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Abstract

Comprehensively identifying the loci shaping trait variation has been challenging, in
part because standard approaches often miss many types of genetic variants. Structural
variants (SVs), especially transposable elements (TEs), are likely to affect phenotypic
variation but we lack methods that can detect polymorphic structural variants and TEs
using short-read sequencing data. Here, we used a whole genome alignment between two
maize genotypes to identify polymorphic structural variants and then genotyped a large
maize diversity panel for these variants using short-read sequencing data. After
characterizing SV variation in the panel, we identified SV polymorphisms that are
associated with life history traits and genotype-by-environment (GxE) interactions.
While most of the SVs associated with traits contained TEs, only two of the SVs had
boundaries that clearly matched TE breakpoints indicative of a TE insertion, while the
other polymorphisms were likely caused by deletions. One of the SVs that appeared to
be caused by a TE insertion had the most associations with gene expression compared
to other trait-associated SVs. All of the SVs associated with traits were in linkage
disequilibrium with nearby single nucleotide polymorphisms (SNPs), suggesting that the
approach used here did not identify unique associations that would have been missed in
a SNP association study. Overall, we have created a technique to genotype SV
polymorphisms across a large diversity panel using support from genomic short-read
sequencing alignments and connecting this presence/absence SV variation to diverse
traits and GxE interactions.

Introduction 1

A central question of evolutionary biology is how different types of mutations – single 2

nucleotide polymorphisms (SNPs), insertion-deletion polymorphisms, copy number 3

variants, translocations, and transposable element insertions – shape the phenotypic 4
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diversity observed in nature (Mitchell-Olds et al., 2007). Much recent effort has focused 5

on characterizing structural variants (SVs): Tens of thousands of SVs have been 6

identified in plant genomes (Darracq et al., 2018; Yang et al., 2019; Schatz, 2018; 7

Alonge et al., 2020; Zhou et al., 2022; Qin et al., 2021; Hämälä et al., 2021) and specific 8

SVs have been shown to affect important phenotypic traits in plants, including climate 9

resilience in Arabidopsis thaliana, disease resistance and domestication traits in maize 10

and rice, and frost tolerance in wheat (Beló et al., 2010; Cao et al., 2011; Sieber et al., 11

2016; Springer et al., 2009; Xu et al., 2012). In addition, maize SVs are predicted to be 12

up to 18-fold enriched for alleles affecting phenotypes when compared to SNPs (Chia 13

et al., 2012). These findings suggest that characterizing SV variation will be a crucial 14

part of mapping genotypes to phenotypes. 15

A subset of SVs, transposable elements (TEs), are particularly interesting potential 16

contributors to phenotypic variation (Lisch, 2013; Catlin and Josephs, 2022). TE 17

content and polymorphism are shaped by a complex interplay of selection at the TE 18

and organismal level (Charlesworth and Charlesworth, 1983; Ågren and Wright, 2011) 19

and there are many examples of TE variation affecting phenotypes (Hirsch and Springer, 20

2017; Lisch, 2013). For example, a TE insertion in the regulatory region of the teosinte 21

branched1 (tb1 ) gene in maize enhances gene expression causing the upright branching 22

architecture in maize compared to its progenitor, teosinte (Studer et al., 2011). TE 23

insertions also affect flesh color in grapes and fruit color and shape in tomato (Fray and 24

Grierson, 1993; Kobayashi et al., 2004; Van der Knaap et al., 2004; Shimazaki et al., 25

2011; Domı́nguez et al., 2020). These phenotypic effects may result from changes in gene 26

expression: TE activation can disrupt or promote gene expression (Hirsch and Springer, 27

2017; Fueyo et al., 2022), and the industrial melanism phenotype in British peppered 28

moths, Biston betularia, results from TE-induced overexpression of a gene responsible 29

for pigment production (Hof et al., 2016). TEs often activate (i.e. express and/or 30

mobilize) in response to stress in many eukaryotes, including maize (Makarevitch et al., 31

2015; Liang et al., 2021), Arabidopsis (Wang et al., 2022; Sun et al., 2020), and 32

Drosophila melanogaster (de Oliveira et al., 2021; Milyaeva et al., 2023), suggesting that 33

they may contribute to trait variation in stressful environments. However, we lack 34

systematic studies of how TEs in general affect phenotypic variation or how TEs may 35

contribute to genotype-by-environment interactions outside of the context of stress. 36

Characterizing genomic variation for SVs and TEs has been challenging, especially 37

in highly repetitive plant genomes where it is often difficult to uniquely align 38

short-reads to the reference genome. Recent studies have shown that attempts to 39

assemble SVs solely with short-read sequencing data can greatly underestimate the total 40

number of SVs present in a population (Huddleston et al., 2017; Audano et al., 2019; 41

