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21 Abstract
22 The translation of findings from animal models to human disease is a fundamental part in the 

23 field of drug development. However, only a small proportion of promising preclinical results 

24 in animals translate to human pathophysiology. This underscores the necessity for novel data 

25 analysis strategies to accurately evaluate the most suitable animal model for a specific 

26 purpose, ensuring cross-species translatability. To address this need, we present In Silico 

27 Treatment (IST), a computational method to assess translation of disease-related molecular 

28 expression patterns between animal models and humans. By simulating changes observed in 

29 animals onto humans, IST provides a holistic picture of how well animal models recapitulate 

30 key aspects of human disease, or how treatments transform pathogenic expression patterns 

31 to healthy ones. Furthermore, IST highlights particular genes that influence molecular 

32 features of pathogenesis or drug mode of action. We demonstrate the potential of IST with 

33 three applications using bulk transcriptomics data. First, we assessed two mouse models for 

34 idiopathic pulmonary fibrosis (IPF): one involving injury with intra-tubular Bleomycin 

35 exposure, and the other Adeno-associated-virus-induced, TGFβ1-mediated tissue 

36 transformation (AAV6.2-TGFβ1). Both models exhibited gene expression patterns resembling 

37 extracellular matrix derangement in human IPF, whereas differences in VEGF-driven 

38 vascularization were observed. Second, we confirmed known features of non-alcoholic 

39 steatohepatitis (NASH) mouse models, including choline-deficient, l-amino acid-defined diet 

40 (CDAA), carbon tetrachloride hepatotoxicity injury (CCl4) and bile duct ligation surgery (BDL). 

41 Overall, the three mouse models recapitulated expression changes related to fibrosis in 

42 human NASH, whereas model-specific differences were found in lipid metabolism, 

43 inflammation, and apoptosis. Third, we reproduced the strong anti-fibrotic signature and 

44 induction of the PPARα signaling observed in the Elafibranor experimental treatment for 

45 NASH in the CDAA model. We validated the contribution of known disease-related genes to 

46 the findings made with IST in the IPF and NASH applications. The complete data integration 

47 IST framework, including an interactive app to integrate and compare datasets, is made 

48 available as an open-source R package.

49
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50 Author summary
51 Preclinical testing plays a pivotal role in the drug development process, serving as a crucial 

52 evaluation phase before a new drug can be tested on humans in clinical trials. The drug must 

53 undergo a rigorous evaluation in in vivo and in vitro preclinical studies to assess its safety and 

54 efficacy. However, positive outcomes in preclinical animal models do not always translate to 

55 positive results in humans, mainly due to biological differences. Therefore, selecting an 

56 animal model that closely mirrors human disease traits and detecting and accounting for 

57 model limitations is of paramount importance.

58 Over the last decade, the availability of gene expression data in both animals and humans has 

59 substantially increased. Gene expression states and perturbations are routinely employed as 

60 a proxy to predict and understand changes in disease states. Here, we developed In Silico 

61 Treatment, a computational method designed to overlay the gene expression changes 

62 observed in animals onto humans, quantifying the change in human disease status. We 

63 applied this method to mouse models for idiopathic pulmonary fibrosis and non-alcoholic 

64 steatohepatitis, two severe fibrotic diseases. We successfully identified known features of the 

65 disease models and provide a granular gene-level rationale behind our predictions. 

66 Consequently, our method shows promise as an effective approach to improve animal model 

67 selection and thus clinical translation.
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68 Introduction

69 Animal models play a crucial role in improving understanding of human disease. Accordingly, 

70 drug development often relies on successful animal studies before proceeding to costly and 

71 lengthy clinical trials (Mak, Evaniew, and Ghert 2013). However, not all potential therapeutic 

72 concepts successfully translate from rodent and other animal models to humans, implying 

73 significant differences in molecular mechanisms across species that drive pathophysiology 

74 (McGonigle and Ruggeri 2014). As a result, the choice of the most appropriate animal model 

75 to study specific molecular and systemic modes of action is not straightforward, but requires 

76 a trade-off between ethical aspects regarding animal experimentation, financial and 

77 feasibility considerations, and animal model suitability to mimic the human disease (Breschi, 

78 Gingeras, and Guigó 2017; Wendler and Wehling 2010).

79 Important for the choice of suitable animal models is to understand if and how key 

80 mechanisms of pathology translate between species (Perel et al. 2007). While a given animal 

81 model may faithfully capture certain aspects of human disease, other disease-relevant 

82 mechanisms may be only poorly resembled and may require interrogation of a different 

83 model. In this regard, the quantification of model suitability from molecular readouts remains 

84 an open issue. For example, past studies have led to conflicting conclusions of low (Seok et al. 

85 2013) or high resemblance (Takao and Miyakawa 2015) between murine models and human 

86 inflammatory diseases. Taken together, we believe there is a promising potential for in silico 

87 approaches to systematically gather knowledge on the aspects of a human disease that are 

88 well reflected in each specific animal model, facilitating a more targeted approach to increase 

89 the probability of success in subsequent experiments (Michelson and Reuter 2019). While 

90 attempts in this direction exist, so far there is no consensus on how to automate the 

91 assessment of animal model suitability on a molecular or transcriptome-wide level. 

92 Here, we introduce In Silico Treatment (IST), a computational framework for the integrative 

93 analysis of human and in vivo animal model transcriptomics data. IST uses predictive 

94 modelling methods to quantify the overlap of ortholog gene expression changes between 

95 human patients and disease models for a particular human disease and molecular pathway. 

96 Besides comparing the suitability of specific animal models, IST also provides a framework to 
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97 predict whether a particular drug treatment can potentially revert disease-related molecular 

98 profiles in humans. Furthermore, IST includes features supporting the interpretation of the 

99 gene signatures that reflect pathophysiology and treatment in disease models by helping 

100 evaluate them in the human context. Thereby, IST provides an integrative picture of human 

101 and disease model data at different levels including pathway (gene set) and gene-wise 

102 granularity. 

103 We showcase capabilities and features in IST by applying it to two human diseases: Idiopathic 

104 Pulmonary Fibrosis (IPF), and Non-alcoholic Steatohepatitis (NASH). Despite the broad usage 

105 of animal models in IPF and NASH, the agreement and the resulting predictability between 

106 human and mouse gene expression changes is unknown, and thus the ability to draw 

107 conclusions from the molecular profiles remains elusive. In this context, we demonstrate how 

108 IST (i) determines which disease models for IPF and NASH most appropriately capture human 

109 gene expression changes on a pathway level helping select the most suitable animal model 

110 for pre-clinical research, (ii) evaluates potential treatments for a human disease by predicting 

111 the recovery of the healthy human molecular phenotype for each treatment on each 

112 pathway, and (iii) provides gene-level quantitative explanations behind the selection of a 

113 specific disease model or treatment compound.
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114 Results

115 In Silico Treatment uses predictive modelling to compare the gene 

116 expression changes between in vivo models using a human disease 

117 reference

118 We used gene expression data in combination with the IST framework on IPF and NASH, two 

119 fibrotic human diseases, to compare a collection of frequently used in vivo mouse models for 

120 each of the indications and pathway of interest.

121 The IST data integration workflow requires the following input data: gene expression readouts 

122 from human control and disease samples, gene expression fold changes from each preclinical 

123 model, gene sets related to the human disease, and a gene orthology mapping that links the 

124 genes in the preclinical organisms to their human orthologs. After the data integration 

125 process in IST, two main outputs are generated. Firstly, for every gene set, there is a single 

126 quantitative measure that shows how well each preclinical model captures the changes 

127 observed in the human reference within the gene set. Secondly, for every gene set and gene, 

128 there is a quantitative measure that indicates how the changes in that particular gene in the 

129 preclinical model contribute to the overall similarity of the preclinical model to the changes 

130 in the human reference.

131 The IST workflow consists of three steps: First, predictive machine learning models, here 

132 partial least squares, are fit to human gene expression data to discriminate between the 

133 control group and patients with disease (left panel, Figure 1A). Second, significant gene 

134 expression fold changes of preclinical models are simulated onto the ortholog genes of the 

135 human reference samples. This results in simulated samples, whose expression profiles have 

136 undergone the same changes that were observed in preclinical models (middle panel, Figure 

137 1A). In a third step, preclinical models are evaluated by predicting the response, also called 

138 disease score, of simulated samples based on the fitted predictive model. This quantifies 

139 whether the simulated changes have brought the simulated samples closer or further from 

140 human disease states (right panel, Figure 1A).
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141 Two alternative strategies to apply IST were devised, depending on whether to evaluate 

142 pathogenic effects in animal models or to predict the efficacy of disease treatment in humans. 

143 For the assessment of disease models, fold changes of gene expression from animal models 

144 relative to their respective controls are mapped onto human control samples. For the 

145 assessment of treatment, fold changes from treated animal models of disease relative to their 

146 untreated counterparts are mapped onto human disease samples. In both cases, a 

147 comparison of the predicted disease scores of simulated samples with that of human 

148 reference samples (disease or control samples, respectively) is performed. Disease scores are 

149 then expressed as the relative distance between simulated and human reference samples, 

150 with 100% representing ideal recapitulation and 0% no recapitulation at all (right panel, Figure 

151 1A).

152 Regarding the outputs and graphical representations from the IST framework, it is possible to 

153 fit one disease score model for each gene set that represents a key disease pathway or 

154 feature. This enables IST to make granular choices for testing specific mechanisms or aspects 

155 of disease (left panel, Figure 1B). In addition, IST provides gene-level contributions by 

156 simulating each gene separately, to find agreeing and disagreeing gene expression patterns 

157 between disease model and human pathophysiology (right panel, Figure 1B). We provide an 

158 open-source implementation of the whole IST workflow using the R programming language.

159 Comparison of the IPF disease models

160 IPF is a severe and fatal fibrotic lung disease of unknown cause, leading to aberrant lung tissue 

161 remodeling, excessive scarring, loss of tissue compliance and respiratory failure (Mari, Jones, 

162 and Richeldi 2019). Here, we used a reference IPF human dataset consisting of microarray 

163 gene expression readouts of lungs from control and IPF patients (Y. Wang et al. 2017). We 

164 then identified highly deregulated pathways in IPF by performing a gene set enrichment 

165 analysis (GSEA) (Subramanian et al. 2005) on the human reference data. We selected six 

166 disease-relevant pathways (Figure 2A), combining GSEA output and known disease 

167 pathomechanisms. 

