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Abstract 

Neurodegenerative disorders have overlapping symptoms and have high 

comorbidity rates, but this is not reflected in overlaps of risk genes. We have 

investigated whether ligand-receptor interactions (LRIs) are a mechanism by which 

distinct genes associated with disease risk can impact overlapping outcomes. We 

found that LRIs are likely disrupted in neurological disease and that the ligand-

receptor networks associated with neurological diseases have substantial overlaps. 

Specifically, 96.8% of LRIs associated with disease risk are interconnected in a 

single LR network. These ligands and receptors are enriched for roles in 
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inflammatory pathways and highlight the role of glia in cross-disease risk. Disruption 

to this LR network due to disease-associated processes (e.g. differential transcript 

use, protein misfolding) is likely to contribute to disease progression and risk of 

comorbidity. Our findings have implications for drug development, as they highlight 

the potential benefits and risks of pursuing cross-disease drug targets.  

Introduction 

Neurodegeneration is characterised by neuronal cell death and synaptic loss, which impacts 

cognition and motor function (1). For highly prevalent neurodegenerative disorders (NDDs), 

such as Alzheimer’s and Parkinson’s disease (PD), age is an important risk factor. Paired with 

increasing life expectancy in many countries, this means that NDDs are forecast to generate an 

increased social and economic burden in upcoming years (2). The need for therapies to halt all 

types of neurodegeneration has never been more pressing. 

 

Presentation of each NDD is linked to the neuronal population affected in each disease, such as 

loss of dopaminergic neurons in the substantia nigra driving motor dysfunction in PD or 

depletion of motor neurons in the spinal cord and upper motor neurons in the cortex, which 

drives disability in amyotrophic lateral sclerosis (ALS) (3). In spite of these differences, NDDs 

have several overlapping features (4–6). These include aberrant protein homeostasis, altered 

energy homeostasis, DNA and RNA defects, inflammation and, ultimately, neuronal cell death 

(1). Many of these processes are interlinked. For example, aberrant protein homeostasis can 

cause mitochondrial stress, impacting energy homeostasis and contributing to neuronal death. 

Furthermore, co-pathology is the norm rather than the exception in neurodegeneration, where 

90% of older adults with Alzheimer’s disease (AD) with autopsy confirmation have mixed 

pathology (7). Although aggregation of amyloid beta and tau fibrils, alpha synuclein and TDP-43 

are stereotypically associated with different diseases, they frequently co-occur in the same 

patient, with features from as many as 7 neurodegenerative conditions reported in the same 

individual  (4, 8, 9). High comorbidity rates are potentially further evidence of the overlaps in the 

neurodegenerative process. For example, 20-40% of patients with Parkinson’s disease (PD) go 

on to develop dementia (10, 11). Taken together, the overlapping biological pathways, and high 

rates of co-pathology and comorbidity suggest that while NDDs have disease-specific features, 

there are important overlaps in disease processes. The cause of these overlaps remains largely 

elusive.  

 

Genotype-phenotype relationships of genes associated with NDDs are complex, as 

demonstrated by familial forms of disease. Variable expressivity is well recognised, as in the 

case for the pathogenic repeat expansion of C9orf72 which can cause both amyotrophic lateral 

sclerosis (ALS) and frontotemporal dementia (FTD) (12). Furthermore, pathogenic variants in a 

range of genes can cause the same clinical outcome, such as dominant mutations in amyloid 

precursor protein, presenilin 1 and 2, all of which result in early onset AD (13). A further layer of 

complexity is added with sporadic forms of disease, which account for the majority of cases. 

Single nucleotide polymorphisms that increase disease risk are largely independent across 

neurodegenerative disorders when heritability is considered globally (14). Although there is 
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evidence for local genetic correlations across diseases (15), these seem unlikely to be sufficient 

to explain the overlaps observed across NDDs.  

 

Neuropsychiatric disorders (NPDs) also have several overlapping features, including alterations 

to fundamental molecular processes and symptomatology (16, 17). For instance, alterations to 

synapses and circuitry at various developmental stages have been associated with 

neuropsychiatric disease (18, 19). This potentially explains the high comorbidity rates across 

NPDs, with 48.6-51.0% of patients with major depression having at least one concomitant 

anxiety disorder and only 26.0-34.8% having no comorbid mental disorder (20, 21). Symptoms 

of NPDs also tend to co-occur: 21% of people fulfilling DSM-IV criteria for a mental disorder 

meet criteria for three or more other NPDs (22). However, unlike NDDs, NPDs have overlapping 

genetic architectures, sharing a large number of risk loci (14). The comorbidity rate and overlaps 

in genetics are such that NPDs were proposed to be spectral disorders (23, 24). Diagnostic 

guidelines have rather stratified diagnostic processes further, causing a still debated question of 

reification in NPD classification, that is, whether creation of this model for NPD classification has 

generated a bias in perception of NPDs (25, 26). 

 

Irrespective of their origin, cross-disease targets have the potential to be highly important sites 

for drug targeting. To date, the strategy for identification of such targets has largely been based 

on shared biology. However, since it is now known that drugs with genetic evidence are over 

four times more likely to be approved following clinical trials (27), providing a genetic context is 

valuable. Thus, understanding how distinct risk genes can contribute to overlapping pathways 

and shared disease outcomes could be an essential step for cross-target identification and 

successful drug design. In light of this, we hypothesised that ligand-receptor interactions (LRIs) 

are a promising mechanism by which products of distinct genes interact to produce the same 

outcome. As such, disruption to either of the interactors in an LRI would result in overlapping, 

albeit non-identical outcomes (Fig 1A). Sources of disruption to LRIs could be alterations to 

protein conformation and affinity due to genetic variants and/or environmental factors. 

Importantly, LRIs also tend to be highly druggable (28). They are often amenable to targeting by 

small molecules, which is essential for diseases of the central nervous system (CNS), as any 

treatment must be capable of traversing the blood brain barrier. Consequently, we think that 

characterising the role of LRIs across diseases is important. The availability of databases such 

as omnipathDB (29), which comprehensively annotates LRIs and the increasing understanding 

of the genetic architecture of NDDs and NPDs make this form of analysis timely. Furthermore, 

the availability of untargeted transcriptomics methods across cell types and tissues, can provide 

(1) a survey of LRIs predicted to be occurring on a cell-type level and (2) validation of LRIs that 

are likely to be occurring based on the location of expression (30, 31).  

