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ABSTRACT 28 

 Viral infection leads to heterogeneous cellular outcomes ranging from refractory to abortive 29 

and fully productive states. Single cell transcriptomics enables a high resolution view of these 30 

distinct post-infection states. Here, we have interrogated the host-pathogen dynamics following 31 

reactivation of Epstein-Barr virus (EBV). While benign in most people, EBV is responsible for 32 

infectious mononucleosis, up to 2% of human cancers, and is a trigger for the development of 33 

multiple sclerosis. Following latency establishment in B cells, EBV reactivates and is shed in 34 

saliva to enable infection of new hosts. Beyond its importance for transmission, the lytic cycle is 35 

also implicated in EBV-associated oncogenesis. Conversely, induction of lytic reactivation in 36 

latent EBV-positive tumors presents a novel therapeutic opportunity. Therefore, defining the 37 

dynamics and heterogeneity of EBV lytic reactivation is a high priority to better understand 38 

pathogenesis and therapeutic potential. In this study, we applied single-cell techniques to analyze 39 

diverse fate trajectories during lytic reactivation in two B cell models. Consistent with prior work, 40 

we find that cell cycle and MYC expression correlate with cells refractory to lytic reactivation. We 41 

further found that lytic induction yields a continuum from abortive to complete reactivation. 42 

Abortive lytic cells upregulate NFκB and IRF3 pathway target genes, while cells that proceed 43 

through the full lytic cycle exhibit unexpected expression of genes associated with cellular 44 

reprogramming. Distinct subpopulations of lytic cells further displayed variable profiles for 45 

transcripts known to escape virus-mediated host shutoff. These data reveal previously unknown 46 

and promiscuous outcomes of lytic reactivation with broad implications for viral replication and 47 

EBV-associated oncogenesis.  48 
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AUTHOR SUMMARY / SIGNIFICANCE 49 

 Viral infections profoundly alter host cell biological programming in ways that potentiate 50 

disease. Epstein-Barr virus (EBV) is a particularly prevalent human pathogen associated with 51 

diverse cancers and several autoimmune disorders. EBV predominantly establishes latent 52 

infection in B cells and can promote B cell malignancies through functions of well-characterized 53 

latent oncoproteins. Aspects of the viral lytic cycle also clearly contribute to EBV-associated 54 

diseases, although pathologic roles of lytic reactivation are incompletely understood. Here we use 55 

single-cell techniques to examine cellular responses to EBV lytic reactivation in multiple B cell 56 

models. Consistent with prior studies, reactivation from latency is incomplete (abortive) in some 57 

cells and successful in others. Abortive and full lytic trajectories exhibit distinct biological 58 

responses that each may promote pathogenesis and reinforce bimodal latent-lytic control. 59 

Intriguingly, a portion on cells that proceed through the lytic cycle exhibits unexpected and striking 60 

expression of genes associated with cellular reprogramming, pluripotency, and self-renewal. 61 

Collectively, this study provides a valuable resource to understand diverse host-virus dynamics 62 

and fates during viral reactivation and identifies multiple modes of EBV lytic pathogenesis to 63 

investigate in future research.  64 
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INTRODUCTION 65 

 Viral infections lead to heterogeneous cell fate outcomes including resistance, abortive 66 

infection, latency, or full virion amplification often leading to cell death. Cells that resist viral 67 

infection often display elevated pre-existing anti-viral responses1-4. Likewise, cell responses that 68 

enable survival following virus replication can prime for further anti-viral responses5,6. 69 

Herpesviruses are large double-stranded DNA viruses that provide a unique and complex 70 

infection paradigm to model the heterogeneity of viral infection as they reactivate from a latent 71 

state in response to diverse stimuli. 72 

 Epstein-Barr virus (EBV) was the first oncogenic human virus to be discovered7. Since its 73 

isolation from endemic Burkitt Lymphoma (BL) cells in 1964, EBV infection has been linked to an 74 

expansive set of human cancers and, more recently, autoimmune diseases8-11. EBV infection in 75 

immunosuppressed individuals can lead to post-transplant lymphoproliferative disease (PTLD)12 76 

and HIV-related diffuse large B cell lymphomas (DLBCL)13 as well as up to 40% of Hodgkin 77 

Lymphoma (HL)14. and rare individuals with chronic active EBV (CAEBV) can develop T and NK 78 

cell lymphomas15,16. Beyond these hematologic malignancies, EBV infection is associated with 79 

epithelial cancers such as nasopharyngeal carcinoma (NPC)17 and gastric carcinomas18. 80 

Collectively, EBV causes is or otherwise associated with nearly 2% of all cancers diagnosed 81 

annually8. 82 

 This prevalence in malignant disease vastly underrepresents the success of EBV as a human 83 

pathogen. Globally, it is estimated that over 95% of adults are infected with EBV19. EBV is 84 

transmitted via saliva, which enables the virus to traverse oral epithelial tissues and infect B 85 

lymphocytes within the tonsils20. EBV infects B cells via the surface receptor CD21 (CR2)21,22 and 86 

rapidly induces B cell adaptive immune programs to mimic germinal center (GC)-like dynamics23-87 

26. Successful evasion of antiviral defenses, immune tolerance checkpoints, and growth-induced 88 

damage27-29 allows memory B cells latently infected with EBV to exit from this virus-manipulated 89 

GC reaction. Viral latency establishment within the memory B cell compartment yields lifelong 90 

persistence30,31. Lytic reactivation from this latent state triggers the production of new virions and 91 

is essential to the replicative cycle and transmission between hosts. The lytic gene program is 92 

transcriptionally orchestrated by two immediate early (IE) lytic genes: BZLF1 (encodes for the 93 

transcription factor Zta / Z / ZEBRA) and BRLF1 (encodes for the transcription factor Rta / R)32-34. 94 

While Zta and Rta both play essential roles in lytic reactivation, Zta is the master lytic 95 

transactivator in B cells. BZLF1 expression is induced upon cell differentiation and stress35,36, a 96 

prototypical example being post-GC B cell differentiation into plasmablasts37. Host cell 97 

transcriptional regulators of plasma cell generation including XBP1 and BLIMP1 (PRDM1) induce 98 
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EBV lytic reactivation via direct transactivation of the BZLF1 promoter38-40. Zta then transactivates 99 

subsequent expression of early and late lytic genes by binding at Z-responsive elements (ZREs) 100 

throughout the viral genome41. As an AP-1 family homolog33, Zta also binds loci throughout the 101 

host genome42 and has characteristics of a ‘pioneer’ transcription factor. Consistent with this, 102 

BZLF1 expression and the early stages of EBV reactivation cause considerable alterations to the 103 

host cell epigenome and resulting gene expression43,44. 104 

 Prior work suggests that lytic gene expression is functionally important for tumorigenesis. 105 

