

1 **Histidine limitation causes alteration in the TOR network and plant development**

2 Amandine Guérin, Caroline Levasseur, Aline Herger, Dominik Renggli¹, Alexandros Georgios
3 Sotiropoulos², Gabor Kadler³, Xiaoyu Hou, Myriam Schaufelberger, Christian Meyer⁴, Thomas
4 Wicker, Laurent Bigler¹, Christoph Ringli

5

6 Department of Plant and Microbial Biology, University of Zurich, and Zurich-Basel Plant
7 Science Center, Zurich, Switzerland

8

9 1 University of Zurich, Department of Chemistry, Zurich

10 2 current address: University of Southern Queensland, Centre for Crop Health, Queensland,
11 Australia

12 3 current address: University Hospital Zurich, Department of Intensive Care, Zurich

13 4 Institut Jean-Pierre Bourgin (IJPB), INRAe, AgroParisTech, Université Paris-Saclay,
14 Versailles, France

15

16 e-mails of all authors:

17 Amandine Guérin, amandine.guerin@botinst.uzh.ch; Caroline Levasseur,
18 caroline.levasseur@botinst.uzh.ch; Aline Herger, alinegalatea.herger@botinst.uzh.ch;
19 Dominik Renggli, dominik.renggli@uzh.ch; Alexandros Georgios Sotiropoulos,
20 alexandros.sotiropoulos@botinst.uzh.ch; Gabor Kadler, gabor.kadler@gmx.ch; Xiaoyu Hou,
21 xiaoyu.hou@botinst.uzh.ch; Myriam Schaufelberger,
22 myriam.schaufelberger@access.uzh.ch; Christian Meyer, christian.meyer@inrae.fr; Thomas
23 Wicker, wicker@botinst.uzh.ch; Laurent Bigler, laurent.bigler@chem.uzh.ch; Christoph Ringli,
24 chringli@botinst.uzh.ch

25

26 Corresponding author: Christoph Ringli, chringli@botinst.uzh.ch, 0041 44 634 82 33

27

28

29 Submission date: June 17, 2024

30

31 number of Figures: 6

32 Number of Tables: 0

33 Word count: 4'400

34 Number of supplementary Figures: 6

35 Number of supplementary Tables: 1

36 **Histidine limitation causes alteration in the TOR network and plant development**

37

38 **Running title:**

39 Histidine limitation affects the TOR network in *Arabidopsis*.

40 **Highlight:** Partial loss of function of *HISN2* in *sune82* results in a significant reduction in
41 histidine content, which subsequently alters the TOR network.

42

43 **ABSTRACT**

44 Plant growth depends on growth regulators, nutrient availability, and amino acids levels. The
45 TOR (Target of Rapamycin) network senses these parameters and influences cell wall
46 formation and expansion accordingly. Cell wall integrity and structures are surveyed and
47 modified by a complex array of cell wall integrity sensors, including LRR-extensins (LRXs),
48 that function as hormone receptors and help to compact cell walls. Expressing the *Arabidopsis*
49 root-hair specific LRX1 without the extensin domain, which anchors the protein to the cell wall,
50 has a negative effect on root hair development. The mechanism of this negative effect was
51 investigated by a suppressor screen, which led to the identification of a *sune* (*suppressor of*
52 *dominant-negative LRX1*) mutant collection. The *sune82* mutant was identified as an allele of
53 *HISN2* which encodes an enzyme essential for histidine biosynthesis. The *sune82* mutation
54 leads to reduced accumulation of histidine, and this influences the TOR network. The *sune82*
55 mutant reflects the impact of the TOR network on cell wall formation processes involving LRX
56 proteins. It also represents an excellent tool to study the effects of reduced histidine levels on
57 plant development, as it is a rare example of a viable partial loss-of-function allele in an
58 essential biosynthetic pathway.

59

60 **Keywords:**

61 Amino acid metabolism, *Arabidopsis*, HISN2, histidine deficiency, IPMS1, LRX1, LRX1 Δ E14,
62 root hair, *sune82*, root growth, TOR.

63 **Abbreviations:**

64 EMS, ethyl methanesulfonate; FER, FERONIA; HISN2, histidine biosynthesis 2; IPMS1,
65 isopropylmalate synthase 1; LRX, leucine-rich repeat extensin; MS, Murashige and Skoog;
66 PRA-CH, phosphoribosyl-AMP cyclohydrolase; PRA-PH, phosphoribosyl-ATP
67 pyrophosphatase; PI, propidium iodide; RALF, rapid alkalinization factor; RPS6, ribosomal
68 protein S6; *sune*, suppressor of dominant-negative LRX1 Δ E14; TOR, target of rapamycin.

69

70

71 **INTRODUCTION**

72 Growth and development of any given organism depend on the availability of nutrients and
73 essential organic molecules such as vitamins or amino acids used for protein biosynthesis.
74 Unlike many animals including humans, plants are able to synthesize all amino acids (Trovato
75 *et al.*, 2021). The homeostasis of the different amino acids is essential for and depends on the
76 growth and metabolic activity of the organism, since amino acids are not only used for protein
77 translation, but they also serve as signals, precursors for secondary metabolites and, in the
78 case of BCAAs (branched chain amino acids) and Lys, as a carbon source for respiration
79 (Heinemann and Hildebrandt, 2021). The biosynthesis of amino acids is tightly controlled, and
80 their availability in turn influences cellular activities. The TOR (target of rapamycin) network is
81 a key regulator of cell growth in eukaryotes (Loewith, 2011; McCready *et al.*, 2020). In
82 response to growth factors and amino acids, TOR regulates metabolic and translational
83 activities, as well as the dynamics of cellular processes such as cytoskeletal organization
84 (Dobrenel *et al.*, 2016a; González and Hall, 2017; Cao *et al.*, 2019; Lutt and Brunkard, 2022).
85 Central to this pathway is the TOR kinase, a phosphatidylinositol 3-kinase-related protein

86 kinase that forms a TOR complex with interacting proteins such as RAPTOR and LST8 (Harris
87 and Lawrence, 2003; Moreau *et al.*, 2012). Several downstream targets of the TOR kinase
88 have been identified, one of the best characterized being the S6 kinase, which phosphorylates
89 the ribosomal protein RPS6 to influence ribosomal activities (Xiong and Sheen, 2015;
90 Dobrenel *et al.*, 2016b). The TOR kinase can be specifically inhibited by rapamycin, which
91 was instrumental in the identification of the TOR kinase (Chan *et al.*, 2000), but also by a new
92 generation of inhibitors, including AZD-8055, which are valuable in modifying the TOR network
93 (Montané and Menand, 2013). A number of proteins involved in the TOR network have been
94 identified in various organisms, including plants, based on the observation of altered sensitivity
95 to TOR kinase inhibitors (Leiber *et al.*, 2010; Barrada *et al.*, 2019; Cao *et al.*, 2019;
96 Schaufelberger *et al.*, 2019; Chen *et al.*, 2023).
97 An important regulator that directly interacts with the TOR kinase is FERONIA (FER), a
98 CrRLKL-type transmembrane receptor protein that plays a central role in the control of a
99 multitude of processes, including cell wall integrity sensing, cell growth, cell-cell recognition
100 and cell fusion during fertilization, and immune responses (Escobar-Restrepo *et al.*, 2007;
101 Stegmann *et al.*, 2017; Feng *et al.*, 2018; Ortiz-Moreau *et al.*, 2021; Song *et al.*, 2022). FER
102 functions in conjunction with LRR-extensins (LRXs), extracellular proteins that serve as
103 binding sites for RALF peptides that help restructure the cell wall matrix by inducing pectin
104 compaction (Dünser *et al.*, 2019; Herger *et al.*, 2020; Moussu *et al.*, 2020, 2023; Zhang *et al.*,
105 2020; Schoenaers *et al.*, 2024). LRX1 of *Arabidopsis* is expressed in root hairs and the defect
106 in root hair development of the *lrx1* mutant is suppressed by altering the TOR network
107 (Baumberger, 2001; Leiber *et al.*, 2010; Schaufelberger *et al.*, 2019). The suppressor of *lrx1*,
108 *rol17* (*repressor of lrx1 17*) is mutated in the gene encoding IPMS1, an enzyme involved in
109 leucine biosynthesis, resulting in increased valine levels (Schaufelberger *et al.*, 2019). *rol17*,
110 and another *IPMS1* allele, *eva1*, were found to alter the TOR network. This was evidenced by
111 a reduction in sensitivity to the TOR inhibitor AZD-8055, which results in changes in cell growth
112 and actin dynamics (Cao *et al.*, 2019; Schaufelberger *et al.*, 2019).

113 LRX proteins consist of an N-terminal LRR domain fused to an extensin domain (Herger *et al.*,
114 2019). The extensin domain exhibits the typical characteristics of hydroxyproline-rich
115 glycoproteins, which are structural proteins that can form intra- and intermolecular networks
116 stabilized by covalent interactions (Mishler-Elmore *et al.*, 2021). The extensin domain of LRX1
117 was demonstrated to insolubilize the protein in the cell wall matrix (Ringli, 2010). This domain
118 is essential for LRX1 function, as expression of an LRX1 variant lacking the extensin domain,
119 termed *LRX1ΔE14* (Ringli, 2010), fails to complement the *lrx1* mutant, and induces a root hair
120 formation defect in wild-type plants. This dominant-negative effect is phenotypically stronger
121 than the *lrx1* mutant (Baumberger, 2001).

122 In an alternative genetic approach to identify new factors influencing LRX-related processes,
123 a suppressor screen was performed using the *LRX1ΔE14*- expressing line. This allowed for
124 the identification of *sune* (*suppressor of dominant-negative LRX1ΔE14*) mutants, which
125 alleviate the root hair formation defect observed in *LRX1ΔE14*. *sune82* was identified as an
126 allele of *HISN2*, encoding an enzyme essential for histidine (His) biosynthesis. *sune82*
127 contains a missense mutation that reduces His levels to a degree that is tolerable for the plant.
128 The *sune82* mutation also affects the sensitivity to the TOR inhibitor AZD-8055, indicating that
129 the TOR network is impacted in this mutant. The *sune* mutant collection was then screened
130 for other genes that are known to affect TOR activity, leading to the identification of a new
131 *rol17* allele, *sune106*. The identification of the *sune* mutants demonstrates that interfering with
132 the biosynthesis of different amino acids, including non-BCAAs such as His, can affect the
133 TOR network and alter cell growth processes.

134

135 MATERIALS AND METHODS

136 Plant growth and propagation

137 The *LRX1::LRX1ΔE14* line (referred to as *LRX1ΔE14* line) is in the Columbia background and
138 described (Ringli, 2010). Unless otherwise described, the plants were grown on ½
139 MS/Vitamins with 2% sucrose, 10 mg/L myo-inositol, 0.5 g/L MES pH 5.7, and 0.6% Gelrite

140 (Duchefa) in vertical orientation at 22°C and 16 h light: 8 h dark cycle. For propagation and
141 crossing, seedlings were put in soil and grown under the same temperature and light regime.

142 For the AZD-8055 (Chemdea CD0348) treatment, lines were germinated and grown on either
143 DMSO or 0.2/0.4/0.6 μ M AZD-8055 diluted in DMSO. The AZD-8055 stock solution was
144 diluted so that an equal volume of treatment was added to the MS medium for the different
145 concentrations.