 

By taking into consideration the network nature of LRIs, we have found novel links between 

neurological diseases which are consistent with clinical observations. We also found compelling 

evidence that LRIs are likely to be disrupted in neurological disease. Finally, we identified and 

characterised a single LRI network enriched for cross-disease risk, including NDDs, NPDs and 

other neurological disorders, which has implications for cross-disease target design.  
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Results 

Ligand-receptor interactions are expected to be disrupted in neurological disease 

In order to determine whether LRIs could be a driver of co-pathology, the first hypothesis we 

tested was whether genes associated with neurological disease are more likely to be ligands 

and/or receptors (LRs) than those that are not associated with disease. We included a range of 

disorders including NDDs, NPDs and other neurological conditions. This resulted in the 

identification of 24 potential diseases of interest. For each of these diseases we identified 

genetically implicated gene sets using the Open Targets (https://www.opentargets.org/) 

resource. Only genes with genetic association risk scores > 0.4 were retained (maximum 

association score of 1.0) to ensure higher target confidence and only diseases with more than 

10 risk genes were included. This resulted in the analysis of 18 diseases in total (SupFig 1A-B). 

We then annotated genes based on whether they are known to act as a ligand and/or receptor 

using the Omnipath database (29) (Fig 1B) and compared the occurrence of ligands and 

receptors in disease-associated genes to the occurrence of LRs amongst all protein-expressing 

genes expressed in the brain as detected within the Genotype-Tissue Expression (GTEx) data. 

Of the 18 neurological disorders tested, 7 had significant enrichment of ligands and/or receptors 

amongst the gene sets, namely AD, frontotemporal dementia (FTD), PD, major depressive 

disorder (MDD), schizophrenia (SCZ), multiple sclerosis and partial epilepsy (Fig 1C). The 

disease type with the most significant LR enrichment was NDDs. We found that 3 of the 5 tested 

NDDs (60%, FDR-corrected p value range 5.0x10-2 - 1.0x10-4), 2 of the 8 NPDs (25%, FDR-

corrected p value range 5.0x10-2- 1.0x10-4) and 2 of the 5 other neurological disorders (40%, 

FDR-corrected p value<1.0x10-4) had significant overrepresentation of LRs amongst risk genes.  

These results were not explained by gene set size, as exemplified by the fact that both SCZ (N 

= 317 genes) and FTD (N = 26 genes) had significant receptor enrichment despite having a 12-

fold difference in gene set sizes. Strikingly, only AD risk genes were enriched for both ligands 

and receptors, while all other diseases only had significant enrichment of receptors amongst the 

risk genes. This overrepresentation of receptor involvement is a feature specific to neurological 

disorders, with disorders of other types (cardiovascular, autoimmune, cancer) either being 

enriched for both ligands and receptors or neither (SupFig 1C). This highlights the differences 

in genetic architecture across multiple body systems.  

 

Accounting for ligand-receptor interaction networks highlights disease-disease 

relationships 

Given that receptors are enriched across risk genes for many neurological disorders, we 

postulated that this could drive dysfunction more broadly to cause secondary neurological 

disease due to their interactive nature. Specifically, disruption to the same LRIs in different 

diseases could generate overlaps in pathology and symptomatology. We investigated this 

possibility in three ways: (i) by determining whether there were significant overlaps amongst 

ligands and receptors themselves, (ii) by determining whether there were common LRIs affected 

across diseases, and (iii) by determining whether architecturally the LR networks affected in 

each disease were similar. We did this by comparing the real overlapping features of diseases 

to bootstrapped overlaps, if the real overlapping feature was in the 90th percentile of 

bootstrapped data, it was considered a “hit”. 
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Focusing on the first approach, we found that 47 out of all 153 pairwise comparisons between 

different diseases had direct overlaps in ligands and/or receptors with the majority of these 

involving NPDs (Fig 2A). This is consistent with the existing literature which shows that NPDs 

have significant overlaps in genetic risk (14, 32), but here we demonstrate this for LRs 

specifically. Out of 17 pairwise comparisons, SCZ had 12 “hits” for overlapping ligand and/or 

receptors, making it the disease with most “hits”. This could be expected, since SCZ has the 

largest number of risk-associated LRs. The disease with the second highest number of 

overlapping “hits” was partial epilepsy, which overlapped with all NPDs as well as several NDDs 

(AD, PD, FTD) and migraine disorder.  

We investigated LR relationships further using our second approach, namely assessing how 

many LRIs containing risk genes each disease pair shared (Fig 2B). For this, an LRI was 

considered to contain risk genes if at least one of its interactors (ligand or receptor) was 

associated with disease risk. For example, in a case where a ligand was associated with one 

disease and an interacting receptor with another, this LRI would be considered of interest for 

both diseases. We found that PD and SCZ were the comparison with most LRI overlaps, with 

169 overlapping LRIs. This was largely due to the gene FYN, which is associated with both PD 

and SCZ. We noted that NPDs had similar overlap profiles, with several “hits” amongst each 

other. Interestingly, both unipolar depression (N = 12 “hits”) and major depressive disorder (N = 

9 “hits”) had the highest number of LRI “hits” with other diseases, including all NPDs, some 

NDDs (ALS, FTD) and other disorders (partial epilepsy, restless leg).  

Finally, we assessed the similarities of LR networks associated with each diseases as a whole 

(Fig 2C). To do this we calculated the similarity of LR networks for each disease pair using the 

deltacon algorithm, which compares the connectivity of two networks. In this method small 

distances indicate a high degree of similarity between the networks and large distances indicate 

more distinct networks.  

