

1 **New mitochondrial gene order arrangements and evolutionary implications**  
2 **in the subclass Octocorallia**

3 Angelo Poliseno<sup>1,\*</sup>, Andrea M. Quattrini<sup>2,3</sup>, Yee Wah Lau<sup>1</sup>, Stacy Pirro<sup>4</sup>, James D. Reimer<sup>1,5</sup>,  
4 Catherine S. McFadden<sup>2</sup>

5 <sup>1</sup>Molecular Invertebrate Systematics and Ecology Laboratory, Graduate School of Engineering and Science,  
6 University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan

7 <sup>2</sup>Department of Biology, Harvey Mudd College, Claremont, CA 91711, USA.

8 <sup>3</sup>Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution,  
9 Washington, DC 20560, USA

10 <sup>4</sup>Iridian Genomes, Bethesda, MD, United States

11 <sup>5</sup>Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan

12 \*Corresponding author:a.poliseno.ita@gmail.com

13

14 **ORCID**

15 Angelo Poliseno [orcid.org/0000-0001-9939-705X](https://orcid.org/0000-0001-9939-705X)

16 Andrea M. Quattrini [orcid.org/0000-0002-4247-3055](https://orcid.org/0000-0002-4247-3055)

17 Yee Wah Lau [orcid.org/0000-0003-2134-0269](https://orcid.org/0000-0003-2134-0269)

18 James D. Reimer [orcid.org/0000-0003-0453-8804](https://orcid.org/0000-0003-0453-8804)

19 Catherine S. McFadden [orcid.org/0000-0002-8519-9762](https://orcid.org/0000-0002-8519-9762)

20

21 **Abstract**

22 The complete mitochondrial genomes of octocorals typically range from 18.5 kb to 20.5 kb in  
23 length, and include 14 protein coding genes (PCGs), two ribosomal RNA genes and one  
24 tRNA. To date seven different gene orders (A-G) have been described, yet comprehensive  
25 investigations of the actual number of arrangements, as well as comparative analyses and  
26 evolutionary reconstructions of mitochondrial genome evolution within the whole subclass  
27 Octocorallia have been often overlooked. Here we considered the complete mitochondrial  
28 genomes available for octocorals and explored their structure and gene order variability. Our  
29 results updated the actual number of mitochondrial gene order arrangements so far known for  
30 octocorals from seven to twelve, and allowed us to explore and preliminarily discuss the role  
31 of some of the structural and functional factors in the mitogenomes. We performed  
32 comparative mitogenomic analyses on the existing and novel octocoral gene orders,  
33 considering different mitogenomic structural features such as genome size, GC percentage,  
34 AT- and GC-skewness. The mitochondrial gene order history mapped on a recently published  
35 nuclear loci phylogeny showed that the most common rearrangement events in octocorals are  
36 inversions, and that the mitochondrial genome evolution in the subclass is discontinuous,  
37 with rearranged gene orders restricted only to some regions of the tree. We believe that  
38 different rearrangement events arose independently and most likely that new gene orders,  
39 instead of being derived from other rearranged orders, came from the ancestral and most  
40 common gene order. Finally, our data demonstrate how the study of mitochondrial gene  
41 orders can be used to explore the evolution of octocorals and in some cases can be used to  
42 assess the phylogenetic placement of certain taxa.

43

44 **Keywords:** Mitogenome, evolution, genome rearrangement, gene inversion, molecular  
45 phylogeny

## 46      **Introduction**

47      The recovery of complete mitochondrial genome sequences for taxonomic studies and for  
48      biogeographic, phylogenetic and evolutionary investigations has become routine over the last  
49      decade (Plazzi et al. 2016; Tan et al. 2019; Reyes-Velasco et al. 2021). The increase in  
50      available complete mitogenomes has been driven by an overall lowering of the sequencing  
51      costs (Nunez and Oleksiak 2016), by the effectiveness of the molecular technologies  
52      employed, and by availability of bioinformatic tools for mitogenome analyses (Forni et al.  
53      2019; Hoban et al. 2022). Despite the mitogenomic approach becoming popular in  
54      evolutionary biology, some taxa are still poorly sampled. For example, within the subclass  
55      Octocorallia, the number of complete mitogenome sequences has only recently increased,  
56      with about 65% of the total sequences publicly available being deposited within the last four  
57      years. To date seven different gene order arrangements have been reported within the  
58      subclass (Brugler and France 2008; Uda et al. 2011; Brockman and McFadden 2012; Pante et  
59      al. 2013), yet, as recently shown for pennatulaceans (Hogan et al. 2019), new rearrangements  
60      are still being discovered in different species.

61      The first studies dealing with mitochondrial gene arrangements in octocorals identified the  
62      presence within the mitogenome of four conserved gene blocks whose inversion or  
63      translocation could have potentially led to five of the observed rearrangements (A-E) (Uda et  
64      al. 2011; Brockman and McFadden 2012; Figueroa and Baco 2015). The occurrence of  
65      octocoral mitogenome rearrangements that do not conserve these four gene blocks was  
66      preliminarily proposed by Pante et al. (2013) after the screening of gene junctions in a  
67      calcaxonian species (*Isidoides armata*; arrangement F). Later, Shimpi et al. (2017) showed  
68      that transcriptional units encompass genes from different gene blocks, and more recently  
69      Hogan et al. (2019) found a non-conserved gene block within the mitogenome of an  
70      undescribed *Umbellula* species (arrangement G). Recently, unique novelties in the

71 mitogenome structure of octocorals were discovered, including a bipartite genome within  
72 pennatulaceans (Hogan et al. 2019) and the lack of a *mtMutS* gene in the mitogenome of  
73 *Pseudoanthomastus* sp.1 (Muthye et al. 2022). Despite such recent efforts, a comprehensive  
74 overview of the different gene order arrangements and estimations of genome arrangement  
75 history to date have been poorly explored. Regarding the mitochondrial gene order  
76 arrangements so far described, Brockman and McFadden (2012) hypothesized that the most  
77 common arrangement (A) can be considered ancestral among octocorals due to its broad  
78 phylogenetic distribution within the class Octocorallia. However, ancestral state  
79 reconstruction analysis has never been done to confirm this hypothesis.

80 Size, structure and organization of mitochondrial genomes aside, mitochondrial protein-  
81 coding genes (PCGs) are frequently used for phylogenetic inference and for biogeographic  
82 and historical evolutionary reconstructions (Gissi et al. 2008; Osigus et al. 2013). This is also  
83 true for octocorals which, in spite of having a highly reduced mitochondrial mutation rate  
84 (Shearer et al. 2002; Bilewitch and Degnan 2011), have had their mitogenome sequences  
85 exploited widely in phylogenetic and evolutionary studies (Kayal et al. 2013; Poliseno et al.  
86 2017; 2017a; 2021; Ramos et al. 2023; Feng et al. 2023).

87 In this study, we reconsidered the complete mitogenomes available on GenBank and added  
88 the sequences of three *Phenganax* species (*P. marumi*, *P. subtilis* and *P. stokvisi*) for  
89 comparative and evolutionary analyses. We mapped the mitochondrial gene arrangement  
90 history on a recently published phylogeny and reported on ancestral mt-genome states using  
91 nine of 12 available mitochondrial genome arrangements.

