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Abstract

Comprehensively identifying the loci shaping trait variation has been challenging, in
part because standard approaches often miss many types of genetic variants. Structural
variants (SVs), especially transposable elements (TEs), are likely to affect phenotypic
variation but we lack methods that can detect polymorphic structural variants and TEs
using short-read sequencing data. Here, we used a whole genome alignment between two
maize genotypes to identify polymorphic structural variants and then genotyped a large
maize diversity panel for these variants using short-read sequencing data. After
characterizing SV variation in the panel, we identified SV polymorphisms that are
associated with life history traits and genotype-by-environment (GxE) interactions.
While most of the SVs associated with traits contained TEs, only two of the SVs had
boundaries that clearly matched TE breakpoints indicative of a TE insertion, while the
other polymorphisms were likely caused by deletions. One of the SVs that appeared to
be caused by a TE insertion had the most associations with gene expression compared
to other trait-associated SVs. All of the SVs associated with traits were in linkage
disequilibrium with nearby single nucleotide polymorphisms (SNPs), suggesting that the
approach used here did not identify unique associations that would have been missed in
a SNP association study. Overall, we have created a technique to genotype SV
polymorphisms across a large diversity panel using support from genomic short-read
sequencing alignments and connecting this presence/absence SV variation to diverse
traits and GxE interactions.

Introduction :
A central question of evolutionary biology is how different types of mutations — single 2
nucleotide polymorphisms (SNPs), insertion-deletion polymorphisms, copy number 3
variants, translocations, and transposable element insertions — shape the phenotypic 4
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diversity observed in nature (Mitchell-Olds et al., 2007). Much recent effort has focused s
on characterizing structural variants (SVs): Tens of thousands of SVs have been 6
identified in plant genomes (Darracq et al., 2018; Yang et al., 2019; Schatz, 2018; 7
Alonge et al., 2020; Zhou et al., 2022; Qin et al., 2021; Hamala et al., 2021) and specific s
SVs have been shown to affect important phenotypic traits in plants, including climate o
resilience in Arabidopsis thaliana, disease resistance and domestication traits in maize 10
and rice, and frost tolerance in wheat (Belé et al., 2010; Cao et al., 2011; Sieber et al., u
2016; Springer et al., 2009; Xu et al., 2012). In addition, maize SVs are predicted to be 1
up to 18-fold enriched for alleles affecting phenotypes when compared to SNPs (Chia 13

et al., 2012). These findings suggest that characterizing SV variation will be a crucial 14
part of mapping genotypes to phenotypes. 15

A subset of SVs, transposable elements (TEs), are particularly interesting potential 1
contributors to phenotypic variation (Lisch, 2013; Catlin and Josephs, 2022). TE 17
content and polymorphism are shaped by a complex interplay of selection at the TE 18

and organismal level (Charlesworth and Charlesworth, 1983; Agren and Wright, 2011) 1
and there are many examples of TE variation affecting phenotypes (Hirsch and Springer, 2
2017; Lisch, 2013). For example, a TE insertion in the regulatory region of the teosinte =«
branched! (tb1) gene in maize enhances gene expression causing the upright branching =

architecture in maize compared to its progenitor, teosinte (Studer et al., 2011). TE 2
insertions also affect flesh color in grapes and fruit color and shape in tomato (Fray and 2
Grierson, 1993; Kobayashi et al., 2004; Van der Knaap et al., 2004; Shimazaki et al., 2

2011; Dominguez et al., 2020). These phenotypic effects may result from changes in gene 2
expression: TE activation can disrupt or promote gene expression (Hirsch and Springer, =
2017; Fueyo et al., 2022), and the industrial melanism phenotype in British peppered 2

moths, Biston betularia, results from TE-induced overexpression of a gene responsible 2
for pigment production (Hof et al., 2016). TEs often activate (i.e. express and/or 30
mobilize) in response to stress in many eukaryotes, including maize (Makarevitch et al., =
2015; Liang et al., 2021), Arabidopsis (Wang et al., 2022; Sun et al., 2020), and 2
Drosophila melanogaster (de Oliveira et al., 2021; Milyaeva et al., 2023), suggesting that s
they may contribute to trait variation in stressful environments. However, we lack e
systematic studies of how TEs in general affect phenotypic variation or how TEs may 35
contribute to genotype-by-environment interactions outside of the context of stress. 36

Characterizing genomic variation for SVs and TEs has been challenging, especially s
in highly repetitive plant genomes where it is often difficult to uniquely align 38
short-reads to the reference genome. Recent studies have shown that attempts to 39

assemble SVs solely with short-read sequencing data can greatly underestimate the total 4
number of SVs present in a population (Huddleston et al., 2017; Audano et al., 2019; a