SCZ was the disease with the greatest LR network similarity with other diseases (N = 14 “hits”), 

including NPDs (OCD, Anorexia nervosa, tourette syndrome, MDD, neurotic disorder), motor 

disorders (Parkinson’s disease, essential tremor, restless leg syndrome, amyotrophic lateral 

sclerosis) and other disorders (multiple sclerosis, partial epilepsy, brain aneurysm, migraine 

disorder). PD was the disease with the second highest similarity (N = 10 “hits”), with disease 

overlaps that included movement disorders (essential tremor, restless leg syndrome), NDDs 

(FTD, ALS), NPDs (OCD, anorexia nervosa, neurotic disorder, major depressive disorder) and 

other neurological disorders (MS, partial epilepsy). Based on this analysis, we concluded that 

the LR networks were a promising route by which to understand relationships across multiple 

neurological diseases, even across disease types.  

 

A single ligand-receptor network connects the majority of risk-associated ligands and 

receptors across diseases 

We found that LR networks across neurological conditions had significant network similarities in 

pair-wise comparisons. However, this analysis did not capture similarities across more than two 

diseases. Therefore, we explicitly generated and characterised the LR network architecture 

across all diseases within a single analysis. We foresaw three main possible outcomes: (i) each 

disease would have its own LR network containing large numbers of risk genes (e.g. PD-

specific network), (ii) there would be an LR network for each major disease type (e.g. NDDs) 
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with risk genes for a number of diseases included, and (iii) there would be one major LR 

network enriched for disease risk genes associated with multiple disease types (e.g. NDDs and 

NPDs). We found that the LR network we generated was highly connected and included all 

major disease types (namely outcome iii). Specifically, 96.3% of all disease associated LRs 

(based on a genetic association threshold of 0.40) were interconnected and contained within a 

single network (99th percentile, Fig 3A), which we termed the cross-disease LR network. We 

tested whether this network was maintained as we increased the stringency of selection of risk 

genes to only keep LRs with higher risk association scores. We incrementally increased the 

genetic association score threshold to 0.55 and 0.70, and found that the proportion of LRs in the 

cross-disease LR network was largely maintained. More specifically, using a genetic association 

score of 0.55, 94.9% of genes were still part of a major cross-disease LR network (99th 

percentile). Even at a very stringent genetic association score of 0.70 the majority of LRs were 

in the main network (65.6% of LRs, 60th percentile, SupFig 1C). These findings show that LRs 

associated with disease risk are functionally interconnected and that disruption of disease-

associated LRIs in one disease would be expected to impact the broader LR network to 

potentially generate comorbidity.  

 

Glia and inhibitory neurons have a disproportionate role in cross-disease risk 

Having identified a cross-disease LR network enriched for disease risk, the next step was to 

characterise the genes in this network (N = 865 genes). Specifically, we wanted to determine 

the cellular specificity of the genes and their contribution to known pathways. Focusing on the 

former, we used single nuclear RNA sequencing data (human cortex) and expression weighted 

cell type enrichment (EWCE) analysis to identify cell types of interest. We found that the risk LR 

network had significant enrichment for genes with high specificity for endothelial cells (FDR-

corrected p value < 1.0x10-4), OPCs (FDR-corrected, q < 1.0x10-4), astrocytes (FDR-corrected p 

value < 1.0x10-4), microglia (FDR-corrected, q < 1.0x10-4) and inhibitory neurons (FDR-

corrected p value = 2.0x10-4) (Fig 3B). An increase in stringency in the network (genetic 

association score > 0.70, N = 128 genes) resulted in enrichment to glia cell types alone (FDR-

corrected, p value range 3.77x10-2  - 1.0x10-4). We validated and extended these findings using 

a second snRNAseq dataset from multiple human cortical regions that enabled finer annotation 

of inhibitory and excitatory neurons. Interestingly, the inhibitory neuron enrichment observed 

previously was replicated and shown to be specific to GABAergic VIP+ neurons (FDR-

corrected, p value < 1.0x10-4, SupFig 2A), which are known to regulate behavioural circuitry 

(33). Furthermore, we observed significant enrichment of these genes to excitatory 

intertelencephalic neurons in layers 5/6 (FDR-corrected p value = 4.0x10-4). 

Next, we used the ligand-receptor analysis framework (LIANA) (34), which infers LRIs in 

snRNAseq data directly, and in a data-driven manner. This orthogonal approach adds a 

relational dimension by predicting which cell types are likely to interact through each LR pair. 

Consistent with our EWCE-based findings, LIANA predicted the prominent role of inhibitory 

neurons and glia within the LR network. With increased stringency (genetic association score > 

0.70) the main interactions were glia-glia: Astrocyte-Endomural (N = 8), OPC-Endomural (N = 

8), Oligo-Endomural (N = 7), which mirrored results using EWCE (Fig 3C). Similarly, at a 

genetic association score > 0.40 we also found inhibitory neuron-inhibitory neuron interactions 
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were frequently identified using the genetic association score of 0.40 and 0.55, which again is 

consistent with the EWCE analysis (SupFig 3A-B).   

Finally, we performed pathway enrichment analysis with the genes in the risk LR network to 

identify biological processes of greatest interest. We found that the LR network genes had an 

overrepresentation of genes in pathways linked to integrin (integrin-mediated signalling 

pathway, FDR-adjusted p value 1.97x10-25; cell adhesion mediated by integrin, FDR-adjusted p 

value 7.84x10-23; cell-matrix adhesion, FDR-adjusted p value 1.51x10-15; positive regulation of 

binding, FDR-adjusted p value 4.96x10-11), cell development and/or neurogenesis (negative 

regulation of cell development, FDR-adjusted p value 6.24x10-13; negative regulation of nervous 

system development, FDR-adjusted p value 4.77x10-12; negative regulation of neurogenesis, 

FDR-adjusted p value 3.17x10-12; astrocyte differentiation, FDR-adjusted p value 1.21x10-15) 

and neuroinflammation (neuroinflammatory response, FDR-adjusted p value 3.20x10-13; positive 

regulation of inflammatory response, FDR-adjusted p value 3.78x10-13) (Fig 3D). Similar 

pathways were highlighted in the less stringent networks as well (SupFig 3C-D). Jointly, these 

findings shed light on the importance of the glial and inhibitory infrastructure of the brain in 

cross-disease risk.  