168 Multiple animal models for IPF have been established for pre-clinical research. Here we 

169 considered the models of intra-tracheal administration of mice with the cytostatic toxin 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 17, 2024. ; https://doi.org/10.1101/2024.06.17.599264doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.17.599264
http://creativecommons.org/licenses/by/4.0/


170 Bleomycin, and a transgenic mouse model based on AAV6.2-induced overexpression of 

171 Transforming growth factor beta 1, or TGFβ1 (Strobel et al. 2015). Both the AAV-TGFβ1 and 

172 the Bleomycin mouse models were recorded across timepoints: 3, 7, 14, 21 and 28 days. After 

173 RNA sequencing, fold changes and significance were computed by timepoint. We also applied 

174 GSEA to the murine fold changes, mapping murine genes to their human orthologs (Figure 

175 2A).

176 When applying the IST workflow across all selected pathways, the output for the IPF models 

177 showed low recapitulations within early expression changes in AAV-TGFβ1 mice (3d, 7d), not 

178 entailing sufficient molecular changes to resemble the human IPF gene expression data 

179 (Figure 2C). Conversely, later time points of the AAV-TGFβ1 model (14d, 21d and 28d) have 

180 larger resemblances to the human molecular signature, suggesting a delayed response in 

181 TGFβ1-mediated injury due to time required for viral transduction, conversion of the single-

182 stranded AAV genome to transcriptionally active dsDNA, and actual gene expression. In 

183 alignment with this hypothesis and the corresponding lack of phenotypic changes (Strobel et 

184 al. 2022), we see only few differentially expressed genes at the 3d and 7d time points 

185 (Supplementary Figure 1C).

186 Aberrant extracellular remodeling, a key characteristic of several fibrotic diseases such as 

187 cardiac fibrosis, NASH, or IPF, is depicted in the extracellular matrix organization pathway in 

188 Figure 2C. IST demonstrated substantial agreement between human data with both 

189 intermediate and late time point AAV-TGFβ1 and all Bleomycin mouse model samples. The 

190 highest recapitulation of human data occurred at the 21d AAV-TGFβ1 model (67%) and the 

191 21d Bleomycin mice (54%). For genes involved in the activation of matrix metalloprotease 

192 pathway, IST indicated large positive recapitulation values. Specifically, the highest 

193 recapitulation was observed in the AAV-TGFβ1 mouse model at 21d (95%), and the Bleomycin 

194 mouse model at 14d (109%), suggesting that these specific experimental conditions are most 

195 suitable for studying the activation of matrix metalloproteases in the context of lung fibrosis. 

196 Important for extracellular matrix organization is a balance between collagen formation and 

197 collagen degradation. Interestingly, while the degradation of collagens was well represented 

198 by both IPF mouse models (Bleomycin 14d and AAV-TGFβ1 21d showing a recapitulation of 
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199 65% and 73% respectively), this was not the case for collagen formation where only AAV-

200 TGFβ1 21d mice showed a sizeable recapitulation of 46%. 

201 VEGF dependent tissue vascularization is an important factor in IPF pathology. VEGF signaling, 

202 originating mainly from airway epithelial cells, is typically moderate in the mature and heathy 

203 lung, while tissue damage and subsequent repair leads to re-vascularization (Barratt et al. 

204 2018). Although targeting vascular endothelial growth factor (VEGF) has been approved as 

205 part of a triple kinase inhibition therapeutic strategy in IPF (Nintedanib, Boehringer Ingelheim, 

206 Germany), the role of VEGF signaling in IPF remains yet controversial.  (Barratt et al. 2018)(Lee 

207 et al. 2008; Iyer et al. 2015)(Murray et al. 2017). While GSEA suggested pathway changes in 

208 opposite directions between disease models and human data (VEGF signaling pathway in 

209 Figure 2A), IST found a degree of agreement (Figure 2C), especially in the lung injury 

210 Bleomycin model (42% at 14d). Indeed, using animal model data from our facilities, when 

211 treating both mouse models with Nintedanib, lung vital capacity was only statistically 

212 significantly restored in the Bleomycin, but not in the AAV-TGFβ1 model (Supplementary 

213 Figure 1D), suggesting that the Nintedanib revertible phenotype in the prior mouse model 

214 better resembles the human pathology and its attenuation by Nintedanib. 

215 Finally, we investigated innate immune signaling by toll-like receptor mediated pathways 

216 (pathway Toll-like receptor cascades, Figure 2C) which constitute important mediators of the 

217 inflammatory response in early tissue injury and remodeling (Karampitsakos et al. 2017). As 

218 a general picture, none of the mouse models show good resemblance of the human IPF data 

219 with respect to genes present in the TLR receptor pathway, with partially opposite changes in 

220 the 21d AAV-TGFβ1 model and the 3d and 7d Bleomycin model. This disagreement between 

221 animal models and human gene expression remains to be further investigated, begging the 

222 question whether additional disease models, apart from AAV-TGFβ1 or Bleomycin treated 

223 mice could be more suitable to study the effect of IPF on the innate immune system response.

224 Comparison of NASH disease models

225 NASH, recently renamed to metabolic dysfunction-associated steatohepatitis (MASH), is a 

226 complication of non-alcoholic fatty liver disease (NAFLD) or metabolic dysfunction-associated 

227 steatotic liver disease (MASLD) (Rinella et al. 2023). NASH is an increasingly prevalent liver 
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228 disease that can progress to cirrhosis and acute or chronic liver failure and is one of the most 

229 frequent indications for liver transplantation (Younossi et al. 2018). Hepatic steatosis due to 

230 long-term exposure of individuals to high fat and high-sugar diets is considered as one of the 

231 factors promoting NASH development. Within a fatty liver the associated liver cell damage 

232 and inflammation lead to progressively increasing fibrotic scarring caused by the excessive 

233 extracellular matrix deposition and finally cirrhosis and impaired liver function (Loomba, 

234 Friedman, and Shulman 2021). We used a human NASH reference with RNA sequencing data 

235 from liver tissue of individuals with increasing pathologically assessed fibrosis stages ranging 

236 from F0 to F4, i.e., from fatty liver with no fibrosis to marked fibrosis with cirrhosis (Pantano 

237 et al. 2021). We focused on assessing how murine models capture the molecular changes in 

238 F4 compared to F0. After running GSEA on this human data, and considering known disease 

239 pathomechanisms, we selected four pathways as examples for further examination (Figure 

240 2A).

241 We considered three mouse models performed previously in our animal facilities complying 

242 with all necessary ethical and regulatory standards: the choline-deficient, l-amino acid-

243 defined dietary model (CDAA) for 12 weeks, the carbon tetrachloride hepatotoxicity injury 

244 model (CCl4) for 8 weeks and the bile duct ligation (BDL) model at 10 days after surgery, which 

245 induces cholestasis and inflammation. Overall, these models are known to show different 

246 aspects of the pathology and varying degrees of clinical translatability (Hansen et al. 2017).  

247 Here, total mRNA was sequenced by standard NGS methods, fold changes were obtained for 

248 each animal model, and GSEA was applied after mapping murine genes to their human 

249 orthologs (Figure 2C).

250 Using IST, we studied key mechanisms of fibrosis progression in NASH through the gene set 

251 of extracellular matrix organization. All evaluated disease models aligned with human fibrosis 

252 stage 4 expression patterns (Figure 2B), especially CDAA (115%) followed by BDL (78%) and 

253 CCl4 (74%). These findings were expected since those three models are well described to study 

254 aspects of severe human liver fibrosis. Our focus on fibrosis stage 4 particularly fits with the 

255 CDAA choice, a sound model to study progression to NASH (Yanguas et al. 2016). 
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256 Peroxisomes are subcellular organelles involved in β-oxidation of fatty acids as well as bile 

257 acid and cholesterol metabolism (Islinger, Cardoso, and Schrader 2010). Peroxisome 

258 proliferator-activated receptors (PPARs) are nuclear receptors regulating the proliferation of 

259 peroxisomes and consist of three subtypes, PPARα, PPARβ/δ and PPARγ. PPAR response 

260 genes are involved in glucose and lipid metabolism (Bougarne et al. 2018). IST suggests (Figure 

261 2D) that lipid metabolism regulation by PPARα, as observed in NASH liver, was partially 

262 recapitulated in CDAA (62%), BDL (45%) and to a lesser extent in CCl4 (22%). The better 

263 recapitulation of lipid metabolism dysregulation in CDAA compared to CCl4 could be related 

264 to the chemotoxic fibrotic mode of action of CCl4, lacking certain metabolic aspects of NASH, 

265 as opposed to a diet-driven model like CDAA.

266 Inflammation during NASH progression is initiated by damaged liver cells and maintained by 

267 multiple immune cell types, such as tissue resident Kupffer cells as well as infiltrating immune 

268 cells. One key aspect is the release of inflammatory mediators, mainly cytokines and 

269 chemokines. In line, disease severity in NASH patients has been shown to correlate with the 

270 levels of inflammatory cytokines as IL1B, TNFα or IL6 (Plessis et al. 2016). Using IST, we found 

271 that cytokine immune signaling mechanisms are well recapitulated by common animal 

272 models of NASH (Figure 2D), especially in CDAA (77%) and BDL (60%) models. This aligns with 

273 known inflammatory features of the models: CDAA causes panlobular inflammation since 

274 week 3, and BDL’s bile acid accumulation promotes oxidative stress and necroinflammation 

275 (Yanguas et al. 2016). 

276 The link between NASH and apoptotic pathways is well established. IST quantified the best 

277 recapitulation for CDAA (90%) and BDL (63%), followed by CCl4 (41%) (Figure 2D). IST thus 

278 distinguished signatures related to the type of cell death: the dietary nature of CDAA better 

279 aligned with cellular apoptosis as in human NASH, versus the injury by CCl4 administration, 

280 which induces necrosis rather than apoptosis (Manibusan, Odin, and Eastmond 2007). 
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281 In Silico Treatment enables a gene-level evaluation of the disease 

282 model signatures

283 In the previous section, we used IST to compare different animal models in key disease 

284 pathways, aiming at optimal animal model selection. But the bare presence of sizeable 

285 differences between animal models within a disease pathway may not give sufficient 

286 granularity about the mechanistic reasons that could make one specific animal model more 

287 suitable.