Notably, viral strains that carry the NFATc1-responsive Z promoter variant Zp-V3 exhibit 106 

increased lytic replication and are enriched in EBV-associated cancers relative to strains with 107 

prototypical Zp45. In SCID and NSG mouse models with reconstituted human immune systems, 108 

significantly fewer animals developed EBV+ lymphomas after infection with BZLF1 knockout virus 109 

versus a wild-type (WT) control strain46. Further, infection with a Zta-overexpressing strain that 110 

failed to complete reactivation (i.e., abortive lytic) promoted tumor growth in mice similar to WT 111 

EBV47. Recent experiments in immunocompromised mice confirmed the tumorigenic role of 112 

abortive lytic infection by using EBV lacking the BALF5 gene, which encodes a viral DNA 113 

polymerase subunit essential for lytic replication48. These studies demonstrated that expression 114 

of BZLF1 (and possibly other early lytic genes) contributes to tumorigenesis in vivo regardless of 115 

the potential for horizontal infection of bystander cells by new virions. While detailed insights 116 

regarding the oncogenic effects of successful or abortive lytic replication are limited, tumor 117 

microenvironment inflammatory conditioning by cytokines secreted from reactivating cells has 118 

been proposed49-53. 119 

 Another complication in the relation between viral reactivation and oncogenicity stems from 120 

observations that a significant proportion of EBV-infected tumor cells are resistant or otherwise 121 

refractory to lytic reactivation. In Burkitt Lymphoma-derived P3HR1 and Akata cells, high 122 

expression of the oncoprotein c-Myc promotes viral latency maintenance and suppresses lytic 123 

reactivation via direct interaction with the origin of lytic replication (oriLyt) and inhibition of 124 

chromatin looping to activate BZLF1 expression54. Accordingly, MYC suppression facilitates 125 

BZLF1 expression and the subsequent induction of viral lytic genes. It is noteworthy that 126 

constitutive oncogene expression favors viral genome propagation through proliferation of latently 127 

infected host cells whereas lytic replication becomes a more advantageous strategy in its 128 

absence. Similarly, BL-derived cells refractory to lytic reactivation have also been found to 129 

express high levels of STAT355-57, which functions as an oncogene in B cells and inhibits 130 

apoptosis via induction of BCL2 expression. Beyond simply being expressed by refractory cells, 131 

STAT3 antagonizes lytic reactivation of EBV+ cells through the functions of its transcriptional 132 
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targets56. In fact, LCLs derived from patients with autosomal dominant hyper-IgE syndrome (AD-133 

HIES), a disease that leads to non-functional STAT3 activity, went lytic at a higher rate than LCLs 134 

derived from healthy donors58. Given the therapeutic potential of drug-induced lytic reactivation 135 

followed by viral DNA synthesis inhibition to treat EBV-latent cancers, investigators are actively 136 

exploring means to make refractory cells more sensitive to lytic induction59-61. However, such 137 

efforts should be weighed against the known associations between the EBV lytic cycle and 138 

oncogenesis, which remain to be fully elucidated. 139 

 Many EBV gene products contribute to virus-driven malignancies by mediating functions 140 

associated with cancer hallmarks including uncontrolled proliferation, tumor suppressor inhibition, 141 

epigenetic reprogramming, genome instability, apoptotic resistance, and immune evasion62. EBV+ 142 

cells with cancer stem cell (CSC) features have also been reported in NPC and gastric 143 

carcinoma63,64, suggesting the potential for cellular self-renewal associated with infection. In the 144 

CSC model, a small subset of tumor cells retain the capacity for self-renewal and proliferation 145 

through activation of signaling pathways (e.g., Wnt, Notch), transactivators of the epithelial-to-146 

mesenchymal (EMT) transition, and critical regulators of pluripotency (e.g., SOX2, OCT4). CSCs 147 

may serve as progenitors for other tumor cells, especially in lymphoid malignancies that are 148 

derived from cells of origin that intrinsically retain self-renewal properties to support immunologic 149 

memory65-67.  Aberrant expression of self-renewal genes and other CSC biomarkers68 may 150 

originate from significant (epi)genomic reprogramming and result in cellular phenotypic plasticity. 151 

Lytic replication of EBV (and DNA viruses from several other families69) clearly constitutes a major 152 

reprogramming event for the host cell. Nuclear chromatin is globally disrupted by IE gene 153 

expression, the formation of viral replication compartments, and the accumulation of viral 154 

DNA43,70. Moreover, preferential binding of BZLF1 to methylated promoters can reverse 155 

epigenetic silencing of both EBV and cellular genes through nucleosome eviction, resulting in 156 

heterochromatin-to-euchromatin conversion44,71-73. While evidence for stem-like reprogramming 157 

and CSC gene expression during the EBV lytic cycle has not been reported to our knowledge, it 158 

is noteworthy that reactivation of HSV-1 (another herpesvirus) induces embryonic development 159 

programs including Wnt/-catenin activity that licenses late viral gene expression74. 160 

 These previous studies demonstrate that EBV reactivation from latency is a complex process 161 

that culminates in heterogeneous host cell responses germane to the progression of virus-162 

associated cancers. Single-cell sequencing techniques are particularly well suited to dissect the 163 

inherent complexity of host-virus interactions and their effects on cell fate74-77. In recent studies of 164 

early EBV infection25,26 and established latency78,79, we have used single-cell sequencing to 165 

successfully resolve and study diverse phenotypes arising from complex host-pathogen 166 
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dynamics. We reasoned that a similar high-resolution experimental and informatic approach 167 

would clarify distinct courses of lytic reactivation, provide essential data for future studies of viral 168 

pathogenesis, and inform potential therapeutic strategies to address EBV-driven oncogenesis. To 169 

this end, we performed time-resolved single-cell RNA sequencing (scRNA-seq), flow cytometry, 170 

and RNA Flow-FISH (fluorescence in situ hybridization) in P3HR1-ZHT cells to define initial cell 171 

state diversity, differential fate trajectories, and previously unknown lytic response phenotypes 172 

within this widely used EBV+ Burkitt Lymphoma model. Cellular transcriptomic responses to lytic 173 

reactivation were investigated with respect to IE and early versus late viral gene programs and 174 

subsequently validated in the B958-ZHT LCL.  175 
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RESULTS 176 

 177 

Heterogeneous responses to EBV lytic reactivation in individual cells 178 

 P3HR1-ZHT cells are an inducible model of EBV lytic reactivation (Fig. 1A). This model 179 

system constitutively expresses the EBV immediate early lytic transactivator Zta (encoded by the 180 

BZLF1 gene) fused with a modified murine estrogen receptor hormone binding domain. While the 181 

encoded fusion protein is normally rapidly degraded, addition of 4-hydroxytamoxifen (4HT) 182 

stabilizes it and promotes its nuclear translocation, whereupon the Zta domain binds and 183 

transactivates Zta-responsive elements (ZREs) in both host and viral genomes. Because Zta has 184 

positive regulatory control of its own promoter via ZRE binding80, 4HT treatment also leads to 185 

expression of endogenous BZLF1, thus initiating viral lytic reactivation. Although all cells in the 186 