146 For the histidine supplementation, L-Histidine (Sigma Aldrich H8000) was dissolved in water
147 to prepare a 100 mM stock. Seeds were directly germinated on MS medium with or without
148 100 μ M His.

149 For the phosphorylation assay, seeds were germinated on $\frac{1}{2}$ MS/Vitamins with 0.3% sucrose,
150 0.5 g/L MES pH 5.7, and 0.5% Phytagel. 6-day-old seedlings were transferred to $\frac{1}{2}$ MS liquid
151 sucrose-free medium for 24 h and then either mock- or sucrose-treated (0.5%) for 4 h.

152

153 **EMS mutagenesis**

154 The EMS (ethyl methanesulfonate) mutagenesis was performed similarly to Kim *et al.* (2006).
155 Seeds from a wild-type Columbia plant expressing *LRX1::LRX1 Δ E14* were incubated in 100
156 mM phosphate buffer overnight. The next day, seeds were incubated in 100 mM phosphate
157 buffer containing 0.2% EMS for 8 h on a shaker. The M1 seeds were rinsed 15 times with 300
158 mL of water and then grown directly on soil in 240 pots, each containing 10 plants, to
159 propagate to the M2 generation. Each pot represents a batch of M2 seeds. On average,
160 around 20 seeds per M2 plant (200 seeds per batch) were screened for seedlings with a
161 suppressed *LRX1 Δ E14* root-hair phenotype. Selected putative mutant M2 seedlings were
162 propagated and confirmed in the M3 generation. Positive lines were crossed with the non-
163 mutagenized parental *LRX1 Δ E14* line and propagated to the F2 generation that was analyzed
164 for segregation of the *sune* mutant phenotypes.

165

166 **Whole genome sequencing, CAPS marker design, and targeted sequencing**

167 Ten F2 seedlings from the first backcross of *sune82* with the parental *LRX1ΔE14* line
168 exhibiting a *sune82* phenotype were selected and pooled for DNA extraction. Whole genome
169 sequencing of *sune82* DNA, along with the non-mutagenized *LRX1ΔE14* line, was performed
170 at Novogene using Illumina short read technology. Raw sequence reads from the pooled
171 *sune82* mutants were trimmed with the Trimmomatic (version 0.38) with the parameters
172 LEADING:10, TRAILING:10 SLIDINGWINDOW:5:10, MINLEN:50. Trimmed sequence reads
173 were mapped with the bwa software (version 0.7.17-r118) to the *Arabidopsis Columbia*
174 reference genome (TAIR version 10) using default parameters. Resulting Bam files were
175 sorted and duplicates removed with samtools (version 1.9). New read groups were assigned
176 to the reads with the Picard software (version:2.27.5). Sequence variants were called with the
177 GATK software (version 4.2). The vcftools software (version 0.1.16) was used to filter the vcf
178 files using the parameters (--max-meanDP 7 –remove-indels). The analysis revealed three
179 SNPs (simple nucleotide polymorphisms) on chromosome 1 linked with the *sune82* mutation.
180 Using this information, CAPS (cleaved amplified polymorphic sequences) markers were
181 established, and co-segregation of the SNPs with the *sune82* phenotype was analyzed.
182 For sequencing of the *LRX1ΔE14* construct in the identified *sune* mutants, the construct was
183 amplified using *LRX1_F1* and *LRX1_TermR* primers (Table S1), targeting the promoter and
184 terminator of *LRX1*, respectively. Due to the repetitive nature and length of the extensin coding
185 sequence, only the *LRX1ΔE14* construct was analyzed and amplification of the endogenous
186 *LRX1* was not possible.
187 For selection of plants lacking *LRX1ΔE14*, PCR to detect *LRX1ΔE14* with the primers
188 *LRX1_F1* and *LRX1_TermR* (see above) was conducted. To confirm the selection, seeds
189 produced by PCR-negative plants were then grown on kanamycin, resistance to which is
190 conferred by the *LRX1ΔE14*-containing transgene (Ringli, 2010 Ref).
191 The *IPMS1* gene in *sune10* and *sune65* was amplified by PCR and sequenced using different
192 primers flanking and distributed in the coding sequence.

193

194 **CRISPR/Cas9-induced mutagenesis**

195 The *LRX1ΔE14* parental line was transformed using a guide RNA targeting the gene of interest
196 (Suppl. Table1) designed using CHOPCHOP (<https://chopchop.cbu.uib.no/>) and inserted into
197 the *pAGM55261* vector (Grützner *et al.*, 2021). T1 plants were selected based on RFP
198 fluorescence, grown in soil, and the target gene was PCR-amplified and sequenced. T1 plants
199 that were heterozygous or homozygous for CRISPR/Cas9-induced mutations were
200 propagated to the next generation. RFP-negative (to select against the continuous presence
201 of the guide RNA-containing *pAGM55261*) T2 plants were grown and again analyzed for the
202 CRISPR/Cas9-induced mutations.

203

204 **Quantification of His levels**

205 Plants used for His quantification were grown under standard conditions for 10 days. Whole
206 seedlings were ground in liquid N2 and plant material was weighed and diluted with the
207 following extraction buffer at 1:10 w/v: 80% methanol, 19% water, and 1% formic acid. The
208 mixtures were vortexed for 5 s and placed in a sonic bath for 10 min. The mixtures were then
209 vortexed again for 5 s and centrifuged for 5 min at 5000 rpm. The supernatant was transferred
210 to an LC-MS vial. For His quantification, liquid chromatography was performed on a Thermo
211 Fisher UltiMate 3000 UHPLC (Waltham, MA, USA). The UHPLC was built with a binary RS
212 pump, an XRS open autosampler, and a temperature-controllable RS column compartment.
213 Sample separation was performed at 30 °C using an HSS T3 Premier column (2.1 × 100 mm,
214 1.7 µm particle size) protected by the corresponding VanGuard pre-column (2.1 × 5 mm, 1.7
215 µm particle size) from Waters. The mobile phase consisted of eluent A (H2O + 0.02% TFA)
216 and eluent B (MeCN + 0.02% TFA). The following gradient was applied at a constant flow rate
217 of 350 µL/min: (i) 0% B isocratic from 0.0 to 0.8 min; (ii) linear increase to 90% B until 2.5 min;
218 (iii) holding 90% B until 3 min; (iv) change until 3.1 min to the starting conditions of 0% B (v)

219 equilibration for 1.9 min resulting in a total run time of 5 min. Mass spectra were acquired
220 using a Thermo Fisher Scientific Q Exactive hybrid quadrupole-Orbitrap mass spectrometer
221 (Waltham) equipped with a heated ESI source at position B and a voltage of 3.0 kV. Sheath,
222 auxiliary, and sweep gas (N2) flow rates were fixed at 40, 15, and 1 (arbitrary units),
223 respectively. The capillary temperature amounted to 275 °C, and the auxiliary gas heater
224 temperature was 350 °C. The S-lens RF level was set to 55.0. The instrument was calibrated
225 at a mass accuracy \leq 2 ppm with a PierceTM LTQ Velos ESI Positive Ion Calibration Solution
226 (Thermo). Data were acquired in full scan mode between *m/z* 50 and 750, at 70'000 full width
227 at half maximum (FWMH), with resolution at *m/z* 200, a maximum IT of 247 ms, and an AGC
228 target of 3e6. Xcalibur 4.1 and TraceFinder 4.1 softwares (Thermo Fisher Scientific) were
229 employed for data acquisition, peak-area integration (extracted ion chromatograms with 3 ppm
230 MS-peak width), and quantitation.

231

232 **Propidium iodide staining**

233 Propidium staining was conducted by 2 min incubation of 5-day-old *Arabidopsis* seedlings in
234 propidium iodide (Sigma Aldrich P4864) diluted to 1 μ g/mL in water. Seedlings were then
235 immediately washed for 3 min and mounted in water. A TCS SP5 laser scanning confocal
236 microscope (Leica) with a 20x immersion objective (Leica 20x/0.75 NA) was used for imaging.
237 Propidium iodide was excited at 561 nm with 30% laser power and detected at 610 to 620 nm.
238 After acquisition, images were stitched together to obtain a complete image of the root. Cell
239 lengths were measured manually in Fiji, starting from the beginning of the meristematic region.

240

241 **Immunoblotting**

242 *LRX1ΔE14* harbours a cMyc tag at the beginning of the LRR domain, which does not affect
243 protein function and enables protein detection by immunoblotting (Baumberger, 2001; Ringli,
244 2010). For the exact position of the cMyc tag, the sequence of *LRX1cMyc* is deposited as

245 NCBI accession number GU235992. Root material of 100 seedlings grown for seven days on
246 half-strength MS plates in a vertical orientation was collected, frozen in liquid nitrogen, and
247 macerated with glass beads. Proteins were extracted using 100 μ L of 1% SDS, 5 mM CaCl₂,
248 and cOmplete Protease Inhibitor Cocktail (Roche). After boiling for 5 minutes, samples were
249 cooled on ice, centrifuged, and 20 μ L of supernatant was mixed with 5 μ L of 5x Lämml buffer
250 containing 5 mM DTT. The samples were boiled at 95 °C for 5 minutes, were then cooled on
251 ice for 3 minutes, and subsequently centrifuged. 20 μ L of protein extracts were loaded on a
252 10% SDS-PAGE gel using standard procedures. Following protein separation, blotting on a
253 PVDF membrane was done using wet electroblotting (Bio-Rad). After blocking the membrane
254 overnight with 1xTBS, 0.1% Tween 20, 5% low-fat milk powder, antibody incubation was done
255 at 1:3000 dilution for both the primary anti-c-Myc (9E10, Thermo Fisher Scientific) and the anti-
256 mouse IgG-HRP (Sigma Aldrich A4416) antibodies. Immunodetection was performed using
257 Pierce™ ECL Western Blotting Substrate (Thermo Scientific) and a FUSION FX imager
258 (Vilber) was used for blot visualization.

259 For the phosphorylation assay, whole seedlings were ground in Eppendorf tubes using a pellet
260 pestle and total proteins were extracted in SDS extraction buffer (40 mM Tris-HCl pH 7.5, 10%
261 glycerol, 5 mM MgCl₂, 4% SDS, 1x protease inhibitor cocktail (Sigma-Aldrich), 1 mM
262 phenylmethanesulfonyl fluoride). Protein concentrations were measured using the Pierce™
263 BCA Protein Assay Kit (Thermo Fisher scientific). 30 μ g of total protein extracts were mixed
264 with 1/5 volume of 5x Lämml buffer (250 mM Tris-HCl pH 6.8, 5% SDS, 50% glycerol, 0.02%
265 bromophenol blue), 5% β -mercaptoethanol. Proteins were separated on a 12% SDS-PAGE
266 gel and transferred to PVDF membranes by wet electroblotting (Bio-Rad). To improve signal
267 detection, membranes were treated with the Western blot enhancer SuperSignal™ (Pierce).
268 Membranes were then blocked in 5% non-fat dry milk solution in PBS (137 mM NaCl, 2.7 mM
269 KCl, 10 mM Na₂HPO₄, 2 mM KH₂PO₄, pH7.4) and then probed overnight with either mouse
270 anti-RPS6 (dilution 1:1000, Cell Signaling), or rabbit anti P-RPS6 (dilution 1:3000) antibodies
271 (Dobrenel *et al.*, 2016b) at 4 °C. Goat anti-rabbit IgG-HRP (Sigma Aldrich A0545) and goat
272 anti-mouse IgG-HRP (Sigma Aldrich A4416) were used as secondary antibodies (dilution

273 1:5000). Immunodetection was performed using Pierce™ ECL Western Blotting Substrate
274 (Thermo Scientific) or, for lower signals, with SuperSignal™ West Femto Maximum Sensitivity
275 Substrate (Thermo Scientific). A FUSION FX imager (Vilber) was used for blot visualization.
276 Transferred proteins on PVDF membranes were visualized by Coomassie staining to check
277 for equal loading.