288 In this section, we showcase the IST features that allow to compare different disease models 

289 by assessing the individual gene contributions behind the pathway recapitulation scores. For 

290 every signature, we quantified the contribution of each gene to the overall signature 

291 recapitulation by simulating each gene’s fold change onto humans separately. We will use 

292 these features to explain the rationale behind some of the recapitulation values that IST 

293 predicted for the IPF and NASH models. We discuss the fold changes of some key genes 

294 (Figures 3A and 3B) and how they translate into gene contributions (Figures 3C, 3D, 3E, 3F 

295 and 3G)

296 Gene-level comparison of the IPF disease models

297 We investigated the contribution of each individual gene in two IPF pathways that showed 

298 differences between the Bleomycin and the AAV-TGFβ1 model: Activation of matrix 

299 metalloproteinases pathway and VEGF signaling pathway (Figures 3C and 3D).

300 Within the activation of matrix metalloproteinases pathway, we observed strong 

301 upregulation of the fibrosis response marker TIMP1 (Figure 3A). This upregulation was 

302 identified as highly relevant for the good recapitulation between human data and mouse 

303 models (Figure 3C). The upregulation of Timp1 during a fibrogenic response is well established 

304 (Hall et al. 2003) and its Bleomycin-mediated as well as TGF-beta dependent activation has 

305 been shown  (Strobel et al. 2015). These experimental data support the consistency between 

306 human and both mouse data sets observed by the IST analysis. Like TIMP1, the upregulation 

307 of metalloprotease MMP14 and downregulation of MMP15 (Figure 3A) showed alignment 
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308 with human IPF gene expression changes across both mouse models (Figure 3C). IST 

309 highlighted the importance of MMP8 upregulation (Figure 3A), which was specific to the 

310 Bleomycin model (Figure 3C). MMP8 has been already reported to be upregulated in both IPF 

311 patients and the Bleomycin model, and to correlate with the development of lung fibrosis, 

312 although its role in pathogenesis is not fully known (Pardo et al. 2016). In previous studies, 

313 Cathepsin K (CTSK), a member of the class of lysosomal-derived proteolytic enzymes, was 

314 found to be increased in fibrotic lung regions in patients and mice, and to provide a protective 

315 role by countering excessive deposition of collagen matrix in the diseased lung (Bühling et al. 

316 2004). Indeed, IST provided evidence that the upregulation of CTSK gene expression (Figure 

317 3A) is relevant for the alignment between human data and both animal models (Figure 3C).).

318 On the level of VEGF signaling, IST predicted that VEGFA is not the most influential gene 

319 (Figure 3D) to explain the differences in recapitulation of human IPF between the AAV-TGFβ1 

320 and Bleomycin mouse models (Figure 2C). In fact, VEGFA expression was downregulated in 

321 humans and both mouse models (Figure 3A). Instead, IST results suggest that the difference 

322 between the mouse models in recapitulating human IPF gene expression was mostly 

323 explained by differences in regulation of PLA2G4C and PRKCA (Figure 3D). Indeed, we 

324 observed missing differential expression of Pla2g4c and Prkca in the AAV-TGFβ1 21d model, 

325 while they were up- and downregulated in the Bleomycin model, respectively (Figure 3A). 

326 PLA2G4C is part of the group 4 family members of phospholipidase A2 (PLA2) which is known 

327 as mediator of damaged-induced immune infiltration and vascularization. Cytosolic PLA2 is 

328 ubiquitously present in human lung and Pla2 knock-out mice had attenuated lung immune 

329 infiltration after Bleomycin treatment (Nagase et al. 2002). The good alignment in expression 

330 changes in PLA2G4C (Figure 3D), as well as its known role in vascularization, justified choosing 

331 the Bleomycin model over the AAV-TGFβ1 when investigating drug effects on VEGF signaling. 

332 On the other hand, the expression of the PKCα kinase had been previously shown to 

333 downregulate collagen expression via the MEK/ERK signaling pathway, together with findings 

334 of PKCα downregulation in fibrotic lung disease (Tourkina et al. 2005), which is consistent with 

335 IST’s prediction via PRKCA. As for potential disagreement between mouse and human, IST 

336 pinpointed that the upregulation of Mapk13 in mice may require further investigation, as the 

337 same upregulation was not clearly found in the human reference.
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338 Gene-level comparison of the NASH disease models

339 In the previous section we found that IST predicts a high recapitulation of all animal models 

340 for the extracellular matrix organization pathway. This general agreement in IST was partly 

341 driven by several members of the pro-fibrotic tumor-derived growth factor beta 1 (TGFβ1) 

342 SMAD signaling pathway (Ghafoory et al. 2018), including a large contribution from the 

343 upregulation of tissue-inhibitor of metalloproteinases 1 (TIMP1) in humans and mice (Figure 

344 3E). TIMP1 inhibits multiple matrix metalloproteinases (MMP), thereby preventing tissue 

345 remodeling and resolution of fibrosis (Iredale 2008). TIMP1 has also been described as a 

346 serum marker for advanced liver fibrosis in NASH patients (Yilmaz and Eren 2018) and is a 

347 known driver of fibrosis progression (K. Wang et al. 2013). Interestingly, Timp1-/- mice show 

348 increased liver fibrosis in CCl4-induced liver fibrosis (H. Wang et al. 2011), while in BDL fibrosis 

349 remains unaffected by the absence of TIMP1 (Thiele et al. 2017). IST did not predict this 

350 differential behavior because Timp1 was upregulated in both CCl4 and BDL mice, as well as 

351 TIMP1 in humans (Figure 3B).  IST found agreement in the expression of Bone morphogenetic 

352 protein 1 (BMP1), see Supplementary File 1, due to its downregulation in humans and BDL 

353 and CDAA mice (Figure 3B). BMP1 processes multiple precursors of the extracellular matrix, 

354 as e.g., pro-collagen type I, and a Bmp1 splicing isoform has been shown to be a driver of 

355 disease progression in rat CCl4 models (Grgurevic et al. 2017). Since no Bmp1 differential 

356 expression was found in CCl4 mice (Figure 3B), IST did not reproduce this claim in mice.

357 IST predicted good recapitulation for the Regulation of lipid metabolism by PPARα by the 

358 CDAA and BDL models, strongly influenced by the downregulation of PPARA, RXRA, RXRB and 

359 NR1H3 (Figure 3F), as found in human NASH. These genes were however not differentially 

360 expressed in the CCl4 model (Figure 3B). PPARα can form a heterodimer with retinoid X 

361 receptors (RXRs) modulating gene expression of PPARα specific target genes via binding PPAR-

362 response elements (PPRE). In the absence of PPAR ligands, the heterodimer acts as a co-

363 repressor complex, while upon ligand binding, repressors are released and the PPAR-RXR 

364 heterodimer acts as a co-activator complex (Bougarne et al. 2018). Liver x receptor alpha 

365 (LXRα), encoded by the nuclear receptor subfamily 1, group H, member 3 gene (NR1H3) is 

366 another ligand-activated transcription factor of relevance in NASH, which controls lipid and 

367 glucose homeostasis (Voisin et al. 2020). There are and have been multiple drug discovery 
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368 and clinical efforts to tackle MASH/MAFLD using small molecules targeting LXR receptors 

369 (Griffett and Burris 2023). LXRα phosphorylation has been shown to induce inflammation and 

370 fibrosis in the liver during high-fat diet feeding, while hepatic steatosis was found to be 

371 negatively regulated via LXRα (Becares et al. 2019). Due to the calculated importance of these 

372 genes in the molecular changes in human NASH, IST assigned a sensibly lower recapitulation 

373 to the CCl4 model in the PPAR pathway, where the metabolic NASH-driving component is 

374 lacking. 

375 IST explained the varying degrees of recapitulation on the Apoptosis pathway in the animal 

376 models through noticeable contributions from known NASH biomarkers. While some markers 

377 showed overall strong positive recapitulation (Bcl2), others showed model-specific positive 

378 contributions: Fasl (CDAA), Casp3 (BDL) and Bax (BDL, CCl4) (Figure 3G). FAS ligand (FASLG) 

379 induces apoptosis via binding to the FAS receptor and has been associated with NASH severity 

380 (Alkhouri et al. 2015). Accordingly, IST favored CDAA (Figure 3G) because it is the only mouse 

381 model with significant Fasl upregulation (Figure 3B). Cleaved caspase 3 is often used as a 

382 measurement of hepatocyte apoptosis in NASH (Feldstein et al. 2003). At the transcriptomics 

383 level, IST penalizes CDAA for having a significant Casp3 downregulation, whereas it benefits 

384 BDL for showing upregulation (Figure 3B, 3G). The antiapoptotic regulator B-cell lymphoma 2 

385 (BCL2) interacts and inhibits pro-apoptotic proteins, as well as it reduces apoptosis-related 

386 autophagy (K. Wang 2015). IST highlighted the importance of observing Bcl2 upregulation in 

387 all the models, as found for BCL2 in the human data (Figure 3B, 3G). Along these lines, Bcl2 

388 inhibition has showed anti-fibrotic effects in mice (Teng et al. 2020), and BCL2 promotes 

389 resistance to pro-apoptotic stimuli in human hepatic stellate cells (Novo et al. 2006), 

390 underlining the key role of Bcl2 in liver fibrosis progression. Another element of the apoptotic 

391 cascade is the oligomerization of BCL2 associated X (BAX) and subsequent integration into the 

392 mitochondrial membrane, leading to membrane rupture and cytochrome c release, which 

393 triggers cleavage of pro-caspase 3 into active caspase 3 (Weiss et al. 2017). In line with this, 

394 IST found that the upregulation of Bax in the CCl4 and BDL models (Figure 3B) helped them 

395 recapitulate apoptosis as in human NASH (Supplementary File 1), since BAX was also 

396 upregulated in the human reference data. 

397
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398 The In Silico Treatment framework includes features to assess and 

399 compare treatments for specific indications

400 In addition to assessing the quality of animal models to represent human disease through 

401 gene expression, IST can assess the molecular effect of treatment or recovery. To that end, 

402 IST uses the fold changes in gene expression between treated (or recovered) animal models 

403 versus those of the untreated animal model with disease. This reveals whether pathogenic 

404 gene expression changes are reverted by the treatment, and in addition may reveal potential 

405 unwanted effects of treatment.

