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Abstract

The translation of findings from animal models to human disease is a fundamental part in the
field of drug development. However, only a small proportion of promising preclinical results
in animals translate to human pathophysiology. This underscores the necessity for novel data
analysis strategies to accurately evaluate the most suitable animal model for a specific
purpose, ensuring cross-species translatability. To address this need, we present In Silico
Treatment (IST), a computational method to assess translation of disease-related molecular
expression patterns between animal models and humans. By simulating changes observed in
animals onto humans, IST provides a holistic picture of how well animal models recapitulate
key aspects of human disease, or how treatments transform pathogenic expression patterns
to healthy ones. Furthermore, IST highlights particular genes that influence molecular
features of pathogenesis or drug mode of action. We demonstrate the potential of IST with
three applications using bulk transcriptomics data. First, we assessed two mouse models for
idiopathic pulmonary fibrosis (IPF): one involving injury with intra-tubular Bleomycin
exposure, and the other Adeno-associated-virus-induced, TGFB1-mediated tissue
transformation (AAV6.2-TGFB1). Both models exhibited gene expression patterns resembling
extracellular matrix derangement in human IPF, whereas differences in VEGF-driven
vascularization were observed. Second, we confirmed known features of non-alcoholic
steatohepatitis (NASH) mouse models, including choline-deficient, I-amino acid-defined diet
(CDAA), carbon tetrachloride hepatotoxicity injury (CCl,) and bile duct ligation surgery (BDL).
Overall, the three mouse models recapitulated expression changes related to fibrosis in
human NASH, whereas model-specific differences were found in lipid metabolism,
inflammation, and apoptosis. Third, we reproduced the strong anti-fibrotic signature and
induction of the PPARa signaling observed in the Elafibranor experimental treatment for
NASH in the CDAA model. We validated the contribution of known disease-related genes to
the findings made with IST in the IPF and NASH applications. The complete data integration
IST framework, including an interactive app to integrate and compare datasets, is made

available as an open-source R package.
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Author summary

Preclinical testing plays a pivotal role in the drug development process, serving as a crucial
evaluation phase before a new drug can be tested on humans in clinical trials. The drug must
undergo a rigorous evaluation in in vivo and in vitro preclinical studies to assess its safety and
efficacy. However, positive outcomes in preclinical animal models do not always translate to
positive results in humans, mainly due to biological differences. Therefore, selecting an
animal model that closely mirrors human disease traits and detecting and accounting for

model limitations is of paramount importance.

Over the last decade, the availability of gene expression data in both animals and humans has
substantially increased. Gene expression states and perturbations are routinely employed as
a proxy to predict and understand changes in disease states. Here, we developed In Silico
Treatment, a computational method designed to overlay the gene expression changes
observed in animals onto humans, quantifying the change in human disease status. We
applied this method to mouse models for idiopathic pulmonary fibrosis and non-alcoholic
steatohepatitis, two severe fibrotic diseases. We successfully identified known features of the
disease models and provide a granular gene-level rationale behind our predictions.
Consequently, our method shows promise as an effective approach to improve animal model

selection and thus clinical translation.
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Introduction

Animal models play a crucial role in improving understanding of human disease. Accordingly,
drug development often relies on successful animal studies before proceeding to costly and
lengthy clinical trials (Mak, Evaniew, and Ghert 2013). However, not all potential therapeutic
concepts successfully translate from rodent and other animal models to humans, implying
significant differences in molecular mechanisms across species that drive pathophysiology
(McGonigle and Ruggeri 2014). As a result, the choice of the most appropriate animal model
to study specific molecular and systemic modes of action is not straightforward, but requires
a trade-off between ethical aspects regarding animal experimentation, financial and
feasibility considerations, and animal model suitability to mimic the human disease (Breschi,

Gingeras, and Guigé 2017; Wendler and Wehling 2010).

Important for the choice of suitable animal models is to understand if and how key
mechanisms of pathology translate between species (Perel et al. 2007). While a given animal
model may faithfully capture certain aspects of human disease, other disease-relevant
mechanisms may be only poorly resembled and may require interrogation of a different
model. In this regard, the quantification of model suitability from molecular readouts remains
an open issue. For example, past studies have led to conflicting conclusions of low (Seok et al.
2013) or high resemblance (Takao and Miyakawa 2015) between murine models and human
inflammatory diseases. Taken together, we believe there is a promising potential for in silico
approaches to systematically gather knowledge on the aspects of a human disease that are
well reflected in each specific animal model, facilitating a more targeted approach to increase
the probability of success in subsequent experiments (Michelson and Reuter 2019). While
attempts in this direction exist, so far there is no consensus on how to automate the

assessment of animal model suitability on a molecular or transcriptome-wide level.

Here, we introduce In Silico Treatment (IST), a computational framework for the integrative
analysis of human and in vivo animal model transcriptomics data. IST uses predictive
modelling methods to quantify the overlap of ortholog gene expression changes between
human patients and disease models for a particular human disease and molecular pathway.

Besides comparing the suitability of specific animal models, IST also provides a framework to
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97  predict whether a particular drug treatment can potentially revert disease-related molecular
98 profiles in humans. Furthermore, IST includes features supporting the interpretation of the
99 gene signatures that reflect pathophysiology and treatment in disease models by helping
100 evaluate them in the human context. Thereby, IST provides an integrative picture of human
101 and disease model data at different levels including pathway (gene set) and gene-wise

102  granularity.

103  We showcase capabilities and features in IST by applying it to two human diseases: Idiopathic
104  Pulmonary Fibrosis (IPF), and Non-alcoholic Steatohepatitis (NASH). Despite the broad usage
105 of animal models in IPF and NASH, the agreement and the resulting predictability between
106 human and mouse gene expression changes is unknown, and thus the ability to draw
107  conclusions from the molecular profiles remains elusive. In this context, we demonstrate how
108  IST (i) determines which disease models for IPF and NASH most appropriately capture human
109 gene expression changes on a pathway level helping select the most suitable animal model
110 for pre-clinical research, (ii) evaluates potential treatments for a human disease by predicting
111  the recovery of the healthy human molecular phenotype for each treatment on each
112  pathway, and (iii) provides gene-level quantitative explanations behind the selection of a

113  specific disease model or treatment compound.
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114 Results

115
116

117

118 We used gene expression data in combination with the IST framework on IPF and NASH, two
119 fibrotic human diseases, to compare a collection of frequently used in vivo mouse models for

120  each of the indications and pathway of interest.

121  TheIST dataintegration workflow requires the following input data: gene expression readouts
122  from human control and disease samples, gene expression fold changes from each preclinical
123  model, gene sets related to the human disease, and a gene orthology mapping that links the
124  genes in the preclinical organisms to their human orthologs. After the data integration
125  process in IST, two main outputs are generated. Firstly, for every gene set, there is a single
126  quantitative measure that shows how well each preclinical model captures the changes
127  observed in the human reference within the gene set. Secondly, for every gene set and gene,
128 there is a quantitative measure that indicates how the changes in that particular gene in the
129  preclinical model contribute to the overall similarity of the preclinical model to the changes

130 in the human reference.

131  The IST workflow consists of three steps: First, predictive machine learning models, here
132  partial least squares, are fit to human gene expression data to discriminate between the
133  control group and patients with disease (left panel, ). Second, significant gene
134  expression fold changes of preclinical models are simulated onto the ortholog genes of the
135  human reference samples. This results in simulated samples, whose expression profiles have
136  undergone the same changes that were observed in preclinical models (middle panel,

137 ). In a third step, preclinical models are evaluated by predicting the response, also called
138  disease score, of simulated samples based on the fitted predictive model. This quantifies
139  whether the simulated changes have brought the simulated samples closer or further from

140 human disease states (right panel, ).
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141 Two alternative strategies to apply IST were devised, depending on whether to evaluate
142  pathogenic effects in animal models or to predict the efficacy of disease treatment in humans.
143  For the assessment of disease models, fold changes of gene expression from animal models
144  relative to their respective controls are mapped onto human control samples. For the
145  assessment of treatment, fold changes from treated animal models of disease relative to their
146  untreated counterparts are mapped onto human disease samples. In both cases, a
147  comparison of the predicted disease scores of simulated samples with that of human
148 reference samples (disease or control samples, respectively) is performed. Disease scores are
149 then expressed as the relative distance between simulated and human reference samples,
150  with 100% representing ideal recapitulation and 0% no recapitulation at all (right panel,

151 ).

152  Regarding the outputs and graphical representations from the IST framework, it is possible to
153  fit one disease score model for each gene set that represents a key disease pathway or
154  feature. This enables IST to make granular choices for testing specific mechanisms or aspects
155  of disease (left panel, ). In addition, IST provides gene-level contributions by
156  simulating each gene separately, to find agreeing and disagreeing gene expression patterns
157  between disease model and human pathophysiology (right panel, ). We provide an

158 open-source implementation of the whole IST workflow using the R programming language.