Cameron et al., 2019; Ebert et al., 2021). Some estimates for the accuracy of SV 42

discovery with short-read sequencing are as low as 11% in humans due to the inability 43

of short-reads to align within highly repetitive regions, span large insertions, or 44

concordantly align across SV boundaries (Lucas Lledó and Cáceres, 2013). However, 45

recent efforts using short-read sequencing from a population of grapevine cultivars have 46

been used to genotype SVs by ascertaining SV polymorphisms between two reference 47

genomes and calling these SVs within the population (Zhou et al., 2019). 48

The increasing availability of long-read sequencing has opened up an opportunity to 49

identify SVs that would have been missed using short-read data. For example, long 50

reads have been used to identify structural variants associated with traits in a set of 100 51

tomato accessions that were long-read sequenced (Alonge et al., 2020). In other systems 52

without enough long-read sequenced genotypes to directly look for associations between 53

structural variants and phenotype, researchers have started with SVs detected in a 54

smaller subset of individuals with reference assemblies and then genotyped a larger 55

mapping panel of individuals with short-read sequencing data. Researchers have used 56
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pan-genome graph methods to identify SVs in a smaller number of reference sequences 57

and then genotype in a larger sample of short-read sequenced genotypes in Arabidopsis 58

thaliana (Kang et al., 2023), soybean (Liu et al., 2020), rice (Qin et al., 2021), and 59

tomato (Zhou et al., 2022). These studies have confirmed that SVs are important for 60

trait heritability (Zhou et al., 2022). However, graph genome approaches are challenging 61

for plants with large genomes and have not yet been widely adopted. For example, a 62

haplotype graph has been generated for 27 maize inbred lines, but not for a wider 63

diversity panel (Franco et al., 2020). Additionally, work using short-read alignments and 64

pan-genome approaches have identified SVs in maize and found that SVs contributed to 65

trait heritability (Gui et al., 2022). Approximately 60% of these SVs were “related” to 66

TEs but no clear links between SV polymorphisms and TE insertions were made (Gui 67

et al., 2022). Plants with large genomes are not only important for a number of 68

practical reasons, but they also may have different genetic architectures underlying trait 69

variation that evolve differently (Mei et al., 2018), so understanding how SVs and TEs 70

contribute to trait variation in large-genomed plants is key for comprehensively 71

understanding the importance of these variants in general. 72

To address the gap in understanding how SVs and TEs contribute to trait variation 73

in a species with a large genome, we identified SVs found from the alignment of two 74

reference assemblies using short-reads that overlap the SV junctions. This type of 75

approach has been used previously in in a few other systems (Wang et al., 2020; Zhou 76

et al., 2019). Here, we investigated the relationship between SV variation and 77

phenotype in a diverse set of maize inbred lines in the Buckler-Goodman association 78

panel (Flint-Garcia et al., 2005). After identifying SVs that differ between two 79

accessions, B73 and Oh43, we genotyped 277 maize lines present in a larger mapping 80

panel for the SV alleles. We detected SV polymorphisms that varied across the panel 81

and linked these polymorphisms to phenotypic variation, GxE, and gene expression. 82

Materials and methods 83

Structural variant identification 84

An “ascertainment set” of SVs that differ between B73 and Oh43 were identified by 85

Munasinghe et al. (2023). These genotypes were chosen to call SV presence/absence 86

because they are both in the Buckler-Goodman association panel but come from 87

different germplasm pools (Gage et al., 2019). Ascertainment set SVs were filtered to 88

only contain those that had 300 bps of colinear sequence determined by AnchorWave 89

(Song et al., 2022) in the immediate upstream and downstream regions flanking SV 90

junctions. The apparent insertion and 300 bp flanking region on either side were 91

extracted to create a FASTA file containing “SV-present” alleles. The corresponding 92

site in the other genome where the SV was absent and 300 bp flanking sequences were 93

also extracted and combined in the final FASTA file to serve as the “SV-absent” allele 94

sequence. Ultimately, this FASTA file was used as a set of pseudoreference alleles to call 95

SV polymorphism in individuals with only short-read sequence data (Figure S1). 96

SV presence/absence genotyping 97

To call presence or absence for each SV, we collected genomic short-read data for 277 98

inbred maize genotypes from the Buckler-Goodman association panel sequenced for the 99

third generation maize haplotype map (HapMap3) and aligned to the generated FASTA 100

files with SV present and absent alleles (Flint-Garcia et al., 2005; Bukowski et al., 2018). 101

Illumina adapters and low quality sequences were removed using Trimmomatic v0.39 102

(Bolger et al., 2014). PCR duplicate reads were also filtered out using the -r option 103
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within the markdup function in SAMtools v1.15.1 (Danecek et al., 2021). Surviving 104

paired-end reads were merged into a master FASTQ file for each genotype and aligned 105

to pseudoreference alleles using HISAT2 (Sirén et al., 2014). The aligned dataset was 106

filtered to only contain concordant, uniquely mapping reads. We used read-depth for 107

each upstream and downstream SV boundary to support the presence or absence of SVs 108