 

Risk-associated ligand-receptor interactions occur in the vicinity of excitatory neurons 

LR interactions require spatial proximity of interacting partners. For membrane-bound proteins 

this means that the protein-expressing cells must be located close to each other for 

ligand/receptor binding to occur. For soluble LRs, proximity of expression makes a given 

interaction more likely, even if it is not essential for the expressing cells to be in 

contact.Therefore, we decided to characterise the spatial context of risk LR interactions. This 

serves as both validation that these interactions can occur in the human brain, and provide 

insight into the cell types which may be secondarily affected. For instance, we expect that co-

localisation of neurons with pro-inflammatory interactions has a deleterious effect on neuronal 

survival and function. More specifically, we wanted to determine : (i) whether there are spatial 

cortical domains mapping to cortical layers which are more likely to be impacted by the risk LR 

network, and (ii) which cell types tend to co-localise near these risk interactions (Fig 4A).  

To address these questions we used public spatial transcriptomic data derived from human 

dorsolateral prefrontal cortex and generated on the 10x Visium platform, together with paired 

snRNAseq DLPFC data from the same samples. Given that the Visium platform captures RNA-

expression within 55 um diameter spots, we began by classifying all spots (N = 113,927) across 

the 30 samples available based on the expression of genes within the LR risk network. For each 

spot we counted the proportion of the genes within the LR network which were detected and 

generated a distribution of gene set detection. We focused on spots within the top 5% of the 

distribution and classified them as spots with high disease risk. Next, we tested whether this 

population of spots were more likely to be located in a specific cortical layer and found that 

spots were enriched within cortical layer 6. In fact, this enrichment was significant relative to all 

other cortical layers (Dunn’s test, 5.431x10-58 < p value < 1.0x10-283, except layer 5 (p value > 

5.0x10-2, Fig 4B-C).  

We also found that certain cell types were significantly enriched within spots with high disease 

risk. In particular, we found that inhibitory neurons and excitatory neurons from cortical layers 3-

6 (for inhibitory and excitatory neurons in layer 3, 4, 5, and 6 FDR-corrected p value < 1.0x10-3) 
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occurred more frequently in these spots than would be expected by chance (Fig 4D). This is in 

part consistent with the EWCE enrichment analysis, which highlighted LR enrichment to 

inhibitory neurons and excitatory layer 5 intertelencephalic neurons. Although we did not identify 

significant enrichment amongst glial cell types we noted that astrocytes and endomural cells 

frequently co-localised with layer 5 neurons in spots with high disease risk. Consequently, the 

risk LR network is most likely to impact the microenvironment of neurons in the grey matter, 

specifically surrounding layer 5 of the cortex. 

 

PD-associated genes are particularly important in the cross-disease LR network 

Not all individual genes have the same potential to impact the LR network, as this is influenced 

by their connectivity within the network. As such, particularly in the context of drug development, 

identifying the most influential genes is strategic. To do this we repurposed pagerank, an 

algorithm used by the web search engines to rank the importance of web results, to instead rank 

genes within the networks. In this case, each gene was assigned importance based on (1) the 

number of genes it was connected to and (2) the importance of these connected genes (35). We 

then assessed which diseases these genes were associated with. Finally, we evaluated which 

of the highest ranking genes were part of the druggable genome (36) (Fig 5A). We noted that 

the five top-ranked genes, namely RELN, SNCA, TLR4, APOE and GAL, were part of the 

druggable genome (Fig 5B). Interestingly, 4 of these genes have been associated with PD, 

highlighting the importance of PD-associated genes in cross-disease risk.  

 

Discussion 

The increasing awareness of the underlying commonalities of NDDs has fueled the pursuit of 

cross-disease drug targets. With several shared disease-associated pathways, frequent co-

pathology and high rates of comorbidity, cross-disease targets seem like a viable and cost-

effective route to tackle the lack of effective treatments for neurodegenerative disorders. In this 

work we explored the role of LRIs as an intermediary mechanism where the product of distinct 

genes interact contributing to shared outcomes in neurodegenerative and other neurological 

disorders.  

 

We found that LRIs are likely to be vulnerable in several neurological diseases. Notably, when 

compared to diseases of other systems, genes encoding receptors were overrepresented 

amongst CNS risk genes. This finding may have implications for  existing therapeutic efforts, 

which have focused on high throughput custom ligand design (37, 38). In fact, our findings 

suggest that for custom ligand design to be successful in neurological conditions, it may need to 

take into account disease-associated alterations in receptor conformation and affinity caused by 

genetic variation or alternative transcript use. 

 

We also demonstrate that accounting for LRIs and LR networks highlights relationships between 

diseases which are consistent with clinical observations, but that are largely hidden when 

genetic data alone is considered. This extended beyond overlaps amongst neurodegenerative 

disorders, but demonstrated that ligands and receptor interactions are likely to contribute to 

overlaps between neuropsychiatric and neurodegenerative disorders. This finding is consistent 

with clinical data of high prevalence of neuropsychiatric comorbidities in neurodegeneration, 
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such as depression which has a prevalence of 34-50% amongst several neurodegenerative 

disorders (39–41).  

 

The high connectivity of ligands and/or receptors associated with disease risk highlights the 

degree of fine-tuning of the LRI network required for normal CNS function. We hypothesise that 

this network is likely to become increasingly dysregulated during the course of disease, 

contributing to disease progression and comorbidity. This view is supported by examples drawn 

from PD research. For example, APOE, a ligand associated with AD risk, is a key component of 

the LR risk network together with the receptor, LRP1B, which is known to bind APOE. 

Interestingly, genetic variation in both APOE and LRP1B have been associated with PD 

progression to dementia (42), suggesting that dysregulation of this interaction may drive 

additional AD-associated interactions in the network, contributing to cognitive decline and 

dementia in PD.  

