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Abstract

Neurodegenerative disorders have overlapping symptoms and have high
comorbidity rates, but this is not reflected in overlaps of risk genes. We have
investigated whether ligand-receptor interactions (LRIs) are a mechanism by which
distinct genes associated with disease risk can impact overlapping outcomes. We
found that LRIs are likely disrupted in neurological disease and that the ligand-
receptor networks associated with neurological diseases have substantial overlaps.
Specifically, 96.8% of LRIs associated with disease risk are interconnected in a
single LR network. These ligands and receptors are enriched for roles in
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inflammatory pathways and highlight the role of glia in cross-disease risk. Disruption
to this LR network due to disease-associated processes (e.g. differential transcript
use, protein misfolding) is likely to contribute to disease progression and risk of
comorbidity. Our findings have implications for drug development, as they highlight
the potential benefits and risks of pursuing cross-disease drug targets.

Introduction

Neurodegeneration is characterised by neuronal cell death and synaptic loss, which impacts
cognition and motor function (7). For highly prevalent neurodegenerative disorders (NDDs),
such as Alzheimer’s and Parkinson’s disease (PD), age is an important risk factor. Paired with
increasing life expectancy in many countries, this means that NDDs are forecast to generate an
increased social and economic burden in upcoming years (2). The need for therapies to halt all
types of neurodegeneration has never been more pressing.

Presentation of each NDD is linked to the neuronal population affected in each disease, such as
loss of dopaminergic neurons in the substantia nigra driving motor dysfunction in PD or
depletion of motor neurons in the spinal cord and upper motor neurons in the cortex, which
drives disability in amyotrophic lateral sclerosis (ALS) (3). In spite of these differences, NDDs
have several overlapping features (4-6). These include aberrant protein homeostasis, altered
energy homeostasis, DNA and RNA defects, inflammation and, ultimately, neuronal cell death
(1). Many of these processes are interlinked. For example, aberrant protein homeostasis can
cause mitochondrial stress, impacting energy homeostasis and contributing to neuronal death.
Furthermore, co-pathology is the norm rather than the exception in neurodegeneration, where
90% of older adults with Alzheimer’s disease (AD) with autopsy confirmation have mixed
pathology (7). Although aggregation of amyloid beta and tau fibrils, alpha synuclein and TDP-43
are stereotypically associated with different diseases, they frequently co-occur in the same
patient, with features from as many as 7 neurodegenerative conditions reported in the same
individual (4, 8, 9). High comorbidity rates are potentially further evidence of the overlaps in the
neurodegenerative process. For example, 20-40% of patients with Parkinson’s disease (PD) go
on to develop dementia (70, 711). Taken together, the overlapping biological pathways, and high
rates of co-pathology and comorbidity suggest that while NDDs have disease-specific features,
there are important overlaps in disease processes. The cause of these overlaps remains largely
elusive.

Genotype-phenotype relationships of genes associated with NDDs are complex, as
demonstrated by familial forms of disease. Variable expressivity is well recognised, as in the
case for the pathogenic repeat expansion of C9orf72 which can cause both amyotrophic lateral
sclerosis (ALS) and frontotemporal dementia (FTD) (712). Furthermore, pathogenic variants in a
range of genes can cause the same clinical outcome, such as dominant mutations in amyloid
precursor protein, presenilin 1 and 2, all of which result in early onset AD (73). A further layer of
complexity is added with sporadic forms of disease, which account for the majority of cases.
Single nucleotide polymorphisms that increase disease risk are largely independent across
neurodegenerative disorders when heritability is considered globally (74). Although there is
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evidence for local genetic correlations across diseases (15), these seem unlikely to be sufficient
to explain the overlaps observed across NDDs.

Neuropsychiatric disorders (NPDs) also have several overlapping features, including alterations
to fundamental molecular processes and symptomatology (16, 17). For instance, alterations to
synapses and circuitry at various developmental stages have been associated with
neuropsychiatric disease (718, 19). This potentially explains the high comorbidity rates across
NPDs, with 48.6-51.0% of patients with major depression having at least one concomitant
anxiety disorder and only 26.0-34.8% having no comorbid mental disorder (20, 271). Symptoms
of NPDs also tend to co-occur: 21% of people fulfilling DSM-IV criteria for a mental disorder
meet criteria for three or more other NPDs (22). However, unlike NDDs, NPDs have overlapping
genetic architectures, sharing a large number of risk loci (74). The comorbidity rate and overlaps
in genetics are such that NPDs were proposed to be spectral disorders (23, 24). Diagnostic
guidelines have rather stratified diagnostic processes further, causing a still debated question of
reification in NPD classification, that is, whether creation of this model for NPD classification has
generated a bias in perception of NPDs (25, 26).

Irrespective of their origin, cross-disease targets have the potential to be highly important sites
for drug targeting. To date, the strategy for identification of such targets has largely been based
on shared biology. However, since it is now known that drugs with genetic evidence are over
four times more likely to be approved following clinical trials (27), providing a genetic context is
valuable. Thus, understanding how distinct risk genes can contribute to overlapping pathways
and shared disease outcomes could be an essential step for cross-target identification and
successful drug design. In light of this, we hypothesised that ligand-receptor interactions (LRIs)
are a promising mechanism by which products of distinct genes interact to produce the same
outcome. As such, disruption to either of the interactors in an LRI would result in overlapping,
albeit non-identical outcomes (Fig 1A). Sources of disruption to LRIs could be alterations to
protein conformation and affinity due to genetic variants and/or environmental factors.
Importantly, LRIs also tend to be highly druggable (28). They are often amenable to targeting by
small molecules, which is essential for diseases of the central nervous system (CNS), as any
treatment must be capable of traversing the blood brain barrier. Consequently, we think that
characterising the role of LRIs across diseases is important. The availability of databases such
as omnipathDB (29), which comprehensively annotates LRIs and the increasing understanding
of the genetic architecture of NDDs and NPDs make this form of analysis timely. Furthermore,
the availability of untargeted transcriptomics methods across cell types and tissues, can provide
(1) a survey of LRIs predicted to be occurring on a cell-type level and (2) validation of LRIs that
are likely to be occurring based on the location of expression (30, 31).