159

160 IPFisasevere and fatal fibrotic lung disease of unknown cause, leading to aberrant lung tissue
161 remodeling, excessive scarring, loss of tissue compliance and respiratory failure (Mari, Jones,
162  and Richeldi 2019). Here, we used a reference IPF human dataset consisting of microarray
163  gene expression readouts of lungs from control and IPF patients (Y. Wang et al. 2017). We
164  then identified highly deregulated pathways in IPF by performing a gene set enrichment
165 analysis (GSEA) (Subramanian et al. 2005) on the human reference data. We selected six
166  disease-relevant pathways ( ), combining GSEA output and known disease

167  pathomechanisms.

168  Multiple animal models for IPF have been established for pre-clinical research. Here we

169 considered the models of intra-tracheal administration of mice with the cytostatic toxin
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170  Bleomycin, and a transgenic mouse model based on AAV6.2-induced overexpression of
171  Transforming growth factor beta 1, or TGFB1 (Strobel et al. 2015). Both the AAV-TGFB1 and
172  the Bleomycin mouse models were recorded across timepoints: 3, 7, 14, 21 and 28 days. After
173  RNAsequencing, fold changes and significance were computed by timepoint. We also applied
174  GSEA to the murine fold changes, mapping murine genes to their human orthologs (

175 ).

176  When applying the IST workflow across all selected pathways, the output for the IPF models
177  showed low recapitulations within early expression changes in AAV-TGFB1 mice (3d, 7d), not
178  entailing sufficient molecular changes to resemble the human IPF gene expression data
179 ( ). Conversely, later time points of the AAV-TGFB1 model (14d, 21d and 28d) have
180 larger resemblances to the human molecular signature, suggesting a delayed response in
181 TGFP1-mediated injury due to time required for viral transduction, conversion of the single-
182  stranded AAV genome to transcriptionally active dsDNA, and actual gene expression. In
183  alignment with this hypothesis and the corresponding lack of phenotypic changes (Strobel et
184  al. 2022), we see only few differentially expressed genes at the 3d and 7d time points
185 ).

186  Aberrant extracellular remodeling, a key characteristic of several fibrotic diseases such as
187  cardiac fibrosis, NASH, or IPF, is depicted in the extracellular matrix organization pathway in
188 . IST demonstrated substantial agreement between human data with both
189 intermediate and late time point AAV-TGFB1 and all Bleomycin mouse model samples. The
190 highest recapitulation of human data occurred at the 21d AAV-TGFB1 model (67%) and the
191  21d Bleomycin mice (54%). For genes involved in the activation of matrix metalloprotease
192  pathway, IST indicated large positive recapitulation values. Specifically, the highest
193  recapitulation was observed in the AAV-TGFB1 mouse model at 21d (95%), and the Bleomycin
194  mouse model at 14d (109%), suggesting that these specific experimental conditions are most

195  suitable for studying the activation of matrix metalloproteases in the context of lung fibrosis.

196 Important for extracellular matrix organization is a balance between collagen formation and
197  collagen degradation. Interestingly, while the degradation of collagens was well represented

198 by both IPF mouse models (Bleomycin 14d and AAV-TGFB1 21d showing a recapitulation of
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199 65% and 73% respectively), this was not the case for collagen formation where only AAV-

200 TGFB1 21d mice showed a sizeable recapitulation of 46%.

201  VEGF dependent tissue vascularization is an important factor in IPF pathology. VEGF signaling,
202  originating mainly from airway epithelial cells, is typically moderate in the mature and heathy
203  lung, while tissue damage and subsequent repair leads to re-vascularization (Barratt et al.
204  2018). Although targeting vascular endothelial growth factor (VEGF) has been approved as
205 partofatriple kinase inhibition therapeutic strategy in IPF (Nintedanib, Boehringer Ingelheim,
206  Germany), the role of VEGF signaling in IPF remains yet controversial. (Barratt et al. 2018)(Lee
207 et al. 2008; lyer et al. 2015)(Murray et al. 2017). While GSEA suggested pathway changes in
208  opposite directions between disease models and human data (VEGF signaling pathway in
209 ), IST found a degree of agreement ( ), especially in the lung injury
210  Bleomycin model (42% at 14d). Indeed, using animal model data from our facilities, when
211  treating both mouse models with Nintedanib, lung vital capacity was only statistically
212 significantly restored in the Bleomycin, but not in the AAV-TGFB1 model (

213 , suggesting that the Nintedanib revertible phenotype in the prior mouse model

214  better resembles the human pathology and its attenuation by Nintedanib.

215 Finally, we investigated innate immune signaling by toll-like receptor mediated pathways
216  (pathway Toll-like receptor cascades, ) which constitute important mediators of the
217  inflammatory response in early tissue injury and remodeling (Karampitsakos et al. 2017). As
218 ageneral picture, none of the mouse models show good resemblance of the human IPF data
219  with respect to genes present in the TLR receptor pathway, with partially opposite changes in
220 the 21d AAV-TGFB1 model and the 3d and 7d Bleomycin model. This disagreement between
221  animal models and human gene expression remains to be further investigated, begging the
222  question whether additional disease models, apart from AAV-TGFB1 or Bleomycin treated

223  mice could be more suitable to study the effect of IPF on the innate immune system response.

224
225 NASH, recently renamed to metabolic dysfunction-associated steatohepatitis (MASH), is a
226  complication of non-alcoholic fatty liver disease (NAFLD) or metabolic dysfunction-associated

227  steatotic liver disease (MASLD) (Rinella et al. 2023). NASH is an increasingly prevalent liver
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228  disease that can progress to cirrhosis and acute or chronic liver failure and is one of the most
229 frequent indications for liver transplantation (Younossi et al. 2018). Hepatic steatosis due to
230 long-term exposure of individuals to high fat and high-sugar diets is considered as one of the
231  factors promoting NASH development. Within a fatty liver the associated liver cell damage
232 and inflammation lead to progressively increasing fibrotic scarring caused by the excessive
233  extracellular matrix deposition and finally cirrhosis and impaired liver function (Loomba,
234 Friedman, and Shulman 2021). We used a human NASH reference with RNA sequencing data
235  from liver tissue of individuals with increasing pathologically assessed fibrosis stages ranging
236  from FO to F4, i.e., from fatty liver with no fibrosis to marked fibrosis with cirrhosis (Pantano
237  etal. 2021). We focused on assessing how murine models capture the molecular changes in
238  F4 compared to FO. After running GSEA on this human data, and considering known disease
239  pathomechanisms, we selected four pathways as examples for further examination (

240 ).

241  We considered three mouse models performed previously in our animal facilities complying
242  with all necessary ethical and regulatory standards: the choline-deficient, I-amino acid-
243  defined dietary model (CDAA) for 12 weeks, the carbon tetrachloride hepatotoxicity injury
244  model (CCl,) for 8 weeks and the bile duct ligation (BDL) model at 10 days after surgery, which
245  induces cholestasis and inflammation. Overall, these models are known to show different
246  aspects of the pathology and varying degrees of clinical translatability (Hansen et al. 2017).
247  Here, total mMRNA was sequenced by standard NGS methods, fold changes were obtained for
248  each animal model, and GSEA was applied after mapping murine genes to their human

249  orthologs ( ).

250  Using IST, we studied key mechanisms of fibrosis progression in NASH through the gene set
251  of extracellular matrix organization. All evaluated disease models aligned with human fibrosis
252  stage 4 expression patterns ( ), especially CDAA (115%) followed by BDL (78%) and
253  CCl4(74%). These findings were expected since those three models are well described to study
254  aspects of severe human liver fibrosis. Our focus on fibrosis stage 4 particularly fits with the

255  CDAA choice, a sound model to study progression to NASH (Yanguas et al. 2016).
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256  Peroxisomes are subcellular organelles involved in B-oxidation of fatty acids as well as bile
257 acid and cholesterol metabolism (Islinger, Cardoso, and Schrader 2010). Peroxisome
258  proliferator-activated receptors (PPARs) are nuclear receptors regulating the proliferation of
259  peroxisomes and consist of three subtypes, PPARa, PPARB/S and PPARy. PPAR response
260 genesareinvolved in glucose and lipid metabolism (Bougarne et al. 2018). IST suggests (

261 ) that lipid metabolism regulation by PPARa, as observed in NASH liver, was partially
262  recapitulated in CDAA (62%), BDL (45%) and to a lesser extent in CCl, (22%). The better
263  recapitulation of lipid metabolism dysregulation in CDAA compared to CCl, could be related
264  to the chemotoxic fibrotic mode of action of CCl,, lacking certain metabolic aspects of NASH,

265  as opposed to a diet-driven model like CDAA.

266  Inflammation during NASH progression is initiated by damaged liver cells and maintained by
267  multiple immune cell types, such as tissue resident Kupffer cells as well as infiltrating immune
268 cells. One key aspect is the release of inflammatory mediators, mainly cytokines and
269  chemokines. In line, disease severity in NASH patients has been shown to correlate with the
270 levels of inflammatory cytokines as IL1B, TNFa or IL6 (Plessis et al. 2016). Using IST, we found
271  that cytokine immune signaling mechanisms are well recapitulated by common animal
272  models of NASH ( ), especially in CDAA (77%) and BDL (60%) models. This aligns with
273 known inflammatory features of the models: CDAA causes panlobular inflammation since
274  week 3, and BDL’s bile acid accumulation promotes oxidative stress and necroinflammation

275  (Yanguas et al. 2016).