278

279 **Statistical analyses**

280 At least 5 biological replicates were used for each experiment. Graphs and statistics were
281 generated using RStudio. A Shapiro-Wilk test was used to test the normality assumption of
282 the data. If the normality assumption was not rejected, a Student t-test was used to compare
283 the means of two given data sets. In this study, P-values < 0.05 were considered statistically
284 significant.

285

286 **RESULTS**

287 ***sune82* suppresses the dominant-negative effect of *LRX1ΔE14* on root hair 288 development**

289 As expression in wild-type Col of a truncated LRX1 lacking its extensin domain (*LRX1ΔE14*)
290 leads to a dominant-negative effect (Baumberger, 2001; Ringli, 2010) (Fig. 1A, 1B), we took
291 advantage of this striking root-hair phenotype in a genetic attempt to identify new components
292 able to modify the LRX1- modified process. A transgenic line expressing *LRX1ΔE14* (Ringli,
293 2010) was used for EMS mutagenesis. Progenies of 1,000 M1 plants were screened for
294 suppression of the *LRX1ΔE14*- induced root hair growth defect (for details, see Material and
295 Methods). Twenty-two suppressors called *suppressor of dominant-negative effect (sune)*
296 mutants were identified and one line, *sune82*, was analyzed in detail. This line, referred to as
297 *LRX1ΔE14 sune82*, exhibits a partial suppression of the *LRX1ΔE14* root hair phenotype (Fig.
298 1A) with more and longer root hairs developing (Fig. 1B), but also displays a severe dwarf

299 phenotype with shorter primary roots (Fig. 1C, 1D) and stunted adult plants (Supplementary
300 Fig. S1) compared to *LRX1ΔE14*.

301 Backcrossing of *LRX1ΔE14 sune82* with the parental *LRX1ΔE14* line produced F1 seedlings
302 with an *LRX1ΔE14* phenotype, indicating that the *sune82* mutation is recessive. In the F2
303 generation only 15% of the seedlings showed a suppression of the *LRX1ΔE14* phenotype
304 (1288 *LRX1ΔE14* and 188 *LRX1ΔE14 sune82* phenotypes). This segregation differs
305 significantly from the expected Mendelian 3:1 segregation, indicating an impact of *sune82* on
306 fertilization efficiency.

307 To determine the effect of the *sune82* mutation in the wild-type background, the *LRX1ΔE14*
308 *sune82* mutant was crossed with wild-type Col. In the F2 generation, plants with a short-root
309 *sune82* mutant phenotype but lacking *LRX1ΔE14* were selected (see Material and Methods).
310 *sune82* single mutants develop significantly longer root hairs than Col (Fig. 1A, 1B) and a
311 primary root comparable to *LRX1ΔE14 sune82* (Fig. 1C, 1D). This, together with the stunted
312 adult plant phenotype (Supplementary Fig. S1), reveals that the effect of the *sune82* mutation
313 is widely involved in cell growth and does not solely influence the *LRX1*-related root hair
314 developmental process.

315

316 **The *sune82* mutation affects the *HISN2* gene involved in His biosynthesis**

317 To identify the *sune82* mutation, F2 plants of the backcross of *LRX1ΔE14 sune82* x
318 *LRX1ΔE14* that showed a *sune82*-like phenotype were selected and pooled, and DNA was
319 extracted for whole-genome sequencing, along with DNA of the non-mutagenized *LRX1ΔE14*.
320 Homozygous mutations specific to the suppressor lines and absent from the parental
321 *LRX1ΔE14* line were retained and nucleotide changes in coding sequences were considered.
322 Three genetically linked mutations in coding sequences on chromosome 1 were identified (Fig.
323 2A). A co-segregation analysis was conducted on individual seedlings of the segregating F2
324 population using cleaved amplified polymorphic sequence (CAPS) markers developed for the

325 three identified SNPs. This analysis revealed that the mutation in *HISN2*, but not the other
326 SNPs, is completely linked to the *sune82* phenotype.

327 *HISN2* (*AT1G31860*) encodes a bifunctional enzyme involved in His biosynthesis and is
328 expressed in various tissues (Fig. 2B, Supplementary Fig. S2). HISN2 catalyzes the second
329 and third steps in His biosynthesis in the chloroplast via two distinct domains: phosphoribosyl-
330 ATP pyrophosphatase (PRA-PH) and phosphoribosyl-AMP cyclohydrolase (PRA-CH) (Fig.
331 2B). PRA-PH catalyzes the second step in which N1-5'-phosphoribosyl-ATP (PR-ATP) is
332 hydrolyzed to N1-5'-phosphoribosyl-AMP (PR-AMP), while PRA-CH opens the adenine ring
333 of PR-AMP to produce N1-[(5'-phosphoribosyl)formimino]-5-aminoimidazole-4-carboxamide-
334 ribonucleotide (ProFAR). Six additional enzymes then convert this intermediate to histidine
335 (Witek *et al.*, 2021).

336

337 **Histidine biosynthesis is reduced in *sune82* plants**

338 *LRX1ΔE14 sune82* plants contain a G-to-A substitution in *HISN2* causing a serine to
339 phenylalanine residue substitution in the PRA-CH domain (Fig. 3A, Supplementary Fig. 3A).
340 The crystal structure of HISN2 has recently been determined in *Medicago truncatula* (Witek *et*
341 *al.*, 2021). In the MtHISN2-AMP complex, PR-AMP interacts with the PRA-CH domain in a
342 specific region formed by residues ₁₀₇WTKGETS₁₁₃. Amino acid alignment of diverse species
343 shows that this PR-AMP binding region is highly conserved throughout all domains of life (Fig.
344 3A). Remarkably, Witek *et al.* (2021) observed that substitution of the polar amino acid serine
345 in this motif with alanine (MtS113A) reduces the activity of MtHISN2. Hence, the substitution
346 of the corresponding position in the Arabidopsis HISN2 (AtS116F) in *sune82* could potentially
347 reduce the activity of HISN2.

348 To determine the impact of the *sune82* mutation on His production, His levels were determined
349 by LC-MS in 10-day-old seedlings. *sune82* and *LRX1ΔE14 sune82* lines exhibited a 60%
350 reduction in His content compared to wild-type Col and *LRX1ΔE14*, respectively (Fig. 3B). It
351 is noteworthy that a comparable reduction was observed for the activity of HISN2_{S113A} vs

352 HISN2_{WT} in *Medicago truncatula* (Witek *et al.*, 2021), suggesting that the AtS116F substitution
353 affects HISN2 activity to a similar degree.

354 We next wanted to confirm that the lack of His was responsible for the suppression of the
355 *LRX1ΔE14* phenotype. *LRX1ΔE14* and *LRX1ΔE14 sune82* seedlings were germinated on
356 media supplemented with or without 100 µM His. When grown on 100 µM His, the root hair
357 phenotype of *LRX1ΔE14 sune82* seedlings was comparable to *LRX1ΔE14* (Fig. 3C), with
358 shorter and burst root hairs, indicating that His supplementation can compensate for the
359 *sune82* mutation. The short-root phenotype of *sune82* plants could also be suppressed by His
360 supplementation (Supplementary Fig. S3B, Supplementary Fig. S3C), confirming that the
361 reduced His content causes the dwarf phenotype and the suppression of *LRX1ΔE14*.

362

363 **A *HISN2* knock-out mutant is lethal**

364 To further confirm that mutations in *HISN2* confer the suppressor phenotype in *LRX1ΔE14*
365 *sune82*, we generated a knock-out allele of *HISN2* in the *LRX1ΔE14* background using the
366 CRISPR/Cas9 technology. A guide RNA targeting the third exon of *HISN2*, located in the PRA-
367 CH coding domain, was used to obtain a *hisn2crispr* allele containing an A insertion, leading
368 to a preliminary stop codon at the end of the PRA-CH domain (Supplementary Fig. S4A). It is
369 known that His is essential for plant survival and that a complete blocking of His biosynthesis
370 is embryo lethal (Muralla *et al.*, 2007). When the progeny of a heterozygous *hisn2crispr* mutant
371 was sown, 36% developed shorter roots and sequencing revealed these to be heterozygous
372 for the *hisn2crispr* mutation (Supplementary Fig. S4). Importantly, heterozygous *hisn2crispr*
373 seedlings showed suppression of the *LRX1ΔE14* root hair phenotype (Fig. 4), suggesting
374 haplo-insufficiency (Deutschbauer *et al.*, 2005). No homozygous *hisn2crispr* line could be
375 identified among these seedlings. This data shows that *hisn2crispr* is a recessive lethal
376 mutation and that *hisn2crispr* heterozygous plants likely have reduced HISN2 activity. To
377 investigate this point further, seeds of the segregating population that did not germinate on

378 regular MS were supplemented with 100 μ M His. Under these conditions, germination was
379 possible, and these seedlings revealed to be homozygous for *hisn2*^{crispr} mutation.
380 Additionally, the observed frequency of 5% homozygotes and 36% heterozygotes is below the
381 expected value of 25% and 50%, respectively, if it were to follow Mendelian segregation. As
382 seen with the segregation of *sune82* (see above), *HISN2* appears to influence the fertilization
383 process. This confirms the importance of His synthesis for plant growth and development and
384 demonstrates the lethality of a *hisn2* knock-out allele.

385

386 **Reduced HISN2 activity leads to an altered TOR sensitivity**

387 Histidine levels are reduced in the *sune82* mutant leading to a dwarf phenotype. Amino acid
388 levels have been demonstrated to directly influence the target of rapamycin (TOR) network,
389 which coordinates plant growth (Cao *et al.*, 2019; Liu *et al.*, 2021; Mallén-Ponce *et al.*, 2022).
390 In particular, His has been shown to activate TOR with moderate potency when exogenously
391 supplied to inorganic nitrogen-starved seedlings (Song *et al.*, 2022). Therefore, we
392 hypothesized that the reduced production of histidine would affect TOR activity, leading to a
393 change in plant growth. To first test whether TOR activity was impacted, we employed a
394 specific TOR kinase inhibitor, AZD-8055, that targets the TOR kinase. Sensitivity to TOR
395 inhibitors is frequently used to identify modulations in the TOR network that influence TOR
396 kinase activity (Chan *et al.*, 2000; Leiber *et al.*, 2010; Barrada *et al.*, 2019; Schaufelberger *et*
397 *al.*, 2019). Treatment of wild-type seedlings with AZD-8055 inhibits cell growth and root hair
398 elongation (Montané and Menand, 2013). To determine whether *sune82* mutant has an altered
399 sensitivity to AZD-8055 treatment, *sune82* and WT seedlings were germinated at different
400 concentrations of AZD-8055. Already when applied at a low concentration (0.2 μ M), AZD-8055
401 treatment decreased root hair length in Col and *sune82*, and the suppression of the
402 *LRX1 Δ E14* phenotype mediated by the *sune82* mutation was abolished (Fig. 5A). This
403 indicates that TOR kinase activity is involved in the suppression of the *LRX1 Δ E14* root hair
404 phenotype.