406 Fibrosis reversal following recovery from CCl4 induced liver fibrosis

407 To understand the capacity of IST to quantify the recovery of liver fibrosis we compared a 

408 dataset during the 4-, 8- and 12-week regression phase after an 8-week CCl4-induced liver 

409 fibrosis with the reversed human signatures, i.e. the fold changes between NASH fibrosis 

410 stages F4 and F0. Overall, recapitulation of the healthy states in the extracellular matrix 

411 organization pathway was 54% for 4-week and 68% for 12-week CCl4 recovery (Figure 4A), 

412 which is consistent with a partial, but not total, resolution of fibrotic phenotypes. While the 

413 gene product from the Acta2 gene, aSMA, as a measure of activated fibroblasts, rapidly 

414 decreased during recovery, the deposited collagen in the extracellular matrix was found to 

415 remain stable at high levels, even after 12 weeks of recovery (Supplementary Figure 3). In 

416 terms of gene contributions, our findings were analogous to those of NASH disease models: 

417 Downregulation of well-known regulators and components of the extracellular matrix like 

418 Timp1 or Mmp2 (Figure 4B) contributed to the positive recapitulation of human NASH (Figure 

419 4C). Interestingly, IST identified some genes that disagreed in the reversal signatures from 

420 animal models at all three timepoints (Figure 4C). These included a disintegrin and 

421 metalloprotease 8 (ADAM8), downregulated in CCl4 recovery while upregulated in NASH 

422 fibrosis stage F4 to stage F0 reversal (Figure 4B). On one hand, ADAM8 has been associated 

423 with chronic liver diseases, being increased in activated hepatic stellate cells, although the 

424 authors found no correlation with MMP2 or TIMP1, and no changes in expression between 

425 fibrosis stages (Schwettmann et al. 2008). On the other hand, the neutralization of ADAM8 

426 ameliorates acute CCl4-induced liver injury (S.-Q. Li et al. 2014). 
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427 Elafibranor Treatment 

428 One of IST’s potential applications is the in silico assessment of treatment effects. To that end 

429 we used Elafibranor, a PPAR agonist that has been considered as a potential treatment for 

430 NASH. Since we found CDAA was a robust model reflecting some of the main features of NASH 

431 (Figure 2D), we used Elafibranor as a NASH treatment in this model. Applying IST, we found 

432 that Elafibranor treatment showed strong recapitulations of healthy human expression 

433 patterns (Figure 5A) in liver fibrosis (66%), lipid metabolism regulation by PPARα (77%), 

434 apoptosis (54%), while moderate in cytokine signaling (24%). These findings are consistent 

435 with literature showing a strong effect of Elafibranor in an animal model of NASH and liver 

436 fibrosis (Hoek et al. 2021). Such recapitulations resembled those of 12-week CCl4 recovery, 

437 albeit PPARα regulation was sensibly lower in CCl4 recovery (29%). 

438 For PPARα regulation of lipid metabolism, the high recapitulation in Elafibranor treatment on 

439 the CDAA mouse model (77%) even exceeds the recapitulation of CDAA itself as a disease 

440 model (62%,) or the recapitulation of the 12-week CCl4 recovery (29%) (Figure 2D). Genes of 

441 relevance for PPAR signaling that were identified by IST in NASH animal models (Figure 3F) 

442 RXRA, RXRB and NR1H3 (LXR), show alignment between the human NASH reversal and CDAA 

443 mouse liver treated with Elafibranor (Figure 4D). We also found other genes contributing to 

444 Elafibranor’s positive recapitulation (Figure 4D): PPARA, upregulated in human NASH reversal 

445 and agonized by Elafibranor (Figure 4B), GLIPR1, downregulated in humans and mice (Figure 

446 4B) and linked to stress-induced premature senescence as well as age-associated expression 

447 increase in mice hepatocytes (Doshida et al. 2023), and FHL2, downregulated in humans and 

448 mice (Figure 4B) and linked to hepatic fibrogenesis in humans and mice (Huss et al. 2013). 

449
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450 Discussion

451 Translational landscape

452 The fraction of drug candidates whose efficacy in animal models translated to clinical efficacy 

453 has remained steadily low in the last years, and it is unclear to which extent conclusions drawn 

454 from animal studies translate to human disease (Pound and Bracken 2014). Despite efforts in 

455 improving studies through better study design or bias control, translatability remains low due 

456 to biological differences and uncertainties between organisms. This remains an unsolved 

457 challenge amidst efforts to reduce unnecessary animal testing and improve animal welfare 

458 (Robinson et al. 2019). Thus, it is critical to leverage data and computational methods to aid 

459 the evaluation of suitable animal models for specific aspects of disease and avoid pitfalls in 

460 drug design. 

461 Some computational tools can aid the process of animal model evaluation. Over-

462 representation analysis of differentially expressed genes or rank-based gene set enrichment 

463 analysis (GSEA) represent essential tools to investigate gene expression changes in different 

464 species. However, while these analysis methods allow for the identification of affected 

465 pathways, they do not systematically integrate human and animal data. More sophisticated 

466 methods for the integration of human and animal model data have been developed. For 

467 example, the Found in Translation (FIT) method performs cross-species comparison using 

468 linear models (Normand et al. 2018). The Congruence Analysis for Model Organisms (CAMO) 

469 pipeline is another attempt, based on a Bayesian mixture model to quantify pathway-specific 

470 congruence scores (Zong et al. 2023). 

471 Methodological considerations

472 Here we present IST, a data integration tool to specifically address the quantification of key 

473 disease aspects in combination with a human reference. IST leverages transcriptomic 

474 readouts of humans and disease models to account for organismal similarities and 

475 differences. By design, IST provides information on the agreement between expression 

476 changes in human disease and animal models on a genomic, pathway, and gene level. 
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477 From a methodological perspective, IST relies on partial least squares models to define gene 

478 set-specific disease scores. This was a parsimonious model choice covering three key features. 

479 First, the outcome variable is computed via a linear predictor, which enables the explanation 

480 of changes in disease score through an exact decomposition in terms of individual gene 

481 contributions. Second, the number of features (transcripts) in a gene set can frequently 

482 exceed the number of samples used for model fitting, so a penalized method is required to 

483 handle the overdetermined system. The penalization was chosen not to induce sparsity, 

484 capturing subtle but coordinated changes in genes that may not reach univariate significance 

485 and letting the model coefficient assign an importance to that gene. Third, partial least 

486 squares provide natural choices for graphical sample representation and model diagnosis via 

487 its loadings and scores.   

488 IST brings unique features on top of existing methods. A gene-wise predictive approach like 

489 FIT can help gain signal by finding new deregulated human genes starting from the mouse 

490 data, but does not quantify the degree of agreement per animal model off-the-shelf. The 

491 capability of computing a single number to represent pathway agreement already existed in 

492 CAMO, but there is no straightforward way to disentangle this measure by gene importance 

493 among the genes that agree or disagree. IST provides a single number per gene, integrating 

494 data on gene relevance for disease states classification within the pathway, change in mouse 

495 model and direction agreement. Another key feature is the quantification of the magnitude 

496 of change versus a desired outcome, which brings more nuance into the notion of agreement: 

497 changes can be too modest, just right or overly strong while always staying in the right 

498 direction. Furthermore, the formalism of IST also enables modelling quantitative outcomes in 

499 the human population, like disease stages or functional readouts.

500 Informing decisions on animal model selection 

501 We applied IST to compare the animal models for the selected pathways in IPF and NASH 

502 which complement the results of well-established gene set scoring methods such as the above 

503 mentioned GSEA. While GSEA assesses whether the genes in specific pathways show a 

504 statistically significant expression across conditions through the normalized enrichment score 

505 (NES), IST determines if gene expression changes in animal models align with those observed 
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506 in the human reference via the percentage of recapitulation. Despite the GSEA and IST results 

507 layouts look similar, the rows displaying data on animal models in IST (Figure 2C, 2D) are 

508 already integrated with the human disease reference, whereas they are independent from 

509 the human reference in GSEA (Figure 2A, 2B). 

510 IPF study

511 We applied IST to assess 6 hallmark IPF features in the Bleomycin and AAV-TGFβ1 mouse 

512 models. IST captured the time-course component for optimal timepoint selection in a more 

513 insightful way than GSEA: IST predicted that earlier timepoints had lower recapitulation, and 

514 that both AAV-TGFβ1 and Bleomycin can recapitulate human molecular signatures of IPF in 

515 at least 4 out of the 6 selected pathways if the appropriate time point is selected. IST 

516 suggested that d14, d21 (Bleomycin) and d21 (AAV-TGFβ1) are sound timepoints in which 

517 both models recapitulate features of human IPF, with average recapitulations of 49.2%, 43.2% 

518 and 47.5% over the 6 pathways. The peak recapitulation in both models at d21 in extracellular 

519 matrix organization is in line with results published by the American Thoracic Society, which 

520 reported fibrosis appearing between days 14 and 28 after Bleomycin treatment (Jenkins et al. 

521 2017).

522 The demonstrated clinical concept of Nintedanib treatment, together with the controversial 

523 role of VEFG signaling in IPF, provided a good opportunity to illustrate the value and 

524 granularity of IST. Some reports have linked increased, and potentially aberrant and 

525 overshooting neovascularization to increased Bleomycin-induced injury (Lee et al. 2008; Iyer 

526 et al. 2015). However, other authors argued that VEGF signaling after lung injury may act in 

527 an anti-fibrotic fashion, thereby being beneficial for prolonged survival and that lower 

528 expression of VEGF was correlated with a worse prognosis (Murray et al. 2017). Interestingly, 

529 the authors further demonstrated the antifibrotic role of VEGF in mice after Bleomycin 

530 treatment by attenuating collagen accumulation and lung remodeling. The IST results 

531 quantified that the Bleomycin induced injury in mice resembled VEGF-associated gene 

532 expression changes in human IPF more closely than the AAV-TGFβ1 mouse model. Based on 

533 our results, we speculate that TGFβ1-expression does not induce the same degree of vascular 

534 damage or injury-mediated re-vascularization as that observed upon Bleomycin-mediated 
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535 lung injury. While this does not invalidate the AAV-TGFβ1 model, our in silico and in vivo 

536 treatment data support the hypothesis that parts of Nintedanib’s therapeutic effects on lung 

537 function might be more closely recapitulated in the Bleomycin model.