 

Amongst all diseases, we found that PD had particularly unique features. Although the 

neurodegenerative component of PD is often emphasised, our findings shed light on its 

neuropsychiatric component. The overlaps of PD with SCZ LRs are consistent with the known 

psychiatric component of PD (43, 44), such as psychosis (~26-82.7% of PD patients), apathy 

and anhedonia (16.4-40% of PD patients) and impulse control disorders (~14% of PD patients) 

(43, 45). Although long-term use of L-dopa may contribute to psychosis, the vulnerability of LR 

interactions may provide insight into why psychiatric symptoms can also occur in the prodromal 

phase (46) of PD.  

 

We also noted that many of the genes ranked highly based on influence in the LR network have 

been associated with PD. This includes FYN, which is the highest ranking gene in cross-disease 

networks, and RELN, a secreted extracellular matrix protein associated with the migration, 

positioning and maintenance of neurons. Mutations to RELN are associated with partial epilepsy 

(47), but its anti-apoptotic role has also been of interest in the context of PD and SCZ (48, 49). 

Interestingly, RELN is expressed predominantly by a specialist subpopulation of inhibitory 

neurons in adults and is linked to the RELN-DAB1 pathway which is associated with AD 

pathogenesis. In fact, it was recently reported to have an epistatic relationship with APOE, 

another of the high ranking targets and associated with risk of AD, PD and DLB (50). SNCA 

produces alpha-synuclein, a highly abundant presynaptic protein in the brain. Its misfolding and 

aggregation has been linked to PD and LBD, with impaired alpha-syn clearance being linked to 

the APOE4 variant (51). TLR4 is expressed mainly by astrocytes and microglia in the brain. It 

has a role in neurogenesis and is linked to unipolar depression, neurotic disorder, AD, ALS, MS 

and PD (52). It is likely to be linked to inflammation through APOE-mediated proinflammatory 

signalling (53). These genes could be proposed as candidate cross-disease drug targets, since 

with minimal pharmaceutical intervention they have high potential for impact on the cross-

disease risk LR network.  

We note that amongst the five highest ranking genes within the LRI risk network, none currently 

have approved drugs. Only TLR4 and SNCA have drugs currently in development. A drug 

targeting TLR4, tresatorvid, is currently in phase 3 of clinical trials (54), whilst two drugs 

targeting SNCA, prasinezumab and cinpanemab are in phase 2 clinical trials (55, 56). While the 
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outcomes of these trials are pending, we would argue that accounting for the network nature of 

LR interactions as well as the directionality of LRIs associated with disease risk will be 

important. With high-throughput drug development pipelines and computational tools 

increasingly available (37, 38), it will become increasingly important to also leverage brain-

derived cell-specific and spatial transcriptomic data . The emergence of new high resolution 

datasets characterising changes in gene expression , transcript use and protein isoform 

expression, will be especially valuable for this drug design effort.  

 

The findings in this work must be considered in light of its limitations. Firstly, here we depend  

on databases, such as Open Targets and omnipathDB, being comprehensive and robust. 

However, there are likely to be inherent biases in the genes and LRs which are characterised 

and annotated. For example, in the case of OmnipathDB, other LRs may be crucial but their 

annotation as a ligand or receptor be unknown due to not being studied as widely. 

Nevertheless, this limitation would be expected to primarily generate false negatives rather than 

false positives, thus not taking away the value of our findings. Secondly, we chose to use 

transcriptomic data for identification of (i) sites where LR interactions are likely to be occurring 

and (ii) to assign cell type enrichment. While transcriptomic data is currently the most sensitive 

approach for unbiased gene detection, we acknowledge that the correlation between gene and 

protein expression is poor and eagerly anticipate the wider availability of cell type-specific and 

spatial proteomic data. 

 

In summary, in this study we set out to understand whether ligands and receptors were 

associated with cross-disease risk in neurological disorders. Indeed, we find compelling 

evidence that ligands and receptors are especially associated with neurological disease, and 

may underlie not only the overlaps in symptoms and mechanisms of neurodegenerative 

disorders, but also the comorbidity of neurodegenerative and neuropsychiatric disorders. By 

leveraging snRNA-seq and spatial transcriptomic data to better understand the cross-disease 

LR network, we highlight the importance of glial cells  and immune processes in cross-disease 

risk (57–60). Most importantly, we believe that this work shows that a shift in CNS drug 

development to considering targets not only as independent genes but within their network 

architecture is likely to be strategic, cost effective and ultimately necessary for tackling the 

pressing need for treatments for neurodegenerative diseases, and beyond. 
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Fig 1. Schematic of study hypothesis, design and preliminary assessment of hypothesis 

(A) Neurological and neuropsychiatric disorder have limited overlaps in genetic risk, but have 

abundant overlap in disease-associated pathways, cell states and symptoms. LRIs are a 

mechanism by which seemingly unrelated genes linked to risk of different diseases can interact 

to produce shared and/or overlapping outcomes. (B) Schematic illustration of study design and 

workflow. Briefly, neurological and neuropsychiatric diseases listed on MeSH with evidence of 

genetic risk associations and listed on OpenTargets were included. The genes associated with 

disease risk were downloaded from OpenTargets and filtered to only include genetic association 

scores >0.4. These genes were then filtered to only include those which have a known ligand 

and/or receptor role, as specified in the Omnipath database. (C) Receptors are significantly 

enriched among disease risk genes across 7 neurological and neuropsychiatric disorders. 