By taking into consideration the network nature of LRIs, we have found novel links between
neurological diseases which are consistent with clinical observations. We also found compelling
evidence that LRlIs are likely to be disrupted in neurological disease. Finally, we identified and
characterised a single LRI network enriched for cross-disease risk, including NDDs, NPDs and
other neurological disorders, which has implications for cross-disease target design.


https://sciwheel.com/work/citation?ids=15091707&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1746489,12146377&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=872018,6760417&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=3513881,539750&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=2557833&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5457147&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=446017,8078476&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=16541548,1190670&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=388356&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9573662&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3050563&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=13193240,16489506&pre=&pre=&suf=&suf=&sa=0,0
https://doi.org/10.1101/2024.06.15.599140
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.15.599140; this version posted June 16, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Results

Ligand-receptor interactions are expected to be disrupted in neurological disease

In order to determine whether LRIs could be a driver of co-pathology, the first hypothesis we
tested was whether genes associated with neurological disease are more likely to be ligands
and/or receptors (LRs) than those that are not associated with disease. We included a range of
disorders including NDDs, NPDs and other neurological conditions. This resulted in the
identification of 24 potential diseases of interest. For each of these diseases we identified
genetically implicated gene sets using the Open Targets (https://www.opentargets.org/)
resource. Only genes with genetic association risk scores > 0.4 were retained (maximum
association score of 1.0) to ensure higher target confidence and only diseases with more than
10 risk genes were included. This resulted in the analysis of 18 diseases in total (SupFig 1A-B).
We then annotated genes based on whether they are known to act as a ligand and/or receptor
using the Omnipath database (29) (Fig 1B) and compared the occurrence of ligands and
receptors in disease-associated genes to the occurrence of LRs amongst all protein-expressing
genes expressed in the brain as detected within the Genotype-Tissue Expression (GTEXx) data.
Of the 18 neurological disorders tested, 7 had significant enrichment of ligands and/or receptors
amongst the gene sets, namely AD, frontotemporal dementia (FTD), PD, major depressive
disorder (MDD), schizophrenia (SCZ), multiple sclerosis and partial epilepsy (Fig 1C). The
disease type with the most significant LR enrichment was NDDs. We found that 3 of the 5 tested
NDDs (60%, FDR-corrected p value range 5.0x102- 1.0x104), 2 of the 8 NPDs (25%, FDR-
corrected p value range 5.0x102- 1.0x10*) and 2 of the 5 other neurological disorders (40%,
FDR-corrected p value<1.0x10*) had significant overrepresentation of LRs amongst risk genes.
These results were not explained by gene set size, as exemplified by the fact that both SCZ (N
= 317 genes) and FTD (N = 26 genes) had significant receptor enrichment despite having a 12-
fold difference in gene set sizes. Strikingly, only AD risk genes were enriched for both ligands
and receptors, while all other diseases only had significant enrichment of receptors amongst the
risk genes. This overrepresentation of receptor involvement is a feature specific to neurological
disorders, with disorders of other types (cardiovascular, autoimmune, cancer) either being
enriched for both ligands and receptors or neither (SupFig 1C). This highlights the differences
in genetic architecture across multiple body systems.

Accounting for ligand-receptor interaction networks highlights disease-disease
relationships

Given that receptors are enriched across risk genes for many neurological disorders, we
postulated that this could drive dysfunction more broadly to cause secondary neurological
disease due to their interactive nature. Specifically, disruption to the same LRIs in different
diseases could generate overlaps in pathology and symptomatology. We investigated this
possibility in three ways: (i) by determining whether there were significant overlaps amongst
ligands and receptors themselves, (ii) by determining whether there were common LRIs affected
across diseases, and (iii) by determining whether architecturally the LR networks affected in
each disease were similar. We did this by comparing the real overlapping features of diseases
to bootstrapped overlaps, if the real overlapping feature was in the 90th percentile of
bootstrapped data, it was considered a “hit”.
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Focusing on the first approach, we found that 47 out of all 153 pairwise comparisons between
different diseases had direct overlaps in ligands and/or receptors with the majority of these
involving NPDs (Fig 2A). This is consistent with the existing literature which shows that NPDs
have significant overlaps in genetic risk (74, 32), but here we demonstrate this for LRs
specifically. Out of 17 pairwise comparisons, SCZ had 12 “hits” for overlapping ligand and/or
receptors, making it the disease with most “hits”. This could be expected, since SCZ has the
largest number of risk-associated LRs. The disease with the second highest number of
overlapping “hits” was partial epilepsy, which overlapped with all NPDs as well as several NDDs
(AD, PD, FTD) and migraine disorder.

We investigated LR relationships further using our second approach, namely assessing how
many LRIs containing risk genes each disease pair shared (Fig 2B). For this, an LRI was
considered to contain risk genes if at least one of its interactors (ligand or receptor) was
associated with disease risk. For example, in a case where a ligand was associated with one
disease and an interacting receptor with another, this LRI would be considered of interest for
both diseases. We found that PD and SCZ were the comparison with most LRI overlaps, with
169 overlapping LRIs. This was largely due to the gene FYN, which is associated with both PD
and SCZ. We noted that NPDs had similar overlap profiles, with several “hits” amongst each
other. Interestingly, both unipolar depression (N = 12 “hits”) and major depressive disorder (N =
9 “hits”) had the highest number of LRI “hits” with other diseases, including all NPDs, some
NDDs (ALS, FTD) and other disorders (partial epilepsy, restless leg).