276  The link between NASH and apoptotic pathways is well established. IST quantified the best
277  recapitulation for CDAA (90%) and BDL (63%), followed by CCl, (41%) ( ). IST thus
278  distinguished signatures related to the type of cell death: the dietary nature of CDAA better
279  aligned with cellular apoptosis as in human NASH, versus the injury by CCl, administration,

280  which induces necrosis rather than apoptosis (Manibusan, Odin, and Eastmond 2007).
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281 In Silico Treatment enables a gene-level evaluation of the disease

282 model signatures

283 In the previous section, we used IST to compare different animal models in key disease
284  pathways, aiming at optimal animal model selection. But the bare presence of sizeable
285 differences between animal models within a disease pathway may not give sufficient
286  granularity about the mechanistic reasons that could make one specific animal model more

287  suitable.

288 In this section, we showcase the IST features that allow to compare different disease models
289 by assessing the individual gene contributions behind the pathway recapitulation scores. For
290 every signature, we quantified the contribution of each gene to the overall signature
291 recapitulation by simulating each gene’s fold change onto humans separately. We will use
292  these features to explain the rationale behind some of the recapitulation values that IST
293  predicted for the IPF and NASH models. We discuss the fold changes of some key genes
294 ) and how they translate into gene contributions (

295 )

296 Gene-level comparison of the IPF disease models

297  We investigated the contribution of each individual gene in two IPF pathways that showed
298 differences between the Bleomycin and the AAV-TGFB1 model: Activation of matrix

299 metalloproteinases pathway and VEGF signaling pathway ( ).

300 Within the activation of matrix metalloproteinases pathway, we observed strong
301 upregulation of the fibrosis response marker TIMP1 ( ). This upregulation was
302 identified as highly relevant for the good recapitulation between human data and mouse
303 models ( ). The upregulation of Timp1 during a fibrogenic response is well established
304 (Hall et al. 2003) and its Bleomycin-mediated as well as TGF-beta dependent activation has
305 beenshown (Strobel et al. 2015). These experimental data support the consistency between
306 human and both mouse data sets observed by the IST analysis. Like TIMP1, the upregulation
307 of metalloprotease MMP14 and downregulation of MMP15 ( ) showed alignment
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308 with human IPF gene expression changes across both mouse models ( ). IST
309 highlighted the importance of MMPS8 upregulation ( ), which was specific to the
310 Bleomycin model ( ). MMPS8 has been already reported to be upregulated in both IPF

311  patients and the Bleomycin model, and to correlate with the development of lung fibrosis,
312  although its role in pathogenesis is not fully known (Pardo et al. 2016). In previous studies,
313  Cathepsin K (CTSK), a member of the class of lysosomal-derived proteolytic enzymes, was
314 foundto beincreased in fibrotic lung regions in patients and mice, and to provide a protective
315 role by countering excessive deposition of collagen matrix in the diseased lung (Biihling et al.
316  2004). Indeed, IST provided evidence that the upregulation of CTSK gene expression (

317 ) is relevant for the alighnment between human data and both animal models ( ).).

318 On the level of VEGF signaling, IST predicted that VEGFA is not the most influential gene

319 ) to explain the differences in recapitulation of human IPF between the AAV-TGF1
320 and Bleomycin mouse models ( ). In fact, VEGFA expression was downregulated in
321  humans and both mouse models ( ). Instead, IST results suggest that the difference

322  between the mouse models in recapitulating human IPF gene expression was mostly
323  explained by differences in regulation of PLA2G4C and PRKCA ( ). Indeed, we
324  observed missing differential expression of Pla2g4c and Prkca in the AAV-TGFB1 21d model,
325 while they were up- and downregulated in the Bleomycin model, respectively ( ).
326  PLA2GAC s part of the group 4 family members of phospholipidase A2 (PLA2) which is known
327 as mediator of damaged-induced immune infiltration and vascularization. Cytosolic PLA2 is
328  ubiquitously present in human lung and Pla2 knock-out mice had attenuated lung immune
329 infiltration after Bleomycin treatment (Nagase et al. 2002). The good alignment in expression
330 changesin PLA2GA4C ( ), as well as its known role in vascularization, justified choosing
331 the Bleomycin model over the AAV-TGFB1 when investigating drug effects on VEGF signaling.
332 On the other hand, the expression of the PKCa kinase had been previously shown to
333  downregulate collagen expression via the MEK/ERK signaling pathway, together with findings
334  of PKCa downregulation in fibrotic lung disease (Tourkina et al. 2005), which is consistent with
335 IST’s prediction via PRKCA. As for potential disagreement between mouse and human, IST
336 pinpointed that the upregulation of Mapk13 in mice may require further investigation, as the

337 same upregulation was not clearly found in the human reference.
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338

339 In the previous section we found that IST predicts a high recapitulation of all animal models
340 for the extracellular matrix organization pathway. This general agreement in IST was partly
341  driven by several members of the pro-fibrotic tumor-derived growth factor beta 1 (TGFp1)
342 SMAD signaling pathway (Ghafoory et al. 2018), including a large contribution from the
343  upregulation of tissue-inhibitor of metalloproteinases 1 (T/MP1) in humans and mice (

344 ). TIMP1 inhibits multiple matrix metalloproteinases (MMP), thereby preventing tissue
345 remodeling and resolution of fibrosis (Iredale 2008). TIMP1 has also been described as a
346  serum marker for advanced liver fibrosis in NASH patients (Yilmaz and Eren 2018) and is a
347  known driver of fibrosis progression (K. Wang et al. 2013). Interestingly, Timp1-/- mice show
348 increased liver fibrosis in CCls-induced liver fibrosis (H. Wang et al. 2011), while in BDL fibrosis
349 remains unaffected by the absence of TIMP1 (Thiele et al. 2017). IST did not predict this

350 differential behavior because Timpl was upregulated in both CCl, and BDL mice, as well as

351  TIMP1in humans ( ). IST found agreement in the expression of Bone morphogenetic
352  protein 1 (BMP1), see , due to its downregulation in humans and BDL
353 and CDAA mice ( ). BMP1 processes multiple precursors of the extracellular matrix,

354  as e.g., pro-collagen type |, and a Bmp1 splicing isoform has been shown to be a driver of
355 disease progression in rat CCl; models (Grgurevic et al. 2017). Since no Bmp1 differential

356  expression was found in CCl, mice ( ), IST did not reproduce this claim in mice.

357 IST predicted good recapitulation for the Regulation of lipid metabolism by PPARa by the
358 CDAA and BDL models, strongly influenced by the downregulation of PPARA, RXRA, RXRB and
359  NRIH3 ( ), as found in human NASH. These genes were however not differentially
360 expressed in the CCl, model ( ). PPARa can form a heterodimer with retinoid X
361 receptors (RXRs) modulating gene expression of PPARa specific target genes via binding PPAR-
362 response elements (PPRE). In the absence of PPAR ligands, the heterodimer acts as a co-
363 repressor complex, while upon ligand binding, repressors are released and the PPAR-RXR
364 heterodimer acts as a co-activator complex (Bougarne et al. 2018). Liver x receptor alpha
365 (LXRa), encoded by the nuclear receptor subfamily 1, group H, member 3 gene (NR1H3) is
366 another ligand-activated transcription factor of relevance in NASH, which controls lipid and

367 glucose homeostasis (Voisin et al. 2020). There are and have been multiple drug discovery
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368 and clinical efforts to tackle MASH/MAFLD using small molecules targeting LXR receptors
369  (Griffett and Burris 2023). LXRa phosphorylation has been shown to induce inflammation and
370 fibrosis in the liver during high-fat diet feeding, while hepatic steatosis was found to be
371 negatively regulated via LXRo (Becares et al. 2019). Due to the calculated importance of these
372  genes in the molecular changes in human NASH, IST assigned a sensibly lower recapitulation
373  to the CCl; model in the PPAR pathway, where the metabolic NASH-driving component is
374  lacking.

375 IST explained the varying degrees of recapitulation on the Apoptosis pathway in the animal
376  models through noticeable contributions from known NASH biomarkers. While some markers
377 showed overall strong positive recapitulation (Bc/2), others showed model-specific positive
378  contributions: Fas/ (CDAA), Casp3 (BDL) and Bax (BDL, CCly) ( ). FAS ligand (FASLG)
379  induces apoptosis via binding to the FAS receptor and has been associated with NASH severity
380 (Alkhouri et al. 2015). Accordingly, IST favored CDAA ( ) because it is the only mouse
381 model with significant Fas/ upregulation ( ). Cleaved caspase 3 is often used as a
382 measurement of hepatocyte apoptosis in NASH (Feldstein et al. 2003). At the transcriptomics
383 level, IST penalizes CDAA for having a significant Casp3 downregulation, whereas it benefits
384  BDL for showing upregulation ( ). The antiapoptotic regulator B-cell lymphoma 2
385 (BCL2) interacts and inhibits pro-apoptotic proteins, as well as it reduces apoptosis-related
386 autophagy (K. Wang 2015). IST highlighted the importance of observing Bcl2 upregulation in
387  all the models, as found for BCL2 in the human data ( ). Along these lines, Bcl2
388 inhibition has showed anti-fibrotic effects in mice (Teng et al. 2020), and BCL2 promotes
389 resistance to pro-apoptotic stimuli in human hepatic stellate cells (Novo et al. 2006),
390 underlining the key role of Bcl2 in liver fibrosis progression. Another element of the apoptotic
391 cascade is the oligomerization of BCL2 associated X (BAX) and subsequent integration into the
392 mitochondrial membrane, leading to membrane rupture and cytochrome c release, which
393  triggers cleavage of pro-caspase 3 into active caspase 3 (Weiss et al. 2017). In line with this,
394  IST found that the upregulation of Bax in the CCl, and BDL models ( ) helped them
395 recapitulate apoptosis as in human NASH ( ), since BAX was also

396 upregulated in the human reference data.