P3HR1-ZHT line express the inducible construct, it has been observed that complete EBV lytic 187 

reactivation occurs only in a subset of 4HT treated cells81,82. 188 

 We confirmed inducible yet non-uniform viral reactivation of P3HR1-ZHT cells in response to 189 

4HT treatment using FACS staining for the viral glycoprotein gp350, which was expressed in cells 190 

that reached the late stage of lytic reactivation. Unstimulated P3HR1-ZHT cells expressed 191 

minimal gp350 (1.1%), but treatment with 100 nM 4HT for 24 hours resulted in gp350 expression 192 

in 19.2% of cells. When we simultaneously treated cells with 4HT and PAA, an inhibitor of viral 193 

DNA replication, we observed a significant reduction in gp350 expression by 24 hours (Fig. 1B, 194 

Fig. S1). These results indicated that cells exhibited heterogenous responses to viral lytic 195 

reactivation and that completion of the full lytic cycle was dependent upon successful viral DNA 196 

replication, which has been previously described in herpesviruses83-87. We expanded upon these 197 

gp350 FACS results using RNA Flow-FISH assays to detect viral RNAs from genes expressed at 198 

different stages of the lytic cycle: the immediate early lytic gene BZLF1, the early lytic gene 199 

BGLF4, and the late lytic gene BLLF1. After 24 hours of 4HT treatment, we observed a significant 200 

increase in expression of all three lytic transcripts compared to mock treated cells. However, there 201 

was a stepwise decrease in expression level between early and late lytic genes (Fig. 1C, Fig. 202 

S2). These results confirmed that a significant proportion of Z-HT induced P3HR1 cells were 203 

refractory to full lytic reactivation. 204 

 Since we observed heterogeneous responses upon lytic reactivation, we applied time-205 

resolved single-cell RNA sequencing (scRNA-seq) to study the concurrent cellular responses in 206 

the P3HR1-ZHT system after 24, 48, and 72 hours of 4HT treatment compared to untreated cells 207 

(Fig. 1D). UMAP projection of samples by timepoint demonstrated that substantial transcriptomic 208 

changes occurred after 4HT stimulation (Fig. 1E). Cells expressing high levels of viral reads 209 
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clustered together, however there was a distinction between cells expressing immediate early, 210 

early, and late viral transcripts (Fig. 1F). Analysis of all EBV transcripts identified genes with high, 211 

moderate, and low expression; however, all 4HT-treated samples expressed more viral transcripts 212 

compared to untreated cells (Fig. 1G). These results confirmed heterogeneous responses to lytic 213 

reactivation observed by flow cytometry and enabled subsequent genome-wide analyses. 214 

   215 

Identification of distinct EBV reactivation response clusters 216 

 Cells from integrated timecourse scRNA-seq libraries were hierarchically clustered by host 217 

and viral transcriptome similarity, which led to the identification of five main clusters (Fig. 2A). 218 

Unstimulated cells were mostly present in clusters A and B, while clusters C, D, and E primarily 219 

comprised 4HT-treated cells across the experimental time course (Fig. 2B) and displayed 220 

elevated viral gene expression compared to clusters A and B (Fig. S3). Further examination of 221 

these clusters revealed differences in the number of total and unique RNAs, the percentage of 222 

viral RNAs, and the percentage of mitochondrial RNAs (Fig. 2C). These differences in unique and 223 

total RNA features suggested major phenotypic differences both in unstimulated and reactivated 224 

cells. Therefore, we scored the clusters based on cell cycle state and found that there was a 225 

decrease in G2/M specific gene expression and an increase in G1 gene expression after 24 hours 226 

of 4HT treatment, consistent with EBV lytic reactivation occurring in a pseudo-S phase88,89 (Fig. 227 

S4A). We confirmed this finding using BrdU/7-AAD staining of untreated versus 4HT-treated cells 228 

(Fig. S4B). Consistent with induced cell cycle arrest, lytic reactivation upon 4HT treatment led to 229 

a reduction of S phase cells (43.2% vs. 54.3%) and modest increase in G0/G1 cells. Because 230 

pulsed BrdU staining does not discriminate cellular and viral DNA synthesis, a portion of S phase 231 

4HT-treated cells were likely undergoing viral but not cellular DNA synthesis. This was further 232 

evidenced by a significant fraction of gp350+ cells within the gated S phase population (Fig. S4B). 233 

We also assayed MitoTracker signal stratified by gp350 expression and found that gp350+ cells 234 

had lower mitochondrial content (Fig. S4C). 235 

 236 

Cells traverse heterogeneous biological response trajectories during lytic reactivation 237 

 Next, we analyzed differentially expressed genes by cluster and grouped them by ontology 238 

using a combined approach with software-based annotation tools90 and primary literature 239 

searches (Fig. 2D). Unstimulated cells were almost exclusively present in clusters A and B, which 240 

were distinguished from each other by total transcripts and unique features per cell (Fig. 2B-C). 241 

Unstimulated cells with high RNA and feature counts (cluster A) exhibited a germinal center (GC) 242 

B cell profile including MME (CD10)91, BCL692,93, BCL11A94, POU2F2 (OCT2)95, and AICDA 243 
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(AID)96,97. Along with high MYC expression, this phenotype is consistent with the profile of 244 

endemic BL from which P3HR1-ZHT is derived. In contrast, unstimulated cells with low RNA and 245 

features counts (cluster B) exhibited a cell stress expression signature that included slight 246 

enrichment of genes for ribosomal subunits (RPL34, RPS27), nuclear-encoded components of 247 

mitochondrial respiratory complexes (COX7C), and the apoptotic resistance genes PTMA98 and 248 

GSTP1, the latter of which also mediates oxidative stress99. Cluster C, which was comprised of 249 

4HT-treated samples, displayed antiviral restriction (APOBEC3G, PPP1R15A, TRIM14, FURIN), 250 

inflammatory (CCL4L2, CCL3L1, NKG7), and NF-B signaling (NFKBIA, ICAM1, CD83, BCL2, 251 

BCL2A1) signatures. Cluster D had a similar gene expression pattern to cluster B with the addition 252 

of lytic transcripts and several long noncoding RNAs from R-loop “hot spots” (C1orf56, 253 

AC092069.1, AC005921.2, AC106707.1) associated with genomic instability related to 254 

unscheduled gene expression or DNA synthesis (in contexts including herpesviral reactivation)100-255 

104. Finally, cluster E primarily contained cells that had entered the lytic cycle after 4HT treatment. 256 

Lytic cells expressed known host biomarkers of reactivation (SGK1, NHLH1, PRDM1)105, 257 

downregulation of genes targeted by virus-induced host shutoff (HLA-A, ACTB, B2M)106 mediated 258 

by EBV BGLF5107, expression of genes that escape host shutoff (e.g., GADD45B, IL6, CCND1, 259 

