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Abstract

Multiplexing samples from distinct individuals prior to sequencing is a promising step toward
achieving population-scale single-cell RNA sequencing by reducing the restrictive costs of the
technology. Individual genetic demultiplexing tools resolve the donor-of-origin identity of pooled
cells using natural genetic variation but present diminished accuracy on highly multiplexed
experiments, impeding the analytic potential of the dataset. In response, we introduce Ensemblex:
an accuracy-weighted, ensemble genetic demultiplexing framework that integrates four distinct
algorithms to identify the most probable subject labels. Using computationally and experimentally
pooled samples, we demonstrate Ensemblex’s superior accuracy and illustrate the implications of

robust demultiplexing on biological analyses.

Keywords: single-cell RNA sequencing, multiplexing, sample pooling, genetic demultiplexing,
induced pluripotent stem cells, differential gene expression, dopaminergic neurons, doublet

detection, accuracy-weighted probability, high-throughput sequencing
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Background

Single-cell RNA sequencing (scRNAseq) continues to revolutionize our molecular understanding
of biology by providing unprecedented insight into the transcriptional landscape of individual
cells. Unlike bulk RNAseq, where the RNA from all cells within a tissue is sequenced to produce
total expressional profiles across all cells, sScCRNAseq captures transcriptional signatures at a single-
cell resolution, elucidating the diverse gene expression across distinct cell types and subtypes.
Differential gene expression (DGE) can then be calculated between subgroups of cells to reveal
cell type-specific expression changes between patient or treatment groups. However, scCRNAseq
has come at the expense of increased costs, hindering its application for population-scale analyses,
which are critical for deriving clinico-pathological associations and characterizing the genetic

heterogeneity of complex diseases in biomedical sciences (1, 2).

In addition to the expense of separately capturing and sequencing cells from individual donors, the
costs of scRNAseq are exacerbated for cell cultures, such as those derived from induced
pluripotent stem cells (iPSC) (1). In particular, neurological diseases are difficult to study in human
tissue because access to post-mortem brains is limited and experimental manipulations are not
possible; in contrast, iPSC-derived cultures of neurons and other brain cells grown from
reprogrammed skin or blood cells of human donors are an excellent model of the brain (3).
However, iPSCs from each donor must be individually plated and differentiated in parallel,
presenting prohibitively high consumable and labour costs that render the methodology unfeasible
for population-scale analyses. Multiplexing cultures by pooling cells from multiple donors prior
to growth and differentiation, droplet capture, and sequencing, is one solution to address this

limitation as it reduces costs by a factor of the number of samples multiplexed (4). Similarly,
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samples such as tumor biopsies can be pooled at acquisition to realize the same benefits. In turn,
genetic demultiplexing tools are cost-effective, statistical frameworks that use the natural genetic
variation at sites of single-nucleotide polymorphisms (SNP) observed in the transcriptome to
cluster cells on the basis of their donor’s genotype. Importantly, genetic demultiplexing can be
informed by prior genotype information of the donors to improve demultiplexing accuracy and
facilitate the assignment of each cell back to its specific donor-of-origin, which is critical for
downstream analyses aiming to investigate discrepancies between subjects. At present, six genetic
demultiplexing tools have been developed for scRNAseq: Demuxalot (5) and Demuxlet (6) both
require prior genotype information as input; Freemuxlet (6) relies entirely on the de novo
transcriptome and does not incorporate prior genotype information; and ScSplit (7), Souporcell
(8), and Vireo (9) provide versions of the algorithm that can work with and without prior genotype

information (Table 1).

A robust genetic demultiplexing tool is tasked with mitigating the addition of technical artifacts
into scRNAseq datasets by correctly classifying each pooled cell to its donor-of-origin, correctly
identifying heterogenic doublets (erroneous barcodes composed of two or more cells from distinct
subjects), and quantifying its confidence in the demultiplexed labels so that low-confidence
classifications can be eliminated from downstream analyses. While benchmarking analyses on the
available genetic demultiplexing tools have shown effectiveness for demultiplexing small sample
sizes, limitations emerge as the number of multiplexed samples approach a population scale (6)
(7) (8) (9). For example, using computationally multiplexed samples, Neavin et al. evaluated the
performance of genetic demultiplexing tools as the number of samples approached a population

scale and observed diminished demultiplexing accuracy with increasing numbers of pooled
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96 samples, as well as notable classification discrepancies between tools (10). Furthermore, even at
97 small sample sizes, divergent assignments between genetic demultiplexing tools are common (8)
98 (9) (11). Another feature that has been shown to affect genetic demultiplexing performance is the
99  underrepresentation of samples in a pool, which is especially relevant for cell culture-based
100 multiplexed experiments, as variable growth rates in vitro across cell lines is common (12) (8) (9).
101  Genetic demultiplexing tools have also shown low concordance for identifying heterogenic
102  doublets, which should be removed prior to downstream analyses to avoid technical noise in the
103  data (10). Importantly, benchmarking analyses have repeatedly highlighted ScSplit’s poor
104  performance relative to the remaining tools (9) (10) (8) (11). The sum of these limitations calls to
105  question the robustness of the individual genetic demultiplexing tools for resolving the donor
106  identities of highly multiplexed samples, which represents an important hurdle for feasibly
107  achieving population-scale sScRNAseq analysis.
108
109 Inresponse to the divergent assignments commonly observed across tools, a consensus framework,
110  whereby only cells that show matching sample labels across all individual tools are retained for
111  downstream analyses, may appear sufficient to resolve the risk of introducing technical noise into
112 the data from misclassified cells. However, consensus frameworks are restricted to performing
113  only as well as the worst-performing tool, and genetic demultiplexing performance is highly
114  dataset dependent (10); thus, the overall performance of a consensus framework can vary
115 immensely between datasets. To this end, Neavin et al. proposed a majority vote framework for
116  genetic demultiplexing, whereby a cell is assigned to the sample called by the majority of tools
117  (10). However, this approach can be vulnerable to a subset of tools performing poorly on the

118  dataset, does not allocate additional weight to the votes of tools that perform more favourably on
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119 the dataset, cannot account for instances when ties occur amongst tools, and cannot capture cells
120 that are correctly classified by only one tool. The sum of these limitations leads to the unnecessary
121  removal of cells from downstream analyses, reducing statistical power, especially for highly
122 multiplexed pools where each donor, on average, will have a lower representation of cells in the
123 pool. Moreover, the ability to capture the transcriptional profiles of rare cell types with scRNAseq
124  provides a notable advancement over bulk RNAseq and can strongly influence biological
125  interpretations (13); thus, investigators are reluctant to discard valuable cells in order to maximize
126  the analytic potential of their dataset.

127

128  To address the need for a robust genetic demultiplexing framework that can maximize the number
129  of confidently classified cells retained for downstream analyses, achieve high demultiplexing
130  accuracy for population-scale scRNAseq sample pooling, and maintain reliability across different
131  datasets, we developed Ensemblex: an accuracy-weighted ensemble genetic demultiplexing
132 framework designed to identify the most probable sample labels from each of its constituent tools
133 — Demuxalot, Demuxlet/Freemuxlet, Souporcell, and Vireo. Our ensemble method capitalizes on
134  combining distinct statistical frameworks for genetic demultiplexing while adapting to the overall
135  performance of its constituent tools on the respective dataset, making it resilient against a poorly
136  performing tool and facilitating a higher yield of cells for downstream analyses. The Ensemblex
137  workflow is assembled into a three-step pipeline — 1) accuracy-weighted probabilistic ensemble;
138  2) graph-based doublet detection; 3) Ensemble-independent doublet detection — and can
139  demultiplex pools with or without prior genotype information.

140
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Here, we showcase Ensemblex’s improved demultiplexing performance across a variety of settings
through benchmarking analyses on a total of 141 computationally multiplexed pools with known
ground-truth sample labels ranging in size from 4 to 80 samples. We applied the ensemble method
to three diverse, experimentally multiplexed datasets: 1) non-small cell lung cancer (NSCLC)
dissociated tumor cells from 7 individuals with donor-specific oligonucleotide labels; 2) iPSC-
derived dopaminergic neurons (DaN) from 22 healthy individuals; and 3) iPSC-derived neural
stem cells (NSC) from 9 individuals with attention deficit hyperactivity disorder (ADHD) and 7
healthy controls. We demonstrate Ensemblex’s robustness across distinct datasets, its ability to
return a high proportion of confidently classified cells for downstream analysis, and the
implications that its improved demultiplexing performance has on biological interpretations of
multiplexed experiments.

Table 1. Summary of individual genetic demultiplexing tools.

Prior genotype information for Included in the Ensemblex
Genetic demultiplexing tool
genetic demultiplexing framework

Demuxalot (5) Required Yes
Demuxlet (6) Required Yes
Freemuxlet (6) Not supported Yes
ScSplit (7) Optional No
Souporcell (8) Optional Yes

Vireo (9) Optional Yes

Results and Discussion

Evaluating the performance of existing individual genetic demultiplexing tools
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157 To evaluate the performance of individual genetic demultiplexing tools, we generated
158  computationally multiplexed pools using scRNAseq of 80 different iPSC lines from Parkinson’s
159  disease patients and healthy controls, which were differentiated towards a DaN state as part of the
160  Foundational Data Initiative for Parkinson’s Disease (FOUNDIN-PD) (14). Processed scRNAseq
161  data from the independent iPSC lines were merged to simulate sample-pooling using a previously
162  described protocol (9), which provided known ground-truth donor and doublet labels. We
163  generated 96 in silico pools ranging in size from 4 to 80 multiplexed samples, where each sample
164  corresponded to a unique donor-of-origin. The in silico pools averaged 17,396 cells per pool with
165 aconstant 15% doublet rate.

166

167  Leveraging whole-genome sequencing (WGS) of the 80 donors from which the iPSC lines were
168 derived and the four genetic demultiplexing tools that can utilize prior genotype information —
169  Demuxalot, Demuxlet, Souporcell, and Vireo-GT — we first investigated the proportion of
170  correctly classified cells by the individual tools (Figure 1A). Across the 96 in silico pools, all tools
171  showed decreasing demultiplexing performance as the number of samples within the pool
172  increased. Souporcell demonstrated the largest decrease in the proportion of correctly classified
173 cells as the number of multiplexed samples increased from 4 (mean = 90.60%) to 80 (mean =
174  53.27%). In accordance with previous findings (10, 15), the individual genetic demultiplexing
175  tools performed better on singlet classification than doublet detection, highlighting an avenue for
176  improved genetic demultiplexing accuracy by increasing the rate of heterogenic doublet

177  identification (Figure 1A).
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178

179  Figure 1. Evaluation of existing individual genetic demultiplexing tools. Evaluation of genetic
180  demultiplexing tools with prior genotype information on 96 in silico pools with known ground-
181  truth sample labels ranging in size from 4 to 80 multiplexed induced pluripotent stem cell (iPSC)
182  lines from genetically distinct individuals, averaging 17,396 cells per pool and a 15% doublet rate.
183 A) Line graphs showing the proportion of correctly classified singlets, doublets, and all cells by
184  each individual genetic demultiplexing tool across varying numbers of multiplexed iPSC lines in
185  asingle pool (sample number). The large dots show the mean proportion of correct classifications
186 Dby an individual tool across replicates at a given sample size (n = 9 per pool size). The blue points
187  show the proportion of cells that were correctly classified by at least one individual genetic
188  demultiplexing tool: Demuxalot, Demuxlet, Souporcell, or Vireo-GT. B) Bar chart showing the
189  mean proportion of total cells from an individual pool correctly classified by only one genetic
190  demultiplexing tool. Error bars represent one standard deviation from the mean. (n = 9 per pool
191 size) C) Bar chart showing the proportion of correctly classified singlet cells labelled as
192  “unassigned” (ambiguous singlet assignments) due to assignment probabilities below the
193  recommended threshold of the respective genetic demultiplexing tool. Error bars represent one
194  standard deviation from the mean. (n =9 per pool size).

195

196  We also investigated the proportion of cells that were correctly classified by at least one genetic
197  demultiplexing tool to designate the best possible performance of an ensemble method that
198  successfully incorporates every correct classification from its constituent tools (Figure 1A).

199  Across the 96 in silico pools, an average of 93.64% of cells were correctly classified by at least
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200  one tool. In comparison, Demuxlet, which demonstrated the best overall performance amongst
201  individual tools, correctly classified 86.73% of cells, on average. Demuxalot was consistently
202  responsible for the highest proportion of cells correctly classified by only one tool; 1.21% of
203  pooled cells, on average, were correctly classified by Demuxalot only, followed by Demuxlet
204 (mean = 0.83%), Vireo-GT (mean = 0.29%), and Souporcell (mean = 0.26%) (Figures 1B;
205 Additional File 1: Figure S1). Conversely, a consensus framework, correctly classified only
206  81.06% of cells, on average (data not shown). Based on these results, we reasoned that an ensemble
207  genetic demultiplexing method that can identify the most probable sample label from its
208  constituent tools, independent of a consensus assignment, would increase the yield of correctly
209  classified cells.

210

211 Next, we explored the frequency at which correctly classified singlets were labelled as unassigned
212 because their assignment probability failed to meet the tool’s recommended probability threshold.
213 Across the 96 in silico pools, Vireo-GT consistently showed the highest proportion of correctly
214 classified singlets with insufficient assignment probabilities (Vireo-GT mean = 7.86%) followed
215 by Demuxalot (mean = 5.91%), Demuxlet (mean = 2.44%) and Souporcell (mean = 2.34%)
216  (Figure 1C). While a stringent probability threshold is important to prevent erroneous
217  classifications in downstream analyses, we reasoned that the unnecessary removal of correctly
218 classified cells could be mitigated by a carefully calibrated ensemble method that allocates
219  additional assignment confidence to cells with matching sample labels across constituent tools,
220  despite low internal tool-specific assignment probabilities.