397
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398

399

400 In addition to assessing the quality of animal models to represent human disease through
401  gene expression, IST can assess the molecular effect of treatment or recovery. To that end,
402  IST uses the fold changes in gene expression between treated (or recovered) animal models
403  versus those of the untreated animal model with disease. This reveals whether pathogenic
404  gene expression changes are reverted by the treatment, and in addition may reveal potential

405 unwanted effects of treatment.

406

407  To understand the capacity of IST to quantify the recovery of liver fibrosis we compared a
408  dataset during the 4-, 8- and 12-week regression phase after an 8-week CCl,-induced liver
409 fibrosis with the reversed human signatures, i.e. the fold changes between NASH fibrosis
410 stages F4 and FO. Overall, recapitulation of the healthy states in the extracellular matrix
411  organization pathway was 54% for 4-week and 68% for 12-week CCl, recovery ( ),
412  which is consistent with a partial, but not total, resolution of fibrotic phenotypes. While the
413  gene product from the Acta2 gene, aSMA, as a measure of activated fibroblasts, rapidly
414  decreased during recovery, the deposited collagen in the extracellular matrix was found to
415 remain stable at high levels, even after 12 weeks of recovery ( ). In
416  terms of gene contributions, our findings were analogous to those of NASH disease models:

417  Downregulation of well-known regulators and components of the extracellular matrix like

418  Timpl or Mmp2 ( ) contributed to the positive recapitulation of human NASH (
419 ). Interestingly, IST identified some genes that disagreed in the reversal signatures from
420 animal models at all three timepoints ( ). These included a disintegrin and

421  metalloprotease 8 (ADAMS8), downregulated in CCl, recovery while upregulated in NASH
422  fibrosis stage F4 to stage FO reversal ( ). On one hand, ADAMS8 has been associated
423  with chronic liver diseases, being increased in activated hepatic stellate cells, although the
424  authors found no correlation with MMP2 or TIMP1, and no changes in expression between
425  fibrosis stages (Schwettmann et al. 2008). On the other hand, the neutralization of ADAMS8

426  ameliorates acute CCls-induced liver injury (S.-Q. Li et al. 2014).
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427

428  One of IST’s potential applications is the in silico assessment of treatment effects. To that end
429  we used Elafibranor, a PPAR agonist that has been considered as a potential treatment for
430  NASH. Since we found CDAA was a robust model reflecting some of the main features of NASH
431 ), we used Elafibranor as a NASH treatment in this model. Applying IST, we found
432  that Elafibranor treatment showed strong recapitulations of healthy human expression
433  patterns ( ) in liver fibrosis (66%), lipid metabolism regulation by PPARa (77%),
434  apoptosis (54%), while moderate in cytokine signaling (24%). These findings are consistent
435  with literature showing a strong effect of Elafibranor in an animal model of NASH and liver
436  fibrosis (Hoek et al. 2021). Such recapitulations resembled those of 12-week CCl, recovery,

437  albeit PPARa regulation was sensibly lower in CCl4 recovery (29%).

438  For PPARa regulation of lipid metabolism, the high recapitulation in Elafibranor treatment on
439  the CDAA mouse model (77%) even exceeds the recapitulation of CDAA itself as a disease
440 model (62%,) or the recapitulation of the 12-week CCl, recovery (29%) ( ). Genes of
441  relevance for PPAR signaling that were identified by IST in NASH animal models ( )
442  RXRA, RXRB and NR1H3 (LXR), show alignment between the human NASH reversal and CDAA

443  mouse liver treated with Elafibranor ( ). We also found other genes contributing to
444  Elafibranor’s positive recapitulation ( ): PPARA, upregulated in human NASH reversal
445  and agonized by Elafibranor ( ), GLIPR1, downregulated in humans and mice (

446 ) and linked to stress-induced premature senescence as well as age-associated expression

447  increase in mice hepatocytes (Doshida et al. 2023), and FHL2, downregulated in humans and

448  mice ( ) and linked to hepatic fibrogenesis in humans and mice (Huss et al. 2013).

449
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450 Discussion

451

452  The fraction of drug candidates whose efficacy in animal models translated to clinical efficacy
453  hasremained steadily low in the last years, and it is unclear to which extent conclusions drawn
454  from animal studies translate to human disease (Pound and Bracken 2014). Despite efforts in
455  improving studies through better study design or bias control, translatability remains low due
456  to biological differences and uncertainties between organisms. This remains an unsolved
457  challenge amidst efforts to reduce unnecessary animal testing and improve animal welfare
458  (Robinson et al. 2019). Thus, it is critical to leverage data and computational methods to aid
459  the evaluation of suitable animal models for specific aspects of disease and avoid pitfalls in

460  drug design.

461 Some computational tools can aid the process of animal model evaluation. Over-
462  representation analysis of differentially expressed genes or rank-based gene set enrichment
463  analysis (GSEA) represent essential tools to investigate gene expression changes in different
464  species. However, while these analysis methods allow for the identification of affected
465  pathways, they do not systematically integrate human and animal data. More sophisticated
466  methods for the integration of human and animal model data have been developed. For
467 example, the Found in Translation (FIT) method performs cross-species comparison using
468 linear models (Normand et al. 2018). The Congruence Analysis for Model Organisms (CAMO)
469  pipeline is another attempt, based on a Bayesian mixture model to quantify pathway-specific

470  congruence scores (Zong et al. 2023).

471

472  Here we present IST, a data integration tool to specifically address the quantification of key
473  disease aspects in combination with a human reference. IST leverages transcriptomic
474  readouts of humans and disease models to account for organismal similarities and
475  differences. By design, IST provides information on the agreement between expression

476  changes in human disease and animal models on a genomic, pathway, and gene level.
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477  From a methodological perspective, IST relies on partial least squares models to define gene
478  set-specific disease scores. This was a parsimonious model choice covering three key features.
479  First, the outcome variable is computed via a linear predictor, which enables the explanation
480 of changes in disease score through an exact decomposition in terms of individual gene
481  contributions. Second, the number of features (transcripts) in a gene set can frequently
482  exceed the number of samples used for model fitting, so a penalized method is required to
483  handle the overdetermined system. The penalization was chosen not to induce sparsity,
484  capturing subtle but coordinated changes in genes that may not reach univariate significance
485 and letting the model coefficient assign an importance to that gene. Third, partial least
486  squares provide natural choices for graphical sample representation and model diagnosis via

487  its loadings and scores.

488  IST brings unique features on top of existing methods. A gene-wise predictive approach like
489  FIT can help gain signal by finding new deregulated human genes starting from the mouse
490 data, but does not quantify the degree of agreement per animal model off-the-shelf. The
491  capability of computing a single number to represent pathway agreement already existed in
492  CAMO, but there is no straightforward way to disentangle this measure by gene importance
493  among the genes that agree or disagree. IST provides a single number per gene, integrating
494  data on gene relevance for disease states classification within the pathway, change in mouse
495 model and direction agreement. Another key feature is the quantification of the magnitude
496  of change versus a desired outcome, which brings more nuance into the notion of agreement:
497  changes can be too modest, just right or overly strong while always staying in the right
498  direction. Furthermore, the formalism of IST also enables modelling quantitative outcomes in

499  the human population, like disease stages or functional readouts.

500

501 We applied IST to compare the animal models for the selected pathways in IPF and NASH
502  which complement the results of well-established gene set scoring methods such as the above
503 mentioned GSEA. While GSEA assesses whether the genes in specific pathways show a
504  statistically significant expression across conditions through the normalized enrichment score

505 (NES), IST determines if gene expression changes in animal models align with those observed
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506 inthe human reference via the percentage of recapitulation. Despite the GSEA and IST results
507 layouts look similar, the rows displaying data on animal models in IST ( ) are
508 already integrated with the human disease reference, whereas they are independent from

509 the human reference in GSEA ( ).

510

511  We applied IST to assess 6 hallmark IPF features in the Bleomycin and AAV-TGFB1 mouse
512  models. IST captured the time-course component for optimal timepoint selection in a more
513  insightful way than GSEA: IST predicted that earlier timepoints had lower recapitulation, and
514  that both AAV-TGFB1 and Bleomycin can recapitulate human molecular signatures of IPF in
515 at least 4 out of the 6 selected pathways if the appropriate time point is selected. IST
516  suggested that d14, d21 (Bleomycin) and d21 (AAV-TGFB1) are sound timepoints in which
517  both models recapitulate features of human IPF, with average recapitulations of 49.2%, 43.2%
518 and 47.5% over the 6 pathways. The peak recapitulation in both models at d21 in extracellular
519  matrix organization is in line with results published by the American Thoracic Society, which
520 reported fibrosis appearing between days 14 and 28 after Bleomycin treatment (Jenkins et al.