JAG1, SERPINB2, FOXC1, ATF3)108-110, and numerous IE, early, and late lytic genes. 260 

 We next focused on individual genes that are differentially expressed between the clusters. 261 

We specifically chose STAT3 and MYC because they have been established as key regulators of 262 

EBV lytic reactivation54,56,57,59 (Fig. 2E). In line with these published results, MYC expression was 263 

strongly anti-correlated with BZLF1 induction (Fig 2E, bottom left panel). STAT3 expression, 264 

which has been previously shown to be upregulated in cells refractory to lytic reactivation59, was 265 

likewise anti-correlated with expression of BZLF1 (Fig. 2E, bottom middle panel). STAT3 and 266 

MYC expression were positively correlated and highest in unstimulated (cluster A) and abortive 267 

(cluster C) cells (Fig. 2E, bottom right panel). Prediction of transcription factor activities based on 268 

gene regulatory network (GRN) enrichment likewise identified enhanced STAT3 (and NF-B) 269 

target expression in cluster C (Fig. S5). RNA Flow-FISH detection of BZLF1 and MYC validated 270 

scRNA-seq data and provided additional insight with respect to partial versus complete 271 

reactivation indicated by expression of the late lytic gene BLLF1 (Fig. 2F). Specifically, 4HT 272 

treatment induced significant increases in BZLF1+and BLLF1+ cells and a concomitant decrease 273 

in MYC+ cells relative to DMSO-treated controls (Fig. 2F, top and middle panels). Moreover, the 274 

majority of BLLF1+ cells were BZLF1+/MYC- (Fig. 2F, bottom panel). 275 

 Given the observed heterogeneity of phenotypic states before and after lytic induction, we 276 

aimed to better understand the distinct response trajectories of EBV-infected cells using 277 
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pseudotemporal ordering (Fig. 2G). Pseudotime analyses111 are preferable over purely 278 

chronologic sampling for studying biological state transitions due to initial state variability and 279 

asynchronous responses to infection among individual cells26. Root cells (pseudotime=0) for the 280 

reactivation trajectory graph were chosen within clusters A and B since both of these phenotypes 281 

were represented by unstimulated cells (Fig. 2G, top panel). As shown by per cell viral fractions 282 

of captured mRNA transcripts, reactivation generally progresses in pseudotime, with limited viral 283 

expression in abortive cells at intermediate coordinates and high viral expression in fully lytic cells 284 

in late pseudotime (Fig. 2G, bottom panel). Notably, trajectories from both clusters A and B pass 285 

through incomplete reactivation states (C and D, respectively) before convening within the lytic 286 

phenotype (cluster E) at late pseudotime (Fig. 2G).  287 

 Collectively, cluster-resolved expression, MYC and STAT3 profiles, and pseudotime trajectory 288 

analysis enabled us to construct a state model for lytic reactivation in the P3HR1-ZHT system 289 

(Fig. 2H). Unstimulated cells express elevated MYC and STAT3 and may undergo abortive 290 

reactivation in response to 4HT in which BZLF1 expression is minimal while MYC and STAT3 291 

levels are largely maintained. Alternatively, cells may proceed to lytic reactivation, during which 292 

both MYC and STAT3 expression are severely diminished. Although clusters C and E were 293 

connected by a bridge of cells in the UMAP embedding, we cannot make definitive conclusions 294 

from these data alone regarding possible interconversion between abortive and lytic states. While 295 

global mRNA levels decrease along the transition from A to E consistent with host shutoff, the 296 

trajectory from cluster B (unstimulated) through D (intermediate) toward E (lytic) was 297 

characterized by relative increases in total and unique host and viral mRNA content. However, 298 

reduced MYC expression was also observed along the B to E trajectory. Overall, these results 299 

indicated that heterogeneity in unstimulated cells and differential responses to BZLF1 induction 300 

each contributed to the generation of distinct cell states during lytic reactivation. Analysis of gene 301 

expression along state-specific pseudotime trajectories captured these distinct biological 302 

response coordinates (Fig. 2I). For example, trajectories starting from clusters A and B both 303 

exhibited upregulated BZLF1 and net MYC reduction. However, STAT3 expression was 304 

consistently low across B, D, and E while STAT3 increased from A to C and decreased from A to 305 

E. Likewise, dynamic expression of GC B cell and NF-B signature genes along A→(C)→E were 306 

not observed along B→D→E. 307 

 308 

Abortive lytic cells are characterized by high NF-B pathway gene expression 309 

 Abortive lytic replication, or the initiation of the lytic cycle without expression of late lytic genes 310 

/ proteins, has been identified in various systems47,112. We sought to characterize this replication 311 
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sub-state further through analysis of the abortive lytic cells in the cluster C phenotype. Using 312 

markers identified in Fig. 2D we were able to clearly distinguish unstimulated, abortive lytic, and 313 

lytic cells using CD38, BCL2A1, and BLLF1 expression, respectively (Fig. 3A). STAT3+ cells in 314 

the BZLF1+ abortive lytic state (cluster C) notably co-expressed BCL2A1 and other NF-B 315 

pathway target genes (Fig. 3B). RNA Flow-FISH for CD38, BCL2A1, and BLLF1 in cells treated 316 

with DMSO (control), 4HT (lytic), and 4HT + PAA (an abortive lytic model due to inhibited viral 317 

DNA synthesis) confirmed these distinct response states (Fig. 3C, Fig. S6). This experiment 318 

confirmed that CD38 RNA was primarily expressed in unstimulated cells and decreased upon 319 

4HT treatment. BLLF1 (gp350) RNA was almost exclusively expressed in 4HT treated cells, and 320 

its expression was blocked upon PAA treatment as expected. BCL2A1 RNA was significantly 321 

elevated in 4HT + PAA-treated cells, especially by 48 hours post-treatment (Fig. 3D). Thus, these 322 

markers reliably delineated latent, abortive, and lytic phenotypes identified from scRNA-seq as 323 

clusters A, C, and E. 324 

 Because EBV LMP-1 partially mimics the activated CD40 receptor that induces NF-B 325 

signaling, we reasoned that LMP-1 might be associated with the abortive lytic phenotype. 326 

However, LMP-1 expression was largely restricted to cluster E (Fig. 3E), consistent with its 327 

transcription during the lytic cycle113,114. This observation suggested that the abortive lytic 328 

phenotype and associated NF-B signaling was not dependent upon LMP-1 expression. We 329 

confirmed this finding through FACS detection of gp350 (lytic cells) and ICAM1, a surface-330 

expressed proxy for NF-B pathway transcriptional activation (and in this context, abortive 331 

reactivation). Untreated P3HR1-ZHT cells did not express gp350 or ICAM1 (Fig. 3F, Fig. S7). 332 