221

10
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222 We repeated the above analyses using the same 96 computationally multiplexed pools and the
223 genetic demultiplexing tools that do not require prior genotype information: Freemuxlet,
224 Souporcell, and Vireo. Here, we observed the same overarching limitations as when
225  demultiplexing with prior genotype information: 1) decreasing demultiplexing performance as the
226  number of multiplexed samples increased; 2) poor doublet detection performance compared to
227  singlet classification; 3) high rates of cells only correctly classified by a single tool; and 4)
228  discarded correctly classified cells due to insufficient assignment probabilities (Additional File 1:
229  Figure S2). When we compared demultiplexing with and without prior genotype information, we
230 observed a trend towards a higher proportion of cells being correctly classified when prior
231  genotype information was available, as previously seen in separate benchmarking analyses (9)
232  (Additional File 1: Figure S3).

233

234 Validating the Ensemblex framework on pools with known ground-truth sample labels

235 To mitigate the limitations of the individual genetic demultiplexing tools and maximize the
236  analytic potential of multiplexed scRNAseq datasets, we developed Ensemblex (Figure 2A). The
237  Ensemblex workflow begins by demultiplexing pooled samples with four distinct demultiplexing
238  algorithms, followed by three steps: 1) accuracy-weighted probabilistic ensemble; 2) graph-based
239  doublet detection; and 3) ensemble-independent doublet detection (Figure 2B). As output,
240 Ensemblex returns its own cell-specific sample labels and corresponding assignment probabilities,
241  as well as the sample labels and corresponding assignment probabilities for each of its constituent

242  tools.

11
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243

244  Figure 2. Characterization of the Ensemblex framework. Ensemblex is a probabilistic-
245  weighted ensemble genetic demultiplexing framework for single-cell RNA sequencing analysis,
246 which was designed to leverage the most probable sample labels from each of its constituent tools:
247  Demuxalot, Demuxlet, Souporcell, and Vireo when using prior genotype information or
248  Demuxalot, Freemuxlet, Souporcell, and Vireo when prior genotype information is not available.
249  A) The Ensemblex workflow begins with demultiplexing pooled cells from genetically distinct
250 individuals by each of the constituent tools. The outputs from each individual demultiplexing tool
251  are then used as input into the Ensemblex framework. B) The Ensemblex framework comprises

12
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252  three distinct steps that are assembled into a pipeline: 1) accuracy-weighted probabilistic ensemble,
253  2) graph-based doublet detection, and 3) ensemble-independent doublet detection. C-D) Line
254  graphs showng the contribution of each step of the Ensemblex framework on 96 in silico pools
255  with known ground-truth sample labels ranging in size from 4 to 80 multiplexed induced
256  pluripotent stem cell (iPSC) lines from genetically distinct individuals, averaging 17,396 cells per
257  pool and a 15% doublet rate. The average proportion of correctly classified C) singlets and D)
258  doublets across replicates at a given pool size is shown after sequentially applying each step of the
259  Ensemblex framework with prior genotype information (n = 9 per pool size). The right panels
260 show the average proportion of correct classifications across all 96 pools; error bars represent one
261  standard deviation from the mean. The blue points show the proportion of cells that were correctly
262  classified by at least one individual genetic demultiplexing tool: Demuxalot, Demuxlet,
263  Souporcell, or Vireo-GT.

264

265 In response to our observation that certain cells are correctly classified by only one tool, we
266  implemented the accuracy-weighted probabilistic ensemble component (Step 1) of the Ensemblex
267  framework. In brief, this unsupervised weighting model identifies the most probable sample label
268  for each cell by assigning weights to each tool’s assignment probabilities based on their estimated
269  balanced accuracy for the dataset (see “Methods”) (Figures 2B) (16). Ensemblex then retains the
270  sample label with the highest cumulative probability across its constituents. However, one
271  challenge for this framework is computing the balanced accuracy of the constituent tools for
272  experimentally multiplexed pools that lack ground-truth labels. Therefore, to estimate the balanced
273  accuracy of a particular constituent tool (e.g., Demuxalot) without ground-truth labels, Ensemblex
274 leverages the cells with a consensus assignment across the three remaining tools (e.g., Demuxlet,
275  Souporcell, and Vireo-GT) as a proxy for ground-truth. To validate this approach, we utilized in
276  silico pools with known ground truth sample labels to compute the Adjusted Rand Index (ARI)
277  between Ensemblex’s sample labels when the balanced accuracy of the constituent tools was
278  computed using consensus labels or ground-truth labels. Here, we consistently observed a mean
279  ARI > 0.99, independent of the number of multiplexed samples in a pool, suggesting high

280  assignment concordance between the two approaches (Additional File 1: Figure S4). Applying
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281  the accuracy-weighted probabilistic ensemble component to the 96 in silico pools correctly
282  classified 94.98% of singlets, on average, across all pools, approaching the number of singlets that
283  were correctly classified by at least one constituent tool (mean = 96.48%) (Figure 2C). In contrast,
284  only 66.01% of doublets, on average, were correctly identified across all pools after Step 1,
285  compared to 76.59% of doublets that were correctly identified by at least one constituent tool
286  (Figure 2D).

287

288  Given that previous analyses have demonstrated strong doublet call discordance across genetic
289  demultiplexing tools (10), it was unsurprising that Step 1 of the Ensemblex framework performed
290 poorly on doublet identification. Therefore, instead of relying on the cell type classifications of the
291  constituent tools (i.e., singlet or doublet), we elected to leverage the doublet-related features (e.g.,
292  doublet probability; see “Methods”) returned by the constituent tools to identify the cells with the
293  highest doublet likelihood, independent of the existing classifications. We implemented this
294  approach in the graph-based doublet detection component (Step 2) of the Ensemblex framework,
295  which was specifically designed to increase the rate of true doublet detection. Step 2 begins by
296 identifying the top n most confident doublets in the pool (see “Methods”). Then, based on the
297  Euclidean distances in principal component analysis (PCA) space, the cells that appear most
298 frequently amongst the nearest-neighbors of the high confident doublets and exceed the optimized
299  percentile threshold for the nearest-neighbor frequency are labelled as doublets by Ensemblex
300 (Figure 2B; Additional File 1: Figure S5; see “Methods”). Upon applying the graph-based
301 doublet detection component to the 96 in silico pools following Step 1, Ensemblex correctly

302 identified 76.00% of doublets, on average: a 9.99% increase in doublet detection from Step 1. In
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303 turn, the average proportion of correctly classified singlets across all pools (94.43%) decreased by
304 only 0.55% (Figure 2D).

305

306 The ensemble-independent doublet detection component (Step 3) of the Ensemblex framework
307 was implemented to further improve doublet detection. Step 3 was motivated by our observation
308 that certain tools, namely Demuxalot and Vireo, showed high doublet detection specificity (mean
309 =0.99) on in silico pools with known ground-truth sample labels, but that Steps 1 and 2 failed to
310 incorporate a subset of these correct doublet calls (Additional File 1: Figure S6). Therefore, by
311  default, Ensemblex accepts the doublet calls made by Demuxalot and Vireo-GT (Figure 2B).
312 Applying the ensemble-independent doublet detection component to the 96 in silico pools
313  following Steps 1 and 2 further increased the average proportion of correctly identified doublets
314  across all pools by 1.58% for a total of 77.63% of doublets detected, while only decreasing the
315 average proportion of correctly classified singlets by 0.13% for a total of 94.30% of singlets
316  correctly classified (Figures 2C and 2D). Notably, owing to the graph-based doublet detection
317 component, the average proportion of doublets identified by Ensemblex exceeded the average
318 proportion of doublets that were correctly classified by at least one constituent tool.

319

320  While the three-step workflow of the Ensemblex pipeline was designed to maximize the balance
321 between singlet classification and doublet identification, we do prioritize the identification of
322 doublets at the expense of a slightly lower singlet yield to minimize technical noise in the data.
323  However, we recognize that different experimental designs will require varying levels of doublet

324  detection stringency; thus, users can modify the percentile thresholds for graph-based doublet
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325 detection and nominate different tools for ensemble-independent doublet detection (see
326  “Methods”).

327

328  Benchmarking Ensemblex on pools with known ground-truth sample labels

329 To benchmark Ensemblex against Demuxalot, Demuxlet, Souporcell, and Vireo-GT with prior
330 genotype information, we first utilized the 96 in silico pools with known ground-truth sample
331 labels to assess how Ensemblex’s demultiplexing performance varied as the number of multiplexed
332  samples approached a cohort scale (4-80 samples). Unlike doublets, singlets were only considered
333  correctly classified if their assignment probability exceeded the recommended threshold of the
334  respective tool. On average across all pools, Ensemblex showed a higher proportion of correctly
335 classified singlets (mean = 92.19%), doublets (mean = 77.63%), and all cells (mean = 90.12%)
336 than the other tools. In comparison, Demuxlet, widely considered the “gold standard” tool,
337  correctly classified 89.72% of singlets, 68.57% of doublets, and 86.73% of all cells, on average
338 (Figures 3A-3C). Importantly, the discrepancy in the proportion of correctly classified cells
339 between Ensemblex and the next-best tool was amplified as the number of multiplexed samples
340 increased from 4 (2.78%) to 80 (3.52%), demonstrating that our ensemble method was able to

341  partially mitigate decreased demultiplexing accuracy as the pools approach a population scale.
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Figure 3. Ensemblex ground-truth benchmarking on computationally multiplexed pools. The
genetic demultiplexing tools with prior genotype information were evaluated on 96 in silico pools
with known ground-truth sample labels ranging in size from 4 to 80 multiplexed induced
pluripotent stem cell (iPSC) lines from genetically distinct individuals, averaging 17,396 cells per
pool and a 15% doublet rate. A singlet was considered correctly classified if the assigned sample
label matched the ground-truth sample label and the assignment probability exceeded the
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349  recommended threshold for the respective tool; a doublet was considered correctly classified if the
350 assigned sample label matched the ground-truth sample label, regardless of the assignment
351 probability. A-I) Line graphs showing the performance of Ensemblex and the individual genetic
352  demultiplexing tools across evaluation metrics. The large dots show the mean value for each tool
353 across replicates at a given sample size (n = 9 per pool size). A) Proportion of correctly classified
354  singlets. B) Proportion of correctly classified doublets. C) Proportion of correctly classified cells.
355 D) Adjusted Rand Index between each tool’s sample labels and the ground-truth sample labels. E)
356  Balanced accuracy of each tool. F) Matthew’s Correlation Coefficient of each tool. G) Area under
357 the receiver operating characteristic curve (AUC) of the singlet assignment probability for each
358 tool. H) Proportion of usable cells returned by each tool. Usable cells were defined as cells
359 classified by singlets with an assignment probability exceeding the recommended threshold of the
360 respective tool. I) Error rate amongst the usable cells returned by each tool; erroneous
361 classifications comprised of true doublets labeled as singlets or true singlets assigned to the wrong
362  sample.

363

364  Next, we applied evaluation metrics for classification models to gauge the overall performance of
365 the genetic demultiplexing tools. We first computed the ARI to evaluate the similarity between the
366  demultiplexed sample labels and the ground-truth sample labels. Here, Ensemblex showed the
367  highest ARI with the ground truth sample labels across all pools (mean = 0.76), followed by
368 Demuxalot (mean = 0.67) and Demuxlet (mean = 0.66) (Figure 3D). We then computed the
369  balanced accuracy to evaluate the binary classification performance — singlet or doublet — of
370  each genetic demultiplexing tool as well as the Matthew’s Correlation Coefficient (MCC), which
371  previous work has suggested is more reliable and informative for classification cases where
372 positive (singlet) and negative (doublet) cases have the same analytic importance (17). Across all
373  pools, Ensemblex showed the highest balanced accuracy (mean = 0.80) and MCC (mean = 0.64),
374  whereas Demuxalot and Demuxlet showed average balanced accuracies of 0.74 and 0.75,
375  respectively, and both tools showed an average MCC of 0.54 (Figures 3E and 3F). To evaluate
376  how well Ensemblex’s confidence score (see “Methods”) and each constituent tool’s assignment

377  probability corresponded to the accuracy of their singlet classification, we plotted the area under
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378 the receiver operating characteristic curve (AUC). Although Demuxalot (mean = 0.99) and Vireo-
379  GT (mean = 0.99) showed the highest AUC across all pools on average, Ensemblex’s AUC was
380 comparable (mean = 0.98) (Figure 3G).

381

382  Finally, we investigated the proportion of usable cells returned by each demultiplexing tool and
383 the error rate amongst usable cells. We define usable cells as singlet classifications exceeding the
384 recommended probability threshold of the respective tool, while the error rate amongst usable cells
385 constituted incorrectly classified singlets to the wrong donor-of-origin or true doublets incorrectly
386 classified as singlets. We observed that, on average, Ensemblex returned the highest proportion of
387  usable cells across all pools (82.66%), followed by Demuxlet (81.66%), Souporcell (81.01%),
388  Demuxalot (79.99%), and Vireo-GT (77.53%) (Figure 3H). Importantly, Ensemblex showed the
389 lowest error rate amongst usable cells (4.34%), followed by Demuxalot (4.43%), Demuxlet
390 (5.77%), Vireo-GT (6.16%), and Souporcell (21.82%) (Figure 3I).