(Figure 1). Read coverage at each SV boundary was calculated using the coverage 109

function within bedtools v2.30.0 (Quinlan and Hall, 2010). 110

First, we filtered out SVs where we were unable to use short-read data from B73 and 111

Oh43 to correctly identify SV genotypes. In these cases, short-read data mapped better 112

to the opposite genotype’s alleles than their own alleles. For an SV within our 113

ascertainment set to be retained for downstream genotyping in the Buckler-Goodman 114

association panel, we required that: (1) upstream and downstream SV junctions had the 115

same or higher read coverage from the genotype with the SV than the other genotype 116

and (2) no reads from the SV-present genotype spanned the insertion site for the 117

genotype without the SV (Figure S2). 118
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Figure 1. Method to call SV presence/absence with short read genomic data
– Using B73 and Oh43 as our ascertainment set, we first find polymorphic SVs between
these two genotypes. To significantly improve read-mapping runtimes, we extract SVs
and adjacent genomic sequences where SVs are present, while extracting only adjacent
genomic regions at the polymorphic site where the SV is absent in the opposite genotype
— termed pseudoreference SV alleles. Next, reads from a genotype of interest are mapped
to these generated sequences. SVs can then be inferred present or absent based on their
alignment to either allele.

For the rest of the genotypes in the Buckler-Goodman association panel, 119

SV-presence was supported in the query genotype if there was at least one read 120

spanning the upstream or downstream SV junction and there was no read coverage at 121
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the SV polymorphic site for the alternative SV-absent allele. An SV-absent allele is 122

supported if at least one read spans across the SV polymorphic site but no reads map to 123

either SV junction of the corresponding SV-present allele. SVs are ambiguous if reads 124

from the query genotype map to both the SV-present allele junctions and the SV-absent 125

insertion site. 126

Calculating linkage disequilibrium between SNPs and SVs 127

SNPs in variant call format (VCF) were collected from the third generation maize 128

haplotype map version 3.2.1 and coordinates were converted to the B73 NAM reference 129

positions (version 5) using liftOverVCF in Picard tools (Pic, 2019; Qiu et al., 2021a). 130

Chain files for the genome builds B73 version 3 (APGv3) to B73 version 4 131

(B73 RefGen v4) and B73 version 4 to B73 version 5 (Zm-B73-REFERENCE-NAM-5.0) 132

can be found in gramene.org and maizegdb.org, respectively (Tello-Ruiz et al., 2022; 133

Woodhouse et al., 2021). We removed SNPs with > 10% missing data, a minor allele 134

frequency (MAF) < 10%, and those within SV regions, resulting in 16,435,136 SNPs in 135

the final filtered dataset. Additionally, we appended polymorphic SV calls for each 136

genotype in the HapMap3 dataset to the final VCF file. Because SV-present alleles were 137

characterized for both B73 and Oh43, we used the start of the SV coordinate for 138

SV-present alleles within B73 and the B73 insertion site for SVs present in Oh43 as the 139

coordinate for LD analysis. Following methods from Qiu et al. (2021a), we calculated 140

LD between SNPs and nearby polymorphic SVs being sure to exclude SNPs inside of 141

SVs, using PLINK v1.9 (Chang et al., 2015),www.cog-genomics.org/plink/1.9/ with the 142

following parameters: --make-founders, --r2 gz dprime with-freqs, --ld-window-r2 0 , 143

--ld-window 1000000, --ld-window-kb 1000, and --allow-extra-chr. 144

Association mapping 145

Polymorphic SVs across all query genotypes were converted to BIMBAM mean 146

genotype format (Servin and Stephens, 2007). SV-present alleles that were characterized 147

as ambiguous were denoted as NA. We performed a genome wide association (GWA) of 148

SV presence/absence variants (PAVs) using phenotypes from Peiffer et al. (2014) and 149

Bukowski et al. (2018), with a linear mixed model (LMM) in GEMMA v0.98.03 (Zhou 150

and Stephens, 2012). The traits tested were collected from Peiffer et al. (2014) and are 151

best linear unbiased predictions of the following: growing degree days to silking, growing 152

degree days to anthesis, anthesis-silking interval measured in growing degree days, days 153

to silking, days to anthesis, anthesis-silking interval measured in days, plant height, ear 154

height, difference of plant height and ear height, ratio of ear height and plant height, 155

and ratio of plant height and days to anthesis. To account for missing genotypic data 156

for each SV, we required at least 90% of the genotypes to have presence/absence calls 157

for relatedness matrix calculations and subsequent associations. All plots with genomic 158

locations are shown with B73 coordinates, and Oh43 SV-present alleles were converted 159

to B73 coordinates for display. To account for multiple-testing, we calculated a false 160

discovery rate (FDR) adjusted significance threshold (Benjamini and Hochberg, 1995) 161

to maintain an overall α = 5% significance. Filtered SNPs from the HapMap3 dataset 162

were also subjected to GWA using the same methods as our polymorphic SV dataset. 163

