 biological replicates. All bar plots in this Figure are depicted as mean \pm SEM. All significance levels were determined by Student's t-test (* = $p < 0.05$, ** = $p < 0.01$, *** = $p < 0.001$).

345 [47]. We observed a general decrease in ACC1 protein levels after vesicle treatment, while the
346 p-ACC1/ACC1 ratio increased in a concentration-dependent manner, indicating the activation of
347 AMPK by PA14 BMVs (Figure 4B). This result also suggests a regulation of ACC1 protein translation
348 by BMVs, aligning with our observation that PA14 BMVs inhibit global protein synthesis in the host
349 cell (Figure 3D). Since AMPK signaling can regulate protein translation via the eukaryotic elongation
350 factor 2 (eEF2), we analyzed its activation by western blot analysis and observed a highly increased
351 p-eEF2/eEF2 ratio after BMV treatment (Figure 4C). As eEF2 acts as a negative regulator of protein
352 synthesis [48], its activation indicates an inhibition of global protein synthesis by PA14 BMVs. We
353 observed the activation of eEF2 in lung cancer cells (Figure 4C and D) as well as in primary lung
354 cells (Figure 4E), with a higher phosphorylation increase in cancer cells. Taken together, our results
355 suggest that PA14 BMVs inhibit global protein synthesis in both lung cancer and primary lung cells,
356 with a more pronounced effect in cancer cells.

357 Since it has also been shown that BMVs of *Salmonella enterica* serovar Typhimurium inhibit mTOR
358 signaling [8], and given that eEF2 can also be regulated by mTOR, we analyzed the activity of
359 the upstream kinase eEF2K, using an antibody for the mTOR-specific phosphorylation site Ser366
360 [48, 49]. However, we did not observe any change in phosphorylation at this site (Figure S5),
361 suggesting that the vesicle-driven effects on protein synthesis are regulated independently of mTOR.
362 To confirm that translation is inhibited via AMPK signaling, we treated BMV-infected A549 cells with
363 the AMPK inhibitor Compound C (CC) and analyzed the activity of ACC1 and eEF2. We discovered
364 that AMPK inhibition suppressed the vesicle-mediated activation of both targets (Figure 5A and B),
365 connecting the inhibition of protein synthesis by BMVs to the activation of AMPK signaling.


366 As mentioned, AMPK is known to sense mitochondrial dysfunction caused by ETC inhibition. Toyama
367 et al. have already shown that Antimycin A, a commonly used inhibitor of complex III of the ETC, can
368 rapidly activate AMPK, leading to mitochondrial fragmentation [44]. A similar connection between
369 mitochondrial dysfunction and AMPK activation is observed with the common type 2 diabetes drug
370 metformin. Metformin inhibits complex I of the ETC and activates AMPK signaling, resulting in
371 decreased cell proliferation and protein synthesis [50].

372 Since BMVs and Antimycin A both target ETC complex III, we wanted to test whether this impairment

Figure 4: Activation of AMPK signaling in host cells by PA14 BMVs. (A) Overview of the AMPK signaling targets ACC1 and eEF2 and their activation. (B) WB analysis of p-ACC1 (Ser79) in A549 cells after vesicle treatment (25 VL/mL and 50 VL/mL) for 24 h. Data were obtained from 2 independent experiments. (C) WB analysis of p-eEF2 (Thr56) in A549 cells after vesicle treatment (25 VL/mL and 50 VL/mL) for 24 h. Data were obtained from 2 independent experiments. (D) WB analysis of p-eEF2 (Thr56) in HCC44 cells after vesicle treatment (25 VL/mL and 50 VL/mL) for 24 h. (E) WB analysis of p-eEF2 (Thr56) in HBEpC cells after vesicle treatment (25 VL/mL and 50 VL/mL) for 24 h. All bar plots in this Figure are depicted as mean (\pm SEM).

373 results in an inhibition of host cell protein synthesis. To that end, we treated A549 cells with PA14
 374 BMVs and Antimycin A and analyzed global protein synthesis. We observed a similar inhibitory effect
 375 on global protein synthesis for both treatments (Figure 5C).
 376 Taken together, our results suggest that the recognition of PA14 BMVs is not a direct process,
 377 mediated by cellular receptors, but occurs through mitochondrial dysfunction due to the specific
 378 inhibition of ETC complex III, which then activates AMPK signaling (Figure 5D).