Cameron et al., 2019; Ebert et al., 2021). Some estimates for the accuracy of SV a2
discovery with short-read sequencing are as low as 11% in humans due to the inability
of short-reads to align within highly repetitive regions, span large insertions, or p
concordantly align across SV boundaries (Lucas Lled6 and Céceres, 2013). However, a5
recent efforts using short-read sequencing from a population of grapevine cultivars have 4
been used to genotype SVs by ascertaining SV polymorphisms between two reference a7
genomes and calling these SVs within the population (Zhou et al., 2019). a8

The increasing availability of long-read sequencing has opened up an opportunity to
identify SVs that would have been missed using short-read data. For example, long 50

reads have been used to identify structural variants associated with traits in a set of 100 =
tomato accessions that were long-read sequenced (Alonge et al., 2020). In other systems s
without enough long-read sequenced genotypes to directly look for associations between s

structural variants and phenotype, researchers have started with SVs detected in a 54
smaller subset of individuals with reference assemblies and then genotyped a larger 55
mapping panel of individuals with short-read sequencing data. Researchers have used 56
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pan-genome graph methods to identify SVs in a smaller number of reference sequences s
and then genotype in a larger sample of short-read sequenced genotypes in Arabidopsis s
thaliana (Kang et al., 2023), soybean (Liu et al., 2020), rice (Qin et al., 2021), and 50
tomato (Zhou et al., 2022). These studies have confirmed that SVs are important for 60
trait heritability (Zhou et al., 2022). However, graph genome approaches are challenging
for plants with large genomes and have not yet been widely adopted. For example, a 6
haplotype graph has been generated for 27 maize inbred lines, but not for a wider 63
diversity panel (Franco et al., 2020). Additionally, work using short-read alignments and e
pan-genome approaches have identified SVs in maize and found that SVs contributed to s
trait heritability (Gui et al., 2022). Approximately 60% of these SVs were “related” to s
TEs but no clear links between SV polymorphisms and TE insertions were made (Gui &
et al., 2022). Plants with large genomes are not only important for a number of 68
practical reasons, but they also may have different genetic architectures underlying trait oo
variation that evolve differently (Mei et al., 2018), so understanding how SVs and TEs

contribute to trait variation in large-genomed plants is key for comprehensively 7
understanding the importance of these variants in general. 7

To address the gap in understanding how SVs and TEs contribute to trait variation
in a species with a large genome, we identified SVs found from the alignment of two 7
reference assemblies using short-reads that overlap the SV junctions. This type of 75
approach has been used previously in in a few other systems (Wang et al., 2020; Zhou
et al., 2019). Here, we investigated the relationship between SV variation and 7
phenotype in a diverse set of maize inbred lines in the Buckler-Goodman association 78
panel (Flint-Garcia et al., 2005). After identifying SVs that differ between two 70
accessions, B73 and Oh43, we genotyped 277 maize lines present in a larger mapping 80
panel for the SV alleles. We detected SV polymorphisms that varied across the panel 81
and linked these polymorphisms to phenotypic variation, GxE, and gene expression. 8
Materials and methods =
Structural variant identification 8
An “ascertainment set” of SVs that differ between B73 and Oh43 were identified by 8
Munasinghe et al. (2023). These genotypes were chosen to call SV presence/absence 8
because they are both in the Buckler-Goodman association panel but come from 87
different germplasm pools (Gage et al., 2019). Ascertainment set SVs were filtered to 88
only contain those that had 300 bps of colinear sequence determined by AnchorWave 8
(Song et al., 2022) in the immediate upstream and downstream regions flanking SV %
junctions. The apparent insertion and 300 bp flanking region on either side were o1
extracted to create a FASTA file containing “SV-present” alleles. The corresponding o

site in the other genome where the SV was absent and 300 bp flanking sequences were o
also extracted and combined in the final FASTA file to serve as the “SV-absent” allele o
sequence. Ultimately, this FASTA file was used as a set of pseudoreference alleles to call s

