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 2 

Abstract  24 

Multiplexing samples from distinct individuals prior to sequencing is a promising step toward 25 

achieving population-scale single-cell RNA sequencing by reducing the restrictive costs of the 26 

technology. Individual genetic demultiplexing tools resolve the donor-of-origin identity of pooled 27 

cells using natural genetic variation but present diminished accuracy on highly multiplexed 28 

experiments, impeding the analytic potential of the dataset. In response, we introduce Ensemblex: 29 

an accuracy-weighted, ensemble genetic demultiplexing framework that integrates four distinct 30 

algorithms to identify the most probable subject labels. Using computationally and experimentally 31 

pooled samples, we demonstrate Ensemblex’s superior accuracy and illustrate the implications of 32 

robust demultiplexing on biological analyses. 33 

 34 

Keywords: single-cell RNA sequencing, multiplexing, sample pooling, genetic demultiplexing, 35 

induced pluripotent stem cells, differential gene expression, dopaminergic neurons, doublet 36 

detection, accuracy-weighted probability, high-throughput sequencing 37 
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 3 

Background 50 

Single-cell RNA sequencing (scRNAseq) continues to revolutionize our molecular understanding 51 

of biology by providing unprecedented insight into the transcriptional landscape of individual 52 

cells. Unlike bulk RNAseq, where the RNA from all cells within a tissue is sequenced to produce 53 

total expressional profiles across all cells, scRNAseq captures transcriptional signatures at a single-54 

cell resolution, elucidating the diverse gene expression across distinct cell types and subtypes. 55 

Differential gene expression (DGE) can then be calculated between subgroups of cells to reveal 56 

cell type-specific expression changes between patient or treatment groups. However, scRNAseq 57 

has come at the expense of increased costs, hindering its application for population-scale analyses, 58 

which are critical for deriving clinico-pathological associations and characterizing the genetic 59 

heterogeneity of complex diseases in biomedical sciences (1, 2). 60 

 61 

In addition to the expense of separately capturing and sequencing cells from individual donors, the 62 

costs of scRNAseq are exacerbated for cell cultures, such as those derived from induced 63 

pluripotent stem cells (iPSC) (1). In particular, neurological diseases are difficult to study in human 64 

tissue because access to post-mortem brains is limited and experimental manipulations are not 65 

possible; in contrast, iPSC-derived cultures of neurons and other brain cells grown from 66 

reprogrammed skin or blood cells of human donors are an excellent model of the brain (3). 67 

However, iPSCs from each donor must be individually plated and differentiated in parallel, 68 

presenting prohibitively high consumable and labour costs that render the methodology unfeasible 69 

for population-scale analyses. Multiplexing cultures by pooling cells from multiple donors prior 70 

to growth and differentiation, droplet capture, and sequencing, is one solution to address this 71 

limitation as it reduces costs by a factor of the number of samples multiplexed (4). Similarly, 72 
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samples such as tumor biopsies can be pooled at acquisition to realize the same benefits. In turn, 73 

genetic demultiplexing tools are cost-effective, statistical frameworks that use the natural genetic 74 

variation at sites of single-nucleotide polymorphisms (SNP) observed in the transcriptome to 75 

cluster cells on the basis of their donor’s genotype. Importantly, genetic demultiplexing can be 76 

informed by prior genotype information of the donors to improve demultiplexing accuracy and 77 

facilitate the assignment of each cell back to its specific donor-of-origin, which is critical for 78 

downstream analyses aiming to investigate discrepancies between subjects. At present, six genetic 79 

demultiplexing tools have been developed for scRNAseq: Demuxalot (5) and Demuxlet (6) both 80 

require prior genotype information as input; Freemuxlet (6) relies entirely on the de novo 81 

transcriptome and does not incorporate prior genotype information; and ScSplit (7), Souporcell 82 

(8), and Vireo (9) provide versions of the algorithm that can work with and without prior genotype 83 

information (Table 1).  84 

 85 

A robust genetic demultiplexing tool is tasked with mitigating the addition of technical artifacts 86 

into scRNAseq datasets by correctly classifying each pooled cell to its donor-of-origin, correctly 87 

identifying heterogenic doublets (erroneous barcodes composed of two or more cells from distinct 88 

subjects), and quantifying its confidence in the demultiplexed labels so that low-confidence 89 

classifications can be eliminated from downstream analyses. While benchmarking analyses on the 90 

available genetic demultiplexing tools have shown effectiveness for demultiplexing small sample 91 

sizes, limitations emerge as the number of multiplexed samples approach a population scale (6) 92 

(7) (8) (9). For example, using computationally multiplexed samples, Neavin et al. evaluated the 93 

performance of genetic demultiplexing tools as the number of samples approached a population 94 

scale and observed diminished demultiplexing accuracy with increasing numbers of pooled 95 
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samples, as well as notable classification discrepancies between tools (10). Furthermore, even at 96 

small sample sizes, divergent assignments between genetic demultiplexing tools are common (8) 97 

(9) (11). Another feature that has been shown to affect genetic demultiplexing performance is the 98 

underrepresentation of samples in a pool, which is especially relevant for cell culture-based 99 

multiplexed experiments, as variable growth rates in vitro across cell lines is common (12) (8) (9). 100 

Genetic demultiplexing tools have also shown low concordance for identifying heterogenic 101 

doublets, which should be removed prior to downstream analyses to avoid technical noise in the 102 

data (10). Importantly, benchmarking analyses have repeatedly highlighted ScSplit’s poor 103 

performance relative to the remaining tools (9) (10) (8) (11). The sum of these limitations calls to 104 

question the robustness of the individual genetic demultiplexing tools for resolving the donor 105 

identities of highly multiplexed samples, which represents an important hurdle for feasibly 106 

achieving population-scale scRNAseq analysis. 107 

 108 

In response to the divergent assignments commonly observed across tools, a consensus framework, 109 

whereby only cells that show matching sample labels across all individual tools are retained for 110 

downstream analyses, may appear sufficient to resolve the risk of introducing technical noise into 111 

the data from misclassified cells. However, consensus frameworks are restricted to performing 112 

only as well as the worst-performing tool, and genetic demultiplexing performance is highly 113 

dataset dependent (10); thus, the overall performance of a consensus framework can vary 114 

immensely between datasets. To this end, Neavin et al. proposed a majority vote framework for 115 

genetic demultiplexing, whereby a cell is assigned to the sample called by the majority of tools 116 

(10). However, this approach can be vulnerable to a subset of tools performing poorly on the 117 

dataset, does not allocate additional weight to the votes of tools that perform more favourably on 118 
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the dataset, cannot account for instances when ties occur amongst tools, and cannot capture cells 119 

that are correctly classified by only one tool. The sum of these limitations leads to the unnecessary 120 

removal of cells from downstream analyses, reducing statistical power, especially for highly 121 

multiplexed pools where each donor, on average, will have a lower representation of cells in the 122 

pool. Moreover, the ability to capture the transcriptional profiles of rare cell types with scRNAseq 123 

provides a notable advancement over bulk RNAseq and can strongly influence biological 124 

interpretations (13); thus, investigators are reluctant to discard valuable cells in order to maximize 125 

the analytic potential of their dataset. 126 

 127 

To address the need for a robust genetic demultiplexing framework that can maximize the number 128 

of confidently classified cells retained for downstream analyses, achieve high demultiplexing 129 

accuracy for population-scale scRNAseq sample pooling, and maintain reliability across different 130 

datasets, we developed Ensemblex: an accuracy-weighted ensemble genetic demultiplexing 131 

framework designed to identify the most probable sample labels from each of its constituent tools 132 

— Demuxalot, Demuxlet/Freemuxlet, Souporcell, and Vireo. Our ensemble method capitalizes on 133 

combining distinct statistical frameworks for genetic demultiplexing while adapting to the overall 134 

performance of its constituent tools on the respective dataset, making it resilient against a poorly 135 

performing tool and facilitating a higher yield of cells for downstream analyses. The Ensemblex 136 

workflow is assembled into a three-step pipeline — 1) accuracy-weighted probabilistic ensemble; 137 

2) graph-based doublet detection; 3) Ensemble-independent doublet detection — and can 138 

demultiplex pools with or without prior genotype information.  139 

 140 
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Here, we showcase Ensemblex’s improved demultiplexing performance across a variety of settings 141 

through benchmarking analyses on a total of 141 computationally multiplexed pools with known 142 

ground-truth sample labels ranging in size from 4 to 80 samples. We applied the ensemble method 143 

to three diverse, experimentally multiplexed datasets: 1) non-small cell lung cancer (NSCLC) 144 

dissociated tumor cells from 7 individuals with donor-specific oligonucleotide labels; 2) iPSC-145 

derived dopaminergic neurons (DaN) from 22 healthy individuals; and 3) iPSC-derived neural 146 

stem cells (NSC) from 9 individuals with attention deficit hyperactivity disorder (ADHD) and 7 147 

healthy controls. We demonstrate Ensemblex’s robustness across distinct datasets, its ability to 148 

return a high proportion of confidently classified cells for downstream analysis, and the 149 

implications that its improved demultiplexing performance has on biological interpretations of 150 

multiplexed experiments.  151 

Table 1. Summary of individual genetic demultiplexing tools.  152 

Genetic demultiplexing tool 

Prior genotype information for 

genetic demultiplexing 

Included in the Ensemblex 

framework 

Demuxalot (5) Required Yes 

Demuxlet (6) Required Yes 

Freemuxlet (6) Not supported Yes 

ScSplit (7) Optional No 

Souporcell (8) Optional Yes 

Vireo (9) Optional Yes 

 153 

 154 

Results and Discussion 155 

Evaluating the performance of existing individual genetic demultiplexing tools 156 
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To evaluate the performance of individual genetic demultiplexing tools, we generated 157 

computationally multiplexed pools using scRNAseq of 80 different iPSC lines from Parkinson’s 158 

disease patients and healthy controls, which were differentiated towards a DaN state as part of the 159 

Foundational Data Initiative for Parkinson’s Disease (FOUNDIN-PD) (14). Processed scRNAseq 160 

data from the independent iPSC lines were merged to simulate sample-pooling using a previously 161 

described protocol (9), which provided known ground-truth donor and doublet labels. We 162 

generated 96 in silico pools ranging in size from 4 to 80 multiplexed samples, where each sample 163 

corresponded to a unique donor-of-origin. The in silico pools averaged 17,396 cells per pool with 164 

a constant 15% doublet rate.  165 

 166 

Leveraging whole-genome sequencing (WGS) of the 80 donors from which the iPSC lines were 167 

derived and the four genetic demultiplexing tools that can utilize prior genotype information — 168 

Demuxalot, Demuxlet, Souporcell, and Vireo-GT — we first investigated the proportion of 169 

correctly classified cells by the individual tools (Figure 1A). Across the 96 in silico pools, all tools 170 

showed decreasing demultiplexing performance as the number of samples within the pool 171 

increased. Souporcell demonstrated the largest decrease in the proportion of correctly classified 172 

cells as the number of multiplexed samples increased from 4 (mean = 90.60%) to 80 (mean = 173 

53.27%). In accordance with previous findings (10, 15), the individual genetic demultiplexing 174 

tools performed better on singlet classification than doublet detection, highlighting an avenue for 175 

improved genetic demultiplexing accuracy by increasing the rate of heterogenic doublet 176 

identification (Figure 1A).  177 
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 178 

Figure 1. Evaluation of existing individual genetic demultiplexing tools.  Evaluation of genetic 179 

demultiplexing tools with prior genotype information on 96 in silico pools with known ground-180 

truth sample labels ranging in size from 4 to 80 multiplexed induced pluripotent stem cell (iPSC) 181 

lines from genetically distinct individuals, averaging 17,396 cells per pool and a 15% doublet rate. 182 

A) Line graphs showing the proportion of correctly classified singlets, doublets, and all cells by 183 

each individual genetic demultiplexing tool across varying numbers of multiplexed iPSC lines in 184 

a single pool (sample number). The large dots show the mean proportion of correct classifications 185 

by an individual tool across replicates at a given sample size (n = 9 per pool size). The blue points 186 

show the proportion of cells that were correctly classified by at least one individual genetic 187 

demultiplexing tool: Demuxalot, Demuxlet, Souporcell, or Vireo-GT. B) Bar chart showing the 188 

mean proportion of total cells from an individual pool correctly classified by only one genetic 189 

demultiplexing tool. Error bars represent one standard deviation from the mean. (n = 9 per pool 190 

size) C) Bar chart showing the proportion of correctly classified singlet cells labelled as 191 

“unassigned” (ambiguous singlet assignments) due to assignment probabilities below the 192 

recommended threshold of the respective genetic demultiplexing tool. Error bars represent one 193 

standard deviation from the mean. (n = 9 per pool size). 194 

 195 

We also investigated the proportion of cells that were correctly classified by at least one genetic 196 

demultiplexing tool to designate the best possible performance of an ensemble method that 197 

successfully incorporates every correct classification from its constituent tools (Figure 1A). 198 

Across the 96 in silico pools, an average of 93.64% of cells were correctly classified by at least 199 
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one tool. In comparison, Demuxlet, which demonstrated the best overall performance amongst 200 

individual tools, correctly classified 86.73% of cells, on average. Demuxalot was consistently 201 

responsible for the highest proportion of cells correctly classified by only one tool; 1.21% of 202 

pooled cells, on average, were correctly classified by Demuxalot only, followed by Demuxlet 203 

(mean = 0.83%), Vireo-GT (mean = 0.29%), and Souporcell (mean = 0.26%) (Figures 1B; 204 

Additional File 1: Figure S1). Conversely, a consensus framework, correctly classified only 205 

81.06% of cells, on average (data not shown). Based on these results, we reasoned that an ensemble 206 

genetic demultiplexing method that can identify the most probable sample label from its 207 

constituent tools, independent of a consensus assignment, would increase the yield of correctly 208 

classified cells.  209 

 210 

Next, we explored the frequency at which correctly classified singlets were labelled as unassigned 211 

because their assignment probability failed to meet the tool’s recommended probability threshold. 212 

Across the 96 in silico pools, Vireo-GT consistently showed the highest proportion of correctly 213 

classified singlets with insufficient assignment probabilities (Vireo-GT mean = 7.86%) followed 214 

by Demuxalot (mean = 5.91%), Demuxlet (mean = 2.44%) and Souporcell (mean = 2.34%) 215 