Treatment with 4HT induced expression of both gp350 and ICAM1; notably, expression of these 333 

proteins was observed in distinct cell subpopulations, supporting our finding that NF-B signaling 334 

was primarily active in cells that had not entered the full lytic cycle. Accordingly, co-treatment with 335 

4HT + PAA to induce an abortive lytic state by blocking viral DNA synthesis led to increased 336 

ICAM1+ cell frequency consistent with the BCL2A1 upregulation observed in Fig. 3D. Conversely, 337 

co-treatment with 4HT and an inhibitor of IKK (a key component of NF-B signaling) eliminated 338 

ICAM1 expression, but did not increase gp350 expression. These results demonstrated that NF-339 

B signaling is a feature of abortive lytic cells that is independent of LMP-1 activity, but does not 340 

restrict late viral gene expression. 341 

 342 

Lytic subpopulations are reprogrammed to stem-like plasticity during EBV reactivation 343 

 We next focused on the lytic fate by analyzing cells in cluster E. Paradoxically, lytic cells in 344 

cluster E collectively expressed the most unique genes (i.e., transcript diversity) of any cluster 345 
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despite having low mRNA density per cell consistent with host shutoff (Fig. 4A). In addition to 346 

differences in early and late lytic gene expression across cluster E (Fig. 1F), this observation was 347 

consistent with enhanced cell-to-cell variability in gene expression. We therefore subclustered 348 

cells at higher resolution to examine heterogeneity among lytic subpopulations (Fig. 4B). This 349 

yielded three subclusters of BZLF1+ cells – one with high late gene expression corresponding to 350 

complete reactivation (cluster E1) and two with comparatively lower late gene expression (clusters 351 

E2 and E3). Differential expression analysis by subcluster revealed remarkably broad cellular 352 

plasticity and developmental pluripotency signatures in E2 and E3 (Fig. 4C). Although MYC was 353 

downregulated, the master pluripotency regulators POU5F1 (OCT4), SOX2, KLF4, NANOG, and 354 

LIN28A were expressed in E2 and E3115-120. Intriguingly, many essential transcriptional regulators 355 

of pluripotency exit and germ layer specification were also co-expressed with BZLF1+ in E2 and 356 

E3 lytic subpopulations. Expression of ALDH1A1, ALPL, ITGA6, CD44, PROM1 (CD133), LGR5, 357 

and YAP1 upregulated in the E2 and E3 phenotypes was consistent with cancer hallmarks 358 

including cell plasticity, self-renewal, and drug-tolerant persistence68,121-126. Related to YAP1 359 

expression, we identified distinct Hedgehog127, Notch128, and Wnt129,130 signaling pathway 360 

signatures in E2 and E3 lytic phenotypes as well as Hippo-independent YAP pathway131 361 

components reported in cancer. E3 cells also expressed genes encoding several PIWI-like family 362 

proteins, which protect germline cell genomes from transposable element insertion, maintain 363 

stemness, and are upregulated in some cancers132-135. 364 

 In total, 6,900 of 26,728 cells (25.8%) across all sampled timepoints expressed BZLF1 365 

transcripts. Co-expression of genes including ALDH1A1 and SOX2 in a subset of BZLF1+ cells 366 

demonstrated an association between cellular plasticity and EBV lytic reactivation (Fig. 4D). GRN 367 

analysis further supported a role for SOX2 transcriptional activity in a fraction of lytic cells (Fig. 368 

S9). RNA Flow-FISH validated ALDH1A1 and SOX2 expression in BZLF1+ cells in 4HT treated 369 

P3HR1-ZHT cultures (Fig. 4E, Fig. S8). We also used flow cytometry to validate increased 370 

expression of the CSC biomarkers CD44, CD133 (PROM1), and CD166 (ALCAM) at the protein 371 

level in gp350+ cells (late lytic) relative to gp350- subsets across treatment conditions (Fig. 4F, 372 

Fig. S10).  373 

 We next examined whether lytic cycle initiation was sufficient to induce CSC-associated 374 

pluripotency expression or if successful viral DNA synthesis was required. To do so, we used 375 

RNA Flow-FISH to detect BZLF1, ALDH1A1, and BLLF1. ALDH1A1 was expressed in 376 

BZLF1+BLLF1+ cells following 4HT treatment, consistent with its expression in late stages of lytic 377 

reactivation (Fig. 4G, left and middle panels). Consistent with a role for viral DNA replication in 378 

CSC gene induction, co-treatment with PAA and 4HT diminished BZLF1+BLLF1+ cell frequency 379 
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and ablated ALDH1A1 expression (Fig. 4G, right panel). Collectively, these data support a unique 380 

program of cellular plasticity induced in the late phase of EBV lytic reactivation. 381 

 382 

Host shutoff escapees in lytic subclusters exhibit distinct ontologies 383 

 Because lytic subclusters identified at high resolution displayed distinct cellular 384 

transcriptomes, we asked whether host shutoff responses differed among lytic cells. RNA for 385 

BGLF5, an early EBV lytic gene that mediates host shutoff107, was detected at variable levels 386 

across lytic cells and inversely correlated with per cell mRNA feature density as expected (Fig. 387 

5A). Moreover, transcripts for genes previously found to escape host shutoff109,110 were identified 388 

in each lytic subcluster (E1, E2, and E3) (Fig. 5B-C). Host shutoff escapee expression could be 389 

broadly categorized by two patterns – some escapees (e.g., C19orf66, CDKN1B) were expressed 390 

in unstimulated P3HR1-ZHT cells and retained across abortive and lytic cells, whereas other 391 

escapees (e.g., IL6, SERPINB2, LHX1, JAG1) were exclusively expressed in lytic cells (Fig. 5C). 392 

Intriguingly, lytic subclusters exhibited different host shutoff escapee profiles. Anecdotally, we 393 

also noted that several escapees in clusters E2 and E3 were related to inflammatory responses 394 

and overlapped with CSC and developmental pluripotency signatures (Fig. 5D). We applied gene 395 

ontology (GO) analyses to differentially expressed genes among lytic subclusters to further 396 

investigate potential biological differences. Cells in E2 displayed significant enrichment of GO 397 

terms related to mRNA splicing and post-transcriptional regulation and epigenetic regulation 398 

versus cells in E3 (Fig. 5E, top panel). RNA processing GO terms were also upregulated in E2 399 

when compared jointly against clusters E3 and A to filter out differences related to transcripts 400 

basally expressed in unstimulated cells (Fig. 5E, bottom panel). Conversely, the top enriched GO 401 

terms in cluster E3 versus E2 were related to cell-cell adhesion, morphogenesis, and diverse 402 

tissue-specific developmental programs (Fig. 5F). Relatively few cellular GO terms were enriched 403 

in fully lytic cells (E1), consistent with extensive host shutoff and predominantly viral gene 404 

expression (Fig. 5G). 405 

 406 

Phenotype validation across viral strain and host background 407 

 Finally, we confirmed key findings through additional independent scRNA-seq experiments 408 

capturing responses of B958-ZHT cell lines to 4HT treatment (Fig. 6) and technical replication in 409 