405 Next, the impact of AZD-8055 on primary root growth was assessed. *sune82* seedlings were
406 strikingly less affected by AZD-8055 treatment than the wild type at all concentrations (Fig.
407 5B). At the concentration of 0.6 μ M AZD-8055, *sune82* showed a decrease of around 50% in
408 primary root length compared with mock conditions, whereas wild-type primary root length
409 showed a decrease of 90% (Fig. 5B, C). *LRX1 Δ E14* *sune82* seedlings also presented a
410 reduced AZD-8055 sensitivity compared to *LRX1 Δ E14* regarding root length (Supplementary
411 Fig. S5A, Supplementary Fig. S5B). Strikingly, growing seedlings for a longer period on 0.6
412 μ M AZD-8055 revealed that *sune82* and *LRX1 Δ E14* *sune82* seedlings developed greener
413 leaves and longer primary roots than the wild type and *LRX1 Δ E14*, respectively
414 (Supplementary Fig. S5C). These results indicate that TOR activity is affected in the *sune82*
415 mutant. Interestingly, the TOR kinase activity seems to be activated differently among tissues:
416 while *sune82* root hairs are sensitive to AZD-8055 similar to the wild type, most other tissues
417 appear more resistant.

418 The TOR complex promotes cell proliferation and its inactivation leads to a reduction in
419 meristem size and induces early differentiation (Ren *et al.*, 2012; Cao *et al.*, 2019). To
420 determine whether *sune82* has an altered meristem size, root meristems of *sune82* and Col
421 seedlings were examined using propidium iodide (PI) staining for visualization of the individual
422 cells. *sune82* seedlings showed a reduction in meristem size and cell number, with a transition
423 zone (TSZ), which separates dividing cells from differentiating cells into two functional
424 domains, appearing closer to the root tip than in Col (Supplementary Fig. S5D, Supplementary
425 Fig. S5E). This suggests that reduced cell proliferation in the meristematic region contributes
426 to the reduced primary root length observed in seedlings containing the *sune82* mutation.

427 Given the reduced sensitivity to the TOR inhibitor AZD-8055 and the short meristem size and
428 primary root length of the *sune82* mutant, we investigated whether TOR activity was
429 decreased at the seedling stage, using phosphorylation of ribosomal protein S6 (RPS6 S^{240}) as
430 a readout. RPS6 is a downstream effector of TOR that is commonly used to measure TOR
431 activation in *Arabidopsis* (Ren *et al.*, 2012; Dobrenel *et al.*, 2016b; Forzani *et al.*, 2019; Mallén-
432 Ponce *et al.*, 2022). Antibodies against RPS6 and phosphorylated RPS6, respectively, that

433 allow to assess phosphorylation levels, revealed no obvious difference between the wild type
434 and *sune82* mutant (Fig. 5D). In addition, when TOR activity was induced by sucrose
435 treatment, RPS6 phosphorylation increased to similar levels in *sune82* and wild-type
436 seedlings. This result indicates that the RPS6 pathway is not downregulated in *sune82*.
437 Taken together, these data indicate that the *sune82* phenotype is associated with an altered
438 TOR network, but RPS6 phosphorylation seems not to be a major target of this altered activity.
439

440 **Alleles of *IPMS1* suppress *LRX1ΔE14***

441 The finding of a suppressor of *LRX1ΔE14* associated with the TOR pathway prompted us to
442 investigate whether other known modifiers would also be found in the *sune* mutant collection.
443 Mutations in *IPMS1*, an enzyme required for Leu biosynthesis, affect amino acid homeostasis
444 and alter the TOR network (Cao *et al.*, 2019; Schaufelberger *et al.*, 2019). Consequently, the
445 *IPMS1* locus of all *sune* mutants initially identified and subsequently confirmed was
446 sequenced. One line, *sune106*, was found to have a C to T mutation in *IPMS1*, resulting in a
447 Gly99Asp substitution in a highly conserved stretch of amino acids (Fig. 6, Supplementary Fig.
448 S6A, Supplementary Fig. S6B). To confirm the causative effect of the mutation in *IPMS1*, an
449 additional mutation was introduced in *IPMS1* in the *LRX1ΔE14* background using the
450 CRISPR/Cas9 technology. A guide RNA targeting a sequence adjacent to the SNP of the
451 *sune106* allele was utilized, and an *LRX1ΔE14* line homozygous for an insertion of an adenine
452 leading to a premature stop codon was produced (Supplementary Fig. S6A, Supplementary
453 Fig. S6C). This *ipms1*^{crispr} line also showed suppression of the *LRX1ΔE14* root hair phenotype
454 (Fig. 6), corroborating that the causative mutation in *sune106* is in *IPMS1*. Hence, modulating
455 the TOR network by interfering with the Leu biosynthetic pathway also causes suppression of
456 the *LRX1ΔE14* phenotype.

457
458

459 **DISCUSSION**

460

461 **The *sune82* mutation leads to a partial activity of HISN2**

462 His is an essential amino acid that is required for plant growth and reproduction (Mo *et al.*,
463 2006; Muralla *et al.*, 2007). In contrast to the majority of amino acids which are produced by
464 enzymes encoded by multi-gene families, five of the eight His biosynthesis enzymes are
465 encoded by single-copy genes in Arabidopsis (Muralla *et al.*, 2007; Ingle, 2011). Knock-out
466 mutations in most of these genes have therefore lethal effects (DeFraia and Leustek, 2004;
467 Tzafrir *et al.*, 2004; Muralla *et al.*, 2007; Boavida *et al.*, 2009; Petersen *et al.*, 2010; Meinke,
468 2020). To date, two viable weak alleles of His biosynthesis genes have been identified in
469 Arabidopsis. The *apg10* mutant carries a Val256Leu mutation in *HISN3* and exhibits a pale
470 green phenotype in seedlings. Unlike embryo-lethal *hisn3* knock-out mutants, *apg10* plants
471 gradually recover and are wild type-like in reproductive tissues (Noutoshi *et al.*, 2005). The
472 *hpa1* mutant presents an Ala69Thr substitution in *HISN6A*, which results in impaired root
473 development in seedlings. Nevertheless, adult plants are indistinguishable from the wild type,
474 potentially due to a gain in expression of its paralog *HISN6B* (Mo *et al.*, 2006). Interestingly,
475 *apg10* and *hpa1* have different effects on His content. The *apg10* mutation does not reduce
476 free His content compared to WT, but does lead to a general increase in amino acid
477 biosynthesis (Noutoshi *et al.*, 2005). *hpa1* mutant seedlings exhibit a 30% reduction in free
478 His content, but also show lower levels of free Asp, Lys, Arg, and Glu (Mo *et al.*, 2006). Here,
479 we characterized a novel His-deficient mutant, which presents a 60% decrease in free His
480 content. The *sune82* mutant carries a weak allele of *HISN2* and exhibits altered development
481 at both the seedling and adult stages. *sune82* displays an overall dwarf phenotype, with
482 reduced primary root length and impaired fertilization. It is known that knock-out alleles of His
483 biosynthesis genes cause embryonic lethality when homozygous and, in heterozygous plants,
484 also affect gametophyte viability, resulting in reduced transmission of the mutant allele
485 (Muralla *et al.*, 2007). The *sune82* mutant exhibits a similar effect, with fertilization being

486 significantly impaired, leading to a decrease in the frequency of homozygous mutants in the
487 progeny of a heterozygous plant. This effect is weaker in *sune82* than in *hisn2*^{crispr} mutant
488 which phenocopies the *hisn2* knock-out mutants *hisn2-1* and *hisn2-2* (Muralla *et al.*, 2007).
489 Therefore, *sune82* represents the first viable *HISN* mutant identified that exhibits a significant
490 reduction in His content and a mutant phenotype in most, if not all, tissues and developmental
491 stages investigated.

492 The missense mutation Ser116Phe in *sune82* affects a residue localized in a highly conserved
493 motif that is directly involved in AMP binding. This has been demonstrated in a detailed
494 structural analysis of the HISN2 enzyme of *Medicago truncatula* (MtHISN2), where Ser113
495 corresponds to Ser116 of HISN2 of Arabidopsis (Fig. 3A). Interestingly, Ser113 of MtHISN2 is
496 the sole residue in this motif that can be modified without completely losing enzymatic activity
497 (Witek *et al.*, 2021). The *sune82* mutant thus provides *in vivo* evidence that changing the polar
498 Ser116 to a hydrophobic amino acid alters HISN2 activity, confirming the *in vitro* findings of
499 Witek *et al.* (2021). Therefore, Ser116 in AtHISN2 may be one of the few residues of HISN2
500 that can result in an intermediate enzymatic activity and, consequently, to a significant but
501 non-lethal growth phenotype.

502

503 ***sune82* can suppress the *LRX1ΔE14*-induced root hair growth defect in a TOR-
504 dependent manner**

505 The reduced His content induced by the *sune82* mutation not only leads to a dwarf phenotype
506 but also results in an enhanced root hair development and suppression of the dominant-
507 negative effect induced by *LRX1ΔE14*. Similarly, the alteration in amino acid homeostasis
508 mediated by the *sune106* mutation by affecting IPMS1, suppresses the *LRX1ΔE14* root hair
509 phenotype. As in yeast and in animal cells, the plant TOR network senses nutrient availability
510 to adjust cell growth (Robaglia *et al.*, 2012; Liu *et al.*, 2021; Li *et al.*, 2023). The use of TOR
511 RNAi lines and treatments with inhibitors of the TOR kinase has demonstrated that TOR
512 influences the accumulation of sugars such as raffinose, amino acids, and a number of

513 secondary metabolites (Moreau *et al.*, 2012; Ren *et al.*, 2012) and in this way regulates cell
514 wall remodeling and cell growth (Calderan-Rodrigues and Caldana, 2024). Treatment with the
515 TOR inhibitor AZD-8055 to WT seedlings reduces root hair development. A comparable effect
516 was observed in *LRX1ΔE14 sune82* seedlings grown in the presence of AZD-8055, which
517 developed an *LRX1ΔE14* phenotype. This indicates that TOR is involved in the suppression
518 of *LRX1ΔE14* mediated by the *sune82* mutation. Interestingly, in other tissues, seedlings were
519 more resistant to this inhibitor than the wild type: root growth inhibition was less pronounced
520 and cotyledon leaves were greener. Thus, while TOR function is demonstrably impaired in
521 primary root development, it remains operational during root hair formation. It is conceivable
522 that lack of histidine causes TOR to be up-regulated in root hairs since these are essential for
523 effective uptake of nutrients from the soil (Miguel *et al.*, 2015; Morris *et al.*, 2017) and inhibition
524 of translational activity was shown to activate TOR (Watanabe-Asano *et al.*, 2014). Moreover,
525 it is known that in low nitrate conditions root hair growth is stimulated and this process is TOR-
526 dependent (Pacheco *et al.*, 2023).

