

1 **In Silico Treatment: a computational framework for animal**

2 **model selection and drug assessment**

3 Sergio Picart-Armada^{1*}, Kolja Becker^{1*}, Marc Kaestle³, Oliver Krenkel², Eric Simon¹, Stephan
4 Tenbaum², Benjamin Strobel⁴, Kerstin Geillinger-Kaestle³, Katrin Fundel-Clemens¹, Damian
5 Matera², Kathleen Lincoln², Jon Hill⁵, Coralie Viollet¹, Ruediger Streicher², Matthew Thomas³,
6 Jan Nygaard Jensen¹, Christian Haslinger⁶, Holger Klein¹, Markus Werner², Heinrich J. Huber^{1,7},
7 Andre Broermann², Francesc Fernandez-Albert¹

8 Affiliations:

9 ¹Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH &
10 Co.KG

11 ²Global Dept. CM Diseases Research, Boehringer Ingelheim Pharma GmbH & Co.KG

12 ³Dept. Imm. and Resp. Diseases Research, Boehringer Ingelheim Pharma GmbH & Co.KG

13 ⁴Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co.KG

14 ⁵Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharmaceuticals,
15 Inc.

16 ⁶Global Comp Bio Cancer Res Vienna, Boehringer Ingelheim RCV GmbH & Co KG, 1220 Vienna,
17 Austria

18 ⁷Drug Discovery Science, Boehringer Ingelheim RCV GmbH & Co KG, 1220 Vienna, Austria

19 *: these authors have equally contributed to this work

20

21 **Abstract**

22 The translation of findings from animal models to human disease is a fundamental part in the
23 field of drug development. However, only a small proportion of promising preclinical results
24 in animals translate to human pathophysiology. This underscores the necessity for novel data
25 analysis strategies to accurately evaluate the most suitable animal model for a specific
26 purpose, ensuring cross-species translatability. To address this need, we present *In Silico*
27 Treatment (IST), a computational method to assess translation of disease-related molecular
28 expression patterns between animal models and humans. By simulating changes observed in
29 animals onto humans, IST provides a holistic picture of how well animal models recapitulate
30 key aspects of human disease, or how treatments transform pathogenic expression patterns
31 to healthy ones. Furthermore, IST highlights particular genes that influence molecular
32 features of pathogenesis or drug mode of action. We demonstrate the potential of IST with
33 three applications using bulk transcriptomics data. First, we assessed two mouse models for
34 idiopathic pulmonary fibrosis (IPF): one involving injury with intra-tubular Bleomycin
35 exposure, and the other Adeno-associated-virus-induced, TGF β 1-mediated tissue
36 transformation (AAV6.2-TGF β 1). Both models exhibited gene expression patterns resembling
37 extracellular matrix derangement in human IPF, whereas differences in VEGF-driven
38 vascularization were observed. Second, we confirmed known features of non-alcoholic
39 steatohepatitis (NASH) mouse models, including choline-deficient, l-amino acid-defined diet
40 (CDAA), carbon tetrachloride hepatotoxicity injury (CCl₄) and bile duct ligation surgery (BDL).
41 Overall, the three mouse models recapitulated expression changes related to fibrosis in
42 human NASH, whereas model-specific differences were found in lipid metabolism,
43 inflammation, and apoptosis. Third, we reproduced the strong anti-fibrotic signature and
44 induction of the PPAR α signaling observed in the Elafibranor experimental treatment for
45 NASH in the CDAA model. We validated the contribution of known disease-related genes to
46 the findings made with IST in the IPF and NASH applications. The complete data integration
47 IST framework, including an interactive app to integrate and compare datasets, is made
48 available as an open-source R package.

50 **Author summary**

51 Preclinical testing plays a pivotal role in the drug development process, serving as a crucial
52 evaluation phase before a new drug can be tested on humans in clinical trials. The drug must
53 undergo a rigorous evaluation in *in vivo* and *in vitro* preclinical studies to assess its safety and
54 efficacy. However, positive outcomes in preclinical animal models do not always translate to
55 positive results in humans, mainly due to biological differences. Therefore, selecting an
56 animal model that closely mirrors human disease traits and detecting and accounting for
57 model limitations is of paramount importance.

58 Over the last decade, the availability of gene expression data in both animals and humans has
59 substantially increased. Gene expression states and perturbations are routinely employed as
60 a proxy to predict and understand changes in disease states. Here, we developed In Silico
61 Treatment, a computational method designed to overlay the gene expression changes
62 observed in animals onto humans, quantifying the change in human disease status. We
63 applied this method to mouse models for idiopathic pulmonary fibrosis and non-alcoholic
64 steatohepatitis, two severe fibrotic diseases. We successfully identified known features of the
65 disease models and provide a granular gene-level rationale behind our predictions.
66 Consequently, our method shows promise as an effective approach to improve animal model
67 selection and thus clinical translation.

68 **Introduction**

69 Animal models play a crucial role in improving understanding of human disease. Accordingly,
70 drug development often relies on successful animal studies before proceeding to costly and
71 lengthy clinical trials (Mak, Evaniew, and Ghert 2013). However, not all potential therapeutic
72 concepts successfully translate from rodent and other animal models to humans, implying
73 significant differences in molecular mechanisms across species that drive pathophysiology
74 (McGonigle and Ruggeri 2014). As a result, the choice of the most appropriate animal model
75 to study specific molecular and systemic modes of action is not straightforward, but requires
76 a trade-off between ethical aspects regarding animal experimentation, financial and
77 feasibility considerations, and animal model suitability to mimic the human disease (Breschi,
78 Gingeras, and Guigó 2017; Wendler and Wehling 2010).

79 Important for the choice of suitable animal models is to understand if and how key
80 mechanisms of pathology translate between species (Perel et al. 2007). While a given animal
81 model may faithfully capture certain aspects of human disease, other disease-relevant
82 mechanisms may be only poorly resembled and may require interrogation of a different
83 model. In this regard, the quantification of model suitability from molecular readouts remains
84 an open issue. For example, past studies have led to conflicting conclusions of low (Seok et al.
85 2013) or high resemblance (Takao and Miyakawa 2015) between murine models and human
86 inflammatory diseases. Taken together, we believe there is a promising potential for *in silico*
87 approaches to systematically gather knowledge on the aspects of a human disease that are
88 well reflected in each specific animal model, facilitating a more targeted approach to increase
89 the probability of success in subsequent experiments (Michelson and Reuter 2019). While
90 attempts in this direction exist, so far there is no consensus on how to automate the
91 assessment of animal model suitability on a molecular or transcriptome-wide level.

92 Here, we introduce *In Silico* Treatment (IST), a computational framework for the integrative
93 analysis of human and *in vivo* animal model transcriptomics data. IST uses predictive
94 modelling methods to quantify the overlap of ortholog gene expression changes between
95 human patients and disease models for a particular human disease and molecular pathway.
96 Besides comparing the suitability of specific animal models, IST also provides a framework to

97 predict whether a particular drug treatment can potentially revert disease-related molecular
98 profiles in humans. Furthermore, IST includes features supporting the interpretation of the
99 gene signatures that reflect pathophysiology and treatment in disease models by helping
100 evaluate them in the human context. Thereby, IST provides an integrative picture of human
101 and disease model data at different levels including pathway (gene set) and gene-wise
102 granularity.

103 We showcase capabilities and features in IST by applying it to two human diseases: Idiopathic
104 Pulmonary Fibrosis (IPF), and Non-alcoholic Steatohepatitis (NASH). Despite the broad usage
105 of animal models in IPF and NASH, the agreement and the resulting predictability between
106 human and mouse gene expression changes is unknown, and thus the ability to draw
107 conclusions from the molecular profiles remains elusive. In this context, we demonstrate how
108 IST (i) determines which disease models for IPF and NASH most appropriately capture human
109 gene expression changes on a pathway level helping select the most suitable animal model
110 for pre-clinical research, (ii) evaluates potential treatments for a human disease by predicting
111 the recovery of the healthy human molecular phenotype for each treatment on each
112 pathway, and (iii) provides gene-level quantitative explanations behind the selection of a
113 specific disease model or treatment compound.

114 **Results**

115 **In Silico Treatment uses predictive modelling to compare the gene**
116 **expression changes between *in vivo* models using a human disease**
117 **reference**

118 We used gene expression data in combination with the IST framework on IPF and NASH, two
119 fibrotic human diseases, to compare a collection of frequently used *in vivo* mouse models for
120 each of the indications and pathway of interest.

121 The IST data integration workflow requires the following input data: gene expression readouts
122 from human control and disease samples, gene expression fold changes from each preclinical
123 model, gene sets related to the human disease, and a gene orthology mapping that links the
124 genes in the preclinical organisms to their human orthologs. After the data integration
125 process in IST, two main outputs are generated. Firstly, for every gene set, there is a single
126 quantitative measure that shows how well each preclinical model captures the changes
127 observed in the human reference within the gene set. Secondly, for every gene set and gene,
128 there is a quantitative measure that indicates how the changes in that particular gene in the
129 preclinical model contribute to the overall similarity of the preclinical model to the changes
130 in the human reference.

131 The IST workflow consists of three steps: First, predictive machine learning models, here
132 partial least squares, are fit to human gene expression data to discriminate between the
133 control group and patients with disease (left panel, [Figure 1A](#)). Second, significant gene
134 expression fold changes of preclinical models are simulated onto the ortholog genes of the
135 human reference samples. This results in simulated samples, whose expression profiles have
136 undergone the same changes that were observed in preclinical models (middle panel, [Figure](#)
137 [1A](#)). In a third step, preclinical models are evaluated by predicting the response, also called
138 disease score, of simulated samples based on the fitted predictive model. This quantifies
139 whether the simulated changes have brought the simulated samples closer or further from
140 human disease states (right panel, [Figure 1A](#)).

141 Two alternative strategies to apply IST were devised, depending on whether to evaluate
142 pathogenic effects in animal models or to predict the efficacy of disease treatment in humans.
143 For the assessment of disease models, fold changes of gene expression from animal models
144 relative to their respective controls are mapped onto human control samples. For the
145 assessment of treatment, fold changes from treated animal models of disease relative to their
146 untreated counterparts are mapped onto human disease samples. In both cases, a
147 comparison of the predicted disease scores of simulated samples with that of human
148 reference samples (disease or control samples, respectively) is performed. Disease scores are
149 then expressed as the relative distance between simulated and human reference samples,
150 with 100% representing ideal recapitulation and 0% no recapitulation at all (right panel, [Figure 1A](#)).
151

152 Regarding the outputs and graphical representations from the IST framework, it is possible to
153 fit one disease score model for each gene set that represents a key disease pathway or
154 feature. This enables IST to make granular choices for testing specific mechanisms or aspects
155 of disease (left panel, [Figure 1B](#)). In addition, IST provides gene-level contributions by
156 simulating each gene separately, to find agreeing and disagreeing gene expression patterns
157 between disease model and human pathophysiology (right panel, [Figure 1B](#)). We provide an
158 open-source implementation of the whole IST workflow using the R programming language.

159 [Comparison of the IPF disease models](#)

160 IPF is a severe and fatal fibrotic lung disease of unknown cause, leading to aberrant lung tissue
161 remodeling, excessive scarring, loss of tissue compliance and respiratory failure (Mari, Jones,
162 and Richeldi 2019). Here, we used a reference IPF human dataset consisting of microarray
163 gene expression readouts of lungs from control and IPF patients (Y. Wang et al. 2017). We
164 then identified highly deregulated pathways in IPF by performing a gene set enrichment
165 analysis (GSEA) (Subramanian et al. 2005) on the human reference data. We selected six
166 disease-relevant pathways ([Figure 2A](#)), combining GSEA output and known disease
167 pathomechanisms.

168 Multiple animal models for IPF have been established for pre-clinical research. Here we
169 considered the models of intra-tracheal administration of mice with the cytostatic toxin

170 Bleomycin, and a transgenic mouse model based on AAV6.2-induced overexpression of
171 Transforming growth factor beta 1, or TGF β 1 (Strobel et al. 2015). Both the AAV-TGF β 1 and
172 the Bleomycin mouse models were recorded across timepoints: 3, 7, 14, 21 and 28 days. After
173 RNA sequencing, fold changes and significance were computed by timepoint. We also applied
174 GSEA to the murine fold changes, mapping murine genes to their human orthologs (Figure
175 2A).

176 When applying the IST workflow across all selected pathways, the output for the IPF models
177 showed low recapitulations within early expression changes in AAV-TGF β 1 mice (3d, 7d), not
178 entailing sufficient molecular changes to resemble the human IPF gene expression data
179 (Figure 2C). Conversely, later time points of the AAV-TGF β 1 model (14d, 21d and 28d) have
180 larger resemblances to the human molecular signature, suggesting a delayed response in
181 TGF β 1-mediated injury due to time required for viral transduction, conversion of the single-
182 stranded AAV genome to transcriptionally active dsDNA, and actual gene expression. In
183 alignment with this hypothesis and the corresponding lack of phenotypic changes (Strobel et
184 al. 2022), we see only few differentially expressed genes at the 3d and 7d time points
185 (Supplementary Figure 1C).

186 Aberrant **extracellular remodeling**, a key characteristic of several fibrotic diseases such as
187 cardiac fibrosis, NASH, or IPF, is depicted in the extracellular matrix organization pathway in
188 Figure 2C. IST demonstrated substantial agreement between human data with both
189 intermediate and late time point AAV-TGF β 1 and all Bleomycin mouse model samples. The
190 highest recapitulation of human data occurred at the 21d AAV-TGF β 1 model (67%) and the
191 21d Bleomycin mice (54%). For genes involved in the **activation of matrix metalloprotease**
192 pathway, IST indicated large positive recapitulation values. Specifically, the highest
193 recapitulation was observed in the AAV-TGF β 1 mouse model at 21d (95%), and the Bleomycin
194 mouse model at 14d (109%), suggesting that these specific experimental conditions are most
195 suitable for studying the activation of matrix metalloproteases in the context of lung fibrosis.

196 Important for extracellular matrix organization is a balance between **collagen formation** and
197 **collagen degradation**. Interestingly, while the degradation of collagens was well represented
198 by both IPF mouse models (Bleomycin 14d and AAV-TGF β 1 21d showing a recapitulation of

199 65% and 73% respectively), this was not the case for collagen formation where only AAV-
200 TGF β 1 21d mice showed a sizeable recapitulation of 46%.

201 VEGF dependent tissue vascularization is an important factor in IPF pathology. VEGF signaling,
202 originating mainly from airway epithelial cells, is typically moderate in the mature and healthy
203 lung, while tissue damage and subsequent repair leads to re-vascularization (Barratt et al.
204 2018). Although targeting vascular endothelial growth factor (VEGF) has been approved as
205 part of a triple kinase inhibition therapeutic strategy in IPF (Nintedanib, Boehringer Ingelheim,
206 Germany), the role of VEGF signaling in IPF remains yet controversial. (Barratt et al. 2018)(Lee
207 et al. 2008; Iyer et al. 2015)(Murray et al. 2017). While GSEA suggested pathway changes in
208 opposite directions between disease models and human data (VEGF signaling pathway in
209 Figure 2A), IST found a degree of agreement (Figure 2C), especially in the lung injury
210 Bleomycin model (42% at 14d). Indeed, using animal model data from our facilities, when
211 treating both mouse models with Nintedanib, lung vital capacity was only statistically
212 significantly restored in the Bleomycin, but not in the AAV-TGF β 1 model (Supplementary
213 Figure 1D), suggesting that the Nintedanib revertible phenotype in the prior mouse model
214 better resembles the human pathology and its attenuation by Nintedanib.

215 Finally, we investigated innate immune signaling by toll-like receptor mediated pathways
216 (pathway Toll-like receptor cascades, Figure 2C) which constitute important mediators of the
217 inflammatory response in early tissue injury and remodeling (Karampitsakos et al. 2017). As
218 a general picture, none of the mouse models show good resemblance of the human IPF data
219 with respect to genes present in the TLR receptor pathway, with partially opposite changes in
220 the 21d AAV-TGF β 1 model and the 3d and 7d Bleomycin model. This disagreement between
221 animal models and human gene expression remains to be further investigated, begging the
222 question whether additional disease models, apart from AAV-TGF β 1 or Bleomycin treated
223 mice could be more suitable to study the effect of IPF on the innate immune system response.

224 Comparison of NASH disease models

225 NASH, recently renamed to metabolic dysfunction-associated steatohepatitis (MASH), is a
226 complication of non-alcoholic fatty liver disease (NAFLD) or metabolic dysfunction-associated
227 steatotic liver disease (MASLD) (Rinella et al. 2023). NASH is an increasingly prevalent liver

228 disease that can progress to cirrhosis and acute or chronic liver failure and is one of the most
229 frequent indications for liver transplantation (Younossi et al. 2018). Hepatic steatosis due to
230 long-term exposure of individuals to high fat and high-sugar diets is considered as one of the
231 factors promoting NASH development. Within a fatty liver the associated liver cell damage
232 and inflammation lead to progressively increasing fibrotic scarring caused by the excessive
233 extracellular matrix deposition and finally cirrhosis and impaired liver function (Loomba,
234 Friedman, and Shulman 2021). We used a human NASH reference with RNA sequencing data
235 from liver tissue of individuals with increasing pathologically assessed fibrosis stages ranging
236 from F0 to F4, i.e., from fatty liver with no fibrosis to marked fibrosis with cirrhosis (Pantano
237 et al. 2021). We focused on assessing how murine models capture the molecular changes in
238 F4 compared to F0. After running GSEA on this human data, and considering known disease
239 pathomechanisms, we selected four pathways as examples for further examination (Figure
240 2A).

241 We considered three mouse models performed previously in our animal facilities complying
242 with all necessary ethical and regulatory standards: the choline-deficient, l-amino acid-
243 defined dietary model (CDAA) for 12 weeks, the carbon tetrachloride hepatotoxicity injury
244 model (CCl₄) for 8 weeks and the bile duct ligation (BDL) model at 10 days after surgery, which
245 induces cholestasis and inflammation. Overall, these models are known to show different
246 aspects of the pathology and varying degrees of clinical translatability (Hansen et al. 2017).
247 Here, total mRNA was sequenced by standard NGS methods, fold changes were obtained for
248 each animal model, and GSEA was applied after mapping murine genes to their human
249 orthologs (Figure 2C).

250 Using IST, we studied key mechanisms of fibrosis progression in NASH through the gene set
251 of extracellular matrix organization. All evaluated disease models aligned with human fibrosis
252 stage 4 expression patterns (Figure 2B), especially CDAA (115%) followed by BDL (78%) and
253 CCl₄ (74%). These findings were expected since those three models are well described to study
254 aspects of severe human liver fibrosis. Our focus on fibrosis stage 4 particularly fits with the
255 CDAA choice, a sound model to study progression to NASH (Yanguas et al. 2016).