SV polymorphism in individuals with only short-read sequence data (Figure S1). %6
SV presence/absence genotyping o7
To call presence or absence for each SV, we collected genomic short-read data for 277 %

inbred maize genotypes from the Buckler-Goodman association panel sequenced for the o
third generation maize haplotype map (HapMap3) and aligned to the generated FASTA 100
files with SV present and absent alleles (Flint-Garcia et al., 2005; Bukowski et al., 2018). 1
Illumina adapters and low quality sequences were removed using Trimmomatic v0.39 102
(Bolger et al., 2014). PCR duplicate reads were also filtered out using the -r option 103
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within the markdup function in SAMtools v1.15.1 (Danecek et al., 2021). Surviving 104
paired-end reads were merged into a master FASTQ file for each genotype and aligned 105
to pseudoreference alleles using HISAT2 (Sirén et al., 2014). The aligned dataset was 10

filtered to only contain concordant, uniquely mapping reads. We used read-depth for 107
each upstream and downstream SV boundary to support the presence or absence of SVs 108
(Figure 1). Read coverage at each SV boundary was calculated using the coverage 100
function within bedtools v2.30.0 (Quinlan and Hall, 2010). 110

First, we filtered out SVs where we were unable to use short-read data from B73 and 1
Oh43 to correctly identify SV genotypes. In these cases, short-read data mapped better 1
to the opposite genotype’s alleles than their own alleles. For an SV within our 113
ascertainment set to be retained for downstream genotyping in the Buckler-Goodman 14
association panel, we required that: (1) upstream and downstream SV junctions had the us
same or higher read coverage from the genotype with the SV than the other genotype 1
and (2) no reads from the SV-present genotype spanned the insertion site for the 117
genotype without the SV (Figure S2). 18

oy

6
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Figure 1. Method to call SV presence/absence with short read genomic data
— Using B73 and Oh43 as our ascertainment set, we first find polymorphic SVs between
these two genotypes. To significantly improve read-mapping runtimes, we extract SVs
and adjacent genomic sequences where SVs are present, while extracting only adjacent
genomic regions at the polymorphic site where the SV is absent in the opposite genotype
— termed pseudoreference SV alleles. Next, reads from a genotype of interest are mapped
to these generated sequences. SVs can then be inferred present or absent based on their
alignment to either allele.

For the rest of the genotypes in the Buckler-Goodman association panel, 119
SV-presence was supported in the query genotype if there was at least one read 120
spanning the upstream or downstream SV junction and there was no read coverage at 1
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the SV polymorphic site for the alternative SV-absent allele. An SV-absent allele is 122
supported if at least one read spans across the SV polymorphic site but no reads map to 1
either SV junction of the corresponding SV-present allele. SVs are ambiguous if reads 12
from the query genotype map to both the SV-present allele junctions and the SV-absent 12

insertion site. 126
Calculating linkage disequilibrium between SNPs and SVs 127
SNPs in variant call format (VCF) were collected from the third generation maize 128

haplotype map version 3.2.1 and coordinates were converted to the B73 NAM reference 12
positions (version 5) using liftOverVCF in Picard tools (Pic, 2019; Qiu et al., 2021a). 130

Chain files for the genome builds B73 version 3 (APGv3) to B73 version 4 131
(B73_RefGen_v4) and B73 version 4 to B73 version 5 (Zm-B73-REFERENCE-NAM-5.0) 12
can be found in gramene.org and maizegdb.org, respectively (Tello-Ruiz et al., 2022; 133

Woodhouse et al., 2021). We removed SNPs with > 10% missing data, a minor allele 134
frequency (MAF) < 10%, and those within SV regions, resulting in 16,435,136 SNPs in 13

the final filtered dataset. Additionally, we appended polymorphic SV calls for each 136
genotype in the HapMap3 dataset to the final VCF file. Because SV-present alleles were 1
characterized for both B73 and Oh43, we used the start of the SV coordinate for 138

SV-present alleles within B73 and the B73 insertion site for SVs present in Oh43 as the 13
coordinate for LD analysis. Following methods from Qiu et al. (2021a), we calculated 10
LD between SNPs and nearby polymorphic SVs being sure to exclude SNPs inside of 1«
SVs, using PLINK v1.9 (Chang et al., 2015),www.cog-genomics.org/plink/1.9/ with the 1

following parameters: --make-founders, --r2 gz dprime with-freqs, —-1d-window-r2 0 , 1
--ld-window 1000000, --1d-window-kb 1000, and --allow-extra-chr. 144
Association mapping 145
Polymorphic SVs across all query genotypes were converted to BIMBAM mean 146