527 By contrast, TOR is likely down-regulated in other tissues due to the lack of His (Heinemann
528 and Hildebrandt, 2021). Indeed, the comparable phenotype of mutations in *IPMS1* involved in
529 Leu biosynthesis supports this view (Schaufelberger *et al.*, 2019 and data shown above).
530 Propidium staining revealed that *sune82* roots are affected early on in the differentiation of
531 meristematic cells, resulting in a transition zone appearing closer to the root tip than in wild-
532 type seedlings. This is consistent with the previous observation that TOR influences plant
533 growth by inducing early differentiation of meristematic cells (Montané and Menand, 2013).
534 This similarity of root development in *sune82* and the AZD-8055-treated wild type possibly
535 explains the reduced sensitivity of *sune82* to AZD-8055.

536 Our analysis on the phosphorylation dynamics of RPS6, a ribosomal protein phosphorylated
537 by the S6 kinase 1 (S6K1) that is a direct target of the TOR kinase (Mahfouz *et al.*, 2006), did
538 not reveal significant changes in phosphorylation in *sune82* and the wild type. Upon addition
539 of sucrose, RPS6 is readily phosphorylated as previously shown (Dobrenel *et al.*, 2016b), but
540 again, no obvious difference was observed between the wild type and *sune82*. It is plausible

541 that the alterations in the *sune82* line are rather subtle, while changes in RPS6
542 phosphorylation are mainly seen when the TOR network is strongly influenced, as exemplified
543 by the treatment with the TOR kinase inhibitor AZD-8055 or by silencing TOR expression
544 (Dobrenel *et al.*, 2016b). The TOR kinase is involved in numerous processes (Ingargiola *et*
545 *al.*, 2020), and it is also possible that numerous downstream effectors are subtly altered, the
546 sum of which results in the observed growth alteration in *sune82*. Alternatively, RPS6
547 phosphorylation might vary in different cell types but single-cell type analyses are technically
548 difficult to perform.

549 The CrRLK1L receptor kinase FER, was recently shown to directly phosphorylate and activate
550 the TOR kinase in a RALF (Rapid ALkalinization Factors)-enhanced manner (Pearce *et al.*,
551 2001; Song *et al.*, 2022; Pacheco *et al.*, 2023; Liu *et al.*, 2024). This finding establishes a link
552 between the TOR network and a major cell growth control machinery. LRX are high-affinity
553 receptors of RALF peptides (Mecchia *et al.*, 2017; Dünser *et al.*, 2019; Moussu *et al.*, 2020)
554 and function in conjunction with FER to regulate a number of processes, including
555 development (Dünser *et al.*, 2019; Herger *et al.*, 2019; Gronnier *et al.*, 2022). This provides
556 an explanation why LRX1-related phenotypes are influenced by a modification of the TOR
557 network (Baumberger, 2001; Leiber *et al.*, 2010; Schaufelberger *et al.*, 2019). In this study,
558 the *sune82* mutant was found to suppress the dominant-negative phenotype of *LRX1ΔE14*.
559 The *LRX1ΔE14* protein lacks the extensin domain that anchors LRX proteins in the cell wall
560 (Rubinstein *et al.*, 1995; Baumberger, 2001), which results in its inability to become
561 insolubilized in the cell wall (Ringli, 2010). LRXs were recently shown to influence the
562 compaction of pectin, a major component of the cell wall (Moussu *et al.*, 2023; Schoenaers *et*
563 *al.*, 2024). Hence, *LRX1ΔE14* might form inadequate LRX-RALF-pectin connections, which
564 interferes with proper structuring of the cell wall, resulting in defective root hairs. These mal-
565 forming cell wall structures might be perceived by the FER transmembrane receptor kinase
566 that transmits corresponding information to the TOR network (Song *et al.*, 2022; Pacheco *et*
567 *al.*, 2023), establishing a link between LRX1/ *LRX1ΔE14* activity and the TOR network.

568 In conclusion, we have identified a weak allele in a gene involved in His biosynthesis, that
569 results in a mutant with consistent alterations in plant development. In contrast to other
570 mutants affected in this pathway, the *sune82* mutant phenotype is neither lethal nor restricted
571 to a short period during the plant life cycle. This weak *HISN2* allele *sune82* allowed to establish
572 a link between an *LRX1ΔE14*-induced root hair defect and the TOR network, which is likely
573 affected due to the reduced availability of His. Cell wall integrity sensing mechanisms directly
574 linking to the TOR kinase may be a plausible explanation for the observed suppression of the
575 *LRX1ΔE14*-induced root hair defect by *sune82*, but the molecular details on a higher-
576 resolution on the subcellular level remain to be investigated.

577

578 **SUPPLEMENTARY DATA**

579 The following supplementary data are available at JXB online.

580 Table S1. Primers used in this study.

581 Fig. S1. *sune82* plants display a dwarf phenotype.

582 Fig. S2. Expression pattern of *HISN2*.

583 Fig. S3. Histidine supplementation can complement *LRX1ΔE14 sune82* root phenotype.

584 Fig. S4. Homozygous *hisn2^{crispr}* mutants are lethal.

585 Fig. S5. The *sune82* mutation reduces sensitivity to the TOR inhibitor AZD-8055 and results
586 in a shorter meristem.

587 Fig. S6. *sune106* and *ipms1* crispr mutations are in the first exon of *IPMS1*.

588

589 **ACKNOWLEDGEMENTS**

590 This work was supported by the Swiss National Science Foundation, grants No
591 31003A_166577/1 and 310030_192495 to CR. Furthermore, we thank the infrastructure team
592 at DPMB for continuous support with growth facilities.

593

594 **AUTHOR CONTRIBUTION**

595 Conceptualization: CR; methodology: AH, AG, AGS, CM; formal analysis: AG, CL, AH, DR,
596 AGS, XH, MS; resources: CR, TW; data curation: AG, AGS, TW; AG, CL, CR; writing - original
597 draft: AG, CR; writing - review & editing: all authors; visualization: AG, AH, CL, CR, LB;
598 supervision: CR, TW, LB; funding acquisition: CR.

599

600 **CONFLICT OF INTEREST**

601 No conflict of interest declared.

602

603 **FUNDING STATEMENT**

604 This work was supported by the Swiss National Science Foundation, grants No
605 31003A_166577/1 and 310030_192495 to CR.

606

607 **DATA AVAILABILITY**

608 All data are made available upon publication in a publicly accessible repository.

609

REFERENCES

Barrada A, Djendli M, Desnos T, Mercier R, Robaglia C, Montané M-H, Menand B. 2019. A TOR-YAK1 signaling axis controls cell cycle, meristem activity and plant growth in *Arabidopsis*. *Development* **171**:298.

Baumberger N. 2001. The chimeric leucine-rich repeat/extensin cell wall protein LRX1 is required for root hair morphogenesis in *Arabidopsis thaliana*. *Genes & Development* **15**, 1128–1139.

Boavida LC, Shuai B, Yu H-J, Pagnussat GC, Sundaresan V, McCormick S. 2009. A Collection of Ds Insertional Mutants Associated With Defects in Male Gametophyte Development and Function in *Arabidopsis thaliana*. *Genetics* **181**, 1369–1385.

Calderan-Rodrigues MJ, Caldana C. 2024. Impact of the TOR pathway on plant growth via cell wall remodeling. *Journal of Plant Physiology* **294**, 154202.

Cao P, Kim S-J, Xing A, Schenck CA, Liu L, Jiang N, Wang J, Last RL, Brandizzi F. 2019. Homeostasis of branched-chain amino acids is critical for the activity of TOR signaling in *Arabidopsis*. (J Kleine-Vehn, CS Hardtke, and C Meyer, Eds.). *eLife* **8**, e50747.

Chan T-F, Carvalho J, Riles L, Zheng XFS. 2000. A chemical genomics approach toward understanding the global functions of the target of rapamycin protein (TOR). *Proceedings of the National Academy of Sciences* **97**, 13227–13232.

Chen Q, Qu M, Chen Q, Meng X, Fan H. 2023. Phosphoproteomics analysis of the effect of target of rapamycin kinase inhibition on *Cucumis sativus* in response to *Podosphaera xanthii*. *Plant Physiology and Biochemistry* **197**, 107641.

DeFraia C, Leustek T. 2004. Functional genomics study in *Arabidopsis thaliana* of histidine biosynthesis. *The Rutger Scholar* **6**.

Deutschbauer AM, Jaramillo DF, Proctor M, Kumm J, Hillenmeyer ME, Davis RW, Nislow C, Giaever G. 2005. Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast. *Genetics* **169**, 1915–1925.

Dobrenel T, Caldana C, Hanson J, Robaglia C, Vincentz M, Veit B, Meyer C. 2016a. TOR Signaling and Nutrient Sensing. *Annual Review of Plant Biology* **67**, 261–285.

Dobrenel T, Mancera-Martínez E, Forzani C, et al. 2016b. The *Arabidopsis* TOR Kinase Specifically Regulates the Expression of Nuclear Genes Coding for Plastidic Ribosomal Proteins and the Phosphorylation of the Cytosolic Ribosomal Protein S6. *Frontiers in Plant Science* **7**.

Dünser K, Gupta S, Herger A, Feraru MI, Ringli C, Kleine-Vehn J. 2019. Extracellular matrix sensing by FERONIA and Leucine-Rich Repeat Extensins controls vacuolar expansion during cellular elongation in *Arabidopsis thaliana*. *The EMBO Journal* **38**.

Escobar-Restrepo J-M, Huck N, Kessler S, Gagliardini V, Gheyselinck J, Yang W-C, Grossniklaus U. 2007. The FERONIA Receptor-like Kinase Mediates Male-Female Interactions During Pollen Tube Reception. *Science* **317**, 656–660.

Feng W, Kita D, Peaucelle A, et al. 2018. The FERONIA Receptor Kinase Maintains Cell-Wall Integrity during Salt Stress through Ca²⁺ Signaling. *Current Biology* **28**, 666-675.e5.

Forzani C, Duarte GT, Van Leene J, Clément G, Huguet S, Paysant-Le-Roux C, Mercier R, De Jaeger G, Leprince A-S, Meyer C. 2019. Mutations of the AtYAK1 Kinase Suppress TOR Deficiency in *Arabidopsis*. *Cell Reports* **27**, 3696-3708.e5.

González A, Hall MN. 2017. Nutrient sensing and TOR signaling in yeast and mammals. *The EMBO journal* **36**, 397–408.

Gronnier J, Franck CM, Stegmann M, et al. 2022. Regulation of immune receptor kinase plasma membrane nanoscale organization by a plant peptide hormone and its receptors. (DC Bergmann, JA Cooper, and J Petrášek, Eds.). *eLife* **11**, e74162.

Grützner R, Martin P, Horn C, Mortensen S, Cram EJ, Lee-Parsons CWT, Stuttmann J, Marillonnet S. 2021. High-efficiency genome editing in plants mediated by a Cas9 gene containing multiple introns. *Plant Communications* **2**, 100135.

Harris TE, Lawrence JC. 2003. TOR Signaling. *Science's STKE* **2003**, re15–re15.

Heinemann B, Hildebrandt TM. 2021. The role of amino acid metabolism in signaling and metabolic adaptation to stress-induced energy deficiency in plants. *Journal of Experimental Botany* **72**, 4634–4645.