## 92 **Material and methods**

### 93 *Specimens, DNA extraction, library preparation and DNA sequencing*

94 The majority of the specimens used for this study were previously sequenced (Quattrini et al.  
95 2018, 2020) and their complete mitogenome sequences are available on GenBank (OL616196  
96 – OL616289). Mitogenomes for three species of the genus *Phenganax* (family Acrossotidae)  
97 were newly sequenced in this study. DNA extraction of *Phenganax* spp. was performed using  
98 a Qiagen DNeasy Blood & Tissue kit (Qiagen, Tokyo). DNA extracts were sent to Iridian  
99 Genomes (Bethesda, MD, USA) for library preparation and for genome skimming using the  
100 Illumina HiSeq X Ten sequencer.

101 The raw reads for *Phenganax* spp. (SRR12278765, SRR12621204 and SRR12626619) were  
102 trimmed and filtered with Trimmomatic 0.39 (Bolger et al. 2014). Mitogenome assembly was  
103 performed with default parameters in NOVOPlasty 4.3.1 (Dierckxsens et al. 2016) using the  
104 partial *mtMutS* sequence of *P. subtilis* (MN164586) as a starting sequence. Mitogenome  
105 annotation was performed with the software Geneious prime<sup>®</sup> 2022.02 (Kearse et al. 2012)  
106 using the ORFfinder function and the complete sequence of other Acrossotidae as a reference.  
107 The sequences obtained were deposited on GenBank under accession numbers PP330783-  
108 PP330785.

109 In order to confirm the novel gene arrangements in *Keroeides* (OL616243) and *Muricella*  
110 (OL616247) suggested by the mitogenome reconstructions of Muthye et al. (2021), we  
111 designed PCR primers to amplify and sequence regions of the mitogenome that span gene  
112 junctions that are not found in the canonical arrangement (A). Primers were designed to  
113 amplify across junctions between *Cox3-Nad3*, *Cob-Nad4L*, *Nad3-Atp6* and *Nad4-Cox3* in  
114 *Keroeides*, and across *Cox2-Nad4*, *Cox2-Nad5*, *Cox3-Nad4* and *Cox3-Cob* in *Muricella*.  
115 Following successful PCR, amplicons were Sanger sequenced to confirm the sequence  
116 matched the annotated mitogenome.

117 Comparative analyses, mitochondrial gene order arrangements and gene order history  
118 reconstruction

119 For comparative analyses, the base composition, GC percentage, and AT/GC skew were  
120 calculated with PhyloSuite 1.2.3 (Zhang et al., 2020). AT- and GC skewness were calculated  
121 using the equations: AT-skew = (A-T)/(A+T) and GC skew = (G-C)/(G+C) (Perna and  
122 Kocher 1995). In summary, AT- and GC-skewness may represent differences between two  
123 strands due to asymmetries in the mitogenome replication process, in which one strand  
124 ‘prefers’ C/A over G/T.

125 Analyses of mitogenomic rearrangements based on common intervals were conducted with  
126 CREx (Bernt et al. 2007) using default parameters. CREx uses a data structure called strong  
127 common interval tree (Bérard et al. 2007) and, with the help of a distance matrix and interval  
128 tree, heuristically determines genome rearrangement scenarios between the given gene  
129 orders. Ancestral state reconstruction of mitochondrial gene order was performed using a  
130 parsimony ancestral state method with default parameters in Mesquite 3.81 (Maddison and  
131 Maddison 2023) considering the phylogenetic tree inferred from nuclear loci by Quattrini et  
132 al. (2023) as the input file. The starting tree was slightly modified by removing  
133 *Corymbophyton*, *Leptophyton* and *Tenerodus*— which are part of a larger dataset of  
134 unpublished data— and it was transformed into a binary ultrametric tree. The use of the  
135 nuclear loci tree for character-mapping and ancestral state reconstructions was preferred over  
136 mitochondrial tree reconstructions as evidenced by the recent study of Ramos et al. (2023)  
137 that pointed out the impact of selection on the evolution of octocoral mitogenomes, and by  
138 Quattrini et al. (2023) who highlighted evident limitations when inferring accurate species  
139 relationships using complete mitochondrial genomes likely due to the lack of neutral  
140 evolution, rate variability and rapid introgression. In addition, the different gene order

141 arrangements were mapped on the same nuclear phylogeny with all the allowed consistency  
142 methods (i.e. strong, weak and parsimonious weak) in TreeREx (Bernt et al. 2008).

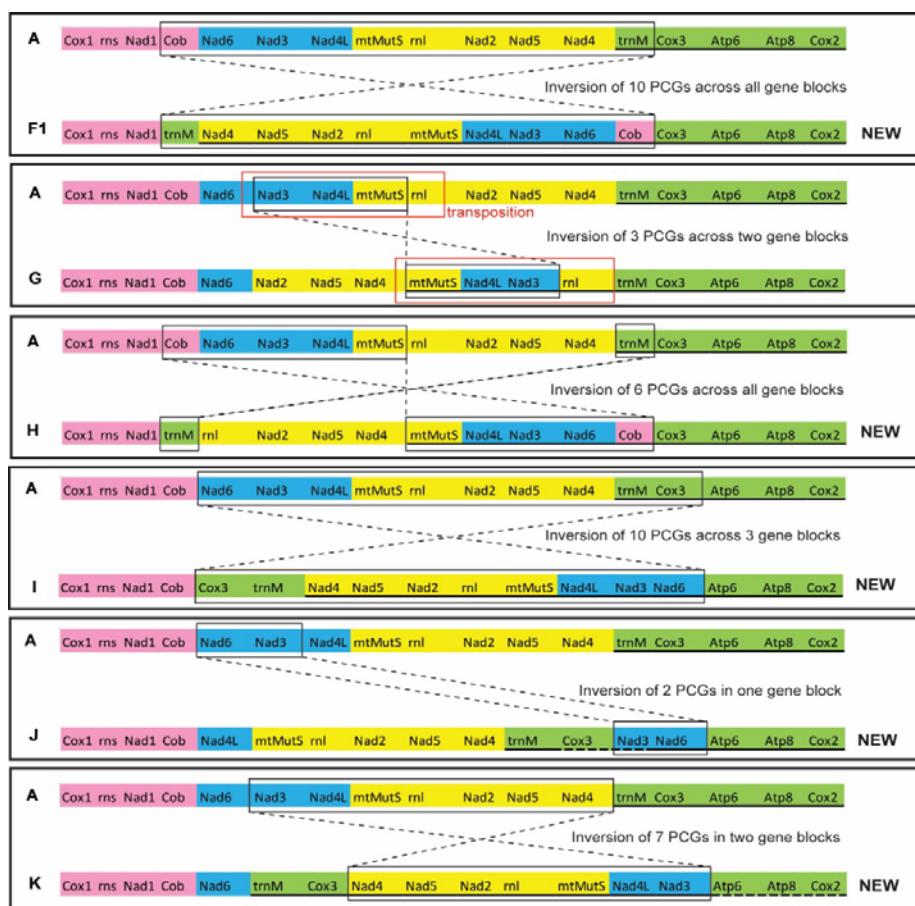
143 **Results**

144 *Mitochondrial genome structure and gene order arrangements*

145 For *Keroeides* (gene order J) we successfully amplified sequences spanning three gene  
146 blocks, including *Cob-Nad4L*, *Nad4-trnM-Cox3* and *Nad6-Atp6*, but we were unable to  
147 validate the juxtaposition of *Cox3-Nad3* (see Fig.1). We were only able to verify a portion of  
148 the new gene order proposed for *Muricella* (gene order K), as multiple attempts to sequence  
149 across the *Nad4-Cox2* junction using different primer pairs failed. Moreover, a new genome  
150 assembly from genome-skimming data (Quattrini et al. 2024) juxtaposed *Cox3* and *Nad4*, a  
151 junction that was subsequently verified using PCR. These results suggest the *Muricella*  
152 genome assembly published by Muthye et al. (2022) is incorrect.