538 NASH study

539 We applied IST to assess 4 hallmark NASH features in the CDAA, CCl4 and BDL mouse models. 

540 Overall, IST predicted CDAA as the best model to recapitulate the molecular signature of 

541 human fibrosis stage F4 for our selected group of 4 pathways, with an average recapitulation 

542 of 86%, followed by BDL (61.5%), and CCl4 (41.5%). CDAA also entailed the largest number of 

543 deregulated genes at the transcriptomics level (Supplementary Figure 1F). Fibrosis was the 

544 best recapitulated NASH aspects for the three models, which was expected given our focus 

545 on human fibrosis stage F4 versus F0. Our findings in apoptosis and cell death highlight the 

546 potential of computational tools like IST to strengthen standard scoring tools like the non-

547 alcoholic fatty liver disease activity score (NAS) with apoptotic markers (Yanguas et al. 2016).

548 We showcased the capabilities of IST to assess treatments for human NASH. IST predicted the 

549 partial resolution of liver fibrosis in the CCl4 mouse model after 12 weeks of recovery, as a 

550 positive control. IST also recognized the strong anti-fibrotic effect of the PPAR agonist 

551 Elafibranor, as well as the risk of overshooting the PPARα activation. Elafibranor has recently 

552 been tested in a phase 3 clinical trial in patients with NASH and fibrosis, but failed to 

553 demonstrate a significant effect on NASH resolution as a monotherapy (GENFIT 2020). Taking 

554 everything together, IST added new evidence to the hypothesis that despite its strong anti-

555 fibrotic effect, PPARα over-activation in animal models is among the plausible causes for 

556 Elafibranor’s lack of translation to the clinic (Rodriguez et al. 2018). This highlights the 

557 importance of integrating human and animal data for an early translatability assessment.

558 Common findings between IPF and NASH in fibrotic disease 

559 Since IPF and NASH fall under the common umbrella of fibrotic diseases, we expected to find 

560 commonalities from their analyses with IST. On one hand, TIMP1 is a well-known fibrosis 

561 marker in both indications, for which IST quantified a substantial positive contribution, 

562 discussed in the context activation of matrix metalloproteinases and extracellular matrix 

563 organization. On the other hand, we discussed the role of CTSK in recapitulating the activation 
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564 of matrix metalloproteinases in human IPF, but IST also underlined a positive contribution by 

565 CTSK in recapitulating extracellular matrix organization and apoptosis as they occur in human 

566 NASH. There is increasing evidence about the participation of cathepsins in liver disease 

567 pathophysiology and they are being investigated as biomarkers (Ruiz-Blázquez et al. 2021), 

568 and Ctsk has been found induced by the knockdown of the transcription factors Elf3 or Glis2 

569 in mice in the context of hepatocyte reprogramming (Loft et al. 2021). Taken together, these 

570 findings suggest that CTSK may also play a role in human NASH and may deserve further 

571 examination.

572 Assumptions and limitations

573 From the methodological perspective, the main assumptions behind IST when translating 

574 between species are: (i) the orthology mapping has enough coverage and quality to simulate 

575 enough changes on humans based on a one-to-one gene translatability, (ii) differential 

576 changes exist in both species, and (iii) the tissues are comparable in terms of cell composition. 

577 We checked to what degree such assumptions hold. Regarding point (i), on average, IPF and 

578 NASH animal model signatures had 21 873 and 14 826 transcripts, which mapped to 14 005 

579 and 12 047 ortholog human genes, leading to a coverage of 64% and 81%. The IPF and NASH 

580 human references had 15 293 and 19 352 genes, out of which 12 425 (81%) and 12 570 (65%) 

581 had a mouse ortholog. The fact that we observed good overall recapitulations in the animal 

582 models, sometimes even exceeding the transcriptomics changes in humans, suggests that 

583 points (i), (ii) and (iii) were covered. The gene contribution heatmaps further support points 

584 (ii) and (iii) since contributions were mostly positive and in line with known disease markers.

585 IST heavily relies on the quality of the human reference data for model fitting, and specifically 

586 its data type, here bulk transcriptomics data for its broad availability. Thus, IST will only detect 

587 effects that are noticeable at that molecular level and resolution. The gene-level 

588 quantification was a valuable feature to detect specific instances in NASH where IST did not 

589 detect known regulation events. For instance, IST was unable to distinguish isoform-specific 

590 effects for Bmp1, for which paired end sequencing would be more adequate. IST did not find 

591 model-specific differences between CCl4 and BDL in TIMP1 regulation in the context of 

592 fibrosis, since Timp1 was similarly upregulated in both models. IST could not account for 
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593 Casp3 cleavage when evaluating the alignment between mouse and human apoptosis, and 

594 only evaluated Casp3 deregulation at the transcriptomic level. IST highlighted potential 

595 disagreement between humans and mice in fibrosis resolution because conflicting changes in 

596 ADAM8, where changes in human disease may be clearer at a single cell resolution. These 

597 findings underline the importance of considering the trade-off between technological 

598 advantages and limitations behind the molecular data used for model selection.

599 Conclusions

600 In summary, IST is a data integration computational approach that quantifies the alignment 

601 of changes in transcriptomic profiles in animal models and treatments to those of human 

602 disease. The roles of the animal and the human data are non-symmetric: IST is anchored on 

603 the human reference, where it learns the pathway-level differences in disease using the gene 

604 expression values, and only a signature of fold changes from animal or preclinical data is 

605 needed to simulate their effect in humans. IST was successfully applied to a smaller 

606 microarray dataset and a larger RNA-seq study, highlighting its robustness across platforms 

607 and sample sizes. IST is highly explainable since its decisions can be traced back to the gene 

608 level contributions. We found genes with key pathophysiological roles in humans and animals 

609 among genes with largest contributions. The rigorous data integration cannot be achieved 

610 using GSEA, where the effects of gene direction, effect size and significance are not combined 

611 off-the-shelf between both species. IST’s findings on two major indications, IPF and NASH, 

612 were supported by literature and by newly generated data, at the gene and pathway level. 

613 This showcased the potential of IST to make data-driven choices in the selection of the most 

614 appropriate animal models, hereby reducing costs and reducing ethical considerations in pre-

615 clinical animal model research.
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616 Materials and Methods

617 Human IPF reference expression data

618 Human IPF microarray data was obtained from the GEO (Gene Expression Omnibus) entry 

619 GSE47460 and subsampled according to the procedure specified in Wang and colleagues (Y. 

620 Wang et al. 2017). Raw microarray data was preprocessed by averaging the probe intensities 

621 for probes that represent the same gene, and further processed to obtain normalized gene 

622 expression levels.  

623 Principal Component Analysis (PCA) on human expression data was performed using the 

624 pcaMethods R package version 1.78.0 (Stacklies et al. 2007). The following settings were 

625 applied: method = "nipals", scale = "uv", center = TRUE. Descriptive plots used the first and 

626 second principal components. 

627 To attain class balance and focus on the common molecular features of the heterogeneous 

628 IPF landscape, IPF patients were subsampled to a representative selection by computing the 

629 medioids on the dimensionality-reduced principal components. The most representative IPF 

630 patients (medioids) were selected by compressing their expression profiles into 𝑚 = 10 

631 principal components (chosen 𝑚 in 1, 2, …, 10 as the one maximizing the explained variance 

632 in prediction 𝑄2 metric in a 5-fold cross-validation), computing all pairwise Euclidean 

633 distances between IPF patients, and picking the 12 IPF patients with the lowest average 

634 distance to the rest of patients. After balancing, limma v3.42.0 (Ritchie et al. 2015) was 

635 applied to calculate differential expression between control and IPF patients.

636 Human NASH reference expression data

637 Human NASH RNA-sequencing data was obtained from the GEO entry GSE162694 (Pantano 

638 et al. 2021). Raw counts were preprocessed to obtain normalized gene expression levels. 

639 Differential expression was assessed between participants in fibrosis stages F4 and F0 using 

640 limma v3.42.0 on voom-normalised read counts. The NASH human recovery signature from 

641 F4 to F0 was obtained by flipping the sign of each fold change. 
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642 IPF disease model data

643 Expression data

644 Two murine IPF preclinical models were evaluated in a single experiment: the Bleomycin and 

645 the AAV-TGFβ1 models, as published in the GEO entry GSE195773 (Strobel et al. 2022). After 

646 acclimating for one week, mice received intratracheal administration of either 2.5 × 10^11 vg 

647 of AAV-TGFβ1 or AAV-stuffer, 1 mg/kg Bleomycin, or NaCl solution in a volume of 50 µL. Mice 

648 were sacrificed at five timepoints: day 3, 7, 14, 21 and 28. Differential expression analysis was 

649 performed using Limma and the matrix of voom-normalized read counts (Ritchie et al. 2015). 

650 We compared each model versus its day-matched control by timepoint: day 3, 7, 14, 21 and 

651 28. This led to 5 animal model signatures for the Bleomycin model and 5 signatures for the 

652 AAV-TGFβ1 model.

653 Lung capacity study

654 We performed a separate experiment to specifically assess the effect of Nintedanib in lung 

655 capacity on the Bleomycin and the AAV-TGFβ1 models, using C57BL/6JRj animals from 

656 Janvier. Mice were used in an age between 10-12 weeks. For both models, Bleomycin or 

657 TGFβ1 AAV (AAV6.2 (2.5E+11 VG/animal) were administered i.t. on day 0 and mice were 

658 sacrificed on day 21. Nintedanib was given 50mg/kg, p.o., b.i.d. Animal experiments were 

659 ethically approved by the Regierungspräsidium Tübingen, Germany; license: 16-028 and 18-

660 032. Lung function was measured as described in (Weckerle et al. 2023). 

661 NASH disease model data

662 Three murine NASH preclinical models were evaluated in four newly generated experiments. 

663 Experimental design and RNA sequencing

664 The first experiment included a CDAA (choline-deficient, L-amino acid-defined) diet-based 

665 model in a cross-sectional study. It is expected that animals fed this diet develop pronounced 

666 liver steatosis and a certain degree of inflammation, with an addition of cholesterol to 

667 aggravate liver fibrosis. Janvier C57Bl/6JRj mice with an age of 8-9 weeks were fed with either 

668 choline-supplemented l-amino acid-defined (CSAA) Control E15668-04 or with CDAA 1% 
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669 Cholesterol E15666-94 (https://www.ssniff.com) for 12 weeks. Animals were then sacrificed 

670 to extract and sequence RNA. 200ng of RNA were used with TrueSeq mRNA stranded Single 

671 Index protocol. Library was sequenced on HiSeq3000 with single end reads 85Bp reads + 7 

672 index.