Herger A, Dünser K, Kleine-Vehn J, Ringli C. 2019. Leucine-Rich Repeat Extensin Proteins and Their Role in Cell Wall Sensing. *Current Biology* **29**, R851–R858.

Herger A, Gupta S, Kadler G, Franck CM, Boisson-Dernier A, Ringli C. 2020. Overlapping functions and protein-protein interactions of LRR-extensins in *Arabidopsis*. (GK Muday, Ed.). *PLOS Genetics* **16**, e1008847.

Ingargiola C, Turqueto Duarte G, Robaglia C, Leprince A-S, Meyer C. 2020. The Plant Target of Rapamycin: A Conduc TOR of Nutrition and Metabolism in Photosynthetic Organisms. *Genes* **11**, 1285.

Ingle RA. 2011. Histidine Biosynthesis. *The Arabidopsis Book* **9**, e0141.

Kim Y, Schumaker KS, Zhu J-K. 2006. EMS Mutagenesis of *Arabidopsis*. In: Salinas J, Sanchez-Serrano JJ, eds. *Arabidopsis Protocols*. Totowa, NJ: Humana Press, 101–103.

Leiber R-M, John F, Verhertbruggen Y, Diet A, Knox JP, Ringli C. 2010. The TOR Pathway Modulates the Structure of Cell Walls in *Arabidopsis*. *The Plant Cell* **22**, 1898–1908.

Li K-L, Xue H, Tang R-J, Luan S. 2023. TORC pathway intersects with a calcium sensor kinase network to regulate potassium sensing in *Arabidopsis*. *Proceedings of the National Academy of Sciences* **120**, e2316011120.

Liu Y, Duan X, Zhao X, Ding W, Wang Y, Xiong Y. 2021. Diverse nitrogen signals activate convergent ROP2-TOR signaling in *Arabidopsis*. *Developmental Cell* **56**, 1283-1295.e5.

Liu M-CJ, Yeh F-LJ, Yvon R, Simpson K, Jordan S, Chambers J, Wu H-M, Cheung AY. 2024. Extracellular pectin-RALF phase separation mediates FERONIA global signaling function. *Cell* **187**, 312-330.e22.

Loewith R. 2011. A brief history of TOR. *Biochemical Society Transactions* **39**, 437–442.

Lutt N, Brunkard JO. 2022. Amino Acid Signaling for TOR in Eukaryotes: Sensors, Transducers, and a Sustainable Agricultural fuTORe. *Biomolecules* **12**, 387.

Mahfouz MM, Kim S, Delauney AJ, Verma DPS. 2006. *Arabidopsis* TARGET OF RAPAMYCIN Interacts with RAPTOR, Which Regulates the Activity of S6 Kinase in Response to Osmotic Stress Signals. *The Plant Cell* **18**, 477–490.

Mallén-Ponce MJ, Pérez-Pérez ME, Crespo JL. 2022. Photosynthetic assimilation of CO₂ regulates TOR activity. *Proceedings of the National Academy of Sciences* **119**, e2115261119.

McCready K, Spencer V, Kim M. 2020. The Importance of TOR Kinase in Plant Development. *Frontiers in Plant Science* **11**.

Mecchia MA, Santos-Fernandez G, Duss NN, et al. 2017. RALF4/19 peptides interact with LRX proteins to control pollen tube growth in *Arabidopsis*. *Science* **358**, 1600–1603.

Meinke DW. 2020. Genome-wide identification of EMBRYO-DEFECTIVE (EMB) genes required for growth and development in *Arabidopsis*. *New Phytologist* **226**, 306–325.

Miguel MA, Postma JA, Lynch JP. 2015. Phene Synergism between Root Hair Length and Basal Root Growth Angle for Phosphorus Acquisition. *Plant Physiology* **167**, 1430–1439.

Mishler-Elmore JW, Zhou Y, Sukul A, Oblak M, Tan L, Faik A, Held MA. 2021. Extensins: Self-Assembly, Crosslinking, and the Role of Peroxidases. *Frontiers in Plant Science* **12**.

Mo X, Zhu Q, Li X, Li J, Zeng Q, Rong H, Zhang H, Wu P. 2006. The hpa1 mutant of *Arabidopsis* reveals a crucial role of histidine homeostasis in root meristem maintenance. *Plant Physiology* **141**, 1425–1435.

Montané M-H, Menand B. 2013. ATP-competitive mTOR kinase inhibitors delay plant growth by triggering early differentiation of meristematic cells but no developmental patterning change. *Journal of Experimental Botany* **64**, 4361–4374.

Moreau M, Azzopardi M, Clément G, et al. 2012. Mutations in the *Arabidopsis* Homolog of LST8/G β L, a Partner of the Target of Rapamycin Kinase, Impair Plant Growth, Flowering, and Metabolic Adaptation to Long Days. *The Plant Cell* **24**, 463–481.

Morris EC, Griffiths M, Golebiowska A, et al. 2017. Shaping 3D Root System Architecture. *Current Biology* **27**, R919–R930.

Moussu S, Broyart C, Santos-Fernandez G, Augustin S, Wehrle S, Grossniklaus U, Santiago J. 2020. Structural basis for recognition of RALF peptides by LRX proteins during pollen tube growth. *Proceedings of the National Academy of Sciences* **117**, 7494–7503.

Moussu S, Lee HK, Haas KT, et al. 2023. Plant cell wall patterning and expansion mediated by protein-peptide-polysaccharide interaction. *Science* **382**, 719–725.

Muralla R, Sweeney C, Stepansky A, Leustek T, Meinke D. 2007. Genetic Dissection of Histidine Biosynthesis in *Arabidopsis*. *Plant Physiology* **144**, 890–903.

Noutoshi Y, Ito T, Shinozaki K. 2005. ALBINO AND PALE GREEN 10 Encodes BBMII Isomerase Involved in Histidine Biosynthesis in *Arabidopsis thaliana*. *Plant and Cell Physiology* **46**, 1165–1172.

Ortiz-Moreira FA, Liu J, Shan L, He P. 2021. Malectin-like receptor kinases as protector deities in plant immunity. *Nature Plants*, 1–11.

Pacheco JM, Song L, Kuběnová L, et al. 2023. Cell surface receptor kinase FERONIA linked to nutrient sensor TORC signaling controls root hair growth at low temperature linked to low nitrate in *Arabidopsis thaliana*. *New Phytologist* **238**, 169–185.

Pearce G, Moura DS, Stratmann J, Ryan CA. 2001. RALF, a 5-kDa ubiquitous polypeptide in plants, arrests root growth and development. *Proceedings of the National Academy of Sciences* **98**, 12843–12847.

Petersen LN, Marineo S, Mandalà S, Davids F, Sewell BT, Ingle RA. 2010. The Missing Link in Plant Histidine Biosynthesis: *Arabidopsis* myoinositol monophosphatase-like2 Encodes a Functional Histidinol-Phosphate Phosphatase. *Plant Physiology* **152**, 1186–1196.

Ren M, Venglat P, Qiu S, et al. 2012. Target of Rapamycin Signaling Regulates Metabolism, Growth, and Life Span in *Arabidopsis*. *The Plant Cell* **24**, 4850–4874.

Ringli C. 2010. The hydroxyproline-rich glycoprotein domain of the *Arabidopsis* LRX1 requires Tyr for function but not for insolubilization in the cell wall: Characterization of the LRX1 extensin domain. *The Plant Journal* **63**, 662–669.

Robaglia C, Thomas M, Meyer C. 2012. Sensing nutrient and energy status by SnRK1 and TOR kinases. *Current Opinion in Plant Biology* **15**, 301–307.

Rubinstein AL, Marquez J, Suarez-Cervera M, Bedinger PA. 1995. Extensin-like Glycoproteins in the Maize Pollen Tube Wall. *The Plant Cell* **7**, 2211–2225.

Schaufelberger M, Galbier F, Herger A, de Brito Francisco R, Roffler S, Clement G, Diet A, Hörtensteiner S, Wicker T, Ringli C. 2019. Mutations in the *Arabidopsis* ROL17/isopropylmalate synthase 1 locus alter amino acid content, modify the TOR network, and suppress the root hair cell development mutant *lrx1*. *Journal of Experimental Botany* **70**, 2313–2323.

Schoenaers S, Lee HK, Gonneau M, et al. 2024. Rapid alkalinization factor 22 has a structural and signalling role in root hair cell wall assembly. *Nature Plants*, 1–18.

Song L, Xu G, Li T, et al. 2022. The RALF1-FERONIA complex interacts with and activates TOR signaling in response to low nutrients. *Molecular Plant* **15**, 1120–1136.

Stegmann M, Monaghan J, Smakowska-Luzan E, Rovenich H, Lehner A, Holton N, Belkhadir Y, Zipfel C. 2017. The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling. *Science* **355**, 287–289.

Trovato M, Funck D, Forlani G, Okumoto S, Amir R. 2021. Editorial: Amino Acids in Plants: Regulation and Functions in Development and Stress Defense. *Frontiers in Plant Science* **12**.

Tzafrir I, Pena-Muralla R, Dickerman A, et al. 2004. Identification of Genes Required for Embryo Development in *Arabidopsis*. *Plant Physiology* **135**, 1206–1220.

Watanabe-Asano T, Kuma A, Mizushima N. 2014. Cycloheximide inhibits starvation-induced autophagy through mTORC1 activation. *Biochemical and Biophysical Research Communications* **445**, 334–339.

Witek W, Sliwiak J, Ruszkowski M. 2021. Structural and mechanistic insights into the bifunctional HISN2 enzyme catalyzing the second and third steps of histidine biosynthesis in plants. *Scientific Reports* **11**, 9647.

Xiong Y, Sheen J. 2015. Novel links in the plant TOR kinase signaling network. *Current Opinion in Plant Biology* **28**, 83–91.

Zhang X, Yang Z, Wu D, Yu F. 2020. RALF–FERONIA Signaling: Linking Plant Immune Response with Cell Growth. *Plant Communications* **1**, 100084.

FIGURE LEGENDS

Fig. 1. *sune82* suppresses the dominant-negative effect of *LRX1ΔE14* on root hair development.

(A) 5-day-old roots of Col, *LRX1ΔE14*, *LRX1ΔE14 sune82*, and *sune82*. Seedlings were grown in a vertical orientation (scale bar 200 μ m).

(B) Quantification of root hair length (≥ 17 roots for each genotype, 30 root hairs were measured per root, $n \geq 510$) and root hair density (≥ 17 roots for each genotype, $n \geq 17$).

(C) 10-day-old seedlings grown as in (A) (scale bar 5 mm).

(D) Primary root length quantification of 10-day-old seedlings (≥ 20 roots for each genotype, $n \geq 20$). Asterisks on the graphs indicate significant differences between genotypes (* = $P < 0.05$, ** = $P < 0.01$, *** = $P < 0.001$) and ns indicate non-significant differences ($P > 0.05$) using an unpaired *t*-test. Black line in the boxplots represents the median.

Fig. 2. The *sune82* mutation affects the *HISN2* gene involved in His biosynthesis.

(A) Three linked SNPs in coding sequences were identified in *LRX1ΔE14 sune82* compared to the non-mutagenized *LRX1ΔE14* line, of which the SNP in *HISN2* showed complete linkage.