153 In addition to the seven gene order arrangements already described for octocorals (A-G), we  
154 detected five new arrangements, which have been here designated as follows: ‘F1’ (*Acrossota*  
155 *amboinensis* – OL 616200; *Arula petunia* – OL616211; *Paratelesto* sp. – OL16258; *Tubipora*  
156 sp. – OL616283 and *Phenganax stokvisi* – PP330784), ‘H’ (*Phenganax subtilis* – PP330785  
157 and *P. marumi* – PP330783), ‘I’ (*Anthelia glauca* – OL616207; *Caementabunda simplex* –  
158 Ol616216, *Coelogorgia palmosa* – OL6162224; *Ovabunda macroscopiculata* – OL616252 and  
159 *Protodendron repens* – OL616263), ‘J’ (*Keroeides* – OL6162439) and ‘K’ (*Muricella* sp. –  
160 OL61624) (see Figure 1). In terms of gene content, the new arrangements have the same  
161 number of PCGs, ribosomal RNA and tRNA genes as the mitogenomes described so far. The  
162 mitogenome sizes were also consistent with those of other octocorals and typically ranged  
163 from 18Kb to 20Kb.



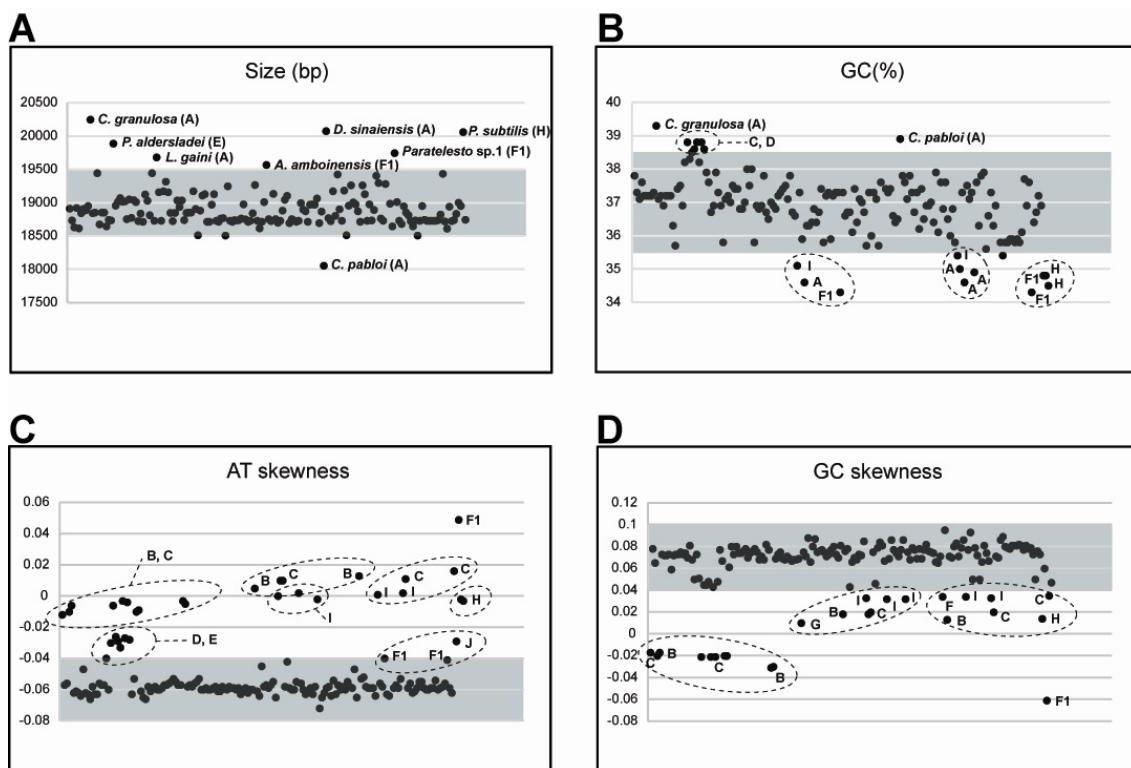

164  
165

166 Figure 1. Summary of the different mitochondrial gene arrangements discovered for octocorals.  
167 Conserved blocks of genes as for Brockman and McFadden (2012) are marked with diverse colours.  
168 Letters on the left refer to gene arrangements following previous schemes. Solid lines below gene names  
169 indicate genes encoded on light strand. The dashed line below gene names in the arrangements 'J' and  
170 'K' indicates that the placement of these genes in the mitogenome was not corroborated by Sanger  
171 sequencing.

172

173 The majority of the specimens investigated had gene order 'A', which was shared across the  
174 phylogenetic tree among most families of orders Malacalcyonacea and Scleralcyonacea. The  
175 gene order arrangement 'B' was shared by some members of the family Keratoisididae and  
176 by a single genus (*Anthoptilum*) within family Anthoptilidae. Gene order arrangements 'C'  
177 and 'D' were typical among the coralliid genera *Anthomastus*, *Hemicorallium*, *Paragorgia*  
178 and *Pleurocorallium*. Gene order arrangements 'F1' and 'H' have been found among  
179 *Acrossota*, *Arula*, *Paratelesto*, *Phenganax* and *Tubipora* species, whereas type 'I' was  
180 restricted to the family Xeniidae and its sister taxon *Coelogorgia palmosa*. The remaining  
181 arrangements currently only involve single species, for instance type 'E' (*Paraminabea*  
182 *aldersladei*), type 'F' (*Isidoides armata*), type 'G' (*Umbellula* sp. 1), type 'J' (*Keroeides* sp.)  
183 and type 'K' (*Muricella* sp.). All the newly discovered arrangements have undergone the  
184 inversion of PCGs across different gene blocks. In particular, compared to the most common

185 gene order, 'A', we found that 'F1' and 'I' have undergone inversion of ten PCGs across four  
186 and three gene blocks, respectively. Within type 'F1' *trnM* has been inverted and placed  
187 between *Nad1* and *Nad4*, whereas *Cob* had *Nad6* and *Cox3* as flanking genes. Regarding type  
188 'I' the block including *trnM*, *Cox3*, *Atp6*, *Atp8* and *Cox2* has seen the separation of *Cox3* and  
189 *trnM* from the other genes of the block and their inversion between *Cob* and *Nad4*. Type 'J'  
190 had two PCGs inverted in one gene block, with *Nad4L* being placed between *Cob* and  
191 *mtMutS*, and the other two PCGs of the block inverted within the *trnM-Cox3-Atp6-Atp8-Cox2*  
192 block. In arrangement 'H', *trnM* and *Cob* have been inverted and moved between *Nad1* and  
193 *16S rRNA* and between *Nad6* and *Cox3*, respectively. Concerning arrangement 'K', *Nad6* is  
194 flanking *Cob* and *Cox3*, whereas the five PCGs within the *mtMutS-Nad4* block were inverted.  
195 (Figure 2).