Finally, we assessed the similarities of LR networks associated with each diseases as a whole
(Fig 2C). To do this we calculated the similarity of LR networks for each disease pair using the
deltacon algorithm, which compares the connectivity of two networks. In this method small
distances indicate a high degree of similarity between the networks and large distances indicate
more distinct networks.

SCZ was the disease with the greatest LR network similarity with other diseases (N = 14 “hits”),
including NPDs (OCD, Anorexia nervosa, tourette syndrome, MDD, neurotic disorder), motor
disorders (Parkinson’s disease, essential tremor, restless leg syndrome, amyotrophic lateral
sclerosis) and other disorders (multiple sclerosis, partial epilepsy, brain aneurysm, migraine
disorder). PD was the disease with the second highest similarity (N = 10 “hits”), with disease
overlaps that included movement disorders (essential tremor, restless leg syndrome), NDDs
(FTD, ALS), NPDs (OCD, anorexia nervosa, neurotic disorder, major depressive disorder) and
other neurological disorders (MS, partial epilepsy). Based on this analysis, we concluded that
the LR networks were a promising route by which to understand relationships across multiple
neurological diseases, even across disease types.

A single ligand-receptor network connects the majority of risk-associated ligands and
receptors across diseases

We found that LR networks across neurological conditions had significant network similarities in
pair-wise comparisons. However, this analysis did not capture similarities across more than two
diseases. Therefore, we explicitly generated and characterised the LR network architecture
across all diseases within a single analysis. We foresaw three main possible outcomes: (i) each
disease would have its own LR network containing large numbers of risk genes (e.g. PD-
specific network), (ii) there would be an LR network for each major disease type (e.g. NDDs)
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with risk genes for a number of diseases included, and (iii) there would be one major LR
network enriched for disease risk genes associated with multiple disease types (e.g. NDDs and
NPDs). We found that the LR network we generated was highly connected and included all
major disease types (namely outcome iii). Specifically, 96.3% of all disease associated LRs
(based on a genetic association threshold of 0.40) were interconnected and contained within a
single network (99th percentile, Fig 3A), which we termed the cross-disease LR network. We
tested whether this network was maintained as we increased the stringency of selection of risk
genes to only keep LRs with higher risk association scores. We incrementally increased the
genetic association score threshold to 0.55 and 0.70, and found that the proportion of LRs in the
cross-disease LR network was largely maintained. More specifically, using a genetic association
score of 0.55, 94.9% of genes were still part of a major cross-disease LR network (99th
percentile). Even at a very stringent genetic association score of 0.70 the majority of LRs were
in the main network (65.6% of LRs, 60th percentile, SupFig 1C). These findings show that LRs
associated with disease risk are functionally interconnected and that disruption of disease-
associated LRIs in one disease would be expected to impact the broader LR network to
potentially generate comorbidity.

Glia and inhibitory neurons have a disproportionate role in cross-disease risk

Having identified a cross-disease LR network enriched for disease risk, the next step was to
characterise the genes in this network (N = 865 genes). Specifically, we wanted to determine
the cellular specificity of the genes and their contribution to known pathways. Focusing on the
former, we used single nuclear RNA sequencing data (human cortex) and expression weighted
cell type enrichment (EWCE) analysis to identify cell types of interest. We found that the risk LR
network had significant enrichment for genes with high specificity for endothelial cells (FDR-
corrected p value < 1.0x10**), OPCs (FDR-corrected, q < 1.0x10#), astrocytes (FDR-corrected p
value < 1.0x10*), microglia (FDR-corrected, q < 1.0x10**) and inhibitory neurons (FDR-
corrected p value = 2.0x10*) (Fig 3B). An increase in stringency in the network (genetic
association score > 0.70, N = 128 genes) resulted in enrichment to glia cell types alone (FDR-
corrected, p value range 3.77x102 - 1.0x10*). We validated and extended these findings using
a second snRNAseq dataset from multiple human cortical regions that enabled finer annotation
of inhibitory and excitatory neurons. Interestingly, the inhibitory neuron enrichment observed
previously was replicated and shown to be specific to GABAergic VIP+ neurons (FDR-
corrected, p value < 1.0x10*4, SupFig 2A), which are known to regulate behavioural circuitry
(33). Furthermore, we observed significant enrichment of these genes to excitatory
intertelencephalic neurons in layers 5/6 (FDR-corrected p value = 4.0x104).

Next, we used the ligand-receptor analysis framework (LIANA) (34), which infers LRIs in
snRNAseq data directly, and in a data-driven manner. This orthogonal approach adds a
relational dimension by predicting which cell types are likely to interact through each LR pair.
Consistent with our EWCE-based findings, LIANA predicted the prominent role of inhibitory
neurons and glia within the LR network. With increased stringency (genetic association score >
0.70) the main interactions were glia-glia: Astrocyte-Endomural (N = 8), OPC-Endomural (N =
8), Oligo-Endomural (N = 7), which mirrored results using EWCE (Fig 3C). Similarly, at a
genetic association score > 0.40 we also found inhibitory neuron-inhibitory neuron interactions
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were frequently identified using the genetic association score of 0.40 and 0.55, which again is
consistent with the EWCE analysis (SupFig 3A-B).

Finally, we performed pathway enrichment analysis with the genes in the risk LR network to
identify biological processes of greatest interest. We found that the LR network genes had an
overrepresentation of genes in pathways linked to integrin (integrin-mediated signalling
pathway, FDR-adjusted p value 1.97x10725; cell adhesion mediated by integrin, FDR-adjusted p
value 7.84x1023; cell-matrix adhesion, FDR-adjusted p value 1.51x107'%; positive regulation of
binding, FDR-adjusted p value 4.96x10""), cell development and/or neurogenesis (negative
regulation of cell development, FDR-adjusted p value 6.24x10-'%; negative regulation of nervous
system development, FDR-adjusted p value 4.77x10'?; negative regulation of neurogenesis,
FDR-adjusted p value 3.17x10'?; astrocyte differentiation, FDR-adjusted p value 1.21x107'%)
and neuroinflammation (neuroinflammatory response, FDR-adjusted p value 3.20x10'3; positive
regulation of inflammatory response, FDR-adjusted p value 3.78x10-'%) (Fig 3D). Similar
pathways were highlighted in the less stringent networks as well (SupFig 3C-D). Jointly, these
findings shed light on the importance of the glial and inhibitory infrastructure of the brain in
cross-disease risk.