391

392  Using computationally multiplexed pools comprised of 24 iPSC lines, we further assessed how the
393  performance of Ensemblex varied as a function of the number cells in a pool when prior genotype
394  information was available. Here, we observed that our ensemble method consistently outperformed
395 the individual demultiplexing tools (Additional File 1: Figure S7). When cells are pooled
396 experimentally, it is reasonable to expect some iPSC lines to be underrepresented in the pool.
397 Therefore, to assess Ensemblex’s demultiplexing performance in the presence of an
398 underrepresented iPSC line, we produced computationally multiplexed pools comprising of 24
399 samples, with one sample showing varying degrees of under representation. Again, we observed

400 that Ensemblex consistently outperformed the individual tools (Additional File 1: Figure S8).
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401 Finally, we repeated the above analyses to assess whether the benefits of using Ensemblex to
402  demultiplex with prior genotype information extended to cases where prior genotype information
403 is not available. In doing so, we observed a trend towards better overall performance by
404  Ensemblex; however, the discrepancy between Ensemblex and the top-performing individual
405  tools, namely Freemuxlet and Souporcell, was less pronounced than when demultiplexing with
406  prior genotype information (Additional File 1: Figures S9-S11).

407

408  Taken together, these results indicate that the Ensemblex framework mitigates the limitations of
409 theindividual tools, leading to greater overall demultiplexing performance across computationally
410 multiplexed pools with known ground-truth labels. Ultimately, Ensemblex’s improved
411  demultiplexing performance translates to a higher recovery of usable cells for downstream
412  analyses as well as a higher accuracy amongst usable cells, limiting the unnecessary removal of
413  cells from the dataset and mitigating the introduction of technical artifacts into biological analyses.
414

415  Evaluating Ensemblex on experimentally pooled samples with donor-specific oligonucleotide
416  labels

417  To determine whether Ensemblex’s improved performance across the in silico pools is reflected in
418  real-world multiplexed experiments, we applied Ensemblex to an experimentally multiplexed pool
419  composed of NSCLC dissociated tumor cells from 7 donors, hereafter referred to as the NSCLC
420  dataset (18). Importantly, these NSCLC cells were labelled with donor-specific Cell Multiplexing
421  Oligonucleotides (CMOs), providing a proxy for ground-truth sample labels to evaluate the
422  performance of the genetic demultiplexing tools. For this experiment, we used HTOdemux (19) to

423  assign the cells back to their donor-of-origin based on the CMO expression profiles. HTOdemux
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424  confidently assigned 19,695 cells, of which 15,534 (78.87%) were assigned to individual donors
425 and 4,161 (21.13%) were assigned as doublets; 769 cells (3.76%) were unassignable at a positive
426  quantile of 0.99 and were excluded from downstream analyses (Figures 4A). Application of the
427  Ensemblex framework with prior genotype information to the NSCLC dataset achieved a singlet
428  true positive (TP) rate of 96.92% and doublet TP rate of 66.21% (Figure 4B). To evaluate the
429  benefits of utilizing the entire Ensemblex workflow (Steps 1-3), we investigated the contribution
430  of each step of the Ensemblex framework to the overall demultiplexing accuracy. Applying graph-
431  based doublet detection (Step 2) and ensemble-independent doublet detection (Step 3) to the
432  accuracy weighted assignments obtained from Step 1 increased the proportion of correctly
433  identified doublets by 14%, while slightly decreasing the proportion of correctly classified singlets
434 by 0.05% (Additional File 1: Table S1). Although users can elect to utilize different step-
435  combinations of the Ensemblex pipeline, these results reaffirm that leveraging the entire workflow
436  maximizes the overall demultiplexing accuracy by achieving a meticulous balance between singlet

437  classification and doublet identification.
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439  Figure 4. Evaluating Ensemblex on experimentally multiplexed cells using donor-specific
440 oligonucleotide labels as a proxy for ground-truth. Non-small cell lung cancer (NSCLC)
441  dissociated tumor cells from 7 individuals were pooled and labelled with donor-specific
442  oligonucleotide-labels. Cells were demultiplexed according to their expression of donor-specific
443  oligonucleotide labels by HTOdemux; HTOdemux’s sample labels were used as a proxy for
444  ground truth. True positives (TP) singlets were defined as cells classified as singlets by both
445 HTOdemux and Ensemblex with matching sample labels; false positives (FP) singlets were
446  defined as cells classified as singlets by both HTOdemux and Ensemblex but assigned to different
447  donors. TP doublets were defined as cells classified as doublets by both HTOdemux and
448  Ensemblex; FP doublets were defined as cells classified as singlets by HTOdemux and doublets
449 by Ensemblex; false negatives (FN) doublets were defined as cells classified as doublets by
450 HTOdemux and singlets by Ensemblex. A) T-distributed Stochastic Neighbor Embedding (t-SNE)
451  visualization of HTOdemux’s sample labels. B) T-SNE visualization of Ensemblex’s
452  demultiplexing performance using HTOdemux’s sample labels as ground truth for singlets (left)
453  and doublets (right). C) Bar plots showing the singlet TP and FP rates for each genetic
454  demultiplexing tool using HTOdemux’s sample labels as ground truth. D) Bar plots showing the
455  doublet TP and FP rates for each genetic demultiplexing tool using HTOdemux’s sample labels as
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456  ground truth. E) Scatter plot showing the proportion of usable cells (confidently classified singlets)
457  and the corresponding usable cell error rate for each genetic demultiplexing tool. F) Adjusted Rand
458  Index, balanced accuracy, Matthew’s Correlation Coefficient, and area under the receiver operating
459  characteristic curve (AUC) of the singlet assignment probability for each genetic demultiplexing
460  tool.

461

462  Upon comparing Ensemblex’s demultiplexing performance with prior genotype information on
463  the NSCLC dataset to the individual genetic demultiplexing tools, it emerged that our ensemble
464  method obtained the highest singlet and doublet TP rates (Figures 4C and 4D). Ensemblex and
465  Demuxlet also showed the lowest singlet false positive (FP) rates (0.25% and 0.21%, respectively),
466  indicating that singlets were least frequently assigned to the wrong donor-of-origin by these two
467 methods compared to Demuxalot (1.87%), Vireo-GT (3.91%), and Souporcell (11.94%).
468  Souporcell and Vireo-GT returned the highest proportion of usable cells (confidently classified
469  singlets; 88.21% and 86.51%, respectively); albeit, at the expense of high usable cell error rates
470 (22.91% and 13.53%, respectively) (Figure 4E). In turn, Ensemblex, Demuxalot, and Demuxlet
471  showed lower error rates across the usable cells (8.75%, 8.91%, and 9.51%, respectively), amongst
472  which Ensemblex returned the highest proportion of usable cells (83.77%) compared to Demuxalot
473  (83.64%) and Demuxlet (83.43%). Here, the relatively high error rate amongst usable cells
474  returned by each demultiplexing tool is attributed to true doublets classified as singlets. Finally,
475  we computed the ARI, balanced accuracy, MCC, and AUC for singlet detection for each tool and
476  observed that Ensemblex again outperformed the remaining tools (Figure 4F). We repeated the
477  above analyses without prior genotype information and observed a similar trend towards better
478  overall performance by Ensemblex (Additional File 1: Table S2 and Figure S12). Together, these
479  results corroborate that Ensemblex’s improved performance on the in silico pools extends to
480  experimentally multiplexed samples.

481
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482  Application of Ensemblex to experimentally pooled, highly multiplexed subjects

483 To evaluate Ensemblex’s demultiplexing performance on experimentally pooled, highly
484  multiplexed scRNAseq datasets with prior genotype information, we used pools containing iPSC
485 lines from 22 donors that were differentiated towards DaN by Jerber et al., hereafter referred to as
486  the DaN dataset (12) (Figure SA). To capture the transcriptional changes throughout neurogenesis,
487  Jerber et al. performed scRNAseq of the iPSC lines grown in pooled cultures at days 11, 30, and
488 52 of differentiation (Figure SA). Using three technical replicates from each timepoint, we
489  obtained 84,746 cells after performing quality control as previously described (12) (Additional
490 File 1: Table S3). Each technical replicate was demultiplexed independently by Ensemblex and

491  its constituent tools.
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493  Figure 5. Application of Ensemblex to highly multiplexed, experimentally pooled cultures of
494  differentiated dopaminergic neurons. A) Time line of iPSC pooling, dopaminergic neuron
495  (DaN) differentiation, and sample collection from the DaN dataset by Jerber et al. (12). Three
496 technical replicates at each time point (days 11, 30 and, 52 of differentiation) from pools containing
497 22 individual iPSC lines were used in the analysis. Across all timepoints and technical replicates,
498 84,746 cells were obtained for analysis. B) Uniform manifold approximation and projection
499 (UMAP) plots showing confidently assigned singlets or predicted doublets (blue) and ambiguous
500 singlets (singlet assignments with insufficient assignment probabilities; red) returned by each
501 demultiplexing tool. C) Stacked bar chart showing the proportion of confidently assigned singlets
502  or predicted doublets (blue) and ambiguous singlets (red) across technical replicates at each time
503 point returned by each demultiplexing tool. D) Boxplot showing the proportion of confidently
504 classified singlets across technical replicates and time points by each demultiplexing tool.
505  Wilcoxon rank-sum tests were used to compare the proportion of confidently classified singlets by
506 Ensemblex to that of its constituents (n = 9 pools). E) Bar chart showing the proportion of
507 overlapping ambiguous singlet assignments amongst demultiplexing tools across technical
508 replicates and time points (n = 9 pools). F) Boxplot showing the Adjusted Rand Index (ARI)
509 assessing cluster stability across a range of 11 clustering resolutions (7 clustering iterations = 25)
510 after removing doublets identified by each demultiplexing tool. Wilcoxon rank-sum tests were
511  used to compare the clustering ARI after removing Ensemblex doublets to the clustering ARI after
512 removing doublets identified by each constituent tool. * Adjusted P-value < 0.05; ** adjusted P-
513  value <0.01; *** adjusted P-value < 0.001

514

515  To characterize the relationship between Ensemblex and its constituent demultiplexing tools, we
516  computed the ARI between Ensemblex’s sample labels and those of its constituent as well as the
517  percent contribution of each tool to Ensemblex’s final sample labels (Table 2). Notably, we
518 observed that across day 30 technical replicates Demuxlet showed an ARI of 0.063 with
519 Ensemblex and only contributed 29.74% to Ensemblex’s final sample labels. In contrast, across
520 day 11 and 52 technical replicates Demuxlet showed an ARI of 0.928 and 0.884, respectively, and
521  contributed 95.91% and 90.55%, respectively, to Ensemblex’s final sample labels. Importantly,
522  Demuxlet’s variable contribution to Ensemblex’s sample labels across sequencing time points
523  demonstrates our ensemble method’s ability to adapt to the relative performance of its constituent

524  tools and override the classifications of a poorly performing tool on the respective dataset.
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525 Table 2. Application of Ensemblex to pooled cultures of dopaminergic neurons from 22
526  healthy controls.

ARI between Ensemblex and Percent contribution to
constituent tool assignments Ensemblex assignments
n n

Day11 Day30 Day52 Day 11 Day 30 Day 52 ,sable cells doublets
Demuxalot 0.987 0.955 0.982 97.29% 94.75% 97.57% 75,962 8,279
Demuxlet 0.928 0.062 0.884 95.91% 29.74% 90.55% 57,567 6,614
Souporcell 0.883 0.876 0.912 91.62% 91.82% 93.84% 76,811 7,740
Vireo-GT 0.961 0.879 0.958 95.95% 88.80% 95.16% 75,933 6,115
Ensemblex NA NA NA NA NA NA 76,222 8,307
DoubletFinder NA NA NA NA NA NA NA 4,597

527 Pooled cultures of induced pluripotent stem cell (iPSC) lines from 22 healthy donors were
528 differentiated towards a dopaminergic neuron (DaN) fate and sequenced on days 11, 30, and 52 of
529 differentiation by Jerber et al. (12). For the analysis we used three technical replicates for each
530 sequencing timepoint. Each pool was demultiplexed independently by Ensemblex and its
531 constituent tools with prior genotype information. The Adjusted Rand Index (ARI) between
532  Ensemblex’s assignments and those of the constituent tools was computed across technical
533  replicates corresponding to each differentiation timepoint. The percent contribution represents the
534  proportion of assignments from each constituent tool that matched Ensemblex’s assignments.
535 Usable cells were defined as singlet classifications whose assignment probability exceeded the
536 recommended threshold of the respective tool. Abbreviations: NA = Not applicable.