196  
197  
198 **Figure 2. Scheme of changes (inversions and transpositions) that occurred in the different gene order  
arrangements. Conserved blocks of genes as for Brockman and McFadden (2012) are marked with**

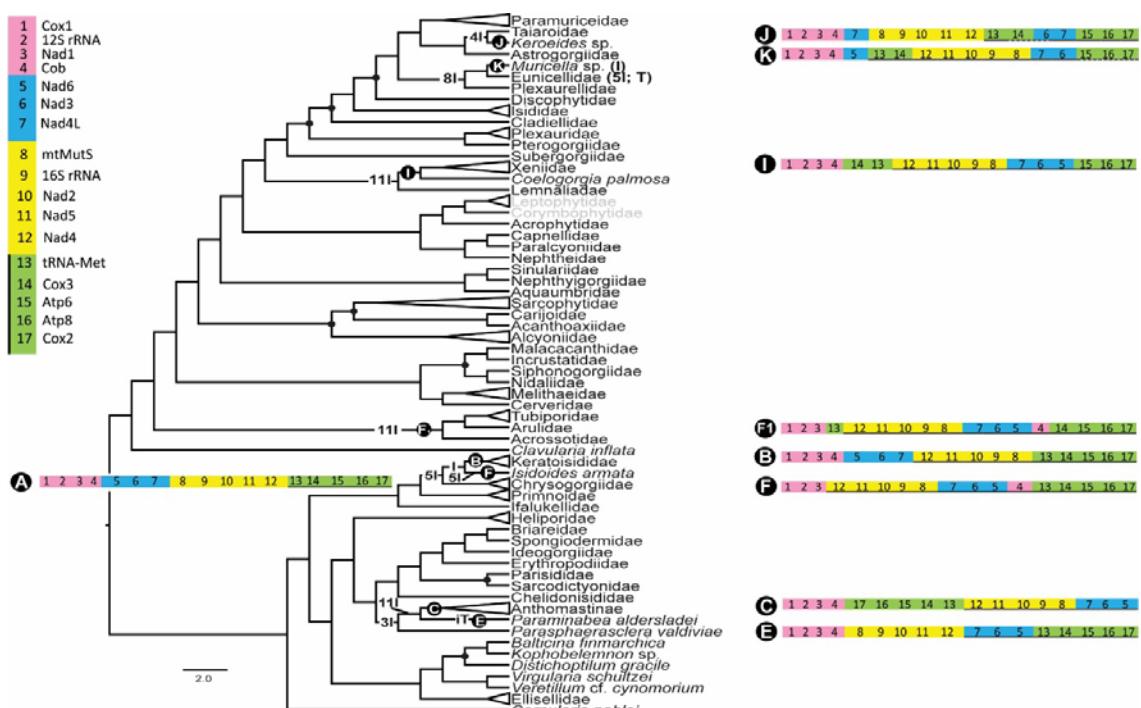
199 diverse colours. Letters on the left refer to gene arrangements following previous schemes. Solid lines  
200 below gene names indicate genes encoded on light strand. The dash line below gene names in the  
201 arrangements 'J' and 'K' indicates that the placement of these genes in the mitogenome was not  
202 corroborated by Sanger sequencing.

203 Among the octocorals investigated, mitogenome sizes ranged from 18,052 bp (*C. pabloi*) to  
204 20,246 bp (*C. granulosa*). Most of the octocoral species with a gene order different from 'A'  
205 had an average genome size (18.5 Kb – 19.5 Kb), yet four of the seven species with a larger  
206 genome— due to longer intergenic regions— had atypical gene order arrangements (e.g. *P.*  
207 *aldersladei* (E), *A. amboinensis* and *Paratelesto* sp. 1 (F1) and *P. subtilis* (H)) (Figure 3A).  
208 Concerning GC content, octocorals have percentages ranging from 35.5% to 38.5%. This  
209 range is shared by most of the species analysed here, with the exception of a group of  
210 specimens having a GC content greater than 38.5% and 11 species with a GC content lower  
211 than 35.5% (Figure 3B, Supplementary Table S1).

212 In agreement with Feng et al. (2023), who explored the AT- and GC skewness among  
213 cnidarians, we found that the majority of the specimens investigated had negative AT  
214 skewness, comprising values between -0.08 and -0.04. Interestingly, all specimens with  
215 values falling out of the range (> -0.04) had gene order arrangements other than A (Figure  
216 3C). Among the specimens with either positive AT skewness or with values close to zero, the  
217 most common gene order arrangements were B, C, F1 and I. *Phenganax stokvisi* (F1) had the  
218 greatest AT skewness value (0.049) (Figure 3C). Most octocoral species analysed had  
219 positive GC-skewness and, similar to what was found for AT skewness, all specimens with  
220 GC skewness values out of the normal range (0.04-0.1) had uncommon gene order  
221 arrangements such as B, C, F, F1, G, H and I (Figure 3D). These data indicate that octocoral  
222 mitogenomes are biased toward using GC rather than AT.

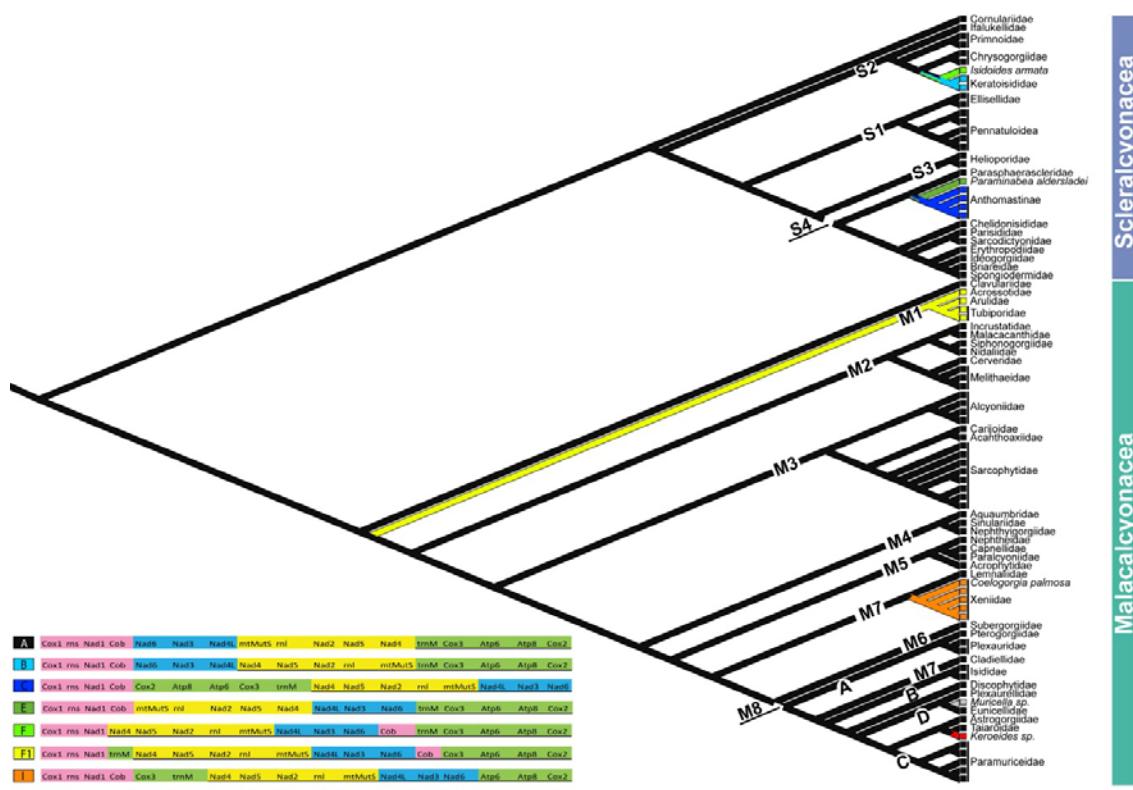


223  
224 **Figure 3.** Statistics on the mitochondrial genomes of 174 octocorals including genome size (A), GC  
225 percentage (B), AT-skewness (C) and GC skewness (D). Letters from A to J refer to the different gene  
226 order arrangements. Grey areas in each graph indicate the most common range of values for the dataset.  
227


228 *Mitogenome rearrangement mapping on nuclear loci phylogeny*

229 Overall our TreeRex analysis inferred 11 inversion events, one transposition and one inverse  
230 transposition, of which six occurred within the order Scleralcyonacea and seven within the  
231 order Malacalcyonacea (Figure 4). All the rearrangement events occurred at the shallower  
232 nodes of the tree. Among the scleralcyonaceans investigated, clades S1 and S3 included taxa  
233 with a single gene order (A), whereas among malacalcyonaceans five of eight clades  
234 comprised members with gene order A only. Even though our phylogenetic analyses did not  
235 include representatives for each of the twelve mitogenome arrangements (arrangements D, G,  
236 H were not included) we were able to gain information about the different mitogenome(s)  
237 structure and gene orders across the subclass. For instance, the taxonomic group with the

238 highest proportion of rearrangements and therefore with the greatest number of gene  
239 arrangements was the family Coralliidae, including four gene orders (A; C; D; E).