256 **Peroxisomes** are subcellular organelles involved in β -oxidation of fatty acids as well as bile
257 acid and cholesterol metabolism (Islinger, Cardoso, and Schrader 2010). Peroxisome
258 proliferator-activated receptors (PPARs) are nuclear receptors regulating the proliferation of
259 peroxisomes and consist of three subtypes, PPAR α , PPAR β/δ and PPAR γ . PPAR response
260 genes are involved in glucose and lipid metabolism (Bougarne et al. 2018). IST suggests (**Figure**
261 **2D**) that lipid metabolism regulation by PPAR α , as observed in NASH liver, was partially
262 recapitulated in CDAA (62%), BDL (45%) and to a lesser extent in CCl₄ (22%). The better
263 recapitulation of lipid metabolism dysregulation in CDAA compared to CCl₄ could be related
264 to the chemotoxic fibrotic mode of action of CCl₄, lacking certain metabolic aspects of NASH,
265 as opposed to a diet-driven model like CDAA.

266 Inflammation during NASH progression is initiated by damaged liver cells and maintained by
267 multiple immune cell types, such as tissue resident Kupffer cells as well as infiltrating immune
268 cells. One key aspect is the release of inflammatory mediators, mainly cytokines and
269 chemokines. In line, disease severity in NASH patients has been shown to correlate with the
270 levels of inflammatory cytokines as IL1B, TNF α or IL6 (Plessis et al. 2016). Using IST, we found
271 that **cytokine immune signaling** mechanisms are well recapitulated by common animal
272 models of NASH (**Figure 2D**), especially in CDAA (77%) and BDL (60%) models. This aligns with
273 known inflammatory features of the models: CDAA causes panlobular inflammation since
274 week 3, and BDL's bile acid accumulation promotes oxidative stress and necroinflammation
275 (Yanguas et al. 2016).

276 The link between NASH and **apoptotic pathways** is well established. IST quantified the best
277 recapitulation for CDAA (90%) and BDL (63%), followed by CCl₄ (41%) (**Figure 2D**). IST thus
278 distinguished signatures related to the type of cell death: the dietary nature of CDAA better
279 aligned with cellular apoptosis as in human NASH, versus the injury by CCl₄ administration,
280 which induces necrosis rather than apoptosis (Manibusan, Odin, and Eastmond 2007).

281 In Silico Treatment enables a gene-level evaluation of the disease 282 model signatures

283 In the previous section, we used IST to compare different animal models in key disease
284 pathways, aiming at optimal animal model selection. But the bare presence of sizeable
285 differences between animal models within a disease pathway may not give sufficient
286 granularity about the mechanistic reasons that could make one specific animal model more
287 suitable.

288 In this section, we showcase the IST features that allow to compare different disease models
289 by assessing the individual gene contributions behind the pathway recapitulation scores. For
290 every signature, we quantified the contribution of each gene to the overall signature
291 recapitulation by simulating each gene's fold change onto humans separately. We will use
292 these features to explain the rationale behind some of the recapitulation values that IST
293 predicted for the IPF and NASH models. We discuss the fold changes of some key genes
294 (Figures 3A and 3B) and how they translate into gene contributions (Figures 3C, 3D, 3E, 3F
295 and 3G)

296 Gene-level comparison of the IPF disease models

297 We investigated the contribution of each individual gene in two IPF pathways that showed
298 differences between the Bleomycin and the AAV-TGF β 1 model: Activation of matrix
299 metalloproteinases pathway and VEGF signaling pathway (Figures 3C and 3D).

300 Within the activation of matrix metalloproteinases pathway, we observed strong
301 upregulation of the fibrosis response marker *TIMP1* (Figure 3A). This upregulation was
302 identified as highly relevant for the good recapitulation between human data and mouse
303 models (Figure 3C). The upregulation of *Timp1* during a fibrogenic response is well established
304 (Hall et al. 2003) and its Bleomycin-mediated as well as TGF-beta dependent activation has
305 been shown (Strobel et al. 2015). These experimental data support the consistency between
306 human and both mouse data sets observed by the IST analysis. Like *TIMP1*, the upregulation
307 of metalloprotease *MMP14* and downregulation of *MMP15* (Figure 3A) showed alignment

308 with human IPF gene expression changes across both mouse models (Figure 3C). IST
309 highlighted the importance of *MMP8* upregulation (Figure 3A), which was specific to the
310 Bleomycin model (Figure 3C). *MMP8* has been already reported to be upregulated in both IPF
311 patients and the Bleomycin model, and to correlate with the development of lung fibrosis,
312 although its role in pathogenesis is not fully known (Pardo et al. 2016). In previous studies,
313 *Cathepsin K* (CTSK), a member of the class of lysosomal-derived proteolytic enzymes, was
314 found to be increased in fibrotic lung regions in patients and mice, and to provide a protective
315 role by countering excessive deposition of collagen matrix in the diseased lung (Bühling et al.
316 2004). Indeed, IST provided evidence that the upregulation of *CTSK* gene expression (Figure
317 3A) is relevant for the alignment between human data and both animal models (Figure 3C).).

318 On the level of VEGF signaling, IST predicted that *VEGFA* is not the most influential gene
319 (Figure 3D) to explain the differences in recapitulation of human IPF between the AAV-TGF β 1
320 and Bleomycin mouse models (Figure 2C). In fact, *VEGFA* expression was downregulated in
321 humans and both mouse models (Figure 3A). Instead, IST results suggest that the difference
322 between the mouse models in recapitulating human IPF gene expression was mostly
323 explained by differences in regulation of *PLA2G4C* and *PRKCA* (Figure 3D). Indeed, we
324 observed missing differential expression of *Pla2g4c* and *Prkca* in the AAV-TGF β 1 21d model,
325 while they were up- and downregulated in the Bleomycin model, respectively (Figure 3A).
326 *PLA2G4C* is part of the group 4 family members of phospholipidase A2 (PLA2) which is known
327 as mediator of damaged-induced immune infiltration and vascularization. Cytosolic PLA2 is
328 ubiquitously present in human lung and *Pla2* knock-out mice had attenuated lung immune
329 infiltration after Bleomycin treatment (Nagase et al. 2002). The good alignment in expression
330 changes in *PLA2G4C* (Figure 3D), as well as its known role in vascularization, justified choosing
331 the Bleomycin model over the AAV-TGF β 1 when investigating drug effects on VEGF signaling.
332 On the other hand, the expression of the *PKC α* kinase had been previously shown to
333 downregulate collagen expression via the MEK/ERK signaling pathway, together with findings
334 of *PKC α* downregulation in fibrotic lung disease (Tourkina et al. 2005), which is consistent with
335 IST's prediction via *PRKCA*. As for potential disagreement between mouse and human, IST
336 pinpointed that the upregulation of *Mapk13* in mice may require further investigation, as the
337 same upregulation was not clearly found in the human reference.

338 **Gene-level comparison of the NASH disease models**

339 In the previous section we found that IST predicts a high recapitulation of all animal models
340 for the [extracellular matrix organization pathway](#). This general agreement in IST was partly
341 driven by several members of the pro-fibrotic tumor-derived growth factor beta 1 (TGF β 1)
342 SMAD signaling pathway (Ghafoory et al. 2018), including a large contribution from the
343 upregulation of tissue-inhibitor of metalloproteinases 1 ([TIMP1](#)) in humans and mice ([Figure 3E](#)). [TIMP1](#) inhibits multiple matrix metalloproteinases (MMP), thereby preventing tissue
345 remodeling and resolution of fibrosis (Iredale 2008). [TIMP1](#) has also been described as a
346 serum marker for advanced liver fibrosis in NASH patients (Yilmaz and Eren 2018) and is a
347 known driver of fibrosis progression (K. Wang et al. 2013). Interestingly, *Timp1*-/- mice show
348 increased liver fibrosis in CCl₄-induced liver fibrosis (H. Wang et al. 2011), while in BDL fibrosis
349 remains unaffected by the absence of [TIMP1](#) (Thiele et al. 2017). IST did not predict this
350 differential behavior because *Timp1* was upregulated in both CCl₄ and BDL mice, as well as
351 [TIMP1](#) in humans ([Figure 3B](#)). IST found agreement in the expression of Bone morphogenetic
352 protein 1 ([BMP1](#)), see [Supplementary File 1](#), due to its downregulation in humans and BDL
353 and CDA mice ([Figure 3B](#)). BMP1 processes multiple precursors of the extracellular matrix,
354 as e.g., pro-collagen type I, and a Bmp1 splicing isoform has been shown to be a driver of
355 disease progression in rat CCl₄ models (Grgurevic et al. 2017). Since no *Bmp1* differential
356 expression was found in CCl₄ mice ([Figure 3B](#)), IST did not reproduce this claim in mice.

357 IST predicted good recapitulation for the [Regulation of lipid metabolism by PPAR \$\alpha\$](#) by the
358 CDA and BDL models, strongly influenced by the downregulation of [PPAR \$\alpha\$](#) , [RXR \$\alpha\$](#) , [RXR \$\beta\$](#) and
359 [NR1H3](#) ([Figure 3F](#)), as found in human NASH. These genes were however not differentially
360 expressed in the CCl₄ model ([Figure 3B](#)). PPAR α can form a heterodimer with retinoid X
361 receptors ([RXRs](#)) modulating gene expression of PPAR α specific target genes via binding PPAR-
362 response elements (PPRE). In the absence of PPAR ligands, the heterodimer acts as a co-
363 repressor complex, while upon ligand binding, repressors are released and the PPAR-RXR
364 heterodimer acts as a co-activator complex (Bougarne et al. 2018). Liver x receptor alpha
365 ([LXR \$\alpha\$](#)), encoded by the nuclear receptor subfamily 1, group H, member 3 gene ([NR1H3](#)) is
366 another ligand-activated transcription factor of relevance in NASH, which controls lipid and
367 glucose homeostasis (Voisin et al. 2020). There are and have been multiple drug discovery

368 and clinical efforts to tackle MASH/MAFLD using small molecules targeting LXR receptors
369 (Griffett and Burris 2023). LXR α phosphorylation has been shown to induce inflammation and
370 fibrosis in the liver during high-fat diet feeding, while hepatic steatosis was found to be
371 negatively regulated via LXR α (Becares et al. 2019). Due to the calculated importance of these
372 genes in the molecular changes in human NASH, IST assigned a sensibly lower recapitulation
373 to the CCl₄ model in the PPAR pathway, where the metabolic NASH-driving component is
374 lacking.

375 IST explained the varying degrees of recapitulation on the *Apoptosis pathway* in the animal
376 models through noticeable contributions from known NASH biomarkers. While some markers
377 showed overall strong positive recapitulation (*Bcl2*), others showed model-specific positive
378 contributions: *Fasl* (CDAA), *Casp3* (BDL) and *Bax* (BDL, CCl₄) (Figure 3G). FAS ligand (*FASLG*)
379 induces apoptosis via binding to the FAS receptor and has been associated with NASH severity
380 (Alkhouri et al. 2015). Accordingly, IST favored CDAA (Figure 3G) because it is the only mouse
381 model with significant *Fasl* upregulation (Figure 3B). Cleaved caspase 3 is often used as a
382 measurement of hepatocyte apoptosis in NASH (Feldstein et al. 2003). At the transcriptomics
383 level, IST penalizes CDAA for having a significant *Casp3* downregulation, whereas it benefits
384 BDL for showing upregulation (Figure 3B, 3G). The antiapoptotic regulator B-cell lymphoma 2
385 (*BCL2*) interacts and inhibits pro-apoptotic proteins, as well as it reduces apoptosis-related
386 autophagy (K. Wang 2015). IST highlighted the importance of observing *Bcl2* upregulation in
387 all the models, as found for *BCL2* in the human data (Figure 3B, 3G). Along these lines, *Bcl2*
388 inhibition has showed anti-fibrotic effects in mice (Teng et al. 2020), and *BCL2* promotes
389 resistance to pro-apoptotic stimuli in human hepatic stellate cells (Novo et al. 2006),
390 underlining the key role of *Bcl2* in liver fibrosis progression. Another element of the apoptotic
391 cascade is the oligomerization of *BCL2* associated X (*BAX*) and subsequent integration into the
392 mitochondrial membrane, leading to membrane rupture and cytochrome c release, which
393 triggers cleavage of pro-caspase 3 into active caspase 3 (Weiss et al. 2017). In line with this,
394 IST found that the upregulation of *Bax* in the CCl₄ and BDL models (Figure 3B) helped them
395 recapitulate apoptosis as in human NASH (Supplementary File 1), since *BAX* was also
396 upregulated in the human reference data.

397

398 **The In Silico Treatment framework includes features to assess and**
399 **compare treatments for specific indications**

400 In addition to assessing the quality of animal models to represent human disease through
401 gene expression, IST can assess the molecular effect of treatment or recovery. To that end,
402 IST uses the fold changes in gene expression between treated (or recovered) animal models
403 versus those of the untreated animal model with disease. This reveals whether pathogenic
404 gene expression changes are reverted by the treatment, and in addition may reveal potential
405 unwanted effects of treatment.

406 **Fibrosis reversal following recovery from CCl₄ induced liver fibrosis**

407 To understand the capacity of IST to quantify the recovery of liver fibrosis we compared a
408 dataset during the 4-, 8- and 12-week regression phase after an 8-week CCl₄-induced liver
409 fibrosis with the reversed human signatures, i.e. the fold changes between NASH fibrosis
410 stages F4 and F0. Overall, recapitulation of the healthy states in the extracellular matrix
411 organization pathway was 54% for 4-week and 68% for 12-week CCl₄ recovery (Figure 4A),
412 which is consistent with a partial, but not total, resolution of fibrotic phenotypes. While the
413 gene product from the Acta2 gene, aSMA, as a measure of activated fibroblasts, rapidly
414 decreased during recovery, the deposited collagen in the extracellular matrix was found to
415 remain stable at high levels, even after 12 weeks of recovery (Supplementary Figure 3). In
416 terms of gene contributions, our findings were analogous to those of NASH disease models:
417 Downregulation of well-known regulators and components of the extracellular matrix like
418 *Timp1* or *Mmp2* (Figure 4B) contributed to the positive recapitulation of human NASH (Figure
419 4C). Interestingly, IST identified some genes that disagreed in the reversal signatures from
420 animal models at all three timepoints (Figure 4C). These included a disintegrin and
421 metalloprotease 8 (ADAM8), downregulated in CCl₄ recovery while upregulated in NASH
422 fibrosis stage F4 to stage F0 reversal (Figure 4B). On one hand, ADAM8 has been associated
423 with chronic liver diseases, being increased in activated hepatic stellate cells, although the
424 authors found no correlation with *MMP2* or *TIMP1*, and no changes in expression between
425 fibrosis stages (Schwettmann et al. 2008). On the other hand, the neutralization of ADAM8
426 ameliorates acute CCl₄-induced liver injury (S.-Q. Li et al. 2014).

427 **Elafibranor Treatment**

428 One of IST's potential applications is the *in silico* assessment of treatment effects. To that end
429 we used Elafibranor, a PPAR agonist that has been considered as a potential treatment for
430 NASH. Since we found CDAA was a robust model reflecting some of the main features of NASH
431 (Figure 2D), we used Elafibranor as a NASH treatment in this model. Applying IST, we found
432 that Elafibranor treatment showed strong recapitulations of healthy human expression
433 patterns (Figure 5A) in liver fibrosis (66%), lipid metabolism regulation by PPAR α (77%),
434 apoptosis (54%), while moderate in cytokine signaling (24%). These findings are consistent
435 with literature showing a strong effect of Elafibranor in an animal model of NASH and liver
436 fibrosis (Hoek et al. 2021). Such recapitulations resembled those of 12-week CCl₄ recovery,
437 albeit PPAR α regulation was sensibly lower in CCl₄ recovery (29%).

438 For PPAR α regulation of lipid metabolism, the high recapitulation in Elafibranor treatment on
439 the CDAA mouse model (77%) even exceeds the recapitulation of CDAA itself as a disease
440 model (62%,) or the recapitulation of the 12-week CCl₄ recovery (29%) (Figure 2D). Genes of
441 relevance for PPAR signaling that were identified by IST in NASH animal models (Figure 3F)
442 *RXRA*, *RXRB* and *NR1H3* (LXR), show alignment between the human NASH reversal and CDAA
443 mouse liver treated with Elafibranor (Figure 4D). We also found other genes contributing to
444 Elafibranor's positive recapitulation (Figure 4D): *PPARA*, upregulated in human NASH reversal
445 and agonized by Elafibranor (Figure 4B), *GLIPR1*, downregulated in humans and mice (Figure
446 4B) and linked to stress-induced premature senescence as well as age-associated expression
447 increase in mice hepatocytes (Doshida et al. 2023), and *FHL2*, downregulated in humans and
448 mice (Figure 4B) and linked to hepatic fibrogenesis in humans and mice (Huss et al. 2013).

449

450 Discussion

451 Translational landscape

452 The fraction of drug candidates whose efficacy in animal models translated to clinical efficacy
453 has remained steadily low in the last years, and it is unclear to which extent conclusions drawn
454 from animal studies translate to human disease (Pound and Bracken 2014). Despite efforts in
455 improving studies through better study design or bias control, translatability remains low due
456 to biological differences and uncertainties between organisms. This remains an unsolved
457 challenge amidst efforts to reduce unnecessary animal testing and improve animal welfare
458 (Robinson et al. 2019). Thus, it is critical to leverage data and computational methods to aid
459 the evaluation of suitable animal models for specific aspects of disease and avoid pitfalls in
460 drug design.

461 Some computational tools can aid the process of animal model evaluation. Over-
462 representation analysis of differentially expressed genes or rank-based gene set enrichment
463 analysis (GSEA) represent essential tools to investigate gene expression changes in different
464 species. However, while these analysis methods allow for the identification of affected
465 pathways, they do not systematically integrate human and animal data. More sophisticated
466 methods for the integration of human and animal model data have been developed. For
467 example, the Found in Translation (FIT) method performs cross-species comparison using
468 linear models (Normand et al. 2018). The Congruence Analysis for Model Organisms (CAMO)
469 pipeline is another attempt, based on a Bayesian mixture model to quantify pathway-specific
470 congruence scores (Zong et al. 2023).

471 Methodological considerations

472 Here we present IST, a data integration tool to specifically address the quantification of key
473 disease aspects in combination with a human reference. IST leverages transcriptomic
474 readouts of humans and disease models to account for organismal similarities and
475 differences. By design, IST provides information on the agreement between expression
476 changes in human disease and animal models on a genomic, pathway, and gene level.