Figure 5: AMPK-mediated inhibition of global protein synthesis through ETC inhibition after PA14 BMV treatment. (A) WB analysis of p-ACC1 (Ser79) in A549 cells after treatment with 25 VL/mL BMVs and 10 μ M Compound C (CC) for 24 h. (B) WB analysis of p-eEF2 (Thr56) in A549 cells after treatment with 25 VL/mL BMVs and 10 μ M Compound C (CC) for 24 h. (C) Global protein synthesis of A549 cells after treatment with 25 VL/mL BMVs or 1 μ M Antimycin A (AA) for 30 min (+ 30 min pre-treatment). Data were obtained from 5 biological replicates. (D) Overview of the effects of PA14 BMVs on the host cell and their underlying signaling pathway. Vesicles specifically inhibit complex III of the ETC resulting in mitochondrial dysfunction which activates the AMPK signaling pathway leading to an AMPK-dependent inhibition of protein synthesis via the translation regulator eEF2. Mitochondrial dysfunction and AMPK activation both induce a metabolic reprogramming of the host cell. Created with BioRender.com. All bar plots in this Figure are depicted as mean (\pm SEM). All significance levels were determined by Student's t-test (** = $p < 0.01$).

379 In this study, we investigated the effects of *P. aeruginosa* PA14 BMVs on cell metabolism and mito-
 380 chondrial respiration in human lung cells. In summary, we observed cellular metabolic reprogramming
 381 following vesicle treatment, particularly affecting TCA cycle-associated metabolites. In agreement with
 382 recent investigations [11], we identified vesicle-driven mitochondrial dysfunction, but more specifically,
 383 inhibition of complex III of the mitochondrial ETC by PA14 BMVs. We further demonstrated the
 384 activation of the metabolic sensor AMPK, presumably as a consequence of impaired complex III
 385 function. In conclusion, we identified AMPK-dependent inhibition of global protein synthesis in the
 386 host cell (Figure 5D).

387 **FUNDING**

388 Work in AW's laboratory was supported by the MWK of Lower Saxony (SMART BIOTECS alliance
389 between the Technische Universität Braunschweig and the Leibniz Universität Hannover) and BMBF
390 (PeriNAA - 01ZX1916B).

391 **REFERENCES**

392 [1] G. P. Bodey, R. Bolivar, V. Fainstein, and L. Jadeja, "Infections caused by *Pseudomonas*
393 *aeruginosa*," *Reviews of Infectious Diseases*, vol. 5, no. 2, pp. 279–313, 1983.

394 [2] M. E. Stryjewski and D. J. Sexton, "*Pseudomonas aeruginosa* infections in specific types of
395 patients and clinical settings," in *Hauser, A.R., Rello, J. (eds) Severe Infections Caused by*
396 *Pseudomonas Aeruginosa. Perspectives on Critical Care Infectious Diseases*, vol 7., pp. 1–15,
397 Springer, Boston, MA, 2003.

398 [3] J. L. Kadurugamuwa and T. J. Beveridge, "Virulence factors are released from *Pseudomonas*
399 *aeruginosa* in association with membrane vesicles during normal growth and exposure to
400 gentamicin: a novel mechanism of enzyme secretion," *Journal of Bacteriology*, vol. 177, no. 14,
401 pp. 3998–4008, 1995.

402 [4] T. J. Beveridge, "Structures of gram-negative cell walls and their derived membrane vesicles,"
403 *Journal of Bacteriology*, vol. 181, no. 16, pp. 4725–4733, 1999.

404 [5] A. E. Sjöström, L. Sandblad, B. E. Uhlin, and S. N. Wai, "Membrane vesicle-mediated release of
405 bacterial RNA," *Scientific Reports*, vol. 5, 2015.

406 [6] S. J. Bauman and M. J. Kuehn, "Purification of outer membrane vesicles from *Pseudomonas*
407 *aeruginosa* and their activation of an IL-8 response," *Microbes and Infection*, vol. 8, no. 9-10,
408 pp. 2400–2408, 2006.