240 Our ancestral state reconstruction supported gene order ‘A’ as ancestral within Octocorallia  
241 (Fig. 5). Among scleralcyonaceans, the common ancestral mitogenome arrangement of  
242 Chrysogorgiidae, Keratoisididae and *Isidoides armata* underwent three separate inversion  
243 events leading to arrangement types B and type F, respectively (Figure 4, Figure 5). The  
244 common ancestral mitochondrial gene order of *Parasphaerasclera valdiviae*, Anthomastinae  
245 and *Paraminabea aldersladei* underwent two separate events; one leading to type C in  
246 Anthomastinae and the second leading to type E in *Paraminabea aldersladei*. Regarding  
247 malacalcyonaceans, the common ancestral mitogenome arrangement of Acrossotidae,  
248 Arulidae and Tubiporidae underwent eleven inversions in a single event leading, for all  
249 families, to arrangement F1 (Figure 4, Figure 5). The common ancestral gene order type I of  
250 Xeniidae and *Coelogorgia palmosa* was derived from type A as a single inversion  
251 rearrangement event (Figure 4). The common ancestral gene order of Astrogorgiidae,  
252 Taiaroidae and *Keroeides* sp. underwent a single rearrangement event consisting of four  
253 inversions that led to arrangement type J in *Keroeides* sp.

254 Interestingly, among the taxa investigated, the only genera reporting intrageneric variation at  
255 the level of gene order were *Umbellula* (U. sp. 1 – type G; U. sp. 2 – type A) and *Phenganax*  
256 (P. stokvisi – type F1; P. marumi and P. subtilis – type H). However, we expect similar  
257 results in other groups as additional mitogenomes within species-rich genera are sequenced.



258

259 **Figure 4. Gene order evolution of the subclass Octocorallia based on TreeRex analyses mapped on the**  
 260 **nuclear loci tree by Quattrini et al. (2023). In order to facilitate readability of the tree, many clades were**  
 261 **reduced to family level. Gene orders are shown on the different nodes of the tree and the most likely**  
 262 **evolutionary scenario(s) leading to the new arrangements are provided either at the different nodes or**  
 263 **next to the species names. Members of families Leptophytidae and Corymbophytidae (in grey) were not**  
 264 **considered for the gene order scenario as they are part of a larger dataset to be analysed in a different**  
 265 **publication. I = Inversion; T = Transposition; iT = inverse Transposition.**



267  
268  
269  
270  
271  
272  
273

Figure 5. Ancestral state reconstruction of nine of the 12 mitochondrial gene order arrangements of the subclass Octocorallia. In order to facilitate readability of the tree, many clades were reduced to family level. Division into four Scleralcyonacean groups (S1-S4) and eight Malacalcyonacean groups (M1-M8) follows the systematic scheme proposed by McFadden et al. (2022).

## 274 Discussion

275 Our overview on the mito-gene order arrangements of the subclass Octocorallia showed that  
276 the actual number of known mitogenome arrangements is 12, and that approximately 21% of  
277 species investigated had a different gene order than the common ancestral one (A), which is  
278 shared across the families of both orders. Our data revealed that except for families  
279 Acrossotidae, Arulidae and Tubiporidae (clade M1), Coelogorgiidae and Xeniidae (clade  
280 M7), and Anthogorgiidae and Keroeididae (clade M8), the remaining malacalcyonacean  
281 families have the ancestral gene order arrangement, and that five (A, F1, H, I and J) of the 12  
282 arrangements are found among members of this order. Seven arrangements (A-G) have been  
283 detected among scleralcyonaceans, with the ancestral one (A) being the only type shared by

284 species of both orders. We observed that atypical gene order arrangements within  
285 Scleralcyonacea are restricted to a few groups such as sea pens (*Umbellula* and *Anthoptilum*),  
286 bamboo corals (*Isidoides* and *Keratoisididae*), and coralliids (e.g., *Anthomastus*, *Corallium*,  
287 *Hemicorallium*, *Paragorgia*; *Paraminabea* and *Pleurocorallium*) and, except for  
288 *Paraminabea*, all of these genera are found in deep waters. Our data on scleralcyonaceans  
289 suggest that mitogenome rearrangements frequently occur in deep-sea species, as has already  
290 been proposed for other metazoans such as Annelida and Holothuria (Zhang et al. 2018;  
291 Tempestini et al. 2020; Sun et al. 2021). However, most scleralcyonaceans inhabit deep  
292 waters, so the proportion of deepwater species with gene arrangements likely reflects where  
293 most members of that order can be found. Correlation between species' depths and  
294 mitogenome re-arrangements was only partly supported by the data obtained on  
295 malacalcyonaceans. In fact, *Kereoides* is the only genus with an atypical mitochondrial  
296 arrangement (type J) inhabiting deep-sea waters, whereas both xeniids (type I) and members  
297 of Acrossotidae, Arulidae and Tubiporidae (types F1 and H) are exclusively found in shallow  
298 waters. However, not all genera and species inhabiting deep waters have mitogenome  
299 rearrangements, as shown for example by chrysogorgiids and primnoids, which have instead  
300 the ancestral arrangement. Unlike octocorals, the mitogenomes of other anthozoan orders  
301 such as Antipatharia, Scleractinia and Zoantharia have highly conserved gene orders and  
302 content. In particular, among scleractinians, the majority of the mitogenomes so far  
303 sequenced have the same gene order, with rearrangements reported only in five genera, of  
304 which three (*Desmophyllum*, *Madrepora*, *Solenosmilia*) occur in deep waters (Seiblitz et al.  
305 2022). Despite Antipatharia and Zoantharia including deep-water species, these orders have  
306 extremely low levels of mitogenome rearrangements (Antipatharia; Barrett et al. 2020) or no  
307 rearrangements at all (Zoantharia; Poliseno et al. 2020).