In addition to the association analyses for main effects, we examined these data for 164

genotype-by-environment interaction (GxE). For the 11 traits above, we used simple 165

linear regression following the form of Finlay-Wilkinson (FW) regression (Finlay and 166

Wilkinson, 1963) to record the slope (i.e. reaction norm) and mean squared error (MSE) 167

for each genotype using the linear model (lm) function in R; 168
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yij = β0 + β1xj + ϵij ,

where β0 and β1 are the intercept and slope estimates for the ith line, respectively, 169

xj is the average performance of all lines in the jth environment, and ϵij is a random 170

error term. We removed any lines which were not represented in at least 6 environments 171

on a per trait basis to reduce the error in our estimates. This filtering resulted in a 172

different number of individuals and markers used in each FW model (ranging from 245 173

to 274 individuals per trait). We then performed GWA of SV PAVs using slope and 174

MSE estimates for each trait as quantitative phenotypes in GEMMA as before. 175

Gene expression 176

We used previously collected gene expression data for ∼37,000 maize genes (Kremling 177

et al., 2018) to test for differential gene expression between SV genotypes at the loci 178

identified in the association mapping analyses. We compared expression between SV 179

genotypes for three tissue types: the tip of germinating shoots, the base of the third leaf 180

and the tip of the third leaf. Library sizes were normalized using DESeq2 (Love et al., 181

2014) and we filtered the gene set to contain only genes with expression in 70% of 182

individuals above 10 reads per median library size (approx 0.5 counts per million) using 183

the edgeR package in R (Robinson et al., 2010), resulting in an average of 12,703 genes 184

per SV identified in the GWAS. Finally, we used edgeR to test for differential expression 185

by first building generalized linear models to model expression between genotypes and 186

then testing for significance using the F-test. P-values were adjusted using FDR to 187

maintain an overall significance threshold of α = 5%. 188

Results 189

Polymorphic SVs in the diversity panel 190

We genotyped SV polymorphisms for 277 maize genotypes at SVs segregating between 191

B73 and Oh43 by aligning short reads from the genotypes to each SV allele and 192

counting reads spanning genomic-SV junctions and SV polymorphic sites. Out of 98,422 193

polymorphic SVs between B73 and Oh43, we filtered out SVs where short reads from 194

B73 and Oh43 did not clearly align to the correct allele. After this filtering step, we 195

were able to determine the genotype of 64,956 SVs in the Buckler-Goodman association 196

panel (Figure S2). The largest proportion of these SVs were those classified as “TE = 197

SV” (21,103, 32.5%), followed by “multi TE SVs” (18,326, 28.2%), “incomplete TE SVs” 198

(10,928, 16.8%), “no TE SVs” (8,842, 13.6%), and “TE within SVs” (5,757, 8.9%) 199

(Figures S3, S4). The proportions of SVs for each category are consistent with those 200

prior to filtering. For more information about how SVs are classified into TE groupings, 201

see Munasinghe et al. (2023). 202

For subsequent analyses, we filtered the SV dataset to only include variants with a 203

minor allele frequency (MAF) ≥ 10% and presence/absence calls for at least 90% of 204

genotypes, resulting in the retention 3,087 SV alleles (4.75% of dataset) (Figure S5). 205

Filtering on missing data and MAF removed many SVs because many individuals in the 206

dataset have low realized sequencing coverage when mapped to the B73 reference 207

assembly. There is a median coverage of 2.68, ranging from 0.031 in the A554 genotype 208

to 19.47 in B57. Read depth per individual was negatively correlated with percent 209

missing SV data per individual (p = 2.4× 10−5) (Figures S6, S7), suggesting that 210

missing data for SVs results from not having enough reads covering the junction sites. 211
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This pattern suggests that this method needs a minimum of average read depth of 5 to 212

successfully genotype SVs at most sites, although this number will likely vary by species. 213

We investigated the frequency spectrum of SV polymorphisms in the 214

Buckler-Goodman association panel by calculating the frequency of the allele with a 215

putative insertion (or lacking a putative deletion). Since these SVs were initially 216

identified as being polymorphic between two individuals, it was not surprising to see 217

that many of the SVs were at moderate frequency in the population (Figures 2, S3). For 218

most SVs, the SV-present allele was more common than the SV-absent allele. This 219

pattern is consistent with the polymorphism being caused by a deletion and the longer 220

‘insertion’ allele being the ancestral type, and so present at higher allele frequencies in 221

the population. The frequency spectrum was relatively consistent across SV types 222

(Munasinghe et al., 2023). 223

Figure 2. Site-frequency Spectrum of SVs – SVs were filtered to only contain
those with a minor allele frequency ≥ 10% and ≤ 10% missing data (n = 3,087). The
SFS is unfolded and displays the frequency of the allele with the putative insertion (or
that is lacking a deletion).