(Figure 1C). While a stringent probability threshold is important to prevent erroneous 216 

classifications in downstream analyses, we reasoned that the unnecessary removal of correctly 217 

classified cells could be mitigated by a carefully calibrated ensemble method that allocates 218 

additional assignment confidence to cells with matching sample labels across constituent tools, 219 

despite low internal tool-specific assignment probabilities.  220 

 221 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 19, 2024. ; https://doi.org/10.1101/2024.06.17.599314doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.17.599314
http://creativecommons.org/licenses/by/4.0/


 11 

We repeated the above analyses using the same 96 computationally multiplexed pools and the 222 

genetic demultiplexing tools that do not require prior genotype information: Freemuxlet, 223 

Souporcell, and Vireo. Here, we observed the same overarching limitations as when 224 

demultiplexing with prior genotype information: 1) decreasing demultiplexing performance as the 225 

number of multiplexed samples increased; 2) poor doublet detection performance compared to 226 

singlet classification; 3) high rates of cells only correctly classified by a single tool; and 4) 227 

discarded correctly classified cells due to insufficient assignment probabilities (Additional File 1: 228 

Figure S2). When we compared demultiplexing with and without prior genotype information, we 229 

observed a trend towards a higher proportion of cells being correctly classified when prior 230 

genotype information was available, as previously seen in separate benchmarking analyses (9) 231 

(Additional File 1: Figure S3).   232 

 233 

Validating the Ensemblex framework on pools with known ground-truth sample labels 234 

To mitigate the limitations of the individual genetic demultiplexing tools and maximize the 235 

analytic potential of multiplexed scRNAseq datasets, we developed Ensemblex (Figure 2A). The 236 

Ensemblex workflow begins by demultiplexing pooled samples with four distinct demultiplexing 237 

algorithms, followed by three steps: 1) accuracy-weighted probabilistic ensemble; 2) graph-based 238 

doublet detection; and 3) ensemble-independent doublet detection (Figure 2B). As output, 239 

Ensemblex returns its own cell-specific sample labels and corresponding assignment probabilities, 240 

as well as the sample labels and corresponding assignment probabilities for each of its constituent 241 

tools. 242 
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 243 

Figure 2. Characterization of the Ensemblex framework. Ensemblex is a probabilistic-244 

weighted ensemble genetic demultiplexing framework for single-cell RNA sequencing analysis, 245 

which was designed to leverage the most probable sample labels from each of its constituent tools: 246 

Demuxalot, Demuxlet, Souporcell, and Vireo when using prior genotype information or 247 

Demuxalot, Freemuxlet, Souporcell, and Vireo when prior genotype information is not available. 248 

A) The Ensemblex workflow begins with demultiplexing pooled cells from genetically distinct 249 

individuals by each of the constituent tools. The outputs from each individual demultiplexing tool 250 

are then used as input into the Ensemblex framework. B) The Ensemblex framework comprises 251 
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three distinct steps that are assembled into a pipeline: 1) accuracy-weighted probabilistic ensemble, 252 

2) graph-based doublet detection, and 3) ensemble-independent doublet detection. C-D) Line 253 

graphs showng the contribution of each step of the Ensemblex framework on 96 in silico pools 254 

with known ground-truth sample labels ranging in size from 4 to 80 multiplexed induced 255 

pluripotent stem cell (iPSC) lines from genetically distinct individuals, averaging 17,396 cells per 256 

pool and a 15% doublet rate. The average proportion of correctly classified C) singlets and D) 257 

doublets across replicates at a given pool size is shown after sequentially applying each step of the 258 

Ensemblex framework with prior genotype information (n = 9 per pool size). The right panels 259 

show the average proportion of correct classifications across all 96 pools; error bars represent one 260 

standard deviation from the mean. The blue points show the proportion of cells that were correctly 261 

classified by at least one individual genetic demultiplexing tool: Demuxalot, Demuxlet, 262 

Souporcell, or Vireo-GT.  263 

 264 

In response to our observation that certain cells are correctly classified by only one tool, we 265 

implemented the accuracy-weighted probabilistic ensemble component (Step 1) of the Ensemblex 266 

framework. In brief, this unsupervised weighting model identifies the most probable sample label 267 

for each cell by assigning weights to each tool’s assignment probabilities based on their estimated 268 

balanced accuracy for the dataset (see “Methods”) (Figures 2B) (16). Ensemblex then retains the 269 

sample label with the highest cumulative probability across its constituents. However, one 270 

challenge for this framework is computing the balanced accuracy of the constituent tools for 271 

experimentally multiplexed pools that lack ground-truth labels. Therefore, to estimate the balanced 272 

accuracy of a particular constituent tool (e.g., Demuxalot) without ground-truth labels, Ensemblex 273 

leverages the cells with a consensus assignment across the three remaining tools (e.g., Demuxlet, 274 

Souporcell, and Vireo-GT) as a proxy for ground-truth. To validate this approach, we utilized in 275 

silico pools with known ground truth sample labels to compute the Adjusted Rand Index (ARI) 276 

between Ensemblex’s sample labels when the balanced accuracy of the constituent tools was 277 

computed using consensus labels or ground-truth labels. Here, we consistently observed a mean 278 

ARI > 0.99, independent of the number of multiplexed samples in a pool, suggesting high 279 

assignment concordance between the two approaches (Additional File 1: Figure S4). Applying 280 
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the accuracy-weighted probabilistic ensemble component to the 96 in silico pools correctly 281 

classified 94.98% of singlets, on average, across all pools, approaching the number of singlets that 282 

were correctly classified by at least one constituent tool (mean = 96.48%) (Figure 2C). In contrast, 283 

only 66.01% of doublets, on average, were correctly identified across all pools after Step 1, 284 

compared to 76.59% of doublets that were correctly identified by at least one constituent tool 285 

(Figure 2D).  286 

 287 

Given that previous analyses have demonstrated strong doublet call discordance across genetic 288 

demultiplexing tools (10), it was unsurprising that Step 1 of the Ensemblex framework performed 289 

poorly on doublet identification. Therefore, instead of relying on the cell type classifications of the 290 

constituent tools (i.e., singlet or doublet), we elected to leverage the doublet-related features (e.g., 291 

doublet probability; see “Methods”) returned by the constituent tools to identify the cells with the 292 

highest doublet likelihood, independent of the existing classifications. We implemented this 293 

approach in the graph-based doublet detection component (Step 2) of the Ensemblex framework, 294 

which was specifically designed to increase the rate of true doublet detection. Step 2 begins by 295 

identifying the top n most confident doublets in the pool (see “Methods”). Then, based on the 296 

Euclidean distances in principal component analysis (PCA) space, the cells that appear most 297 

frequently amongst the nearest-neighbors of the high confident doublets and exceed the optimized 298 

percentile threshold for the nearest-neighbor frequency are labelled as doublets by Ensemblex 299 

(Figure 2B; Additional File 1: Figure S5; see “Methods”). Upon applying the graph-based 300 

doublet detection component to the 96 in silico pools following Step 1, Ensemblex correctly 301 

identified 76.00% of doublets, on average: a 9.99% increase in doublet detection from Step 1. In 302 
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turn, the average proportion of correctly classified singlets across all pools (94.43%) decreased by 303 

only 0.55% (Figure 2D).   304 

 305 

The ensemble-independent doublet detection component (Step 3) of the Ensemblex framework 306 

was implemented to further improve doublet detection. Step 3 was motivated by our observation 307 

that certain tools, namely Demuxalot and Vireo, showed high doublet detection specificity (mean 308 

= 0.99) on in silico pools with known ground-truth sample labels, but that Steps 1 and 2 failed to 309 

incorporate a subset of these correct doublet calls (Additional File 1: Figure S6). Therefore, by 310 

default, Ensemblex accepts the doublet calls made by Demuxalot and Vireo-GT (Figure 2B). 311 

Applying the ensemble-independent doublet detection component to the 96 in silico pools 312 

following Steps 1 and 2 further increased the average proportion of correctly identified doublets 313 

across all pools by 1.58% for a total of 77.63% of doublets detected, while only decreasing the 314 

average proportion of correctly classified singlets by 0.13% for a total of 94.30% of singlets 315 

correctly classified (Figures 2C and 2D). Notably, owing to the graph-based doublet detection 316 

component, the average proportion of doublets identified by Ensemblex exceeded the average 317 

proportion of doublets that were correctly classified by at least one constituent tool.  318 

 319 

While the three-step workflow of the Ensemblex pipeline was designed to maximize the balance 320 

between singlet classification and doublet identification, we do prioritize the identification of 321 

doublets at the expense of a slightly lower singlet yield to minimize technical noise in the data. 322 

However, we recognize that different experimental designs will require varying levels of doublet 323 

detection stringency; thus, users can modify the percentile thresholds for graph-based doublet 324 
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detection and nominate different tools for ensemble-independent doublet detection (see 325 

“Methods”).  326 

 327 

Benchmarking Ensemblex on pools with known ground-truth sample labels 328 

To benchmark Ensemblex against Demuxalot, Demuxlet, Souporcell, and Vireo-GT with prior 329 

genotype information, we first utilized the 96 in silico pools with known ground-truth sample 330 

labels to assess how Ensemblex’s demultiplexing performance varied as the number of multiplexed 331 

samples approached a cohort scale (4-80 samples). Unlike doublets, singlets were only considered 332 

correctly classified if their assignment probability exceeded the recommended threshold of the 333 

respective tool. On average across all pools, Ensemblex showed a higher proportion of correctly 334 

classified singlets (mean = 92.19%), doublets (mean = 77.63%), and all cells (mean = 90.12%) 335 

than the other tools. In comparison, Demuxlet, widely considered the “gold standard” tool, 336 

correctly classified 89.72% of singlets, 68.57% of doublets, and 86.73% of all cells, on average 337 

(Figures 3A-3C). Importantly, the discrepancy in the proportion of correctly classified cells 338 

between Ensemblex and the next-best tool was amplified as the number of multiplexed samples 339 

increased from 4 (2.78%) to 80 (3.52%), demonstrating that our ensemble method was able to 340 

partially mitigate decreased demultiplexing accuracy as the pools approach a population scale. 341 
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 342 

Figure 3. Ensemblex ground-truth benchmarking on computationally multiplexed pools. The 343 

genetic demultiplexing tools with prior genotype information were evaluated on 96 in silico pools 344 

with known ground-truth sample labels ranging in size from 4 to 80 multiplexed induced 345 

pluripotent stem cell (iPSC) lines from genetically distinct individuals, averaging 17,396 cells per 346 

pool and a 15% doublet rate. A singlet was considered correctly classified if the assigned sample 347 

label matched the ground-truth sample label and the assignment probability exceeded the 348 
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recommended threshold for the respective tool; a doublet was considered correctly classified if the 349 

assigned sample label matched the ground-truth sample label, regardless of the assignment 350 

probability. A-I) Line graphs showing the performance of Ensemblex and the individual genetic 351 

demultiplexing tools across evaluation metrics. The large dots show the mean value for each tool 352 

across replicates at a given sample size (n = 9 per pool size). A) Proportion of correctly classified 353 

singlets. B) Proportion of correctly classified doublets. C) Proportion of correctly classified cells. 354 

D) Adjusted Rand Index between each tool’s sample labels and the ground-truth sample labels. E) 355 

Balanced accuracy of each tool. F) Matthew’s Correlation Coefficient of each tool. G) Area under 356 

the receiver operating characteristic curve (AUC) of the singlet assignment probability for each 357 

tool. H) Proportion of usable cells returned by each tool. Usable cells were defined as cells 358 

classified by singlets with an assignment probability exceeding the recommended threshold of the 359 

respective tool. I) Error rate amongst the usable cells returned by each tool; erroneous 360 

classifications comprised of true doublets labeled as singlets or true singlets assigned to the wrong 361 

sample. 362 

 363 

Next, we applied evaluation metrics for classification models to gauge the overall performance of 364 

the genetic demultiplexing tools. We first computed the ARI to evaluate the similarity between the 365 

demultiplexed sample labels and the ground-truth sample labels. Here, Ensemblex showed the 366 

highest ARI with the ground truth sample labels across all pools (mean = 0.76), followed by 367 

Demuxalot (mean = 0.67) and Demuxlet (mean = 0.66) (Figure 3D). We then computed the 368 

balanced accuracy to evaluate the binary classification performance — singlet or doublet — of 369 

each genetic demultiplexing tool as well as the Matthew’s Correlation Coefficient (MCC), which 370 

previous work has suggested is more reliable and informative for classification cases where 371 

positive (singlet) and negative (doublet) cases have the same analytic importance (17). Across all 372 

pools, Ensemblex showed the highest balanced accuracy (mean = 0.80) and MCC (mean = 0.64), 373 

whereas Demuxalot and Demuxlet showed average balanced accuracies of 0.74 and 0.75, 374 

respectively, and both tools showed an average MCC of 0.54 (Figures 3E and 3F). To evaluate 375 

how well Ensemblex’s confidence score (see “Methods”) and each constituent tool’s assignment 376 

probability corresponded to the accuracy of their singlet classification, we plotted the area under 377 
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the receiver operating characteristic curve (AUC). Although Demuxalot (mean = 0.99) and Vireo-378 

GT (mean = 0.99) showed the highest AUC across all pools on average, Ensemblex’s AUC was 379 

comparable (mean = 0.98) (Figure 3G).  380 

 381 

Finally, we investigated the proportion of usable cells returned by each demultiplexing tool and 382 

the error rate amongst usable cells. We define usable cells as singlet classifications exceeding the 383 

recommended probability threshold of the respective tool, while the error rate amongst usable cells 384 

constituted incorrectly classified singlets to the wrong donor-of-origin or true doublets incorrectly 385 

classified as singlets. We observed that, on average, Ensemblex returned the highest proportion of 386 

usable cells across all pools (82.66%), followed by Demuxlet (81.66%), Souporcell (81.01%), 387 

Demuxalot (79.99%), and Vireo-GT (77.53%) (Figure 3H). Importantly, Ensemblex showed the 388 

lowest error rate amongst usable cells (4.34%), followed by Demuxalot (4.43%), Demuxlet 389 

(5.77%), Vireo-GT (6.16%), and Souporcell (21.82%) (Figure 3I).  390 

 391 

Using computationally multiplexed pools comprised of 24 iPSC lines, we further assessed how the 392 

performance of Ensemblex varied as a function of the number cells in a pool when prior genotype 393 

information was available. Here, we observed that our ensemble method consistently outperformed 394 

the individual demultiplexing tools (Additional File 1: Figure S7). When cells are pooled 395 

experimentally, it is reasonable to expect some iPSC lines to be underrepresented in the pool. 396 