Risk-associated ligand-receptor interactions occur in the vicinity of excitatory neurons
LR interactions require spatial proximity of interacting partners. For membrane-bound proteins
this means that the protein-expressing cells must be located close to each other for
ligand/receptor binding to occur. For soluble LRs, proximity of expression makes a given
interaction more likely, even if it is not essential for the expressing cells to be in

contact. Therefore, we decided to characterise the spatial context of risk LR interactions. This
serves as both validation that these interactions can occur in the human brain, and provide
insight into the cell types which may be secondarily affected. For instance, we expect that co-
localisation of neurons with pro-inflammatory interactions has a deleterious effect on neuronal
survival and function. More specifically, we wanted to determine : (i) whether there are spatial
cortical domains mapping to cortical layers which are more likely to be impacted by the risk LR
network, and (ii) which cell types tend to co-localise near these risk interactions (Fig 4A).

To address these questions we used public spatial transcriptomic data derived from human
dorsolateral prefrontal cortex and generated on the 10x Visium platform, together with paired
snRNAseq DLPFC data from the same samples. Given that the Visium platform captures RNA-
expression within 55 um diameter spots, we began by classifying all spots (N = 113,927) across
the 30 samples available based on the expression of genes within the LR risk network. For each
spot we counted the proportion of the genes within the LR network which were detected and
generated a distribution of gene set detection. We focused on spots within the top 5% of the
distribution and classified them as spots with high disease risk. Next, we tested whether this
population of spots were more likely to be located in a specific cortical layer and found that
spots were enriched within cortical layer 6. In fact, this enrichment was significant relative to all
other cortical layers (Dunn’s test, 5.431x10°%¢ < p value < 1.0x1028, except layer 5 (p value >
5.0x102, Fig 4B-C).

We also found that certain cell types were significantly enriched within spots with high disease
risk. In particular, we found that inhibitory neurons and excitatory neurons from cortical layers 3-
6 (for inhibitory and excitatory neurons in layer 3, 4, 5, and 6 FDR-corrected p value < 1.0x103%)
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occurred more frequently in these spots than would be expected by chance (Fig 4D). This is in
part consistent with the EWCE enrichment analysis, which highlighted LR enrichment to
inhibitory neurons and excitatory layer 5 intertelencephalic neurons. Although we did not identify
significant enrichment amongst glial cell types we noted that astrocytes and endomural cells
frequently co-localised with layer 5 neurons in spots with high disease risk. Consequently, the
risk LR network is most likely to impact the microenvironment of neurons in the grey matter,
specifically surrounding layer 5 of the cortex.

PD-associated genes are particularly important in the cross-disease LR network

Not all individual genes have the same potential to impact the LR network, as this is influenced
by their connectivity within the network. As such, particularly in the context of drug development,
identifying the most influential genes is strategic. To do this we repurposed pagerank, an
algorithm used by the web search engines to rank the importance of web results, to instead rank
genes within the networks. In this case, each gene was assigned importance based on (1) the
number of genes it was connected to and (2) the importance of these connected genes (35). We
then assessed which diseases these genes were associated with. Finally, we evaluated which
of the highest ranking genes were part of the druggable genome (36) (Fig 5A). We noted that
the five top-ranked genes, namely RELN, SNCA, TLR4, APOE and GAL, were part of the
druggable genome (Fig 5B). Interestingly, 4 of these genes have been associated with PD,
highlighting the importance of PD-associated genes in cross-disease risk.

Discussion

The increasing awareness of the underlying commonalities of NDDs has fueled the pursuit of
cross-disease drug targets. With several shared disease-associated pathways, frequent co-
pathology and high rates of comorbidity, cross-disease targets seem like a viable and cost-
effective route to tackle the lack of effective treatments for neurodegenerative disorders. In this
work we explored the role of LRIs as an intermediary mechanism where the product of distinct
genes interact contributing to shared outcomes in neurodegenerative and other neurological
disorders.

We found that LRIs are likely to be vulnerable in several neurological diseases. Notably, when
compared to diseases of other systems, genes encoding receptors were overrepresented
amongst CNS risk genes. This finding may have implications for existing therapeutic efforts,
which have focused on high throughput custom ligand design (37, 38). In fact, our findings
suggest that for custom ligand design to be successful in neurological conditions, it may need to
take into account disease-associated alterations in receptor conformation and affinity caused by
genetic variation or alternative transcript use.

We also demonstrate that accounting for LRIs and LR networks highlights relationships between
diseases which are consistent with clinical observations, but that are largely hidden when
genetic data alone is considered. This extended beyond overlaps amongst neurodegenerative
disorders, but demonstrated that ligands and receptor interactions are likely to contribute to
overlaps between neuropsychiatric and neurodegenerative disorders. This finding is consistent
with clinical data of high prevalence of neuropsychiatric comorbidities in neurodegeneration,
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such as depression which has a prevalence of 34-50% amongst several neurodegenerative
disorders (39—41).

The high connectivity of ligands and/or receptors associated with disease risk highlights the
degree of fine-tuning of the LRI network required for normal CNS function. We hypothesise that
this network is likely to become increasingly dysregulated during the course of disease,
contributing to disease progression and comorbidity. This view is supported by examples drawn
from PD research. For example, APOE, a ligand associated with AD risk, is a key component of
the LR risk network together with the receptor, LRP1B, which is known to bind APOE.
Interestingly, genetic variation in both APOE and LRP1B have been associated with PD
progression to dementia (42), suggesting that dysregulation of this interaction may drive
additional AD-associated interactions in the network, contributing to cognitive decline and
dementia in PD.