SV genotypes are associated with phenotypic traits 224

In a genome-wide association analysis, SV presence/absence was significantly associated 225

(FDR < 0.05) with four out of the eleven traits tested: growing degree days to anthesis, 226

days to silking, days to anthesis, and ear height (Figures 3, S8). All four SV 227

associations detected contained TE sequences but none had boundaries that matched 228
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TE boundaries (“TE = SV”), suggesting that the polymorphisms were the result of 229

deletions, not TE insertions (Figure 4). 230

Figure 3. Genomic positions and p-values for eight traits and nine markers
with significant SV presence/absence associations – Bars along bottom represent
the genomic positions for the 3,087 SV markers used in the association panel, with
chromosomes in alternating colors. Points are sized according to the −log10(p) (GDD:
growing degree days; MSE: mean squared error; PH:DTA: ratio of plant height to days
to anthesis). Note that the same SV was associated with Days to Silking and Days to
Anthesis so there are 10 points total.

The SV associated with growing degree days to anthesis is within B73 on 231

chromosome seven, 54 bp upstream of the B73 gene Zm00001eb330210 (syntenic with 232

Oh43 gene Zm00039ab336990) (Figures 3, 4A). There are no currently known functions 233

for these genes in maize, nor their orthologs in other species including sorghum, foxtail 234

millet, rice, or Brachypodium distachyon. There is evidence of increased expression in 235

these genes in maize in whole seed, endosperm, and embryo for most 2-day increments 236

post pollination (Walley et al., 2016). This SV contained a mutator TE within it, but 237

the SV boundaries did not match the TE boundaries. 238

One SV polymorphism was associated with both days to silking and days to anthesis. 239

This SV is present on chromosome three in Oh43 and is a large, ∼52 kb multi-TE SV 240

composed primarily of Ty3/Gypsy elements (Figures 3, 4B). This region is nearly 215 241

kb away from the nearest gene. An additional SV associated with days to silking is 242

located on chromosome ten and contains ∼43.5 kb of multiple Ty3/Gypsy TEs (Figures 243

3, 4C). This SV, present in B73 and absent in Oh43, is 2,091 bp upstream of the gene 244

Zm00001eb411130 (syntenic with the Oh43 gene Zm00039ab420040). Zm00001eb411130, 245

which is also called ZmMM1, is a MADS-box gene and is orthologoues with the 246

OsMADS13 gene in rice and the STK gene in Arabidopsis thaliana. OsMADS13’s 247
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expression in rice is restricted to the ovule and controls both ovule identity and 248

meristem determinancy during ovule development (Lopez-Dee et al., 1999; Dreni et al., 249

2007; Li et al., 2011). Similar to OsMADS13, STK in Arabidopsis thaliana, which 250

encodes for a MADS-box transcription factor, is expressed in the early floral 251

development in the ovule. Additionally, STK determines ovule identity and also 252

regulates a network of genes that controls seed development and fruit growth (Mizzotti 253

et al., 2014; Di Marzo et al., 2020). Both OsMADS13 and STK are members of the 254

D-class genes in the ABCDE model for floral development. 255

The SV associated with ear height contains a partial sequence of a mutator DNA 256

transposon and is on Oh43 chromosome four within an intron of gene Zm00039ab208360 257

(syntenic with B73 gene Zm00001eb203840) (Figures 3, 4D). This gene, also called 258

traf42, is a tumor receptor-associated factor (TRAF) and codes for a BTB/POZ 259

domain-containing protein POB1. Although TRAF domain containing proteins are 260

ubiquitous across eukaryotes, there are far more genes encoding TRAF domains in 261

plants compared to animals (Oelmüller et al., 2005; Cosson et al., 2010). In maize, 262

traf42 mediates protein-protein interactions (Dong et al., 2017) and mutations in the 263

maize gene ZmMAB1, which contains a TRAF domain and is exclusively expressed in 264

the germline cause chromosome segregation defects during meiosis (Juranić et al., 2012). 265

Additionally, POB1 is involved in drought tolerance in the Antarctic moss, Sanionia 266

uncinata (Park et al., 2018). 267
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Figure 4. Trait associated structural variant polymorphisms between B73
and Oh43 – Green arrows point to polymorphic SV regions. Alignable regions are shown
as green bars between genotypes. TEs are displayed inline and, therefore, do not display
overlapping or nested TEs. (A) A mutator TE within an SV is present in B73 and
absent in Oh43 . This SV is 54 bp upstream of the B73 gene Zm00001eb330210, syntenic
with Oh43 gene Zm00039ab336990. (B) A large SV containing multiple Ty3/Gypsy
TEs is present in Oh43 and absent in B73. This intergenic SV is approximately 215 kb
from the nearest gene. (C) A multi TE SV composed entirely of Ty3/Gypsy TEs is
present in B73 and 2091 bp upstream of the gene Zm00001eb411130 (syntenic with Oh43
gene Zm00039ab420040). (D) A polymorphic incomplete TE - SV is located within the
Oh43 gene Zm00039ab208360 is present in Oh43 and absent in B73.