Therefore, to assess Ensemblex’s demultiplexing performance in the presence of an 397 

underrepresented iPSC line, we produced computationally multiplexed pools comprising of 24 398 

samples, with one sample showing varying degrees of under representation. Again, we observed 399 

that Ensemblex consistently outperformed the individual tools (Additional File 1: Figure S8). 400 
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Finally, we repeated the above analyses to assess whether the benefits of using Ensemblex to 401 

demultiplex with prior genotype information extended to cases where prior genotype information 402 

is not available. In doing so, we observed a trend towards better overall performance by 403 

Ensemblex; however, the discrepancy between Ensemblex and the top-performing individual 404 

tools, namely Freemuxlet and Souporcell, was less pronounced than when demultiplexing with 405 

prior genotype information (Additional File 1: Figures S9-S11).  406 

 407 

Taken together, these results indicate that the Ensemblex framework mitigates the limitations of 408 

the individual tools, leading to greater overall demultiplexing performance across computationally 409 

multiplexed pools with known ground-truth labels. Ultimately, Ensemblex’s improved 410 

demultiplexing performance translates to a higher recovery of usable cells for downstream 411 

analyses as well as a higher accuracy amongst usable cells, limiting the unnecessary removal of 412 

cells from the dataset and mitigating the introduction of technical artifacts into biological analyses. 413 

 414 

Evaluating Ensemblex on experimentally pooled samples with donor-specific oligonucleotide 415 

labels 416 

To determine whether Ensemblex’s improved performance across the in silico pools is reflected in 417 

real-world multiplexed experiments,  we applied Ensemblex to an experimentally multiplexed pool 418 

composed of NSCLC dissociated tumor cells from 7 donors, hereafter referred to as the NSCLC 419 

dataset (18). Importantly, these NSCLC cells were labelled with donor-specific Cell Multiplexing 420 

Oligonucleotides (CMOs), providing a proxy for ground-truth sample labels to evaluate the 421 

performance of the genetic demultiplexing tools. For this experiment, we used HTOdemux (19) to 422 

assign the cells back to their donor-of-origin based on the CMO expression profiles. HTOdemux 423 
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confidently assigned 19,695 cells, of which 15,534 (78.87%) were assigned to individual donors 424 

and 4,161 (21.13%) were assigned as doublets; 769 cells (3.76%) were unassignable at a positive 425 

quantile of 0.99 and were excluded from downstream analyses (Figures 4A). Application of the 426 

Ensemblex framework with prior genotype information to the NSCLC dataset achieved a singlet 427 

true positive (TP) rate of 96.92% and doublet TP rate of 66.21% (Figure 4B). To evaluate the 428 

benefits of utilizing the entire Ensemblex workflow (Steps 1-3), we investigated the contribution 429 

of each step of the Ensemblex framework to the overall demultiplexing accuracy. Applying graph-430 

based doublet detection (Step 2) and ensemble-independent doublet detection (Step 3) to the 431 

accuracy weighted assignments obtained from Step 1 increased the proportion of correctly 432 

identified doublets by 14%, while slightly decreasing the proportion of correctly classified singlets 433 

by 0.05% (Additional File 1: Table S1). Although users can elect to utilize different step-434 

combinations of the Ensemblex pipeline, these results reaffirm that leveraging the entire workflow 435 

maximizes the overall demultiplexing accuracy by achieving a meticulous balance between singlet 436 

classification and doublet identification.  437 
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 438 

Figure 4. Evaluating Ensemblex on experimentally multiplexed cells using donor-specific 439 

oligonucleotide labels as a proxy for ground-truth. Non-small cell lung cancer (NSCLC) 440 

dissociated tumor cells from 7 individuals were pooled and labelled with donor-specific 441 

oligonucleotide-labels. Cells were demultiplexed according to their expression of donor-specific 442 

oligonucleotide labels by HTOdemux; HTOdemux’s sample labels were used as a proxy for 443 

ground truth. True positives (TP) singlets were defined as cells classified as singlets by both 444 

HTOdemux and Ensemblex with matching sample labels; false positives (FP) singlets were 445 

defined as cells classified as singlets by both HTOdemux and Ensemblex but assigned to different 446 

donors. TP doublets were defined as cells classified as doublets by both HTOdemux and 447 

Ensemblex; FP doublets were defined as cells classified as singlets by HTOdemux and doublets 448 

by Ensemblex; false negatives (FN) doublets were defined as cells classified as doublets by 449 

HTOdemux and singlets by Ensemblex. A) T-distributed Stochastic Neighbor Embedding (t-SNE) 450 

visualization of HTOdemux’s sample labels. B) T-SNE visualization of Ensemblex’s 451 

demultiplexing performance using HTOdemux’s sample labels as ground truth for singlets (left) 452 

and doublets (right). C) Bar plots showing the singlet TP and FP rates for each genetic 453 

demultiplexing tool using HTOdemux’s sample labels as ground truth. D) Bar plots showing the 454 

doublet TP and FP rates for each genetic demultiplexing tool using HTOdemux’s sample labels as 455 
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ground truth. E) Scatter plot showing the proportion of usable cells (confidently classified singlets) 456 

and the corresponding usable cell error rate for each genetic demultiplexing tool. F) Adjusted Rand 457 

Index, balanced accuracy, Matthew’s Correlation Coefficient, and area under the receiver operating 458 

characteristic curve (AUC) of the singlet assignment probability for each genetic demultiplexing 459 

tool. 460 

 461 

Upon comparing Ensemblex’s demultiplexing performance with prior genotype information on 462 

the NSCLC dataset to the individual genetic demultiplexing tools, it emerged that our ensemble 463 

method obtained the highest singlet and doublet TP rates (Figures 4C and 4D). Ensemblex and 464 

Demuxlet also showed the lowest singlet false positive (FP) rates (0.25% and 0.21%, respectively), 465 

indicating that singlets were least frequently assigned to the wrong donor-of-origin by these two 466 

methods compared to Demuxalot (1.87%), Vireo-GT (3.91%), and Souporcell (11.94%). 467 

Souporcell and Vireo-GT returned the highest proportion of usable cells (confidently classified 468 

singlets; 88.21% and 86.51%, respectively); albeit, at the expense of high usable cell error rates 469 

(22.91% and 13.53%, respectively) (Figure 4E). In turn, Ensemblex, Demuxalot, and Demuxlet 470 

showed lower error rates across the usable cells (8.75%, 8.91%, and 9.51%, respectively), amongst 471 

which Ensemblex returned the highest proportion of usable cells (83.77%) compared to Demuxalot 472 

(83.64%) and Demuxlet (83.43%). Here, the relatively high error rate amongst usable cells 473 

returned by each demultiplexing tool is attributed to true doublets classified as singlets. Finally, 474 

we computed the ARI, balanced accuracy, MCC, and AUC for singlet detection for each tool and 475 

observed that Ensemblex again outperformed the remaining tools (Figure 4F). We repeated the 476 

above analyses without prior genotype information and observed a similar trend towards better 477 

overall performance by Ensemblex (Additional File 1: Table S2 and Figure S12). Together, these 478 

results corroborate that Ensemblex’s improved performance on the in silico pools extends to 479 

experimentally multiplexed samples. 480 

 481 
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Application of Ensemblex to experimentally pooled, highly multiplexed subjects 482 

To evaluate Ensemblex’s demultiplexing performance on experimentally pooled, highly 483 

multiplexed scRNAseq datasets with prior genotype information, we used pools containing iPSC 484 

lines from 22 donors that were differentiated towards DaN by Jerber et al., hereafter referred to as 485 

the DaN dataset (12) (Figure 5A). To capture the transcriptional changes throughout neurogenesis, 486 

Jerber et al. performed scRNAseq of the iPSC lines grown in pooled cultures at days 11, 30, and 487 

52 of differentiation (Figure 5A). Using three technical replicates from each timepoint, we 488 

obtained 84,746 cells after performing quality control as previously described (12) (Additional 489 

File 1: Table S3). Each technical replicate was demultiplexed independently by Ensemblex and 490 

its constituent tools.  491 

 492 
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Figure 5. Application of Ensemblex to highly multiplexed, experimentally pooled cultures of 493 

differentiated dopaminergic neurons.  A) Time line of iPSC pooling, dopaminergic neuron 494 

(DaN) differentiation, and sample collection from the DaN dataset by Jerber et al. (12). Three 495 

technical replicates at each time point (days 11, 30 and, 52 of differentiation) from pools containing 496 

22 individual iPSC lines were used in the analysis. Across all timepoints and technical replicates, 497 

84,746 cells were obtained for analysis. B) Uniform manifold approximation and projection 498 

(UMAP) plots showing confidently assigned singlets or predicted doublets (blue) and ambiguous 499 

singlets (singlet assignments with insufficient assignment probabilities; red) returned by each 500 

demultiplexing tool. C) Stacked bar chart showing the proportion of confidently assigned singlets 501 

or predicted doublets (blue) and ambiguous singlets (red) across technical replicates at each time 502 

point returned by each demultiplexing tool. D) Boxplot showing the proportion of confidently 503 

classified singlets across technical replicates and time points by each demultiplexing tool. 504 

Wilcoxon rank-sum tests were used to compare the proportion of confidently classified singlets by 505 

Ensemblex to that of its constituents (n = 9 pools). E) Bar chart showing the proportion of 506 

overlapping ambiguous singlet assignments amongst demultiplexing tools across technical 507 

replicates and time points (n = 9 pools). F) Boxplot showing the Adjusted Rand Index (ARI) 508 

assessing cluster stability across a range of 11 clustering resolutions (n clustering iterations = 25) 509 

after removing doublets identified by each demultiplexing tool. Wilcoxon rank-sum tests were 510 

used to compare the clustering ARI after removing Ensemblex doublets to the clustering ARI after 511 

removing doublets identified by each constituent tool. * Adjusted P-value < 0.05; ** adjusted P-512 

value < 0.01; *** adjusted P-value < 0.001 513 

 514 

To characterize the relationship between Ensemblex and its constituent demultiplexing tools, we 515 

computed the ARI between Ensemblex’s sample labels and those of its constituent as well as the 516 

percent contribution of each tool to Ensemblex’s final sample labels (Table 2). Notably, we 517 

observed that across day 30 technical replicates Demuxlet showed an ARI of 0.063 with 518 

Ensemblex and only contributed 29.74% to Ensemblex’s final sample labels. In contrast, across 519 

day 11 and 52 technical replicates Demuxlet showed an ARI of 0.928 and 0.884, respectively, and 520 

contributed 95.91% and 90.55%, respectively, to Ensemblex’s final sample labels. Importantly, 521 

Demuxlet’s variable contribution to Ensemblex’s sample labels across sequencing time points 522 

demonstrates our ensemble method’s ability to adapt to the relative performance of its constituent 523 

tools and override the classifications of a poorly performing tool on the respective dataset.   524 
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Table 2. Application of Ensemblex to pooled cultures of dopaminergic neurons from 22 525 

healthy controls.  526 

 ARI between Ensemblex and 

constituent tool assignments 
 Percent contribution to 

Ensemblex assignments 

n 

usable cells 

n 

doublets 
 Day 11 Day 30 Day 52  Day 11 Day 30 Day 52 

Demuxalot 0.987 0.955 0.982  97.29% 94.75% 97.57% 75,962 8,279 

Demuxlet 0.928 0.062 0.884  95.91% 29.74% 90.55% 57,567 6,614 

Souporcell 0.883 0.876 0.912  91.62% 91.82% 93.84% 76,811 7,740 

Vireo-GT 0.961 0.879 0.958  95.95% 88.80% 95.16% 75,933 6,115 

Ensemblex NA NA NA  NA NA NA 76,222 8,307 

DoubletFinder NA NA NA  NA NA NA NA 4,597 

Pooled cultures of induced pluripotent stem cell (iPSC) lines from 22 healthy donors were 527 

differentiated towards a dopaminergic neuron (DaN) fate and sequenced on days 11, 30, and 52 of 528 

differentiation by Jerber et al. (12). For the analysis we used three technical replicates for each 529 

sequencing timepoint. Each pool was demultiplexed independently by Ensemblex and its 530 

constituent tools with prior genotype information. The Adjusted Rand Index (ARI) between 531 

Ensemblex’s assignments and those of the constituent tools was computed across technical 532 

replicates corresponding to each differentiation timepoint. The percent contribution represents the 533 

proportion of assignments from each constituent tool that matched Ensemblex’s assignments. 534 

Usable cells were defined as singlet classifications whose assignment probability exceeded the 535 

recommended threshold of the respective tool. Abbreviations: NA = Not applicable. 536 

 537 

To elucidate the discrepancy in Demuxlet’s contribution to Ensemblex’s sample labels across 538 

sequencing time points, we investigated the proportion of ambiguous singlet assignments from 539 

Ensemblex and its constituents. Ambiguous singlets are defined as singlet classifications whose 540 

assignment probabilities failed to meet the recommended threshold of the respective tool, leaving 541 

the identity of the pooled cell unresolved. Across 84,746 cells, Souporcell (195 singlets; 0.23% of 542 

cells) and Ensemblex (217 singlets; 0.26% of cells) showed the lowest proportion of ambiguous 543 

singlet assignments, followed by Demuxalot (505 singlets; 0.60% of cells) and Vireo-GT (2,698 544 
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singlets; 3.18% of cells). Strikingly, Demuxlet showed 20,565 ambiguous singlet assignments 545 

(24.27% of cells), with 92.04% derived from day 30 technical replicates, reflecting Demuxlet’s 546 

remarkably low contribution to Ensemblex’s sample labels for cells sequenced at this timepoint 547 

(Figures 5B and 5C). In accordance with previous analyses (9, 10), Demuxlet was consistently 548 

amongst the top performing constituent tools throughout our benchmarking analyses. Yet, its poor 549 

performance across day 30 technical replicates illustrates how the accuracy of individual tools can 550 

vary greatly between datasets, highlighting the importance of utilizing multiple distinct algorithms 551 

for genetic demultiplexing. We compared the mean proportion of confidently classified singlets 552 

across technical replicates from each time point (n = 9) between Ensemblex (99.72%) and each 553 

constituent demultiplexing tool using a Wilcoxon rank-sum test. After correction for multiple 554 

hypothesis testing, we observed that the mean proportion of confidently classified singlets by 555 

Ensemblex was significantly higher than Demuxalot (mean = 99.36%, P-value = 3.55e-3), 556 

Demuxlet (mean = 75.82%, P-value = 1.55e-5), and Vireo-GT (mean = 96.71%, P-value = 1.55e-557 