Amongst all diseases, we found that PD had particularly unique features. Although the
neurodegenerative component of PD is often emphasised, our findings shed light on its
neuropsychiatric component. The overlaps of PD with SCZ LRs are consistent with the known
psychiatric component of PD (43, 44), such as psychosis (~26-82.7% of PD patients), apathy
and anhedonia (16.4-40% of PD patients) and impulse control disorders (~14% of PD patients)
(43, 45). Although long-term use of L-dopa may contribute to psychosis, the vulnerability of LR
interactions may provide insight into why psychiatric symptoms can also occur in the prodromal
phase (46) of PD.

We also noted that many of the genes ranked highly based on influence in the LR network have
been associated with PD. This includes FYN, which is the highest ranking gene in cross-disease
networks, and RELN, a secreted extracellular matrix protein associated with the migration,
positioning and maintenance of neurons. Mutations to RELN are associated with partial epilepsy
(47), but its anti-apoptotic role has also been of interest in the context of PD and SCZ (48, 49).
Interestingly, RELN is expressed predominantly by a specialist subpopulation of inhibitory
neurons in adults and is linked to the RELN-DAB1 pathway which is associated with AD
pathogenesis. In fact, it was recently reported to have an epistatic relationship with APOE,
another of the high ranking targets and associated with risk of AD, PD and DLB (50). SNCA
produces alpha-synuclein, a highly abundant presynaptic protein in the brain. Its misfolding and
aggregation has been linked to PD and LBD, with impaired alpha-syn clearance being linked to
the APOE4 variant (61). TLR4 is expressed mainly by astrocytes and microglia in the brain. It
has a role in neurogenesis and is linked to unipolar depression, neurotic disorder, AD, ALS, MS
and PD (62). It is likely to be linked to inflammation through APOE-mediated proinflammatory
signalling (63). These genes could be proposed as candidate cross-disease drug targets, since
with minimal pharmaceutical intervention they have high potential for impact on the cross-
disease risk LR network.

We note that amongst the five highest ranking genes within the LRI risk network, none currently
have approved drugs. Only TLR4 and SNCA have drugs currently in development. A drug
targeting TLR4, tresatorvid, is currently in phase 3 of clinical trials (64), whilst two drugs
targeting SNCA, prasinezumab and cinpanemab are in phase 2 clinical trials (65, 56). While the
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outcomes of these trials are pending, we would argue that accounting for the network nature of
LR interactions as well as the directionality of LRIs associated with disease risk will be
important. With high-throughput drug development pipelines and computational tools
increasingly available (37, 38), it will become increasingly important to also leverage brain-
derived cell-specific and spatial transcriptomic data . The emergence of new high resolution
datasets characterising changes in gene expression , transcript use and protein isoform
expression, will be especially valuable for this drug design effort.

The findings in this work must be considered in light of its limitations. Firstly, here we depend
on databases, such as Open Targets and omnipathDB, being comprehensive and robust.
However, there are likely to be inherent biases in the genes and LRs which are characterised
and annotated. For example, in the case of OmnipathDB, other LRs may be crucial but their
annotation as a ligand or receptor be unknown due to not being studied as widely.
Nevertheless, this limitation would be expected to primarily generate false negatives rather than
false positives, thus not taking away the value of our findings. Secondly, we chose to use
transcriptomic data for identification of (i) sites where LR interactions are likely to be occurring
and (i) to assign cell type enrichment. While transcriptomic data is currently the most sensitive
approach for unbiased gene detection, we acknowledge that the correlation between gene and
protein expression is poor and eagerly anticipate the wider availability of cell type-specific and
spatial proteomic data.