genotype format (Servin and Stephens, 2007). SV-present alleles that were characterized 14
as ambiguous were denoted as NA. We performed a genome wide association (GWA) of s
SV presence/absence variants (PAVs) using phenotypes from Peiffer et al. (2014) and 19
Bukowski et al. (2018), with a linear mixed model (LMM) in GEMMA v0.98.03 (Zhou s
and Stephens, 2012). The traits tested were collected from Peiffer et al. (2014) and are 1=
best linear unbiased predictions of the following: growing degree days to silking, growing 1
degree days to anthesis, anthesis-silking interval measured in growing degree days, days 1ss
to silking, days to anthesis, anthesis-silking interval measured in days, plant height, ear 15
height, difference of plant height and ear height, ratio of ear height and plant height, 155
and ratio of plant height and days to anthesis. To account for missing genotypic data s
for each SV, we required at least 90% of the genotypes to have presence/absence calls 15
for relatedness matrix calculations and subsequent associations. All plots with genomic s
locations are shown with B73 coordinates, and Oh43 SV-present alleles were converted —1so
to B73 coordinates for display. To account for multiple-testing, we calculated a false 160
discovery rate (FDR) adjusted significance threshold (Benjamini and Hochberg, 1995) 1«
to maintain an overall a = 5% significance. Filtered SNPs from the HapMap3 dataset 1

were also subjected to GWA using the same methods as our polymorphic SV dataset. 1

In addition to the association analyses for main effects, we examined these data for e
genotype-by-environment interaction (GxE). For the 11 traits above, we used simple 165
linear regression following the form of Finlay-Wilkinson (FW) regression (Finlay and 166
Wilkinson, 1963) to record the slope (i.e. reaction norm) and mean squared error (MSE) 1s7
for each genotype using the linear model (Im) function in R; 168
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Yij = Bo + Bz + €y,

where 3y and B; are the intercept and slope estimates for the it line, respectively, 1
x; is the average performance of all lines in the 4t environment, and €;; is a random 170
error term. We removed any lines which were not represented in at least 6 environments 11
on a per trait basis to reduce the error in our estimates. This filtering resulted in a 172
different number of individuals and markers used in each FW model (ranging from 245 1
to 274 individuals per trait). We then performed GWA of SV PAVs using slope and 174
MSE estimates for each trait as quantitative phenotypes in GEMMA as before. 175

Gene expression 176

We used previously collected gene expression data for ~37,000 maize genes (Kremling 17
et al., 2018) to test for differential gene expression between SV genotypes at the loci 178
identified in the association mapping analyses. We compared expression between SV 179
genotypes for three tissue types: the tip of germinating shoots, the base of the third leaf s
and the tip of the third leaf. Library sizes were normalized using DESeq2 (Love et al., &
2014) and we filtered the gene set to contain only genes with expression in 70% of 182
individuals above 10 reads per median library size (approx 0.5 counts per million) using  1ss
the edgeR package in R (Robinson et al., 2010), resulting in an average of 12,703 genes  1ss
per SV identified in the GWAS. Finally, we used edgeR to test for differential expression 1ss
by first building generalized linear models to model expression between genotypes and  1ss

then testing for significance using the F-test. P-values were adjusted using FDR to 187
maintain an overall significance threshold of o = 5%. 188
Results 199
Polymorphic SVs in the diversity panel 100

We genotyped SV polymorphisms for 277 maize genotypes at SVs segregating between 11
B73 and Oh43 by aligning short reads from the genotypes to each SV allele and 192
counting reads spanning genomic-SV junctions and SV polymorphic sites. Out of 98,422 103
polymorphic SVs between B73 and Oh43, we filtered out SVs where short reads from 194
B73 and Oh43 did not clearly align to the correct allele. After this filtering step, we 105
were able to determine the genotype of 64,956 SVs in the Buckler-Goodman association 106

panel (Figure S2). The largest proportion of these SVs were those classified as “TE = 17
SV” (21,103, 32.5%), followed by “multi TE SVs” (18,326, 28.2%), “incomplete TE SVs” 10
(10,928, 16.8%), “no TE SVs” (8,842, 13.6%), and “TE within SVs” (5,757, 8.9%) 199

(Figures S3, S4). The proportions of SVs for each category are consistent with those 200
prior to filtering. For more information about how SVs are classified into TE groupings, oo

see Munasinghe et al. (2023). 202
For subsequent analyses, we filtered the SV dataset to only include variants with a 203
minor allele frequency (MAF) > 10% and presence/absence calls for at least 90% of 204

genotypes, resulting in the retention 3,087 SV alleles (4.75% of dataset) (Figure S5). 205
Filtering on missing data and MAF removed many SVs because many individuals in the 206

dataset have low realized sequencing coverage when mapped to the B73 reference 207
assembly. There is a median coverage of 2.68, ranging from 0.031 in the A554 genotype 208
to 19.47 in B57. Read depth per individual was negatively correlated with percent 209
missing SV data per individual (p = 2.4 x 107°) (Figures S6, S7), suggesting that 210

missing data for SVs results from not having enough reads covering the junction sites.  ou
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This pattern suggests that this method needs a minimum of average read depth of 5 to a2
successfully genotype SVs at most sites, although this number will likely vary by species. 213