537

538 To elucidate the discrepancy in Demuxlet’s contribution to Ensemblex’s sample labels across
539 sequencing time points, we investigated the proportion of ambiguous singlet assignments from
540 Ensemblex and its constituents. Ambiguous singlets are defined as singlet classifications whose
541  assignment probabilities failed to meet the recommended threshold of the respective tool, leaving
542  the identity of the pooled cell unresolved. Across 84,746 cells, Souporcell (195 singlets; 0.23% of
543  cells) and Ensemblex (217 singlets; 0.26% of cells) showed the lowest proportion of ambiguous

544  singlet assignments, followed by Demuxalot (505 singlets; 0.60% of cells) and Vireo-GT (2,698
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545  singlets; 3.18% of cells). Strikingly, Demuxlet showed 20,565 ambiguous singlet assignments
546  (24.27% of cells), with 92.04% derived from day 30 technical replicates, reflecting Demuxlet’s
547  remarkably low contribution to Ensemblex’s sample labels for cells sequenced at this timepoint
548  (Figures 5B and 5C). In accordance with previous analyses (9, 10), Demuxlet was consistently
549  amongst the top performing constituent tools throughout our benchmarking analyses. Yet, its poor
550 performance across day 30 technical replicates illustrates how the accuracy of individual tools can
551  vary greatly between datasets, highlighting the importance of utilizing multiple distinct algorithms
552  for genetic demultiplexing. We compared the mean proportion of confidently classified singlets
553  across technical replicates from each time point (n = 9) between Ensemblex (99.72%) and each
554  constituent demultiplexing tool using a Wilcoxon rank-sum test. After correction for multiple
555  hypothesis testing, we observed that the mean proportion of confidently classified singlets by
556 Ensemblex was significantly higher than Demuxalot (mean = 99.36%, P-value = 3.55e-3),
557  Demuxlet (mean = 75.82%, P-value = 1.55¢-5), and Vireo-GT (mean = 96.71%, P-value = 1.55¢-
558 5) (Figure SD). Thus, despite Demuxlet’s unusually poor performance across day 30 technical
559  replicates, Ensemblex still confidently classified 27,520 singlets (99.61% of singlet assignments)
560 from these pools. Indeed, our ensemble method mitigates the consequences of a poorly performing
561 constituent tool by outweighing the erroneous classifications. In contrast, using a consensus
562  framework returned only 7,446 confidently classified singlets from day 30 technical replicates
563 (20,074 fewer cells than Ensemblex), limiting the availability of data for downstream analyses.
564

565  To further evaluate the ambiguity amongst singlet classification, we investigated the intersection
566  of ambiguous singlets across demultiplexing tools, reasoning that cells that are most challenging

567  to demultiplex would be labelled as ambiguous across all tools (Figure SE). The singlets that were

27


https://doi.org/10.1101/2024.06.17.599314
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.17.599314; this version posted June 19, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

568 assigned as ambiguous by Ensemblex showed the highest ambiguous singlet rate across the
569 remaining tools (mean across all constituent tools = 73.04%; mean across Demuxalot, Demuxlet,
570 and Vireo-GT = 92.32%). In contrast, while Souporcell showed the lowest ambiguous singlet rate
571  overall, only 15.90% of its unassigned singlets, on average, were ambiguous across the remaining
572  tools. These results indicate that the cells labelled as ambiguous by Ensemblex represent the cells
573  that are most challenging to classify across the distinct demultiplexing algorithms. Indeed, limiting
574  Ensemblex’s ambiguous singlet assignments to those that are most difficult to classify is critical
575  for maintaining a balance between maximizing the number of usable cells and minimizing the
576  introduction of technical artifacts into downstream analyses from misclassified cells.

577

578 Next, we compared the doublet predictions made by each genetic demultiplexing tool and
579  DoubletFinder, a doublet detection tool that predicts doublets by estimating the similarity of the
580 transcriptional profile of a pooled cell to artificial doublets generated by combining the
581 transcriptional profiles of randomly selected cell pairs (20). Although the average number of
582  unique molecular identifiers (UMI) per cell across doublets identified by each tool was
583  significantly higher than the consensus singlets (Additional File 1: Figure S13), we observed a
584  notable discrepancy in the number of doublets identified by each tool; DoubletFinder identified
585 the fewest doublets (n = 4,597), while Ensemblex identified the most doublets (z = 8,307) (Table
586 1). Accordingly, all tools identified doublets that every other tool assigned as singlets (Additional
587  File 1: Figure S13). While Ensemblex identified the highest number of doublets, it still returned
588 a higher number of confidently classified singlets (n = 76,222) than Demuxalot (n = 75,962),

589  Demuxlet (n =57,567), and Vireo-GT (n = 75,933). Thus, even though the Ensemblex framework
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590 prioritizes the identification of doublets at the expense of a slightly lower singlet classification
591 rate, our ensemble method still returns a high proportion of usable cells for downstream analyses.
592

593 To evaluate the impact of doublet removal on the stability of clusters in the DaN dataset, we
594  performed 25 different random start iterations of the Louvain network detection at various
595 clustering resolutions after removing the doublets identified by each tool (21). Removing the
596  doublets identified by Ensemblex resulted in the highest ARI (mean ARI = 0.942), on average,
597 across clustering resolutions (Figure SF), suggesting the greatest cluster stability. However,
598 Wilcoxon rank-sum tests only revealed a statistically significant difference in the cluster
599  assignment ARI between Ensemblex and Souporcell (mean ARI = 0.922, P-value = 1.08e-2) after
600 correction for multiple hypothesis testing. Nonetheless, the highest cluster stability after removal
601 of Ensemblex’s putative doublets illustrates how improved doublet detection can translate to
602 improved biological analyses and is reflective of its superior doublet identification performance
603  on the benchmarking analyses.

604

605  Evaluating the impact of demultiplexing tools on differential gene expression analysis

606 To evaluate the impact of genetic demultiplexing tools on scRNAseq DGE analysis, we
607 multiplexed iPSC-derived NSCs from individuals with ADHD and controls (Figure 6A). NSCs
608  were pooled and cultured until 100% confluence was reached. Two multiplexing experiments were
609 performed: Experiment 1 (n ADHD = 7; n control = 6) and Experiment 2 (n ADHD = 9; n control
610 = 7). After filtering cells for > 500 total and unique RNA transcripts, we obtained 30,433 cells
611  across both pools. Louvain clustering on the integrated scRNAseq dataset identified 12 clusters,

612  which were annotated as eight putative cell types (Figure 6B).
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613

614  Figure 6. Evaluating the impact of discordant assignments between genetic demultiplexing
615 tools on differential gene expression analysis. A) Schematic illustrating the workflow for the
616  neural stem cell (NSC) dataset. Pooled induced pluripotent stem cell (iPSC)-derived neural stem
617  cell cultures from individuals with attention deficit hyperactivity disorder (ADHD) and controls
618 were collected in two separate experiments. NSCs were dissociated for single-cell RNA
619 sequencing and prior genotype information of the pooled subjects was obtained through
620 microarray genotyping. The pools were demultiplexed by Ensemblex and its constituents with
621  prior genotype information and differential gene expression (DEG) was computed between ADHD
622  and controls. B) Uniform manifold approximation and projection (UMAP) plot showing the
623  putative cell types. C) Summary of the number of usable cells — singlets above the recommended
624  probability threshold of the respective demultiplexing tool — assigned to ADHD donors and
625  controls and the number of identified doublets by each demultiplexing tool. D) Boxplot showing
626  the Adjusted Rand Index (ARI) assessing cluster stability across a range of 11 clustering
627  resolutions (n clustering iterations = 25) after removing doublets identified by each demultiplexing
628  tool. A one-way Analysis of Variance (ANOVA) test comparing the ARI after removing doublets
629 identified by each tool revealed a significant difference between tools (n = 11 clustering
630 resolutions; P-value = 1.18e-3). E) Proportion of ADHD and control cells identified as putative
631 doublets by Ensemblex that were assigned as singlets by the constituent demultiplexing tools. F)
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632  Heatmap showing the number of cell-type specific DEGs between ADHD and controls using the
633  subject labels of each demultiplexing tool. G) Heatmap showing the number of cell-type specific
634 DEGs between ADHD and controls using the subject labels of each demultiplexing tool and
635 removing putative doublets identified by Ensemblex. Cell-types not shown in the heatmaps had no
636  DEGs passing the adjusted P-value < 0.01 and |Log2FC >= 0.5 threshold across all tools.

637

638  We independently demultiplexed both pools using Ensemblex and its constituents to assign the
639 cells back to their donor-of-origin with prior genotype information (Figure 6C). The number of
640 cells assigned to ADHD and control donors by each genetic demultiplexing tool is shown in
641  Additional File 1: Table S6. Importantly, the NSC dataset provides a valuable illustration of the
642 consequences of unnecessarily discarding cells from downstream analyses. For example,
643  Ensemblex and Vireo-GT returned 2,387 and 882 confidently assigned GRIAI"&" neurons,
644  respectively, whereas a consensus approach would have confidently assigned only 563 GRIA [hieh
645 neurons (Additional File 1: Table S6).

646

647 Each genetic demultiplexing tool predicted the ADHD cells to be vastly underrepresented
648 compared to the control cells; Ensemblex assigned 2,739 cells to individuals with ADHD and
649 19,880 cells to controls, suggesting that the ADHD iPSC lines were lost throughout the culturing
650 and sequencing process (Figure 6C). Additionally, we observed a notable difference in the number
651  of identified doublets across the tools; Vireo-GT identified the fewest doublets (n = 2,707), while
652  Demuxlet identified the most doublets (n = 8,329) (Figure 6C). We aimed to characterize the
653 change in cluster stability after removing the doublets identified by each tool and observed that
654  removing the doublets identified by Ensemblex resulted in the highest ARI (mean ARI = 0.995),
655  on average, across clustering resolutions (Figure 6D). A one-way ANOVA test comparing the
656  clustering ARI after removal of doublets identified by each tool revealed a significant difference

657  between tools (P-value = 1.18¢e-3). Demuxlet (n = 8,329) identified more doublets than Ensemblex
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658 (n = 6,373), but exhibited lower cluster stability (ARI), suggesting that increased cluster stability
659 is not merely representative of the number of doublets removed but rather the quality of doublet
660 removal.

661

662  Given the underrepresentation of ADHD cells across the dataset, we elected to investigate the cells
663  that were identified as doublets by Ensemblex but assigned as singlets by the constituent tools and
664 how these putative doublets were distributed across samples according to disorder status.
665  Demuxalot (n = 388) and Demuxlet (n = 726) assigned a relatively low number of Ensemblex’s
666  doublets as singlets, which represented 0.66% and 4.58% of ADHD sample assignments,
667  respectively, and 1.97% and 3.58% of control sample assignments, respectively (Figure 6E). In
668  contrast, Souporcell (n = 3,902) and Vireo-GT (n = 1,334) assigned a relatively high number of
669  Ensemblex’s doublets as singlets, which represented 31.97% and 24.88% of ADHD sample
670  assignments, respectively, and 11.65% and 3.97% of control sample assignments, respectively,
671  1illustrating how variable doublet detection can impact the assembly of cells assigned to donor
672  categories and which cells are retained for downstream analyses.

673

674  Finally, we used the model-based analysis of single-cell transcriptomics (MAST) statistical
675  framework to compute cell-type specific DGE between individuals with ADHD and controls using
676  the demultiplexed sample labels from each tool (22). We observed a significant discrepancy in the
677 number of cell type-specific differentially expressed genes (DEGs; adjusted P-value < 0.01;
678  absolute log2 fold change > 0.5) depending on the demultiplexing tool used (Figure 6F). Most
679  notably, for glia cells Souporcell identified 116 DEGs; Vireo-GT identified 98 DEGs; Ensemblex

680 identified 7 DEGs; Demuxalot identified 6 DEGs; and Demuxlet identified 1 DEG. Similar
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681  patterns were observed across SOX2Meh NSCs, POUSFIMeh neural progenitor cells (NPC),
682  S100Bheh NPCs, and DCX"e" neurons, whereby Souporcell or Vireo-GT’s sample labels resulted
683  in aremarkably high number of DEGs compared to Ensemblex, Demuxalot, and Demuxlet. Given
684  that Souporcell and Vireo-GT made relatively few doublet calls and that 31.97% and 24.88% of
685 ADHD sample assignments made by Souporcell and Vireo-GT, respectively, were putative
686  doublets identified by Ensemblex, we elected to repeat the DGE analysis using the demultiplexed
687 sample labels from each tool but this time we removed all putative doublets identified by
688  Ensemblex. In doing so, we observed a decrease in the number of DEGs identified by Souporcell
689 and Vireo-GT across cell types, suggesting that the putative doublets identified by Ensemblex,
690  which were classified as singlets by Souporcell and Vireo-GT, were driving the initial signals
691 (Figure 6G). For example, the number of glia-specific DEGs decreased from 116 to 0 with
692  Souporcell’s sample labels, and 98 to 0 with Vireo-GT’s sample labels. Given that the NSC dataset
693  lacked ground-truth sample labels, we could not definitively determine which cells were true
694  doublets; however, the increase in clustering ARI after removal of Ensemblex’s putative doublets
695  (Figure 6D), coupled with Ensemblex’s improved doublet identification performance on pools
696  with known ground-truth sample labels (Figure 2B), afforded confidence to assume that our
697 ensemble method performed favorably. Nonetheless, this analysis reveals that the choice of
698  demultiplexing tool can greatly impact biological analyses.

699

700 Conclusion

701  Multiplexing protocols, coupled with the introduction of genetic demultiplexing tools constituted
702  a significant advancement for scRNAseq by providing a feasible means to dramatically increase

703  the throughput of biological replicates. As the demand for population-scale scRNAseq analysis
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704  continues to grow with the maturation of singe-cell technologies, the prospect of multiplexing
705  entire cohorts has emerged. However, the realization of this goal is impeded by the limitations of
706  the current genetic demultiplexing tools. These include decreasing demultiplexing performance as
707  the number of multiplexed samples increases (9, 10), relatively poor doublet detection
708  performance (10), relatively high rates of cells that can only be correctly classified by single
709  algorithms, the unnecessary removal of correctly classified cells due to insufficient assignment
710  probabilities, and highly variable demultiplexing performance between datasets (10). In this work
711  we presented Ensemblex, which offers a unique solution to these limitations by meticulously
712 implementing distinct demultiplexing algorithms into a robust, accuracy-weighted ensemble
713  framework that is exceptionally equipped to classify highly multiplexed pools.