SV genotypes are associated with GxE 268

We detected five significant associations (FDR < 0.05) between SV presence/absence 269

and one of two measures of plasticity (FW regression slope and MSE) for four of the 270

eleven traits tested: the ratio of plant height and days to anthesis (MSE), growing 271

degree days to silking (MSE), days to silking (slope), and days to anthesis 272

(slope)(Figures 3, S9). Four of the five SVs identified contained TE sequence and two 273

SVs appeared to be directly caused by TE insertions. 274

On chromosome four, we detected an association between an SV and the MSE of the 275

ratio of plant height to days to anthesis across growing locations. This SV appeared to 276

be caused by a partial deletion of a Ty3-like LTR retrotransposon and was not proximal 277

to any gene models in either the Oh43 or B73 alignments. 278

On chromosome five, we detected an association between an SV and the MSE of 279

growing degree days to silking across growing locations. This SV appeared to be caused 280

by a partial deletion of a hAT TIR transposon but was not proximal to any gene model 281
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in either the Oh43 or B73 alignments. 282

On chromosome ten, we detected three association between SVs and plasticity: the 283

slope of days to silking, the slope of days to anthesis, and the MSE of growing degree 284

days to silking. The SVs associated with days to silking appeared to be the direct result 285

of insertions of hAT TIR transposons, the SV associated with the MSE of growing 286

degree days to silking appeared to an insertion of a PIF Harbinger TIR transposon, but 287

the SV associated with the slope of days to anthesis did not contain TE sequence. The 288

SV associated with the slope of days to silking was 713 bp from the uncharacterized 289

Oh43 gene Zm00039ab424300 (a syntelog of B73 gene Zm00001eb415280), while the SVs 290

associated with the slope of days to anthesis and the MSE of growing degree days to 291

silking were not proximal to any B73 or Oh43 gene model. 292

SV genotypes are associated with differential gene expression 293

We tested for associations between the genotypes of the nine SVs identified by GWAS 294

and gene expression data from three tissues and detected associations for 29 genes 295

(Figure 5). Differentially expressed genes were not immediately proximal to the SV 296

markers they were associated with (the closest differentially expressed gene was 911kb 297

from the associated SV marker) and most were on different chromosomes. Of the 29 298

significantly associated genes, three genes present in the B73v3 reference alignment were 299

not present in the B73v5 alignment and were removed from further consideration. Of 300

the 26 remaining genes, 11 were associated with a single SV marker on chromosome 10 301

for the MSE of growing degree days to silking, which was coded as “TE = SV”. The 302

remaining six SV markers identified were associated with between one and four 303

differentially expressed genes and of those six markers, three contained complete TE 304

sequences, two contained incomplete TEs, and one did not contain any TE sequence. Of 305

the three tissues tested, 16 genes were significantly differentially expressed solely in 306

shoot tissue, seven in the the tip of L3, two in the base of L3, and one was differentially 307

expressed in both the shoot tissue and the base of L3. 308
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Figure 5. Genomic positions and p-values for genes with expression signifi-
cantly associated with the genotypes of seven structural variant (SV) markers
identified in our genome wide association analyses – Bars along bottom represent
the genomic positions for the 3,087 SV markers used in the association panel, with
chromosomes in alternating colors. Black points show the position of the SV marker
identified in each trait. Colored points are sized according to the false discovery rate
adjusted −log10(p) with tissue collected from germinating shoot (GShoot) in green, the
base of leaf three (L3Base) in orange, and the tip of leaf three (L3Tip) in blue. The SV
marker on chromosome three was the most proximal to the identified SV marker, but
was still 911 kb away (GDD: growing degree days; MSE: mean squared error).

Most SVs are in linkage disequilibrium with SNPs 309

All SV alleles used in the GWAS are within 1 Mb (mean distance of 649 bps) from the 310

nearest SNP present in the HapMap3 dataset (Figure S10) and all SVs have an r2 > 0.1 311

with at least one nearby SNP. Only 6 SVs had an r2 < 0.5 with any nearby SNP. For 312

the SV alleles that are significant to traits, all have a SNP in perfect LD. 313

Despite high LD between SVs and nearby SNPs, many of the associations detected 314

between SVs and traits would not have been captured with a GWAS using all SNPs. Of 315

the four SVs associated with main effects, only one was found in the same peak regions 316

in the SNP GWAS (Figures S11, S12). This lack of overlap between the SV GWAS 317

associations and the SNP GWAS associations is a result of different significance cutoffs 318

in the two different analyses. The HapMap3 SNP dataset used in the GWAS has 319

16,435,136 SNPs while there were only 3,087 SVs in the SV association mapping 320

analysis, so a SNP needed to have a p-value below 7.94× 10−6 (averaged across traits) 321

to overcome the FDR cut-off in the SNP GWAS while its linked SV only needed a 322

p-value below 1.86× 10−4 (averaged across traits) to be detected as significant in the 323