We investigated the frequency spectrum of SV polymorphisms in the 214
Buckler-Goodman association panel by calculating the frequency of the allele with a 215
putative insertion (or lacking a putative deletion). Since these SVs were initially 216
identified as being polymorphic between two individuals, it was not surprising to see 217
that many of the SVs were at moderate frequency in the population (Figures 2, S3). For 2
most SVs, the SV-present allele was more common than the SV-absent allele. This 219

pattern is consistent with the polymorphism being caused by a deletion and the longer 20
‘insertion’ allele being the ancestral type, and so present at higher allele frequencies in 2z
the population. The frequency spectrum was relatively consistent across SV types 2
(Munasinghe et al., 2023). 223

0.4
< 0.3 SV Category
- All SVs Combined
2 Incomplete TE SV
S 5ol L] Multi TE SV
= 0. No TE SV
8' TE = SV
& B TE Within SV
0.1
0.0- O O D O D D A
)
/Qi\ /Q(.b ¢Q(.b /QP‘ /QG’D zQ‘b ,Q<\ % /Q '

Allele Frequency

Figure 2. Site-frequency Spectrum of SVs — SVs were filtered to only contain
those with a minor allele frequency > 10% and < 10% missing data (n = 3,087). The
SFS is unfolded and displays the frequency of the allele with the putative insertion (or
that is lacking a deletion).

SV genotypes are associated with phenotypic traits 24

In a genome-wide association analysis, SV presence/absence was significantly associated 2
(FDR < 0.05) with four out of the eleven traits tested: growing degree days to anthesis, 2s
days to silking, days to anthesis, and ear height (Figures 3, S8). All four SV 27
associations detected contained TE sequences but none had boundaries that matched 2
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TE boundaries (“TE = SV”), suggesting that the polymorphisms were the result of 229

deletions, not TE insertions (Figure 4). 20
GDD Anthesis - O
Days to Silking O °
Days to Anthesis O 10G14(p)
- Ear Height o) O 5
g MSE - PH:DTA O 8 ?
MSE - GDD Silking @) o O 8
Slope - Days to Silking o)
Slope - Days to Anthesis o

1 2 3 4 5678910
Chromosome

Figure 3. Genomic positions and p-values for eight traits and nine markers
with significant SV presence/absence associations — Bars along bottom represent
the genomic positions for the 3,087 SV markers used in the association panel, with
chromosomes in alternating colors. Points are sized according to the —logio(p) (GDD:
growing degree days; MSE: mean squared error; PH:DTA: ratio of plant height to days
to anthesis). Note that the same SV was associated with Days to Silking and Days to
Anthesis so there are 10 points total.

The SV associated with growing degree days to anthesis is within B73 on 231
chromosome seven, 54 bp upstream of the B73 gene Zm00001eb330210 (syntenic with 2
Oh43 gene Zm00039ab336990) (Figures 3, 4A). There are no currently known functions 23
for these genes in maize, nor their orthologs in other species including sorghum, foxtail 23
millet, rice, or Brachypodium distachyon. There is evidence of increased expression in 235
these genes in maize in whole seed, endosperm, and embryo for most 2-day increments 23
post pollination (Walley et al., 2016). This SV contained a mutator TE within it, but 2
the SV boundaries did not match the TE boundaries. 238

One SV polymorphism was associated with both days to silking and days to anthesis. 3.
This SV is present on chromosome three in Oh43 and is a large, ~52 kb multi-TE SV 20
composed primarily of Ty3/Gypsy elements (Figures 3, 4B). This region is nearly 215  2a
kb away from the nearest gene. An additional SV associated with days to silking is 212
located on chromosome ten and contains ~43.5 kb of multiple Ty3/Gypsy TEs (Figures 2
3, 4C). This SV, present in B73 and absent in Oh43, is 2,091 bp upstream of the gene  2u
Zm00001eb411130 (syntenic with the Oh43 gene Zm00039ab420040). Zm00001eb411130, 24
which is also called ZmMM1, is a MADS-box gene and is orthologoues with the 216
OsMADSI13 gene in rice and the STK gene in Arabidopsis thaliana. OsMADS13’s 247
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expression in rice is restricted to the ovule and controls both ovule identity and 28
meristem determinancy during ovule development (Lopez-Dee et al., 1999; Dreni et al., 2o
2007; Li et al., 2011). Similar to OsMADS13, STK in Arabidopsis thaliana, which 250
encodes for a MADS-box transcription factor, is expressed in the early floral 251
development in the ovule. Additionally, STK determines ovule identity and also 252

regulates a network of genes that controls seed development and fruit growth (Mizzotti 2s3
et al., 2014; Di Marzo et al., 2020). Both OsMADS13 and STK are members of the 254