714

715  We applied Ensemblex to a diverse array of computationally and experimentally multiplexed
716  scRNAseq datasets. Benchmarking analyses on pools with known ground-truth sample labels
717  revealed Ensemblex’s superior demultiplexing performance across pools reaching 80 multiplexed
718  samples, which translated to a higher proportion of cells retained for downstream analyses and
719  lower error rates amongst classified cells. Ensemblex also demonstrated a notable advancement
720 for identifying heterogenic doublets, which is a well-documented limitation of the genetic
721  demultiplexing tools currently available (9, 10, 15). While previous analyses indicated that the
722 number of multiplexed samples in a pool directly impacted doublet detection efficiency (15), we
723  showed that Ensemblex’s ability to identify doublets remained relatively constant when >24
724  samples were multiplexed. Our findings suggest that super loading cells prior to sequencing —
725  which will result in a higher number of usable cells but a higher a doublet rate (6) — followed by

726  heterogenic doublet detection by Ensemblex, may be a viable approach for implementing
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727  population-scale multiplexing in practice. We also demonstrated that the performance of individual
728  genetic demultiplexing tools can be highly dataset-dependent, reflecting the findings of previous
729  work (10). However, due to its unsupervised weighting model, we showed that Ensemblex is
730  resistant to poorly performing constituent tools, maximizing the consistency of its demultiplexing
731  performance. Nonetheless, if each constituent tool performs poorly on a given dataset, the poor
732 performance will be reflected in Ensemblex’s demultiplexing accuracy. Finally, we illustrated that
733 discordant sample assignments amongst genetic demultiplexing tools can greatly impact DGE
734  analyses, necessitating that investigators carefully consider their choice of genetic demultiplexing
735  tool. Although untested, we anticipate that the impacts of discordant sample assignments amongst
736  genetic demultiplexing tools on biological interpretations would be exacerbated for computational
737 analyses that consider the specific donor identity of the pooled cells, such as expression
738  quantitative trait loci (eQTL) analyses, as opposed to donor groups (i.e., case and control). Due to
739  Ensemblex’s ability to seamlessly integrate multiple algorithms into an adaptable framework, we
740  argue that our ensemble method achieves unmatched reliability for experimentally multiplexed
741  pools that lack ground truth sample labels.

742

743  Undoubtedly, a limitation of utilizing an ensemble method for genetic demultiplexing is the
744  necessity to run each individual demultiplexing algorithm, which can be computationally
745  expensive. Yet, in the absence of comparing demultiplexed sample labels across tools, poor
746  performance by a given individual algorithm on experimentally multiplexed pools is undetectable,
747  and the risk of introducing technical artifacts and losing usable cells for downstream analyses is
748  prominent. As such, we believe that the relatively high computational cost of Ensemblex is a

749  worthwhile investment to maximize the biological insight obtained from multiplexed scRNAseq

35


https://doi.org/10.1101/2024.06.17.599314
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.17.599314; this version posted June 19, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

750  datasets. To mitigate the burden of genetic demultiplexing by multiple individual tools, we provide
751  a coherent pipeline that runs each constituent demultiplexing tool in parallel and seamlessly
752 processes the respective output files with the Ensemblex algorithm.

753

754  Compared to when demultiplexing was informed by prior genetic data of the pooled samples, the
755  improvement of Ensemblex over its constituent tools was far less pronounced for genotype-free
756  demultiplexing cases. All demultiplexing tools, including Ensemblex, showed drops in
757  demultiplexing performance when >16 samples were multiplexed in a pool without prior genotype
758 information. Nonetheless, Ensemblex still constitutes an advancement over the individual tools for
759  genotype-free demultiplexing cases due to the robustness achieved by incorporating distinct
760  demultiplexing algorithms, which protects against the prospect of poorly performing individual
761  tools on the respective dataset. Furthermore, an intrinsic limitation of demultiplexing without prior
762  genotype information is that samples cannot be directly linked to metadata, leaving the sample
763  identity of the inferred clusters unresolved (9). Although challenging, this limitation can be
764  mitigated by identifying a small subset of discriminatory variants from the reconstructed genotypes
765  of the constituent demultiplexing tools, which could be used to manually assign the computed
766  clusters to samples if such discriminatory variants are known by the investigator. While the
767  Ensemblex pipeline provides users the option to demultiplex pools with or without prior genotype
768 information, we assert that users take caution when electing to perform population-scale
769  multiplexing experiments without using prior genetic data.

770

771  Genetic demultiplexing tools have been used extensively for scRNAseq analysis across many

772 disciplines in the biological sciences, including microbiology (8), model organisms (15), cancer
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773  biology (23), and neurodegenerative disease (12). Recent work has also evaluated the utility of
774  genetic demultiplexing tools for different single-cell, read-based modalities such as single-nuclei
775 RNA sequencing (snRNAseq) and single-nuclei assay for transposase-accessible chromatin
776  sequencing (scATACseq) (24). Although untested, we expect Ensemblex to prove beneficial in
777  demultiplexing for these assays, but comprehensive benchmarking with the appropriate datasets is
778  required and was not explored here.

779

780  We expect numerous biological fields to exploit the benefits of Ensemblex through its application
781 to highly multiplexed pools comprising cells from many genetically distinct individuals.
782  Specifically for biomedical sciences, the preparation and labour costs of scRNAseq remains
783  prohibitively expensive for analyzing entire cohorts of patients, which is critical for characterizing
784  the genetic heterogeneity and etiological diversity of disease, and for maintaining sufficient
785  statistical power for detecting associations between transcriptional changes and clinical or
786  pathological observations (1). By increasing the throughput of biological replicates, multiplexing
787  has rendered the prospect of analyzing entire patient cohorts with single-cell transcriptomics
788  feasible. Highly-multiplexed scRNAseq experiments have already been presented in the literature
789  and, to the best of our knowledge, have pooled up to 24 samples in a single dish (12). However,
790  we demonstrated that Ensemblex’s demultiplexing accuracy remains relatively constant when >24
791  samples are multiplexed at concentrations that abide by the current limitations of experimental
792  protocols, suggesting that Ensemblex equips the research community with the necessary
793  computational framework to expand the upper limits of the number of genetically distinct
794  individuals in a single pool.

795
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796  While multiplexing mitigates the labour and consumable costs of scRNAseq analysis, the cost of
797  sequencing remains expensive and the increasing number of genetically distinct individuals in a
798  single pool necessitates that a greater number of cells must be sequenced to ensure adequate
799  representation. Accordingly, Ensemblex is equipped to demultiplex pools comprising cells from
800 more genetically distinct individuals than is feasible with the current laboratory technologies.
801 However, we expect that the cost of sequencing will continue to decrease with the maturation of
802  the technology, and our tool will be in place for when the anticipated wet lab advancements are
803 realized. Overall, we conclude that Ensemblex constitutes a notable advancement towards the
804  pressing demand for population-scale single-cell transcriptomics.

805

806 Methods

807 Ensemblex framework overview

808  Ensemblex is an ensemble genetic demultiplexing framework for scRNAseq sample pooling that
809  was designed to identify the most probable sample labels from each of its constituent tools:
810 Demuxalot (5), Demuxlet (6), Souporcell (8), and Vireo (9) when demultiplexing with prior
811  genotype information or Demuxalot, Freemuxlet (6), Souporcell, and Vireo when demultiplexing
812  without prior genotype information. After running each constituent demultiplexing tool in parallel,
813  Ensemblex merges the output files containing the sample-cell assignments from each tool and

814  performs three distinct steps of the Ensemblex pipeline:

815 1. Accuracy-weighted probabilistic ensemble;
816 2. Graph-based doublet detection;
817 3. Ensemble-independent doublet detection.
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818  Upon obtaining the final Ensemblex sample labels (donor-of-origin identity of the pooled cells),

819 the singlet assignment confidence score is computed.

820

821 Step 1: Accuracy-weighted probabilistic ensemble

822 Ensemblex utilizes an unsupervised weighting model to identify the most probable sample
823 label for each cell. Ensemblex weighs each constituent tool’s assignment probability
824 distribution by its estimated balanced accuracy for the dataset in a framework adapted from
825 the work of Large et al. (16). To estimate the balanced accuracy of a particular constituent tool
826 (e.g., Demuxalot) for experimentally multiplexed datasets lacking ground-truth labels,
827 Ensemblex uses the cells with a consensus assignment across the three remaining tools (e.g.,
828 Demuxlet, Souporcell, and Vireo-GT) as a proxy for ground-truth. The balanced accuracy for
829 each tool is calculated using equation 1:

830

831 (1) Balanced accuracy = %((TPZPFN) + (TI\,TiVFP))

832

833 Where TP is the number of correctly classified singlets; true-negative (TN) is the number of
834 correctly classified doublets; FP is the number of incorrectly classified singlets; false- negative
835 (FN) is the number of incorrectly classified doublets. The probability distribution of each
836 constituent tool (p;) is then weighted by its estimated balanced accuracy (w;) to produce an
837 accuracy-weighted ensemble probability for each cell:

838

839 (2) POy = IE) o By wip;(y = iIM))

840
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841 Where p is the probability that a barcode belongs to class i; y is the class variable with ¢
842 possible values, y € (1, ...,c¢); ¢ is the number of pooled samples plus 1 to account for
843 doublets; E is a vector of the results of M classifiers, E = (My, ..., M}); Mis the individual
844 constituent demultiplexing output from each tool. Given p, Ensemblex assigns each barcode’s
845 sample identity (¥) as the class (sample label) with the maximum probability:

846

847 (3) ¥ = argmax;c(y,. o) Dy = i|E)

848

849 Step 2: Graph-based doublet detection

850 Ensemblex employs a graph-based approach to identify doublets that are incorrectly labeled as
851 singlets by the accuracy-weighted probabilistic ensemble component (Step 1). For graph-based
852 doublet detection, Ensemblex leverages pre-defined features returned from each constituent
853 tool:

854 1. Demuxalot: doublet probability;

855 2. Demuxlet/Freemuxlet: singlet log likelihood — doublet log likelihood;

856 3. Demuxlet/Freemuxlet: number of single nucleotide polymorphisms (SNP) per cell;
857 4. Demuxlet/Freemuxlet: number of reads per cell;

858 5. Souporcell: doublet log probability;

859 6. Vireo: doublet probability;

860 7. Vireo: doublet log likelihood ratio.

861 For each feature independently, the pooled cells are ordered from the most to the least probable
862 doublet and are assigned a percentile rank. Beginning with a percentile threshold of 99.99,
863 Ensemblex screens each cell to identify those that exceed the percentile threshold across all
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864 features; cells that exceed the percentile threshold across all features are labeled as “confident
865 doublets”. For each iteration, Ensemblex decreases the percentile threshold by 0.01 and repeats
866 the screening process until it has identified » confident doublets (nCD). Ensemblex performs
867 a parameter sweep to determine the optimal nCD to use for graph-based doublet detection (see
868 below).

869

870 Next, the above features are input into a PCA using the stats (v3.6.2) R package (25) and a
871 Euclidean distance matrix is generated from the first two principal components (PC). For each
872 confident doublet independently, the remaining cells in the pool are assigned a percentile rank
873 based on their proximity in Euclidean space to the confident doublet and the cells that exceed
874 the designated nearest neighbour percentile threshold (pT) are identified. For all cells that
875 exceeded the designated pT for any confident doublet (putative doublets), Ensemblex
876 computes the number of times the putative doublet was amongst the nearest neighbours of any
877 confident doublet (fNN); an NN equal to nCD indicates that a putative doublet was amongst
878 the top nearest neighbours for each confident doublet.

879

880 To optimize the nCD and pT parameters for experimentally pooled samples lacking ground-
881 truth labels, Ensemblex performs an automated parameter sweep at each pairwise combination
882 of nCD and pT values; nCD values range from 50 to 300, in increments of 50, while pT values
883 depend on the expected doublet rate (exDR) and range from 1 — PR 01— exDR, in
884 intervals of 2% The distribution of NN values for each combination of nCD and pT
885 parameters are plotted and Pearson’s measure of kurtosis (K), is used to predict which
886 combination of pT and nCD values optimize the identification of true doublets while
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887 minimizing the rate of incorrectly labelled true singlets as doublets. Ensemblex screens for
888 combinations of nCD and pT values that result in negatively skewed fNN distributions with
889 high K, signifying high peakedness and heavy tails. High peakedness indicates that cells
890 exceeding the designated pT concentrated around nCD, reflecting their proximity in Euclidean
891 space to all high confident doublets, while heavy tails indicate that even cells with lower NN
892 values were identified as nearest neighbour to many confident doublets. Ensemblex first
893 identifies the pT that returns the highest K, on average, across nCD values tested in the
894 parameter sweep using equation 4:
895
896 (4) pT = arg maxpTE{l_@ \..1-exDR) (Z”CDE{SO’loo‘lso’z‘;o’z50’300}K(ysz))
897
898 Where K of the distribution of fNN values of the putative doublets is defined as:
899

4
900 (8) K(NN) = E[(X£) ]
901
902 Where p is the mean of the distribution and o is the standard deviation. Upon identifying the
903 optimal pT value (pT), Ensemblex plots the K corresponding to pT across all nCD values
904 tested in the parameter sweep. If an inflection point is identifiable, Ensemblex identifies nCD
905 as the nCD value corresponding to the point of inflection on the curve. Otherwise, Ensemblex
906 identifies nCD as the nCD value corresponding to the highest K. Cells flagged as putative
907 doublets identified using pT and nCD are labelled as doublets by Ensemblex.
908
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909 Step 3: Ensemble-independent doublet detection

910 Benchmarking on computationally multiplexed pools with known ground-truth sample labels
911 revealed that certain genetic demultiplexing tools, namely Demuxalot and Vireo, showed high
912 doublet detection specificity, but that Steps 1 and 2 of the Ensemblex workflow failed to
913 correctly label a subset of doublet calls by these tools. To mitigate this issue and maximize the
914 rate of doublet identification, Ensemblex labels the cells that are identified as doublets by Vireo
915 or Demuxalot as doublets by default; however, users can nominate different tools for the
916 ensemble-independent doublet detection component depending on the desired doublet
917 detection stringency. Doublet specificity was computed using equation 6:

918

919 (6) Doublet specificity = (TNTiva)

920

921 Where TN is the number of correctly classified doublets; FP is the number of true singlets
922 incorrectly classified as doublets.