308 Living in deep environments seems inappropriate to explain these octocoral mitochondrial  
309 rearrangements, and thus other factors should be taken into account. Some of these  
310 rearrangements may have biological causes, as suggested for bilaterians (Bernt et al. 2013),  
311 while for non-bilaterians, substitution rates, oxidative stress, the presence of tRNAs, and  
312 increasing mitogenome sizes are recognized as some of the principal factors that can  
313 contribute to mitogenome rearrangements (Saccone et al. 1999; Luo et al. 2015; Tempestini  
314 et al. 2018; Zhang et al. 2018; Sun et al. 2021). However, octocoral mitogenomes are known  
315 to have slow nucleotide substitution rates (Muthye et al. 2022) due to the presence of the  
316 putative DNA mismatch repair function of *mtMutS* (Bilewitch and Degnan 2011), and thus  
317 the increase of substitution rates to explain the overall great variety of mitogenome  
318 rearrangements does not seem to be the case for these organisms, but can possibly explain the  
319 placement of some of these groups on long branches in the phylogenetic trees. Regarding  
320 oxidative stress, mtDNA damage may lead to different major changes within the mitogenome  
321 that can be converted either to point mutations or to mitogenomic rearrangements (Kajander  
322 et al. 2000; Dowton and Campbell 2001). Octocoral *mtMutS* seems capable of counteracting  
323 the effects of oxidative stress (Shimpi et al. 2017), drastically reducing the occurrence of  
324 mitogenome rearrangements. Transfer RNAs have been thought to act as mobile elements  
325 enabling rearrangements (Dowton and Campbell 2001; Luo et al. 2015), but the paucity of  
326 tRNAs in octocoral mitogenomes — tRNA<sup>Met</sup> is the only tRNA detected for all octocorals—  
327 cannot alone justify the high number of rearrangements discovered within the subclass.  
328 Recent studies on Annelida (Sun et al. 2021; Struck et al. 2023) suggest that the increase of  
329 mitogenome size due to the presence of extended intergenic regions (IGRs) and large  
330 sequence duplication was not necessarily correlated to new mitogenome rearrangements.  
331 Similarly, our data suggested that only four species with mitogenome rearrangements  
332 presented a genome size larger than the typical octocoral average. While the above factors do

333 not appear to be correlated with the onset of new gene orders in octocorals, our data  
334 regarding GC percentages and AT- and GC-skewness highlighted interesting patterns. The  
335 majority of the species with a GC percentage, AT- and GC-skewness over or above the  
336 octocoral averages have a gene order other than the ancestral one (A). Therefore, our findings  
337 show AT- and GC-skewness as strong predictors to explore gene order variability within  
338 Octocorallia. While there is no evidence that ‘atypical’ AT/GC skewness values may lead to  
339 mitochondrial rearrangements, our data suggest that biases in GC/AT contents are often  
340 linked to mitogenome rearrangements in octocorals.

341 In this study we investigated the complete mitogenomes available for octocorals and updated  
342 the actual number of arrangements so far described to 12. Other studies have previously  
343 explored mitogenome diversity across the subclass, finding that even though different  
344 arrangements exist, all PCGs, ribosomal RNA and tRNA genes are conserved in four blocks  
345 (Brockman and McFadden 2012). Shimpi et al. (2017) proposed that synteny within these  
346 conserved blocks is likely due to the lack of recombination hotspots that promote genome  
347 rearrangements. However, our results indicated that rearrangements with non-conserved gene  
348 blocks are actually more than previously thought and the inversion and/or translocation of  
349 one or more of these blocks has led to seven different arrangements. Among the four types of  
350 rearrangements events (transpositions, inversions, inverse transpositions and tandem-  
351 duplication/random loss (TDRL)), inversions were the most frequent in the mitogenome  
352 evolution of octocorals. Although in nuclear genomes inversions are much more frequently  
353 observed than transpositions and inverse transpositions (Blanchette et al. 1999; Yancopoulos  
354 et al. 2005), TDRL seem to be the main mechanism driving rearrangement in mitogenomes,  
355 unlike inversions that, requiring recombination, are poorly documented in metazoan  
356 mitogenomes (Xia et al. 2016; Arndt and Smith 1998; Boore 2000; Osigus et al. 2013). Pante  
357 et al. (2013) and Hogan et al. (2019) reported, respectively, gene orders F (*Isidoides armata*)

358 and G (*Umbellula* sp. 1) with non-conserved gene blocks. Similarly, we found five new gene  
359 orders (F1, H, I, J, K) characterised by non-conserved gene blocks. However, our findings, in  
360 agreement with what was previously discovered, showed that more than half of the existing  
361 mitogenome arrangements have non-conserved blocks. Additional studies on mitochondrial  
362 RNA processing and functional analyses involving, for example, the ability of organisms to  
363 perform recombination repair needs to be explored in order to better understand the reasons  
364 for multiple mitochondrial genome arrangements in octocorals.

365 Our data also showed the presence of gene order variability at the intrageneric level as  
366 *Phenganax stokvisi* has a different arrangement from congeneric *P. marumi* and *P. subtilis*.  
367 The occurrence of mitogenome rearrangements within single octocoral genera are  
368 uncommon, as they have only been detected among species of *Phenganax* and *Umbellula*,  
369 highlighting that new gene orders are generally conserved in a genus and/or a clade after the  
370 rearrangement event(s). However, in order to corroborate this finding further mitogenomes in  
371 species-rich genera need to be sequenced. According to our TreeRex analyses mitochondrial  
372 genome evolution in the subclass is discontinuous, with the rearranged gene orders restricted  
373 only to some regions of the phylogenetic tree. Such variability suggests, as supported by our  
374 ancestral state reconstruction, that different rearrangement events arose independently and  
375 that most likely the new gene orders, instead of being derived from other rearranged orders,  
376 came from the ancestral and most common gene order. This is further confirmed by the  
377 presence of at least one species with the ancestral gene order in each of the malacalcyonacean  
378 (excluding clade M1) and scleralcyonacean clades.

379 Regarding metazoan mitogenomes, Boore and Brown (1998) suggested that gene  
380 arrangements may imply common ancestry as the same gene order is unlikely to occur  
381 independently in separate lineages. We found that gene order variability among octocorals is  
382 not necessarily related to the taxonomy and phylogeny of the different taxa, as multiple

383 arrangements have been found within the same family/genus, whereas the same arrangement  
384 can be in common across taxonomically and phylogenetically distinct genera, such as for  
385 instance the arrangement type 'B' which is shared by some sea pens and keratoisidids. As  
386 well, our mitogenomic investigations supported the interfamilial phylogeny in Keratoisidae  
387 where the S1 clade diverged earlier and retained the ancestral gene order arrangement. The  
388 recently published papers on mito-nuclear discordance within Anthozoa (Quattrini et al.  
389 2023) and evidence for positive selection impacting the evolution of octocoral mitogenomes  
390 (Ramos et al. 2023) remark on the limits of using mt-PCGs or complete mitogenomes to infer  
391 accurate species-level phylogenies, yet here we observed that the study of mitochondrial gene  
392 orders is useful to explore the evolution of octocorals, and in some cases data can be  
393 exploited to address the taxonomy or to assess the phylogenetic placement of a given taxon.  
394 This was the case for *Protodendron*, whose gene order arrangement supported its  
395 phylogenetic placement within Xeniidae, which is otherwise difficult to predict based on its  
396 morphology. Complete mitogenome sequences are now available for one or more  
397 representatives of most families of octocorals. If additional arrangements exist, they will  
398 likely be restricted to particular genera or species. Further study of cases where multiple  
399 different arrangements have evolved within the same family or genus may help shed further  
400 light on the drivers and mechanisms of mitogenome evolution in non-bilaterian taxa.

401 **Acknowledgements**

402 The first author is thankful to the National Institute of Genetics (NIG) for providing access to  
403 a supercomputer.

404 **Disclosure statement**

405 No potential conflict of interest was reported by the author(s).

406 **Funding**

407 Funding for the sequencing of *Phenganax* specimens was provided by Iridian Genomes,  
408 grant# IRGEN\_RG\_2021-1345 Genomic Studies of Eukaryotic Taxa.

409 **Supplemental material**

410 **Supplementary Table S1**

411 List of the specimens used for the analyses including taxonomic information, accession  
412 number, gene order, mitogenome size, GC% and AT- GC-skewness.