In summary, in this study we set out to understand whether ligands and receptors were
associated with cross-disease risk in neurological disorders. Indeed, we find compelling
evidence that ligands and receptors are especially associated with neurological disease, and
may underlie not only the overlaps in symptoms and mechanisms of neurodegenerative
disorders, but also the comorbidity of neurodegenerative and neuropsychiatric disorders. By
leveraging snRNA-seq and spatial transcriptomic data to better understand the cross-disease
LR network, we highlight the importance of glial cells and immune processes in cross-disease
risk (67-60). Most importantly, we believe that this work shows that a shift in CNS drug
development to considering targets not only as independent genes but within their network
architecture is likely to be strategic, cost effective and ultimately necessary for tackling the
pressing need for treatments for neurodegenerative diseases, and beyond.
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Fig 1. Schematic of study hypothesis, design and preliminary assessment of hypothesis
(A) Neurological and neuropsychiatric disorder have limited overlaps in genetic risk, but have
abundant overlap in disease-associated pathways, cell states and symptoms. LRIs are a
mechanism by which seemingly unrelated genes linked to risk of different diseases can interact
to produce shared and/or overlapping outcomes. (B) Schematic illustration of study design and
workflow. Briefly, neurological and neuropsychiatric diseases listed on MeSH with evidence of
genetic risk associations and listed on OpenTargets were included. The genes associated with
disease risk were downloaded from OpenTargets and filtered to only include genetic association
scores >0.4. These genes were then filtered to only include those which have a known ligand
and/or receptor role, as specified in the Omnipath database. (C) Receptors are significantly
enriched among disease risk genes across 7 neurological and neuropsychiatric disorders.
Ligands are significantly enriched in disease risk genes for Alzheimer’s disease.
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Fig 2. Taking into account the network nature of LRIs highlights similarities between
neurological and neuropsychiatric diseases reflected in symptoms, comorbidity (A)
Ligands and receptors associated with disease risk overlap most frequently for neuropsychiatric
disorders. (B) PD and schizophrenia are the disease pair with most overlaps of at-risk LRIs, i.e.
interactions where at least one interactor is associated with disease risk (C) A group of 8
disorders, including neurological and neuropsychiatric conditions, has significantly similar LR
networks associated with disease risk.
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Fig 3. 95% of LRIs associated with disease risk across 18 diseases form a single
interconnected LR network expressed in glia and inhibitory neurons (A) This major
network was maintained even with increasing stringency, indicated at >0.4, >0.55 and >0.7
genetic association scores. At stringency 0.7 the network splits into two subnetworks, but the
largest still has 65% of all LRIs associated with disease risk (B) Cell type enrichment analysis
shows that the genes within the cross-disease risk network are enriched to glial cell types and
inhibitory neurons. This becomes more significant with increasing genetic risk association score
stringency (scores > 0.7) (C) The risk-associated LRIs are most frequently associated with glia-
glia communication in the control dorsolateral prefrontal cortex (D) Genes in the risk-associated
LR network are enriched to pathways linked to brain development, neuroinflammation.
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Fig 4. The cross-disease risk LR network is significantly enriched to layer 6 of the
dorsolateral prefrontal cortex in the human brain (A) Schematic diagram of spatial
enrichment analysis. We used cortical layer-annotated dorsolateral prefrontal cortex data
generated with 10x Visium to assess whether the cross-disease risk LR network was spatially
enriched to any cortical layer and to assess which cell type neighbourhoods occur in the regions
with most expression of the genes in the network. (B) The spots with most co-expression of the
network genes (top 5%) are significantly enriched to layer 6 of the cortex. (C) The network-
enriched spots are enriched for excitatory and inhibitory neurons.
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Fig 5. Genes associated with Parkinson’s disease are important in the cross-disease risk
network and rely on accurate splicing (A) LD-score regression analysis results for GWAS
studies from AD, ALS, PD and SCZ. The cross-disease LR network (genetic association scores
> (0.70) is enriched for ALS (p value < 5.0x102) and PD (p value < 1.0x10") heritability. (B) To
prioritise the genes of highest importance in the cross-disease risk LR network we ranked genes
based on their importance (i.e. connectivity, and the importance of connecting genes). We then
assessed which of these genes are known to be druggable based on the druggable targets
database and prioritised multi-disease genes. (C) The most important genes in the cross-
disease LR network (genetic risk score > 0.70) have been linked to Parkinson’s disease,
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including SNCA (associated with PD risk), APOE (associated with PD progression), RELN and
TLR4, both of which have recently been shown to be upregulated in PD. (D) We found that
there is an anti-correlation between gene rank in importance and its number of transcript
variants (Pearson’s R = -0.1805, p value = 1.16x102), meaning that higher ranks (closer to #1)
tend to have more transcript variants. (E) The receptors associated with AD, ALS, PD and
partial epilepsy have a higher number of transcript variants than would be expected (FDR-
corrected, 1.32x102< p value < 1.2x10%®).

Methods

Systematic disease selection and genetic risk data acquisition

We selected nervous system disorders available on the Medical Subject Headings (MeSH)
which in the MeSH tree structures had at most two offspring, in order to avoid generalised
disease classifications. We filtered these to include only those with verifiable genetic association
as demonstrated by at least 3 GWAS studies, with at least 10 genetic associations overall. This
resulted in a list of 24 diseases: Alzheimer’s Disease (AD), amyotrophic lateral sclerosis (ALS),
anorexia nervosa, bipolar disorder, brain aneurysm, essential tremor, frontotemporal dementia
(FTD), intracranial hemorrhage, Lewy body dementia (LBD), major depressive disorder,
migraine disorder, migraine with aura, multiple sclerosis (MS), narcolepsy cataplexy,
narcolepsy, neurotic disorder, obsessive compulsive disorder (OCD), partial epilepsy, PD,
progressive supranuclear palsy (PDP), restless leg, schizophrenia (SCZ), Tourette syndrome,
unipolar depression. We then harvested from Open Targets (https://www.opentargets.org/) lists
of genes with genetic association to disease risk. Because genes with a genetic score <0.1 had
a small disease risk (and are therefore of less interest for drug targeting) but accounted for
almost 40% of all genes, we chose to only include genes with a genetic risk score >0.1 in this
analysis (SupFig 1A).

These gene lists were filtered to only include those with a known LR role, as annotated by the
omnipath database

(op.interactions.import intercell network (transmitter params =
{"categories":"ligand"}, receiver params = {"categories":
"receptor"})). These parameters resulted in the inclusion of both membrane bound and
soluble ligands and receptors, meaning that this analysis was not limited to cell-cell
communication networks. HLA genes and protein complexes were excluded from the analysis.
Protein complexes were excluded due to the further complexity these would insert in a network
analysis.

We evaluated how a change in threshold affected total LRs represented in this study, total
number of diseases, the proportion of ligands and proportion of receptors represented across
the data (SupFig 1B-D). Taking this into consideration in light of how genetic risk is scored by
OpenTargets, the minimum risk score threshold we selected for downstream analysis was 0.4,
as (1) we estimate that at 0.4 we are likely to capture genes with stronger evidence score in
OpenTargets; (2) At this resolution we capture 19 diseases and ~1,000 LRs; (3) At this
resolution diseases with a large number of risk genes (e.g. SCZ) no longer dominate the
contribution to the LRs, thus reducing bias and emphasising the cross-disease aspect of our
hypothesis.
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We selected 6 diseases affecting systems other than the CNS for comparison: lymphoid
leukaemia, diabetes mellitus, rheumatoid arthritis, asthma, coronary heart disease and
cardiovascular disease. Data was collected, preprocessed and assessed using the same
methods as used for the neurological enquiry.