477 From a methodological perspective, IST relies on partial least squares models to define gene
478 set-specific disease scores. This was a parsimonious model choice covering three key features.
479 First, the outcome variable is computed via a linear predictor, which enables the explanation
480 of changes in disease score through an exact decomposition in terms of individual gene
481 contributions. Second, the number of features (transcripts) in a gene set can frequently
482 exceed the number of samples used for model fitting, so a penalized method is required to
483 handle the overdetermined system. The penalization was chosen not to induce sparsity,
484 capturing subtle but coordinated changes in genes that may not reach univariate significance
485 and letting the model coefficient assign an importance to that gene. Third, partial least
486 squares provide natural choices for graphical sample representation and model diagnosis via
487 its loadings and scores.

488 IST brings unique features on top of existing methods. A gene-wise predictive approach like
489 FIT can help gain signal by finding new deregulated human genes starting from the mouse
490 data, but does not quantify the degree of agreement per animal model off-the-shelf. The
491 capability of computing a single number to represent pathway agreement already existed in
492 CAMO, but there is no straightforward way to disentangle this measure by gene importance
493 among the genes that agree or disagree. IST provides a single number per gene, integrating
494 data on gene relevance for disease states classification within the pathway, change in mouse
495 model and direction agreement. Another key feature is the quantification of the magnitude
496 of change versus a desired outcome, which brings more nuance into the notion of agreement:
497 changes can be too modest, just right or overly strong while always staying in the right
498 direction. Furthermore, the formalism of IST also enables modelling quantitative outcomes in
499 the human population, like disease stages or functional readouts.

500 **Informing decisions on animal model selection**

501 We applied IST to compare the animal models for the selected pathways in IPF and NASH
502 which complement the results of well-established gene set scoring methods such as the above
503 mentioned GSEA. While GSEA assesses whether the genes in specific pathways show a
504 statistically significant expression across conditions through the normalized enrichment score
505 (NES), IST determines if gene expression changes in animal models align with those observed

506 in the human reference via the percentage of recapitulation. Despite the GSEA and IST results
507 layouts look similar, the rows displaying data on animal models in IST (Figure 2C, 2D) are
508 already integrated with the human disease reference, whereas they are independent from
509 the human reference in GSEA (Figure 2A, 2B).

510 IPF study

511 We applied IST to assess 6 hallmark IPF features in the Bleomycin and AAV-TGF β 1 mouse
512 models. IST captured the time-course component for optimal timepoint selection in a more
513 insightful way than GSEA: IST predicted that earlier timepoints had lower recapitulation, and
514 that both AAV-TGF β 1 and Bleomycin can recapitulate human molecular signatures of IPF in
515 at least 4 out of the 6 selected pathways if the appropriate time point is selected. IST
516 suggested that d14, d21 (Bleomycin) and d21 (AAV-TGF β 1) are sound timepoints in which
517 both models recapitulate features of human IPF, with average recapitulations of 49.2%, 43.2%
518 and 47.5% over the 6 pathways. The peak recapitulation in both models at d21 in **extracellular**
519 **matrix organization** is in line with results published by the American Thoracic Society, which
520 reported fibrosis appearing between days 14 and 28 after Bleomycin treatment (Jenkins et al.
521 2017).

522 The demonstrated clinical concept of Nintedanib treatment, together with the controversial
523 role of **VEFG signaling** in IPF, provided a good opportunity to illustrate the value and
524 granularity of IST. Some reports have linked increased, and potentially aberrant and
525 overshooting neovascularization to increased Bleomycin-induced injury (Lee et al. 2008; Iyer
526 et al. 2015). However, other authors argued that VEGF signaling after lung injury may act in
527 an anti-fibrotic fashion, thereby being beneficial for prolonged survival and that lower
528 expression of VEGF was correlated with a worse prognosis (Murray et al. 2017). Interestingly,
529 the authors further demonstrated the antifibrotic role of VEGF in mice after Bleomycin
530 treatment by attenuating collagen accumulation and lung remodeling. The IST results
531 quantified that the Bleomycin induced injury in mice resembled VEGF-associated gene
532 expression changes in human IPF more closely than the AAV-TGF β 1 mouse model. Based on
533 our results, we speculate that TGF β 1-expression does not induce the same degree of vascular
534 damage or injury-mediated re-vascularization as that observed upon Bleomycin-mediated

535 lung injury. While this does not invalidate the AAV-TGF β 1 model, our *in silico* and *in vivo*
536 treatment data support the hypothesis that parts of Nintedanib's therapeutic effects on lung
537 function might be more closely recapitulated in the Bleomycin model.

538 **NASH study**

539 We applied IST to assess 4 hallmark NASH features in the CDAA, CCl₄ and BDL mouse models.
540 Overall, IST predicted CDAA as the best model to recapitulate the molecular signature of
541 human fibrosis stage F4 for our selected group of 4 pathways, with an average recapitulation
542 of 86%, followed by BDL (61.5%), and CCl₄ (41.5%). CDAA also entailed the largest number of
543 deregulated genes at the transcriptomics level ([Supplementary Figure 1F](#)). Fibrosis was the
544 best recapitulated NASH aspects for the three models, which was expected given our focus
545 on human fibrosis stage F4 versus F0. Our findings in apoptosis and cell death highlight the
546 potential of computational tools like IST to strengthen standard scoring tools like the non-
547 alcoholic fatty liver disease activity score (NAS) with apoptotic markers (Yanguas et al. 2016).

548 We showcased the capabilities of IST to assess treatments for human NASH. IST predicted the
549 partial resolution of [liver fibrosis](#) in the CCl₄ mouse model after 12 weeks of recovery, as a
550 positive control. IST also recognized the strong anti-fibrotic effect of the PPAR agonist
551 Elafibranor, as well as the risk of overshooting the [PPAR \$\alpha\$ activation](#). Elafibranor has recently
552 been tested in a phase 3 clinical trial in patients with NASH and fibrosis, but failed to
553 demonstrate a significant effect on NASH resolution as a monotherapy (GENFIT 2020). Taking
554 everything together, IST added new evidence to the hypothesis that despite its strong anti-
555 fibrotic effect, [PPAR \$\alpha\$](#) over-activation in animal models is among the plausible causes for
556 Elafibranor's lack of translation to the clinic (Rodriguez et al. 2018). This highlights the
557 importance of integrating human and animal data for an early translatability assessment.

558 **Common findings between IPF and NASH in fibrotic disease**

559 Since IPF and NASH fall under the common umbrella of fibrotic diseases, we expected to find
560 commonalities from their analyses with IST. On one hand, [TIMP1](#) is a well-known fibrosis
561 marker in both indications, for which IST quantified a substantial positive contribution,
562 discussed in the context [activation of matrix metalloproteinases](#) and [extracellular matrix](#)
563 [organization](#). On the other hand, we discussed the role of [CTSK](#) in recapitulating the [activation](#)

564 of matrix metalloproteinases in human IPF, but IST also underlined a positive contribution by
565 *CTSK* in recapitulating extracellular matrix organization and apoptosis as they occur in human
566 NASH. There is increasing evidence about the participation of cathepsins in liver disease
567 pathophysiology and they are being investigated as biomarkers (Ruiz-Blázquez et al. 2021),
568 and *Ctsk* has been found induced by the knockdown of the transcription factors *Elf3* or *Glis2*
569 in mice in the context of hepatocyte reprogramming (Loft et al. 2021). Taken together, these
570 findings suggest that CTSK may also play a role in human NASH and may deserve further
571 examination.

572 Assumptions and limitations

573 From the methodological perspective, the main assumptions behind IST when translating
574 between species are: (i) the orthology mapping has enough coverage and quality to simulate
575 enough changes on humans based on a one-to-one gene translatability, (ii) differential
576 changes exist in both species, and (iii) the tissues are comparable in terms of cell composition.
577 We checked to what degree such assumptions hold. Regarding point (i), on average, IPF and
578 NASH animal model signatures had 21 873 and 14 826 transcripts, which mapped to 14 005
579 and 12 047 ortholog human genes, leading to a coverage of 64% and 81%. The IPF and NASH
580 human references had 15 293 and 19 352 genes, out of which 12 425 (81%) and 12 570 (65%)
581 had a mouse ortholog. The fact that we observed good overall recapitulations in the animal
582 models, sometimes even exceeding the transcriptomics changes in humans, suggests that
583 points (i), (ii) and (iii) were covered. The gene contribution heatmaps further support points
584 (ii) and (iii) since contributions were mostly positive and in line with known disease markers.
585 IST heavily relies on the quality of the human reference data for model fitting, and specifically
586 its data type, here bulk transcriptomics data for its broad availability. Thus, IST will only detect
587 effects that are noticeable at that molecular level and resolution. The gene-level
588 quantification was a valuable feature to detect specific instances in NASH where IST did not
589 detect known regulation events. For instance, IST was unable to distinguish isoform-specific
590 effects for *Bmp1*, for which paired end sequencing would be more adequate. IST did not find
591 model-specific differences between CCl₄ and BDL in TIMP1 regulation in the context of
592 fibrosis, since *Timp1* was similarly upregulated in both models. IST could not account for

593 *Casp3* cleavage when evaluating the alignment between mouse and human apoptosis, and
594 only evaluated *Casp3* deregulation at the transcriptomic level. IST highlighted potential
595 disagreement between humans and mice in fibrosis resolution because conflicting changes in
596 *ADAM8*, where changes in human disease may be clearer at a single cell resolution. These
597 findings underline the importance of considering the trade-off between technological
598 advantages and limitations behind the molecular data used for model selection.

599 **Conclusions**

600 In summary, IST is a data integration computational approach that quantifies the alignment
601 of changes in transcriptomic profiles in animal models and treatments to those of human
602 disease. The roles of the animal and the human data are non-symmetric: IST is anchored on
603 the human reference, where it learns the pathway-level differences in disease using the gene
604 expression values, and only a signature of fold changes from animal or preclinical data is
605 needed to simulate their effect in humans. IST was successfully applied to a smaller
606 microarray dataset and a larger RNA-seq study, highlighting its robustness across platforms
607 and sample sizes. IST is highly explainable since its decisions can be traced back to the gene
608 level contributions. We found genes with key pathophysiological roles in humans and animals
609 among genes with largest contributions. The rigorous data integration cannot be achieved
610 using GSEA, where the effects of gene direction, effect size and significance are not combined
611 off-the-shelf between both species. IST's findings on two major indications, IPF and NASH,
612 were supported by literature and by newly generated data, at the gene and pathway level.
613 This showcased the potential of IST to make data-driven choices in the selection of the most
614 appropriate animal models, hereby reducing costs and reducing ethical considerations in pre-
615 clinical animal model research.

616 Materials and Methods

617 Human IPF reference expression data

618 Human IPF microarray data was obtained from the GEO (Gene Expression Omnibus) entry
619 GSE47460 and subsampled according to the procedure specified in Wang and colleagues (Y.
620 Wang et al. 2017). Raw microarray data was preprocessed by averaging the probe intensities
621 for probes that represent the same gene, and further processed to obtain normalized gene
622 expression levels.

623 Principal Component Analysis (PCA) on human expression data was performed using the
624 pcaMethods R package version 1.78.0 (Stacklies et al. 2007). The following settings were
625 applied: method = "nipals", scale = "uv", center = TRUE. Descriptive plots used the first and
626 second principal components.

627 To attain class balance and focus on the common molecular features of the heterogeneous
628 IPF landscape, IPF patients were subsampled to a representative selection by computing the
629 medioids on the dimensionality-reduced principal components. The most representative IPF
630 patients (medioids) were selected by compressing their expression profiles into $m = 10$
631 principal components (chosen m in 1, 2, ..., 10 as the one maximizing the explained variance
632 in prediction Q^2 metric in a 5-fold cross-validation), computing all pairwise Euclidean
633 distances between IPF patients, and picking the 12 IPF patients with the lowest average
634 distance to the rest of patients. After balancing, limma v3.42.0 (Ritchie et al. 2015) was
635 applied to calculate differential expression between control and IPF patients.

636 Human NASH reference expression data

637 Human NASH RNA-sequencing data was obtained from the GEO entry GSE162694 (Pantano
638 et al. 2021). Raw counts were preprocessed to obtain normalized gene expression levels.
639 Differential expression was assessed between participants in fibrosis stages F4 and F0 using
640 limma v3.42.0 on voom-normalised read counts. The NASH human recovery signature from
641 F4 to F0 was obtained by flipping the sign of each fold change.

642 **IPF disease model data**

643 **Expression data**

644 Two murine IPF preclinical models were evaluated in a single experiment: the Bleomycin and
645 the AAV-TGF β 1 models, as published in the GEO entry GSE195773 (Strobel et al. 2022). After
646 acclimating for one week, mice received intratracheal administration of either 2.5×10^{11} vg
647 of AAV-TGF β 1 or AAV-stuffer, 1 mg/kg Bleomycin, or NaCl solution in a volume of 50 μ L. Mice
648 were sacrificed at five timepoints: day 3, 7, 14, 21 and 28. Differential expression analysis was
649 performed using Limma and the matrix of voom-normalized read counts (Ritchie et al. 2015).
650 We compared each model versus its day-matched control by timepoint: day 3, 7, 14, 21 and
651 28. This led to 5 animal model signatures for the Bleomycin model and 5 signatures for the
652 AAV-TGF β 1 model.

653 **Lung capacity study**

654 We performed a separate experiment to specifically assess the effect of Nintedanib in lung
655 capacity on the Bleomycin and the AAV-TGF β 1 models, using C57BL/6JRj animals from
656 Janvier. Mice were used in an age between 10-12 weeks. For both models, Bleomycin or
657 TGF β 1 AAV (AAV6.2 (2.5E+11 VG/animal) were administered i.t. on day 0 and mice were
658 sacrificed on day 21. Nintedanib was given 50mg/kg, p.o., b.i.d. Animal experiments were
659 ethically approved by the Regierungspräsidium Tübingen, Germany; license: 16-028 and 18-
660 032. Lung function was measured as described in (Weckerle et al. 2023).

661 **NASH disease model data**

662 Three murine NASH preclinical models were evaluated in four newly generated experiments.

663 **Experimental design and RNA sequencing**

664 The first experiment included a CDAA (choline-deficient, L-amino acid-defined) diet-based
665 model in a cross-sectional study. It is expected that animals fed this diet develop pronounced
666 liver steatosis and a certain degree of inflammation, with an addition of cholesterol to
667 aggravate liver fibrosis. Janvier C57BL/6JRj mice with an age of 8-9 weeks were fed with either
668 choline-supplemented L-amino acid-defined (CSAA) Control E15668-04 or with CDAA 1%

669 Cholesterol E15666-94 (<https://www.ssniff.com>) for 12 weeks. Animals were then sacrificed
670 to extract and sequence RNA. 200ng of RNA were used with TrueSeq mRNA stranded Single
671 Index protocol. Library was sequenced on HiSeq3000 with single end reads 85Bp reads + 7
672 index.

673 In a second experiment, the same CDAA model was used to test the experimental anti-fibrotic
674 compound Elafibranor. Animals were treated with vehicle (0,5% Natrosol/0,015%TWEEN 80
675 in 5 mL/kg) or 15mg of Elafibranor (Genfit 505) bid from day 10 to the end of the experiment.
676 Animals were sacrificed after 11 weeks with and without Elafibranor treatment under the
677 CDAA diet. 250ng RNA was used as input for NEB mRNA_dual Index. Sequencing was
678 performed on HiSeq4000 with 75bp single end + 8bp index.

679 The third experiment ran the CCl₄ (carbon tetrachloride) liver toxicity model in a time-course
680 design. Janvier C57Bl/6JRj mice with an age of 8-9 weeks were fed ad libitum with standard
681 diet (KLIBA 3438). Control animals in the healthy group were fed with olive oil whereas
682 animals in disease group were fed with 10ml/kg olive oil dilution of CCl₄ with increasing dose:
683 0.875ml/kg at day 1, 1.75ml/kg during week 1-3, 2.5ml/kg during week 4-6 and 3.25ml/kg
684 from week 7-10. A mouse subgroup was sacrificed after 8 weeks of CCl₄ administration to
685 obtain an animal model signature by comparing it to matched controls. Subsequent groups
686 were left for 4, 8 and 12-week recovery to obtain three disease recovery signatures,
687 comparing to the 8-week CCl₄ group before recovery. 200ng of RNA were used with TrueSeq
688 mRNA stranded Single Index protocol. Library was sequenced on HiSeq3000 with single end
689 reads 85Bp reads + 7 index.

690 The fourth experiment performed bile duct ligation (BDL) or sham surgery in a time-course
691 study. 70 male CD1 mice (8wks old at study inception) were purchased from Charles River
692 Laboratories, US. Mice were acclimated under standard housing conditions on standard diet
693 for 1wk prior to study initiation. The study was conducted in compliance with Boehringer
694 Ingelheim IACUC protocols. All mice were administered a single dose of Buprenorphine HCL
695 (0.1mg/Ig) ≥60min prior to surgery. Mice were then anesthetized with a mixture of 2-3%
696 Isoflurane + 1L/min oxygen. For BDL, the common bile duct was exposed through a midline
697 abdominal incision, isolated from the surrounding tissue and occluded using two 5-0 sterile

698 sutures placed 2-3 mm apart with the upper suture proximal to the hilum. The bile duct
699 remained intact. Sham animals underwent identical surgical procedures whereby the tissue
700 surrounding the bile duct was manipulated but without obstruction. The abdominal incision
701 was closed, and mice regained consciousness quickly under post-operative supervision and
702 returned to home cages for the duration of the study and maintained on standard rodent
703 chow and water diet. Mice were monitored daily for health and euthanized per timepoint
704 under isoflurane. Animals were sacrificed at 3, 5, 7, 10, and 14 days post surgery. Livers were
705 collected and saved directly into RNA-later solution. Livers in RNA-later were kept at 4°C for
706 24hrs then transferred frozen at -80°C. Liver tissue was homogenized (Tissue Lyser II, Qiagen)
707 using lysis buffer (TRIzol Reagent, Invitrogen). Total RNA was extracted from liver (PureLink
708 RNA Mini Kit, Invitrogen), purified of gDNA (PureLink Genomic DNA Mini Kit, Invitrogen) and
709 checked for quality and concentration (NanoDrop Eight Spectrophotometer,
710 ThermoScientific). RNA quality analysis was performed using dilute purified RNA (GeneAMP
711 PCR System 9700, Applied Biosystems) and (2200 TapeStation, Agilent Technologies). Samples
712 with RNA Integrity Number less than 7.0 were not included in analysis. Samples were shipped
713 to BGI Tech Solutions, (Hong Kong China) for next generation sequencing. Sequencing libraries
714 were built according to the manufacturer's procedures for the TruSeq polyA kit. Paired-end
715 sequencing was performed on an Illumina HiSeq 3000 to a depth of roughly 25 million reads,
716 with a read length of 100 bases.