521 2017).

522 The demonstrated clinical concept of Nintedanib treatment, together with the controversial
523  role of VEFG signaling in IPF, provided a good opportunity to illustrate the value and
524  granularity of IST. Some reports have linked increased, and potentially aberrant and
525 overshooting neovascularization to increased Bleomycin-induced injury (Lee et al. 2008; lyer
526 et al. 2015). However, other authors argued that VEGF signaling after lung injury may act in
527 an anti-fibrotic fashion, thereby being beneficial for prolonged survival and that lower
528  expression of VEGF was correlated with a worse prognosis (Murray et al. 2017). Interestingly,
529 the authors further demonstrated the antifibrotic role of VEGF in mice after Bleomycin
530 treatment by attenuating collagen accumulation and lung remodeling. The IST results
531 quantified that the Bleomycin induced injury in mice resembled VEGF-associated gene
532  expression changes in human IPF more closely than the AAV-TGFB1 mouse model. Based on
533  ourresults, we speculate that TGFB1-expression does not induce the same degree of vascular

534  damage or injury-mediated re-vascularization as that observed upon Bleomycin-mediated
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535 lung injury. While this does not invalidate the AAV-TGFB1 model, our in silico and in vivo
536 treatment data support the hypothesis that parts of Nintedanib’s therapeutic effects on lung

537  function might be more closely recapitulated in the Bleomycin model.

538

539  We applied IST to assess 4 hallmark NASH features in the CDAA, CCl, and BDL mouse models.
540  Overall, IST predicted CDAA as the best model to recapitulate the molecular signature of
541  human fibrosis stage F4 for our selected group of 4 pathways, with an average recapitulation
542  of 86%, followed by BDL (61.5%), and CCl, (41.5%). CDAA also entailed the largest number of
543  deregulated genes at the transcriptomics level ( ). Fibrosis was the
544  best recapitulated NASH aspects for the three models, which was expected given our focus
545  on human fibrosis stage F4 versus FO. Our findings in apoptosis and cell death highlight the
546  potential of computational tools like IST to strengthen standard scoring tools like the non-

547  alcoholic fatty liver disease activity score (NAS) with apoptotic markers (Yanguas et al. 2016).

548  We showcased the capabilities of IST to assess treatments for human NASH. IST predicted the
549  partial resolution of liver fibrosis in the CCl; mouse model after 12 weeks of recovery, as a
550 positive control. IST also recognized the strong anti-fibrotic effect of the PPAR agonist
551  Elafibranor, as well as the risk of overshooting the PPARa activation. Elafibranor has recently
552  been tested in a phase 3 clinical trial in patients with NASH and fibrosis, but failed to
553  demonstrate a significant effect on NASH resolution as a monotherapy (GENFIT 2020). Taking
554  everything together, IST added new evidence to the hypothesis that despite its strong anti-
555 fibrotic effect, PPARa over-activation in animal models is among the plausible causes for
556  Elafibranor’s lack of translation to the clinic (Rodriguez et al. 2018). This highlights the

557 importance of integrating human and animal data for an early translatability assessment.

558

559  Since IPF and NASH fall under the common umbrella of fibrotic diseases, we expected to find
560 commonalities from their analyses with IST. On one hand, TIMP1 is a well-known fibrosis
561 marker in both indications, for which IST quantified a substantial positive contribution,
562  discussed in the context activation of matrix metalloproteinases and extracellular matrix

563  organization. On the other hand, we discussed the role of CTSK in recapitulating the activation
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564  of matrix metalloproteinases in human IPF, but IST also underlined a positive contribution by
565  CTSKin recapitulating extracellular matrix organization and apoptosis as they occur in human
566 NASH. There is increasing evidence about the participation of cathepsins in liver disease
567 pathophysiology and they are being investigated as biomarkers (Ruiz-Blazquez et al. 2021),
568 and Ctsk has been found induced by the knockdown of the transcription factors Elf3 or Glis2
569 in mice in the context of hepatocyte reprogramming (Loft et al. 2021). Taken together, these
570 findings suggest that CTSK may also play a role in human NASH and may deserve further

571 examination.

572

573  From the methodological perspective, the main assumptions behind IST when translating
574  between species are: (i) the orthology mapping has enough coverage and quality to simulate
575 enough changes on humans based on a one-to-one gene translatability, (ii) differential
576  changes exist in both species, and (iii) the tissues are comparable in terms of cell composition.
577  We checked to what degree such assumptions hold. Regarding point (i), on average, IPF and
578 NASH animal model signatures had 21 873 and 14 826 transcripts, which mapped to 14 005
579 and 12 047 ortholog human genes, leading to a coverage of 64% and 81%. The IPF and NASH
580 human references had 15 293 and 19 352 genes, out of which 12 425 (81%) and 12 570 (65%)
581 had a mouse ortholog. The fact that we observed good overall recapitulations in the animal
582 models, sometimes even exceeding the transcriptomics changes in humans, suggests that
583  points (i), (ii) and (iii) were covered. The gene contribution heatmaps further support points

584  (ii) and (iii) since contributions were mostly positive and in line with known disease markers.

585 IST heavily relies on the quality of the human reference data for model fitting, and specifically
586 its datatype, here bulk transcriptomics data for its broad availability. Thus, IST will only detect
587 effects that are noticeable at that molecular level and resolution. The gene-level
588 quantification was a valuable feature to detect specific instances in NASH where IST did not
589 detect known regulation events. For instance, IST was unable to distinguish isoform-specific
590 effects for Bmp1, for which paired end sequencing would be more adequate. IST did not find
591 model-specific differences between CCl, and BDL in TIMP1 regulation in the context of

592 fibrosis, since Timpl was similarly upregulated in both models. IST could not account for
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593  Casp3 cleavage when evaluating the alignment between mouse and human apoptosis, and
594  only evaluated Casp3 deregulation at the transcriptomic level. IST highlighted potential
595 disagreement between humans and mice in fibrosis resolution because conflicting changes in
596 ADAMS, where changes in human disease may be clearer at a single cell resolution. These
597 findings underline the importance of considering the trade-off between technological

598 advantages and limitations behind the molecular data used for model selection.

599

600 In summary, IST is a data integration computational approach that quantifies the alignment
601  of changes in transcriptomic profiles in animal models and treatments to those of human
602 disease. The roles of the animal and the human data are non-symmetric: IST is anchored on
603  the human reference, where it learns the pathway-level differences in disease using the gene
604  expression values, and only a signature of fold changes from animal or preclinical data is
605 needed to simulate their effect in humans. IST was successfully applied to a smaller
606 microarray dataset and a larger RNA-seq study, highlighting its robustness across platforms
607 and sample sizes. IST is highly explainable since its decisions can be traced back to the gene
608 level contributions. We found genes with key pathophysiological roles in humans and animals
609 among genes with largest contributions. The rigorous data integration cannot be achieved
610 using GSEA, where the effects of gene direction, effect size and significance are not combined
611  off-the-shelf between both species. IST’s findings on two major indications, IPF and NASH,
612  were supported by literature and by newly generated data, at the gene and pathway level.
613  This showcased the potential of IST to make data-driven choices in the selection of the most
614  appropriate animal models, hereby reducing costs and reducing ethical considerations in pre-

615 clinical animal model research.
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616 Materials and Methods

617

618 Human IPF microarray data was obtained from the GEO (Gene Expression Omnibus) entry
619 GSE47460 and subsampled according to the procedure specified in Wang and colleagues (Y.
620 Wang et al. 2017). Raw microarray data was preprocessed by averaging the probe intensities
621 for probes that represent the same gene, and further processed to obtain normalized gene

622  expression levels.

623  Principal Component Analysis (PCA) on human expression data was performed using the
624  pcaMethods R package version 1.78.0 (Stacklies et al. 2007). The following settings were
625 applied: method = "nipals", scale = "uv", center = TRUE. Descriptive plots used the first and

626  second principal components.

627  To attain class balance and focus on the common molecular features of the heterogeneous
628 IPF landscape, IPF patients were subsampled to a representative selection by computing the
629 medioids on the dimensionality-reduced principal components. The most representative IPF
630 patients (medioids) were selected by compressing their expression profiles into m =10
631  principal components (chosen min 1, 2, ..., 10 as the one maximizing the explained variance
632 in prediction Q% metric in a 5-fold cross-validation), computing all pairwise Euclidean
633  distances between IPF patients, and picking the 12 IPF patients with the lowest average
634  distance to the rest of patients. After balancing, limma v3.42.0 (Ritchie et al. 2015) was

635 applied to calculate differential expression between control and IPF patients.