Ligand-receptor occurrence in disease risk gene list
To determine whether the occurrence of ligands and receptors was enriched among disease
risk genes, we used bootstrapping. For each disease, the incidence of ligands/receptors
(inferred using OmnipathDB) was compared to the incidence of ligands/receptors in a list of
random genes, of matching length, that were also protein-expressing genes expressed in the
brain (i.e.: expression >0 in GTEx (v.7) data of brain tissues). The % of genes with ligand or
receptor role of the background list was also determined using OmnipathDB LR annotation. This
process was iteratively repeated (N=10,000). The p-values were calculated using

p = sum(s >= s0)/N
where s = bootstrapped LR incidence values, sO = LR incidence in disease risk genes, N =
number of bootstrapping iterations. P-values were corrected with false discovery rate method
(fdr < 0.05) and visualised in R.

Assessment of shared risk via ligands and receptors across diseases

We assessed the overlap in ligands and receptors linked to disease risk. For this, an adjacency
matrix was constructed with counts of total overlapping ligands and/or receptors across all
disease pairs. We generated a pool of genes known to act as ligands and/or receptors which did
not include any disease-associated LRs (N=1,800). This was our reference pool for
bootstrapping. For each disease pair comparison, we subsampled the reference LR pool to
have an LR list of matching length to the real disease-implicated LRs (e.g. 300 genes for SCZ
and 10 genes for PD). The overlap of these two random lists was then estimated, and the
process was repeated iteratively. Because the sample pool only included 1,800 LRs and our
largest disease-LR set was 300 genes, we repeated this process 12 times to allow random
resampling to only have a 50% overlap in LR sampling per iteration. We then compared the
bootstrapped values to the real overlapping values, reporting as of interest disease overlaps
within the 90th percentile of the bootstrapped data.

Assessment of shared LR interactions across diseases

We assessed the overlap in LR interactions affected by disease-associated genes. For this, an
adjacency matrix was constructed with counts of total overlapping LRIs across all disease pairs.
These values were then compared to bootstrapped data using the same method as reported for
direct ligand and receptor overlap, with overlaps being reported as of interest when real values
were within the 90th percentile of bootstrapped LRIs.

Assessment of LR network similarity across diseases

For an overall analysis of the similarity between networks of different diseases (including all LR
pairs where at least one interactor is linked with that disease), we calculated network similarity
with the netrd python library implementation of DeltaCon (61). With DeltaCon, the similarity of
two networks is given in the form of a distance score, where closer networks (lower score) are
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more similar and more distant networks (higher score) are more distinct. The algorithm assumes
that both networks have the same nodes but evaluates similarities in edges. Therefore, all
diseases had the same genes but only relevant edges associated with disease risk were logged
and compared. The final disease-associated networks for each disease were systematically
compared in a pair-wise comparison, with scores visualised in a symmetrical clustermap using
seaborn. The likelihood of random occurrence of network closeness for each disease pair was
estimated using the bootstrapping method used for direct LR overlap and LRI overlap, with
distances in the top 90th percentile being considered of interest.

Cross-disease risk network analysis

Using the list of all genes associated with disease risk with a known LR role, all LR interactions
listed in OmnipathDB where at least one interactor was associated with neurological disease
were fetched. This was logged as an adjacency matrix and visualised as a network using
networkx. This was repeated longitudinally across risk scores (genetic risk score > 0.4, >0.55
and >0.7 in Open Targets). At higher risk thresholds there is a breakdown of the network
structure, and therefore these analyses were not extended further.

Major core network analysis

Community detection was performed using the louvain algorithm and the largest interconnected
network was determined based on the community with the largest number of genes. Network
visualisation was used to ensure the leiden parameters were consistent with the selection of
interconnected networks and not further subdivision of the network.

In order to determine whether the size of the largest network was statistically significant, the
size of the network was compared to bootstrapped simulated data. For this, a random list of
matching length of the major network for each resolution was iteratively generated (n=10,000)
with genes expressed in the brain (as determined by GTEXx) and which have a LR role (as
determined by OmnipathDB). This was performed for risk genes of increasing stringency
(genetic association > 0.4-0.7). The size of a network was considered significant if it was in the
bottom 5th percentile or top 95th percentile of the bootstrapped distribution.

Cell type gene expression enrichment analysis

Cell type enrichment of the cross-disease network was performed similarly to previous reports
(62, 63). We used two separate datasets for estimation of cell type enrichment: the Human
Multiple Cortical Areas SMART-seq dataset (freely available through the Allen Brain Atlas data
portal, https://portal.brain-map.org/atlases-and-data/rnaseq)and a dorsolateral prefrontal cortex
snRNAseq dataset (64) (now publicly available), as references.

The Allen brain dataset includes single-nucleus transcriptomes from 49,495 nuclei across
multiple human cortical areas, including the middle temporal gyrus, anterior cingulate cortex,
primary visual cortex, primary motor cortex, primary somatosensory cortex, primary auditory
cortex. Cell type annotations were generated at two resolutions using the Allen Brain-provided
cell subclasses. A total of 1,985 nuclei were labelled as “outlier calls” and were removed during
generation of the celltype dataset. We used the function fix_bad_hgnc_symbols() (R package
EWCE, version 0.99.3, https://bioconductor.org/packages/release/bioc/html/EWCE.html) to
remove any symbols from the gene-cell matrix that were not official HGNC symbols. A total of
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30,792 genes were retained. We then used the function drop_uninformative_genes() (R
package EWCE, version 0.99.3,
https://bioconductor.org/packages/release/bioc/html/EWCE.html), which removes “uninformatic
genes” to reduce compute time in subsequent steps. The following steps were performed:

e Drop non-expressed genes (n=1,263). This step removed the genes that are not expressed
across any cell types

e Drop non-differentially expressed genes (n=6,304), which removes genes that are not
significantly differentially expressed across level 2 cell types with an adjusted p-value threshold
of 1e-05.

Finally, we used the function generate_celltype_ data() from the R package EWCE (version
0.99.3, https://bioconductor.org/packages/release/bioc/html/EWCE.html) to generate the
celltype dataset. This dataset can be accessed at: https://github.com/RHReynolds/MarkerGenes
(version 0.99.1, DOI: 10.5281/zenodo.6418604).