D-class genes in the ABCDE model for floral development. 255

The SV associated with ear height contains a partial sequence of a mutator DNA 256
transposon and is on Oh43 chromosome four within an intron of gene Zm00039ab208360 257
(syntenic with B73 gene Zm00001eb203840) (Figures 3, 4D). This gene, also called 258
traf42, is a tumor receptor-associated factor (TRAF) and codes for a BTB/POZ 259
domain-containing protein POBI. Although TRAF domain containing proteins are 260
ubiquitous across eukaryotes, there are far more genes encoding TRAF domains in 261
plants compared to animals (Oelmiiller et al., 2005; Cosson et al., 2010). In maize, 262
traf42 mediates protein-protein interactions (Dong et al., 2017) and mutations in the 263

maize gene ZmMABI, which contains a TRAF domain and is exclusively expressed in 264
the germline cause chromosome segregation defects during meiosis (Juranié et al., 2012). 26
Additionally, POB! is involved in drought tolerance in the Antarctic moss, Sanionia 266
uncinata (Park et al., 2018). 267
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Figure 4. Trait associated structural variant polymorphisms between B73
and Oh43 — Green arrows point to polymorphic SV regions. Alignable regions are shown
as green bars between genotypes. TEs are displayed inline and, therefore, do not display
overlapping or nested TEs. (A) A mutator TE within an SV is present in B73 and
absent in Oh43 . This SV is 54 bp upstream of the B73 gene Zm00001eb330210, syntenic
with Oh43 gene Zm00039ab336990. (B) A large SV containing multiple Ty3/Gypsy
TEs is present in Oh43 and absent in B73. This intergenic SV is approximately 215 kb
from the nearest gene. (C) A multi TE SV composed entirely of Ty3/Gypsy TEs is
present in B73 and 2091 bp upstream of the gene Zm00001eb411130 (syntenic with Oh43
gene Zm00039ab420040). (D) A polymorphic incomplete TE - SV is located within the
Oh43 gene Zm00039ab208360 is present in Oh43 and absent in B73.
SV genotypes are associated with GxE 268
We detected five significant associations (FDR < 0.05) between SV presence/absence 260
and one of two measures of plasticity (FW regression slope and MSE) for four of the 270
eleven traits tested: the ratio of plant height and days to anthesis (MSE), growing 271
degree days to silking (MSE), days to silking (slope), and days to anthesis 72
(slope)(Figures 3, S9). Four of the five SVs identified contained TE sequence and two 2
SVs appeared to be directly caused by TE insertions. 274

On chromosome four, we detected an association between an SV and the MSE of the s
ratio of plant height to days to anthesis across growing locations. This SV appeared to 27
be caused by a partial deletion of a Ty3-like LTR retrotransposon and was not proximal 2
to any gene models in either the Oh43 or B73 alignments. 278

On chromosome five, we detected an association between an SV and the MSE of 219
growing degree days to silking across growing locations. This SV appeared to be caused 20
by a partial deletion of a hAT TIR transposon but was not proximal to any gene model o
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in either the Oh43 or B73 alignments. 28

On chromosome ten, we detected three association between SVs and plasticity: the 2
slope of days to silking, the slope of days to anthesis, and the MSE of growing degree 2
days to silking. The SVs associated with days to silking appeared to be the direct result 2ss
of insertions of hAT TIR transposons, the SV associated with the MSE of growing 286
degree days to silking appeared to an insertion of a PIF Harbinger TIR transposon, but 2
the SV associated with the slope of days to anthesis did not contain TE sequence. The 2
SV associated with the slope of days to silking was 713 bp from the uncharacterized 289
Oh43 gene Zm00039ab424300 (a syntelog of B73 gene Zm00001eb415280), while the SVs 20
associated with the slope of days to anthesis and the MSE of growing degree days to 201

silking were not proximal to any B73 or Oh43 gene model. 202
SV genotypes are associated with differential gene expression 203
We tested for associations between the genotypes of the nine SVs identified by GWAS 20
and gene expression data from three tissues and detected associations for 29 genes 205
(Figure 5). Differentially expressed genes were not immediately proximal to the SV 206
markers they were associated with (the closest differentially expressed gene was 911kb 2o
from the associated SV marker) and most were on different chromosomes. Of the 29 298