SV GWAS. 324
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Discussion 325

In this study we leveraged two reference genomes along with a broader set of short-read 326

genomic data to capture SV diversity in a maize diversity panel. The maize genome’s 327

highly repetitive nature makes it challenging to rely on short-read alignments alone to 328

characterize SV polymorphism de novo (Hufford et al., 2021). By ascertaining SVs 329

presences and absences between two genotypes, we were able to call SVs across 330

hundreds of maize genotypes using short-read data and identify SVs associated with 331

trait variation. 332

We found nine SV polymorphisms associated with either average trait value or trait 333

plasticity in a variety of maize phenotypes (Figure 3). Previous studies have identified 334

SVs associated with phenotypic variation that would not be discovered in analyses that 335

use SNPs alone (Yang et al., 2019; Guo et al., 2020; Hartmann, 2022; Zhang et al., 336

2024). Here, while the SV GWAS identified hits that were not present in the SNP 337

GWAS, all SV associations detected were in perfect linkage disequilibrium with SNPs. 338

We did not detect associations that were not captured by the SNP dataset but instead 339

these SVs reached statistical significance because there were many fewer SVs than SNPs. 340

Previous work investigating TE polymorphism in a different maize genetic diversity 341

panel did find that 20% of TEs were not in LD with SNPs but these SNPs tended to be 342

at a low minor allele frequency in the population (Qiu et al., 2021b). By focusing on 343

common SV polymorphisms we likely have missed many SVs that are low frequency and 344

not in LD with surrounding SNPs – however these low frequency SVs would be unlikely 345

to be associated with trait variation in a GWAS. 346

Of the SVs included in this study, 91% contained TEs or are themselves of TE origin 347

and the largest category of SVs were clear examples of TE insertion (21,103 or 23.5%) . 348

All but one of the SVs associated with trait variation and with GxE contained TE 349

sequence, yet only the SVs on chromosome ten for the slope of days to silking and the 350

MSE of growing degree days to silking FW models appeared to be the direct result of 351

TE insertions. The remaining seven associations result from deletions that contain TEs. 352

This result is consistent with previous findings that deletions have been the dominant 353

contributors to SV polymorphism in maize (Munasinghe et al., 2023). We did observe 354

that the SV associated with the MSE of growing degree days to silking on chromosome 355

ten that appeared to result from a TE insertion was the SV with the most associations 356

with gene expression. This pattern is consistent with hypotheses that TE insertions are 357

particularly likely to affect gene expression (Klein and Anderson, 2022), although 358

further work is clearly needed to evaluate how broad this pattern is across a larger 359

sample of SVs. 360

We found five significant associations between SVs and plasticity, quantified using 361

mean squared error and slopes from the Finlay-Wilkinson regression models. The 362

finding that different SVs were associated with traits than with trait plasticity is 363

consistent with most previous work. For example, the genetic architecture of trait 364

means and trait plasticity have been shown to differ in maize (Kusmec et al., 2017; 365

Tibbs-Cortes et al., 2024) and Arabidopsis thaliana (Fournier-Level et al., 2022) but not 366

sorghum (Wei et al., 2024). We also did not see a clear pattern that SVs are more likely 367

to affect trait variation across environments than trait means, but this may result from 368

having a small number of associations across both categories. 369

Overall, we have demonstrated an approach for using two reference genomes to 370

identify structural variants and then genotype for these variants in a larger panel of 371

individuals with short-read sequencing data. This approach identifies SVs associated 372

with phenotypic variation and with GxE interactions. However, this approach does bias 373

us towards common alleles that were polymorphic within the two reference assemblies. 374

This bias is acceptable for a GWAS, where we will also be biased towards detecting 375

associations with variants at intermediate allele frequency, but would be less 376
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appropriate for any analysis that would need to identify SVs with low allele frequencies. 377

As long-read data becomes more affordable and more reference genomes become 378

available for more species, these types of approaches will improve our ability to detect 379

SVs and investigate their potential functional importance. 380
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2012. Germline-specific math-btb substrate adaptor mab1 regulates spindle length
and nuclei identity in maize. The plant cell. 24:4974–4991.

Kang M, Wu H, Liu H, Liu W, Zhu M, Han Y, Liu W, Chen C, Song Y, Tan L et al .
2023. The pan-genome and local adaptation of arabidopsis thaliana. Nature
Communications. 14:6259.