636

637 Human NASH RNA-sequencing data was obtained from the GEO entry GSE162694 (Pantano
638 et al. 2021). Raw counts were preprocessed to obtain normalized gene expression levels.
639 Differential expression was assessed between participants in fibrosis stages F4 and FO using
640 limma v3.42.0 on voom-normalised read counts. The NASH human recovery signature from

641  F4 to FO was obtained by flipping the sign of each fold change.
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642

643

644  Two murine IPF preclinical models were evaluated in a single experiment: the Bleomycin and
645 the AAV-TGFB1 models, as published in the GEO entry GSE195773 (Strobel et al. 2022). After
646  acclimating for one week, mice received intratracheal administration of either 2.5 x 10711 vg
647  of AAV-TGFB1 or AAV-stuffer, 1 mg/kg Bleomycin, or NaCl solution in a volume of 50 pL. Mice
648  were sacrificed at five timepoints: day 3, 7, 14, 21 and 28. Differential expression analysis was
649  performed using Limma and the matrix of voom-normalized read counts (Ritchie et al. 2015).
650 We compared each model versus its day-matched control by timepoint: day 3, 7, 14, 21 and
651  28. This led to 5 animal model signatures for the Bleomycin model and 5 signatures for the

652  AAV-TGFB1 model.

653

654  We performed a separate experiment to specifically assess the effect of Nintedanib in lung
655 capacity on the Bleomycin and the AAV-TGFB1 models, using C57BL/6JRj animals from
656  Janvier. Mice were used in an age between 10-12 weeks. For both models, Bleomycin or
657 TGFB1 AAV (AAV6.2 (2.5E+11 VG/animal) were administered i.t. on day 0 and mice were
658  sacrificed on day 21. Nintedanib was given 50mg/kg, p.o., b.i.d. Animal experiments were
659  ethically approved by the Regierungsprasidium Tibingen, Germany; license: 16-028 and 18-

660  032. Lung function was measured as described in (Weckerle et al. 2023).

661

662  Three murine NASH preclinical models were evaluated in four newly generated experiments.

663

664  The first experiment included a CDAA (choline-deficient, L-amino acid-defined) diet-based
665 model in a cross-sectional study. It is expected that animals fed this diet develop pronounced
666 liver steatosis and a certain degree of inflammation, with an addition of cholesterol to
667  aggravate liver fibrosis. Janvier C57BI/6JRj mice with an age of 8-9 weeks were fed with either

668  choline-supplemented l-amino acid-defined (CSAA) Control E15668-04 or with CDAA 1%
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669 Cholesterol E15666-94 (https://www.ssniff.com) for 12 weeks. Animals were then sacrificed

670  to extract and sequence RNA. 200ng of RNA were used with TrueSeq mRNA stranded Single
671 Index protocol. Library was sequenced on HiSeq3000 with single end reads 85Bp reads + 7
672  index.

673 Inasecond experiment, the same CDAA model was used to test the experimental anti-fibrotic
674 compound Elafibranor. Animals were treated with vehicle (0,5% Natrosol/0,015%TWEEN 80
675 in 5 mL/kg) or 15mg of Elafibranor (Genfit 505) bid from day 10 to the end of the experiment.
676  Animals were sacrificed after 11 weeks with and without Elafibranor treatment under the
677 CDAA diet. 250ng RNA was used as input for NEB mRNA_dual Index. Sequencing was
678  performed on HiSeq4000 with 75bp single end + 8bp index.

679  The third experiment ran the CCl, (carbon tetrachloride) liver toxicity model in a time-course
680  design. Janvier C57BI/6JRj mice with an age of 8-9 weeks were fed ad libitum with standard
681 diet (KLIBA 3438). Control animals in the healthy group were fed with olive oil whereas
682  animals in disease group were fed with 10ml/kg olive oil dilution of CCl, with increasing dose:
683  0.875ml/kg at day 1, 1.75ml/kg during week 1-3, 2.5ml/kg during week 4-6 and 3.25ml/kg
684  from week 7-10. A mouse subgroup was sacrificed after 8 weeks of CCl, administration to
685  obtain an animal model signature by comparing it to matched controls. Subsequent groups
686 were left for 4, 8 and 12-week recovery to obtain three disease recovery signatures,
687 comparing to the 8-week CCl, group before recovery. 200ng of RNA were used with TrueSeq
688 mMRNA stranded Single Index protocol. Library was sequenced on HiSeq3000 with single end
689 reads 85Bp reads + 7 index.

690 The fourth experiment performed bile duct ligation (BDL) or sham surgery in a time-course
691  study. 70 male CD1 mice (8wks old at study inception) were purchased from Charles River
692  Laboratories, US. Mice were acclimated under standard housing conditions on standard diet
693  for 1wk prior to study initiation. The study was conducted in compliance with Boehringer
694  Ingelheim IACUC protocols. All mice were administered a single dose of Buprenorphine HCL
695 (0.1mg/lg) =60min prior to surgery. Mice were then anesthetized with a mixture of 2-3%
696 Isoflurane + 1L/min oxygen. For BDL, the common bile duct was exposed through a midline

697 abdominal incision, isolated from the surrounding tissue and occluded using two 5-0 sterile
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698  sutures placed 2-3 mm apart with the upper suture proximal to the hilum. The bile duct
699 remained intact. Sham animals underwent identical surgical procedures whereby the tissue
700  surrounding the bile duct was manipulated but without obstruction. The abdominal incision
701  was closed, and mice regained consciousness quickly under post-operative supervision and
702  returned to home cages for the duration of the study and maintained on standard rodent
703  chow and water diet. Mice were monitored daily for health and euthanized per timepoint
704  underisoflurane. Animals were sacrificed at 3, 5, 7, 10, and 14 days post surgery. Livers were
705  collected and saved directly into RNA-later solution. Livers in RNA-later were kept at 4°C for
706  24hrs then transferred frozen at -80°C. Liver tissue was homogenized (Tissue Lyser I, Qiagen)
707  using lysis buffer (TRIzol Reagent, Invitrogen). Total RNA was extracted from liver (PureLink
708  RNA Mini Kit, Invitrogen), purified of gDNA (PureLink Genomic DNA Mini Kit, Invitrogen) and
709 checked for quality and concentration (NanoDrop Eight Spectrophotometer,
710 ThermoScientific). RNA quality analysis was performed using dilute purified RNA (GeneAMP
711  PCR System 9700, Applied Biosystems) and (2200 TapeStation, Agilent Technologies). Samples
712  with RNA Integrity Number less than 7.0 were not included in analysis. Samples were shipped
713  to BGI Tech Solutions, (Hong Kong China) for next generation sequencing. Sequencing libraries
714  were built according to the manufacturer’s procedures for the TruSeq polyA kit. Paired-end
715  sequencing was performed on an Illumina HiSeq 3000 to a depth of roughly 25 million reads,

716  with a read length of 100 bases.

717

718 The pipeline for primary processing of NASH animal model RNA-Sequencing measurements
719  has been previously described in detail (Sollner et al. 2017). We used the mouse reference
720 genomes from Ensembl 84/GRCm38 (http://www.ensembl.org). Reads were mapped using
721  the STAR aligner (Dobin et al. 2013). The gene expression was calculated using Cufflinks
722  (Trapnell et al. 2013). Gene quantitation was performed with RSEM for generation of TPM
723  and feature counts for generation of counts used in downstream analysis. Differential
724  expression analysis was performed using Limma and the matrix of voom-normalized read

725  counts (Ritchie et al. 2015).

726  Two kinds of signatures were obtained from differential expression contrasts: animal model

727  signatures, when the contrast compared challenged animals to control animals, and
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728 treatment signatures, when the contrast compared challenged and treated animals versus

729  challenged animals.

730 In the first CDAA study, we obtained one animal model signature of CDAA versus CSAA diet
731  at 12 weeks. In the second CDAA study, we obtained one treatment signature from the CDAA
732 diet with versus without Elafibranor treatment at 11 weeks. In the CCl, study, we obtained
733  one animal model signature comparing 8 weeks of CCl, administration versus matched
734  controls, and three treatment signatures comparing 4, 8 and 12-week recovery versus the 8-
735  week CCl, group. In the BDL study, we obtained one animal model signature by focusing on

736  day 10 BDL versus sham surgery as the standard timepoint.

737

738  To assess morphological changes in liver after the CCl, challenge, a histological analysis was
739  used to calculate values describing degree of fibrosis, steatosis, and the area with aSmooth
740  Muscle Actin (aSMA) expression in histological images. Images were taken from paraffin
741  sections of mouse liver, stained by a Masson trichrome method and an aSMA staining. Slides
742  were systematically scanned with a Zeiss AxioScan.Z1 microscope (20x magnification) and
743  exported with 1:2 scaling as images in TIF-format. In these images, the liver sections were
744  segmented, and the area covered by liver then cut into mosaic tiles of size 1024 by 1024 pixels
745  (from 160 to 716 tiles per slide). Shape information of the liver section for each tile was saved
746  inimages alpha channel for reuse during image analysis. Image analysis for all slides was done
747  using HALO, a digital pathology software by Indica Labs (Corrales, NM, USA) that directly reads
748  original czi-files. The Area Quantification Module was adapted to the aSMA and Masson
749  staining and the whole tissue was analyzed. Total area with typical blue Masson staining was
750 determined and used in the calculation of a value corresponding to Collagen-content. Total
751  area with typical red RefineRed marker was determined and used in the calculation of a value
752  corresponding to aSMA-content. The Vacuole Quantification Module was adapted to the
753  Masson staining and used for the detection of vacuoles. Data were summarized with Tibco
754  Spotfire, analysis was done with GraphPad Prism. The color deconvolution could not
755  sufficiently separate the aSMA marker (stain 1) and the blue counter stain (stain 2). Therefore,
756  the area with aSMA was corrected by subtracting double stained areas. This was done in

757  Spotfire, calculating [% Stain 1 Positive Tissue] - [% Colocalized Tissue (stain 1 and 2)].


https://doi.org/10.1101/2024.06.17.599264
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.17.599264; this version posted June 17, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

758

759

760  One-to-one orthologs were retrieved from the ENSEMBL (Yates et al. 2019) homology
761  resource (jan2020.archive.ensembl.org) between Homo sapiens and Mus musculus ENSEMBL
762  identifiers were used as primary throughout the analysis. Entrez gene symbols were mapped
763  to ENSEMBL using biomaRt 2.42.0, archive version sep2019.archive.ensembl.org (Durinck et
764 al. 2009).