(B) *HISN2* catalyzes the second and third steps of histidine biosynthesis in the chloroplast. Numbers indicate individual enzymatic steps in the pathway, those conducted by *HISN2* are mentioned: No. 2, PRA-PH, phosphoribosyl-ATP pyrophosphatase, and No. 3, PRA-CH, phosphoribosyl-AMP cyclohydrolase.

Fig. 3. The *sune82* mutation changes the active site of *HISN2*, leading to a reduced histidine production.

(A) Genomic structure of *HISN2* (AT1G31860) and amino acid alignment with its orthologs using MUSCLE in MEGA11. Grey boxes=UTR, black boxes=exons, lines=introms. PRA-CH: phosphoribosyl-AMP cyclohydrolase, PRA-PH: phosphoribosyl-ATP pyrophosphatase. *Arabidopsis thaliana*, *Medicago truncatula*, *Oryza sativa*, *Marchantia polymorpha*, *Chara braunii*, *Chlamydomonas reinhardtii*, *Escherichia coli*, *Methanoscincus acetivorans*. The Ser116 residue altered by the *sune82* mutation is boxed in red.

(B) His levels were determined by LC-MS in 10-day-old seedlings. Arbitrary units show that His content is reduced by the *sune82* mutation. Asterisks on the graph indicate significant

differences between genotypes ($n=5$, $**P<0.01$, unpaired *t*-test). Black line in the boxplots represents the median.

(C) 5-day-old roots of Col, *LRX1ΔE14*, *LRX1ΔE14 sune82*, and *sune82* grown with or without 100 μ M histidine. Bars= 200 μ m.

Fig. 4. Heterozygous *hisn2*^{crispr} seedlings suppress *LRX1ΔE14* root hair phenotype.

5-day-old roots of seedlings of wild-type Col, *LRX1ΔE14* and *LRX1ΔE14* heterozygous for the *hisn2*^{crispr} allele reveal haplo-insufficiency in the latter and suppression of *LRX1ΔE14*. Bars= 200 μ m.

Fig. 5. Reduced HISN2 activity leads to an altered TOR sensitivity.

(A) 5-day-old roots of Col, *sune82*, *LRX1ΔE14*, and *LRX1ΔE14 sune82* grown with DMSO (mock) or 0.2 μ M AZD-8055. Bars= 200 μ m.

(B) Primary root length quantification of 9-day-old seedlings grown at different concentrations of AZD-8055. First panel displays absolute primary root length (mm), second panel shows relative root length compared to mock conditions. Asterisks on the graph indicate significant differences between genotypes ($n \geq 20$, $****P<0.0001$, $*** P<0.001$, ns $P>0.05$ and not significant, unpaired *t*-test).

(C) 9-day-old seedlings grown on 0.6 μ M AZD-8055. The primary root length of Col is significantly reduced, while that of *sune82* is almost unaffected. Bars= 1 cm.

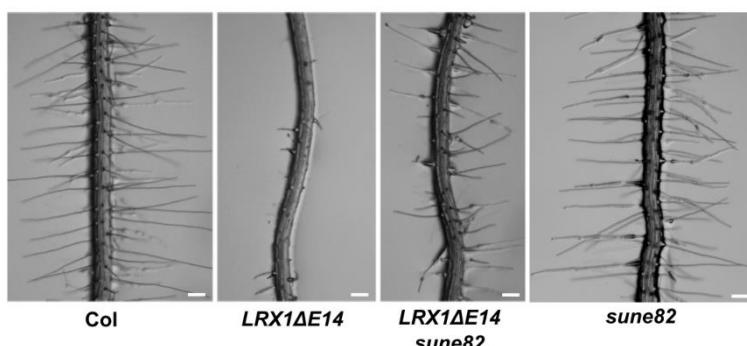
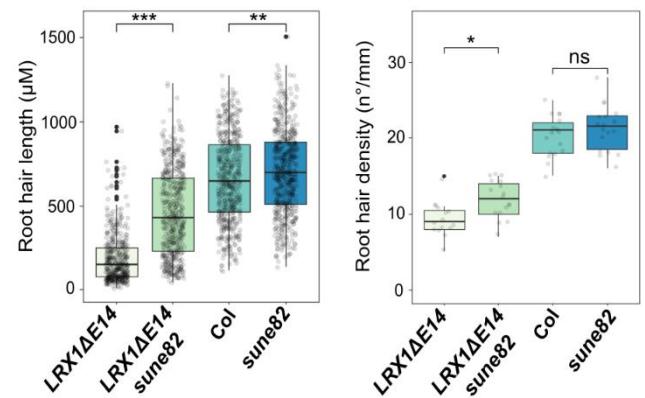
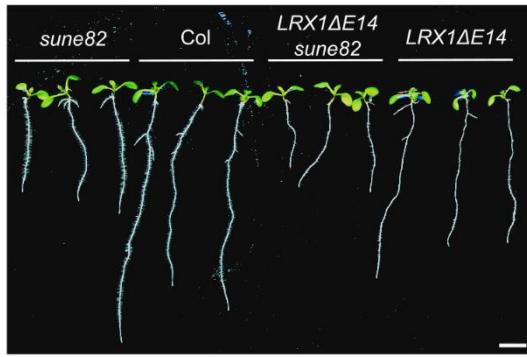
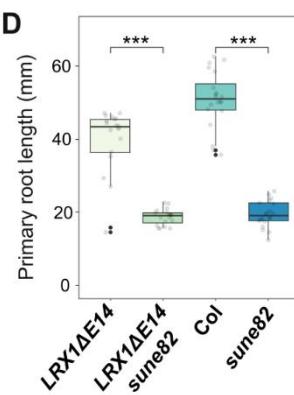

(D) For RPS6 analysis, six-day-old seedlings were transferred to sugar-free medium for 24 h and then either mock or sucrose (0.5%) treated for 4 h to induce RPS6 phosphorylation. 30 μ g of whole-seedling extracts were subjected to immunoblot analysis with anti-phospho-RPS6 Ser240 or anti total RPS6 antibodies and ratios of anti-phospho-RPS6 Ser240 / anti-total RSP6 are indicated. Coomassie blue to ensure equal protein loading is also shown.

Fig. 6. *sune106* suppresses *LRX1ΔE14* root hair phenotype.


Five-day-old roots of Col, *LRX1ΔE14*, *LRX1ΔE14 sune106*, *LRX1ΔE14 ipms1^{crispr}* show suppression of the *LRX1ΔE14* phenotype by mutations in *IPMS1*. Bars= 200 μ m.

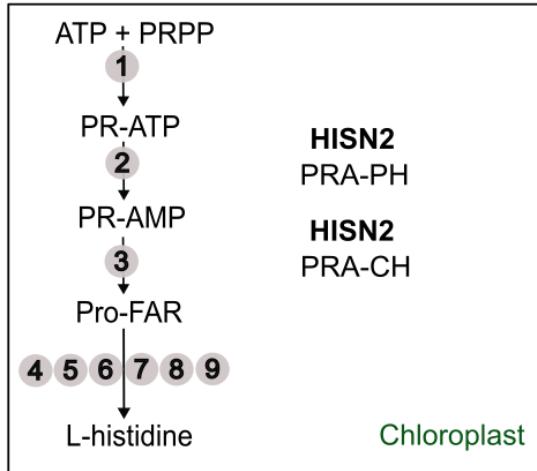
FIGURES


A


B

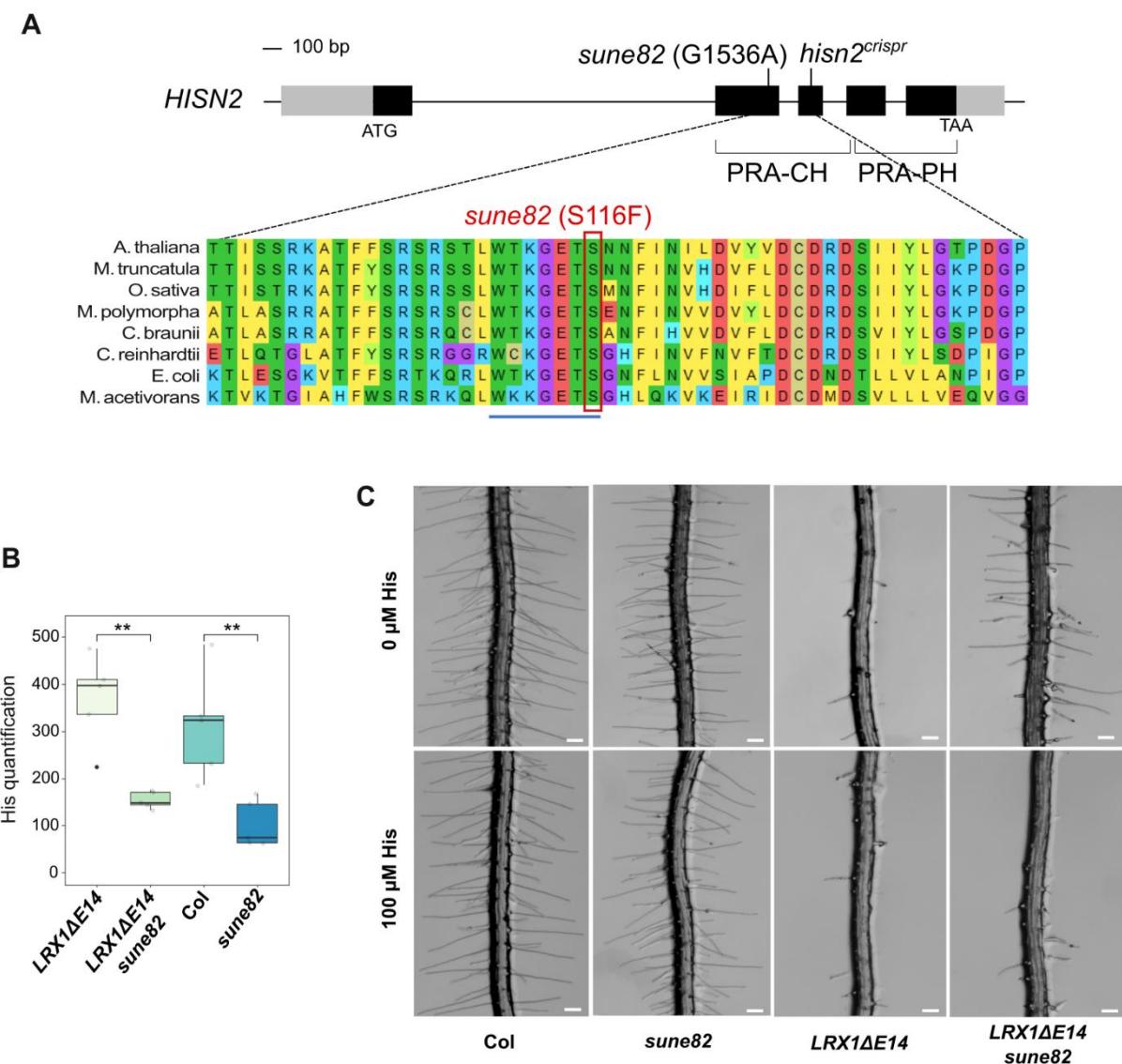
C

D


Fig. 1. *sune82* suppresses the dominant-negative effect of *LRX1ΔE14* on root hair development.