413

414 **References**

415 Arndt A, Smith MJ. 1998. Mitochondrial gene rearrangement in the sea cucumber genus  
416 *Cucumaria*. *Mol Biol Evol*. 15(8):1009-1016.

417 Barrett NJ, Hogan RI, Louise AA, Molodtsova T, Hopkins K, Wheeler AJ, Chris Y. 2020.  
418 Phylogenetics and mitogenome organisation in black corals (Anthozoa: Hexacorallia:  
419 Antipatharia): an order-wide survey inferred from complete mitochondrial genomes.  
420 *Front Mar Sci*. 7:10.3389/fmars.2020.00440.

421 Bérard S, Bergeron A, Chauve C, Paul C. 2007. Perfect sorting by reversals is not always  
422 difficult. *IEEE/ACM Trans Comput Biol Bioinform*. 1:4-16.

423 Bernt M, Merkle D, Ramsch K, Fritzsch G, Perseke M, Bernhard D, Schlegel M, Stadler P,  
424 Middendorf M. 2007. CREx: inferring genomic rearrangements based on common  
425 intervals. *Bioinform*. 23:2957-2958.

426 Bernt M, Merkle D, Middendorf M. 2008. An algorithm for inferring mitogenome  
427 rearrangements in a phylogenetic tree. In: Nelson CE, Vialette S. editors. *Comparative  
428 genomics*. Berlin, Heidelberg: Springer Berlin Heidelberg. p. 143-157.

429 Bilewitch JP, Degnan SM. 2011. A unique horizontal gene transfer event has provided the  
430 octocoral mitochondrial genome with an active mismatch repair gene that has potential  
431 for an unusual self-contained function. *BMC Evol Biol*. 11:228.

432 Blanchette M, Kunisawa T, Sankoff D. 1996. Parametric genome rearrangement. *Gene*  
433 172:11-17.

434 Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina  
435 sequence data. *Bioinform*. 30(15):2114-20.

436 Boore JL, Brown WM. 1998. Big trees from little genomes: Mitochondrial gene order as a  
437 phylogenetic tool. *Curr Opin Genet Dev*. 8:668-674.

438 Boore JL. 2000. The duplication/random loss model for gene rearrangement exemplified by  
439 mitochondrial genomes of deuterostome animals. In: Sankoff D, Nadeau JH. editors.  
440 *Comparative Genomics*. Berlin, Heidelberg: Springer Berlin Heidelberg. p. 133-147.

441 Brockman SA, McFadden CS. 2012. The mitochondrial genome of *Paraminabea aldersladei*  
442 (Cnidaria: Anthozoa: Octocorallia) supports intramolecular recombination as the primary  
443 mechanism of gene rearrangement in octocoral mitochondrial genomes. *Genome Biol  
444 Evol* 4:994-1006.

445 Brugler MR, France SC. 2008. The mitochondrial genome of a deep-sea bamboo coral  
446 (Cnidaria, Anthozoa, Octocorallia, Isididae): genome structure and putative origins of  
447 replication are not conserved among octocorals. *J Mol Evol*. 67:125.

448 Dierckxsens N, Mardulyn P, Smits G. 2017. NOVOPlasty: de novo assembly of organelle  
449 genomes from whole genome data. *Nucleic Acids Res*. 45(4):e18.

450 Dowton M, Campbell NJH. 2001. Intramitochondrial recombination – is it why some  
451 mitochondrial genes sleep around? *Trends Ecol Evol.* 16:269-271.

452 Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high  
453 throughput. *Nucleic Acids Res.* 32:1792-1797.

454 Feng H, Lv S, Li R, Shi J, Wang J, Cao P. 2023. Mitochondrial genome comparison reveals  
455 the evolution of cnidarians. *Ecol Evol.* 13:e10157.

456 Figueroa DF, Baco AR. 2015. Octocoral mitochondrial genomes provide insights into the  
457 phylogenetic history of gene order rearrangements, order reversals, and cnidarian  
458 phylogenetics. *Genome Biol Evol.* 7:391-409.

459 Forni G, Puccio G, Bourguignon T, Evans T, Mantovani B, Rota-Stabelli O, Lucchetti A.  
460 2019. Complete mitochondrial genomes from transcriptomes: assessing pros and cons of  
461 data mining for assembling new mitogenomes. *Sci Rep.* 9:14806.

462 Galtier N, Gouy M, Gautier C. 1996. SEAVIEW and PHYLO\_WIN: Two graphic tools for  
463 sequence alignment and molecular phylogeny. *Comput Appl Biosciences* 12:543-548.

464 Gissi C, Iannelli F, Pesole G. 2008. Evolution of the mitochondrial genome of Metazoa as  
465 exemplified by comparison of congeneric species. *Heredity* 101: 301-320.

466 Hoban ML, Whitney J, Collins AG, Meyer C, Murphy KR, Reft AJ, Bemis KE. 2022.  
467 Skimming for barcodes: rapid production of mitochondrial genome and nuclear  
468 ribosomal repeat reference markers through shallow shotgun sequencing. *PeerJ*  
469 5:10:e13790.

470 Hogan RI, Hopkins K, Wheeler AJ, Allcock AL, Yesson C. 2019. Novel diversity in  
471 mitochondrial genomes of deep-sea Pennatulacea (Cnidaria: Anthozoa: Octocorallia)  
472 Mitochondrial DNA Part A 6:764-777.

473 Kayal E, Roure B, Philippe H, Collins AG, Lavrov DV (2013) Cnidarian phylogenetic  
474 relationships as revealed by mitogenomics. *BMC Evol Biol.* 13:5.

475 Kajander OA, Rovio AT, Majamaa K, Poulton J, Spelbrink JN, Holt IJ, Karhunen PJ, Jacobs  
476 HT. 2000. Human mtDNA sublimons resemble rearranged mitochondrial genomes found  
477 in pathological states. *Hum Mol Genet.* 9:2821-2835.

478 Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A,  
479 Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A. 2012 Geneious  
480 Basic: an integrated and extendable desktop software platform for the organization and  
481 analysis of sequence data. *Bioinform.* 28:1647-1649.

482 Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. 2017. PartitionFinder 2: New  
483 methods for selecting partitioned models of evolution for molecular and morphological  
484 phylogenetic analyses. *Mol Biol Evol.* 34(3):772-773.

485 Luo YJ, Satoh N, Endo K. 2015. Mitochondrial gene order variation in the brachiopod  
486 *Lingula anatina* and its implications for mitochondrial evolution in lophotrochozoans.  
487 *Mar Geonom* 24:31-40.

488 Maddison WP, Maddison DR. 2023. Mesquite: a modular system for evolutionary analysis  
489 version 3.81 <http://www.mesquiteproject.org>.

490 Muthye V, Mackereth CD, Stewart JB, Lavrov DV. 2022. Large dataset of octocoral  
491 mitochondrial genomes provides new insights into mt-mutS evolution and function.  
492 *DNA Repair* 110:103273.

493 Nunez JC, Oleksiak MF. A. 2016. Cost-effective approach to sequence hundreds of complete  
494 mitochondrial genomes. *PLoS One* 11(8):e0160958.

495 Osigus HJ, Eitel M, Bernt M, Donath A, Schierwater B. 2013. Mitogenomics at the base of  
496 Metazoa. *Mol Phylogenetic Evol.* 69(2):339-351.

497 Pante E, Saucier EH, France SC. 2013. Molecular and morphological data support  
498 reclassification of the octocoral genus *Isidoides*. *Invertebr Syst.* 27:365-378.

499 Perna NT, Kocher TD. 1995. Patterns of nucleotide composition at fourfold degenerate sites  
500 of animal mitochondrial genomes. *J Mol Evol.* 41:353-358.