5) (Figure 5D). Thus, despite Demuxlet’s unusually poor performance across day 30 technical 558 

replicates, Ensemblex still confidently classified 27,520 singlets (99.61% of singlet assignments) 559 

from these pools. Indeed, our ensemble method mitigates the consequences of a poorly performing 560 

constituent tool by outweighing the erroneous classifications. In contrast, using a consensus 561 

framework returned only 7,446 confidently classified singlets from day 30 technical replicates 562 

(20,074 fewer cells than Ensemblex), limiting the availability of data for downstream analyses. 563 

 564 

To further evaluate the ambiguity amongst singlet classification, we investigated the intersection 565 

of ambiguous singlets across demultiplexing tools, reasoning that cells that are most challenging 566 

to demultiplex would be labelled as ambiguous across all tools (Figure 5E). The singlets that were 567 
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assigned as ambiguous by Ensemblex showed the highest ambiguous singlet rate across the 568 

remaining tools (mean across all constituent tools = 73.04%; mean across Demuxalot, Demuxlet, 569 

and Vireo-GT = 92.32%). In contrast, while Souporcell showed the lowest ambiguous singlet rate 570 

overall, only 15.90% of its unassigned singlets, on average, were ambiguous across the remaining 571 

tools. These results indicate that the cells labelled as ambiguous by Ensemblex represent the cells 572 

that are most challenging to classify across the distinct demultiplexing algorithms. Indeed, limiting 573 

Ensemblex’s ambiguous singlet assignments to those that are most difficult to classify is critical 574 

for maintaining a balance between maximizing the number of usable cells and minimizing the 575 

introduction of technical artifacts into downstream analyses from misclassified cells.   576 

 577 

Next, we compared the doublet predictions made by each genetic demultiplexing tool and 578 

DoubletFinder, a doublet detection tool that predicts doublets by estimating the similarity of the 579 

transcriptional profile of a pooled cell to artificial doublets generated by combining the 580 

transcriptional profiles of randomly selected cell pairs (20). Although the average number of 581 

unique molecular identifiers (UMI) per cell across doublets identified by each tool was 582 

significantly higher than the consensus singlets (Additional File 1: Figure S13), we observed a 583 

notable discrepancy in the number of doublets identified by each tool; DoubletFinder identified 584 

the fewest doublets (n = 4,597), while Ensemblex identified the most doublets (n = 8,307) (Table 585 

1). Accordingly, all tools identified doublets that every other tool assigned as singlets (Additional 586 

File 1: Figure S13). While Ensemblex identified the highest number of doublets, it still returned 587 

a higher number of confidently classified singlets (n = 76,222) than Demuxalot (n = 75,962), 588 

Demuxlet (n = 57,567), and Vireo-GT (n = 75,933). Thus, even though the Ensemblex framework 589 
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prioritizes the identification of doublets at the expense of a slightly lower singlet classification 590 

rate, our ensemble method still returns a high proportion of usable cells for downstream analyses.   591 

 592 

To evaluate the impact of doublet removal on the stability of clusters in the DaN dataset, we 593 

performed 25 different random start iterations of the Louvain network detection at various 594 

clustering resolutions after removing the doublets identified by each tool (21). Removing the 595 

doublets identified by Ensemblex resulted in the highest ARI (mean ARI = 0.942), on average, 596 

across clustering resolutions (Figure 5F), suggesting the greatest cluster stability. However, 597 

Wilcoxon rank-sum tests only revealed a statistically significant difference in the cluster 598 

assignment ARI between Ensemblex and Souporcell (mean ARI = 0.922, P-value = 1.08e-2) after 599 

correction for multiple hypothesis testing. Nonetheless, the highest cluster stability after removal 600 

of Ensemblex’s putative doublets illustrates how improved doublet detection can translate to 601 

improved biological analyses and is reflective of its superior doublet identification performance 602 

on the benchmarking analyses. 603 

 604 

Evaluating the impact of demultiplexing tools on differential gene expression analysis 605 

To evaluate the impact of genetic demultiplexing tools on scRNAseq DGE analysis, we 606 

multiplexed iPSC-derived NSCs from individuals with ADHD and controls (Figure 6A). NSCs 607 

were pooled and cultured until 100% confluence was reached. Two multiplexing experiments were 608 

performed: Experiment 1 (n ADHD = 7; n control = 6) and Experiment 2 (n ADHD = 9; n control 609 

= 7). After filtering cells for > 500 total and unique RNA transcripts, we obtained 30,433 cells 610 

across both pools. Louvain clustering on the integrated scRNAseq dataset identified 12 clusters, 611 

which were annotated as eight putative cell types (Figure 6B). 612 
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 613 

Figure 6. Evaluating the impact of discordant assignments between genetic demultiplexing 614 

tools on differential gene expression analysis. A) Schematic illustrating the workflow for the 615 

neural stem cell (NSC) dataset. Pooled induced pluripotent stem cell (iPSC)-derived neural stem 616 

cell cultures from individuals with attention deficit hyperactivity disorder (ADHD) and controls 617 

were collected in two separate experiments. NSCs were dissociated for single-cell RNA 618 

sequencing and prior genotype information of the pooled subjects was obtained through 619 

microarray genotyping. The pools were demultiplexed by Ensemblex and its constituents with 620 

prior genotype information and differential gene expression (DEG) was computed between ADHD 621 

and controls. B) Uniform manifold approximation and projection (UMAP) plot showing the 622 

putative cell types. C) Summary of the number of usable cells — singlets above the recommended 623 

probability threshold of the respective demultiplexing tool — assigned to ADHD donors and 624 

controls and the number of identified doublets by each demultiplexing tool. D) Boxplot showing 625 

the Adjusted Rand Index (ARI) assessing cluster stability across a range of 11 clustering 626 

resolutions (n clustering iterations = 25) after removing doublets identified by each demultiplexing 627 

tool. A one-way Analysis of Variance (ANOVA) test comparing the ARI after removing doublets 628 

identified by each tool revealed a significant difference between tools (n = 11 clustering 629 

resolutions; P-value = 1.18e-3). E) Proportion of ADHD and control cells identified as putative 630 

doublets by Ensemblex that were assigned as singlets by the constituent demultiplexing tools. F) 631 
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Heatmap showing the number of cell-type specific DEGs between ADHD and controls using the 632 

subject labels of each demultiplexing tool. G) Heatmap showing the number of cell-type specific 633 

DEGs between ADHD and controls using the subject labels of each demultiplexing tool and 634 

removing putative doublets identified by Ensemblex. Cell-types not shown in the heatmaps had no 635 

DEGs passing the adjusted P-value < 0.01 and |Log2FC >= 0.5| threshold across all tools. 636 

 637 

We independently demultiplexed both pools using Ensemblex and its constituents to assign the 638 

cells back to their donor-of-origin with prior genotype information (Figure 6C). The number of 639 

cells assigned to ADHD and control donors by each genetic demultiplexing tool is shown in 640 

Additional File 1: Table S6. Importantly, the NSC dataset provides a valuable illustration of the 641 

consequences of unnecessarily discarding cells from downstream analyses. For example, 642 

Ensemblex and Vireo-GT returned 2,387 and 882 confidently assigned GRIA1high neurons, 643 

respectively, whereas a consensus approach would have confidently assigned only 563 GRIA1high 644 

neurons (Additional File 1: Table S6).  645 

 646 

Each genetic demultiplexing tool predicted the ADHD cells to be vastly underrepresented 647 

compared to the control cells; Ensemblex assigned 2,739 cells to individuals with ADHD and 648 

19,880 cells to controls, suggesting that the ADHD iPSC lines were lost throughout the culturing 649 

and sequencing process (Figure 6C). Additionally, we observed a notable difference in the number 650 

of identified doublets across the tools; Vireo-GT identified the fewest doublets (n = 2,707), while 651 

Demuxlet identified the most doublets (n = 8,329) (Figure 6C). We aimed to characterize the 652 

change in cluster stability after removing the doublets identified by each tool and observed that 653 

removing the doublets identified by Ensemblex resulted in the highest ARI (mean ARI = 0.995), 654 

on average, across clustering resolutions (Figure 6D). A one-way ANOVA test comparing the 655 

clustering ARI after removal of doublets identified by each tool revealed a significant difference 656 

between tools (P-value = 1.18e-3). Demuxlet (n = 8,329) identified more doublets than Ensemblex 657 
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(n = 6,373), but exhibited lower cluster stability (ARI), suggesting that increased cluster stability 658 

is not merely representative of the number of doublets removed but rather the quality of doublet 659 

removal.  660 

 661 

Given the underrepresentation of ADHD cells across the dataset, we elected to investigate the cells 662 

that were identified as doublets by Ensemblex but assigned as singlets by the constituent tools and 663 

how these putative doublets were distributed across samples according to disorder status. 664 

Demuxalot (n = 388) and Demuxlet (n = 726) assigned a relatively low number of Ensemblex’s 665 

doublets as singlets, which represented 0.66% and 4.58% of ADHD sample assignments, 666 

respectively, and 1.97% and 3.58% of control sample assignments, respectively (Figure 6E). In 667 

contrast, Souporcell (n = 3,902) and Vireo-GT (n = 1,334) assigned a relatively high number of 668 

Ensemblex’s doublets as singlets, which represented 31.97% and 24.88% of ADHD sample 669 

assignments, respectively, and 11.65% and 3.97% of control sample assignments, respectively, 670 

illustrating how variable doublet detection can impact the assembly of cells assigned to donor 671 

categories and which cells are retained for downstream analyses.  672 

 673 

Finally, we used the model-based analysis of single-cell transcriptomics (MAST) statistical 674 

framework to compute cell-type specific DGE between individuals with ADHD and controls using 675 

the demultiplexed sample labels from each tool (22). We observed a significant discrepancy in the 676 

number of cell type-specific differentially expressed genes (DEGs; adjusted P-value < 0.01; 677 

absolute log2 fold change > 0.5) depending on the demultiplexing tool used (Figure 6F). Most 678 

notably, for glia cells Souporcell identified 116 DEGs; Vireo-GT identified 98 DEGs; Ensemblex 679 

identified 7 DEGs; Demuxalot identified 6 DEGs; and Demuxlet identified 1 DEG. Similar 680 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 19, 2024. ; https://doi.org/10.1101/2024.06.17.599314doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.17.599314
http://creativecommons.org/licenses/by/4.0/


 33 

patterns were observed across SOX2high NSCs, POU5F1high neural progenitor cells (NPC), 681 

S100Bhigh NPCs, and DCXhigh neurons, whereby Souporcell or Vireo-GT’s sample labels resulted 682 

in a remarkably high number of DEGs compared to Ensemblex, Demuxalot, and Demuxlet. Given 683 

that Souporcell and Vireo-GT made relatively few doublet calls and that 31.97% and 24.88% of 684 

ADHD sample assignments made by Souporcell and Vireo-GT, respectively, were putative 685 

doublets identified by Ensemblex, we elected to repeat the DGE analysis using the demultiplexed 686 

sample labels from each tool but this time we removed all putative doublets identified by 687 

Ensemblex. In doing so, we observed a decrease in the number of DEGs identified by Souporcell 688 

and Vireo-GT across cell types, suggesting that the putative doublets identified by Ensemblex, 689 

which were classified as singlets by Souporcell and Vireo-GT, were driving the initial signals 690 

(Figure 6G). For example, the number of glia-specific DEGs decreased from 116 to 0 with 691 

Souporcell’s sample labels, and 98 to 0 with Vireo-GT’s sample labels. Given that the NSC dataset 692 

lacked ground-truth sample labels, we could not definitively determine which cells were true 693 

doublets; however, the increase in clustering ARI after removal of Ensemblex’s putative doublets 694 

(Figure 6D), coupled with Ensemblex’s improved doublet identification performance on pools 695 

with known ground-truth sample labels (Figure 2B), afforded confidence to assume that our 696 

ensemble method performed favorably. Nonetheless, this analysis reveals that the choice of 697 

demultiplexing tool can greatly impact biological analyses. 698 

 699 

Conclusion 700 

Multiplexing protocols, coupled with the introduction of genetic demultiplexing tools constituted 701 

a significant advancement for scRNAseq by providing a feasible means to dramatically increase 702 

the throughput of biological replicates. As the demand for population-scale scRNAseq analysis 703 
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continues to grow with the maturation of singe-cell technologies, the prospect of multiplexing 704 

entire cohorts has emerged. However, the realization of this goal is impeded by the limitations of 705 

the current genetic demultiplexing tools. These include decreasing demultiplexing performance as 706 

the number of multiplexed samples increases (9, 10), relatively poor doublet detection 707 

performance (10), relatively high rates of cells that can only be correctly classified by single 708 

algorithms, the unnecessary removal of correctly classified cells due to insufficient assignment 709 

probabilities, and highly variable demultiplexing performance between datasets (10). In this work 710 

we presented Ensemblex, which offers a unique solution to these limitations by meticulously 711 

implementing distinct demultiplexing algorithms into a robust, accuracy-weighted ensemble 712 

framework that is exceptionally equipped to classify highly multiplexed pools. 713 

 714 

We applied Ensemblex to a diverse array of computationally and experimentally multiplexed 715 

scRNAseq datasets. Benchmarking analyses on pools with known ground-truth sample labels 716 

revealed Ensemblex’s superior demultiplexing performance across pools reaching 80 multiplexed 717 

samples, which translated to a higher proportion of cells retained for downstream analyses and 718 

lower error rates amongst classified cells. Ensemblex also demonstrated a notable advancement 719 

for identifying heterogenic doublets, which is a well-documented limitation of the genetic 720 

demultiplexing tools currently available (9, 10, 15). While previous analyses indicated that the 721 

number of multiplexed samples in a pool directly impacted doublet detection efficiency (15), we 722 

showed that Ensemblex’s ability to identify doublets remained relatively constant when >24 723 

samples were multiplexed. Our findings suggest that super loading cells prior to sequencing —724 

which will result in a higher number of usable cells but a higher a doublet rate (6) — followed by 725 

heterogenic doublet detection by Ensemblex, may be a viable approach for implementing 726 
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population-scale multiplexing in practice. We also demonstrated that the performance of individual 727 

genetic demultiplexing tools can be highly dataset-dependent, reflecting the findings of previous 728 

work (10). However, due to its unsupervised weighting model, we showed that Ensemblex is 729 

resistant to poorly performing constituent tools, maximizing the consistency of its demultiplexing 730 

performance. Nonetheless, if each constituent tool performs poorly on a given dataset, the poor 731 

performance will be reflected in Ensemblex’s demultiplexing accuracy. Finally, we illustrated that 732 

discordant sample assignments amongst genetic demultiplexing tools can greatly impact DGE 733 

analyses, necessitating that investigators carefully consider their choice of genetic demultiplexing 734 

tool. Although untested, we anticipate that the impacts of discordant sample assignments amongst 735 

genetic demultiplexing tools on biological interpretations would be exacerbated for computational 736 

analyses that consider the specific donor identity of the pooled cells, such as expression 737 

quantitative trait loci (eQTL) analyses, as opposed to donor groups (i.e., case and control). Due to 738 