923

924 Ensemblex singlet assignment confidence score

925 Ensemblex computes a singlet confidence score to inform which cells should be discarded to
926 avoid misclassification in downstream analyses. First, Ensemblex evaluates how well an
927 individual constituent tool’s assignment probability (e.g., Demuxalot) corresponded to the
928 accuracy of their assignment, using consensus cells across the three remaining tools (e.g.,
929 Demuxlet, Souporcell, Vireo) as a proxy for ground-truth, by fitting a binary logistic regression
930 model to compute the odds that a singlet was correctly classified given its corresponding
931 probability. Using the binary logistic regression models, Ensemblex computes the AUC using
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932 the empirical method implemented in the ROCit (v2.1.1) R package for each tool (26). Then,
933 for each cell, if Ensemblex’s sample label matches that of a constituent tool, and if the
934 assignment probability of the constituent tool supersedes its probability threshold, the tool’s
935 computed AUC is added to the accuracy-weighted probabilistic ensemble probability produced
936 in Step 1 to yield the confidence score. By default, singlet assignments with a confidence score
937 less than 1.00 are labelled as unassigned by Ensemblex. Ensemblex’s confidence score and the
938 designated threshold is a successful predictor of accurately classified singlets because singlets
939 will only achieve a confidence score > 1 if:

940 1. All constituent tools show the same sample label (accuracy-weighted probabilistic
941 ensemble probability = 1.00);

942 2. At least one constituent tool confidently assigns the cell to an individual donor and the
943 constituent tool’s probability assignment adequately corresponds to the overall
944 accuracy of their singlet assignment.

945

946 Application of Ensemblex with and without prior genotype information

947 Given the dependencies of certain tools on prior genotype information, there are notable
948 differences between the Ensemblex workflows for demultiplexing with and without prior
949 genotype information. When demultiplexing with prior genotype information, Ensemblex
950 leverages the sample labels from Demuxalot, Demuxlet, and Vireo-GT with prior genotype
951 information, and Souporcell without prior genotype information. When demultiplexing
952 without prior genotype information, Ensemblex leverages the sample labels from Demuxalot,
953 Freemuxlet, Souporcell, and Vireo. However, given that Demuxalot requires prior genotype
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954 information, Ensemblex uses the estimated donor .vcf file generated by Freemuxlet for input
955 into the Demuxalot algorithm as prior genetic data.

956

957 Running the Ensemblex pipeline

958 A complete user guide for running the Ensemblex pipeline can be found at the Ensemblex
959 GitHub site: https://neurobioinfo.github.io/ensemblex/site/. We provide two distinct yet highly
960 comparable pipelines depending on the availability of prior genotype information. Both
961 pipelines can be downloaded as a singularity image and are comprised of four steps:

962 1. Establish the pipeline and working directory;

963 2. Prepare input files for constituent genetic demultiplexing tools;

964 3. Parallel demultiplexing by constituent genetic demultiplexing tools;

965 4. Application of the Ensemblex algorithm for ensemble classification.

966

967 As input into the Ensemblex pipeline, users must provide a .tsv file describing the barcodes of
968 the pooled cells, a. bam sequencing file for the pool, a reference genotype .vcf file (e.g., 1000
969 Genome Project) (27), a reference genome sequence .fasta file (e.g., 10X Genomics), and, if
970 demultiplexing with prior genotype information, a .vcf file describing the genetic data of the
971 pooled samples.

972

973  Genetic demultiplexing by constituent tools
974  Genetic demultiplexing by the constituent demultiplexing tools was performed following best
975  practices as defined by the authors of the respective tools using Python (v3.8.10).

976 Demuxalot
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977 CellRanger-generated .bam file, filtered barcode .tsv file, and the corresponding donor .vcf file
978 were used as input into the Demuxalot workflow. Candidate variants for scRNAseq genotyping
979 were retained if the minimum coverage was > 200 and minimum alternative coverage was >
980 10. The top 100 SNPs per donor were retained to cluster the cells by genotype. Doublet calls
981 were made with a prior strength of 0.25.

982

983 Demuxlet

984 We used the popscle suite (https://github.com/statgen/popscle) for Demuxlet. CellRanger-
985 generated .bam file, filtered barcode .tsv file, and the corresponding donor .vcf file were used
986 as input into the Demuxlet workflow. The dsc-pileup function was first used to pileup candidate
987 variants around known variant sites with the following parameters: --cp-BQ 40 --min-BQ 13 -
988 -min-MQ 20 --minTD 0 --min-total 0 --min-uniq 0 --min-snp 0. The Demuxlet algorithm was
989 then applied to cluster the cells by genotype with the following parameters: --geno-error-offset
990 0.10 --geno-error-coeff 0.00 --min-callrate 0.50 --doublet-prior 0.50 --cap-BQ 40 --min-BQ 13
991 --min-MQ 20 --min-TD 0 --min-total 0 --min-uniq 0 --min-snp 0.

992

993 Freemuxlet

994 We used the popscle suite (https://github.com/statgen/popscle) for Freemuxlet. CellRanger-
995 generated .bam file, filtered barcode .tsv file, and reference genotype .vcf file from the 1000
996 Genomes Project, phase 3 (27), were used as input into the Freemuxlet workflow. The dsc-
997 pileup function was first used to pileup candidate variants around known variant sites with the
998 following parameters: --cp-BQ 40 --min-BQ 13 --min-MQ 20 --minTD 0 --min-total 0 --min-
999 uniq 0 --min-snp 0. The Freemuxlet algorithm was then applied to cluster the cells by genotype

46


https://github.com/statgen/popscle
https://github.com/statgen/popscle
https://doi.org/10.1101/2024.06.17.599314
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.17.599314; this version posted June 19, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

1000 with the following parameters: --doublet-prior 0.50 --bf-thres 5.41 --frac-init-clust 0.50 --inter-
1001 init 10 --cap-BQ 40 --min-BQ 13 --min-total 0 --min-uniq 0 --min-snp O.

1002

1003 Souporcell

1004 CellRanger-generated .bam file, filtered barcode .tsv file, 10X Genomics reference .fasta file,
1005 and the corresponding donor .vcf file when demultiplexing with prior genotype information
1006 were used as input into the Souporcell workflow. A FASTQ file was first generated from the
1007 .bam file using the renamer.py script. These reads were mapped to the reference genome using
1008 minimap2 with the following parameters: --ax splice -t 8 G50k —k 21 —w 11 —sr --A2 —B8 —
1009 012,32 —-E2,1 1200 —p.5 -N20 —£1000,5000 —n2 —-m20 —s40 —g200 —2k50m —secondary=no.
1010 The barcodes and UMI were added back to the .sam file using the retag.py script and the
1011 resulting .bam file was sorted and indexed with Samtools. Variants were called using Freebayes
1012 with the following parameters: --iXu —C 2 —q 20 —n 3 —E 1 —m 30 —min-coverage 6. Vartix was
1013 used to compute the number of alleles for each cell using the following parameters: --umi —
1014 mapq 30 —scoring-method coverage. The Souporcell algorithm was then applied to cluster the
1015 cells by genotype; when demultiplexing with prior genotype information the --
1016 known_genotypes and --known_ genotypes sample names parameters were included.
1017 Troublet was used to identify doublets and the consensus.py script was used for genotype and
1018 ambient RNA co-inference.

1019

1020 Vireo

1021 CellRanger-generated .bam file, filtered barcode .tsv file, reference genotypes from the 1000
1022 Genomes Project, phase 3 (27), and the corresponding donor .vcf file when demultiplexing
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1023 with prior genotype information were used as input to the Vireo workflow. CellSNP was used
1024 to identify candidate variants for scCRNAseq genotyping with the following parameters: --
1025 minMAF 0.1 and --minCOUNT 100. The Vireo algorithm was then applied to cluster the cells
1026 by genotype with the --forceLearnGT parameter; when demultiplexing with prior genotype
1027 information (Vireo-GT) the --d and --t GT parameters were used.

1028

1029 Consensus demultiplexing framework

1030 For the consensus demultiplexing framework, singlets were considered confidently classified
1031 if Demuxalot, Demuxlet, Vireo, and Souporcell assigned a cell to the same donor-of-origin.
1032 Cells classified as “ambiguous” or doublet by at least one tool were discarded.

1033

1034  Generation of computationally pooled samples for ground-truth benchmarking

1035 To benchmark Ensemblex on computationally pooled samples with known ground-truth sample
1036 labels, we leveraged 80 independently sequenced iPSC lines from Parkinson’s disease patients and
1037  healthy controls, which were differentiated towards a dopaminergic neuronal state and sequenced
1038  after 65 days of differentiation as part of the FOUNDIN-PD (14). Controlled access FASTQ files

1039 from the independently sequenced iPSC lines were obtained from https:/www.ppmi-info.org/

1040  (accessed 09-17-2023) and processed by the CellRanger counts pipeline (v3.1.0) with default
1041  parameters and aligned to GRCh38 reference genome. The CellRanger-generated .bam and filtered
1042  barcode files were used as input into the synth_pool.py script produced by the authors of Vireo to
1043  simulate sample pooling (9). In brief, reads from a subset of cells from the iPSC line-specific .bam

1044  files were merged and doublets were generated by combining the reads from random cell pairs.
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1045  Sample identities were added to each cell’s barcode, revealing the ground-truth sample labels for
1046  benchmarking procedures.

1047

1048 To evaluate how genetic demultiplexing performance varied as a function of the number of
1049  multiplexed samples, we generated 96 computationally multiplexed pools using the 80
1050 FOUNDIN-PD lines with sample sizes of 4, 8, 16, 24, 32, 40, 48, 56, 64, 72, and 80. An equal
1051  number of cells from each line were used in the in silico pool. For the sample size of four we
1052  generated six replicates; for the sample sizes of 8-80 we generated nine replicates each. Replicates
1053  were produced with different sample and cell combinations. The 96 in silico pools averaged 17,396
1054  cells (minimum = 8,696; maximum = 26,087). For this experiment, we maintained a 15% doublet
1055 rate as previously described (9).

1056

1057  To evaluate how genetic demultiplexing performance varied as a function of the number of cells
1058 in a pool, we generated 18 computationally multiplexed pools using the 80 FOUNDIN-PD lines
1059  with 8,000, 16,000, 24,000, 32,000, 40,000, and 48,0000 pooled cells; we generated three
1060 replicates per pool size. Twenty-four samples were multiplexed for each pool and an equal number
1061  of cells from each sample were used. Replicates were produced with different sample and cell
1062  combinations. For this experiment, we simulated a doublet rate of 6% per 8,000 pooled cells.
1063

1064  To evaluate if the overall demultiplexing performance varied due to the underrepresentation of a
1065  cell line, we generated 15 computationally multiplexed pools using the 80 FOUNDIN-PD lines
1066  comprising 23 multiplexed samples with 1,000 cells and one randomly selected sample that

1067  showed various degrees of underrepresentation, including 100 cells (10%), 300 cells (30%), 500
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1068  cells (50%), 700 cells (70%), or 900 cells (90%). Three replicates were generated for each degree
1069  of underrepresentation. Replicates were produced with different sample and cell combinations. For
1070  this experiment, we maintained a 18% doublet rate.

1071

1072 WGS for the 80 donors from which the FOUNDIN-PD lines were derived was performed on whole
1073  blood-extracted DNA as previously described by the Parkinson’s Progression Markers Initiative

1074  (PPMI) (28). The controlled-access WGS .vcf files were obtained from https:/www.ppmi-

1075  info.org/ (accessed 09-17-2023). Genotypes of common variants (minor allele frequency > 5%)
1076  were used as prior genotype information for the genetic demultiplexing tools in the benchmarking
1077  analyses.

1078

1079  Preparation, processing, and analysis of experimentally pooled samples

1080  Unless specified otherwise, experimentally pooled samples were processed with the CellRanger
1081  counts pipeline (v5.0.1) and analyzed with the Seurat (v5.0.0) R package (29), using the

1082  scRNAbox analytical pipeline (30).

1083

1084 Non-small cell lung cancer dataset

1085 NSCLC dissociated tumor cells from seven donors were labelled with TotalSeq-B Human
1086 TBNK Cocktail (18). Multiplexed cells were then sequenced on an Illumina NovaSeq 6000 to
1087 an average read depth of approximately 70,000 reads per cell for gene expression and 25,000
1088 reads per cell for CellPlex. Publicly available gene expression .bam and barcode .tsv files
1089 returned from the CellRanger multi pipeline (v6.1.2) were obtained from the 10X Genomics
1090 Datasets portal (10X Genomics Datasets) and used as input into the Ensemblex pipeline. We
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1091 used the sample-specific gene expression .bam files and the BCFtools (v1.16) mpielup
1092 function to generate genotype likelihoods for prior genotype information (31).

1093

1094 We used HTOdemux to assign the cells back to their donor-of-origin based on the CMO
1095 expression profiles as a proxy for ground-truth sample labels (19). Publicly available feature-
1096 barcode expression matrices were filtered to only include CMO labels used for multiplexing
1097 — CMO301, CM0302, CM0303, CM0304, CMO306, CMO307, and CMO308 — and
1098 barcodes with a CMO count > 0. The CMO expression profiles were normalized with Seurat’s
1099 NormalizeData function using the CLR normalization method and HTOdemux was applied to
1100 the CMO assay using a positive quantile of 0.99.