significantly associated genes, three genes present in the B73v3 reference alignment were 20
not present in the B73v5 alignment and were removed from further consideration. Of 300
the 26 remaining genes, 11 were associated with a single SV marker on chromosome 10  sa
for the MSE of growing degree days to silking, which was coded as “TE = SV”. The 302

remaining six SV markers identified were associated with between one and four 303
differentially expressed genes and of those six markers, three contained complete TE 304
sequences, two contained incomplete TEs, and one did not contain any TE sequence. Of 305
the three tissues tested, 16 genes were significantly differentially expressed solely in 306
shoot tissue, seven in the the tip of L3, two in the base of L3, and one was differentially 30
expressed in both the shoot tissue and the base of L3. 308
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Figure 5. Genomic positions and p-values for genes with expression signifi-
cantly associated with the genotypes of seven structural variant (SV) markers
identified in our genome wide association analyses — Bars along bottom represent
the genomic positions for the 3,087 SV markers used in the association panel, with
chromosomes in alternating colors. Black points show the position of the SV marker
identified in each trait. Colored points are sized according to the false discovery rate
adjusted —log1o(p) with tissue collected from germinating shoot (GShoot) in green, the
base of leaf three (L3Base) in orange, and the tip of leaf three (L3Tip) in blue. The SV
marker on chromosome three was the most proximal to the identified SV marker, but
was still 911 kb away (GDD: growing degree days; MSE: mean squared error).

Most SVs are in linkage disequilibrium with SNPs 309

All SV alleles used in the GWAS are within 1 Mb (mean distance of 649 bps) from the s
nearest SNP present in the HapMap3 dataset (Figure S10) and all SVs have an 72 > 0.1 s
with at least one nearby SNP. Only 6 SVs had an r? < 0.5 with any nearby SNP. For
the SV alleles that are significant to traits, all have a SNP in perfect LD. 313

Despite high LD between SVs and nearby SNPs, many of the associations detected s
between SVs and traits would not have been captured with a GWAS using all SNPs. Of a5
the four SVs associated with main effects, only one was found in the same peak regions s
in the SNP GWAS (Figures S11, S12). This lack of overlap between the SV GWAS a7
associations and the SNP GWAS associations is a result of different significance cutoffs s

in the two different analyses. The HapMap3 SNP dataset used in the GWAS has 319
16,435,136 SNPs while there were only 3,087 SVs in the SV association mapping 320
analysis, so a SNP needed to have a p-value below 7.94 x 1076 (averaged across traits) s
to overcome the FDR cut-off in the SNP GWAS while its linked SV only needed a 2
p-value below 1.86 x 10~* (averaged across traits) to be detected as significant in the 2
SV GWAS. 324
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Discussion -

In this study we leveraged two reference genomes along with a broader set of short-read s
genomic data to capture SV diversity in a maize diversity panel. The maize genome’s sz
highly repetitive nature makes it challenging to rely on short-read alignments alone to s

characterize SV polymorphism de novo (Hufford et al., 2021). By ascertaining SVs 320
presences and absences between two genotypes, we were able to call SVs across 330
hundreds of maize genotypes using short-read data and identify SVs associated with 331
trait variation. 332

We found nine SV polymorphisms associated with either average trait value or trait s
plasticity in a variety of maize phenotypes (Figure 3). Previous studies have identified 33
SVs associated with phenotypic variation that would not be discovered in analyses that s
use SNPs alone (Yang et al., 2019; Guo et al., 2020; Hartmann, 2022; Zhang et al., 336
2024). Here, while the SV GWAS identified hits that were not present in the SNP 337
GWAS, all SV associations detected were in perfect linkage disequilibrium with SNPs. 33
We did not detect associations that were not captured by the SNP dataset but instead 33
these SVs reached statistical significance because there were many fewer SVs than SNPs. s

Previous work investigating TE polymorphism in a different maize genetic diversity 34
panel did find that 20% of TEs were not in LD with SNPs but these SNPs tended to be s
at a low minor allele frequency in the population (Qiu et al., 2021b). By focusing on 33

common SV polymorphisms we likely have missed many SVs that are low frequency and
not in LD with surrounding SNPs — however these low frequency SVs would be unlikely s
to be associated with trait variation in a GWAS. 36