Ensemblex’s ability to seamlessly integrate multiple algorithms into an adaptable framework, we 739 

argue that our ensemble method achieves unmatched reliability for experimentally multiplexed 740 

pools that lack ground truth sample labels. 741 

 742 

Undoubtedly, a limitation of utilizing an ensemble method for genetic demultiplexing is the 743 

necessity to run each individual demultiplexing algorithm, which can be computationally 744 

expensive. Yet, in the absence of comparing demultiplexed sample labels across tools, poor 745 

performance by a given individual algorithm on experimentally multiplexed pools is undetectable, 746 

and the risk of introducing technical artifacts and losing usable cells for downstream analyses is 747 

prominent. As such, we believe that the relatively high computational cost of Ensemblex is a 748 

worthwhile investment to maximize the biological insight obtained from multiplexed scRNAseq 749 
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datasets. To mitigate the burden of genetic demultiplexing by multiple individual tools, we provide 750 

a coherent pipeline that runs each constituent demultiplexing tool in parallel and seamlessly 751 

processes the respective output files with the Ensemblex algorithm. 752 

 753 

Compared to when demultiplexing was informed by prior genetic data of the pooled samples, the 754 

improvement of Ensemblex over its constituent tools was far less pronounced for genotype-free 755 

demultiplexing cases. All demultiplexing tools, including Ensemblex, showed drops in 756 

demultiplexing performance when >16 samples were multiplexed in a pool without prior genotype 757 

information. Nonetheless, Ensemblex still constitutes an advancement over the individual tools for 758 

genotype-free demultiplexing cases due to the robustness achieved by incorporating distinct 759 

demultiplexing algorithms, which protects against the prospect of poorly performing individual 760 

tools on the respective dataset. Furthermore, an intrinsic limitation of demultiplexing without prior 761 

genotype information is that samples cannot be directly linked to metadata, leaving the sample 762 

identity of the inferred clusters unresolved (9). Although challenging, this limitation can be 763 

mitigated by identifying a small subset of discriminatory variants from the reconstructed genotypes 764 

of the constituent demultiplexing tools, which could be used to manually assign the computed 765 

clusters to samples if such discriminatory variants are known by the investigator. While the 766 

Ensemblex pipeline provides users the option to demultiplex pools with or without prior genotype 767 

information, we assert that users take caution when electing to perform population-scale 768 

multiplexing experiments without using prior genetic data.  769 

 770 

Genetic demultiplexing tools have been used extensively for scRNAseq analysis across many 771 

disciplines in the biological sciences, including microbiology (8), model organisms (15), cancer 772 
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biology (23), and neurodegenerative disease (12). Recent work has also evaluated the utility of 773 

genetic demultiplexing tools for different single-cell, read-based modalities such as single-nuclei 774 

RNA sequencing (snRNAseq) and single-nuclei assay for transposase-accessible chromatin 775 

sequencing (scATACseq) (24). Although untested, we expect Ensemblex to prove beneficial in 776 

demultiplexing for these assays, but comprehensive benchmarking with the appropriate datasets is 777 

required and was not explored here.  778 

 779 

We expect numerous biological fields to exploit the benefits of Ensemblex through its application 780 

to highly multiplexed pools comprising cells from many genetically distinct individuals. 781 

Specifically for biomedical sciences, the preparation and labour costs of scRNAseq remains 782 

prohibitively expensive for analyzing entire cohorts of patients, which is critical for characterizing 783 

the genetic heterogeneity and etiological diversity of disease, and for maintaining sufficient 784 

statistical power for detecting associations between transcriptional changes and clinical or 785 

pathological observations (1). By increasing the throughput of biological replicates, multiplexing 786 

has rendered the prospect of analyzing entire patient cohorts with single-cell transcriptomics 787 

feasible. Highly-multiplexed scRNAseq experiments have already been presented in the literature 788 

and, to the best of our knowledge, have pooled up to 24 samples in a single dish (12). However, 789 

we demonstrated that Ensemblex’s demultiplexing accuracy remains relatively constant when >24 790 

samples are multiplexed at concentrations that abide by the current limitations of experimental 791 

protocols, suggesting that Ensemblex equips the research community with the necessary 792 

computational framework to expand the upper limits of the number of genetically distinct 793 

individuals in a single pool.  794 

 795 
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While multiplexing mitigates the labour and consumable costs of scRNAseq analysis, the cost of 796 

sequencing remains expensive and the increasing number of genetically distinct individuals in a 797 

single pool necessitates that a greater number of cells must be sequenced to ensure adequate 798 

representation. Accordingly, Ensemblex is equipped to demultiplex pools comprising cells from 799 

more genetically distinct individuals than is feasible with the current laboratory technologies. 800 

However, we expect that the cost of sequencing will continue to decrease with the maturation of 801 

the technology, and our tool will be in place for when the anticipated wet lab advancements are 802 

realized. Overall, we conclude that Ensemblex constitutes a notable advancement towards the 803 

pressing demand for population-scale single-cell transcriptomics. 804 

 805 

Methods 806 

Ensemblex framework overview 807 

Ensemblex is an ensemble genetic demultiplexing framework for scRNAseq sample pooling that 808 

was designed to identify the most probable sample labels from each of its constituent tools: 809 

Demuxalot (5), Demuxlet (6), Souporcell (8), and Vireo (9) when demultiplexing with prior 810 

genotype information or Demuxalot, Freemuxlet (6), Souporcell, and Vireo when demultiplexing 811 

without prior genotype information. After running each constituent demultiplexing tool in parallel, 812 

Ensemblex merges the output files containing the sample-cell assignments from each tool and 813 

performs three distinct steps of the Ensemblex pipeline: 814 

1. Accuracy-weighted probabilistic ensemble; 815 

2. Graph-based doublet detection;  816 

3. Ensemble-independent doublet detection. 817 
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Upon obtaining the final Ensemblex sample labels (donor-of-origin identity of the pooled cells), 818 

the singlet assignment confidence score is computed.  819 

 820 

Step 1: Accuracy-weighted probabilistic ensemble 821 

Ensemblex utilizes an unsupervised weighting model to identify the most probable sample 822 

label for each cell. Ensemblex weighs each constituent tool’s assignment probability 823 

distribution by its estimated balanced accuracy for the dataset in a framework adapted from 824 

the work of Large et al. (16). To estimate the balanced accuracy of a particular constituent tool 825 

(e.g., Demuxalot) for experimentally multiplexed datasets lacking ground-truth labels, 826 

Ensemblex uses the cells with a consensus assignment across the three remaining tools (e.g., 827 

Demuxlet, Souporcell, and Vireo-GT) as a proxy for ground-truth. The balanced accuracy for 828 

each tool is calculated using equation 1: 829 

 830 

(1) 𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
1

2
((

𝑇𝑃

𝑇𝑃+𝐹𝑁
) + (

𝑇𝑁

𝑇𝑁+𝐹𝑃
)) 831 

 832 

Where TP is the number of correctly classified singlets; true-negative (TN) is the number of 833 

correctly classified doublets; FP is the number of incorrectly classified singlets; false- negative 834 

(FN) is the number of incorrectly classified doublets. The probability distribution of each 835 

constituent tool (𝑝𝑗̂) is then weighted by its estimated balanced accuracy (𝑤𝑗) to produce an 836 

accuracy-weighted ensemble probability for each cell: 837 

 838 

(2) 𝑝̂(𝑦 = 𝑖|𝐸) ∝  ∑ 𝑤𝑗𝑝̂𝑗(𝑦 = 𝑖|𝑀𝑗)𝑘
𝑗=1  839 

 840 
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Where 𝑝̂ is the probability that a barcode belongs to class 𝑖; 𝑦 is the class variable with 𝑐 841 

possible values, 𝑦 ∈ (1, … , 𝑐); 𝑐 is the number of pooled samples plus 1 to account for 842 

doublets; 𝐸 is a vector of the results of 𝑀 classifiers, 𝐸 = (𝑀1, … , 𝑀𝑘); 𝑀is the individual 843 

constituent demultiplexing output from each tool. Given 𝑝̂, Ensemblex assigns each barcode’s 844 

sample identity (𝑦̂) as the class (sample label) with the maximum probability: 845 

 846 

(3) 𝑦̂ = arg 𝑚𝑎𝑥𝑖∈(1,…,𝑐) 𝑝̂(𝑦 = 𝑖|𝐸) 847 

  848 

Step 2: Graph-based doublet detection 849 

Ensemblex employs a graph-based approach to identify doublets that are incorrectly labeled as 850 

singlets by the accuracy-weighted probabilistic ensemble component (Step 1). For graph-based 851 

doublet detection, Ensemblex leverages pre-defined features returned from each constituent 852 

tool: 853 

1. Demuxalot: doublet probability; 854 

2. Demuxlet/Freemuxlet: singlet log likelihood – doublet log likelihood; 855 

3. Demuxlet/Freemuxlet: number of single nucleotide polymorphisms (SNP) per cell; 856 

4. Demuxlet/Freemuxlet: number of reads per cell; 857 

5. Souporcell: doublet log probability; 858 

6. Vireo: doublet probability; 859 

7. Vireo: doublet log likelihood ratio. 860 

For each feature independently, the pooled cells are ordered from the most to the least probable 861 

doublet and are assigned a percentile rank. Beginning with a percentile threshold of 99.99, 862 

Ensemblex screens each cell to identify those that exceed the percentile threshold across all 863 
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features; cells that exceed the percentile threshold across all features are labeled as “confident 864 

doublets”. For each iteration, Ensemblex decreases the percentile threshold by 0.01 and repeats 865 

the screening process until it has identified n confident doublets (nCD). Ensemblex performs 866 

a parameter sweep to determine the optimal nCD to use for graph-based doublet detection (see 867 

below).    868 

 869 

Next, the above features are input into a PCA using the stats (v3.6.2) R package (25) and a 870 

Euclidean distance matrix is generated from the first two principal components (PC). For each 871 

confident doublet independently, the remaining cells in the pool are assigned a percentile rank 872 

based on their proximity in Euclidean space to the confident doublet and the cells that exceed 873 

the designated nearest neighbour percentile threshold (pT) are identified. For all cells that 874 

exceeded the designated pT for any confident doublet (putative doublets), Ensemblex 875 

computes the number of times the putative doublet was amongst the nearest neighbours of any 876 

confident doublet (fNN); an fNN equal to nCD indicates that a putative doublet was amongst 877 

the top nearest neighbours for each confident doublet.  878 

 879 

To optimize the nCD and pT parameters for experimentally pooled samples lacking ground-880 

truth labels, Ensemblex performs an automated parameter sweep at each pairwise combination 881 

of nCD and pT values; nCD values range from 50 to 300, in increments of 50, while pT values  882 

depend on the expected doublet rate (exDR) and range from 1 − 
𝑒𝑥𝐷𝑅

6
  to 1 −  𝑒𝑥𝐷𝑅, in 883 

intervals of  
1−𝑒𝑥𝐷𝑅

6
. The distribution of fNN values for each combination of nCD and pT 884 

parameters are plotted and Pearson’s measure of kurtosis (K), is used to predict which 885 

combination of pT and nCD values optimize the identification of true doublets while 886 
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minimizing the rate of incorrectly labelled true singlets as doublets. Ensemblex screens for 887 

combinations of nCD and pT values that result in negatively skewed fNN distributions with 888 

high K, signifying high peakedness and heavy tails. High peakedness indicates that cells 889 

exceeding the designated pT concentrated around nCD, reflecting their proximity in Euclidean 890 

space to all high confident doublets, while heavy tails indicate that even cells with lower fNN 891 

values were identified as nearest neighbour to many confident doublets. Ensemblex first 892 

identifies the pT that returns the highest K, on average, across nCD values tested in the 893 

parameter sweep using equation 4:   894 

 895 

(4) 𝑝𝑇̂ = arg 𝑚𝑎𝑥
𝑝𝑇∈{1− 

𝑒𝑥𝐷𝑅

6
  ,….,1−𝑒𝑥𝐷𝑅)

(
∑ 𝐾(𝑦=𝑝𝑇)𝑛𝐶𝐷∈{50,100,150,200,250,300}

2
) 896 

 897 

Where K of the distribution of fNN values of the putative doublets is defined as: 898 

 899 

(5) 𝐾(fNN) = 𝐸[(
𝑋−𝜇

𝜎
)

4
] 900 

 901 

Where 𝜇 is the mean of the distribution and 𝜎 is the standard deviation. Upon identifying the 902 

optimal pT value (𝑝𝑇̂), Ensemblex plots the K corresponding to 𝑝𝑇̂ across all nCD values 903 

tested in the parameter sweep. If an inflection point is identifiable, Ensemblex identifies 𝑛𝐶𝐷̂ 904 

as the nCD value corresponding to the point of inflection on the curve. Otherwise, Ensemblex 905 

identifies 𝑛𝐶𝐷̂ as the nCD value corresponding to the highest K. Cells flagged as putative 906 

doublets identified using 𝑝𝑇̂ and 𝑛𝐶𝐷̂ are labelled as doublets by Ensemblex. 907 

 908 
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Step 3: Ensemble-independent doublet detection 909 

Benchmarking on computationally multiplexed pools with known ground-truth sample labels 910 

revealed that certain genetic demultiplexing tools, namely Demuxalot and Vireo, showed high 911 

doublet detection specificity, but that Steps 1 and 2 of the Ensemblex workflow failed to 912 

correctly label a subset of doublet calls by these tools. To mitigate this issue and maximize the 913 

rate of doublet identification, Ensemblex labels the cells that are identified as doublets by Vireo 914 

or Demuxalot as doublets by default; however, users can nominate different tools for the 915 

ensemble-independent doublet detection component depending on the desired doublet 916 

detection stringency. Doublet specificity was computed using equation 6: 917 

 918 

(6) 𝐷𝑜𝑢𝑏𝑙𝑒𝑡 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  (
𝑇𝑁

𝑇𝑁+𝐹𝑃
) 919 

 920 

Where TN is the number of correctly classified doublets; FP is the number of true singlets 921 

incorrectly classified as doublets. 922 

 923 

Ensemblex singlet assignment confidence score 924 

Ensemblex computes a singlet confidence score to inform which cells should be discarded to 925 

avoid misclassification in downstream analyses. First, Ensemblex evaluates how well an 926 

individual constituent tool’s assignment probability (e.g., Demuxalot) corresponded to the 927 

accuracy of their assignment, using consensus cells across the three remaining tools (e.g., 928 