409 [7] T. N. Ellis, S. A. Leiman, and M. J. Kuehn, "Naturally produced outer membrane vesicles
410 from *Pseudomonas aeruginosa* elicit a potent innate immune response via combined sensing
411 of both lipopolysaccharide and protein components," *Infection and Immunity*, vol. 78, no. 9,
412 pp. 3822–3831, 2010.

413 [8] T. T. Losier, M. Akuma, O. C. McKee-Muir, N. D. LeBlond, Y. Suk, R. M. Alsaadi, Z. Guo,
414 R. Reshke, S. Sad, F. X. Campbell-Valois, D. J. Gibbings, M. D. Fullerton, and R. C. Russell,
415 "AMPK promotes xenophagy through priming of autophagic kinases upon detection of bacterial
416 outer membrane vesicles," *Cell Reports*, vol. 26, no. 8, pp. 2150–2165, 2019.

417 [9] B. Zhao, L. Qiang, J. Joseph, B. Kalyanaraman, B. Viollet, and Y. Y. He, "Mitochondrial dysfunc-
418 tion activates the AMPK signaling and autophagy to promote cell survival," *Genes and Diseases*,
419 vol. 3, no. 1, pp. 82–87, 2016.

420 [10] S. Y. Han, Y. J. Jeong, Y. Choi, S. K. Hwang, Y. S. Bae, and Y. C. Chang, "Mitochondrial
421 dysfunction induces the invasive phenotype, and cell migration and invasion, through the
422 induction of AKT and AMPK pathways in lung cancer cells," *International Journal of Molecular
423 Medicine*, vol. 42, no. 3, pp. 1644–1652, 2018.

424 [11] P. Deo, S. H. Chow, M. L. Han, M. Speir, C. Huang, R. B. Schittenhelm, S. Dhital, J. Emery, J. Li,
425 B. T. Kile, J. E. Vince, K. E. Lawlor, and T. Naderer, "Mitochondrial dysfunction caused by outer
426 membrane vesicles from Gram-negative bacteria activates intrinsic apoptosis and inflammation,"
427 *Nature Microbiology*, vol. 5, no. 11, pp. 1418–1427, 2020.

428 [12] P. Escoll, L. Platon, and C. Buchrieser, "Roles of mitochondrial respiratory complexes during
429 infection," *Immunometabolism*, vol. 1, no. 2, 2019.

430 [13] A. V. Armstrong and D. E. Stewart-Tull, "The site of the activity of extracellular products of
431 *Pseudomonas aeruginosa* in the electron-transport chain in mammalian cell respiration," *Journal
432 of Medical Microbiology*, vol. 4, no. 2, pp. 263–270, 1971.

433 [14] A. V. Armstrong, D. E. Stewart-Tull, and J. S. Roberts, "Characterisation of the *Pseudomonas*
434 *aeruginosa* factor that inhibits mouse-liver mitochondrial respiration," *Journal of Medical Microbi-
435 ology*, vol. 4, no. 2, pp. 249–262, 1971.

436 [15] D. E. Stewart-Tull and A. V. Armstrong, "The effect of 1-hydroxyphenazine and pyocyanin from
437 *Pseudomonas aeruginosa* on mammalian cell respiration," *Journal of Medical Microbiology*,
438 vol. 5, no. 1, pp. 67–73, 1972.

439 [16] O. R. Pavlovskis, "*Pseudomonas aeruginosa* exotoxin: effect on cellular and mitochondrial
440 respiration," *Journal of Infectious Diseases*, vol. 126, no. 1, pp. 48–53, 1972.

441 [17] L. G. Rahme, E. J. Stevens, S. F. Wolfson, J. Shao, R. G. Tompkins, and F. M. Ausubel, "Common

442 virulence factors for bacterial pathogenicity in plants and animals,” *Science*, vol. 268, no. 5219,
443 pp. 1899–1902, 1995.