717 Data processing and differential expression

718 The pipeline for primary processing of NASH animal model RNA-Sequencing measurements
719 has been previously described in detail (Söllner et al. 2017). We used the mouse reference
720 genomes from Ensembl 84/GRCm38 (<http://www.ensembl.org>). Reads were mapped using
721 the STAR aligner (Dobin et al. 2013). The gene expression was calculated using Cufflinks
722 (Trapnell et al. 2013). Gene quantitation was performed with RSEM for generation of TPM
723 and feature counts for generation of counts used in downstream analysis. Differential
724 expression analysis was performed using Limma and the matrix of voom-normalized read
725 counts (Ritchie et al. 2015).

726 Two kinds of signatures were obtained from differential expression contrasts: animal model
727 signatures, when the contrast compared challenged animals to control animals, and

728 treatment signatures, when the contrast compared challenged and treated animals versus
729 challenged animals.

730 In the first CDAA study, we obtained one animal model signature of CDAA versus CSAA diet
731 at 12 weeks. In the second CDAA study, we obtained one treatment signature from the CDAA
732 diet with versus without Elafibranor treatment at 11 weeks. In the CCl₄ study, we obtained
733 one animal model signature comparing 8 weeks of CCl₄ administration versus matched
734 controls, and three treatment signatures comparing 4, 8 and 12-week recovery versus the 8-
735 week CCl₄ group. In the BDL study, we obtained one animal model signature by focusing on
736 day 10 BDL versus sham surgery as the standard timepoint.

737 **Histological analysis in CCl₄ study**

738 To assess morphological changes in liver after the CCl₄ challenge, a histological analysis was
739 used to calculate values describing degree of fibrosis, steatosis, and the area with α Smooth
740 Muscle Actin (α SMA) expression in histological images. Images were taken from paraffin
741 sections of mouse liver, stained by a Masson trichrome method and an α SMA staining. Slides
742 were systematically scanned with a Zeiss AxioScan.Z1 microscope (20x magnification) and
743 exported with 1:2 scaling as images in TIF-format. In these images, the liver sections were
744 segmented, and the area covered by liver then cut into mosaic tiles of size 1024 by 1024 pixels
745 (from 160 to 716 tiles per slide). Shape information of the liver section for each tile was saved
746 in images alpha channel for reuse during image analysis. Image analysis for all slides was done
747 using HALO, a digital pathology software by Indica Labs (Corrales, NM, USA) that directly reads
748 original czi-files. The Area Quantification Module was adapted to the α SMA and Masson
749 staining and the whole tissue was analyzed. Total area with typical blue Masson staining was
750 determined and used in the calculation of a value corresponding to Collagen-content. Total
751 area with typical red RefineRed marker was determined and used in the calculation of a value
752 corresponding to α SMA-content. The Vacuole Quantification Module was adapted to the
753 Masson staining and used for the detection of vacuoles. Data were summarized with Tibco
754 Spotfire, analysis was done with GraphPad Prism. The color deconvolution could not
755 sufficiently separate the α SMA marker (stain 1) and the blue counter stain (stain 2). Therefore,
756 the area with α SMA was corrected by subtracting double stained areas. This was done in
757 Spotfire, calculating [% Stain 1 Positive Tissue] - [% Colocalized Tissue (stain 1 and 2)].

758 **Gene annotations and mappings**

759 **Orthology mapping and primary gene identifiers**

760 One-to-one orthologs were retrieved from the ENSEMBL (Yates et al. 2019) homology
761 resource (jan2020.archive.ensembl.org) between *Homo sapiens* and *Mus musculus* ENSEMBL
762 identifiers were used as primary throughout the analysis. Entrez gene symbols were mapped
763 to ENSEMBL using biomaRt 2.42.0, archive version sep2019.archive.ensembl.org (Durinck et
764 al. 2009).

765 **Gene set and pathway data**

766 Pathway-related gene sets were obtained from KEGG Release 96.0+/11-20 (Kanehisa et al.
767 2022). The selection of Reactome pathways (Gillespie et al. 2021) came from MSigDB version
768 7.0, C2 category, “CP:REACTOME” subcategory (Liberzon et al. 2015).

769 **Gene set enrichment analysis**

770 Gene Set Enrichment Analysis, or GSEA (Subramanian et al. 2005), was performed via the
771 GSEA() function from the clusterProfiler R package version 3.14.2 (Yu et al. 2012), using
772 pathway related gene sets mentioned above. For this analysis, genes were ranked by their
773 fold changes. Mouse genes from animal model data were previously mapped to its human
774 orthologue as described above. We excluded gene sets smaller than 15 genes from our
775 analysis, while no upper limit on size was set. For each ranked list, the following parameters
776 were used: by = "fgsea", exponent = 1, pAdjustMethod = "BH", nPerm = 100000, seed = TRUE.

777 **In Silico Treatment**

778 **Input data**

779 IST requires the following input data: molecular readouts for the human disease, fold changes
780 for the animal models, an orthology mapping and a list of gene sets of interest. Their
781 respective indexing notation is described in [Table 1](#): human samples are denoted by i (ranging
782 from i_1 to i_{n_i}), human genes by j (j_1 to j_{n_j}), the quantitative values of disease scores by k (k_1 to
783 k_{n_k}), gene sets by s (s_1 to s_{n_s}), and statistical contrasts by t (t_1 to t_{n_t}). The variables mentioned
784 throughout the methods that build on this notation are summarized in [Table 2](#).

785

Entity	Index	First element	Last element
Human sample	i	i_1	i_{n_i}
Human gene	j	j_1	j_{n_j}
Disease score value	k	k_1	k_{n_k}
Human gene set	s	s_1	s_{n_s}
Contrast in animal models	t	t_1	t_{n_t}

786 **Table 1.** Indexing notation for the human, animal, orthology and gene set (pathway) data.

787

Variable	Description
x_{ij}	Log2 expression value of the j -th gene for the i -th sample
y_i	Disease score of the i -th sample
g_k	Set of samples with a disease score of k
r_{jt}	Log2 fold change of the j -th (ortholog) gene in the t -th disease model signature (zero for non-significant genes)
\hat{y}_{is}	Predicted disease score for the i -th sample in the s -th gene set regression model
β_{js}	Coefficient of the j -th gene in the s -th gene set regression model
ε_{is}	Error in the i -th sample within the s -th gene set regression model
x'_{ijt}	Log2 expression value of the j -th gene for the i -th sample after in silico treatment with the t -th signature
\hat{y}'_{its}	Predicted disease score for the i -th sample in the s -th gene set regression model after in silico treatment with the t -th signature
δ_{jts}	Change in prediction within the s -th gene set regression model associated to the j -th gene in the t -th signature
Δ_{ts}	Change in prediction within the s -th gene set regression model associated to the whole t -th signature
Δ_{0s}	Ideal change in prediction (recapitulation) of the s -th gene set regression model

δf_{jts} Percentage of ideal recapitulation within the s -th gene set regression model associated to the j -th gene in the t -th signature

Δf_{ts} Percentage of ideal recapitulation within the s -th gene set regression model associated to the t -th signature

788 **Table 2.** Description of variables as used in the In silico Treatment models.

789 **Predictive modelling of human data**

790 The quantitative nature of IST relies on regression models, able to predict the disease stage
791 of arbitrary humane gene expression profiles. To fit predictive models, features (human gene
792 expression readouts) x_{ij} were provided in a scale suitable for addition, such as log2-
793 transformed expression values), with no missing entries or constant genes. We further
794 defined the response variable y_i , indicating disease stage. Based on disease stage, samples
795 were stratified into sample groups g_k . If only control and disease samples were available, we
796 set $y_i = -1$ for disease and $y_i = 1$ for controls, and defined two sample groups $g_{-1} = \{i \mid y_i
797 = -1\}$, $g_1 = \{i \mid y_i = 1\}$ accordingly (see notation in **Table 2**).

798 Partial least squares, or PLS (Mevik and Wehrens 2007) models were fit using the caret R
799 package version 6.0-85, within each gene set separately, yielding a total of n_s models. Let s
800 be a gene set with l genes, noted as j_1, \dots, j_l without loss of generality. The disease scores y_{is}
801 were expressed as:

802
$$y_{is} = \mu_s + x_{ij_1} \beta_{j_1s} + \dots + x_{ij_l} \beta_{j_ls} + \varepsilon_{is} = \hat{y}_{is} + \varepsilon_{is}$$

803 where \hat{y}_{is} is the predicted disease score for the i -th sample in the s -th gene set. The model
804 coefficients μ_s and β_{js} were fitted using method = "kernelpls". Features were centered and
805 unit scaled. For notation convenience, μ_s includes all the feature centering and β_{js} includes
806 the scale, i.e. is determined by dividing the model coefficient by the scaling factor of x_{ij} . The
807 number of components was selected from $K \in \{1, 2, 3, 4, 5\}$ using 5-fold cross-validation,
808 repeated 20 times. Selection criteria was the minimum root mean squared error in prediction.
809 The final model was fitted with the optimal K .

810 **Fold change projection**

811 A main step in IST is the projection of disease model signatures (fold changes associated with
812 a statistical contrast t) onto human expression data. As detailed above, log2 fold changes
813 were calculated following the limma convention of linear modelling (Ritchie et al. 2015). For
814 each signature, only significantly deregulated genes with $|\log_2 FCI| > 0.25$ and false
815 discovery rate $FDR < 5\%$ (Benjamini and Hochberg 1995) were considered. Gene identifiers
816 were mapped to one-to-one human orthologs, thus avoiding collisions of several animal
817 genes mapping to the same human gene. Finally, the log2 fold change of an animal gene \tilde{j}
818 with a human ortholog j within the t -th signature was denoted r_{jt} , where $r_{jt} = 0$ if \tilde{j} was not
819 significant in t . The projection of fold changes, which we refer to as *fold change simulation* or
820 overlay, was then defined as follows (Table 2):

821
$$x'_{ijt} = x_{ij} + r_{jt}$$

822 Two types of signatures were considered: disease models and treatments. Disease models
823 compare challenged versus control animals, whereas treatment signatures compare treated
824 challenged animals with untreated challenged animals. The choice of simulated human
825 samples and reference samples was determined by the corresponding sample groups. When
826 assessing disease models, the aim is to simulate the challenge from animals onto human
827 samples in g_1 and compare the outcome to those in g_{-1} . The roles of g_{-1} and g_1 are switched
828 when assessing treatments. As a positive control for disease models, we included signatures
829 obtained from the human reference data.

830 **Quantification of disease recapitulation**

831 Here we define recapitulation as the similarity between samples with simulated fold changes
832 and reference samples. Recapitulation was quantified by predicting the disease scores of
833 simulated samples using the previously fitted PLS models. The ideal recapitulation in animal
834 models within the s -th gene set (Table 2) was defined as:

835
$$\Delta_{0s} = \underset{i \in g_{-1}}{\text{median}}(\hat{y}_{is}) - \underset{i \in g_1}{\text{median}}(\hat{y}_{is})$$

836 On the other hand, for treatments:

837
$$\Delta_{0s} = \underset{i \in g_1}{\text{median}}(\dot{y}_{is}) - \underset{i \in g_{-1}}{\text{median}}(\dot{y}_{is})$$

838 When simulating the fold changes onto the human samples in g_{-1} (animal models) or g_1
839 (treatments), the predicted disease score change $\Delta_{ts} := y'_{its} - \dot{y}_{is}$ is independent of i , as
840 shown:

841
$$\begin{aligned} \dot{y}'_{its} &= \mu_s + x'_{ij_1t}\beta_{j_1s} + \dots + x'_{ij_lt}\beta_{j_ls} = \mu_s + (x_{ij_1} + r_{j_1t})\beta_{j_1s} + \dots + (x_{ij_l} + r_{j_lt})\beta_{j_ls} = \\ &= \dot{y}_{is} + r_{j_1t}\beta_{j_1s} + \dots + r_{j_lt}\beta_{j_ls} = \dot{y}_{is} + \delta_{j_1ts} + \dots + \delta_{j_lts} = \dot{y}_{is} + \Delta_{ts} \end{aligned}$$

842 Therefore, the change can be expressed down to the gene-level contributions, defining δ_{jts}
843 $:= r_{jt}\beta_{js}$, which do not depend on i :

844
$$\Delta_{ts} = \delta_{j_1ts} + \dots + \delta_{j_lts}$$

845 To give a reference on the magnitude of the gene contributions δ_{jts} and the whole signature
846 changes Δ_{ts} as a fraction of the ideal recapitulation, the following relative percentages were
847 defined.

848
$$\delta f_{jts}[\%] = 100 \frac{\delta_{jts}}{\Delta_{0s}}$$

849
$$\Delta f_{ts}[\%] = 100 \frac{\Delta_{ts}}{\Delta_{0s}}$$

850 Those were easier to interpret and still verify that the overall recapitulation can be expressed
851 as the sum of each gene's contribution, i.e. $\Delta f_{ts}[\%] = \delta f_{j_1ts}[\%] + \dots + \delta f_{j_lts}[\%]$. A
852 recapitulation of $\Delta f_{ts} \approx 100\%$ would imply that the median disease scores of samples
853 simulated with fold changes from signature t corresponds to that of the reference samples.
854 Accordingly, gene-level contributions δf_{jts} further show which genes had more influence in
855 the final recapitulation. This justified why IST predicted strong or weak recapitulations. Genes
856 meeting two conditions would provide large contributions in the right direction ($\delta f_{jts} \gg 0$,
857 i.e. agreement): having a large, significant fold change in the disease model, and finding the
858 same direction of change in the PLS model in human data. Conversely, genes with large
859 contributions in the opposite direction ($\delta f_{jts} \ll 0$, i.e. disagreement) would arise from strong
860 changes in the disease model and the human data, but with opposite directions. Finally, genes

861 would show little contribution ($\delta f_{jts} \approx 0$) if either they were not differential in the disease
862 model, or the PLS model found barely any changes in the human reference, or both.

863 To evaluate the statistical significance of recapitulation Δf_{ts} of a signature t within a gene set
864 s we devised a null model for size-matched signatures and computed their recapitulation. In
865 each null trial, carried out per animal study, the identities of all the genes were shuffled, so
866 that the original number of differential genes and their fold change distribution were
867 preserved. If time points were present, this also kept longitudinal gene co-expression
868 patterns. The empirical p-values (North, Curtis, and Sham 2003) for the observed Δf_{ts} was
869 then computed as $p_{ts} = \frac{r_{ts} + 1}{N + 1}$, where r_{ts} was the number of null trials, out of $N = 1000$,
870 with a recapitulation as extreme as Δf_{ts} . Empirical p-values were then adjusted for false
871 discovery rate.

872 Graphical representations

873 The predicted disease scores for untreated samples \hat{y}_{is} and their simulated counterparts \hat{y}'_{its}
874 ([Table 2](#)) could be represented through gene set-wise boxplots. Keeping s fixed, \hat{y}_{is} were
875 grouped in boxes by g_k and \hat{y}'_{its} by the signatures t . Every data point in the boxes
876 corresponded to a sample i . The untreated samples would illustrate the reference ranges of
877 disease scores for normal and disease states.

878 The overall gene set recapitulations Δf_{ts} were represented in heatmaps using the pheatmap
879 R package version 1.0.12, where the rows were indexed by the signature t and the columns
880 by the gene set s . The signature with the original human fold changes would serve as a
881 reference recapitulation. Optionally, we displayed hierarchical clustering of the rows and
882 columns used Euclidean distances and the “complete” method in `hclust()`, to unravel patterns
883 of similar and dissimilar recapitulations in gene and signature clusters (Everitt et al. 2014).

884 For each gene set s , a heatmap was drawn to depict the gene level contributions. Fixing s , the
885 δ_{jts} values were arranged, indexing the rows by the signature t and the columns by the gene
886 j . Again, the human signature would serve as a reference. Due to the large size of individual
887 gene sets, only the top 50 contributing genes were displayed, defined as those with the

888 largest sum $\sum_t \delta_{jts}^2$. Optionally, hierarchical clustering was applied to highlight similar patterns
889 in both gene and signature recapitulations.

890 **Acknowledgements**

891 The authors thank David Lamb for useful early discussions and ideas on the topic. The authors
892 thank Angela Lopez-del Rio for useful comments on the manuscript. The authors thank Glenn
893 Gibson for his assistance with BDL surgical and study procedures. The authors thank Dagmar
894 Knebel-Haas, Werner Rust, David Kind and Eleonora M. Capitolo for NGS data generation. The
895 authors thank Stefano Patassini for his support throughout the publication process. The
896 authors thank Piotr Radkowski for his support building interactive visualizations.

897 **Figure Legends**

898 **Figure 1 – Overview of the In Silico Treatment workflow:** (a) IST conceptual workflow. First,
899 human disease samples are used to learn differences between healthy and disease gene
900 expression patterns via predictive models. Second, fold changes of significantly deregulated
901 genes in animal model signatures are overlaid onto the expression profile of their human
902 ortholog genes, in the desired human population. This process is called the fold change
903 simulation. Third, the newly obtained simulated human expression profiles are evaluated
904 against the model from the first step. This resulting disease score is compared against disease
905 scores of controls and disease. (b) Pathway models. Predictive models are fitted to gene sets
906 representing key disease hallmarks. For each pathway and signature, the outcome of the IST
907 workflow is expressed as percentage of ideal recapitulation. Signatures with recapitulations
908 close to 0% describe a very modest modification of the disease score, while those closer to
909 100% indicate a switch of the expression profiles towards the desired human population. The
910 pathway recapitulations can be decomposed into additive contributions per gene. IST thus
911 identifies what genes in a signature positively and negatively contribute to the overall
912 recapitulation, and how much.

913 **Figure 2 – Assessment of animal model signatures for hallmark pathways in human IPF and**
914 **NASH using GSEA and the IST pathway heatmap:** **(A)** Gene set enrichment analysis (GSEA) of
915 the human IPF signature and the animal model signatures, mapped to their ortholog human
916 genes. The heatmap depicts normalized enrichment scores (NES) from a pre-ranked GSEA for
917 six IPF-related pathways. The NES sign defines the direction of the enrichment (positive for
918 upregulation, negative for downregulation). Significance for pathway deregulation indicated
919 at 10% false discovery rate. **(B)** Analogously, pre-ranked GSEA of the human NASH signature
920 and the animal model signatures. **(C)** IST pathway heatmap for IPF human data and animal
921 models. Recapitulation percentages are displayed, being 0% no recapitulation (expression
922 profiles after fold change simulation still look like healthy humans) and 100% ideal
923 recapitulation (simulated expression profiles look like human IPF expression profiles).
924 Significance for positive recapitulation indicated as false discovery rate ranges: from 0 to 5%,
925 from 5% to 20%, and greater than 20%. **(D)** Analogously, IST pathway heatmap for NASH
926 human data and animal models.