673 In a second experiment, the same CDAA model was used to test the experimental anti-fibrotic 

674 compound Elafibranor. Animals were treated with vehicle (0,5% Natrosol/0,015%TWEEN 80 

675 in 5 mL/kg) or 15mg of Elafibranor (Genfit 505) bid from day 10 to the end of the experiment. 

676 Animals were sacrificed after 11 weeks with and without Elafibranor treatment under the 

677 CDAA diet. 250ng RNA was used as input for NEB mRNA_dual Index. Sequencing was 

678 performed on HiSeq4000 with 75bp single end + 8bp index. 

679 The third experiment ran the CCl4 (carbon tetrachloride) liver toxicity model in a time-course 

680 design.  Janvier C57Bl/6JRj mice with an age of 8-9 weeks were fed ad libitum with standard 

681 diet (KLIBA 3438). Control animals in the healthy group were fed with olive oil whereas 

682 animals in disease group were fed with 10ml/kg olive oil dilution of CCl4 with increasing dose: 

683 0.875ml/kg at day 1, 1.75ml/kg during week 1-3, 2.5ml/kg during week 4-6 and 3.25ml/kg 

684 from week 7-10. A mouse subgroup was sacrificed after 8 weeks of CCl4 administration to 

685 obtain an animal model signature by comparing it to matched controls. Subsequent groups 

686 were left for 4, 8 and 12-week recovery to obtain three disease recovery signatures, 

687 comparing to the 8-week CCl4 group before recovery. 200ng of RNA were used with TrueSeq 

688 mRNA stranded Single Index protocol. Library was sequenced on HiSeq3000 with single end 

689 reads 85Bp reads + 7 index. 

690 The fourth experiment performed bile duct ligation (BDL) or sham surgery in a time-course 

691 study. 70 male CD1 mice (8wks old at study inception) were purchased from Charles River 

692 Laboratories, US. Mice were acclimated under standard housing conditions on standard diet 

693 for 1wk prior to study initiation. The study was conducted in compliance with Boehringer 

694 Ingelheim IACUC protocols.  All mice were administered a single dose of Buprenorphine HCL 

695 (0.1mg/lg) ≥60min prior to surgery. Mice were then anesthetized with a mixture of 2-3% 

696 Isoflurane + 1L/min oxygen.  For BDL, the common bile duct was exposed through a midline 

697 abdominal incision, isolated from the surrounding tissue and occluded using two 5-0 sterile 
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698 sutures placed 2-3 mm apart with the upper suture proximal to the hilum. The bile duct 

699 remained intact. Sham animals underwent identical surgical procedures whereby the tissue 

700 surrounding the bile duct was manipulated but without obstruction. The abdominal incision 

701 was closed, and mice regained consciousness quickly under post-operative supervision and 

702 returned to home cages for the duration of the study and maintained on standard rodent 

703 chow and water diet. Mice were monitored daily for health and euthanized per timepoint 

704 under isoflurane. Animals were sacrificed at 3, 5, 7, 10, and 14 days post surgery. Livers were 

705 collected and saved directly into RNA-later solution. Livers in RNA-later were kept at 4°C for 

706 24hrs then transferred frozen at -80°C. Liver tissue was homogenized (Tissue Lyser II, Qiagen) 

707 using lysis buffer (TRIzol Reagent, Invitrogen). Total RNA was extracted from liver (PureLink 

708 RNA Mini Kit, Invitrogen), purified of gDNA (PureLink Genomic DNA Mini Kit, Invitrogen) and 

709 checked for quality and concentration (NanoDrop Eight Spectrophotometer, 

710 ThermoScientific). RNA quality analysis was performed using dilute purified RNA (GeneAMP 

711 PCR System 9700, Applied Biosystems) and (2200 TapeStation, Agilent Technologies). Samples 

712 with RNA Integrity Number less than 7.0 were not included in analysis. Samples were shipped 

713 to BGI Tech Solutions, (Hong Kong China) for next generation sequencing. Sequencing libraries 

714 were built according to the manufacturer’s procedures for the TruSeq polyA kit. Paired-end 

715 sequencing was performed on an Illumina HiSeq 3000 to a depth of roughly 25 million reads, 

716 with a read length of 100 bases.

717 Data processing and differential expression

718 The pipeline for primary processing of NASH animal model RNA-Sequencing measurements 

719 has been previously described in detail (Söllner et al. 2017). We used the mouse reference 

720 genomes from Ensembl 84/GRCm38 (http://www.ensembl.org).  Reads were mapped using 

721 the STAR aligner (Dobin et al. 2013). The gene expression was calculated using Cufflinks 

722 (Trapnell et al. 2013). Gene quantitation was performed with RSEM for generation of TPM 

723 and feature counts for generation of counts used in downstream analysis. Differential 

724 expression analysis was performed using Limma and the matrix of voom-normalized read 

725 counts (Ritchie et al. 2015).

726 Two kinds of signatures were obtained from differential expression contrasts: animal model 

727 signatures, when the contrast compared challenged animals to control animals, and 
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728 treatment signatures, when the contrast compared challenged and treated animals versus 

729 challenged animals.

730 In the first CDAA study, we obtained one animal model signature of CDAA versus CSAA diet 

731 at 12 weeks. In the second CDAA study, we obtained one treatment signature from the CDAA 

732 diet with versus without Elafibranor treatment at 11 weeks. In the CCl4 study, we obtained 

733 one animal model signature comparing 8 weeks of CCl4 administration versus matched 

734 controls, and three treatment signatures comparing 4, 8 and 12-week recovery versus the  8-

735 week CCl4 group. In the BDL study, we obtained one animal model signature by focusing on 

736 day 10 BDL versus sham surgery as the standard timepoint.

737 Histological analysis in CCl4 study

738 To assess morphological changes in liver after the CCl4 challenge, a histological analysis was 

739 used to calculate values describing degree of fibrosis, steatosis, and the area with αSmooth 

740 Muscle Actin (αSMA) expression in histological images. Images were taken from paraffin 

741 sections of mouse liver, stained by a Masson trichrome method and an αSMA staining. Slides 

742 were systematically scanned with a Zeiss AxioScan.Z1 microscope (20x magnification) and 

743 exported with 1:2 scaling as images in TIF-format. In these images, the liver sections were 

744 segmented, and the area covered by liver then cut into mosaic tiles of size 1024 by 1024 pixels 

745 (from 160 to 716 tiles per slide). Shape information of the liver section for each tile was saved 

746 in images alpha channel for reuse during image analysis. Image analysis for all slides was done 

747 using HALO, a digital pathology software by Indica Labs (Corrales, NM, USA) that directly reads 

748 original czi-files. The Area Quantification Module was adapted to the αSMA and Masson 

749 staining and the whole tissue was analyzed. Total area with typical blue Masson staining was 

750 determined and used in the calculation of a value corresponding to Collagen-content. Total 

751 area with typical red RefineRed marker was determined and used in the calculation of a value 

752 corresponding to αSMA-content. The Vacuole Quantification Module was adapted to the 

753 Masson staining and used for the detection of vacuoles. Data were summarized with Tibco 

754 Spotfire, analysis was done with GraphPad Prism. The color deconvolution could not 

755 sufficiently separate the aSMA marker (stain 1) and the blue counter stain (stain 2). Therefore, 

756 the area with aSMA was corrected by subtracting double stained areas. This was done in 

757 Spotfire, calculating [% Stain 1 Positive Tissue] - [% Colocalized Tissue (stain 1 and 2)].
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758 Gene annotations and mappings

759 Orthology mapping and primary gene identifiers

760 One-to-one orthologs were retrieved from the ENSEMBL (Yates et al. 2019) homology 

761 resource (jan2020.archive.ensembl.org) between Homo sapiens and Mus musculus ENSEMBL 

762 identifiers were used as primary throughout the analysis. Entrez gene symbols were mapped 

763 to ENSEMBL using biomaRt 2.42.0, archive version sep2019.archive.ensembl.org (Durinck et 

764 al. 2009).

765 Gene set and pathway data

766 Pathway-related gene sets were obtained from KEGG Release 96.0+/11-20 (Kanehisa et al. 

767 2022). The selection of Reactome pathways (Gillespie et al. 2021) came from MSigDB version 

768 7.0, C2 category, “CP:REACTOME” subcategory (Liberzon et al. 2015). 

769 Gene set enrichment analysis

770 Gene Set Enrichment Analysis, or GSEA (Subramanian et al. 2005), was performed via the 

771 GSEA() function from the clusterProfiler R package version 3.14.2 (Yu et al. 2012), using 

772 pathway related gene sets mentioned above. For this analysis, genes were ranked by their 

773 fold changes. Mouse genes from animal model data were previously mapped to its human 

774 orthologue as described above. We excluded gene sets smaller than 15 genes from our 

775 analysis, while no upper limit on size was set. For each ranked list, the following parameters 

776 were used: by = "fgsea", exponent = 1, pAdjustMethod = "BH", nPerm = 100000, seed = TRUE.

777 In Silico Treatment

778 Input data

779 IST requires the following input data: molecular readouts for the human disease, fold changes 

780 for the animal models, an orthology mapping and a list of gene sets of interest. Their 

781 respective indexing notation is described in Table 1: human samples are denoted by 𝑖 (ranging 

782 from 𝑖1 to  𝑖𝑛𝑖), human genes by 𝑗 (𝑗1 to  𝑗𝑛𝑗), the quantitative values of disease scores by 𝑘 (𝑘1 to  

783 𝑘𝑛𝑘), gene sets by 𝑠 (𝑠1 to  𝑠𝑛𝑠), and statistical contrasts by 𝑡 (𝑡1 to  𝑡𝑛𝑡). The variables mentioned 

784 throughout the methods that build on this notation are summarized in Table 2.
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785

Entity Index First element Last element

Human sample 𝑖 𝑖1 𝑖𝑛𝑖

Human gene 𝑗 𝑗1 𝑗𝑛𝑗

Disease score value 𝑘 𝑘1 𝑘𝑛𝑘

Human gene set 𝑠 𝑠1 𝑠𝑛𝑠

Contrast in animal models 𝑡 𝑡1 𝑡𝑛𝑡

786 Table 1. Indexing notation for the human, animal, orthology and gene set (pathway) data.

787

Variable  Description

𝑥𝑖𝑗 Log2 expression value of the 𝑗-th gene for the 𝑖-th sample

𝑦𝑖 Disease score of the 𝑖-th sample

𝑔𝑘 Set of samples with a disease score of 𝑘

𝑟𝑗𝑡 Log2 fold change of the 𝑗-th (ortholog) gene in the 𝑡-th disease model signature (zero 
for non-significant genes)