Ligands are significantly enriched in disease risk genes for Alzheimer’s disease.  
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Fig 2. Taking into account the network nature of LRIs highlights similarities between 

neurological and neuropsychiatric diseases reflected in symptoms, comorbidity (A) 

Ligands and receptors associated with disease risk overlap most frequently for neuropsychiatric 

disorders. (B) PD and schizophrenia are the disease pair with most overlaps of at-risk LRIs, i.e. 

interactions where at least one interactor is associated with disease risk (C) A group of 8 

disorders, including neurological and neuropsychiatric conditions, has significantly similar LR 

networks associated with disease risk.  
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Fig 3. 95% of LRIs associated with disease risk across 18 diseases form a single 

interconnected LR network expressed in glia and inhibitory neurons (A) This major 

network was maintained even with increasing stringency, indicated at >0.4, >0.55 and >0.7 

genetic association scores. At stringency 0.7 the network splits into two subnetworks, but the 

largest still has 65% of all LRIs associated with disease risk (B) Cell type enrichment analysis 

shows that the genes within the cross-disease risk network are enriched to glial cell types and 

inhibitory neurons. This becomes more significant with increasing genetic risk association score 

stringency (scores > 0.7) (C) The risk-associated LRIs are most frequently associated with glia-

glia communication in the control dorsolateral prefrontal cortex (D) Genes in the risk-associated 

LR network are enriched to pathways linked to brain development, neuroinflammation.  
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Fig 4. The cross-disease risk LR network is significantly enriched to layer 6 of the 

dorsolateral prefrontal cortex in the human brain (A) Schematic diagram of spatial 

enrichment analysis. We used cortical layer-annotated dorsolateral prefrontal cortex data 

generated with 10x Visium to assess whether the cross-disease risk LR network was spatially 

enriched to any cortical layer and to assess which cell type neighbourhoods occur in the regions 

with most expression of the genes in the network. (B) The spots with most co-expression of the 

network genes (top 5%) are significantly enriched to layer 6 of the cortex. (C) The network-

enriched spots are enriched for excitatory and inhibitory neurons.  
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Fig 5. Genes associated with Parkinson’s disease are important in the cross-disease risk 

network and rely on accurate splicing (A) LD-score regression analysis results for GWAS 

studies from AD, ALS, PD and SCZ. The cross-disease LR network (genetic association scores 

> 0.70) is enriched for ALS (p value <  5.0x10-2) and PD (p value <  1.0x10-1) heritability. (B) To 

prioritise the genes of highest importance in the cross-disease risk LR network we ranked genes 

based on their importance (i.e. connectivity, and the importance of connecting genes). We then 

assessed which of these genes are known to be druggable based on the druggable targets 

database and prioritised multi-disease genes. (C) The most important genes in the cross-

disease LR network (genetic risk score > 0.70) have been linked to Parkinson’s disease, 
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including SNCA (associated with PD risk), APOE (associated with PD progression), RELN and 

TLR4, both of which have recently been shown to be upregulated in PD. (D) We found that 

there is an anti-correlation between gene rank in importance and its number of transcript 

variants (Pearson’s R = -0.1805, p value = 1.16x10-2), meaning that higher ranks (closer to #1) 

tend to have more transcript variants. (E) The receptors associated with AD, ALS, PD and 

partial epilepsy have a higher number of transcript variants than would be expected (FDR-

corrected, 1.32x10-2 < p value < 1.2x10-3).  

 

Methods 

Systematic disease selection and genetic risk data acquisition 

We selected nervous system disorders available on the Medical Subject Headings (MeSH) 

which in the MeSH tree structures had at most two offspring, in order to avoid generalised 

disease classifications. We filtered these to include only those with verifiable genetic association 

as demonstrated by at least 3 GWAS studies, with at least 10 genetic associations overall. This 

resulted in a list of 24 diseases: Alzheimer’s Disease (AD), amyotrophic lateral sclerosis (ALS), 

anorexia nervosa, bipolar disorder, brain aneurysm, essential tremor, frontotemporal dementia 

(FTD), intracranial hemorrhage,  Lewy body dementia (LBD), major depressive disorder, 

migraine disorder, migraine with aura, multiple sclerosis (MS), narcolepsy cataplexy, 

narcolepsy, neurotic disorder, obsessive compulsive disorder (OCD), partial epilepsy, PD, 

progressive supranuclear palsy (PDP), restless leg, schizophrenia (SCZ), Tourette syndrome, 

unipolar depression. We then harvested from Open Targets (https://www.opentargets.org/) lists 

of genes with genetic association to disease risk. Because genes with a genetic score <0.1 had 

a small disease risk (and are therefore of less interest for drug targeting) but accounted for 

almost 40% of all genes, we chose to only include genes with a genetic risk score >0.1 in this 

analysis (SupFig 1A).  

These gene lists were filtered to only include those with a known LR role, as annotated by the 

omnipath database 

(op.interactions.import_intercell_network(transmitter_params = 

{"categories":"ligand"}, receiver_params = {"categories": 

"receptor"})). These parameters resulted in the inclusion of both membrane bound and 

soluble ligands and receptors, meaning that this analysis was not limited to cell-cell 

communication networks. HLA genes and protein complexes were excluded from the analysis. 

Protein complexes were excluded due to the further complexity these would insert in a network 

analysis.  

We evaluated how a change in threshold affected total LRs represented in this study, total 

number of diseases, the proportion of ligands and proportion of receptors represented across 

the data (SupFig 1B-D). Taking this into consideration in light of how genetic risk is scored by 

OpenTargets, the minimum risk score threshold we selected for downstream analysis was 0.4, 

as (1) we estimate that at 0.4 we are likely to capture genes with stronger evidence score in 

OpenTargets; (2) At this resolution we capture 19 diseases and ~1,000 LRs; (3) At this 

resolution diseases with a large number of risk genes (e.g. SCZ) no longer dominate the 

contribution to the LRs, thus reducing bias and emphasising the cross-disease aspect of our 

hypothesis.  
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We selected 6 diseases affecting systems other than the CNS for comparison: lymphoid 

leukaemia, diabetes mellitus, rheumatoid arthritis, asthma, coronary heart disease and 

cardiovascular disease. Data was collected, preprocessed and assessed using the same 

methods as used for the neurological enquiry.  

 

Ligand-receptor occurrence in disease risk gene list 

To determine whether the occurrence of ligands and receptors was enriched among disease 

risk genes, we used bootstrapping. For each disease, the incidence of ligands/receptors 

(inferred using OmnipathDB) was compared to the incidence of ligands/receptors in a list of 

random genes, of matching length, that were also protein-expressing genes expressed in the 

brain (i.e.: expression >0 in GTEx (v.7) data of brain tissues). The % of genes with ligand or 

receptor role of the background list was also determined using OmnipathDB LR annotation. This 

process was iteratively repeated (N=10,000). The p-values were calculated using  

𝑝 =  𝑠𝑢𝑚(𝑠 >=  𝑠0)/𝑁 

where s = bootstrapped LR incidence values, s0 = LR incidence in disease risk genes, N = 

number of bootstrapping iterations. P-values were corrected with false discovery rate method 

(fdr < 0.05) and visualised in R.  