765

766  Pathway-related gene sets were obtained from KEGG Release 96.0+/11-20 (Kanehisa et al.
767  2022). The selection of Reactome pathways (Gillespie et al. 2021) came from MSigDB version
768 7.0, C2 category, “CP:REACTOME” subcategory (Liberzon et al. 2015).

769

770  Gene Set Enrichment Analysis, or GSEA (Subramanian et al. 2005), was performed via the
771  GSEA() function from the clusterProfiler R package version 3.14.2 (Yu et al. 2012), using
772  pathway related gene sets mentioned above. For this analysis, genes were ranked by their
773  fold changes. Mouse genes from animal model data were previously mapped to its human
774  orthologue as described above. We excluded gene sets smaller than 15 genes from our
775  analysis, while no upper limit on size was set. For each ranked list, the following parameters

776  were used: by = "fgsea", exponent = 1, pAdjustMethod = "BH", nPerm = 100000, seed = TRUE.

777

778

779  IST requires the following input data: molecular readouts for the human disease, fold changes
780 for the animal models, an orthology mapping and a list of gene sets of interest. Their
781  respective indexing notation is described in : human samples are denoted by i (ranging
782  fromijto iy), human genes by j (j1 to j,), the quantitative values of disease scores by k (k; to
783  ky,), gene sets by s (s1to sy,), and statistical contrasts by t (t; to t,,). The variables mentioned

784  throughout the methods that build on this notation are summarized in
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785
Entity Index First element Last element
Human sample i i1 In,
Human gene j Jj1 In,
Disease score value k ky ke,
Human gene set S S1 Sn,
Contrast in animal models t tq th,

786  Table 1. Indexing notation for the human, animal, orthology and gene set (pathway) data.

787

Variable Description

Xij Log2 expression value of the j-th gene for the i-th sample

Vi Disease score of the i-th sample

Ik Set of samples with a disease score of k

Tjt Log2 fold change of the j-th (ortholog) gene in the t-th disease model signature (zero
for non-significant genes)

Vis Predicted disease score for the i-th sample in the s-th gene set regression model

Bjs Coefficient of the j-th gene in the s-th gene set regression model

Eis Error in the i-th sample within the s-th gene set regression model

Xije Log2 expression value of the j-th gene for the i-th sample after in silico treatment with
the t-th signature

)A/;ts Predicted disease score for the i-th sample in the s-th gene set regression model after
in silico treatment with the t-th signature

Bjts Change in prediction within the s-th gene set regression model associated to the j-th
gene in the t-th signature

Ats Change in prediction within the s-th gene set regression model associated to the whole
t-th signature

Aos Ideal change in prediction (recapitulation) of the s-th gene set regression model
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8f jes Percentage of ideal recapitulation within the s-th gene set regression model associated
to the j-th gene in the t-th signature

Af oo Percentage of ideal recapitulation within the s-th gene set regression model associated
to the t-th signature

788  Table 2. Description of variables as used in the In silico Treatment models.

789

790 The quantitative nature of IST relies on regression models, able to predict the disease stage
791  of arbitrary humane gene expression profiles. To fit predictive models, features (human gene
792 expression readouts) x; were provided in a scale suitable for addition, such as log2-
793  transformed expression values), with no missing entries or constant genes. We further
794  defined the response variable y;, indicating disease stage. Based on disease stage, samples
795  were stratified into sample groups gy. If only control and disease samples were available, we
796 sety; = —1 for disease and y; = 1 for controls, and defined two sample groups g_1 = {i | y;

797  =-13}, g1 = {i| y; = 1} accordingly (see notation in ).

798  Partial least squares, or PLS (Mevik and Wehrens 2007) models were fit using the caret R
799  package version 6.0-85, within each gene set separately, yielding a total of ng models. Let s
800 be agene set with [ genes, noted as ji,...,j; without loss of generality. The disease scores y;;

801  were expressed as:
802 Yis = Us T xijllgjls +..+ xijlﬁjls + &is = Yis + Eis

803  where y;;, is the predicted disease score for the i-th sample in the s-th gene set. The model
804  coefficients u; and f;s were fitted using method = "kernelpls". Features were centered and
805  unit scaled. For notation convenience, g includes all the feature centering and S, includes
806 thescale, i.e. is determined by dividing the model coefficient by the scaling factor of x;;. The
807 number of components was selected from K € {1, 2, 3, 4, 5} using 5-fold cross-validation,
808 repeated 20 times. Selection criteria was the minimum root mean squared error in prediction.

809 The final model was fitted with the optimal K.
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810

811 A mainstepin IST is the projection of disease model signatures (fold changes associated with
812  a statistical contrast t) onto human expression data. As detailed above, log2 fold changes
813  were calculated following the limma convention of linear modelling (Ritchie et al. 2015). For
814  each signature, only significantly deregulated genes with |log, FC| > 0.25 and false
815 discoveryrate FDR < 5% (Benjamini and Hochberg 1995) were considered. Gene identifiers
816 were mapped to one-to-one human orthologs, thus avoiding collisions of several animal
817  genes mapping to the same human gene. Finally, the log2 fold change of an animal gene]’
818  with a human ortholog j within the t-th signature was denoted r;;, where r;, = 0 if]’ was not
819 significant in t. The projection of fold changes, which we refer to as fold change simulation or

820 overlay, was then defined as follows ( ):
821 Xije = Xij + Tjt

822  Two types of signatures were considered: disease models and treatments. Disease models
823  compare challenged versus control animals, whereas treatment signatures compare treated
824  challenged animals with untreated challenged animals. The choice of simulated human
825 samples and reference samples was determined by the corresponding sample groups. When
826  assessing disease models, the aim is to simulate the challenge from animals onto human
827 samplesin g; and compare the outcome to those in g_4. The roles of g_; and g, are switched
828  when assessing treatments. As a positive control for disease models, we included signatures

829 obtained from the human reference data.

830

831 Here we define recapitulation as the similarity between samples with simulated fold changes
832 and reference samples. Recapitulation was quantified by predicting the disease scores of
833  simulated samples using the previously fitted PLS models. The ideal recapitulation in animal

834  models within the s-th gene set ( ) was defined as:

835 Aos = median(y;;) — median(y;s)
i€Eg_1 LE gy

836  Onthe other hand, for treatments:
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837 Aos = median(y;s) — median(y;s)

L€Eg1 €91

838  When simulating the fold changes onto the human samples in g_; (animal models) or g,
839 (treatments), the predicted disease score change A = yjs — yis is independent of i, as

840 shown:

AT

Vies = Us T XijyeBjis + oo + XigeBis = s + (Xij, + 75,0 Bjys + o + (Xijy + 15,0 Bjis =

841 . . N
Vis + Tj,tBjis + oo + TjiBjis = Vis + 8jies + oo + Gjits = Vis + Dis

842  Therefore, the change can be expressed down to the gene-level contributions, defining &
843  :=r}fs which do not depend on i:
844 Aes=8jps + oo+ Ojits

845  To give a reference on the magnitude of the gene contributions §;;; and the whole signature

846  changes Aas a fraction of the ideal recapitulation, the following relative percentages were

847  defined.
6jts
848 8fjes[%] = 100
AOs
Ats
849 Af es[%] = 100 —
0s

850 Those were easier to interpret and still verify that the overall recapitulation can be expressed
851 as the sum of each gene’s contribution, i.e. Af[%]=6f},:s[%] +... + Ofjus[%]. A
852  recapitulation of Af.s~ 100% would imply that the median disease scores of samples
853  simulated with fold changes from signature t corresponds to that of the reference samples.
854  Accordingly, gene-level contributions §f ;s further show which genes had more influence in
855 the final recapitulation. This justified why IST predicted strong or weak recapitulations. Genes
856  meeting two conditions would provide large contributions in the right direction (&f s > 0,
857 i.e. agreement): having a large, significant fold change in the disease model, and finding the
858 same direction of change in the PLS model in human data. Conversely, genes with large
859  contributions in the opposite direction (6f ;s < 0, i.e. disagreement) would arise from strong

860 changesinthe disease model and the human data, but with opposite directions. Finally, genes
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861  would show little contribution (6f ;s = 0) if either they were not differential in the disease

862  model, or the PLS model found barely any changes in the human reference, or both.