𝑦𝑖𝑠 Predicted disease score for the 𝑖-th sample in the 𝑠-th gene set regression model

𝛽𝑗𝑠 Coefficient of the 𝑗-th gene in the 𝑠-th gene set regression model

𝜀𝑖𝑠 Error in the 𝑖-th sample within the 𝑠-th gene set regression model

𝑥′𝑖𝑗𝑡 Log2 expression value of the 𝑗-th gene for the 𝑖-th sample after in silico treatment with 
the 𝑡-th signature

𝑦′
𝑖𝑡𝑠 Predicted disease score for the 𝑖-th sample in the 𝑠-th gene set regression model after 

in silico treatment with the 𝑡-th signature

𝛿𝑗𝑡𝑠 Change in prediction within the 𝑠-th gene set regression model associated to the 𝑗-th 
gene in the 𝑡-th signature

∆𝑡𝑠 Change in prediction within the 𝑠-th gene set regression model associated to the whole 
𝑡-th signature

∆0𝑠 Ideal change in prediction (recapitulation) of the 𝑠-th gene set regression model
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𝛿𝑓𝑗𝑡𝑠 Percentage of ideal recapitulation within the 𝑠-th gene set regression model associated 
to the 𝑗-th gene in the 𝑡-th signature

𝛥𝑓𝑡𝑠 Percentage of ideal recapitulation within the 𝑠-th gene set regression model associated 
to the 𝑡-th signature

788 Table 2. Description of variables as used in the In silico Treatment models.

789 Predictive modelling of human data

790 The quantitative nature of IST relies on regression models, able to predict the disease stage 

791 of arbitrary humane gene expression profiles. To fit predictive models, features (human gene 

792 expression readouts) 𝑥𝑖𝑗 were provided in a scale suitable for addition, such as log2-

793 transformed expression values), with no missing entries or constant genes. We further 

794 defined the response variable 𝑦𝑖, indicating disease stage. Based on disease stage, samples 

795 were stratified into sample groups 𝑔𝑘. If only control and disease samples were available, we 

796 set 𝑦𝑖 = ―1 for disease and 𝑦𝑖 = 1 for controls, and defined two sample groups 𝑔―1 =  {𝑖 | 𝑦𝑖

797 = ―1}, 𝑔1 =  {𝑖 | 𝑦𝑖 = 1} accordingly (see notation in Table 2). 

798 Partial least squares, or PLS (Mevik and Wehrens 2007) models were fit using the caret R 

799 package version 6.0-85, within each gene set separately, yielding a total of 𝑛𝑠 models. Let 𝑠 

800 be a gene set with 𝑙 genes, noted as 𝑗1,…,𝑗𝑙 without loss of generality. The disease scores 𝑦𝑖𝑠 

801 were expressed as:

802 𝑦𝑖𝑠 = 𝜇𝑠 + 𝑥𝑖𝑗1𝛽𝑗1𝑠 + … + 𝑥𝑖𝑗𝑙𝛽𝑗𝑙𝑠 + 𝜀𝑖𝑠 = 𝑦𝑖𝑠 + 𝜀𝑖𝑠

803 where 𝑦𝑖𝑠 is the predicted disease score for the 𝑖-th sample in the 𝑠-th gene set. The model 

804 coefficients 𝜇𝑠 and 𝛽𝑗𝑠 were fitted using method = "kernelpls". Features were centered and 

805 unit scaled. For notation convenience, 𝜇𝑠 includes all the feature centering and 𝛽𝑗𝑠 includes 

806 the scale, i.e. is determined by dividing the model coefficient by the scaling factor of 𝑥𝑖𝑗. The 

807 number of components was selected from 𝐾 ∈ {1, 2, 3, 4, 5} using 5-fold cross-validation, 

808 repeated 20 times. Selection criteria was the minimum root mean squared error in prediction. 

809 The final model was fitted with the optimal 𝐾. 
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810 Fold change projection

811 A main step in IST is the projection of disease model signatures (fold changes associated with 

812 a statistical contrast 𝑡) onto human expression data. As detailed above, log2 fold changes 

813 were calculated following the limma convention of linear modelling (Ritchie et al. 2015). For 

814 each signature, only significantly deregulated genes with ∣log2 𝐹𝐶∣ >  0.25 and false 

815 discovery rate 𝐹𝐷𝑅 <  5% (Benjamini and Hochberg 1995) were considered. Gene identifiers 

816 were mapped to one-to-one human orthologs, thus avoiding collisions of several animal 

817 genes mapping to the same human gene. Finally, the log2 fold change of an animal gene 𝑗 

818 with a human ortholog 𝑗 within the t-th signature was denoted 𝑟𝑗𝑡, where 𝑟𝑗𝑡 = 0 if 𝑗 was not 

819 significant in 𝑡. The projection of fold changes, which we refer to as fold change simulation or 

820 overlay, was then defined as follows (Table 2):

821 𝑥′𝑖𝑗𝑡 = 𝑥𝑖𝑗 + 𝑟𝑗𝑡

822 Two types of signatures were considered: disease models and treatments. Disease models 

823 compare challenged versus control animals, whereas treatment signatures compare treated 

824 challenged animals with untreated challenged animals. The choice of simulated human 

825 samples and reference samples was determined by the corresponding sample groups. When 

826 assessing disease models, the aim is to simulate the challenge from animals onto human 

827 samples in 𝑔1 and compare the outcome to those in 𝑔―1. The roles of 𝑔―1 and 𝑔1 are switched 

828 when assessing treatments. As a positive control for disease models, we included signatures 

829 obtained from the human reference data.

830 Quantification of disease recapitulation

831 Here we define recapitulation as the similarity between samples with simulated fold changes 

832 and reference samples. Recapitulation was quantified by predicting the disease scores of 

833 simulated samples using the previously fitted PLS models. The ideal recapitulation in animal 

834 models within the 𝑠-th gene set (Table 2) was defined as:

835 ∆0𝑠 =  median
𝑖 ∈ 𝑔―1

(𝑦𝑖𝑠) ― median
𝑖 ∈ 𝑔1

(𝑦𝑖𝑠)

836 On the other hand, for treatments:
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837 ∆0𝑠 = median
𝑖 ∈ 𝑔1

(𝑦𝑖𝑠) ― median
𝑖 ∈ 𝑔―1

(𝑦𝑖𝑠)

838 When simulating the fold changes onto the human samples in 𝑔―1 (animal models) or 𝑔1 

839 (treatments), the predicted disease score change ∆𝑡𝑠: = 𝑦′𝑖𝑡𝑠 ― 𝑦𝑖𝑠  is independent of 𝑖, as 

840 shown:

841
𝑦′

𝑖𝑡𝑠 = 𝜇𝑠 + 𝑥′𝑖𝑗1𝑡𝛽𝑗1𝑠 + … + 𝑥′𝑖𝑗𝑙𝑡𝛽𝑗𝑙𝑠 = 𝜇𝑠 + (𝑥𝑖𝑗1 + 𝑟𝑗1𝑡)𝛽𝑗1𝑠 + … + (𝑥𝑖𝑗𝑙 + 𝑟𝑗𝑙𝑡)𝛽𝑗𝑙𝑠 =
𝑦𝑖𝑠 + 𝑟𝑗1𝑡𝛽𝑗1𝑠 + … + 𝑟𝑗𝑙𝑡𝛽𝑗𝑙𝑠 = 𝑦𝑖𝑠 + 𝛿𝑗1𝑡𝑠 + … + 𝛿𝑗𝑙𝑡𝑠 = 𝑦𝑖𝑠 + ∆𝑡𝑠

842 Therefore, the change can be expressed down to the gene-level contributions, defining 𝛿𝑗𝑡𝑠

843 : = 𝑟𝑗𝑡𝛽𝑗𝑠, which do not depend on 𝑖:

844 ∆𝑡𝑠 = 𝛿𝑗1𝑡𝑠 + … + 𝛿𝑗𝑙𝑡𝑠

845 To give a reference on the magnitude of the gene contributions 𝛿𝑗𝑡𝑠 and the whole signature 

846 changes ∆𝑡𝑠as a fraction of the ideal recapitulation, the following relative percentages were 

847 defined. 

848 𝛿𝑓𝑗𝑡𝑠[%] = 100
𝛿𝑗𝑡𝑠

∆0𝑠

849 𝛥𝑓𝑡𝑠[%] = 100
∆𝑡𝑠

∆0𝑠

850 Those were easier to interpret and still verify that the overall recapitulation can be expressed 

851 as the sum of each gene’s contribution, i.e. 𝛥𝑓𝑡𝑠[%] = 𝛿𝑓𝑗1𝑡𝑠[%] +… +  𝛿𝑓𝑗𝑙𝑡𝑠[%]. A 

852 recapitulation of 𝛥𝑓𝑡𝑠 ≈ 100% would imply that the median disease scores of samples 

853 simulated with fold changes from signature 𝑡 corresponds to that of the reference samples. 

854 Accordingly, gene-level contributions 𝛿𝑓𝑗𝑡𝑠 further show which genes had more influence in 

855 the final recapitulation. This justified why IST predicted strong or weak recapitulations. Genes 

856 meeting two conditions would provide large contributions in the right direction (𝛿𝑓𝑗𝑡𝑠 ≫ 0, 

857 i.e. agreement): having a large, significant fold change in the disease model, and finding the 

858 same direction of change in the PLS model in human data. Conversely, genes with large 

859 contributions in the opposite direction (𝛿𝑓𝑗𝑡𝑠 ≪ 0, i.e. disagreement) would arise from strong 

860 changes in the disease model and the human data, but with opposite directions. Finally, genes 
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861 would show little contribution (𝛿𝑓𝑗𝑡𝑠 ≈ 0) if either they were not differential in the disease 

862 model, or the PLS model found barely any changes in the human reference, or both. 

863 To evaluate the statistical significance of recapitulation 𝛥𝑓𝑡𝑠 of a signature 𝑡 within a gene set 

864 𝑠 we devised a null model for size-matched signatures and computed their recapitulation. In 

865 each null trial, carried out per animal study, the identities of all the genes were shuffled, so 

866 that the original number of differential genes and their fold change distribution were 

867 preserved. If time points were present, this also kept longitudinal gene co-expression 

868 patterns. The empirical p-values (North, Curtis, and Sham 2003) for the observed 𝛥𝑓𝑡𝑠 was 

869 then computed as 𝑝𝑡𝑠 =  𝑟𝑡𝑠 + 1
𝑁 + 1 , where 𝑟𝑡𝑠 was the number of null trials, out of 𝑁 =  1000, 

870 with a recapitulation as extreme as 𝛥𝑓𝑡𝑠. Empirical p-values were then adjusted for false 

871 discovery rate. 