Klein SP, Anderson SN. 2022. The evolution and function of transposons in epigenetic
regulation in response to the environment. Current Opinion in Plant Biology.
69:102277.

Kobayashi S, Goto-Yamamoto N, Hirochika H. 2004. Retrotransposon-induced
mutations in grape skin color. Science. 304:982.

Kremling KAG, Chen SY, Su MH, Lepak NK, Romay MC, Swarts KL, Lu F, Lorant A,
Bradbury PJ, Buckler ES. 2018. Dysregulation of expression correlates with
rare-allele burden and fitness loss in maize. Nature. 555:520–523.

Kusmec A, Srinivasan S, Nettleton D, Schnable PS. 2017. Distinct genetic architectures
for phenotype means and plasticities in zea mays. Nature plants. 3:715–723.

Li H, Liang W, Hu Y, Zhu L, Yin C, Xu J, Dreni L, Kater MM, Zhang D. 2011. Rice
mads6 interacts with the floral homeotic genes superwoman1, mads3, mads58,
mads13, and drooping leaf in specifying floral organ identities and meristem fate. The
Plant Cell. 23:2536–2552.

Liang Z, Anderson SN, Noshay JM, Crisp PA, Enders TA, Springer NM. 2021. Genetic
and epigenetic variation in transposable element expression responses to abiotic stress
in maize. Plant physiology. 186:420–433.

Lisch D. 2013. How important are transposons for plant evolution. Nature Reviews
Genetics. 14:49–61.

Liu Y, Du H, Li P, Shen Y, Peng H, Liu S, Zhou GA, Zhang H, Liu Z, Shi M et al .
2020. Pan-genome of wild and cultivated soybeans. Cell. 182:162–176.

Lopez-Dee ZP, Wittich P, Enrico Pe M, Rigola D, Del Buono I, Gorla MS, Kater MM,
Colombo L. 1999. Osmads13, a novel rice mads-box gene expressed during ovule
development. Developmental genetics. 25:237–244.

Love M, Anders S, Huber W. 2014. Differential analysis of count data–the deseq2
package. Genome Biol. 15:10–1186.

18/30

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2024. ; https://doi.org/10.1101/2024.06.14.599082doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.14.599082
http://creativecommons.org/licenses/by-nd/4.0/
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1 Supplementary Information

Figure S1. Extracting SV present and absent alleles – For each polymorphic
SV between B73 and Oh43 identified in Munasinghe et al. (2023), we extracted 300 bp
flanking alignable regions along with the SV for to make “SV present alleles” while 300
bp flanking alignable regions were extracted around the insertion point, which we term
“SV-absent alleles”.
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Figure S2. Read mapping differences at the left and right junctions for all
SVs – Differences were calculated as the number of reads from the non-parent genotype
subtracted from reads mapping from the parent genotype. A positive difference indicates
SVs that are supported and retained for future analyses.
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Figure S3. SFS of SVs categorized by TE content – “Incomplete TE SV” and
“Multi TE SV” categories SV polymorphisms skew towards moderate to high frequencies
whereas all other categories skew towards low to moderate frequencies.

Figure S4. SFS and MAF of TE superfamilies for TE = SV – (A). TE
polymophisms skew towards moderate frequency. (B), (C), and (D). Frequencies for
all TE superfamilies are consistent across all MAF thresholds.
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Figure S5. Percentage of genotypes called per SV – Green bars indicate SVs
with at least 90% of genotypes called and are retained for GWAS.
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Figure S6. Linear Model of relationship between missing data and read
coverage - all genotypes – Adjusted R-squared: 0.1045, F-statistic: 33.21, p-value:
2.22× 10−8
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Figure S7. Linear Model of relationship between missing data and read
coverage - 2 outliers removed – Adjusted R-squared: 0.3576, F-statistic: 153.50,
p-value: 2.2× 10−16
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Figure S8. Q-Q plots for traits with SV associations

Figure S9. Q-Q plots for Finlay-Wilkinson regression traits with SV asso-
ciations – (A). the mean-squared error (MSE) of the ratio of plant height to days to
anthesis, (B). the MSE of growing degree days to silking, (C). the slope days to silking.
Note the deviations between expected and observed p-values in the MSE of growing
degree days to silking model (B).
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Figure S10. Highest LD between SVs and SNPs within 1Mb – A large
proportion of the 3,087 SVs used in GWAS are linked with adjacent SNPs. SVs with
r2 = 1: 2, 277, r2 ≥ 0.5: 3, 080.
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Figure S11. Manhattan Plots of HapMap3 SNPs – The gray dashed line represents
the FDR signifcance threshold. (A) There are several SNPs associated with growing
degree days to silking, although none are in LD with SVs associated with the same trait.
(B) There are many SNPs throughout the genome associated with growing degree days
to anthesis.

Figure S12. Q-Q plots for traits with HapMap3 SNP associations
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