1101

1102 Dopaminergic neuron dataset

1103 Jerber et al. sequenced multiplexed experiments comprising 22 healthy donor iPSC lines from
1104 the HipSci project (32) (http://www.hipsci.org) on days 11, 30, and 52 of DaN differentiation
1105 using [llumina HiSeq 4000 to an average depth of 40,000-60,000 reads per cell (12). We used
1106 three technical replicates for each timepoint, which are comprehensively described in
1107 Additional File 1: Table S3. Publicly available gene expression .fastq files were obtained from
1108 the European Nucleotide Archive (ENA) with accession number ERP121676 and processed
1109 with the CellRanger counts pipeline (v5.0.1) with default parameters using the GRCh37
1110 reference genome. The CellRanger-generated. bam files, filtered barcode .tsv files, and .vcf
1111 files describing the pooled samples (see below) were used as input into the Ensemblex pipeline
1112 for each technical replicate independently. Filtering of the scRNAseq data was performed as
1113 described by Jerber et al. (12). Genes with non-zero counts in at least 0.05% of cells were
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1114 retained. DoubletFinder (v2.0.4) was applied independently to each technical replicate. Time-
1115 point specific replicates were integrated with Seurat’s integration algorithm (33) and clustered
1116 by the Louvain network detection using the top 50 PCs and 10 nearest neighbours.

1117

1118 Whole-exome sequencing (WES) .vcf files corresponding to the 22 pooled HipSci lines were
1119 obtained from the ENA with accession number PRIEB7243 (34). Genotypes of common
1120 variants (minor allele frequency > 1%) were used as prior genotype information for the genetic
1121 demultiplexing tools (12).

1122

1123 Neural stem cell dataset

1124 We performed two multiplexed experiments comprising iPSCs from individuals with ADHD
1125 and heathy controls differentiated into NSCs: Experiment 1 (n ADHD = 7; n control = 6) and
1126 Experiment 2 (n ADHD = 9; n control = 7).

1127

1128 Subject recruitment

1129 Patients diagnosed with ADHD and matching healthy controls between 6—18 years old
1130 were recruited by the Department of Child and Adolescent Psychiatry and Psychotherapy
1131 of the University of Zurich, as described previously (35). Inclusion and exclusion criteria
1132 for recruitment of these individuals described previously (35). Additional File 1: Table
1133 S4 provides a list of the individual subjects and their derived cell lines included in this
1134 study. Salivary DNA from ADHD patients and controls was genotyped using the Infinium
1135 Global Screening Array (Illumina), as previously described, and used as prior genotype
1136 information for genetic demultiplexing (35).
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1137

1138 Neural stem cell culture

1139 The generation and characterization of iPSC used in this study and the NSCs differentiation
1140 protocols were previously described in (35) (36). NSCs cultures were seeded in two
1141 independent experiments (designated as “1” and “2”), each of them consisting of NSCs
1142 pooled together into two culture dishes and maintained as NSCs until 100% confluence,
1143 when all iPSC lines were combined into one sample for sequencing. For most cell lines
1144 different clones for each iPSC line were used in the two experiments Additional File 1:
1145 Table S5. When applicable, the second clones of the same NSCs lines were cultured
1146 separately (designated as “.1” and “.2”) in a second experiment. In the first experiment,
1147 56,250 cells per cell line were seeded in the pooled dishes. In the second experiment the
1148 proportions of cells seeded we adjusted to their proliferation profile assessed in (36). Upon
1149 reaching 100% confluence, cells were dissociated for scRNAseq experiments and
1150 combined to a single sample for sequencing as described below.

1151

1152 Dissociation of pooled neural stem cell cultures for single-cell RNA sequencing

1153 Cells were washed in PBS and then incubated with 1 mL of StemPro Accutase (Gibco) for
1154 3 minutes at 37°C. After incubation, 2 mL of PBS, stopping the Accutase reaction, and cells
1155 were gently pipetted up and down between 5 to 10 times to break up clumps of cells before
1156 transfer to a 15 mL conical tube. The cells were centrifuged at 300 x g for 5 minutes and
1157 the supernatant was removed. Following, 334 pL of Neural Expansion Media (NEM) was
1158 added to each cell pellet using a 1000 pL pipette tip until cells were completely
1159 resuspended. An additional 666 pL. of NEM was added to each well and gently pipette
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1160 mixed 5 times. A 100-um cell strainer was used to filter the cell suspension before
1161 centrifugation at 300 x g for 4 minutes. The supernatant was carefully removed, and the
1162 pellet was resuspended in 3 mL of PBS 1x containing 0.04% Bovine Serum Albumin
1163 (BSA) by pipetting up and down 5 times using a 5 mL serological pipette. The cells were
1164 centrifuged at 300 x g for 10 minutes and further submitted to live cell sorting with the
1165 Magnetic Dead Cell Removal Kit (Miltenyi Biotec, 130-090-101), according to the
1166 manufacturer. The resulting flow-through containing live cells was centrifuged for 300 x g
1167 for 5 minutes and the supernatant was removed carefully to not disturb the cell pellet. Cells
1168 were resuspended in 1 mL of PBS 1x containing 0.04% BSA for automated cell counting.
1169 For each experiment, the cells from the two culture dishes were processed in parallel. Equal
1170 counts of cells were combined for the final cell suspension for scRNAseq preparation at
1171 the Functional Genomics Center Zurich at the University of Zurich.

1172

1173 Library processing and sequencing

1174 All samples were processed using the 10x Genomics Chromium 3’ Single Cell Protocol
1175 and sequenced using NovaSeq 6000 S1 (Illumina). For the first sample containing NSC
1176 pools 1.1 and 1.2, 18,000 NSCs were loaded into one single 10x Genomics Lane to target
1177 13,000 cells. For the second sample containing NSC pools 2.1 and 2.2, 29,000 NSCs were
1178 loaded to target 18,000 cells.

1179

1180 Demultiplexing and scRNAseq analysis

1181 FASTQ files were processed with the CellRanger counts pipeline (v5.0.1) with default
1182 parameters and aligned to the GRCh37 reference genome. The CellRanger-generated. bam
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1183 files, filtered barcode .tsv files, and .vcf files describing the pooled samples were used as
1184 input into the Ensemblex pipeline. Genotypes of common variants (minor allele frequency
1185 > 1%) were used as prior genotype information for the genetic demultiplexing tools. The
1186 filtered feature-barcode expression matrices were used to analyze the pooled cells
1187 following a standard scRNAseq analysis workflow using Seurat (30). Cells were filtered
1188 for > 500 total and unique RNA transcripts. Doublets were removed using DoubletFinder
1189 (v2.0.4). The two NSC samples were integrated using Seurat’s integration algorithm (33).
1190 The top 25 PCs were selected for Louvain network detection to identify clusters using 65
1191 nearest neighbours. Twelve clusters were identified at a clustering resolution of 0.25, which
1192 were assigned as eight putative cell types using a combination of known markers and gene
1193 enrichment analysis. The top marker genes from each cluster were identified using Seurat’s
1194 FindAlIMarkers with the Wilcoxon rank-sum test. Significant DEGs (log2 fold change >
1195 0.25 and P-value < 0.05 ) were input into EnrichR (37) and cell types were predicted with
1196 the Cell Marker Augmented 2021 (38) and Azimuth Cell Types 2021 (39) libraries. Multiple
1197 clusters showed expression profiles for similar broad cell types — Neurons, NPCs, and
1198 NSCs. We used Seurat’s FindMarkers tfunction to identify differentially expressed marker
1199 genes between the clusters of the same broad cell type and top marker genes were selected
1200 to identify the cell subtypes.

1201

1202 For each putative cell type, DGE was calculated between ADHD and controls using the
1203 MAST statistical framework (22, 40). Pooled cells were assigned as ADHD or control
1204 based on the demultiplexed sample labels from each of the individual genetic
1205 demultiplexing tools. Cells labeled as “ambiguous singlets” or doublets by the individual
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tools were excluded from their respective DGE analysis. P-values were corrected for
multiple hypothesis testing using the Bonferroni method. A gene was considered
differentially expressed if the adjusted P-value was < 0.01 and the absolute value of the
Log?2 fold-change was > 0.5. To compute DGE using the sample labels from the individual
tools after the removal of Ensemblex’s putative doublet calls, we repeated the above
procedures but this time all cells labeled as doublets by the respective tool or Ensemblex

were excluded from the DGE analysis.

Performance metrics and statistical analyses
We performed all statistical analyses using the R statistical software (v4.2.2) (41). We used the

ggplot2? R package (v3.4.2) for data visualization (42).

Singlet classification

A singlet was considered correctly classified if the demultiplexed sample label matched the
ground-truth sample label (i.e., specific sample ID) and the assignment probability exceeded
the recommended threshold for the respective tool. For computationally multiplexed pools, the

proportion of correctly classified singlets was computed as:

TP

(7) Proportion correct singlets = ——
n true singlets

For the NSCLC dataset, HTOdemux’s sample labels were considered ground-truth, and the

singlet TP and FP rate were computed as:
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1229 (8) Singlet TP rate = nHTOder:zx Singlets

1230 (9) Singlet FP rate = nHTOderrI::x Singlets

1231

1232 Doublet identification

1233 A doublet was considered correctly classified if the demultiplexed sample label matched the
1234 ground-truth sample label, independent of the assignment probability. For computationally
1235 multiplexed pools, the proportion of correctly classified doublets was computed as:

1236

1237 (10) Proportion correct doublets = W

1238

1239 For the NSCLC dataset, TP doublets were defined as cells classified as doublets by both
1240 HTOdemux and Ensemblex; FP doublets were defined as cells classified as singlets by
1241 HTOdemux and doublets by Ensemblex; FN doublets were defined as cells classified as
1242 doublets by HTOdemux and singlets by Ensemblex. The doublet TP, FP, and FN rates were
1243 computed as:

1244

1245 (11) Doublet TP rate = ~ HTOdemTuZ oThlons

1246 (12) Doublet FP rate = npoolegzmmets

1247 (13) Doublet FN rate = 1 — Doublet TP rate

1248

1249 Adjusted Rand Index
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1250 To evaluate the similarity between two distinct sample clusterings we computed the ARI using
1251 the pdfCluster (v1.0.4) R package (43). For the benchmarking analyses, we computed the ARI
1252 between the demultiplexed sample labels by each genetic demultiplexing tool and the ground-
1253 truth sample labels (computationally pooled samples) or HTOdemux’s sample labels (NSCLC
1254 dataset). We followed the same procedure when computing the ARI between Ensemblex’s
1255 sample labels and those of its constituent tools (DaN and NSC datasets); however, the ground-
1256 truth sample labels were replaced by Ensemblex’s sample labels for these analyses. For
1257 experiments evaluating the impact of doublets on the stability of clusters in gene expression
1258 space, we computed the ARI between clusters at a given clustering resolution after removing
1259 doublets identified by each genetic demultiplexing tool. Clustering stability was computed at
1260 resolutions of 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. For each clustering
1261 resolution, 25 iterations of Louvain clustering were performed while shuffling the order of the
1262 nodes in the graph. The ARI between clustering pairs at each clustering resolution was then
1263 computed.

1264

1265 Balanced accuracy

1266 Balanced accuracies were computed to evaluate the binary classification performance of each
1267 genetic demultiplexing tool on imbalanced datasets, where doublets represented a minority
1268 class compared to singlets. The balanced accuracy of each genetic demultiplexing tool was
1269 computed against the ground-truth sample labels (computationally pooled samples) or
1270 HTOdemux’s sample labels (NSCLC dataset) using equation 1.

1271

1272 Matthew’s correlation coefficient (MCC)
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The MCC was used as a second metric for evaluating the binary classification performance of
the genetic demultiplexing tool. The MCC of each genetic demultiplexing tool was computed
against the ground-truth sample labels (computationally pooled samples) or HTOdemux’s

sample labels (NSCLC dataset) using equation 14:

TNXTP—FNXFP
J(TP+FP)(TP=FN)(TN+FP)(TN+FN)

(14) MCC =

Area under the receiver operating characteristic curve for singlet detection

To evaluate how well each genetic demultiplexing tool’s assignment probability corresponded
to the accuracy of their singlet assignments when ground-truth sample labels were known, we
fit a binary logistic regression model to compute the odds that a singlet was correctly classified
by a tool given the corresponding confidence score or probability. Correctly and incorrectly
classified singlets were set as the positive and negative references, respectively. We then used
the binary logistic regression model to compute the receiver operating characteristic curve for
each tool, which plots the singlet TP and FP rates across classification thresholds, and
calculated the AUC using the empirical method implemented in the ROCit (v2.1.1) R package

(26).