927 **Figure 3 – Assessment of gene contributions in hallmark pathways in human IPF and NASH**
928 **using the IST gene heatmap: (A)** Fold changes of disease-like states versus matched controls
929 in logarithmic scale of a selection of relevant human genes and their murine one-to-one
930 orthologs. Significance reported at 5% false discovery rate. **(B)** Analogous representation of
931 fold changes for a selection of relevant genes in NASH. **(C)** Gene contribution heatmap
932 obtained from IST, for the gene set “Activation of matrix metalloproteinases” as discussed in
933 the IPF human disease context. Genes labelled in red are discussed in the main text. The
934 heatmap scale represents gene contributions (%) for signature recapitulation. In orange,
935 positive gene contributions imply that simulating the fold change of that gene helps bring
936 human controls to IPF-like molecular profiles in that pathway, thus indicating agreement
937 between species. In blue, negative gene contributions indicate disagreement, potentially
938 implying opposite direction of change between humans and mice. In white, genes with low
939 or no contribution; implies either no significant fold change, or low feature relevance in the
940 context of classifying control versus human IPF in this pathway. The model weight scale
941 describes the coefficient for each gene after fitting the linear predictor. Positive weights
942 indicate genes that increase the disease score after upregulation, or equivalently, decrease
943 the disease score after downregulation. Negative weights indicate genes that decrease the
944 disease score after upregulation, or equivalently, increase the disease score after
945 downregulation. **(D)** Gene contribution heatmap for the gene set “VEGF signaling pathway”
946 in human IPF. **(E)** Gene contribution heatmap for the gene set “Extracellular matrix
947 organization” in human NASH. **(F)** Gene contribution heatmap for the gene set “Regulation of
948 lipid metabolism by PPAR α ” in human NASH. **(G)** Gene contribution heatmap for the gene set
949 “Apoptosis” in human NASH.

950 **Figure 4 – IST analysis to assess recovery from human NASH using the IST pathway and gene**
951 **heatmaps: (A)** IST pathway heatmap for the four human NASH hallmark pathways and the
952 four NASH animal model signatures (three for recovery, one for treatment). We simulated
953 fold changes on NASH F4 patients and expected good recovery signatures to bring the
954 expression profiles closer to NASH F0 (ideal 100% recapitulation). **(B)** Fold changes of recovery
955 versus disease-like states in logarithmic scale of a selection of relevant human genes and their
956 murine one-to-one orthologs. Significance reported at 5% false discovery rate. **(C)** Gene

957 contribution heatmap obtained from IST, for the gene set “Extracellular matrix organization”.
958 Gene contributions (%) indicate whether changes in recovery or treatment models align with
959 human NASH expression reversal. Positive (orange) contributions indicate changes in the
960 same direction as the human reference data, whereas negative (blue) indicates changes in
961 the opposite direction. **(D)** Gene contribution heatmap obtained from IST, for the gene set
962 “Regulation of lipid metabolism by PPAR α ”.

963 **Supplementary Figure 1 – Descriptive statistics of the animal models for IPF and NASH, and**
964 **human IPF and NASH data:** **(A)** Principal components 1 and 2 for the IPF human reference
965 data. IPF samples are shown in blue, while control samples are shown in red. Inclusion of
966 individual IPF samples in the medoid subset is indicated by a black outline. **(B)** For principal
967 components 1 to 10 in the IPF human reference data, cumulative percentage of variance
968 explained (R^2) and its cross-validated version (Q^2). **(C)** Number of significant genes (absolute
969 log fold change above 0.25 and false discovery rate below 5%) for the human IPF and the
970 animal model signatures. **(D)** Lung forced vital capacity in the AAV-TGF β 1 and the Bleomycin
971 models with and without Nintedanib treatment. **(E)** Principal components 1 and 2 for the
972 NASH human reference data. The color scale represents the fibrosis stages. **(F)** Number of
973 significant genes for the human NASH disease and the animal models. **(G)** Number of
974 significant genes for the human NASH reversal and the animal recovery signatures.

975 **Supplementary Figure 2 – Regression of liver damage during CCl₄-washout in mice.** **(A)**
976 Histological images of mouse liver during the baseline control, CCl₄ challenge and subsequent
977 4, 8 and 12-week recovery (hematoxylin and eosin stain, Masson’s Trichrome). **(B)** aSMA and
978 collagen area as computed from image data.

979 **Supplementary File 1 – Full gene heatmaps as computed with IST in the IPF and NASH use**
980 **cases.** Zip file where all the genes belonging to each gene set were displayed, as opposed to
981 the figures in the main text, which are limited to the top 50 genes. Plots include the evaluation
982 of animal models in IPF and NASH, and the evaluation of treatments or recovery in NASH.

983

984 **Data and code availability**

985 All the newly generated mouse sequencing data will be deposited in GEO.
986 The code implementing the computational methods in IST is available as an R package called
987 IST at <https://github.com/bi-compbio/IST>, with a vignette that describes the approach,
988 implementation, and usage. IST also bundles an interactive R shiny app, available at
989 https://github.com/bi-compbio/IST_browser, that displays an IST results object to prioritize
990 signatures and pathways by recapitulation, and to compare signatures within pathways. The
991 code and data to reproduce the results of this manuscript can be found at
992 https://github.com/bi-compbio/IST_results

993 **References**

994

995

996 Alkhouri, Naim, Anna Alisi, Vera Okwu, Ammar Matloob, Federica Ferrari, Annalisa Crudele,
997 Rita De Vito, Rocio Lopez, Ariel E. Feldstein, and Valerio Nobili. 2015. "Circulating Soluble
998 Fas and Fas Ligand Levels Are Elevated in Children with Nonalcoholic Steatohepatitis."
999 *Digestive Diseases and Sciences* 60 (8): 2353–59. doi:10.1007/s10620-015-3614-z.

1000 Andrews, Simon. 2010. "FastQC: A Quality Control Tool for High Throughput Sequence Data."
1001 <http://www.bioinformatics.babraham.ac.uk/projects/fastqc/>.

1002 Barratt, Shaney L., Victoria A. Flower, John D. Pauling, and Ann B. Millar. 2018. "VEGF
1003 (Vascular Endothelial Growth Factor) and Fibrotic Lung Disease." *International Journal of
1004 Molecular Sciences* 19 (5): 1269. doi:10.3390/ijms19051269.

1005 Becares, Natalia, Matthew C. Gage, Maud Voisin, Elina Shrestha, Lucia Martin-Gutierrez, Ning
1006 Liang, Rikah Louie, et al. 2019. "Impaired LXRx Phosphorylation Attenuates Progression of
1007 Fatty Liver Disease." *Cell Reports* 26 (4): 984–995.e6. doi:10.1016/j.celrep.2018.12.094.

1008 Benjamini, Yoav, and Yosef Hochberg. 1995. "Controlling the False Discovery Rate: A Practical
1009 and Powerful Approach to Multiple Testing." *Journal of the Royal Statistical Society Series
1010 B (Methodological)* 57 (1): 289–300. <https://www.jstor.org/stable/2346101>.

1011 Bougarne, Nadia, Basiel Weyers, Sofie J Desmet, Julie Deckers, David W Ray, Bart Staels, and
1012 Karolien De Bosscher. 2018. "Molecular Actions of PPARx in Lipid Metabolism and
1013 Inflammation." *Endocrine Reviews* 39 (5): 760–802. doi:10.1210/er.2018-00064.

1014 Breschi, Alessandra, Thomas R. Gingeras, and Roderic Guigó. 2017. "Comparative
1015 Transcriptomics in Human and Mouse." *Nature Reviews Genetics* 18 (7): 425–40.
1016 doi:10.1038/nrg.2017.19.

1017 Bühling, Frank, Christoph Röcken, Frank Brasch, Roland Hartig, Yoshiyuki Yasuda, Paul Saftig,
1018 Dieter Brömmel, and Tobias Welte. 2004. "Pivotal Role of Cathepsin K in Lung Fibrosis." *The
1019 American Journal of Pathology* 164 (6): 2203–16. doi:10.1016/s0002-9440(10)63777-7.

1020 Dobin, Alexander, Carrie A. Davis, Felix Schlesinger, Jorg Drenkow, Chris Zaleski, Sonali Jha,
1021 Philippe Batut, Mark Chaisson, and Thomas R. Gingeras. 2013. "STAR: Ultrafast Universal
1022 RNA-Seq Aligner." *Bioinformatics* 29 (1): 15–21. doi:10.1093/bioinformatics/bts635.

1023 Doshida, Yuta, Shinichi Hashimoto, Sadahiro Iwabuchi, Yuka Takino, Toshiyuki Ishiwata,
1024 Toshiro Aigaki, and Akihito Ishigami. 2023. "Single-Cell RNA Sequencing to Detect Age-
1025 Associated Genes That Identify Senescent Cells in the Liver of Aged Mice." *Scientific
1026 Reports* 13 (1): 14186. doi:10.1038/s41598-023-41352-6.

1027 Durinck, Steffen, Paul T Spellman, Ewan Birney, and Wolfgang Huber. 2009. "Mapping
1028 Identifiers for the Integration of Genomic Datasets with the R/Bioconductor Package
1029 BiomaRt." *Nature Protocols* 4 (8): 1184–91. doi:10.1038/nprot.2009.97.

1030 Everitt, Brian S., Sabine Landau, Morven Leese, and Daniel Stahl. 2014. "Cluster Analysis." 1031 *Wiley Series in Probability and Statistics*, 71–110. doi:10.1002/9780470977811.ch4.

1032 Feldstein, Ariel E, Ali Canbay, Paul Angulo, Makiko Taniai, Lawrence J Burgart, Keith D Lindor, 1033 and Gregory J Gores. 2003. "Hepatocyte Apoptosis and Fas Expression Are Prominent 1034 Features of Human Nonalcoholic Steatohepatitis." *Gastroenterology* 125 (2): 437–43. 1035 doi:10.1016/s0016-5085(03)00907-7.

1036 GENFIT. 2020. "GENFIT: Announces Results from Interim Analysis of RESOLVE-IT Phase 3 Trial 1037 of Elafibranor in Adults with NASH and Fibrosis." Press release. <https://ml- 1038 eu.globenewswire.com/Resource/Download/38e085e1-66f5-4251-8abe-648d0e7b9ed1>.

1039 Ghafoory, Shahrouz, Rohan Varshney, Tyler Robison, Karim Kouzbari, Sean Woolington, 1040 Brennah Murphy, Lijun Xia, and Jasimuddin Ahamed. 2018. "Platelet TGF-B1 Deficiency 1041 Decreases Liver Fibrosis in a Mouse Model of Liver Injury." *Blood Advances* 2 (5): 470–80. 1042 doi:10.1182/bloodadvances.2017010868.

1043 Gillespie, Marc, Bijay Jassal, Ralf Stephan, Marija Milacic, Karen Rothfels, Andrea Senff- 1044 Ribeiro, Johannes Griss, et al. 2021. "The Reactome Pathway Knowledgebase 2022." 1045 *Nucleic Acids Research* 50 (D1): gkab1028-. doi:10.1093/nar/gkab1028.

1046 Grgurevic, Lovorka, Igor Erjavec, Ivica Grgurevic, Ivo Dumić-Cule, Jelena Brkljacic, Donatella 1047 Verbanac, Mario Matijasic, et al. 2017. "Systemic Inhibition of BMP1-3 Decreases 1048 Progression of CCl4-Induced Liver Fibrosis in Rats." *Growth Factors* 35 (6): 201–15. 1049 doi:10.1080/08977194.2018.1428966.

1050 Griffett, Kristine, and Thomas P. Burris. 2023. "Development of LXR Inverse Agonists to Treat 1051 MAFLD, NASH, and Other Metabolic Diseases." *Frontiers in Medicine* 10: 1102469. 1052 doi:10.3389/fmed.2023.1102469.

1053 Hall, Marie-Claire, David A. Young, Jasmine G. Waters, Andrew D. Rowan, Andrew Chantry, 1054 Dylan R. Edwards, and Ian M. Clark. 2003. "The Comparative Role of Activator Protein 1 1055 and Smad Factors in the Regulation of Timp-1 and MMP-1 Gene Expression by 1056 Transforming Growth Factor-B1*." *Journal of Biological Chemistry* 278 (12): 10304–13. 1057 doi:10.1074/jbc.m212334200.

1058 Hansen, Henrik H., Michael Feigh, Sanne S. Veidal, Kristoffer T. Rigbolt, Niels Vrang, and Keld 1059 Fosgerau. 2017. "Mouse Models of Nonalcoholic Steatohepatitis in Preclinical Drug 1060 Development." *Drug Discovery Today* 22 (11): 1707–18. doi:10.1016/j.drudis.2017.06.007.

1061 Hoek, Anita M. van den, Lars Verschuren, Martien P. M. Caspers, Nicole Worms, Aswin L. 1062 Menke, and Hans M. G. Princen. 2021. "Beneficial Effects of Elafibranor on NASH in 1063 E3L.CETP Mice and Differences between Mice and Men." *Scientific Reports* 11 (1): 5050. 1064 doi:10.1038/s41598-021-83974-8.

1065 Huss, Sebastian, Christian Stellmacher, Diane Goltz, Inna Khlistunova, Alexander C Adam, 1066 Jonel Trebicka, Jutta Kirfel, Reinhard Büttner, and Ralf Weiskirchen. 2013. "Deficiency in 1067 Four and One Half LIM Domain Protein 2 (FHL2) Aggravates Liver Fibrosis in Mice." *BMC 1068 Gastroenterology* 13 (1): 8. doi:10.1186/1471-230x-13-8.

1069 Iredale, John. 2008. "Defining Therapeutic Targets for Liver Fibrosis: Exploiting the Biology of
1070 Inflammation and Repair." *Pharmacological Research* 58 (2): 129–36.
1071 doi:10.1016/j.phrs.2008.06.011.

1072 Islinger, M., M.J.R. Cardoso, and M. Schrader. 2010. "Be Different—The Diversity of
1073 Peroxisomes in the Animal Kingdom." *Biochimica et Biophysica Acta (BBA) - Molecular Cell*
1074 *Research* 1803 (8): 881–97. doi:10.1016/j.bbamcr.2010.03.013.

1075 Iyer, Anand Krishnan V., Vani Ramesh, Carlos A. Castro, Vivek Kaushik, Yogesh M. Kulkarni,
1076 Clayton A. Wright, Rajkumar Venkatadri, Yon Rojanasakul, and Neelam Azad. 2015. "Nitric
1077 Oxide Mediates Bleomycin-induced Angiogenesis and Pulmonary Fibrosis via Regulation of
1078 VEGF." *Journal of Cellular Biochemistry* 116 (11): 2484–93. doi:10.1002/jcb.25192.

1079 Jenkins, R Gisli, Bethany B Moore, Rachel C Chambers, Oliver Eickelberg, Melanie Königshoff,
1080 Martin Kolb, Geoffrey J Laurent, et al. 2017. "An Official American Thoracic Society
1081 Workshop Report: Use of Animal Models for the Preclinical Assessment of Potential
1082 Therapies for Pulmonary Fibrosis." *American Journal of Respiratory Cell and Molecular*
1083 *Biology* 56 (5): 667–79. doi:10.1165/rccb.2017-0096st.

1084 Kanehisa, Minoru, Miho Furumichi, Yoko Sato, Masayuki Kawashima, and Mari Ishiguro-
1085 Watanabe. 2022. "KEGG for Taxonomy-Based Analysis of Pathways and Genomes." *Nucleic*
1086 *Acids Research* 51 (D1): D587–92. doi:10.1093/nar/gkac963.

1087 Karampitsakos, Theodoros, Tony Woolard, Demosthenes Bouros, and Argyris Tzouvelekis.
1088 2017. "Toll-like Receptors in the Pathogenesis of Pulmonary Fibrosis." *European Journal of*
1089 *Pharmacology* 808: 35–43. doi:10.1016/j.ejphar.2016.06.045.

1090 Lee, K S, S J Park, S R Kim, K H Min, K Y Lee, Y H Choe, S H Hong, et al. 2008. "Inhibition of VEGF
1091 Blocks TGF- 1 Production through a PI3K/Akt Signalling Pathway." *European Respiratory*
1092 *Journal* 31 (3): 523–31. doi:10.1183/09031936.00125007.

1093 Li, Bo, and Colin N Dewey. 2011. "RSEM: Accurate Transcript Quantification from RNA-Seq
1094 Data with or without a Reference Genome." *BMC Bioinformatics* 12 (1): 323.
1095 doi:10.1186/1471-2105-12-323.

1096 Li, San-Qiang, Sha Zhu, Xue-Dong Wan, Zheng-Shun Xu, and Zhao Ma. 2014. "Neutralization
1097 of ADAM8 Ameliorates Liver Injury and Accelerates Liver Repair in Carbon Tetrachloride-
1098 Induced Acute Liver Injury." *The Journal of Toxicological Sciences* 39 (2): 339–51.
1099 doi:10.2131/jts.39.339.

1100 Liao, Yang, Gordon K. Smyth, and Wei Shi. 2014. "FeatureCounts: An Efficient General Purpose
1101 Program for Assigning Sequence Reads to Genomic Features." *Bioinformatics* 30 (7): 923–
1102 30. doi:10.1093/bioinformatics/btt656.

1103 Liberzon, Arthur, Chet Birger, Helga Thorvaldsdóttir, Mahmoud Ghandi, Jill P. Mesirov, and
1104 Pablo Tamayo. 2015. "The Molecular Signatures Database Hallmark Gene Set Collection."
1105 *Cell Systems* 1 (6): 417–25. doi:10.1016/j.cels.2015.12.004.

1106 Loft, Anne, Ana Jimena Alfaro, Søren Fisker Schmidt, Felix Boel Pedersen, Mike Krogh
1107 Terkelsen, Michele Puglia, Kan Kau Chow, et al. 2021. "Liver-Fibrosis-Activated

1108 Transcriptional Networks Govern Hepatocyte Reprogramming and Intra-Hepatic
1109 Communication." *Cell Metabolism* 33 (8): 1685-1700.e9. doi:10.1016/j.cmet.2021.06.005.

1110 Loomba, Rohit, Scott L. Friedman, and Gerald I. Shulman. 2021. "Mechanisms and Disease
1111 Consequences of Nonalcoholic Fatty Liver Disease." *Cell* 184 (10): 2537-64.
1112 doi:10.1016/j.cell.2021.04.015.