Demuxlet, Souporcell, Vireo) as a proxy for ground-truth, by fitting a binary logistic regression 929 

model to compute the odds that a singlet was correctly classified given its corresponding 930 

probability. Using the binary logistic regression models, Ensemblex computes the AUC using 931 
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the empirical method implemented in the ROCit (v2.1.1) R package for each tool (26). Then, 932 

for each cell, if Ensemblex’s sample label matches that of a constituent tool, and if the 933 

assignment probability of the constituent tool supersedes its probability threshold, the tool’s 934 

computed AUC is added to the accuracy-weighted probabilistic ensemble probability produced 935 

in Step 1 to yield the confidence score. By default, singlet assignments with a confidence score 936 

less than 1.00 are labelled as unassigned by Ensemblex. Ensemblex’s confidence score and the 937 

designated threshold is a successful predictor of accurately classified singlets because singlets 938 

will only achieve a confidence score ≥ 1 if: 939 

1.  All constituent tools show the same sample label (accuracy-weighted probabilistic 940 

ensemble probability = 1.00); 941 

2. At least one constituent tool confidently assigns the cell to an individual donor and the 942 

constituent tool’s probability assignment adequately corresponds to the overall 943 

accuracy of their singlet assignment. 944 

 945 

Application of Ensemblex with and without prior genotype information 946 

Given the dependencies of certain tools on prior genotype information, there are notable 947 

differences between the Ensemblex workflows for demultiplexing with and without prior 948 

genotype information. When demultiplexing with prior genotype information, Ensemblex 949 

leverages the sample labels from Demuxalot, Demuxlet, and Vireo-GT with prior genotype 950 

information, and Souporcell without prior genotype information. When demultiplexing 951 

without prior genotype information, Ensemblex leverages the sample labels from Demuxalot, 952 

Freemuxlet, Souporcell, and Vireo. However, given that Demuxalot requires prior genotype 953 
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information, Ensemblex uses the estimated donor .vcf file generated by Freemuxlet for input 954 

into the Demuxalot algorithm as prior genetic data.  955 

 956 

Running the Ensemblex pipeline 957 

A complete user guide for running the Ensemblex pipeline can be found at the Ensemblex 958 

GitHub site: https://neurobioinfo.github.io/ensemblex/site/.  We provide two distinct yet highly 959 

comparable pipelines depending on the availability of prior genotype information. Both 960 

pipelines can be downloaded as a singularity image and are comprised of four steps: 961 

1. Establish the pipeline and working directory; 962 

2. Prepare input files for constituent genetic demultiplexing tools; 963 

3. Parallel demultiplexing by constituent genetic demultiplexing tools; 964 

4. Application of the Ensemblex algorithm for ensemble classification. 965 

 966 

As input into the Ensemblex pipeline, users must provide a .tsv file describing the barcodes of 967 

the pooled cells, a. bam sequencing file for the pool, a reference genotype .vcf file (e.g., 1000 968 

Genome Project) (27), a reference genome sequence .fasta file (e.g., 10X Genomics), and, if 969 

demultiplexing with prior genotype information, a .vcf file describing the genetic data of the 970 

pooled samples.  971 

 972 

Genetic demultiplexing by constituent tools 973 

Genetic demultiplexing by the constituent demultiplexing tools was performed following best 974 

practices as defined by the authors of the respective tools using Python (v3.8.10).  975 

Demuxalot  976 
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CellRanger-generated .bam file, filtered barcode .tsv file, and the corresponding donor .vcf file 977 

were used as input into the Demuxalot workflow. Candidate variants for scRNAseq genotyping 978 

were retained if the minimum coverage was > 200 and minimum alternative coverage was > 979 

10. The top 100 SNPs per donor were retained to cluster the cells by genotype. Doublet calls 980 

were made with a prior strength of 0.25. 981 

 982 

Demuxlet  983 

We used the popscle suite (https://github.com/statgen/popscle) for Demuxlet. CellRanger-984 

generated .bam file, filtered barcode .tsv file, and the corresponding donor .vcf file were used 985 

as input into the Demuxlet workflow. The dsc-pileup function was first used to pileup candidate 986 

variants around known variant sites with the following parameters: --cp-BQ 40 --min-BQ 13 -987 

-min-MQ 20 --minTD 0 --min-total 0 --min-uniq 0 --min-snp 0. The Demuxlet algorithm was 988 

then applied to cluster the cells by genotype with the following parameters: --geno-error-offset 989 

0.10 --geno-error-coeff 0.00 --min-callrate 0.50 --doublet-prior 0.50 --cap-BQ 40 --min-BQ 13 990 

--min-MQ 20 --min-TD 0 --min-total 0 --min-uniq 0 --min-snp 0. 991 

 992 

Freemuxlet  993 

We used the popscle suite (https://github.com/statgen/popscle) for Freemuxlet. CellRanger-994 

generated .bam file, filtered barcode .tsv file, and reference genotype .vcf file from the 1000 995 

Genomes Project, phase 3 (27), were used as input into the Freemuxlet workflow. The dsc-996 

pileup function was first used to pileup candidate variants around known variant sites with the 997 

following parameters: --cp-BQ 40 --min-BQ 13 --min-MQ 20 --minTD 0 --min-total 0 --min-998 

uniq 0 --min-snp 0. The Freemuxlet algorithm was then applied to cluster the cells by genotype 999 
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with the following parameters: --doublet-prior 0.50 --bf-thres 5.41 --frac-init-clust 0.50 --inter-1000 

init 10 --cap-BQ 40 --min-BQ 13 --min-total 0 --min-uniq 0 --min-snp 0. 1001 

 1002 

Souporcell  1003 

CellRanger-generated .bam file, filtered barcode .tsv file, 10X Genomics reference .fasta file, 1004 

and the corresponding donor .vcf file when demultiplexing with prior genotype information 1005 

were used as input into the Souporcell workflow. A FASTQ file was first generated from the 1006 

.bam file using the renamer.py script. These reads were mapped to the reference genome using 1007 

minimap2 with the following parameters: --ax splice –t 8 –G50k –k 21 –w 11 –sr --A2 –B8 –1008 

O12,32 –E2,1 –r200 –p.5 –N20 –f1000,5000 –n2 –m20 –s40 –g200 –2k50m –secondary=no. 1009 

The barcodes and UMI were added back to the .sam file using the retag.py script and the 1010 

resulting .bam file was sorted and indexed with Samtools. Variants were called using Freebayes 1011 

with the following parameters: --iXu –C 2 –q 20 –n 3 –E 1 –m 30 –min-coverage 6. Vartix was 1012 

used to compute the number of alleles for each cell using the following parameters: --umi –1013 

mapq 30 –scoring-method coverage. The Souporcell algorithm was then applied to cluster the 1014 

cells by genotype; when demultiplexing with prior genotype information the --1015 

known_genotypes and --known_genotypes_sample_names parameters were included. 1016 

Troublet was used to identify doublets and the consensus.py script was used for genotype and 1017 

ambient RNA co-inference.  1018 

 1019 

Vireo 1020 

CellRanger-generated .bam file, filtered barcode .tsv file, reference genotypes from the 1000 1021 

Genomes Project, phase 3 (27), and the corresponding donor .vcf file when demultiplexing 1022 
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with prior genotype information were used as input to the Vireo workflow. CellSNP was used 1023 

to identify candidate variants for scRNAseq genotyping with the following parameters: --1024 

minMAF 0.1 and --minCOUNT 100. The Vireo algorithm was then applied to cluster the cells 1025 

by genotype with the --forceLearnGT parameter; when demultiplexing with prior genotype 1026 

information (Vireo-GT) the --d and --t GT parameters were used. 1027 

 1028 

Consensus demultiplexing framework 1029 

For the consensus demultiplexing framework, singlets were considered confidently classified 1030 

if Demuxalot, Demuxlet, Vireo, and Souporcell assigned a cell to the same donor-of-origin. 1031 

Cells classified as “ambiguous” or doublet by at least one tool were discarded. 1032 

 1033 

Generation of computationally pooled samples for ground-truth benchmarking 1034 

To benchmark Ensemblex on computationally pooled samples with known ground-truth sample 1035 

labels, we leveraged 80 independently sequenced iPSC lines from Parkinson’s disease patients and 1036 

healthy controls, which were differentiated towards a dopaminergic neuronal state and sequenced 1037 

after 65 days of differentiation as part of the FOUNDIN-PD (14). Controlled access FASTQ files 1038 

from the independently sequenced iPSC lines were obtained from https://www.ppmi-info.org/ 1039 

(accessed 09-17-2023) and processed by the CellRanger counts pipeline (v3.1.0) with default 1040 

parameters and aligned to GRCh38 reference genome. The CellRanger-generated .bam and filtered 1041 

barcode files were used as input into the synth_pool.py script produced by the authors of Vireo to 1042 

simulate sample pooling (9). In brief, reads from a subset of cells from the iPSC line-specific .bam 1043 

files were merged and doublets were generated by combining the reads from random cell pairs. 1044 
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Sample identities were added to each cell’s barcode, revealing the ground-truth sample labels for 1045 

benchmarking procedures. 1046 

 1047 

To evaluate how genetic demultiplexing performance varied as a function of the number of 1048 

multiplexed samples, we generated 96 computationally multiplexed pools using the 80 1049 

FOUNDIN-PD lines with sample sizes of 4, 8, 16, 24, 32, 40, 48, 56, 64, 72, and 80. An equal 1050 

number of cells from each line were used in the in silico pool. For the sample size of four we 1051 

generated six replicates; for the sample sizes of 8-80 we generated nine replicates each. Replicates 1052 

were produced with different sample and cell combinations. The 96 in silico pools averaged 17,396 1053 

cells (minimum = 8,696; maximum = 26,087). For this experiment, we maintained a 15% doublet 1054 

rate as previously described (9).  1055 

 1056 

To evaluate how genetic demultiplexing performance varied as a function of the number of cells 1057 

in a pool, we generated 18 computationally multiplexed pools using the 80 FOUNDIN-PD lines 1058 

with 8,000, 16,000, 24,000, 32,000, 40,000, and 48,0000 pooled cells; we generated three 1059 

replicates per pool size. Twenty-four samples were multiplexed for each pool and an equal number 1060 

of cells from each sample were used. Replicates were produced with different sample and cell 1061 

combinations. For this experiment, we simulated a doublet rate of 6% per 8,000 pooled cells. 1062 

 1063 

To evaluate if the overall demultiplexing performance varied due to the underrepresentation of a 1064 

cell line, we generated 15 computationally multiplexed pools using the 80 FOUNDIN-PD lines 1065 

comprising 23 multiplexed samples with 1,000 cells and one randomly selected sample that 1066 

showed various degrees of underrepresentation, including 100 cells (10%), 300 cells (30%), 500 1067 
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cells (50%), 700 cells (70%), or 900 cells (90%). Three replicates were generated for each degree 1068 

of underrepresentation. Replicates were produced with different sample and cell combinations. For 1069 

this experiment, we maintained a 18% doublet rate. 1070 

 1071 

WGS for the 80 donors from which the FOUNDIN-PD lines were derived was performed on whole 1072 

blood-extracted DNA as previously described by the Parkinson’s Progression Markers Initiative 1073 

(PPMI) (28). The controlled-access WGS .vcf files were obtained from https://www.ppmi-1074 

info.org/ (accessed 09-17-2023). Genotypes of common variants (minor allele frequency > 5%) 1075 

were used as prior genotype information for the genetic demultiplexing tools in the benchmarking 1076 

analyses.   1077 

 1078 

Preparation, processing, and analysis of experimentally pooled samples 1079 

Unless specified otherwise, experimentally pooled samples were processed with the CellRanger 1080 

counts pipeline (v5.0.1) and analyzed with the Seurat (v5.0.0) R package (29), using the 1081 

scRNAbox analytical pipeline (30).  1082 

 1083 

Non-small cell lung cancer dataset 1084 

NSCLC dissociated tumor cells from seven donors were labelled with TotalSeq-B Human 1085 

TBNK Cocktail (18). Multiplexed cells were then sequenced on an Illumina NovaSeq 6000 to 1086 

an average read depth of approximately 70,000 reads per cell for gene expression and 25,000 1087 

reads per cell for CellPlex. Publicly available gene expression .bam and barcode .tsv files 1088 

returned from the CellRanger multi pipeline (v6.1.2) were obtained from the 10X Genomics 1089 

Datasets portal (10X Genomics Datasets) and used as input into the Ensemblex pipeline. We 1090 
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used the sample-specific gene expression .bam files and the BCFtools (v1.16) mpielup  1091 

function to generate genotype likelihoods for prior genotype information (31).  1092 

 1093 

We used HTOdemux to assign the cells back to their donor-of-origin based on the CMO 1094 

expression profiles as a proxy for ground-truth sample labels (19). Publicly available feature-1095 

barcode expression matrices were filtered to only include CMO labels used for multiplexing 1096 

— CMO301, CMO302, CMO303, CMO304, CMO306, CMO307, and CMO308 — and 1097 

barcodes with a CMO count > 0. The CMO expression profiles were normalized with Seurat’s 1098 

NormalizeData function using the CLR normalization method and HTOdemux was applied to 1099 

the CMO assay using a positive quantile of 0.99.  1100 

 1101 

Dopaminergic neuron dataset 1102 

Jerber et al. sequenced multiplexed experiments comprising 22 healthy donor iPSC lines from 1103 

the HipSci project (32) (http://www.hipsci.org) on days 11, 30, and 52 of DaN differentiation 1104 

using Illumina HiSeq 4000 to an average depth of 40,000-60,000 reads per cell (12). We used 1105 

three technical replicates for each timepoint, which are comprehensively described in 1106 

Additional File 1: Table S3. Publicly available gene expression .fastq files were obtained from 1107 

the European Nucleotide Archive (ENA) with accession number ERP121676 and processed 1108 

with the CellRanger counts pipeline (v5.0.1) with default parameters using the GRCh37 1109 

reference genome. The CellRanger-generated. bam files, filtered barcode .tsv files, and .vcf 1110 

files describing the pooled samples (see below) were used as input into the Ensemblex pipeline 1111 

for each technical replicate independently. Filtering of the scRNAseq data was performed as 1112 

described by Jerber et al. (12). Genes with non-zero counts in at least 0.05% of cells were 1113 
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retained. DoubletFinder (v2.0.4) was applied independently to each technical replicate. Time-1114 

point specific replicates were integrated with Seurat’s integration algorithm (33) and clustered 1115 

by the Louvain network detection using the top 50 PCs and 10 nearest neighbours.  1116 