444 [18] M. Bagdasarian, R. Lurz, B. Rückert, F. C. Franklin, M. M. Bagdasarian, J. Frey, and K. N.
445 Timmis, “Specific-purpose plasmid cloning vectors. II. Broad host range, high copy number,
446 RSF1010-derived vectors, and a host-vector system for gene cloning in *Pseudomonas*,” *Gene*,
447 vol. 16, no. 1-3, pp. 237–247, 1981.

448 [19] M. Kretschmer, J. Müller, P. Henke, V. Otto, A. A. Rodriguez, M. Müsken, D. Jahn, J. M.
449 Borrero-de Acuña, M. Neumann-Schaal, and A. Wegner, “Isolation and quantification of bacterial
450 membrane vesicles for quantitative metabolic studies using mammalian cell cultures,” *Cells*,
451 vol. 12, no. 23, p. 2674, 2023.

452 [20] S. C. Sapcariu, T. Kanashova, D. Weindl, J. Ghelfi, G. Dittmar, and K. Hiller, “Simultaneous
453 extraction of proteins and metabolites from cells in culture,” *MethodsX*, vol. 18, no. 1, pp. 74–80,
454 2014.

455 [21] K. Hiller, J. Hangebrauk, C. Jäger, J. Spura, K. Schreiber, and D. Schomburg, “MetaboliteDe-
456 tector: comprehensive analysis tool for targeted and nontargeted GC/MS based metabolome
457 analysis,” *Analytical Chemistry*, vol. 81, no. 9, pp. 3429–3439, 2009.

458 [22] E. Afgan, D. Baker, B. Batut, M. Van Den Beek, D. Bouvier, M. Ech, J. Chilton, D. Clements,
459 N. Coraor, B. A. Grüning, A. Guerler, J. Hillman-Jackson, S. Hiltemann, V. Jalili, H. Rasche,
460 N. Soranzo, J. Goecks, J. Taylor, A. Nekrutenko, and D. Blankenberg, “The Galaxy platform for
461 accessible, reproducible and collaborative biomedical analyses: 2018 update,” *Nucleic Acids
462 Research*, vol. 46, no. W1, pp. W537–W544, 2018.

463 [23] D. Kim, B. Langmead, and S. L. Salzberg, “HISAT: a fast spliced aligner with low memory
464 requirements,” *Nature Methods*, vol. 12, no. 4, pp. 357–360, 2015.

465 [24] M. D. Robinson, D. J. McCarthy, and G. K. Smyth, “edgeR: a Bioconductor package for differential
466 expression analysis of digital gene expression data,” *Bioinformatics*, vol. 26, no. 1, pp. 139–140,
467 2010.

468 [25] S. M. Jaber, N. Yadava, and B. M. Polster, "Mapping mitochondrial respiratory chain deficiencies
469 by respirometry: Beyond the Mito Stress Test," *Experimental Neurology*, vol. 328, p. 113282,
470 2020.

471 [26] S. Ismail, M. B. Hampton, and J. I. Keenan, "*Helicobacter pylori* outer membrane vesicles
472 modulate proliferation and interleukin-8 production by gastric epithelial cells," *Infection and*
473 *Immunity*, vol. 71, no. 10, pp. 5670–5675, 2003.

474 [27] J. B. Bartruff, R. A. Yukna, and D. L. Layman, "Outer membrane vesicles from *Porphyromonas*
475 *gingivalis* affect the growth and function of cultured human gingival fibroblasts and umbilical vein
476 endothelial cells," *Journal of Periodontology*, vol. 76, no. 6, pp. 972–979, 2005.

477 [28] X. Chen, J. Zhang, M. Yang, G. Du, and F. Chen, "Methicillin-resistant *Staphylococcus au-*
478 *reus* membrane vesicles inhibit the proliferation and induce the apoptosis of epithelial cells,"
479 *Pathogens*, vol. 11, no. 12, p. 1429, 2022.

480 [29] L. A. O'Neill, R. J. Kishton, and J. Rathmell, "A guide to immunometabolism for immunologists,"
481 *Nature Reviews Immunology*, vol. 16, no. 9, pp. 553–565, 2016.

482 [30] P. Escoll and C. Buchrieser, "Metabolic reprogramming of host cells upon bacterial infection:
483 Why shift to a Warburg-like metabolism?," *FEBS Journal*, vol. 285, no. 12, pp. 2146–2160, 2018.