1113 Mak, Isabella Wy, Nathan Evaniew, and Michelle Ghert. 2013. "Lost in Translation: Animal
1114 Models and Clinical Trials in Cancer Treatment." *American Journal of Translational
1115 Research* 6 (2): 114-18.

1116 Manibusan, Mary K., Marc Odin, and David A. Eastmond. 2007. "Postulated Carbon
1117 Tetrachloride Mode of Action: A Review." *Journal of Environmental Science and Health, Part C* 25 (3): 185-209. doi:10.1080/10590500701569398.

1119 Mari, Pier-Valerio, Mark G. Jones, and Luca Richeldi. 2019. "Contemporary Concise Review
1120 2018: Interstitial Lung Disease." *Respirology* 24 (8): 809-16. doi:10.1111/resp.13572.

1121 McGonigle, Paul, and Bruce Ruggeri. 2014. "Animal Models of Human Disease: Challenges in
1122 Enabling Translation." *Biochemical Pharmacology* 87 (1): 162-71.
1123 doi:10.1016/j.bcp.2013.08.006.

1124 Mevik, Bjørn-Helge, and Ron Wehrens. 2007. "The Pls Package: Principal Component and
1125 Partial Least Squares Regression in R." *Journal of Statistical Software* 18 (2).
1126 doi:10.18637/jss.v018.i02.

1127 Michelson, Matthew, and Katja Reuter. 2019. "The Significant Cost of Systematic Reviews and
1128 Meta-Analyses: A Call for Greater Involvement of Machine Learning to Assess the Promise
1129 of Clinical Trials." *Contemporary Clinical Trials Communications* 16: 100443.
1130 doi:10.1016/j.conc.2019.100443.

1131 Murray, Lynne A., David M. Habiel, Miriam Hohmann, Ana Camelo, Huilan Shang, Yang Zhou,
1132 Ana Lucia Coelho, et al. 2017. "Antifibrotic Role of Vascular Endothelial Growth Factor in
1133 Pulmonary Fibrosis." *JCI Insight* 2 (16): e92192. doi:10.1172/jci.insight.92192.

1134 Nagase, Takahide, Naonori Uozumi, Satoshi Ishii, Yoshihiro Kita, Hiroshi Yamamoto, Eihiro
1135 Ohga, Yasuyoshi Ouchi, and Takao Shimizu. 2002. "A Pivotal Role of Cytosolic
1136 Phospholipase A2 in Bleomycin-Induced Pulmonary Fibrosis." *Nature Medicine* 8 (5): 480-
1137 84. doi:10.1038/nm0502-480.

1138 Normand, Rachelly, Wenfei Du, Mayan Briller, Renaud Gaujoux, Elina Starovetsky, Amit Ziv-
1139 Kenet, Gali Shalev-Malul, Robert J. Tibshirani, and Shai S. Shen-Orr. 2018. "Found In
1140 Translation: A Machine Learning Model for Mouse-to-Human Inference." *Nature Methods*
1141 15 (12): 1067-73. doi:10.1038/s41592-018-0214-9.

1142 North, B.V., D. Curtis, and P.C. Sham. 2003. "A Note on the Calculation of Empirical P Values
1143 from Monte Carlo Procedures." *The American Journal of Human Genetics* 72 (2): 498-99.
1144 doi:10.1086/346173.

1145 Novo, E, F Marra, E Zamara, L Valfrè di Bonzo, L Monitillo, S Cannito, I Petrai, et al. 2006.
1146 “Overexpression of Bcl-2 by Activated Human Hepatic Stellate Cells: Resistance to
1147 Apoptosis as a Mechanism of Progressive Hepatic Fibrogenesis in Humans.” *Gut* 55 (8):
1148 1174. doi:10.1136/gut.2005.082701.

1149 Pantano, Lorena, George Agyapong, Yang Shen, Zhu Zhuo, Francesc Fernandez-Albert,
1150 Werner Rust, Dagmar Knebel, et al. 2021. “Molecular Characterization and Cell Type
1151 Composition Deconvolution of Fibrosis in NAFLD.” *Scientific Reports* 11 (1): 18045.
1152 doi:10.1038/s41598-021-96966-5.

1153 Pardo, Annie, Sandra Cabrera, Mariel Maldonado, and Moisés Selman. 2016. “Role of Matrix
1154 Metalloproteinases in the Pathogenesis of Idiopathic Pulmonary Fibrosis.” *Respiratory
1155 Research* 17 (1): 23. doi:10.1186/s12931-016-0343-6.

1156 Perel, Pablo, Ian Roberts, Emily Sena, Philipa Wheble, Catherine Briscoe, Peter Sandercock,
1157 Malcolm Macleod, Luciano E Mignini, Pradeep Jayaram, and Khalid S Khan. 2007.
1158 “Comparison of Treatment Effects between Animal Experiments and Clinical Trials:
1159 Systematic Review.” *BMJ* 334 (7586): 197. doi:10.1136/bmj.39048.407928.be.

1160 Plessis, Johannie du, Hannelie Korf, Jos van Pelt, Petra Windmolders, Ingrid Vander Elst, An
1161 Verrijken, Guy Hubens, et al. 2016. “Pro-Inflammatory Cytokines but Not Endotoxin-
1162 Related Parameters Associate with Disease Severity in Patients with NAFLD.” *PLoS ONE* 11
1163 (12): e0166048. doi:10.1371/journal.pone.0166048.

1164 Pound, Pandora, and Michael B Bracken. 2014. “Is Animal Research Sufficiently Evidence
1165 Based to Be a Cornerstone of Biomedical Research?” *BMJ : British Medical Journal* 348
1166 (may30 1): g3387. doi:10.1136/bmj.g3387.

1167 Rinella, Mary E., Jeffrey V. Lazarus, Vlad Ratziu, Sven M. Francque, Arun J. Sanyal, Fasiha
1168 Kanwal, Diana Romero, et al. 2023. “A Multisociety Delphi Consensus Statement on New
1169 Fatty Liver Disease Nomenclature.” *Journal of Hepatology* 79 (6): 1542–56.
1170 doi:10.1016/j.jhep.2023.06.003.

1171 Ritchie, Matthew E., Belinda Phipson, Di Wu, Yifang Hu, Charity W. Law, Wei Shi, and Gordon
1172 K. Smyth. 2015. “Limma Powers Differential Expression Analyses for RNA-Sequencing and
1173 Microarray Studies.” *Nucleic Acids Research* 43 (7): e47–e47. doi:10.1093/nar/gkv007.

1174 Robinson, N. Bryce, Katherine Krieger, Faiza M. Khan, William Huffman, Michelle Chang, Ajita
1175 Naik, Ruan Yongle, et al. 2019. “The Current State of Animal Models in Research: A
1176 Review.” *International Journal of Surgery* 72: 9–13. doi:10.1016/j.ijsu.2019.10.015.

1177 Rodriguez, Montserrat A. de la Rosa, Go Sugahara, Guido J. E. J. Hooiveld, Yuji Ishida, Chise
1178 Tateno, and Sander Kersten. 2018. “The Whole Transcriptome Effects of the PPAR α
1179 Agonist Fenofibrate on Livers of Hepatocyte Humanized Mice.” *BMC Genomics* 19 (1): 443.
1180 doi:10.1186/s12864-018-4834-3.

1181 Ruiz-Blázquez, Paloma, Valeria Pistorio, María Fernández-Fernández, and Anna Moles. 2021.
1182 “The Multifaceted Role of Cathepsins in Liver Disease.” *Journal of Hepatology* 75 (5): 1192–
1183 1202. doi:10.1016/j.jhep.2021.06.031.

1184 Sayols, Sergi, Denise Scherzinger, and Holger Klein. 2016. “DupRadar: A Bioconductor Package
1185 for the Assessment of PCR Artifacts in RNA-Seq Data.” *BMC Bioinformatics* 17 (1): 428.
1186 doi:10.1186/s12859-016-1276-2.

1187 Schlager, Stefanie, Carina Salomon, Sabine Olt, Christoph Albrecht, Anja Ebert, Oliver Bergner,
1188 Johannes Wachter, et al. 2020. “Inducible Knock-out of BCL6 in Lymphoma Cells Results in
1189 Tumor Stasis.” *Oncotarget* 11 (9): 875–90. doi:10.18632/oncotarget.27506.

1190 Schwettmann, Lutz, Michael Wehmeier, Dunja Jokovic, Krasimira Aleksandrova, Korbinian
1191 Brand, Michael P. Manns, Ralf Lichtinghagen, and Matthias J. Bahr. 2008. “Hepatic
1192 Expression of A Disintegrin And Metalloproteinase (ADAM) and ADAMs with
1193 Thrombospondin Motives (ADAM-TS) Enzymes in Patients with Chronic Liver Diseases.”
1194 *Journal of Hepatology* 49 (2): 243–50. doi:10.1016/j.jhep.2008.03.020.

1195 Seok, Junhee, H. Shaw Warren, Alex G. Cuenca, Michael N. Mindrinos, Henry V. Baker,
1196 Weihong Xu, Daniel R. Richards, et al. 2013. “Genomic Responses in Mouse Models Poorly
1197 Mimic Human Inflammatory Diseases.” *Proceedings of the National Academy of Sciences*
1198 110 (9): 3507–12. doi:10.1073/pnas.1222878110.

1199 Stowikowski, Kamil. 2016. “Picardmetrics.” <https://github.com/slowkow/picardmetrics>.

1200 Söllner, Julia F., German Leparc, Tobias Hildebrandt, Holger Klein, Leo Thomas, Elia Stupka,
1201 and Eric Simon. 2017. “An RNA-Seq Atlas of Gene Expression in Mouse and Rat Normal
1202 Tissues.” *Scientific Data* 4 (1): 170185. doi:10.1038/sdata.2017.185.

1203 Stacklies, Wolfram, Henning Redestig, Matthias Scholz, Dirk Walther, and Joachim Selbig.
1204 2007. “PcaMethods—a Bioconductor Package Providing PCA Methods for Incomplete
1205 Data.” *Bioinformatics* 23 (9): 1164–67. doi:10.1093/bioinformatics/btm069.

1206 Strobel, Benjamin, Matthias J. Duechs, Ramona Schmid, Birgit E. Stierstorfer, Hannes Bucher,
1207 Karsten Quast, Detlef Stiller, et al. 2015. “Modeling Pulmonary Disease Pathways Using
1208 Recombinant Adeno-Associated Virus 6.2.” *American Journal of Respiratory Cell and
1209 Molecular Biology* 53 (3): 291–302. doi:10.1165/rccm.2014-0338ma.

1210 Strobel, Benjamin, Holger Klein, Germán Leparc, Birgit E. Stierstorfer, Florian Gantner, and
1211 Sebastian Kreuz. 2022. “Time and Phenotype-Dependent Transcriptome Analysis in AAV-
1212 TGF β 1 and Bleomycin-Induced Lung Fibrosis Models.” *Scientific Reports* 12 (1): 12190.
1213 doi:10.1038/s41598-022-16344-7.

1214 Subramanian, Aravind, Pablo Tamayo, Vamsi K. Mootha, Sayan Mukherjee, Benjamin L. Ebert,
1215 Michael A. Gillette, Amanda Paulovich, et al. 2005. “Gene Set Enrichment Analysis: A
1216 Knowledge-Based Approach for Interpreting Genome-Wide Expression Profiles.”
1217 *Proceedings of the National Academy of Sciences* 102 (43): 15545–50.
1218 doi:10.1073/pnas.0506580102.

1219 Takao, Keizo, and Tsuyoshi Miyakawa. 2015. “Genomic Responses in Mouse Models Greatly
1220 Mimic Human Inflammatory Diseases.” *Proceedings of the National Academy of Sciences*
1221 112 (4): 1167–72. doi:10.1073/pnas.1401965111.

1222 Teng, Kun-Yu, Juan M. Barajas, Peng Hu, Samson T. Jacob, and Kalpana Ghoshal. 2020. "Role
1223 of B Cell Lymphoma 2 in the Regulation of Liver Fibrosis in MiR-122 Knockout Mice."
1224 *Biology* 9 (7): 157. doi:10.3390/biology9070157.

1225 Thiele, Nina D., Jan W. Wirth, David Steins, Anja C. Koop, Harald Ittrich, Ansgar W. Lohse, and
1226 Johannes Kluwe. 2017. "TIMP-1 Is Upregulated, but Not Essential in Hepatic Fibrogenesis
1227 and Carcinogenesis in Mice." *Scientific Reports* 7 (1): 714. doi:10.1038/s41598-017-00671-
1228 1.

1229 Tourkina, Elena, Pal Gooz, Jaspreet Pannu, Michael Bonner, Dimitri Scholz, Sharon Hacker,
1230 Richard M. Silver, Maria Trojanowska, and Stanley Hoffman. 2005. "Opposing Effects of
1231 Protein Kinase C α and Protein Kinase C ϵ on Collagen Expression by Human Lung Fibroblasts
1232 Are Mediated via MEK/ERK and Caveolin-1 Signaling*." *Journal of Biological Chemistry* 280
1233 (14): 13879–87. doi:10.1074/jbc.m412551200.

1234 Trapnell, Cole, David G Hendrickson, Martin Sauvageau, Loyal Goff, John L Rinn, and Lior
1235 Pachter. 2013. "Differential Analysis of Gene Regulation at Transcript Resolution with RNA-
1236 Seq." *Nature Biotechnology* 31 (1): 46–53. doi:10.1038/nbt.2450.

1237 Voisin, Maud, Matthew C Gage, Natalia Becares, Elina Shrestha, Edward A Fisher, Ines Pineda-
1238 Torra, and Michael J Garabedian. 2020. "LXR α Phosphorylation in Cardiometabolic
1239 Disease: Insight From Mouse Models." *Endocrinology* 161 (7).
1240 doi:10.1210/endocr/bqaa089.

1241 Wang, Hua, Fouad Lafdil, Lei Wang, Shi Yin, Dechun Feng, and Bin Gao. 2011. "Tissue Inhibitor
1242 of Metalloproteinase 1 (TIMP-1) Deficiency Exacerbates Carbon Tetrachloride-Induced
1243 Liver Injury and Fibrosis in Mice: Involvement of Hepatocyte STAT3 in TIMP-1 Production."
1244 *Cell & Bioscience* 1 (1): 14. doi:10.1186/2045-3701-1-14.

1245 Wang, Kewei. 2015. "Autophagy and Apoptosis in Liver Injury." *Cell Cycle* 14 (11): 1631–42.
1246 doi:10.1080/15384101.2015.1038685.

1247 Wang, Kewei, Bingliang Lin, John J. Brems, and Richard L. Gamelli. 2013. "Hepatic Apoptosis
1248 Can Modulate Liver Fibrosis through TIMP1 Pathway." *Apoptosis* 18 (5): 566–77.
1249 doi:10.1007/s10495-013-0827-5.

1250 Wang, Yunguan, Jaswanth Yella, Jing Chen, Francis X. McCormack, Satish K. Madala, and Anil
1251 G. Jegga. 2017. "Unsupervised Gene Expression Analyses Identify IPF-Severity Correlated
1252 Signatures, Associated Genes and Biomarkers." *BMC Pulmonary Medicine* 17 (1): 133.
1253 doi:10.1186/s12890-017-0472-9.

1254 Weckerle, Jelena, Christoph H Mayr, Katrin Fundel-Clemens, Bärbel Lämmle, Lukasz Boryn,
1255 Matthew J Thomas, Tom Bretschneider, et al. 2023. "Transcriptomic and Proteomic
1256 Changes Driving Pulmonary Fibrosis Resolution in Young and Old Mice." *American Journal
1257 of Respiratory Cell and Molecular Biology* 69 (4): 422–40. doi:10.1165/rcmb.2023-0012oc.

1258 Weiss, Thomas S., Madeleine Lupke, Sara Ibrahim, Christa Buechler, Julia Lorenz, Petra
1259 Ruemmele, Ute Hofmann, Michael Melter, and Rania Dayoub. 2017. "Attenuated
1260 Lipotoxicity and Apoptosis Is Linked to Exogenous and Endogenous Augmenter of Liver

1261 Regeneration by Different Pathways." *PLoS ONE* 12 (9): e0184282.
1262 doi:10.1371/journal.pone.0184282.

1263 Wendler, Alexandra, and Martin Wehling. 2010. "The Translatability of Animal Models for
1264 Clinical Development: Biomarkers and Disease Models." *Current Opinion in Pharmacology*
1265 10 (5): 601–6. doi:10.1016/j.coph.2010.05.009.

1266 Yanguas, Sara Crespo, Bruno Cogliati, Joost Willebrords, Michaël Maes, Isabelle Colle, Bert
1267 van den Bossche, Claudia Pinto Marques Souza de Oliveira, et al. 2016. "Experimental
1268 Models of Liver Fibrosis." *Archives of Toxicology* 90 (5): 1025–48. doi:10.1007/s00204-015-
1269 1543-4.

1270 Yates, Andrew D, Premanand Achuthan, Wasiu Akanni, James Allen, Jamie Allen, Jorge
1271 Alvarez-Jarreta, M Ridwan Amode, et al. 2019. "Ensembl 2020." *Nucleic Acids Research* 48
1272 (D1): D682–88. doi:10.1093/nar/gkz966.

1273 Yilmaz, Yusuf, and Fatih Eren. 2018. "Serum Biomarkers of Fibrosis and Extracellular Matrix
1274 Remodeling in Patients with Nonalcoholic Fatty Liver Disease: Association with Liver
1275 Histology." *European Journal of Gastroenterology & Hepatology* 31 (1): 43–46.
1276 doi:10.1097/meg.0000000000001240.

1277 Younossi, Zobair, Quentin M. Anstee, Milena Marietti, Timothy Hardy, Linda Henry,
1278 Mohammed Eslam, Jacob George, and Elisabetta Bugianesi. 2018. "Global Burden of
1279 NAFLD and NASH: Trends, Predictions, Risk Factors and Prevention." *Nature Reviews
1280 Gastroenterology & Hepatology* 15 (1): 11–20. doi:10.1038/nrgastro.2017.109.

1281 Yu, Guangchuang, Li-Gen Wang, Yanyan Han, and Qing-Yu He. 2012. "ClusterProfiler: An R
1282 Package for Comparing Biological Themes Among Gene Clusters." *OMICS: A Journal of
1283 Integrative Biology* 16 (5): 284–87. doi:10.1089/omi.2011.0118.

1284 Zong, Wei, Tanbin Rahman, Li Zhu, Xiangrui Zeng, Yingjin Zhang, Jian Zou, Song Liu, et al. 2023.
1285 "Transcriptomic Congruence Analysis for Evaluating Model Organisms." *Proceedings of the
1286 National Academy of Sciences* 120 (6): e2202584120. doi:10.1073/pnas.2202584120.