 1117 

Whole-exome sequencing (WES) .vcf files corresponding to the 22 pooled HipSci lines were 1118 

obtained from the ENA with accession number PRJEB7243 (34). Genotypes of common 1119 

variants (minor allele frequency > 1%) were used as prior genotype information for the genetic 1120 

demultiplexing tools (12).  1121 

 1122 

Neural stem cell dataset  1123 

We performed two multiplexed experiments comprising iPSCs from individuals with ADHD 1124 

and heathy controls differentiated into NSCs: Experiment 1 (n ADHD = 7; n control = 6) and 1125 

Experiment 2 (n ADHD = 9; n control = 7). 1126 

 1127 

Subject recruitment 1128 

Patients diagnosed with ADHD and matching healthy controls between 6−18 years old 1129 

were recruited by the Department of Child and Adolescent Psychiatry and Psychotherapy 1130 

of the University of Zurich, as described previously (35). Inclusion and exclusion criteria 1131 

for recruitment of these individuals described previously (35). Additional File 1: Table 1132 

S4 provides a list of the individual subjects and their derived cell lines included in this 1133 

study. Salivary DNA from ADHD patients and controls was genotyped using the Infinium 1134 

Global Screening Array (Illumina), as previously described, and used as prior genotype 1135 

information for genetic demultiplexing (35). 1136 
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 1137 

Neural stem cell culture 1138 

The generation and characterization of iPSC used in this study and the NSCs differentiation 1139 

protocols were previously described in (35) (36). NSCs cultures were seeded in two 1140 

independent experiments (designated as “1” and “2”), each of them consisting of NSCs 1141 

pooled together into two culture dishes and maintained as NSCs until 100% confluence, 1142 

when all iPSC lines were combined into one sample for sequencing. For most cell lines 1143 

different clones for each iPSC line were used in the two experiments Additional File 1: 1144 

Table S5. When applicable, the second clones of the same NSCs lines were cultured 1145 

separately (designated as “.1” and “.2”) in a second experiment. In the first experiment, 1146 

56,250 cells per cell line were seeded in the pooled dishes. In the second experiment the 1147 

proportions of cells seeded we adjusted to their proliferation profile assessed in (36). Upon 1148 

reaching 100% confluence, cells were dissociated for scRNAseq experiments and 1149 

combined to a single sample for sequencing as described below. 1150 

 1151 

Dissociation of pooled neural stem cell cultures for single-cell RNA sequencing 1152 

Cells were washed in PBS and then incubated with 1 mL of StemPro Accutase (Gibco) for 1153 

3 minutes at 37°C. After incubation, 2 mL of PBS, stopping the Accutase reaction, and cells 1154 

were gently pipetted up and down between 5 to 10 times to break up clumps of cells before 1155 

transfer to a 15 mL conical tube. The cells were centrifuged at 300 x g for 5 minutes and 1156 

the supernatant was removed. Following, 334 µL of Neural Expansion Media (NEM) was 1157 

added to each cell pellet using a 1000 µL pipette tip until cells were completely 1158 

resuspended. An additional 666 µL of NEM was added to each well and gently pipette 1159 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 19, 2024. ; https://doi.org/10.1101/2024.06.17.599314doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.17.599314
http://creativecommons.org/licenses/by/4.0/


 54 

mixed 5 times. A 100-µm cell strainer was used to filter the cell suspension before 1160 

centrifugation at 300 x g for 4 minutes. The supernatant was carefully removed, and the 1161 

pellet was resuspended in 3 mL of PBS 1x containing 0.04% Bovine Serum Albumin 1162 

(BSA) by pipetting up and down 5 times using a 5 mL serological pipette. The cells were 1163 

centrifuged at 300 x g for 10 minutes and further submitted to live cell sorting with the 1164 

Magnetic Dead Cell Removal Kit (Miltenyi Biotec, 130-090-101), according to the 1165 

manufacturer. The resulting flow-through containing live cells was centrifuged for 300 x g 1166 

for 5 minutes and the supernatant was removed carefully to not disturb the cell pellet. Cells 1167 

were resuspended in 1 mL of PBS 1x containing 0.04% BSA for automated cell counting. 1168 

For each experiment, the cells from the two culture dishes were processed in parallel. Equal 1169 

counts of cells were combined for the final cell suspension for scRNAseq preparation at 1170 

the Functional Genomics Center Zurich at the University of Zurich. 1171 

 1172 

Library processing and sequencing 1173 

All samples were processed using the 10x Genomics Chromium 3’ Single Cell Protocol 1174 

and sequenced using NovaSeq 6000 S1 (Illumina). For the first sample containing NSC 1175 

pools 1.1 and 1.2, 18,000 NSCs were loaded into one single 10x Genomics Lane to target 1176 

13,000 cells. For the second sample containing NSC pools 2.1 and 2.2, 29,000 NSCs were 1177 

loaded to target 18,000 cells.  1178 

 1179 

 Demultiplexing and scRNAseq analysis  1180 

FASTQ files were processed with the CellRanger counts pipeline (v5.0.1) with default 1181 

parameters and aligned to the GRCh37 reference genome. The CellRanger-generated. bam 1182 
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files, filtered barcode .tsv files, and .vcf files describing the pooled samples were used as 1183 

input into the Ensemblex pipeline. Genotypes of common variants (minor allele frequency 1184 

> 1%) were used as prior genotype information for the genetic demultiplexing tools. The 1185 

filtered feature-barcode expression matrices were used to analyze the pooled cells 1186 

following a standard scRNAseq analysis workflow using Seurat (30). Cells were filtered 1187 

for > 500 total and unique RNA transcripts. Doublets were removed using DoubletFinder 1188 

(v2.0.4). The two NSC samples were integrated using Seurat’s integration algorithm (33). 1189 

The top 25 PCs were selected for Louvain network detection to identify clusters using 65 1190 

nearest neighbours. Twelve clusters were identified at a clustering resolution of 0.25, which 1191 

were assigned as eight putative cell types using a combination of known markers and gene 1192 

enrichment analysis. The top marker genes from each cluster were identified using Seurat’s 1193 

FindAllMarkers with the Wilcoxon rank-sum test. Significant DEGs (log2 fold change > 1194 

0.25 and P-value < 0.05 ) were input into EnrichR (37) and cell types were predicted with 1195 

the Cell Marker Augmented 2021 (38) and Azimuth Cell Types 2021 (39) libraries. Multiple 1196 

clusters showed expression profiles for similar broad cell types — Neurons, NPCs, and 1197 

NSCs. We used Seurat’s FindMarkers function to identify differentially expressed marker 1198 

genes between the clusters of the same broad cell type and top marker genes were selected 1199 

to identify the cell subtypes.  1200 

 1201 

For each putative cell type, DGE was calculated between ADHD and controls using the 1202 

MAST statistical framework (22, 40). Pooled cells were assigned as ADHD or control 1203 

based on the demultiplexed sample labels from each of the individual genetic 1204 

demultiplexing tools. Cells labeled as “ambiguous singlets” or doublets by the individual 1205 
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tools were excluded from their respective DGE analysis. P-values were corrected for 1206 

multiple hypothesis testing using the Bonferroni method. A gene was considered 1207 

differentially expressed if the adjusted P-value was ≤ 0.01 and the absolute value of the 1208 

Log2 fold-change was ≥ 0.5. To compute DGE using the sample labels from the individual 1209 

tools after the removal of Ensemblex’s putative doublet calls, we repeated the above 1210 

procedures but this time all cells labeled as doublets by the respective tool or Ensemblex 1211 

were excluded from the DGE analysis.  1212 

 1213 

Performance metrics and statistical analyses 1214 

We performed all statistical analyses using the R statistical software (v4.2.2) (41). We used the 1215 

ggplot2 R package (v3.4.2) for data visualization (42). 1216 

 1217 

Singlet classification 1218 

A singlet was considered correctly classified if the demultiplexed sample label matched the 1219 

ground-truth sample label (i.e., specific sample ID) and the assignment probability exceeded 1220 

the recommended threshold for the respective tool. For computationally multiplexed pools, the 1221 

proportion of correctly classified singlets was computed as: 1222 

 1223 

(7) 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑠𝑖𝑛𝑔𝑙𝑒𝑡𝑠 =  
𝑇𝑃

𝑛 𝑡𝑟𝑢𝑒 𝑠𝑖𝑛𝑔𝑙𝑒𝑡𝑠
 1224 

 1225 

For the NSCLC dataset, HTOdemux’s sample labels were considered ground-truth, and the 1226 

singlet TP and FP rate were computed as: 1227 

 1228 
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(8) 𝑆𝑖𝑛𝑔𝑙𝑒𝑡 𝑇𝑃 𝑟𝑎𝑡𝑒 =  
𝑇𝑃

𝑛 𝐻𝑇𝑂𝑑𝑒𝑚𝑢𝑥 𝑠𝑖𝑛𝑔𝑙𝑒𝑡𝑠
 1229 

(9) 𝑆𝑖𝑛𝑔𝑙𝑒𝑡 𝐹𝑃 𝑟𝑎𝑡𝑒 =  
𝐹𝑃

𝑛 𝐻𝑇𝑂𝑑𝑒𝑚𝑢𝑥 𝑠𝑖𝑛𝑔𝑙𝑒𝑡𝑠
 1230 

 1231 

Doublet identification 1232 

A doublet was considered correctly classified if the demultiplexed sample label matched the 1233 

ground-truth sample label, independent of the assignment probability. For computationally 1234 

multiplexed pools, the proportion of correctly classified doublets was computed as: 1235 

 1236 

(10) 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑑𝑜𝑢𝑏𝑙𝑒𝑡𝑠 =  
𝑇𝑁

𝑛 𝑡𝑟𝑢𝑒 𝑑𝑜𝑢𝑏𝑙𝑒𝑡𝑠
 1237 

 1238 

For the NSCLC dataset, TP doublets were defined as cells classified as doublets by both 1239 

HTOdemux and Ensemblex; FP doublets were defined as cells classified as singlets by 1240 

HTOdemux and doublets by Ensemblex; FN doublets were defined as cells classified as 1241 

doublets by HTOdemux and singlets by Ensemblex. The doublet TP, FP, and FN rates were 1242 

computed as: 1243 

 1244 

(11) 𝐷𝑜𝑢𝑏𝑙𝑒𝑡 𝑇𝑃 𝑟𝑎𝑡𝑒 =  
𝑇𝑃

𝑛 𝐻𝑇𝑂𝑑𝑒𝑚𝑢𝑥 𝑑𝑜𝑢𝑏𝑙𝑒𝑡𝑠
 1245 

(12) 𝐷𝑜𝑢𝑏𝑙𝑒𝑡 𝐹𝑃 𝑟𝑎𝑡𝑒 =  
𝐹𝑃

𝑛 𝑝𝑜𝑜𝑙𝑒𝑑 𝑑𝑟𝑜𝑝𝑙𝑒𝑡𝑠
 1246 

(13) 𝐷𝑜𝑢𝑏𝑙𝑒𝑡 𝐹𝑁 𝑟𝑎𝑡𝑒 = 1 −  𝐷𝑜𝑢𝑏𝑙𝑒𝑡 𝑇𝑃 𝑟𝑎𝑡𝑒 1247 

 1248 

Adjusted Rand Index 1249 
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To evaluate the similarity between two distinct sample clusterings we computed the ARI using 1250 

the pdfCluster (v1.0.4) R package (43). For the benchmarking analyses, we computed the ARI 1251 

between the demultiplexed sample labels by each genetic demultiplexing tool and the ground-1252 

truth sample labels (computationally pooled samples) or HTOdemux’s sample labels (NSCLC 1253 

dataset). We followed the same procedure when computing the ARI between Ensemblex’s 1254 

sample labels and those of its constituent tools (DaN and NSC datasets); however, the ground-1255 

truth sample labels were replaced by Ensemblex’s sample labels for these analyses. For 1256 

experiments evaluating the impact of doublets on the stability of clusters in gene expression 1257 

space, we computed the ARI between clusters at a given clustering resolution after removing 1258 

doublets identified by each genetic demultiplexing tool. Clustering stability was computed at 1259 

resolutions of 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. For each clustering 1260 

resolution, 25 iterations of Louvain clustering were performed while shuffling the order of the 1261 

nodes in the graph. The ARI between clustering pairs at each clustering resolution was then 1262 

computed.  1263 

 1264 

Balanced accuracy 1265 

Balanced accuracies were computed to evaluate the binary classification performance of each 1266 

genetic demultiplexing tool on imbalanced datasets, where doublets represented a minority 1267 

class compared to singlets. The balanced accuracy of each genetic demultiplexing tool was 1268 

computed against the ground-truth sample labels (computationally pooled samples) or 1269 

HTOdemux’s sample labels (NSCLC dataset) using equation 1.  1270 

 1271 

Matthew’s correlation coefficient (MCC) 1272 
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The MCC was used as a second metric for evaluating the binary classification performance of 1273 

the genetic demultiplexing tool. The MCC of each genetic demultiplexing tool was computed 1274 

against the ground-truth sample labels (computationally pooled samples) or HTOdemux’s 1275 

sample labels (NSCLC dataset) using equation 14: 1276 

 1277 

(14) 𝑀𝐶𝐶 =  
𝑇𝑁×𝑇𝑃−𝐹𝑁×𝐹𝑃

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃−𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
 1278 

 1279 

Area under the receiver operating characteristic curve for singlet detection 1280 

To evaluate how well each genetic demultiplexing tool’s assignment probability corresponded 1281 

to the accuracy of their singlet assignments when ground-truth sample labels were known, we 1282 

fit a binary logistic regression model to compute the odds that a singlet was correctly classified 1283 

by a tool given the corresponding confidence score or probability. Correctly and incorrectly 1284 

classified singlets were set as the positive and negative references, respectively. We then used 1285 

the binary logistic regression model to compute the receiver operating characteristic curve for 1286 

each tool, which plots the singlet TP and FP rates across classification thresholds, and 1287 

calculated the AUC using the empirical method implemented in the ROCit (v2.1.1) R package 1288 

(26).  1289 

 1290 

Abbreviations 1291 

ADHD, attention deficit hyperactivity disorder; ANOVA, Analysis of variance; ARI, Adjusted 1292 

Rand Index; AUC, area under the receiver operating characteristic curve; BSA, Bovine Serum 1293 