P3HR1-ZHT (Fig. S13). Unstimulated and 24 h post-4HT B958-ZHT cell libraries were generated 410 

and analyzed as in previous experiments (Fig. 6A). High-resolution cluster annotations from 411 

P3HR1-ZHT scRNA-libraries were mapped to B958-ZHT cells by anchor feature identification and 412 

transfer to evaluate the preservation of biological phenotypes across cell systems (Fig. 6B). Cells 413 
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corresponding to each high-resolution cluster were identified in the B958-ZHT dataset. Viral IE, 414 

early, and late gene expression modules were also scored across B958-ZHT cells and compared 415 

against scores for the three lytic subclusters (Fig. 6C). As in the P3HR1-ZHT system, E1 cells 416 

exhibited high late gene expression consistent with complete reactivation while E2 and E3 cells 417 

displayed reduced late gene scores. In B958-ZHT, the E3 cluster most closely associated with 418 

plasticity and self-renewal signatures had the lowest IE, early, and late expression relative to other 419 

cells in lytic clusters. Prior findings of viral gene anticorrelation with MYC, STAT3, and BCL2A1 420 

(Fig. 6D) and lytic cell upregulation of cancer-associated stem-like pluripotency and host shutoff 421 

escapees (Fig. 6E, Figs. S11-S12) were conserved in B958-ZHT. Thus, our findings in the 422 

P3HR1-ZHT system are applicable across EBV strains and host cell genetic backgrounds. 423 

 424 

DISCUSSION 425 

 The single-cell data presented herein substantially expand and refine transcriptome-wide 426 

contours of host-virus dynamics during the EBV lytic cycle. For example, prior studies discovered 427 

that EBV-infected BL cells are prone versus resistant to reactivation dependent on STAT3 428 

expression, activity, and functions of its downstream transcriptional targets56,57,59. A population of 429 

STAT3-/lo cells in unstimulated P3HR1-ZHT revealed by scRNA-seq (cluster B), which exhibits 430 

globally reduced mRNA levels consistent with cellular quiescence, may be more permissive to 431 

successful reactivation than cells with basally elevated STAT3 (cluster A). Additionally, cells that 432 

undergo abortive replication retain STAT3 expression (and predicted transcriptional activity) after 433 

stimulation, while STAT3 and host transcript loads are drastically reduced in fully lytic cells, 434 

consistent with host shutoff functions exhibited by diverse viruses136-140. Single-cell data are also 435 

consistent with the functional importance of c-MYC in regulating EBV latency versus lytic 436 

reactivation54. MYC expression exhibits cluster-level patterns similar to STAT3, with the notable 437 

exception that MYC is more strongly expressed in cluster B cells – likely due to constitutive 438 

expression resulting from the chr8:chr14 (Ig-MYC) translocation in BL. Single-cell sequencing and 439 

RNA-FiSH results further identify unique upregulation of NF-B and IRF3 pathway transcriptional 440 

targets in abortive lytic cells. Paired with STAT3 and MYC activity, we speculate that this 441 

concerted response might sustain viability and reinforce latency in cells that fail to meet the lytic 442 

switch threshold. 443 

 Acquisition of cellular plasticity within lytic cell subsets in multiple EBV+ B cell models is 444 

particularly striking. Several aspects of the lytic cycle could conceivably contribute to host cell 445 

plasticity through reversing epigenetic repression of lineage-ectopic genes. As observed across 446 

several DNA virus families, EBV genome replication within intranuclear compartments induces 447 
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dramatic reorganization of host chromatin69,70,73,141. Along with this alteration to nuclear 448 

architecture, Zta binding at accessible AP-1 recognition sequences33 (particularly methylated 449 

sites71,72) may reverse epigenetic silencing through supporting nucleosome eviction, 450 

enhancement of chromatin accessibility, and recruitment of transactivators to facilitate aberrant 451 

gene expression43,44. ChIP-seq for Zta has revealed many such potential sites throughout the host 452 

genome, including POU5F1 (Oct-4)42,43. From the viral perspective, Zta binding across the cellular 453 

genome may function as a “sink” that supports bimodal control of the switch between latency (Zta 454 

absence or noise-level expression) and lytic reactivation (high Zta)43. From the host perspective, 455 

our findings suggest that these BZLF1 interactions with cellular DNA and nuclear chromatin 456 

remodeling during later stages the lytic cycle have substantial – and potentially pathogenic – 457 

collateral effects on biological reprogramming. Along these lines, developmental reprogramming 458 

associated with Wnt/-catenin signaling has been observed in single-cell study of HSV-1 lytic 459 

infection74. 460 

 Additionally, DNA damage, antiviral nucleic acid sensing, cytoskeletal rearrangements, and 461 

other major mechanobiological changes that manifest during reactivation may activate intrinsic 462 

responses to cellular injury leading to NF-B and IRF3 signaling 142-144. Paired with lytic-mediated 463 

growth arrest145,146, we speculate that this process may engage cellular senescence and injury 464 

responses that promote autocrine and paracrine cellular reprogramming. An essential feature of 465 

damage-associated induction of cellular pluripotency is upregulation of pro-inflammatory 466 

cytokines such as IL-6147. In both P3HR1-ZHT and B958-ZHT scRNA-seq datasets, IL6 was 467 

exclusive to fully lytic cell subsets. However, IL6R was expressed in abortive cells in P3HR1-ZHT 468 

and most latently infected cells in B958-ZHT. Expression of JAK1/2 and STAT3 in latently infected 469 

cells from both lines was suggestive of an IL-6 response axis (IL6(R)/JAK/STAT3) known to be 470 

activated in hematologic malignancies148. This raises the intriguing possibility that cells from one 471 

reactivation trajectory and viral replication mode (fully lytic cells) might reinforce the survival and 472 

proliferation of tumor cells resulting from an alternative response (abortive, latently infected) 473 

through paracrine mechanisms. In addition to its escape from host shutoff110, IL-6 autocrine 474 

support for latent EBV+ B cell proliferation and its depletion in BZLF1- and BRLF1-deificient 475 

tumors in murine models of EBV-driven lymphoproliferative disease are especially 476 

noteworthy53,149,150. A similar effect has been observed during infection with KSHV, which encodes 477 

a viral IL-6 homolog. Thus, the developmental pluripotency profiles and responses of lytic cell 478 

subsets may be associated with cellular DNA damage responses that have inadvertent 479 

pathogenic effects in EBV+ tumors. Notably, cytokine production by EBV-infected tumor cells 480 