1287

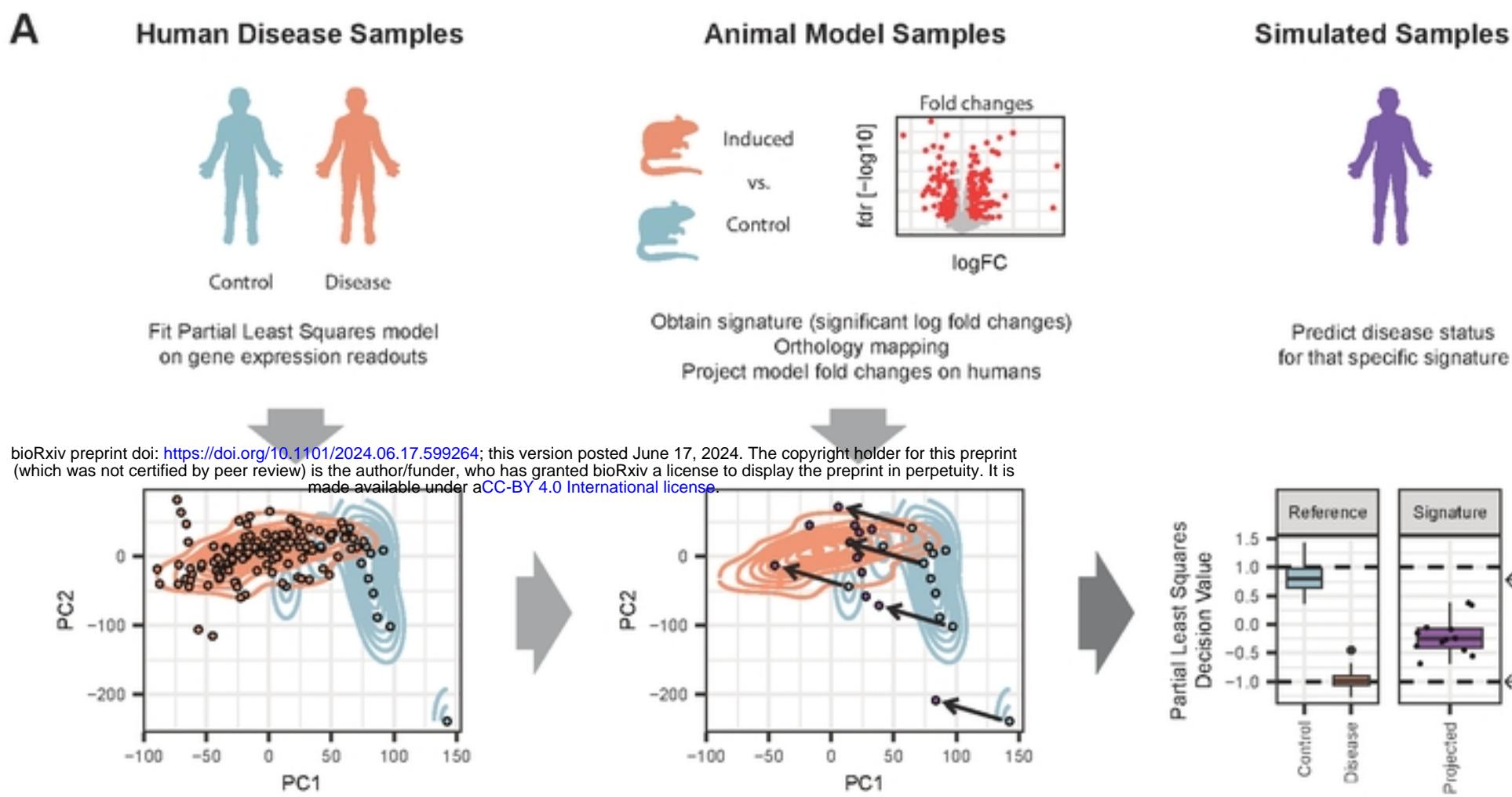
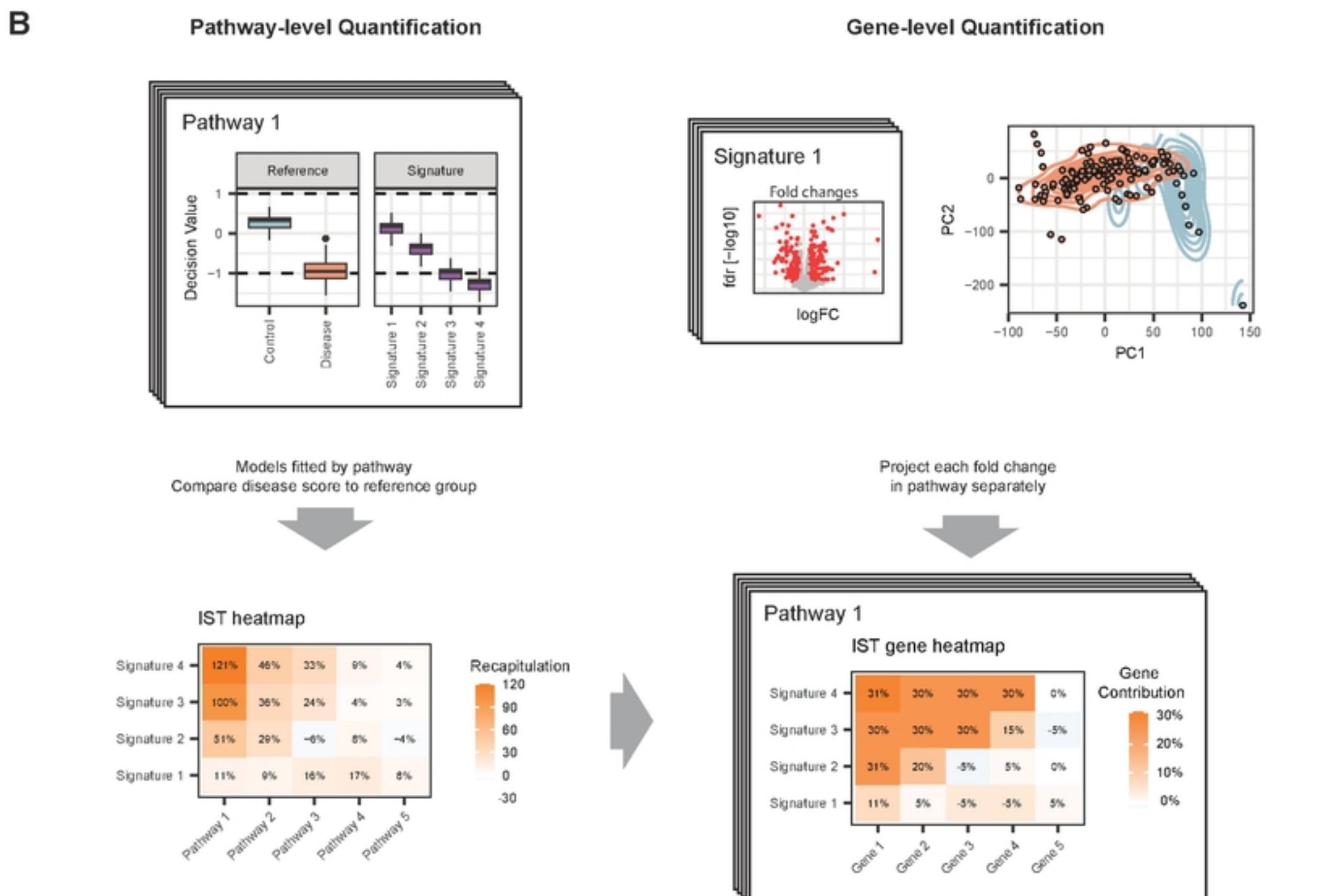
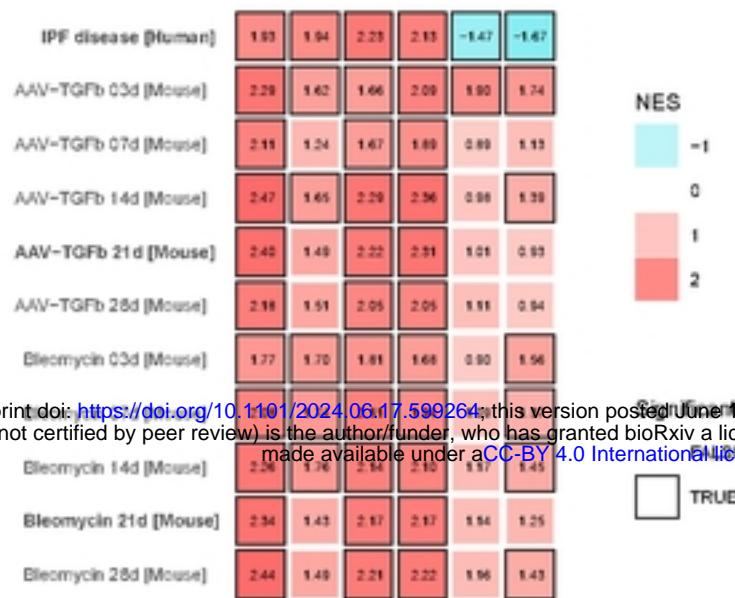


Figure 1

Idiopathic Pulmonary Fibrosis (IPF)

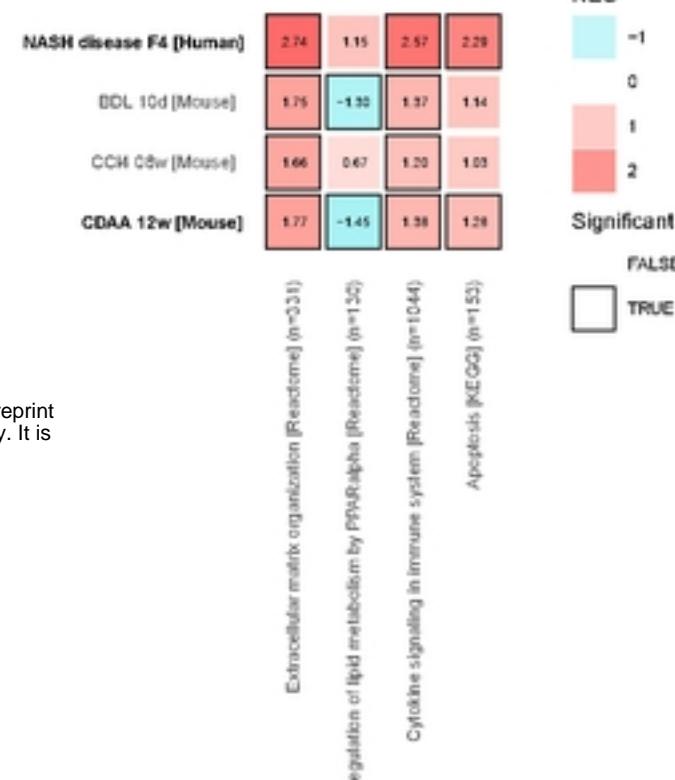
Non-alcoholic steatohepatitis (NASH)

A

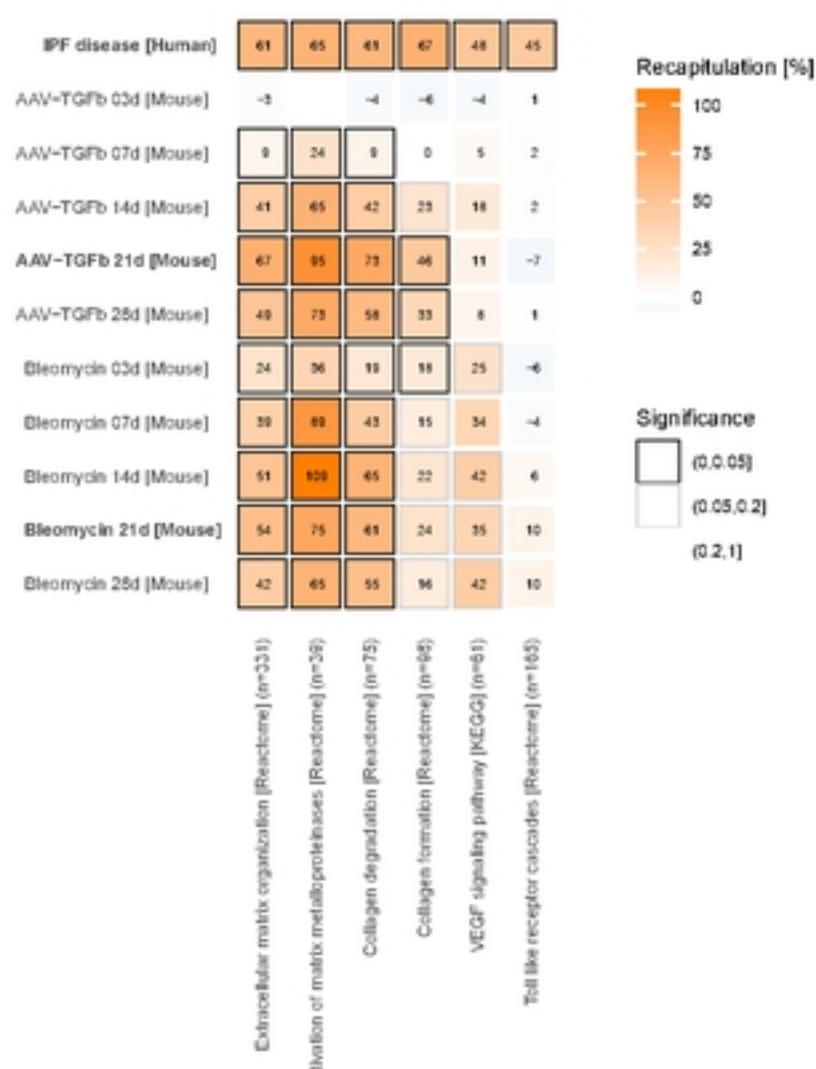


bioRxiv preprint doi: <https://doi.org/10.1101/2024.06.17.599264>; this version posted June 17, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

B



C



D

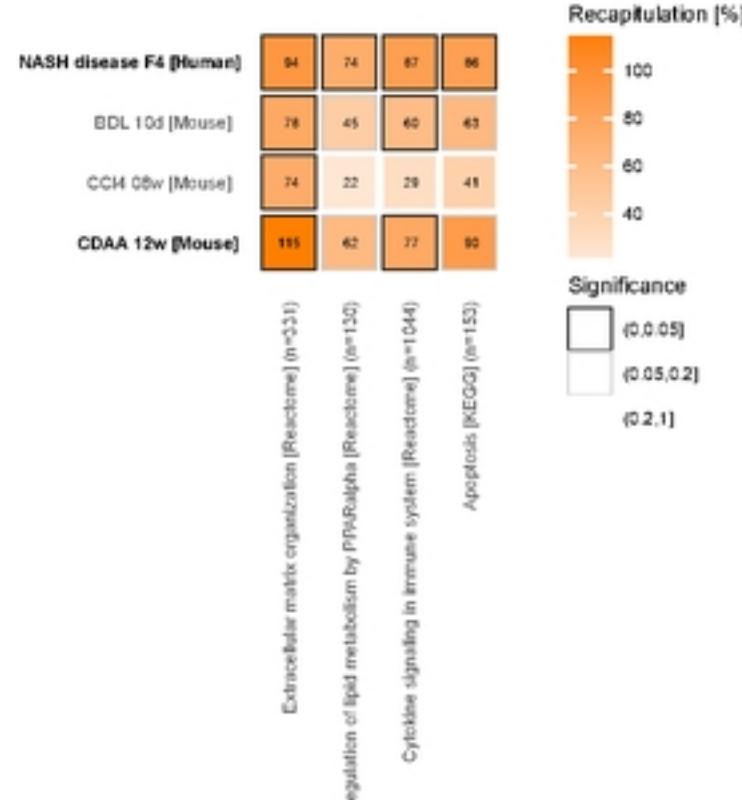


Figure 2

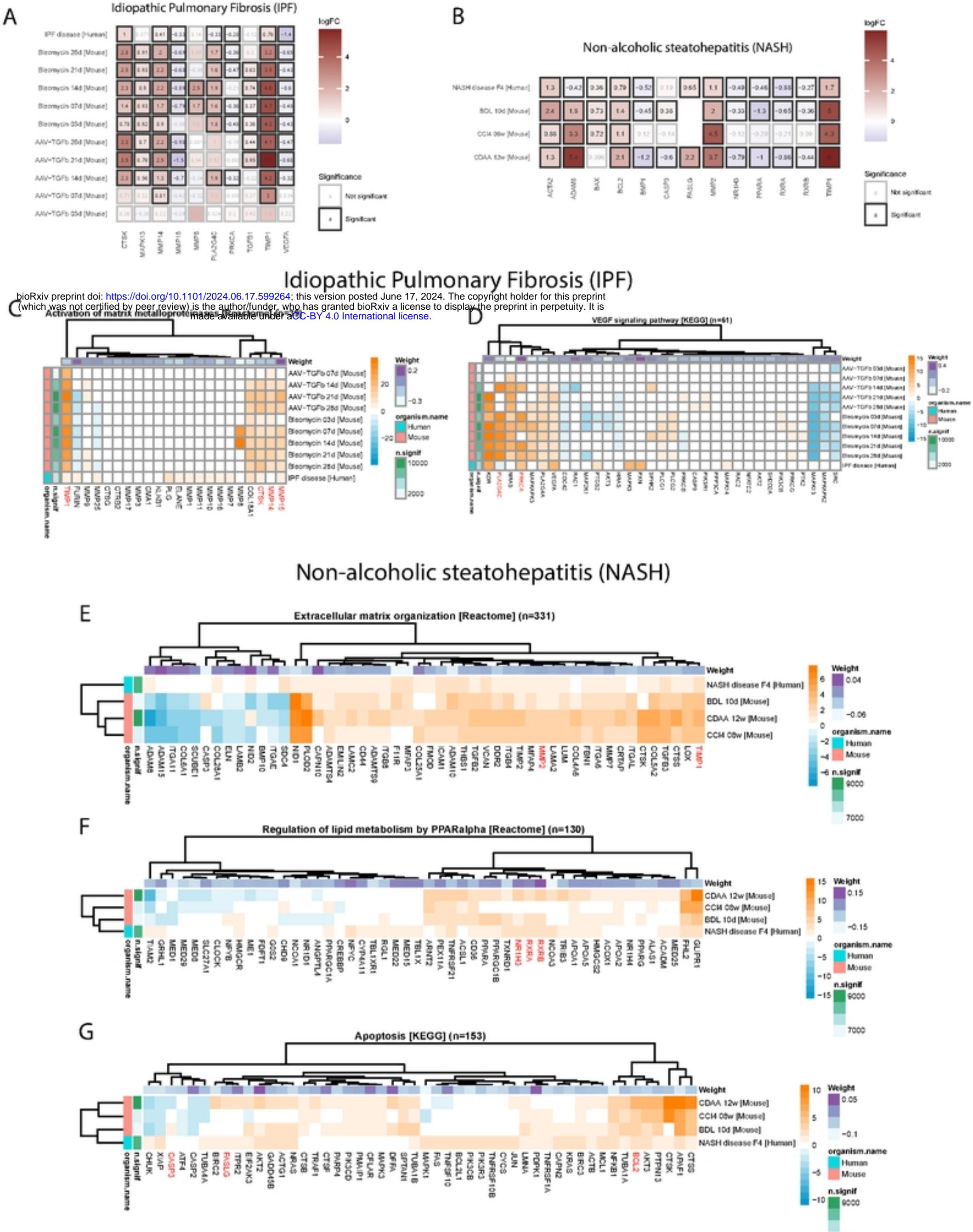
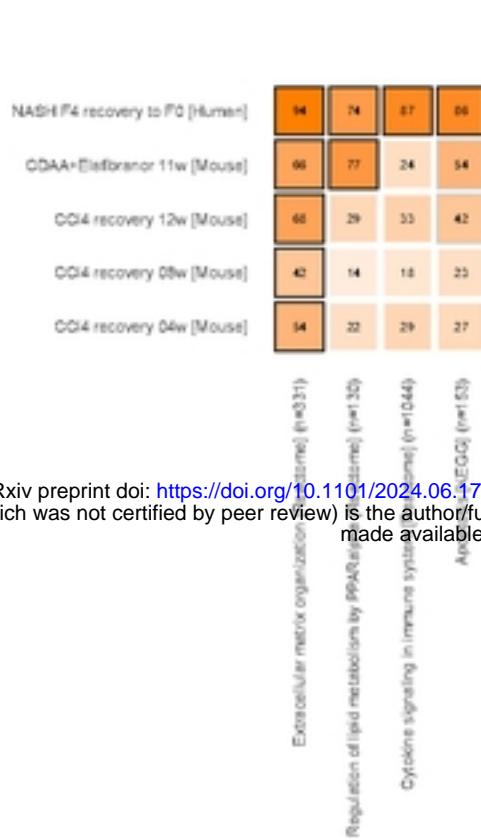