872 Graphical representations

873 The predicted disease scores for untreated samples 𝑦𝑖𝑠 and their simulated counterparts 𝑦′
𝑖𝑡𝑠 

874 (Table 2) could be represented through gene set-wise boxplots. Keeping 𝑠 fixed, 𝑦𝑖𝑠 were 

875 grouped in boxes by 𝑔𝑘 and 𝑦𝑖𝑡𝑠ʹ by the signatures 𝑡. Every data point in the boxes 

876 corresponded to a sample 𝑖. The untreated samples would illustrate the reference ranges of 

877 disease scores for normal and disease states.

878 The overall gene set recapitulations 𝛥𝑓𝑡𝑠 were represented in heatmaps using the pheatmap 

879 R package version 1.0.12, where the rows were indexed by the signature 𝑡 and the columns 

880 by the gene set 𝑠. The signature with the original human fold changes would serve as a 

881 reference recapitulation. Optionally, we displayed hierarchical clustering of the rows and 

882 columns used Euclidean distances and the “complete” method in hclust(), to unravel patterns 

883 of similar and dissimilar recapitulations in gene and signature clusters (Everitt et al. 2014).

884 For each gene set 𝑠, a heatmap was drawn to depict the gene level contributions. Fixing 𝑠, the 

885 𝛿𝑗𝑡𝑠 values were arranged, indexing the rows by the signature 𝑡 and the columns by the gene 

886 𝑗. Again, the human signature would serve as a reference. Due to the large size of individual 

887 gene sets, only the top 50 contributing genes were displayed, defined as those with the 
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888 largest sum ∑𝑡 𝛿2
𝑗𝑡𝑠. Optionally, hierarchical clustering was applied to highlight similar patterns 

889 in both gene and signature recapitulations.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 17, 2024. ; https://doi.org/10.1101/2024.06.17.599264doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.17.599264
http://creativecommons.org/licenses/by/4.0/


890 Acknowledgements
891 The authors thank David Lamb for useful early discussions and ideas on the topic. The authors 

892 thank Angela Lopez-del Rio for useful comments on the manuscript. The authors thank Glenn 

893 Gibson for his assistance with BDL surgical and study procedures. The authors thank Dagmar 

894 Knebel-Haas, Werner Rust, David Kind and Eleonora M. Capitolo for NGS data generation. The 

895 authors thank Stefano Patassini for his support throughout the publication process. The 

896 authors thank Piotr Radkowski for his support building interactive visualizations.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 17, 2024. ; https://doi.org/10.1101/2024.06.17.599264doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.17.599264
http://creativecommons.org/licenses/by/4.0/


897 Figure Legends
898 Figure 1 – Overview of the In Silico Treatment workflow: (a) IST conceptual workflow. First, 

899 human disease samples are used to learn differences between healthy and disease gene 

900 expression patterns via predictive models. Second, fold changes of significantly deregulated 

901 genes in animal model signatures are overlaid onto the expression profile of their human 

902 ortholog genes, in the desired human population. This process is called the fold change 

903 simulation. Third, the newly obtained simulated human expression profiles are evaluated 

904 against the model from the first step. This resulting disease score is compared against disease 

905 scores of controls and disease. (b) Pathway models. Predictive models are fitted to gene sets 

906 representing key disease hallmarks. For each pathway and signature, the outcome of the IST 

907 workflow is expressed as percentage of ideal recapitulation. Signatures with recapitulations 

908 close to 0% describe a very modest modification of the disease score, while those closer to 

909 100% indicate a switch of the expression profiles towards the desired human population. The 

910 pathway recapitulations can be decomposed into additive contributions per gene. IST thus 

911 identifies what genes in a signature positively and negatively contribute to the overall 

912 recapitulation, and how much.

913 Figure 2 – Assessment of animal model signatures for hallmark pathways in human IPF and 

914 NASH using GSEA and the IST pathway heatmap: (A) Gene set enrichment analysis (GSEA) of 

915 the human IPF signature and the animal model signatures, mapped to their ortholog human 

916 genes. The heatmap depicts normalized enrichment scores (NES) from a pre-ranked GSEA for 

917 six IPF-related pathways. The NES sign defines the direction of the enrichment (positive for 

918 upregulation, negative for downregulation). Significance for pathway deregulation indicated 

919 at 10% false discovery rate. (B) Analogously, pre-ranked GSEA of the human NASH signature 

920 and the animal model signatures. (C) IST pathway heatmap for IPF human data and animal 

921 models. Recapitulation percentages are displayed, being 0% no recapitulation (expression 

922 profiles after fold change simulation still look like healthy humans) and 100% ideal 

923 recapitulation (simulated expression profiles look like human IPF expression profiles). 

924 Significance for positive recapitulation indicated as false discovery rate ranges: from 0 to 5%, 

925 from 5% to 20%, and greater than 20%. (D) Analogously, IST pathway heatmap for NASH 

926 human data and animal models. 
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927 Figure 3 – Assessment of gene contributions in hallmark pathways in human IPF and NASH 

928 using the IST gene heatmap: (A) Fold changes of disease-like states versus matched controls 

929 in logarithmic scale of a selection of relevant human genes and their murine one-to-one 

930 orthologs. Significance reported at 5% false discovery rate. (B) Analogous representation of 

931 fold changes for a selection of relevant genes in NASH. (C) Gene contribution heatmap 

932 obtained from IST, for the gene set “Activation of matrix metalloproteinases” as discussed in 

933 the IPF human disease context. Genes labelled in red are discussed in the main text. The 

934 heatmap scale represents gene contributions (%) for signature recapitulation. In orange, 

935 positive gene contributions imply that simulating the fold change of that gene helps bring 

936 human controls to IPF-like molecular profiles in that pathway, thus indicating agreement 

937 between species. In blue, negative gene contributions indicate disagreement, potentially 

938 implying opposite direction of change between humans and mice. In white, genes with low 

939 or no contribution; implies either no significant fold change, or low feature relevance in the 

940 context of classifying control versus human IPF in this pathway. The model weight scale 

941 describes the coefficient for each gene after fitting the linear predictor. Positive weights 

942 indicate genes that increase the disease score after upregulation, or equivalently, decrease 

943 the disease score after downregulation. Negative weights indicate genes that decrease the 

944 disease score after upregulation, or equivalently, increase the disease score after 

945 downregulation. (D) Gene contribution heatmap for the gene set “VEGF signaling pathway” 

946 in human IPF. (E) Gene contribution heatmap for the gene set “Extracellular matrix 

947 organization” in human NASH. (F) Gene contribution heatmap for the gene set “Regulation of 

948 lipid metabolism by PPARα” in human NASH. (G) Gene contribution heatmap for the gene set 

949 “Apoptosis” in human NASH.

950 Figure 4 – IST analysis to assess recovery from human NASH using the IST pathway and gene 

951 heatmaps: (A) IST pathway heatmap for the four human NASH hallmark pathways and the 

952 four NASH animal model signatures (three for recovery, one for treatment). We simulated 

953 fold changes on NASH F4 patients and expected good recovery signatures to bring the 

954 expression profiles closer to NASH F0 (ideal 100% recapitulation). (B) Fold changes of recovery 

955 versus disease-like states in logarithmic scale of a selection of relevant human genes and their 

956 murine one-to-one orthologs. Significance reported at 5% false discovery rate. (C) Gene 
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957 contribution heatmap obtained from IST, for the gene set “Extracellular matrix organization”. 

958 Gene contributions (%) indicate whether changes in recovery or treatment models align with 

959 human NASH expression reversal. Positive (orange) contributions indicate changes in the 

960 same direction as the human reference data, whereas negative (blue) indicates changes in 

961 the opposite direction.  (D) Gene contribution heatmap obtained from IST, for the gene set 

962 “Regulation of lipid metabolism by PPARα”.

963 Supplementary Figure 1 – Descriptive statistics of the animal models for IPF and NASH, and 

964 human IPF and NASH data: (A) Principal components 1 and 2 for the IPF human reference 

965 data. IPF samples are shown in blue, while control samples are shown in red. Inclusion of 

966 individual IPF samples in the medoid subset is indicated by a black outline. (B) For principal 

967 components 1 to 10 in the IPF human reference data, cumulative percentage of variance 

968 explained (R2) and its cross-validated version (Q2). (C) Number of significant genes (absolute 

969 log fold change above 0.25 and false discovery rate below 5%) for the human IPF and the 

970 animal model signatures. (D) Lung forced vital capacity in the AAV-TGFβ1 and the Bleomycin 

971 models with and without Nintedanib treatment. (E) Principal components 1 and 2 for the 

972 NASH human reference data. The color scale represents the fibrosis stages. (F) Number of 

973 significant genes for the human NASH disease and the animal models. (G) Number of 

974 significant genes for the human NASH reversal and the animal recovery signatures.

975 Supplementary Figure 2 – Regression of liver damage during CCl4-washout in mice. (A) 

976 Histological images of mouse liver during the baseline control, CCl4 challenge and subsequent 

977 4, 8 and 12-week recovery (hematoxylin and eosin stain, Masson’s Trichrome). (B) aSMA and 

978 collagen area as computed from image data.

979 Supplementary File 1 – Full gene heatmaps as computed with IST in the IPF and NASH use 

980 cases. Zip file where all the genes belonging to each gene set were displayed, as opposed to 

981 the figures in the main text, which are limited to the top 50 genes. Plots include the evaluation 

982 of animal models in IPF and NASH, and the evaluation of treatments or recovery in NASH.

983
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984 Data and code availability
985 All the newly generated mouse sequencing data will deposited in GEO. 

986 The code implementing the computational methods in IST is available as an R package called 

987 IST at https://github.com/bi-compbio/IST, with a vignette that describes the approach, 

988 implementation, and usage. IST also bundles an interactive R shiny app, available at 

989 https://github.com/bi-compbio/IST_browser, that displays an IST results object to prioritize 

990 signatures and pathways by recapitulation, and to compare signatures within pathways. The 

991 code and data to reproduce the results of this manuscript can be found at 

992 https://github.com/bi-compbio/IST_results
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