Abbreviations

ADHD, attention deficit hyperactivity disorder; ANOVA, Analysis of variance; ARI, Adjusted
Rand Index; AUC, area under the receiver operating characteristic curve; BSA, Bovine Serum
Albumin; CMO, Cell Multiplexing Oligonucleotides; DaN, dopaminergic neurons; DGE,

differential gene expression; DEG, differentially expressed genes; ENA, European Nucleotide
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1296  Archive; eQTL, expression quantitative trait loci; FN, false-negative; NN, nearest neighbour
1297  frequency; FOUNDIN-PD; Foundational Data Initiative for Parkinson’s Disease; FP, false
1298  positive; iPSC, induced pluripotent stem cell; K, kurtosis; MAST, model-based analysis of single-
1299  cell transcriptomics; MCC, Matthew’s Correlation Coefficient; nCD, number of confident
1300 doublets; NEM, neural expansion media; NPC, neural progenitor cell; NSC, neural stem cell;
1301  NSCLC, non-small cell lung cancer; PC, principal component; PCA principal component analysis;
1302  PPMI, Parkinson’s Progression Markers Initiative; pT, nearest neighbour percentile threshold;
1303  scATACseq, single-cell assay for transposase-accessible chromatin sequencing; scRNAseq,
1304  single-cell RNA sequencing; SNP, single nucleotide polymorphism; snRNAseq, single-nuclei
1305 RNA sequencing; TN, true-negative; TP, true-positive; UMI, unique molecular identified; WES,
1306  whole-exome sequencing; WGS, whole-genome sequencing.
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1380

1381  Figure legends

1382  Figure 1. Evaluation of existing individual genetic demultiplexing tools. Evaluation of genetic
1383  demultiplexing tools with prior genotype information on 96 in silico pools with known ground-
1384  truth sample labels ranging in size from 4 to 80 multiplexed induced pluripotent stem cell (iPSC)
1385 lines from genetically distinct individuals, averaging 17,396 cells per pool and a 15% doublet rate.
1386  A) Line graphs showing the proportion of correctly classified singlets, doublets, and all cells by

1387  each individual genetic demultiplexing tool across varying numbers of multiplexed iPSC lines in
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1388  asingle pool (sample number). The large dots show the mean proportion of correct classifications
1389 by an individual tool across replicates at a given sample size (n = 9 per pool size). The blue points
1390 show the proportion of cells that were correctly classified by at least one individual genetic
1391  demultiplexing tool: Demuxalot, Demuxlet, Souporcell, or Vireo-GT. B) Bar chart showing the
1392  mean proportion of total cells from an individual pool correctly classified by only one genetic
1393  demultiplexing tool. Error bars represent one standard deviation from the mean. (n = 9 per pool
1394  size) C) Bar chart showing the proportion of correctly classified singlet cells labelled as
1395  “unassigned” (ambiguous singlet assignments) due to assignment probabilities below the
1396 recommended threshold of the respective genetic demultiplexing tool. Error bars represent one
1397  standard deviation from the mean. (n = 9 per pool size).

1398

1399  Figure 2. Characterization of the Ensemblex framework. Ensemblex is a probabilistic-
1400 weighted ensemble genetic demultiplexing framework for single-cell RNA sequencing analysis,
1401  which was designed to leverage the most probable sample labels from each of its constituent tools:
1402  Demuxalot, Demuxlet, Souporcell, and Vireo when using prior genotype information or
1403  Demuxalot, Freemuxlet, Souporcell, and Vireo when prior genotype information is not available.
1404  A) The Ensemblex workflow begins with demultiplexing pooled cells from genetically distinct
1405 individuals by each of the constituent tools. The outputs from each individual demultiplexing tool
1406  are then used as input into the Ensemblex framework. B) The Ensemblex framework comprises
1407  three distinct steps that are assembled into a pipeline: 1) accuracy-weighted probabilistic ensemble,
1408  2) graph-based doublet detection, and 3) ensemble-independent doublet detection. C-D) Line
1409  graphs showng the contribution of each step of the Ensemblex framework on 96 in silico pools

1410  with known ground-truth sample labels ranging in size from 4 to 80 multiplexed induced
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1411  pluripotent stem cell (iPSC) lines from genetically distinct individuals, averaging 17,396 cells per
1412  pool and a 15% doublet rate. The average proportion of correctly classified C) singlets and D)
1413  doublets across replicates at a given pool size is shown after sequentially applying each step of the
1414  Ensemblex framework with prior genotype information (n = 9 per pool size). The right panels
1415  show the average proportion of correct classifications across all 96 pools; error bars represent one
1416  standard deviation from the mean. The blue points show the proportion of cells that were correctly
1417  classified by at least one individual genetic demultiplexing tool: Demuxalot, Demuxlet,
1418  Souporcell, or Vireo-GT.

1419

1420  Figure 3. Ensemblex ground-truth benchmarking on computationally multiplexed pools. The
1421  genetic demultiplexing tools with prior genotype information were evaluated on 96 in silico pools
1422  with known ground-truth sample labels ranging in size from 4 to 80 multiplexed induced
1423  pluripotent stem cell (iPSC) lines from genetically distinct individuals, averaging 17,396 cells per
1424  pool and a 15% doublet rate. A singlet was considered correctly classified if the assigned sample
1425  label matched the ground-truth sample label and the assignment probability exceeded the
1426  recommended threshold for the respective tool; a doublet was considered correctly classified if the
1427  assigned sample label matched the ground-truth sample label, regardless of the assignment
1428  probability. A-I) Line graphs showing the performance of Ensemblex and the individual genetic
1429  demultiplexing tools across evaluation metrics. The large dots show the mean value for each tool
1430  across replicates at a given sample size (n = 9 per pool size). A) Proportion of correctly classified
1431  singlets. B) Proportion of correctly classified doublets. C) Proportion of correctly classified cells.
1432 D) Adjusted Rand Index between each tool’s sample labels and the ground-truth sample labels. E)

1433  Balanced accuracy of each tool. F) Matthew’s Correlation Coefficient of each tool. G) Area under
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1434  the receiver operating characteristic curve (AUC) of the singlet assignment probability for each
1435  tool. H) Proportion of usable cells returned by each tool. Usable cells were defined as cells
1436  classified by singlets with an assignment probability exceeding the recommended threshold of the
1437  respective tool. I) Error rate amongst the usable cells returned by each tool; erroneous
1438  classifications comprised of true doublets labeled as singlets or true singlets assigned to the wrong
1439  sample.

1440

1441  Figure 4. Evaluating Ensemblex on experimentally multiplexed cells using donor-specific
1442  oligonucleotide labels as a proxy for ground-truth. Non-small cell lung cancer (NSCLC)
1443  dissociated tumor cells from 7 individuals were pooled and labelled with donor-specific
1444  oligonucleotide-labels. Cells were demultiplexed according to their expression of donor-specific
1445  oligonucleotide labels by HTOdemux; HTOdemux’s sample labels were used as a proxy for
1446  ground truth. True positives (TP) singlets were defined as cells classified as singlets by both
1447 HTOdemux and Ensemblex with matching sample labels; false positives (FP) singlets were
1448  defined as cells classified as singlets by both HTOdemux and Ensemblex but assigned to different
1449  donors. TP doublets were defined as cells classified as doublets by both HTOdemux and
1450 Ensemblex; FP doublets were defined as cells classified as singlets by HTOdemux and doublets
1451 by Ensemblex; false negatives (FN) doublets were defined as cells classified as doublets by
1452  HTOdemux and singlets by Ensemblex. A) T-distributed Stochastic Neighbor Embedding (t-SNE)
1453  visualization of HTOdemux’s sample labels. B) T-SNE visualization of Ensemblex’s
1454  demultiplexing performance using HTOdemux’s sample labels as ground truth for singlets (left)
1455  and doublets (right). C) Bar plots showing the singlet TP and FP rates for each genetic

1456  demultiplexing tool using HTOdemux’s sample labels as ground truth. D) Bar plots showing the
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1457  doublet TP and FP rates for each genetic demultiplexing tool using HTOdemux’s sample labels as
1458  ground truth. E) Scatter plot showing the proportion of usable cells (confidently classified singlets)
1459  and the corresponding usable cell error rate for each genetic demultiplexing tool. F) Adjusted Rand
1460  Index, balanced accuracy, Matthew’s Correlation Coefficient, and area under the receiver operating
1461  characteristic curve (AUC) of the singlet assignment probability for each genetic demultiplexing
1462  tool.

1463

1464  Figure 5. Application of Ensemblex to highly multiplexed, experimentally pooled cultures of
1465  differentiated dopaminergic neurons. A) Time line of iPSC pooling, dopaminergic neuron
1466  (DaN) differentiation, and sample collection from the DaN dataset by Jerber et al. (12). Three
1467  technical replicates at each time point (days 11, 30 and, 52 of differentiation) from pools containing
1468 22 individual iPSC lines were used in the analysis. Across all timepoints and technical replicates,
1469 84,746 cells were obtained for analysis. B) Uniform manifold approximation and projection
1470 (UMAP) plots showing confidently assigned singlets or predicted doublets (blue) and ambiguous
1471  singlets (singlet assignments with insufficient assignment probabilities; red) returned by each
1472  demultiplexing tool. C) Stacked bar chart showing the proportion of confidently assigned singlets
1473  or predicted doublets (blue) and ambiguous singlets (red) across technical replicates at each time
1474  point returned by each demultiplexing tool. D) Boxplot showing the proportion of confidently
1475  classified singlets across technical replicates and time points by each demultiplexing tool.
1476  Wilcoxon rank-sum tests were used to compare the proportion of confidently classified singlets by
1477  Ensemblex to that of its constituents (n = 9 pools). E) Bar chart showing the proportion of
1478  overlapping ambiguous singlet assignments amongst demultiplexing tools across technical

1479  replicates and time points (n = 9 pools). F) Boxplot showing the Adjusted Rand Index (ARI)
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1480  assessing cluster stability across a range of 11 clustering resolutions (n clustering iterations = 25)
1481  after removing doublets identified by each demultiplexing tool. Wilcoxon rank-sum tests were
1482  used to compare the clustering ARI after removing Ensemblex doublets to the clustering ARI after
1483  removing doublets identified by each constituent tool. * Adjusted P-value < 0.05; ** adjusted P-
1484  value <0.01; *** adjusted P-value < 0.001

1485

1486  Figure 6. Evaluating the impact of discordant assignments between genetic demultiplexing
1487  tools on differential gene expression analysis. A) Schematic illustrating the workflow for the
1488  neural stem cell (NSC) dataset. Pooled induced pluripotent stem cell (iPSC)-derived neural stem
1489  cell cultures from individuals with attention deficit hyperactivity disorder (ADHD) and controls
1490 were collected in two separate experiments. NSCs were dissociated for single-cell RNA
1491  sequencing and prior genotype information of the pooled subjects was obtained through
1492  microarray genotyping. The pools were demultiplexed by Ensemblex and its constituents with
1493  prior genotype information and differential gene expression (DEG) was computed between ADHD
1494  and controls. B) Uniform manifold approximation and projection (UMAP) plot showing the
1495  putative cell types. C) Summary of the number of usable cells — singlets above the recommended
1496  probability threshold of the respective demultiplexing tool — assigned to ADHD donors and
1497  controls and the number of identified doublets by each demultiplexing tool. D) Boxplot showing
1498  the Adjusted Rand Index (ARI) assessing cluster stability across a range of 11 clustering
1499  resolutions (n clustering iterations = 25) after removing doublets identified by each demultiplexing
1500 tool. A one-way Analysis of Variance (ANOVA) test comparing the ARI after removing doublets
1501  identified by each tool revealed a significant difference between tools (n = 11 clustering

1502  resolutions; P-value = 1.18e-3). E) Proportion of ADHD and control cells identified as putative
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1503  doublets by Ensemblex that were assigned as singlets by the constituent demultiplexing tools. F)
1504  Heatmap showing the number of cell-type specific DEGs between ADHD and controls using the
1505  subject labels of each demultiplexing tool. G) Heatmap showing the number of cell-type specific
1506 DEGs between ADHD and controls using the subject labels of each demultiplexing tool and
1507 removing putative doublets identified by Ensemblex. Cell-types not shown in the heatmaps had no
1508 DEGs passing the adjusted P-value < 0.01 and |[Log2FC >= 0.5] threshold across all tools.

1509

1510 Tables

1511  Table 1. Summary of individual genetic demultiplexing tools.

Prior genotype information for Included in the Ensemblex
Genetic demultiplexing tool
genetic demultiplexing framework

Demuxalot (5) Required Yes
Demuxlet (6) Required Yes
Freemuxlet (6) Not supported Yes
ScSplit (7) Optional No
Souporcell (8) Optional Yes

Vireo (9) Optional Yes

1512
1513  Table 2. Application of Ensemblex to pooled cultures of dopaminergic neurons from 22

1514  healthy controls.

ARI between Ensemblex and Percent contribution to
constituent tool assignments Ensemblex assignments
n n
Day 11 Day30 Day52 Day 11 Day 30 Day 52 ysable cells doublets
Demuxalot 0.987 0.955 0.982 97.29% 94.75% 97.57% 75,962 8,279
Demuxlet 0.928 0.062 0.884 95.91% 29.74% 90.55% 57,567 6,614
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Souporcell 0.883 0.876 0.912 91.62% 91.82% 93.84% 76,811 7,740
Vireo-GT 0.961 0.879 0.958 95.95% 88.80% 95.16% 75,933 6,115
Ensemblex NA NA NA NA NA NA 76,222 8,307
DoubletFinder NA NA NA NA NA NA NA 4,597

1515  Pooled cultures of induced pluripotent stem cell (iPSC) lines from 22 healthy donors were
1516  differentiated towards a dopaminergic neuron (DaN) fate and sequenced on days 11, 30, and 52 of
1517  differentiation by Jerber et al. (12). For the analysis we used three technical replicates for each
1518 sequencing timepoint. Each pool was demultiplexed independently by Ensemblex and its
1519  constituent tools with prior genotype information. The Adjusted Rand Index (ARI) between
1520 Ensemblex’s assignments and those of the constituent tools was computed across technical
1521  replicates corresponding to each differentiation timepoint. The percent contribution represents the
1522  proportion of assignments from each constituent tool that matched Ensemblex’s assignments.
1523  Usable cells were defined as singlet classifications whose assignment probability exceeded the

1524  recommended threshold of the respective tool. Abbreviations: NA = Not applicable.
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