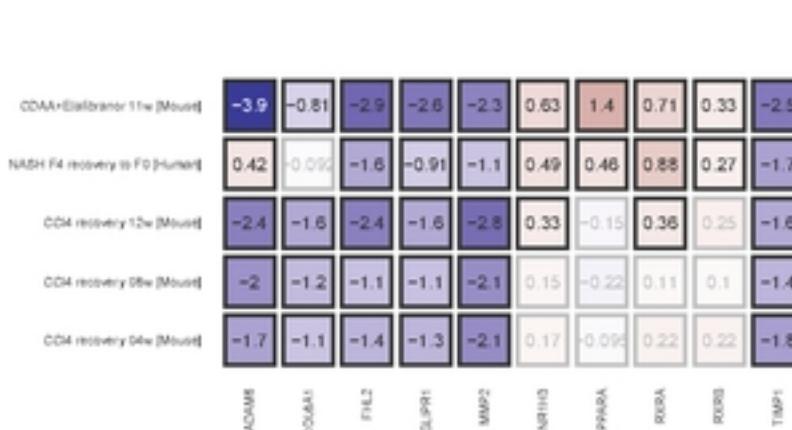
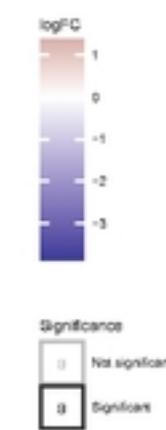
Figure 3

Non-alcoholic steatohepatitis (NASH) recovery

A

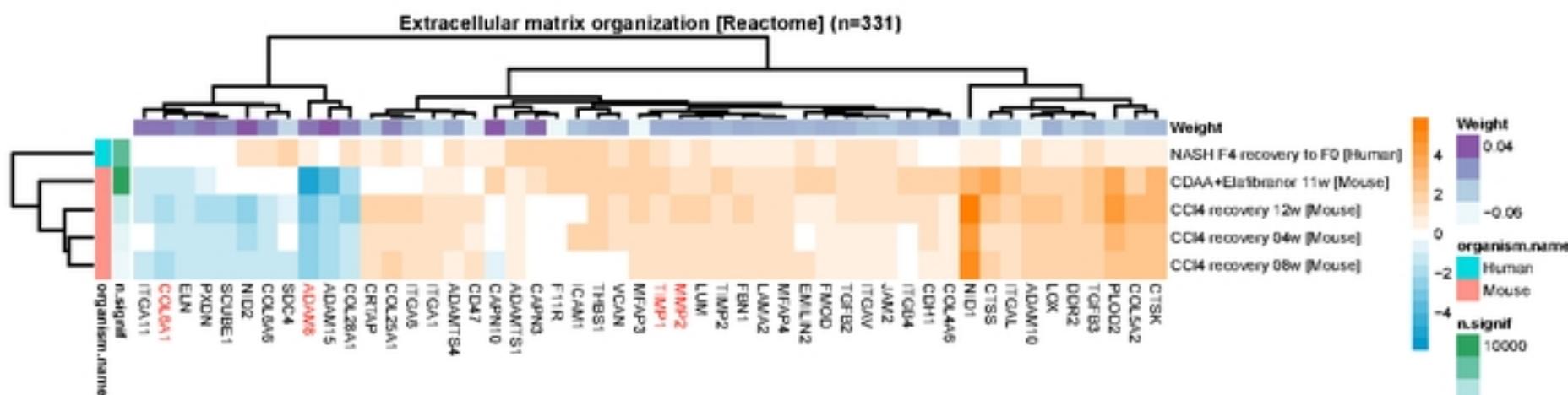


B



bioRxiv preprint doi: <https://doi.org/10.1101/2024.06.17.599264>; this version posted June 17, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

C



D

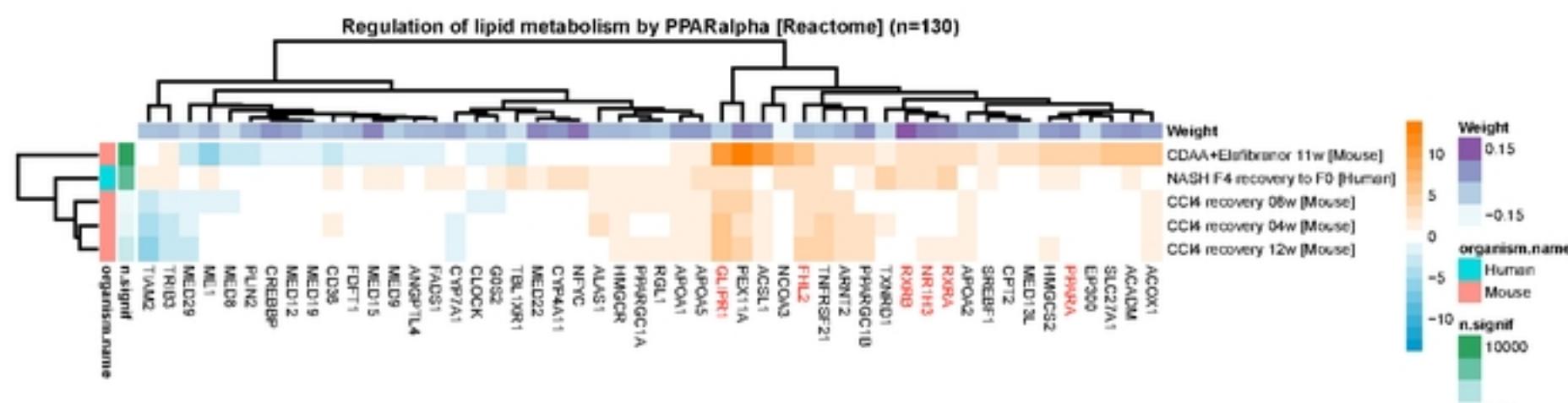
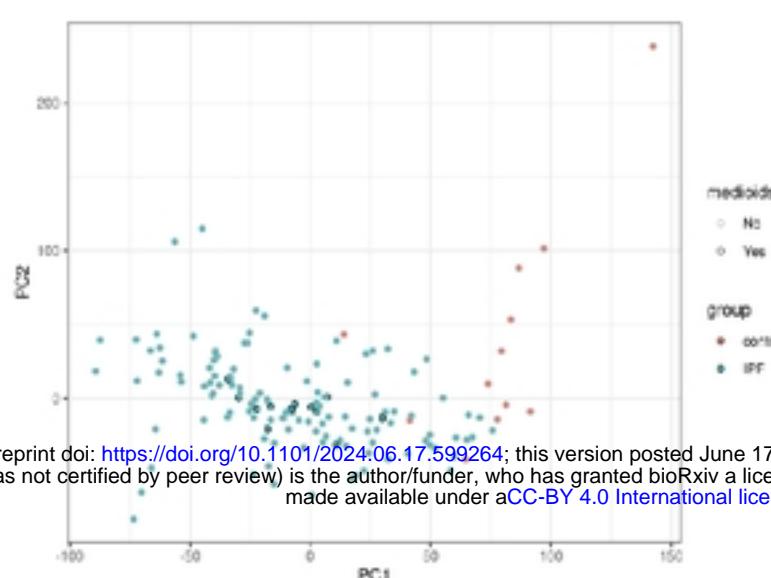


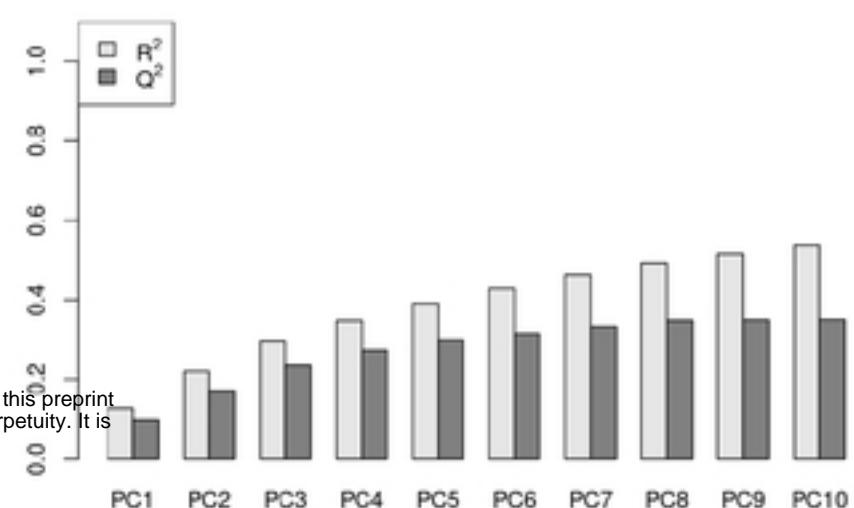
Figure 4

Idiopathic Pulmonary Fibrosis

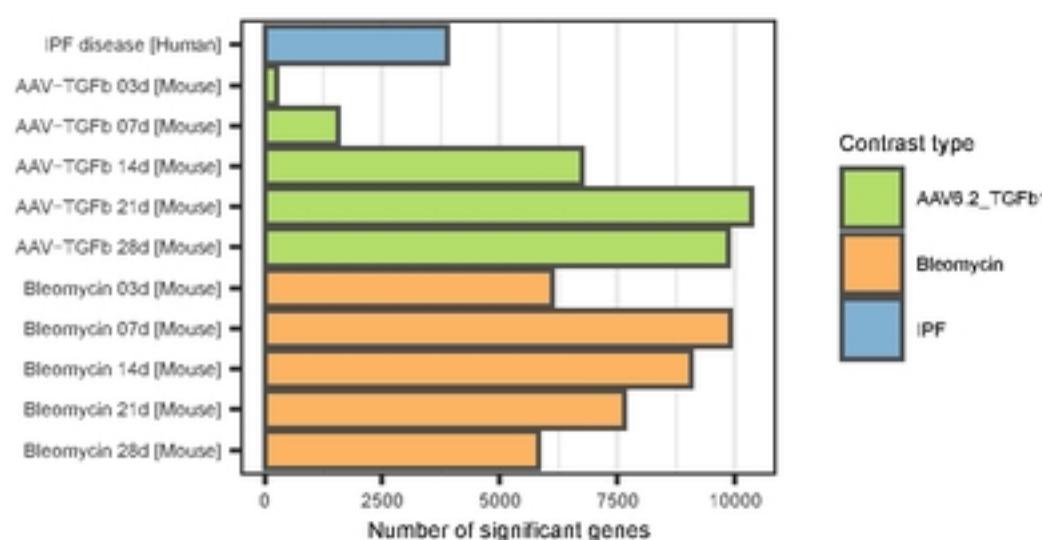
A



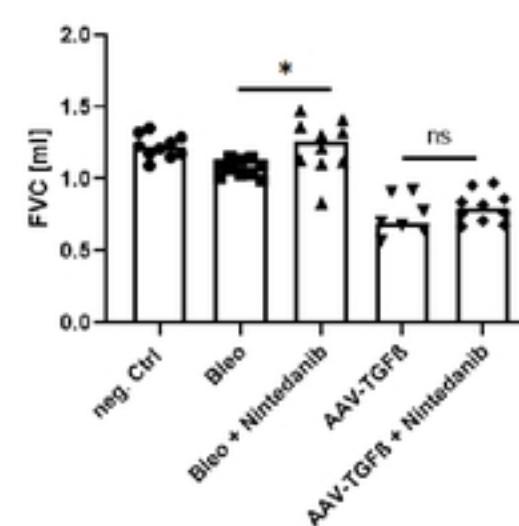
B



C

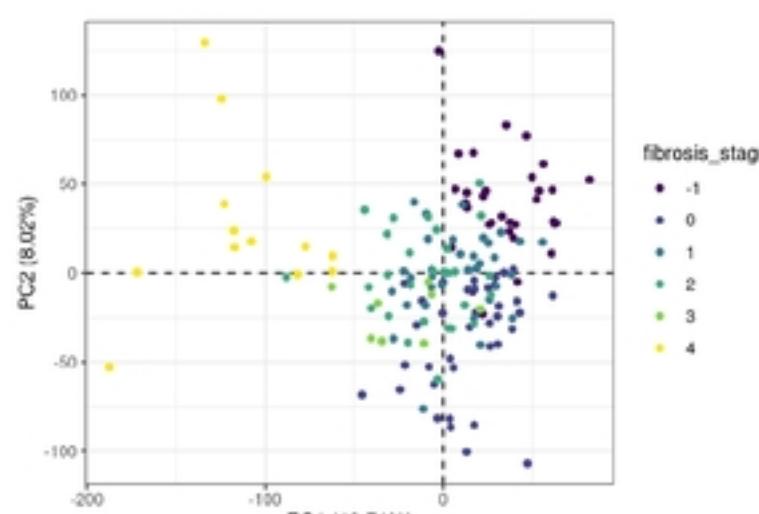


D

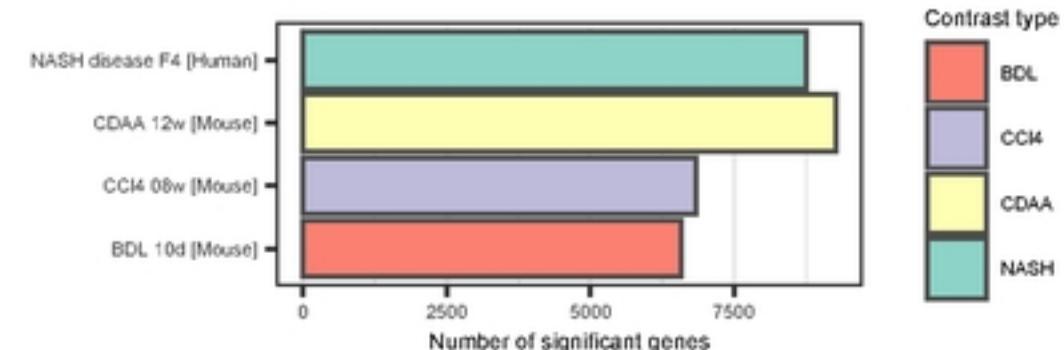


Non-alcoholic Steatohepatitis

E



F



G

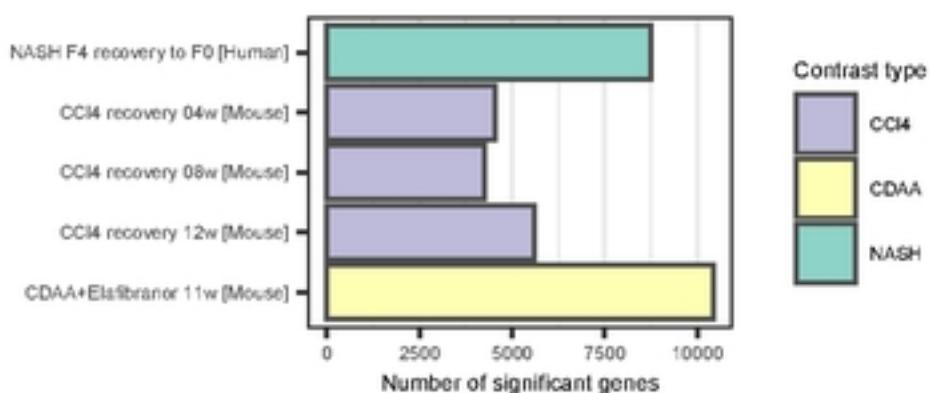


Figure S1

A

Regression of liver damage during CCl₄-washout in C57Bl/6J mice

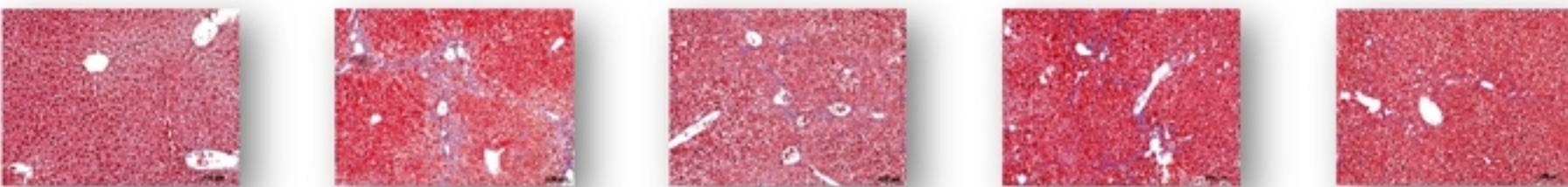
Mouse model for Non-Alcoholic Steatohepatitis (NASH)

Hematoxylin &
Eosin stain



Baseline control Baseline CCl₄ after 8 weeks 4-week recovery 8-week recovery 12-week recovery

Masson's
Trichrome



B