 

Assessment of shared risk via ligands and receptors across diseases 

We assessed the overlap in ligands and receptors linked to disease risk. For this, an adjacency 

matrix was constructed with counts of total overlapping ligands and/or receptors across all 

disease pairs. We generated a pool of genes known to act as ligands and/or receptors which did 

not include any disease-associated LRs (N=1,800). This was our reference pool for 

bootstrapping. For each disease pair comparison, we subsampled the reference LR pool to 

have an LR list of matching length to the real disease-implicated LRs (e.g. 300 genes for SCZ 

and 10 genes for PD). The overlap of these two random lists was then estimated, and the 

process was repeated iteratively. Because the sample pool only included 1,800 LRs and our 

largest disease-LR set was 300 genes, we repeated this process 12 times to allow random 

resampling to only have a 50% overlap in LR sampling per iteration. We then compared the 

bootstrapped values to the real overlapping values, reporting as of interest disease overlaps 

within the 90th percentile of the bootstrapped data.  

 

Assessment of shared LR interactions across diseases 

We assessed the overlap in LR interactions affected by disease-associated genes. For this, an 

adjacency matrix was constructed with counts of total overlapping LRIs across all disease pairs. 

These values were then compared to bootstrapped data using the same method as reported for 

direct ligand and receptor overlap, with overlaps being reported as of interest when real values 

were within the 90th percentile of bootstrapped LRIs. 

 

Assessment of LR network similarity across diseases 

For an overall analysis of the similarity between networks of different diseases (including all LR 

pairs where at least one interactor is linked with that disease), we calculated network similarity 

with the netrd python library implementation of DeltaCon (61). With DeltaCon, the similarity of 

two networks is given in the form of a distance score, where closer networks (lower score) are 
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more similar and more distant networks (higher score) are more distinct. The algorithm assumes 

that both networks have the same nodes but evaluates similarities in edges. Therefore, all 

diseases had the same genes but only relevant edges associated with disease risk were logged 

and compared. The final disease-associated networks for each disease were systematically 

compared in a pair-wise comparison, with scores visualised in a symmetrical clustermap using 

seaborn. The likelihood of random occurrence of network closeness for each disease pair was 

estimated using the bootstrapping method used for direct LR overlap and LRI overlap, with 

distances in the top 90th percentile being considered of interest.  

 

Cross-disease risk network analysis 

Using the list of all genes associated with disease risk with a known LR role, all LR interactions 

listed in OmnipathDB where at least one interactor was associated with neurological disease 

were fetched. This was logged as an adjacency matrix and visualised as a network using 

networkx. This was repeated longitudinally across risk scores (genetic risk score > 0.4, >0.55 

and >0.7 in Open Targets). At higher risk thresholds there is a breakdown of the network 

structure, and therefore these analyses were not extended further.  

 

Major core network analysis 

Community detection was performed using the louvain algorithm and the largest interconnected 

network was determined based on the community with the largest number of genes. Network 

visualisation was used to ensure the leiden parameters were consistent with the selection of 

interconnected networks and not further subdivision of the network.  

In order to determine whether the size of the largest network was statistically significant, the 

size of the network was compared to bootstrapped simulated data. For this, a random list of 

matching length of the major network for each resolution was iteratively generated (n=10,000) 

with genes expressed in the brain (as determined by GTEx) and which have a LR role (as 

determined by OmnipathDB). This was performed for risk genes of increasing stringency 

(genetic association > 0.4-0.7). The size of a network was considered significant if it was in the 

bottom 5th percentile or top 95th percentile of the bootstrapped distribution.  

 

Cell type gene expression enrichment analysis 

Cell type enrichment of the cross-disease network was performed similarly to previous reports 

(62, 63). We used two separate datasets for estimation of cell type enrichment: the Human 

Multiple Cortical Areas SMART-seq dataset (freely available through the Allen Brain Atlas data 

portal, https://portal.brain-map.org/atlases-and-data/rnaseq)and a dorsolateral prefrontal cortex 

snRNAseq dataset (64) (now publicly available), as references. 

The Allen brain dataset includes single-nucleus transcriptomes from 49,495 nuclei across 

multiple human cortical areas, including the middle temporal gyrus, anterior cingulate cortex, 

primary visual cortex, primary motor cortex, primary somatosensory cortex, primary auditory 

cortex. Cell type annotations were generated at two resolutions using the Allen Brain-provided 

cell subclasses. A total of 1,985 nuclei were labelled as “outlier calls” and were removed during 

generation of the celltype dataset. We used the function fix_bad_hgnc_symbols() (R package 

EWCE, version 0.99.3, https://bioconductor.org/packages/release/bioc/html/EWCE.html) to 

remove any symbols from the gene-cell matrix that were not official HGNC symbols. A total of 
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30,792 genes were retained. We then used the function drop_uninformative_genes() (R 

package EWCE, version 0.99.3, 

https://bioconductor.org/packages/release/bioc/html/EWCE.html), which removes “uninformatic 

genes” to reduce compute time in subsequent steps. The following steps were performed: 

● Drop non-expressed genes (n=1,263). This step removed the genes that are not expressed 

across any cell types 

● Drop non-differentially expressed genes (n=6,304), which removes genes that are not 

significantly differentially expressed across level 2 cell types with an adjusted p-value threshold 

of 1e-05. 

Finally, we used the function generate_celltype_data() from the R package EWCE (version 

0.99.3, https://bioconductor.org/packages/release/bioc/html/EWCE.html) to generate the 

celltype dataset. This dataset can be accessed at: https://github.com/RHReynolds/MarkerGenes 

(version 0.99.1, DOI: 10.5281/zenodo.6418604). 