484 [31] P. Goyal and M. S. Rajala, "Reprogramming of glucose metabolism in virus infected cells,"
485 *Molecular and Cellular Biochemistry*, vol. 478, no. 11, pp. 2409–2418, 2023.

486 [32] F. V. Filipp, D. A. Scott, Z. A. Ronai, A. L. Osterman, and J. W. Smith, "Reverse TCA cycle flux
487 through isocitrate dehydrogenases 1 and 2 is required for lipogenesis in hypoxic melanoma
488 cells," *Pigment Cell and Melanoma Research*, vol. 25, no. 3, pp. 375–383, 2012.

489 [33] N. Zaidi, J. V. Swinnen, and K. Smans, "ATP-citrate lyase: a key player in cancer metabolism,"
490 *Cancer Research*, vol. 72, no. 15, pp. 3709–3714, 2012.

491 [34] U. Lao-On, P. V. Attwood, and S. Jitrapakdee, "Roles of pyruvate carboxylase in human diseases:

492 from diabetes to cancers and infection," *Journal of Molecular Medicine*, vol. 96, no. 3-4, pp. 237–
493 247, 2018.

494 [35] V. Lampropoulou, A. Sergushichev, M. Bambouskova, S. Nair, E. E. Vincent, E. Loginicheva,
495 L. Cervantes-Barragan, X. Ma, S. C. C. Huang, T. Griss, C. J. Weinheimer, S. Khader, G. J. Ran-
496 dolph, E. J. Pearce, R. G. Jones, A. Diwan, M. S. Diamond, and M. N. Artyomov, "Itaconate links
497 inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of
498 inflammation," *Cell Metabolism*, vol. 24, no. 1, pp. 158–166, 2016.

499 [36] T. Cordes and C. M. Metallo, "Itaconate alters succinate and coenzyme A metabolism via
500 inhibition of mitochondrial complex II and methylmalonyl-CoA mutase," *Metabolites*, vol. 11,
501 no. 2, p. 117, 2021.

502 [37] M. Blanc, W. Y. Hsieh, K. A. Robertson, S. Watterson, G. Shui, P. Lacaze, M. Khondoker, P. Dick-
503 inson, G. Sing, S. Rodríguez-Martín, P. Phelan, T. Forster, B. Strobl, M. Müller, R. Riemersma,
504 T. Osborne, M. R. Wenk, A. Angulo, and P. Ghazal, "Host defense against viral infection in-
505 volves interferon mediated down-regulation of sterol biosynthesis," *PLoS Biology*, vol. 9, no. 3,
506 p. e1000598, 2011.

507 [38] V. Lindgren, K. L. Luskey, D. W. Russell, and U. Francke, "Human genes involved in cholesterol
508 metabolism: chromosomal mapping of the loci for the low density lipoprotein receptor and 3-
509 hydroxy-3-methylglutaryl-coenzyme A reductase with cDNA probes," *Proceedings of the National
510 Academy of Sciences of the United States of America*, vol. 82, no. 24, pp. 8567–8571, 1985.

511 [39] X. Hua, C. Yokoyama, J. Wu, M. R. Briggs, M. S. Brown, J. L. Goldstein, and X. Wang, "SREBP-2,
512 a second basic-helix-loop-helix-leucine zipper protein that stimulates transcription by binding to
513 a sterol regulatory element," *Proceedings of the National Academy of Sciences of the United
514 States of America*, vol. 90, no. 24, pp. 11603–11607, 1993.

515 [40] B. B. Madison, "Srebp2: A master regulator of sterol and fatty acid synthesis..," *Journal of Lipid
516 Research*, vol. 57, no. 3, pp. 333–335, 2016.

517 [41] A. Harada, N. Sekido, T. Akahoshi, T. Wada, N. Mukaida, and K. Matsushima, “Essential
518 involvement of interleukin-8 (IL-8) in acute inflammation,” in *Journal of Leukocyte Biology*,
519 vol. 56, pp. 559–564, J Leukoc Biol, 1994.