The DLPFC dataset includes single-nucleus transcriptomes from 54,394 nuclei from the human
DLPFC without neurological disorder. Preprocessing and annotation of this dataset is reported
elsewhere (64). We used the function generate_celltype_data() from the R package EWCE to
generate the celltype dataset.

For both datasets cell-type enrichment was calculated using Expression Weighted Cell Type
Enrichment (EWCE)(65). The goal of this analysis was to determine whether the genes of
interest had significantly higher expression in certain cell types than might be expected by
chance. Bootstrap gene lists controlled for transcript length and GC-content were generated
with EWCE iteratively (n=10,000) using “bootstrap_enrichment_test()” function. This function
takes the inquiry gene list and a single cell type transcriptome data set and determines the
probability of enrichment of this list in a given cell type when compared to the gene expression
of bootstrapped gene lists; the probability of enrichment and fold-change of enrichment are the
returned. P-values were corrected for multiple testing using the fdr method.

Gene Ontology enrichment analysis

Cluster Profiler was used to calculate overrepresentation of pathways associated with the genes
in the cross-disease LR network across thresholds in R 4.0.2. We obtained the entrez ID for the
genes in the cross-disease networks using the library org.Hs.eg.db. When running the Gene
ontology enrichment analysis, we selected the ‘Biological Process’ ontology with minimum GSS
size = 50 and max GSS size = 300 and a p and q value cutoff of 0.01 (values corrected with
Bejamini-Hochberg method). The pathways were ranked from the lowest adjusted p value to the
highest, and the top 15 pathways were visualised using ggplot2.

Cell-cell interaction prediction in single nuclear RNA sequencing data with LIANA

Liana was used to predict LR interactions in the DLPFC (34, 64). We used these results to verify
which cell types were most likely to be communicating via cell-cell interactions in this dataset.
This was performed for the risk network at risk score > 0.40, >0.55 and >0.70.
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The results were summarised in a heatmap generated with the python package seaborn.

Spatial domain enrichment analysis

We used spatial transcriptomic data from the dorsolateral prefrontal cortex (64) generated with
10x Visium technology to assess whether the cross-disease LR network was enriched to any
region of the cortex. We chose to perform this using the annotation recommended by the
authors bayespace harmony-corrected sp09. These are data-driven clusters which largely
correspond to conventional cortical annotation, except for the division of WM into two distinct
spatial domains and layer 2 of the cortex into two spatial domains.

Due to the 10x Visium technology, the smallest mappable spatial unit of a given section is a
spot with 55 um in diameter. For every spot covered with brain tissue we assessed how many
genes from the risk network were detected. We summed the total number of genes in the risk
network for all spots and selected the spots with the top 2% genes detected as the spots with
most likelihood of expression of the risk network. We then assessed which spatial domain (i.e.
cortical layer) these spots were located. We found that layer 6 had the highest mean number of
risk spots. We compared the distributions using the Kruskal-Wallis test, followed by statistical
comparison using Dunn’s test in R 4.0.2.

Spatial neighborhood characterisation

To profile the cellular neighborhood of regions enriched for the cross-disease LR network,
similarly to the spatial domain enrichment analysis, we first filtered all spatial transcriptomic
spots to only include those in the top 98th percentile with the highest number of co-expressed
genes from the network. We then used cell type deconvolution results generated with
cell2location (see Huuki-Myers et al, 2023 for deconvolution details) to determine the top 3 cell
types most likely to be in these spots. We constructed an adjacency matrix to record co-
localisation occurrences for each cell type pair. The matrix was then normalised such that, when
converted to a network, the sum of the edges connecting to each cell type is 3 (e.g. cell type
pair that always co-localised would have a connecting edge of 3). This data was then used to
construct a cellular co-localisation network, which shows which cell types are most frequently
present in the spots enriched for the network of interest, as well as which cell types tend to co-
localise.

Gene importance ranking with PageRank

Genes were ranked by importance in the network using the networkx implementation of the
PageRank algorithm. This algorithm is used by the web search engine to evaluate importance of
results but is transferable to network analysis. It ranks the nodes (in this case, genes) and
assigns a weight to their importance in the network based on (1) the number of nodes it is
connected to and (2) the importance of the nodes it is connected to (35). This analysis was run
using default parameters recommended by networkx, and was performed for the risk network at
three stringency levels (risk network at risk score > 0.40, >0.55 and >0.70).

Assessment of network overlap with the druggable genome
In order to assess druggability of the cross-disease LR network we used the available druggable
genome annotations, including inclusion in the druggable genome and whether the gene is
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targetable by a small molecule (36). These annotations were used for visualisation of PageRank
results.

Data availability
All databases and data sets used in this work are publicly available.
Databases:

e Disease tree - Medical Subject Headings (MeSH, https://www.nlm.nih.gov/mesh/)

e Genetic association scores - OpenTargets (https://www.opentargets.org/)

e Ligand-Receptor role annotation - OmnipathDB (https://omnipathdb.org/)

e Brain-expressed gene list reference for bootstrapping - Genotype-Tissue expression
(GTEX) data, v8 RNAseqQC v 1.1.9 gene median (https://gtexportal.org/home/)

Datasets:

e Single nucleus RNA sequencing data multiple cortical regions (EWCE) - Allen Brain
Atlas Human Multiple Cortical Regions SmartSeq (https://portal.brain-map.org/atlases-
and-data/rnaseg/human-multiple-cortical-areas-smart-seq), data in EWCE-compatible
format available at https://github.com/RHReynolds/MarkerGenes

e Single nucleus RNA sequencing and spatial transcriptomics data for the DLPFC are
available through the SpatialLIBD package (66)

e Single nucleus RNA sequencing dorsolateral prefrontal cortex LIANA analysis -
https://github.com/Lieberlnstitute/spatialDLPFC

Code availability
All custom code used for this work is publicly available at
https://github.com/mgrantpeters/LR_project [repository to be made public upon publication].
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