Of the SVs included in this study, 91% contained TEs or are themselves of TE origin s
and the largest category of SVs were clear examples of TE insertion (21,103 or 23.5%) . s
All but one of the SVs associated with trait variation and with GXE contained TE 349
sequence, yet only the SVs on chromosome ten for the slope of days to silking and the 350
MSE of growing degree days to silking FW models appeared to be the direct result of 3
TE insertions. The remaining seven associations result from deletions that contain TEs. s
This result is consistent with previous findings that deletions have been the dominant s
contributors to SV polymorphism in maize (Munasinghe et al., 2023). We did observe 3
that the SV associated with the MSE of growing degree days to silking on chromosome 35
ten that appeared to result from a TE insertion was the SV with the most associations  sss
with gene expression. This pattern is consistent with hypotheses that TE insertions are s

particularly likely to affect gene expression (Klein and Anderson, 2022), although 358
further work is clearly needed to evaluate how broad this pattern is across a larger 359
sample of SVs. 360

We found five significant associations between SVs and plasticity, quantified using 3
mean squared error and slopes from the Finlay-Wilkinson regression models. The 362
finding that different SVs were associated with traits than with trait plasticity is 363
consistent with most previous work. For example, the genetic architecture of trait 364
means and trait plasticity have been shown to differ in maize (Kusmec et al., 2017; 365

Tibbs-Cortes et al., 2024) and Arabidopsis thaliana (Fournier-Level et al., 2022) but not s
sorghum (Wei et al., 2024). We also did not see a clear pattern that SVs are more likely s
to affect trait variation across environments than trait means, but this may result from s

having a small number of associations across both categories. 369

Overall, we have demonstrated an approach for using two reference genomes to 370
identify structural variants and then genotype for these variants in a larger panel of 371
individuals with short-read sequencing data. This approach identifies SVs associated 372

with phenotypic variation and with GxE interactions. However, this approach does bias a7
us towards common alleles that were polymorphic within the two reference assemblies. s
This bias is acceptable for a GWAS, where we will also be biased towards detecting ars
associations with variants at intermediate allele frequency, but would be less 376
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appropriate for any analysis that would need to identify SVs with low allele frequencies. s

As long-read data becomes more affordable and more reference genomes become 378
available for more species, these types of approaches will improve our ability to detect 37
SVs and investigate their potential functional importance. 380
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Figure S1. Extracting SV present and absent alleles — For each polymorphic
SV between B73 and Oh43 identified in Munasinghe et al. (2023), we extracted 300 bp
flanking alignable regions along with the SV for to make “SV present alleles” while 300
bp flanking alignable regions were extracted around the insertion point, which we term
“SV-absent alleles”.
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Figure S2. Read mapping differences at the left and right junctions for all
SVs — Differences were calculated as the number of reads from the non-parent genotype
subtracted from reads mapping from the parent genotype. A positive difference indicates
SVs that are supported and retained for future analyses.
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Figure S3. SFS of SVs categorized by TE content — “Incomplete TE SV” and
“Multi TE SV” categories SV polymorphisms skew towards moderate to high frequencies
whereas all other categories skew towards low to moderate frequencies.
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Figure S4. SFS and MAF of TE superfamilies for TE = SV - (A). TE
polymophisms skew towards moderate frequency. (B), (C), and (D). Frequencies for
all TE superfamilies are consistent across all MAF thresholds.
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Figure S5. Percentage of genotypes called per SV — Green bars indicate SVs
with at least 90% of genotypes called and are retained for GWAS.
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Figure S6. Linear Model of relationship between missing data and read
coverage - all genotypes — Adjusted R-squared: 0.1045, F-statistic: 33.21, p-value:
2.22 x 1078
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Figure S7. Linear Model of relationship between missing data and read
coverage - 2 outliers removed — Adjusted R-squared: 0.3576, F-statistic: 153.50,
p-value: 2.2 x 10716
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Figure S8. Q-Q plots for traits with SV associations
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Figure S9. Q-Q plots for Finlay-Wilkinson regression traits with SV asso-
ciations — (A). the mean-squared error (MSE) of the ratio of plant height to days to
anthesis, (B). the MSE of growing degree days to silking, (C). the slope days to silking.
Note the deviations between expected and observed p-values in the MSE of growing
degree days to silking model (B).
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Figure S10. Highest LD between SVs and SNPs within 1Mb - A large
proportion of the 3,087 SVs used in GWAS are linked with adjacent SNPs. SVs with
r?2=1:2,277, r> > 0.5: 3,080.
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Figure S11. Manhattan Plots of HapMap3 SNPs — The gray dashed line represents
the FDR signifcance threshold. (A) There are several SNPs associated with growing
degree days to silking, although none are in LD with SVs associated with the same trait.
(B) There are many SNPs throughout the genome associated with growing degree days
to anthesis.
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Figure S12. Q-Q plots for traits with HapMap3 SNP associations
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