863  To evaluate the statistical significance of recapitulation 4f;; of a signature t within a gene set
864 s we devised a null model for size-matched signatures and computed their recapitulation. In
865  each null trial, carried out per animal study, the identities of all the genes were shuffled, so
866 that the original number of differential genes and their fold change distribution were
867 preserved. If time points were present, this also kept longitudinal gene co-expression

868  patterns. The empirical p-values (North, Curtis, and Sham 2003) for the observed Af.s; was

Tes + 1

N+1’

869 then computed as py; = where 15 was the number of null trials, out of N = 1000,

870  with a recapitulation as extreme as Af;;. Empirical p-values were then adjusted for false

871  discovery rate.

872

’

873  The predicted disease scores for untreated samples y;; and their simulated counterparts
874 ( ) could be represented through gene set-wise boxplots. Keeping s fixed, y;s were
875 grouped in boxes by g, and y;s' by the signatures t. Every data point in the boxes
876  corresponded to a sample i. The untreated samples would illustrate the reference ranges of

877 disease scores for normal and disease states.

878  The overall gene set recapitulations Af ;s were represented in heatmaps using the pheatmap
879 R package version 1.0.12, where the rows were indexed by the signature t and the columns
880 by the gene set s. The signature with the original human fold changes would serve as a
881 reference recapitulation. Optionally, we displayed hierarchical clustering of the rows and
882  columns used Euclidean distances and the “complete” method in hclust(), to unravel patterns

883  of similar and dissimilar recapitulations in gene and signature clusters (Everitt et al. 2014).

884  Foreach gene set s, a heatmap was drawn to depict the gene level contributions. Fixing s, the
885  §js values were arranged, indexing the rows by the signature t and the columns by the gene
886  j. Again, the human signature would serve as a reference. Due to the large size of individual

887  gene sets, only the top 50 contributing genes were displayed, defined as those with the
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888 largestsum);, SJZtS. Optionally, hierarchical clustering was applied to highlight similar patterns

889 in both gene and signature recapitulations.
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897 Figure Legends

898  Figure 1 — Overview of the In Silico Treatment workflow: (a) IST conceptual workflow. First,
899 human disease samples are used to learn differences between healthy and disease gene
900 expression patterns via predictive models. Second, fold changes of significantly deregulated
901 genes in animal model signatures are overlaid onto the expression profile of their human
902 ortholog genes, in the desired human population. This process is called the fold change
903 simulation. Third, the newly obtained simulated human expression profiles are evaluated
904  against the model from the first step. This resulting disease score is compared against disease
905 scores of controls and disease. (b) Pathway models. Predictive models are fitted to gene sets
906 representing key disease hallmarks. For each pathway and signature, the outcome of the IST
907 workflow is expressed as percentage of ideal recapitulation. Signatures with recapitulations
908 close to 0% describe a very modest modification of the disease score, while those closer to
909 100% indicate a switch of the expression profiles towards the desired human population. The
910 pathway recapitulations can be decomposed into additive contributions per gene. IST thus
911 identifies what genes in a signature positively and negatively contribute to the overall

912  recapitulation, and how much.

913  Figure 2 — Assessment of animal model signatures for hallmark pathways in human IPF and
914  NASH using GSEA and the IST pathway heatmap: (A) Gene set enrichment analysis (GSEA) of
915 the human IPF signature and the animal model signatures, mapped to their ortholog human
916 genes. The heatmap depicts normalized enrichment scores (NES) from a pre-ranked GSEA for
917  six IPF-related pathways. The NES sign defines the direction of the enrichment (positive for
918 upregulation, negative for downregulation). Significance for pathway deregulation indicated
919 at 10% false discovery rate. (B) Analogously, pre-ranked GSEA of the human NASH signature
920 and the animal model signatures. (C) IST pathway heatmap for IPF human data and animal
921 models. Recapitulation percentages are displayed, being 0% no recapitulation (expression
922  profiles after fold change simulation still look like healthy humans) and 100% ideal
923  recapitulation (simulated expression profiles look like human IPF expression profiles).
924  Significance for positive recapitulation indicated as false discovery rate ranges: from 0 to 5%,
925 from 5% to 20%, and greater than 20%. (D) Analogously, IST pathway heatmap for NASH

926 human data and animal models.
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927  Figure 3 — Assessment of gene contributions in hallmark pathways in human IPF and NASH
928  using the IST gene heatmap: (A) Fold changes of disease-like states versus matched controls
929 in logarithmic scale of a selection of relevant human genes and their murine one-to-one
930 orthologs. Significance reported at 5% false discovery rate. (B) Analogous representation of
931 fold changes for a selection of relevant genes in NASH. (C) Gene contribution heatmap
932  obtained from IST, for the gene set “Activation of matrix metalloproteinases” as discussed in
933 the IPF human disease context. Genes labelled in red are discussed in the main text. The
934  heatmap scale represents gene contributions (%) for signature recapitulation. In orange,
935 positive gene contributions imply that simulating the fold change of that gene helps bring
936 human controls to IPF-like molecular profiles in that pathway, thus indicating agreement
937 between species. In blue, negative gene contributions indicate disagreement, potentially
938 implying opposite direction of change between humans and mice. In white, genes with low
939  or no contribution; implies either no significant fold change, or low feature relevance in the
940 context of classifying control versus human IPF in this pathway. The model weight scale
941  describes the coefficient for each gene after fitting the linear predictor. Positive weights
942 indicate genes that increase the disease score after upregulation, or equivalently, decrease
943 the disease score after downregulation. Negative weights indicate genes that decrease the
944  disease score after upregulation, or equivalently, increase the disease score after
945  downregulation. (D) Gene contribution heatmap for the gene set “VEGF signaling pathway”
946 in human IPF. (E) Gene contribution heatmap for the gene set “Extracellular matrix
947  organization” in human NASH. (F) Gene contribution heatmap for the gene set “Regulation of
948 lipid metabolism by PPARa” in human NASH. (G) Gene contribution heatmap for the gene set
949  “Apoptosis” in human NASH.

950  Figure 4 —IST analysis to assess recovery from human NASH using the IST pathway and gene
951 heatmaps: (A) IST pathway heatmap for the four human NASH hallmark pathways and the
952  four NASH animal model signatures (three for recovery, one for treatment). We simulated
953 fold changes on NASH F4 patients and expected good recovery signatures to bring the
954  expression profiles closer to NASH FO (ideal 100% recapitulation). (B) Fold changes of recovery
955  versus disease-like states in logarithmic scale of a selection of relevant human genes and their

956  murine one-to-one orthologs. Significance reported at 5% false discovery rate. (C) Gene
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957  contribution heatmap obtained from IST, for the gene set “Extracellular matrix organization”.
958  Gene contributions (%) indicate whether changes in recovery or treatment models align with
959  human NASH expression reversal. Positive (orange) contributions indicate changes in the
960 same direction as the human reference data, whereas negative (blue) indicates changes in
961 the opposite direction. (D) Gene contribution heatmap obtained from IST, for the gene set

962  “Regulation of lipid metabolism by PPARa”.

963  Supplementary Figure 1 — Descriptive statistics of the animal models for IPF and NASH, and
964 human IPF and NASH data: (A) Principal components 1 and 2 for the IPF human reference
965 data. IPF samples are shown in blue, while control samples are shown in red. Inclusion of
966 individual IPF samples in the medoid subset is indicated by a black outline. (B) For principal
967 components 1 to 10 in the IPF human reference data, cumulative percentage of variance
968 explained (R?) and its cross-validated version (Q?2). (C) Number of significant genes (absolute
969 log fold change above 0.25 and false discovery rate below 5%) for the human IPF and the
970 animal model signatures. (D) Lung forced vital capacity in the AAV-TGFB1 and the Bleomycin
971 models with and without Nintedanib treatment. (E) Principal components 1 and 2 for the
972  NASH human reference data. The color scale represents the fibrosis stages. (F) Number of
973  significant genes for the human NASH disease and the animal models. (G) Number of

974  significant genes for the human NASH reversal and the animal recovery signatures.

975 Supplementary Figure 2 — Regression of liver damage during CCl,;-washout in mice. (A)
976  Histological images of mouse liver during the baseline control, CCl, challenge and subsequent
977 4,8 and 12-week recovery (hematoxylin and eosin stain, Masson’s Trichrome). (B) aSMA and

978  collagen area as computed from image data.

979  Supplementary File 1 — Full gene heatmaps as computed with IST in the IPF and NASH use
980 cases. Zip file where all the genes belonging to each gene set were displayed, as opposed to
981 the figuresin the main text, which are limited to the top 50 genes. Plots include the evaluation

982  of animal models in IPF and NASH, and the evaluation of treatments or recovery in NASH.

983
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Data and code availability

All the newly generated mouse sequencing data will deposited in GEO.

The code implementing the computational methods in IST is available as an R package called

IST at https://github.com/bi-compbio/IST, with a vignette that describes the approach,

implementation, and usage. IST also bundles an interactive R shiny app, available at

https://github.com/bi-compbio/IST browser, that displays an IST results object to prioritize

signatures and pathways by recapitulation, and to compare signatures within pathways. The
code and data to reproduce the results of this manuscript can be found at

https://github.com/bi-compbio/IST results
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A Regression of liver damage during CCls-washout in C57BI/6J mice

Mouse model for Non-Alcoholic Steatohepatitis (NASH)
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