520 [42] Q. Liu, A. Li, Y. Tian, J. D. Wu, Y. Liu, T. Li, Y. Chen, X. Han, and K. Wu, “The CXCL8-CXCR1/2
521 pathways in cancer,” *Cytokine and Growth Factor Reviews*, vol. 31, pp. 61–71, 2016.

522 [43] C. B. Saelinger, “Use of exotoxin A to inhibit protein synthesis,” *Methods in Enzymology*, vol. 165,
523 pp. 226–231, 1988.

524 [44] E. Q. Toyama, S. Herzig, J. Courchet, T. L. Lewis, O. C. Losón, K. Hellberg, N. P. Young, H. Chen,
525 F. Polleux, D. C. Chan, and R. J. Shaw, “Metabolism. AMP-activated protein kinase mediates
526 mitochondrial fission in response to energy stress,” *Science*, vol. 351, no. 6270, pp. 275–281,
527 2016.

528 [45] J. C. Drake, R. J. Wilson, R. C. Laker, Y. Guan, H. R. Spaulding, A. S. Nichenko, W. Shen,
529 H. Shang, M. V. Dorn, K. Huang, M. Zhang, A. B. Bandara, M. H. Brisendine, J. A. Kashatus, P. R.
530 Sharma, A. Young, J. Gautam, R. Cao, H. Wallrabe, P. A. Chang, M. Wong, E. M. Desjardins,
531 S. A. Hawley, G. J. Christ, D. F. Kashatus, C. L. Miller, M. J. Wolf, A. Periasamy, G. R. Steinberg,
532 D. G. Hardie, and Z. Yan, “Mitochondria-localized AMPK responds to local energetics and
533 contributes to exercise and energetic stress-induced mitophagy,” *Proceedings of the National
534 Academy of Sciences of the United States of America*, vol. 118, no. 37, p. e2025932118, 2021.

535 [46] K. Loh, S. Tam, L. Murray-Segal, K. Huynh, P. J. Meikle, J. W. Scott, B. van Denderen, Z. Chen,
536 R. Steel, N. D. LeBlond, L. A. Burkovsky, C. O’Dwyer, J. R. Nunes, G. R. Steinberg, M. D. Fullerton,
537 S. Galic, and B. E. Kemp, “Inhibition of adenosine monophosphate–activated protein kinase–
538 3-hydroxy-3-methylglutaryl coenzyme A reductase signaling leads to hypercholesterolemia and
539 promotes hepatic steatosis and insulin resistance,” *Hepatology Communications*, vol. 3, no. 1,
540 pp. 84–98, 2018.

541 [47] M. D. Fullerton, S. Galic, K. Marcinko, S. Sikkema, T. Pulinkkunnil, Z. P. Chen, H. M. O’Neill,
542 R. J. Ford, R. Palanivel, M. O’Brien, D. G. Hardie, S. L. MacAulay, J. D. Schertzer, J. R. Dyck,

543 B. J. Van Denderen, B. E. Kemp, and G. R. Steinberg, "Single phosphorylation sites in Acc1
544 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin," *Nature
545 Medicine*, vol. 19, no. 12, pp. 1649–1654, 2013.

546 [48] M. Johanns, S. Pyr dit Ruys, A. Houddane, D. Vertommen, G. Herinckx, L. Hue, C. G. Proud,
547 and M. H. Rider, "Direct and indirect activation of eukaryotic elongation factor 2 kinase by
548 AMP-activated protein kinase," *Cellular Signalling*, vol. 36, pp. 212–221, 2017.

549 [49] X. Wang, W. Li, M. Williams, N. Terada, D. R. Alessi, and C. G. Proud, "Regulation of elongation
550 factor 2 kinase by p90^{RSK1} and p70 S6 kinase," *EMBO Journal*, vol. 20, no. 16, pp. 4370–4379,
551 2001.

552 [50] L. Tosca, C. Ramé, C. Chabrolle, S. Tesseraud, and J. Dupont, "Metformin decreases IGF1-
553 induced cell proliferation and protein synthesis through AMP-activated protein kinase in cultured
554 bovine granulosa cells," *Reproduction*, vol. 139, no. 2, pp. 409–418, 2010.