Albumin; CMO, Cell Multiplexing Oligonucleotides; DaN, dopaminergic neurons; DGE, 1294 

differential gene expression; DEG, differentially expressed genes; ENA, European Nucleotide 1295 
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Archive; eQTL, expression quantitative trait loci; FN, false-negative; fNN, nearest neighbour 1296 

frequency; FOUNDIN-PD; Foundational Data Initiative for Parkinson’s Disease; FP, false 1297 

positive; iPSC, induced pluripotent stem cell; K, kurtosis; MAST, model-based analysis of single-1298 

cell transcriptomics; MCC, Matthew’s Correlation Coefficient; nCD, number of confident 1299 

doublets; NEM, neural expansion media; NPC, neural progenitor cell; NSC, neural stem cell; 1300 

NSCLC, non-small cell lung cancer; PC, principal component; PCA principal component analysis; 1301 

PPMI, Parkinson’s Progression Markers Initiative; pT, nearest neighbour percentile threshold; 1302 

scATACseq, single-cell assay for transposase-accessible chromatin sequencing; scRNAseq, 1303 

single-cell RNA sequencing; SNP, single nucleotide polymorphism; snRNAseq, single-nuclei 1304 

RNA sequencing;  TN, true-negative; TP, true-positive; UMI, unique molecular identified; WES, 1305 

whole-exome sequencing; WGS, whole-genome sequencing.  1306 
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 1380 

Figure legends   1381 

Figure 1. Evaluation of existing individual genetic demultiplexing tools.  Evaluation of genetic 1382 

demultiplexing tools with prior genotype information on 96 in silico pools with known ground-1383 

truth sample labels ranging in size from 4 to 80 multiplexed induced pluripotent stem cell (iPSC) 1384 

lines from genetically distinct individuals, averaging 17,396 cells per pool and a 15% doublet rate. 1385 

A) Line graphs showing the proportion of correctly classified singlets, doublets, and all cells by 1386 

each individual genetic demultiplexing tool across varying numbers of multiplexed iPSC lines in 1387 
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a single pool (sample number). The large dots show the mean proportion of correct classifications 1388 

by an individual tool across replicates at a given sample size (n = 9 per pool size). The blue points 1389 

show the proportion of cells that were correctly classified by at least one individual genetic 1390 

demultiplexing tool: Demuxalot, Demuxlet, Souporcell, or Vireo-GT. B) Bar chart showing the 1391 

mean proportion of total cells from an individual pool correctly classified by only one genetic 1392 

demultiplexing tool. Error bars represent one standard deviation from the mean. (n = 9 per pool 1393 

size) C) Bar chart showing the proportion of correctly classified singlet cells labelled as 1394 

“unassigned” (ambiguous singlet assignments) due to assignment probabilities below the 1395 

recommended threshold of the respective genetic demultiplexing tool. Error bars represent one 1396 

standard deviation from the mean. (n = 9 per pool size). 1397 

 1398 

Figure 2. Characterization of the Ensemblex framework. Ensemblex is a probabilistic-1399 

weighted ensemble genetic demultiplexing framework for single-cell RNA sequencing analysis, 1400 

which was designed to leverage the most probable sample labels from each of its constituent tools: 1401 

Demuxalot, Demuxlet, Souporcell, and Vireo when using prior genotype information or 1402 

Demuxalot, Freemuxlet, Souporcell, and Vireo when prior genotype information is not available. 1403 

A) The Ensemblex workflow begins with demultiplexing pooled cells from genetically distinct 1404 

individuals by each of the constituent tools. The outputs from each individual demultiplexing tool 1405 

are then used as input into the Ensemblex framework. B) The Ensemblex framework comprises 1406 

three distinct steps that are assembled into a pipeline: 1) accuracy-weighted probabilistic ensemble, 1407 

2) graph-based doublet detection, and 3) ensemble-independent doublet detection. C-D) Line 1408 

graphs showng the contribution of each step of the Ensemblex framework on 96 in silico pools 1409 

with known ground-truth sample labels ranging in size from 4 to 80 multiplexed induced 1410 
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pluripotent stem cell (iPSC) lines from genetically distinct individuals, averaging 17,396 cells per 1411 

pool and a 15% doublet rate. The average proportion of correctly classified C) singlets and D) 1412 

doublets across replicates at a given pool size is shown after sequentially applying each step of the 1413 

Ensemblex framework with prior genotype information (n = 9 per pool size). The right panels 1414 

show the average proportion of correct classifications across all 96 pools; error bars represent one 1415 

standard deviation from the mean. The blue points show the proportion of cells that were correctly 1416 

classified by at least one individual genetic demultiplexing tool: Demuxalot, Demuxlet, 1417 

Souporcell, or Vireo-GT.  1418 

 1419 

Figure 3. Ensemblex ground-truth benchmarking on computationally multiplexed pools. The 1420 

genetic demultiplexing tools with prior genotype information were evaluated on 96 in silico pools 1421 

with known ground-truth sample labels ranging in size from 4 to 80 multiplexed induced 1422 

pluripotent stem cell (iPSC) lines from genetically distinct individuals, averaging 17,396 cells per 1423 

pool and a 15% doublet rate. A singlet was considered correctly classified if the assigned sample 1424 

label matched the ground-truth sample label and the assignment probability exceeded the 1425 

recommended threshold for the respective tool; a doublet was considered correctly classified if the 1426 

assigned sample label matched the ground-truth sample label, regardless of the assignment 1427 

probability. A-I) Line graphs showing the performance of Ensemblex and the individual genetic 1428 

demultiplexing tools across evaluation metrics. The large dots show the mean value for each tool 1429 

across replicates at a given sample size (n = 9 per pool size). A) Proportion of correctly classified 1430 

singlets. B) Proportion of correctly classified doublets. C) Proportion of correctly classified cells. 1431 

D) Adjusted Rand Index between each tool’s sample labels and the ground-truth sample labels. E) 1432 

Balanced accuracy of each tool. F) Matthew’s Correlation Coefficient of each tool. G) Area under 1433 
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the receiver operating characteristic curve (AUC) of the singlet assignment probability for each 1434 

tool. H) Proportion of usable cells returned by each tool. Usable cells were defined as cells 1435 

classified by singlets with an assignment probability exceeding the recommended threshold of the 1436 

respective tool. I) Error rate amongst the usable cells returned by each tool; erroneous 1437 

classifications comprised of true doublets labeled as singlets or true singlets assigned to the wrong 1438 

sample. 1439 

 1440 

Figure 4. Evaluating Ensemblex on experimentally multiplexed cells using donor-specific 1441 

oligonucleotide labels as a proxy for ground-truth. Non-small cell lung cancer (NSCLC) 1442 

dissociated tumor cells from 7 individuals were pooled and labelled with donor-specific 1443 

oligonucleotide-labels. Cells were demultiplexed according to their expression of donor-specific 1444 

oligonucleotide labels by HTOdemux; HTOdemux’s sample labels were used as a proxy for 1445 

ground truth. True positives (TP) singlets were defined as cells classified as singlets by both 1446 

HTOdemux and Ensemblex with matching sample labels; false positives (FP) singlets were 1447 

defined as cells classified as singlets by both HTOdemux and Ensemblex but assigned to different 1448 

donors. TP doublets were defined as cells classified as doublets by both HTOdemux and 1449 

Ensemblex; FP doublets were defined as cells classified as singlets by HTOdemux and doublets 1450 

by Ensemblex; false negatives (FN) doublets were defined as cells classified as doublets by 1451 

HTOdemux and singlets by Ensemblex. A) T-distributed Stochastic Neighbor Embedding (t-SNE) 1452 

visualization of HTOdemux’s sample labels. B) T-SNE visualization of Ensemblex’s 1453 

demultiplexing performance using HTOdemux’s sample labels as ground truth for singlets (left) 1454 

and doublets (right). C) Bar plots showing the singlet TP and FP rates for each genetic 1455 

demultiplexing tool using HTOdemux’s sample labels as ground truth. D) Bar plots showing the 1456 
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doublet TP and FP rates for each genetic demultiplexing tool using HTOdemux’s sample labels as 1457 

ground truth. E) Scatter plot showing the proportion of usable cells (confidently classified singlets) 1458 

and the corresponding usable cell error rate for each genetic demultiplexing tool. F) Adjusted Rand 1459 

Index, balanced accuracy, Matthew’s Correlation Coefficient, and area under the receiver operating 1460 

characteristic curve (AUC) of the singlet assignment probability for each genetic demultiplexing 1461 

tool. 1462 

 1463 

Figure 5. Application of Ensemblex to highly multiplexed, experimentally pooled cultures of 1464 

differentiated dopaminergic neurons.  A) Time line of iPSC pooling, dopaminergic neuron 1465 

(DaN) differentiation, and sample collection from the DaN dataset by Jerber et al. (12). Three 1466 

technical replicates at each time point (days 11, 30 and, 52 of differentiation) from pools containing 1467 

22 individual iPSC lines were used in the analysis. Across all timepoints and technical replicates, 1468 

84,746 cells were obtained for analysis. B) Uniform manifold approximation and projection 1469 

(UMAP) plots showing confidently assigned singlets or predicted doublets (blue) and ambiguous 1470 

singlets (singlet assignments with insufficient assignment probabilities; red) returned by each 1471 

demultiplexing tool. C) Stacked bar chart showing the proportion of confidently assigned singlets 1472 

or predicted doublets (blue) and ambiguous singlets (red) across technical replicates at each time 1473 

point returned by each demultiplexing tool. D) Boxplot showing the proportion of confidently 1474 

classified singlets across technical replicates and time points by each demultiplexing tool. 1475 

Wilcoxon rank-sum tests were used to compare the proportion of confidently classified singlets by 1476 

Ensemblex to that of its constituents (n = 9 pools). E) Bar chart showing the proportion of 1477 

overlapping ambiguous singlet assignments amongst demultiplexing tools across technical 1478 

replicates and time points (n = 9 pools). F) Boxplot showing the Adjusted Rand Index (ARI) 1479 
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assessing cluster stability across a range of 11 clustering resolutions (n clustering iterations = 25) 1480 

after removing doublets identified by each demultiplexing tool. Wilcoxon rank-sum tests were 1481 

used to compare the clustering ARI after removing Ensemblex doublets to the clustering ARI after 1482 

removing doublets identified by each constituent tool. * Adjusted P-value < 0.05; ** adjusted P-1483 

value < 0.01; *** adjusted P-value < 0.001 1484 

 1485 

Figure 6. Evaluating the impact of discordant assignments between genetic demultiplexing 1486 

tools on differential gene expression analysis. A) Schematic illustrating the workflow for the 1487 

neural stem cell (NSC) dataset. Pooled induced pluripotent stem cell (iPSC)-derived neural stem 1488 

cell cultures from individuals with attention deficit hyperactivity disorder (ADHD) and controls 1489 

were collected in two separate experiments. NSCs were dissociated for single-cell RNA 1490 

sequencing and prior genotype information of the pooled subjects was obtained through 1491 

microarray genotyping. The pools were demultiplexed by Ensemblex and its constituents with 1492 

prior genotype information and differential gene expression (DEG) was computed between ADHD 1493 

and controls. B) Uniform manifold approximation and projection (UMAP) plot showing the 1494 

putative cell types. C) Summary of the number of usable cells — singlets above the recommended 1495 

probability threshold of the respective demultiplexing tool — assigned to ADHD donors and 1496 

controls and the number of identified doublets by each demultiplexing tool. D) Boxplot showing 1497 

the Adjusted Rand Index (ARI) assessing cluster stability across a range of 11 clustering 1498 

resolutions (n clustering iterations = 25) after removing doublets identified by each demultiplexing 1499 

tool. A one-way Analysis of Variance (ANOVA) test comparing the ARI after removing doublets 1500 

identified by each tool revealed a significant difference between tools (n = 11 clustering 1501 

resolutions; P-value = 1.18e-3). E) Proportion of ADHD and control cells identified as putative 1502 
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doublets by Ensemblex that were assigned as singlets by the constituent demultiplexing tools. F) 1503 

Heatmap showing the number of cell-type specific DEGs between ADHD and controls using the 1504 

subject labels of each demultiplexing tool. G) Heatmap showing the number of cell-type specific 1505 

DEGs between ADHD and controls using the subject labels of each demultiplexing tool and 1506 

removing putative doublets identified by Ensemblex. Cell-types not shown in the heatmaps had no 1507 

DEGs passing the adjusted P-value < 0.01 and |Log2FC >= 0.5| threshold across all tools. 1508 

 1509 

Tables 1510 

Table 1. Summary of individual genetic demultiplexing tools.  1511 

Genetic demultiplexing tool 

Prior genotype information for 

genetic demultiplexing 

Included in the Ensemblex 

framework 

Demuxalot (5) Required Yes 

Demuxlet (6) Required Yes 

Freemuxlet (6) Not supported Yes 

ScSplit (7) Optional No 

Souporcell (8) Optional Yes 

Vireo (9) Optional Yes 

 1512 

Table 2. Application of Ensemblex to pooled cultures of dopaminergic neurons from 22 1513 

healthy controls.  1514 

 ARI between Ensemblex and 

constituent tool assignments 
 Percent contribution to 

Ensemblex assignments 

n 

usable cells 

n 

doublets 
 Day 11 Day 30 Day 52  Day 11 Day 30 Day 52 

Demuxalot 0.987 0.955 0.982  97.29% 94.75% 97.57% 75,962 8,279 

Demuxlet 0.928 0.062 0.884  95.91% 29.74% 90.55% 57,567 6,614 
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Souporcell 0.883 0.876 0.912  91.62% 91.82% 93.84% 76,811 7,740 

Vireo-GT 0.961 0.879 0.958  95.95% 88.80% 95.16% 75,933 6,115 

Ensemblex NA NA NA  NA NA NA 76,222 8,307 

DoubletFinder NA NA NA  NA NA NA NA 4,597 

Pooled cultures of induced pluripotent stem cell (iPSC) lines from 22 healthy donors were 1515 

differentiated towards a dopaminergic neuron (DaN) fate and sequenced on days 11, 30, and 52 of 1516 

differentiation by Jerber et al. (12). For the analysis we used three technical replicates for each 1517 

sequencing timepoint. Each pool was demultiplexed independently by Ensemblex and its 1518 

constituent tools with prior genotype information. The Adjusted Rand Index (ARI) between 1519 

Ensemblex’s assignments and those of the constituent tools was computed across technical 1520 

replicates corresponding to each differentiation timepoint. The percent contribution represents the 1521 

proportion of assignments from each constituent tool that matched Ensemblex’s assignments. 1522 

Usable cells were defined as singlet classifications whose assignment probability exceeded the 1523 

recommended threshold of the respective tool. Abbreviations: NA = Not applicable. 1524 
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