The DLPFC dataset includes single-nucleus transcriptomes from 54,394 nuclei from the human 

DLPFC without neurological disorder. Preprocessing and annotation of this dataset is reported 

elsewhere (64). We used the function generate_celltype_data() from the R package EWCE to 

generate the celltype dataset.  

For both datasets cell-type enrichment was calculated using Expression Weighted Cell Type 

Enrichment (EWCE)(65). The goal of this analysis was to determine whether the genes of 

interest had significantly higher expression in certain cell types than might be expected by 

chance. Bootstrap gene lists controlled for transcript length and GC-content were generated 

with EWCE iteratively (n=10,000) using “bootstrap_enrichment_test()” function. This function 

takes the inquiry gene list and a single cell type transcriptome data set and determines the 

probability of enrichment of this list in a given cell type when compared to the gene expression 

of bootstrapped gene lists; the probability of enrichment and fold-change of enrichment are the 

returned. P-values were corrected for multiple testing using the fdr method. 

Gene Ontology enrichment analysis 

Cluster Profiler was used to calculate overrepresentation of pathways associated with the genes 

in the cross-disease LR network across thresholds in R 4.0.2. We obtained the entrez ID for the 

genes in the cross-disease networks using the library org.Hs.eg.db. When running the Gene 

ontology enrichment analysis, we selected the ‘Biological Process’ ontology with minimum GSS 

size = 50 and max GSS size = 300 and a p and q value cutoff of 0.01 (values corrected with 

Bejamini-Hochberg method). The pathways were ranked from the lowest adjusted p value to the 

highest, and the top 15 pathways were visualised using ggplot2. 

  

Cell-cell interaction prediction in single nuclear RNA sequencing data with LIANA 

Liana was used to predict LR interactions in the DLPFC (34, 64). We used these results to verify 

which cell types were most likely to be communicating via cell-cell interactions in this dataset. 

This was performed for the risk network at risk score > 0.40, >0.55 and >0.70.  
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The results were summarised in a heatmap generated with the python package seaborn.  

 

Spatial domain enrichment analysis 

We used spatial transcriptomic data from the dorsolateral prefrontal cortex (64) generated with 

10x Visium technology to assess whether the cross-disease LR network was enriched to any 

region of the cortex. We chose to perform this using the annotation recommended by the 

authors bayespace harmony-corrected sp09. These are data-driven clusters which largely 

correspond to conventional cortical annotation, except for the division of WM into two distinct 

spatial domains and layer 2 of the cortex into two spatial domains.  

Due to the 10x Visium technology, the smallest mappable spatial unit of a given section is a 

spot with 55 um in diameter. For every spot covered with brain tissue we assessed how many 

genes from the risk network were detected. We summed the total number of genes in the risk 

network for all spots and selected the spots with the top 2% genes detected as the spots with 

most likelihood of expression of the risk network. We then assessed which spatial domain (i.e. 

cortical layer) these spots were located. We found that layer 6 had the highest mean number of 

risk spots. We compared the distributions using the Kruskal-Wallis test, followed by statistical 

comparison using Dunn’s test in R 4.0.2. 

 

Spatial neighborhood characterisation 

To profile the cellular neighborhood of regions enriched for the cross-disease LR network, 

similarly to the spatial domain enrichment analysis, we first filtered all spatial transcriptomic 

spots to only include those in the top 98th percentile with the highest number of co-expressed 

genes from the network. We then used cell type deconvolution results generated with 

cell2location (see Huuki-Myers et al, 2023 for deconvolution details) to determine the top 3 cell 

types most likely to be in these spots. We constructed an adjacency matrix to record co-

localisation occurrences for each cell type pair. The matrix was then normalised such that, when 

converted to a network, the sum of the edges connecting to each cell type is 3 (e.g. cell type 

pair that always co-localised would have a connecting edge of 3). This data was then used to 

construct a cellular co-localisation network, which shows which cell types are most frequently 

present in the spots enriched for the network of interest, as well as which cell types tend to co-

localise.  

 

Gene importance ranking with PageRank 

Genes were ranked by importance in the network using the networkx implementation of the 

PageRank algorithm. This algorithm is used by the web search engine to evaluate importance of 

results but is transferable to network analysis. It ranks the nodes (in this case, genes) and 

assigns a weight to their importance in the network based on (1) the number of nodes it is 

connected to and (2) the importance of the nodes it is connected to (35). This analysis was run 

using default parameters recommended by networkx, and was performed for the risk network at 

three stringency levels (risk network at risk score > 0.40, >0.55 and >0.70). 

 

Assessment of network overlap with the druggable genome 

In order to assess druggability of the cross-disease LR network we used the available druggable 

genome annotations, including inclusion in the druggable genome and whether the gene is 
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targetable by a small molecule (36). These annotations were used for visualisation of PageRank 

results. 

 

Data availability 

All databases and data sets used in this work are publicly available.  

Databases: 

● Disease tree - Medical Subject Headings (MeSH, https://www.nlm.nih.gov/mesh/) 

● Genetic association scores - OpenTargets (https://www.opentargets.org/) 

● Ligand-Receptor role annotation - OmnipathDB (https://omnipathdb.org/) 

● Brain-expressed gene list reference for bootstrapping - Genotype-Tissue expression 

(GTEx) data, v8 RNAseqQC v 1.1.9 gene median (https://gtexportal.org/home/) 

Datasets: 

● Single nucleus RNA sequencing data multiple cortical regions (EWCE) - Allen Brain 

Atlas Human Multiple Cortical Regions SmartSeq  (https://portal.brain-map.org/atlases-

and-data/rnaseq/human-multiple-cortical-areas-smart-seq), data in EWCE-compatible 

format available at https://github.com/RHReynolds/MarkerGenes 

● Single nucleus RNA sequencing and spatial transcriptomics data for the DLPFC are 

available through the SpatialLIBD package (66) 

● Single nucleus RNA sequencing dorsolateral prefrontal cortex LIANA analysis - 

https://github.com/LieberInstitute/spatialDLPFC 

 

Code availability 

All custom code used for this work is publicly available at 

https://github.com/mgrantpeters/LR_project [repository to be made public upon publication].  
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