- (A) 5-day-old roots of Col, *LRX1ΔE14*, *LRX1ΔE14 sune82*, and *sune82*. Seedlings were grown in a vertical orientation (scale bar 200 μ m).
- (B) Quantification of root hair length (≥ 17 roots for each genotype, 30 root hairs were measured per root, $n \geq 510$) and root hair density (≥ 17 roots for each genotype, $n \geq 17$).
- (C) 10-day-old seedlings grown as in (A) (scale bar 5 mm).
- (D) Primary root length quantification of 10-day-old seedlings (≥ 20 roots for each genotype, $n \geq 20$). Asterisks on the graphs indicate significant differences between genotypes (* = $P < 0.05$, ** = $P < 0.01$, *** = $P < 0.001$) and ns indicate non-significant differences ($P > 0.05$) using an unpaired *t*-test. Black line in the boxplots represents the median.

A


Locus	Gene name	SNP	Aa change
At1G28570	<i>SGNH Hydrolase</i>	G959A	S124S
At1G31860	<i>HISN2</i>	G1536A	S116F
At1G32610	<i>VQ6</i>	G688A	L230F

B

Fig. 2. The *sune82* mutation affects the *HISN2* gene involved in His biosynthesis.

(A) Three linked SNPs in coding sequences were identified in *LRX1ΔE14 sune82* compared to the non-mutagenized *LRX1ΔE14* line, of which the SNP in *HISN2* showed complete linkage. (B) *HISN2* catalyzes the second and third steps of histidine biosynthesis in the chloroplast. Numbers indicate individual enzymatic steps in the pathway, those conducted by *HISN2* are mentioned: No. 2, PRA-PH, phosphoribosyl-ATP pyrophosphatase, and No. 3, PRA-CH, phosphoribosyl-AMP cyclohydrolase.

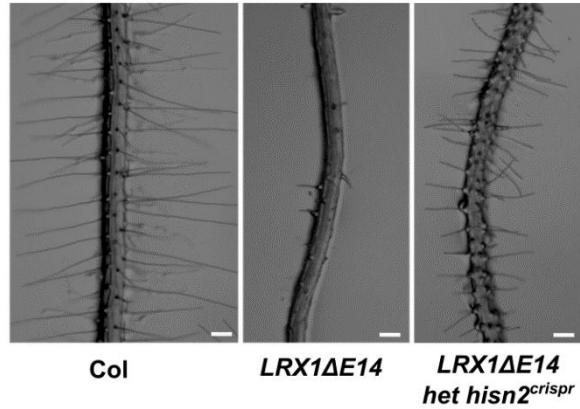
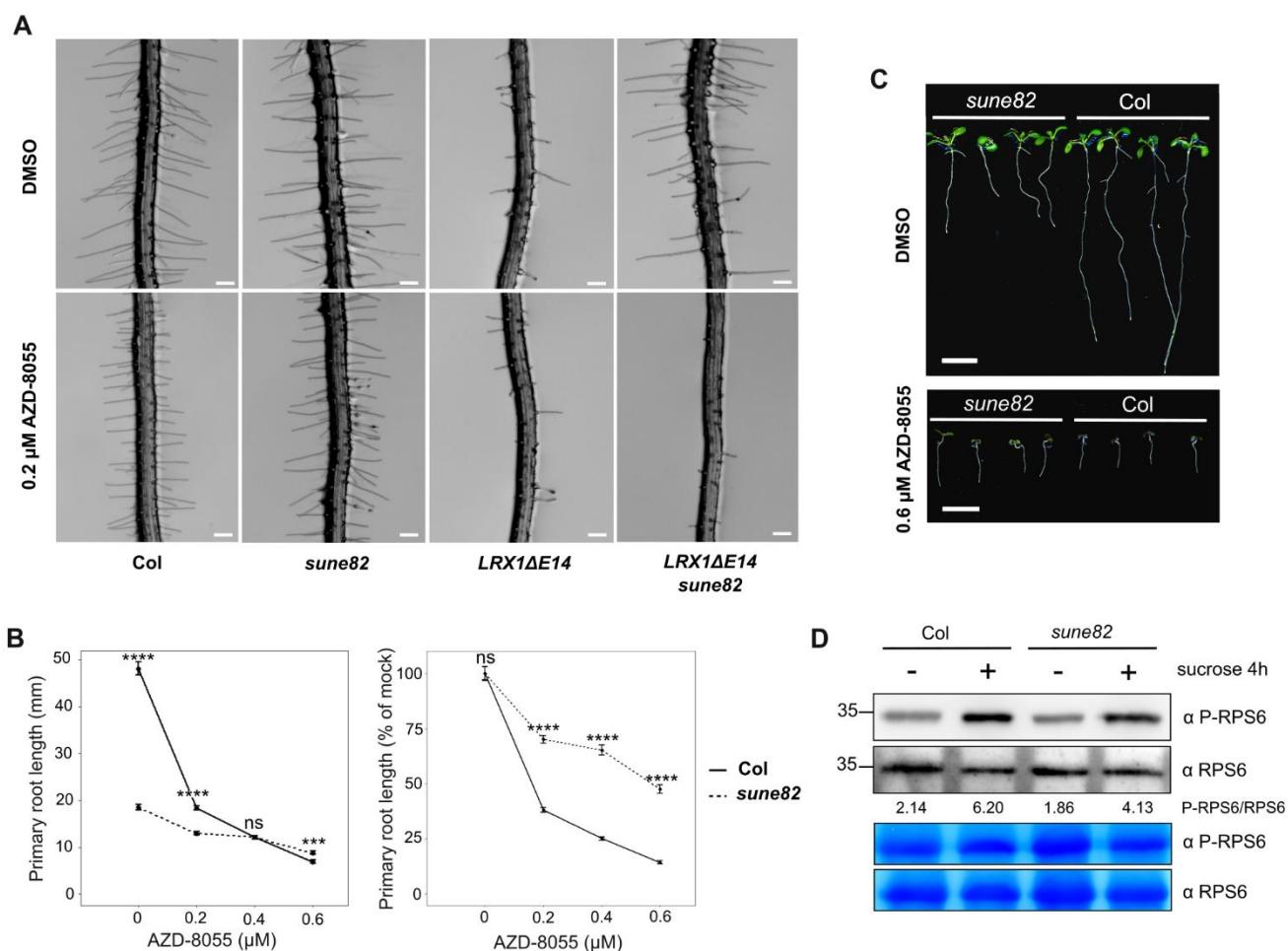


Fig. 3. The *sune82* mutation changes the active site of *HISN2*, leading to a reduced histidine production.

(A) Genomic structure of *HISN2* (AT1G31860) and amino acid alignment with its orthologs using MUSCLE in MEGA11. Grey boxes=UTR, black boxes=exons, lines=introns. PRA-CH: phosphoribosyl-AMP cyclohydrolase, PRA-PH: phosphoribosyl-ATP pyrophosphatase. *Arabidopsis thaliana*, *Medicago truncatula*, *Oryza sativa*, *Marchantia polymorpha*, *Chara braunii*, *Chlamydomonas reinhardtii*, *Escherichia coli*, *Methanosaerina acetivorans*. The Ser116 residue altered by the *sune82* mutation in boxed in red.

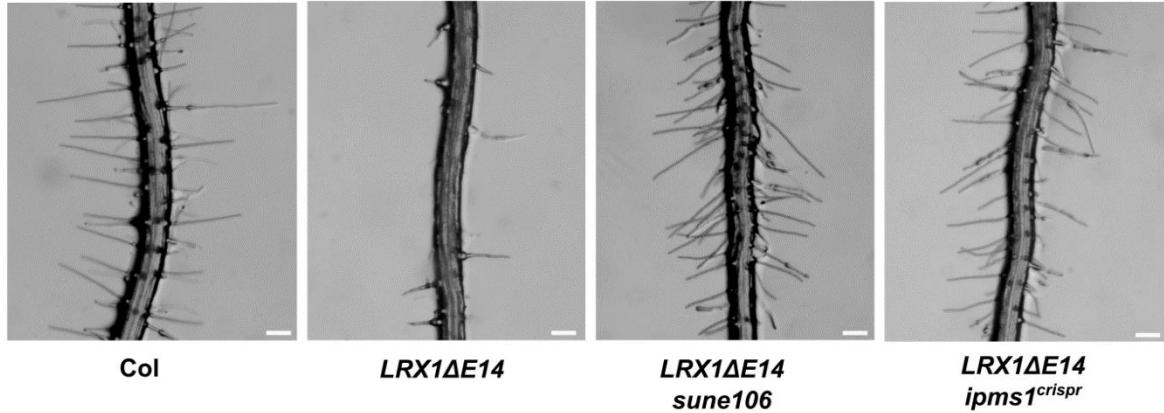

(B) His levels were determined by LC-MS in 10-day-old seedlings. Arbitrary units show that His content is reduced by the *sune82* mutation. Asterisks on the graph indicate significant differences between genotypes (n=5, **P<0.01, unpaired *t*-test). Black line in the boxplots represents the median.

(C) 5-day-old roots of Col, *LRX1ΔE14*, *LRX1ΔE14 sune82*, and *sune82* grown with or without 100 μ M histidine. Bars= 200 μ m.

Fig. 4. Heterozygous *hisn2*^{crispr} seedlings suppress *LRX1ΔE14* root hair phenotype.

5-day-old roots of seedlings of wild-type Col, *LRX1ΔE14* and *LRX1ΔE14* heterozygous for the *hisn2*^{crispr} allele reveal haplo-insufficiency in the latter and suppression of *LRX1ΔE14*. Bars= 200 μ m.

Fig. 5. Reduced HISN2 activity leads to an altered TOR sensitivity.


(A) 5-day-old roots of Col, sune82, $LRX1\Delta E14$, and $LRX1\Delta E14$ sune82 grown with DMSO (mock) or 0.2 μ M AZD-8055. Bars= 200 μ m.

(B) Primary root length quantification of 9-day-old seedlings grown at different concentrations of AZD-8055. First panel displays absolute primary root length (mm), second panel shows relative root length compared to mock conditions. Asterisks on the graph indicate significant differences between genotypes ($n \geq 20$, **** $P < 0.0001$, *** $P < 0.001$, ns $P > 0.05$ and not significant, unpaired t -test).

(C) 9-day-old seedlings grown on 0.6 μ M AZD-8055. The primary root length of Col is significantly reduced, while that of sune82 is almost unaffected. Bars= 1 cm.

(D) For RPS6 analysis, six-day-old seedlings were transferred to sugar-free medium for 24 h and then either mock or sucrose (0.5%) treated for 4 h to induce RPS6 phosphorylation. 30

μg of whole-seedling extracts were subjected to immunoblot analysis with anti-phospho-RPS6 Ser240 or anti-total RPS6 antibodies and ratios of anti-phospho-RPS6 Ser240 / anti-total RPS6 are indicated. Coomassie blue to ensure equal protein loading is also shown.

Fig. 6. *sune106* suppresses *LRX1ΔE14* root hair phenotype.

Five-day-old roots of Col, *LRX1ΔE14*, *LRX1ΔE14 sune106*, *LRX1ΔE14 ipms1^{crispr}* show suppression of the *LRX1ΔE14* phenotype by mutations in *IPMS1*. Bars= 200 μ m.