(including abortive lytic cells) has also been proposed to support oncogenesis through 481 
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microenvironment conditioning, polarization of tumor infiltrating lymphocytes, and evasion of T-482 

cell surveillance49,50. 483 

 In summary, our findings support a model of differential response trajectories to EBV lytic 484 

induction. The first determinant in this model is initial cell state, where ground-state STAT3 and 485 

MYC expression and activity predict a ‘high-resistance’, low-probability path to full reactivation. 486 

Conversely, cells with globally reduced transcription and reduced expression of STAT3 (and 487 

MYC) at the time of lytic reactivation traverse a ‘low-resistance’ path with high probability of 488 

complete reactivation. These data have potentially important clinical implications, as they suggest 489 

that quiescent EBV+ tumor cells may be more sensitive to lytic induction therapies. However, a 490 

critical second fate determinant that manifests in lytic cells may complicate this pursuit. To this 491 

point, our scRNA-seq and RNA Flow-FISH results are consistent with the previously identified 492 

role of lytic cycle induction in tumorigenesis46,47,53. Most cells that undergo full reactivation and 493 

new virion release are likely to die. However, some lytic cells undergo profound reprogramming 494 

to plastic CSC-like states that may promote malignancy through multiple mechanisms, even 495 

independent of their own survival. For example, we found transcript-level evidence that lytic cells 496 

could reinforce viral latency and survival of abortive or refractory cells via IL6/JAK2/STAT3 497 

signaling. Additional studies are necessary to explore, dissect, and therapeutically perturb the IL-498 

6/JAK/STAT3 pathway in EBV+ lymphomas. Given these findings, subsequent examinations of 499 

the epigenetic consequences of early EBV reactivation at high resolution should be prioritized, 500 

and the possibility of double-edged consequences of oncolytic therapies should be specifically 501 

examined in detail. Future single-cell approaches should interrogate the frequency of viable 502 

abortive lytic cells151 and the particular changes in chromatin accessibility as well as other 503 

epigenetic features of this phenotype. Similar experimental approaches should be applied to study 504 

clinical EBV+ tumor specimens to understand oncogenic correlates of lytic reactivation in situ.  505 
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MATERIALS AND METHODS 506 

 507 

Cell lines, culture, and treatments 508 

 P3HR1-ZHT cells (derived from the Type 2 EBV+ [P3 strain] Jijoye eBL line) and B958-ZHT 509 

(a marmoset lymphoblastoid cell line transformed with Type 1 EBV [B95-8 strain]) were used in 510 

this study. Each cell line was cultured at 37°C with 5% CO2 in RPMI + 10% FBS (R10) media 511 

(Gibco RPMI 1640, ThermoFisher). To induce lytic gene expression, 4x105 cells/mL for a given 512 

cell line in log-phase growth were treated with 25 nM, 50 nM, or 100 nM 4-hydroxytamoxifen (4HT) 513 

in methanol (4HT, Millipore Sigma). Phosphonoacetic acid (PAA, 1 M) was included in parallel 514 

with lytic induction treatments to inhibit viral DNA synthesis and prevent complete reactivation in 515 

separate experimental groups (i.e., abortive lytic replication). Control groups were prepared via 516 

treatment with 0.1% DMSO (and DMSO + PAA). All treatments for flow cytometry and RNA Flow-517 

FISH experiments described below were performed in triplicate (technical replicates) in 6-, 12-, 518 

or 24-well culture plates. 519 

 520 

Flow cytometry 521 

 Flow cytometric cell cycle analysis of unstimulated and 4HT-treated P3HR1-ZHT cells was 522 

performed using pulsed BrdU incorporation (20 min) and nuclear staining with 7-AAD in fixed cells 523 

(Invitrogen eBioscience BrdU staining kit, cat #8811-6600-42; 7-AAD, cat #00-6993-50) in 524 

addition to surface staining for gp350 (mouse anti-gp350 antibody clone 72A1 prepared in house 525 

then conjugated to Alexa 647 by Columbia Biosciences). Mitochondrial content versus gp350 526 

expression in 4HT-induced cells was assayed using MitoTracker Green (ThermoFisher, cat 527 

#M46750). Flow cytometry was also used to assay surface expression of gp350, CD44, CD133 528 

(PROM1), and CD166 (ALCAM). With the exception of the gp350 antibody, antibodies were 529 

purchased from BioLegend (anti-CD44_FITC, cat #397517; anti-CD133_PE, cat #397903; anti-530 

CD166_PE-Cy7, cat #343911). In these experiments, removal of lytic inducing and control 531 

treatments at 6, 12, or 24 h via media replacement all yielded similar results. Cell were also 532 

stained and gated by viability (ZombieAqua, ThermoFisher, cat #L34965). 533 

 534 

RNA Flow-FISH 535 

 RNA Flow FISH analysis of unstimulated and 4HT-induced P3HR1-ZHT cells (24 and 48 h 536 

post-treatment) was performed using RNA PrimeFlow reagents (ThermoFisher RNA PrimeFlow 537 

Kit Catalog #: 88-18005-210) and validated RNA probes (ThermoFisher. Type 1 probes: 538 

BLLF1_A647. Type 4 probes: BZLF1_A488, BCL2A1_A488. Type 10 probes: BGLF4_A568, 539 
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CD38_A568, ALDH1A1_A568, SOX2_A568). PrimeFlow sample preparation was completed per 540 

ThermoFisher protocol with no adjustments. Briefly, cells were washed, fixed, and permeabilized. 541 

Cells were then incubated with target probes for 2h in a 40°C water bath. Cells were washed and 542 

stored overnight at 4°C and then incubated with a Pre-amplification buffer for 1.5h in a 40°C water 543 

bath followed by a 1.5h incubation in amplification buffer. Cells were then incubated in label 544 

probes for 1 hour in a 40°C water bath, washed with FACS buffer and subsequently analyzed on 545 

a Cytek Aurora. Spectral flow unmixing was performed with SpectroFlo software and uniformly 546 

applied to all samples. Further analysis and gating was completed in FlowJo. 547 

 548 

Single-cell sample and library preparation 549 

 P3HR1-ZHT cells were plated at 4 x 105 cells/ mL in 5 mL R10 then treated with methanol 550 

(mock- 0 h) or with 25 nM 4HT (4-hydroxytamoxifen). The cells incubated in 4HT for 72, 48, and 551 

24 hours then all cells were harvested  for library preparation at the same time. The viabilities of 552 

the 0, 24, 48, and 72 h samples at time of collection were approximately 90%, 80%, 75%, and 553 

75%, respectively. Harvested cells were resuspended at the recommended concentration to 554 

collect approximately 10,000 cells per sample during GEM generation. Single-cell transcriptomes 555 

from all four samples were captured and reverse transcribed into cDNA libraries using the 10x 556 

Genomics Chromium Next GEM Single Cell 3’ gene expression kit with v3.1 chemistry and 557 