501 Piazzi F, Puccio G, Passamonti M. 2016. Comparative large-scale mitogenomics evidences  
502 clade-specific evolutionary trends in mitochondrial DNAs of Bivalvia. *Genome Biol*  
503 *Evol.* 8(8):2544-2564.

504 Poliseno A, Feregrino C, Sartoretto S, Aurelle D, Wörheide G, McFadden CS, Vargas S.  
505 2017. Comparative mitogenomics, phylogeny and evolutionary history of *Leptogorgia*  
506 (Gorgoniidae). *Mol Phylogenet Evol.* 115:181-189.

507 Poliseno A, Altuna A, Cerrano C, Wörheide G, Vargas S. 2017a. Historical biogeography  
508 and mitogenomics of two endemic Mediterranean gorgonians (Holaxonia, Plexauridae).  
509 *Org Divers Evol.* 17(2):365-373.

510 Poliseno A, Santos MEA, Kise H, Macdonald B, Quattrini AM, McFadden CS, Reimer JD.  
511 2020. Evolutionary implications of analyses of complete mitochondrial genomes across  
512 order Zoantharia (Cnidaria: Hexacorallia). *J Zoolog Syst Evol Res.* 58(4):858-868.

513 Poliseno A, Altuna A, Puetz LC, Mak SST, Ríos P, Petroni E, McFadden CS, Sørensen MV  
514 Gilbert MTP. 2021. An integrated morphological-molecular approach reveals new  
515 insights on the systematics of the octocoral *Telestula humilis* (Thomson, 1927)  
516 (Octocorallia:Alcyonacea:Clavulariidae). *Invertebr Syst.* 35:261-281.

517 Quattrini AM, Faircloth BC, Dueñas LF, Bridge TCL, Brugler MR, Calixto-Botía IF, DeLeo  
518 DM, Forêt S, Herrera S, Lee SMY, Miller DJ, Prada C, Rádis-Baptista G, Ramírez-  
519 Portilla C, Sánchez JA, Rodríguez E, McFadden CS. 2018. Universal target-enrichment  
520 baits for anthozoan (Cnidaria) phylogenomics: New approaches to long-standing  
521 problems. *Mol Ecol Resour.* 18:281-295.

522 Quattrini AM, Rodríguez E, Faircloth BC, Cowman PF, Brugler MR, Farfan AA, Hellberg  
523 ME, Kitahara MV, Morrison CL, Paz-García DA, Reimer JD, McFadden CS. 2020.  
524 Palaeoclimate ocean conditions shaped the evolution of corals and their skeletons  
525 through deep time. *Nat Ecol Evol.* 4:1531-1538.

526 Quattrini AM, Snyder KE, Purow-Ruderman R, Seiblitz IGL, Hoang J, Floerke N, Ramos NI,  
527 Wirshing HH, Rodriguez E, McFadden CS. 2023. Mito-nuclear discordance within  
528 Anthozoa, with notes on unique properties of their mitochondrial genomes. *Sci Rep.*  
529 13:7443.

530 Quattrini AM, McCartin LJ, Easton EE, Bowers H, Mitchell K, Horowitz J, Sei M, Wirshing  
531 HH, McFadden CS, Herrera H. 2024. Skimming genomes for systematics and DNA  
532 barcodes of corals. *Ecol Evol.* <https://biorexiv.org/cgi/content/short/2023.10.17.562770v1>.

533 Ramos NI, DeLeo DM, Horowitz J, McFadden CS, Quattrini AM. (2023) Selection in coral  
534 mitogenomes, with insights into adaptations in the deep sea. *Sci Rep.* 13:6016.

535 Reyes-Velasco J, Goutte S, Freilich X, Boissinot S. 2021. Mitogenomics of historical type  
536 specimens clarifies the taxonomy of Ethiopian *Ptychadenia* Boulenger, 1917 (Anura,  
537 Ptychadenidae). *ZooKeys* 1070:135-149.

538 Shearer TL, van Oppen MJH, Romano SL, Wörheide G. 2002. Slow mitochondrial DNA  
539 sequence evolution in the Anthozoa (Cnidaria). *Mol Ecol.* 11:2475-2487.

540 Shimpi G, Vargas S, Poliseno A, Wörheide G. 2017. Mitochondrial RNA processing in  
541 absence of tRNA punctuations in octocorals. *BMC Mol Biol.* 18(1):16.

542 Seiblitz IGL, Vaga CF, Capel KCC, Cairns SD, Stolarski J, Quattrini AM, Kitahara MV.  
543 2022. Caryophylliids (Anthozoa, Scleractinia) and mitochondrial gene order: Insights  
544 from mitochondrial and nuclear phylogenomics. *Mol Phylogenet Evol.* 175:107565.

545 Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood based phylogenetic analyses  
546 with thousands of taxa and mixed models. *Bioinform.* 22:2688-2690.

547 Struck TH, Golombek A, Hoesel C, Dimitrov D, Elgetany AH. 2023. Mitochondrial genome  
548 evolution in Annelida—a systematic study on conservative and variable gene orders and  
549 the factors influencing its evolution. *Syst Biol.* 72(4):925-945.

550 Sun Y, Daffe G, Zhang Y, Pons J, Qiu JW, Kupriyanova EK. 2021. Another blow to the  
551 conserved gene order in Annelida: Evidence from mitochondrial genomes of the  
552 calcareous tubeworm genus *Hydroides*. *Mol Phylogenet Evol.* 160: 107124

553 Tan MH, Gan HM, Lee YP, Bracken-Grissom H, Chan TY, Miller AD, Austin CM. 2019.  
554 Comparative mitogenomics of the Decapoda reveals evolutionary heterogeneity in  
555 architecture and composition. *Sci Rep.* 9:10756.

556 Tempestini A, Massamba-N'Siala G, Vermandele F, Beaudreau N, Mortz M, Dufresne F,  
557 Calosi P. 2020. Extensive gene rearrangements in the mitogenomes of congeneric  
558 annelid species and insights on the evolutionary history of the genus *Ophryotrocha*.  
559 *BMC Genom.* 21:815.

560 Uda K, Komeda Y, Koyama H, Koga K, Fujita T, Iwasaki N, Suzuki T. 2011. Complete  
561 mitochondrial genomes of two Japanese precious corals, *Paracorallium japonicum* and  
562 *Corallium konojoi* (Cnidaria, Octocorallia, Corallidae): Notable differences in gene  
563 arrangement. *Gene* 476:27.

564 Xia Y, Zheng Y, Murphy RW, Zeng X. 2016. Intraspecific rearrangement of mitochondrial  
565 genome suggests the prevalence of the tandem duplication-random loss (TDLR)  
566 mechanism in *Quasipaa boulengeri*. *BMC Genom.* 17:1-9.

567 Yancopoulos S, Attie O, Friedberg R. 2005. Efficient sorting of genomic permutations by  
568 translocation, inversion and block interchange. *Bioinform.* 21(16):3340-3346.

569 Zhang Y, Sun J, Rouse GW, Wiklund H, Pleijel F, Watanabe HK, Chen C, Qian PY, Qiu JW.  
570 2018. Phylogeny, evolution and mitochondrial gene order rearrangement in scale worms  
571 (Aphroditiformia, Annelida). *Mol Phylogenet Evol.* 125:220-231.

572 Zhang D, Gao F, Jakovlić I, Zou H, Zhang J, Li WX, Wang GT. 2020. PhyloSuite: An  
573 integrated and scalable desktop platform for streamlined molecular sequence data  
574 management and evolutionary phylogenetics studies. *Mol Ecol Resour.* 20(1):348-355.