Chromium microfluidic controller according to recommended protocols (10x Genomics, 558 

Pleasanton, CA). All cDNA gene expression libraries were pooled for sequencing. 559 

 560 

Sequencing, read alignment, and QC 561 

 Pooled single-cell libraries were sequenced across two lanes of an S2 flow cell on a 562 

NovaSeq6000 (Illumina, San Diego, CA) with 50 bp paired-end reads at a target sequencing 563 

depth of 50,000 reads per cell. Output base calls (.bcl) were assembled into sample-564 

demultiplexed reads (.fastq) using cellranger mkfastq with default settings (10x Genomics, 565 

Pleasanton, CA). Reads were mapped to a concatenated reference genome package (hg38 + 566 

NC_009334 [type 2 EBV]; prepared via cellranger mkref) to generate single-cell expression 567 

matrices by running cellranger count (10x Genomics, Pleasanton, CA). Cellranger output files 568 

(genes.tsv, barcodes.tsv, matrix.mtx) were used to create Seurat data objects in R152-154, which 569 

were subsequently pre-processed using QC filters. Cells and features were included if they met 570 

the following criteria: feature (gene) expression in a minimum of three cells; mitochondrial genes 571 

accounting for < 25% of all transcripts; a minimum of 200 unique expressed genes; < 65,000 total 572 

transcripts to exclude non-singlets. The elevated mitochondrial transcript and total transcript 573 
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cutoffs relative to those used for resting PBMC samples155 were chosen because of the highly 574 

proliferative nature of the P3HR1 cell line, the expectation of apoptosis as one outcome to lytic 575 

reactivation, and the implementation of viability enrichment prior to library preparation described 576 

above. A total of 26,728 cells across the timecourse passed all QC filters (nuntreated = 10,196; n24h 577 

= 7,905; n48h = 5,841; n72h = 3146). 578 

 579 

Data pre-processing, dropout imputation, analysis, and visualization 580 

 A complete list of loaded packages and versions (RStudio sessionInfo() output) is provided 581 

as a supplementary file. Single-cell expression data were analyzed and visualized with R (v4.0.5) 582 

/ RStudio (v2022.07.1+554) using Seurat v4.1.0. Data from each timepoint were analyzed 583 

separated and merged into a single object to support time-resolved analysis. Raw count data 584 

were normalized and scaled prior to feature identification (NormalizeData and ScaleData 585 

functions). Cell cycle scores and phases were assigned based on annotated gene sets provided 586 

in the Seurat package (CellCycleScoring function). Expression data were dimensionally reduced 587 

using principal component analysis of identified variable features (RunPCA), and the first 30 588 

principal components were used for subsequent UMAP dimensional reduction (FindNeighbors, 589 

RunUMAP). Cell clusters were identified at multiple resolutions for phenotype identification and 590 

comparative analysis (FindClusters).  591 

 Biological zero-preserving imputation was applied to correct technical read dropout using 592 

adaptive low-rank approximation (ALRA) of the RNA count matrix156. Data presented throughout 593 

this study was generated from imputed read data. Differential gene expression analysis of the 594 

merged timecourse RNA and imputed (ALRA) assays was performed at multiple clustering 595 

resolutions. Outputs from this analysis are provided as supplementary files. Single-cell gene 596 

expression, co-expression, and cluster-averaged expression were visualized with Seurat 597 

functions (e.g., DimPlot, FeaturePlot, FeatureScatter, VlnPlot, DotPlot, DoHeatmap). Additional 598 

visualization of multi-gene co-expression was generated with the UpSetR package157. 599 

 600 

Pseudotime analysis 601 

 Pseudotime trajectories were calculated for day 0 and merged timecourse datasets using 602 

Monocle3111,158. Briefly, Seurat objects were adapted as cell dataset objects and used to learn 603 

and order cells along pseudotime graphs anchored at manually determined root cells. Calculated 604 

pseudotime values were added as a feature to original Seurat objects and used for subsequent 605 

gene expression analyses. Pseudotime-gene correlation was plotted and fit via smoothing splines 606 

to visualize expression dynamics across clusters (cell phenotypes). 607 
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 608 

Gene ontology and gene regulatory network analyses 609 

 Low and high-resolution cluster gene ontology (GO) enrichment analysis for biological 610 

processes was performed using the enrichGO function in clusterProfiler90. Statistically significant 611 

enrichment results were visualized using the barplot, pairwise_termism, and emapplot functions. 612 

Cluster-level gene regulatory network (GRN) inference of transcription factor activities was 613 

conducted using CollecTRI in the R package decoupleR159,160. 614 

 615 

Statistical analyses 616 

 Raw and adjusted p values (Bonferroni correction) were calculated and provided for all 617 

identified differentially expressed genes from scRNA-seq data (see supplementary tables 1-4). 618 

For conventional flow cytometry and RNA flow-FISH experiments, statistically significant 619 

differences between treatment groups were determined via two-tailed Welch’s t test (n = 3 620 

replicates per condition).   621 
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MAIN FIGURE LEGENDS 659 
 660 

 661 
 662 
Figure 1. EBV lytic reactivation in the P3HR1-ZHT Burkitt Lymphoma line at single-cell 663 
resolution. 664 
(A) Schematic of 4HT-inducible BZFL1 (Zta) expression initiating lytic reactivation in the Burkitt 665 
Lymphoma-derived P3HR1-ZHT cell line. 666 
(B) Flow cytometry validation 24 h after 4HT-induced lytic reactivation and inhibition of complete 667 
reactivation by phosphonoacetic acid (PAA) in P3HR1-ZHT. Cellular expression of the viral 668 
glycoprotein gp350 (encoded by the late lytic gene BLLF1) serves as a proxy for successful 669 
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reactivation. Co-treatment with the viral DNA polymerase inhibitor PAA prevents complete 670 
reactivation by blocking viral DNA replication, which is required for expression of late viral genes 671 
/ gene products including gp350. 672 
(C) RNA Flow-FISH validation of select immediate early (IE), early, and late lytic gene expression 673 
in P3HR1-ZHT. The majority of cells express detectable BZLF1 24 h after 4HT treatment. 674 
Substantial fractions express early genes including the EBV DNA polymerase (BGLF4) and late 675 
genes including BLLF1. However, not all BZLF1+ cells exhibit early and late gene expression, 676 
indicating variable progression of reactivation in individual cells. Asterisks denote significantly 677 
higher expression in 4HT-treated samples versus DMSO controls (n=3 per condition; two-tailed 678 
Welch’s t-test; ***p<0.001). 679 
(D) Experimental design schematic for time-resolved scRNA-seq study of EBV reactivation in 680 
P3HR1-ZHT. Single-cell libraries were prepared from unstimulated cells and from cells at three 681 
timepoints (24 h, 48 h, and 72 h) after 4HT treatment. Libraries were sequenced, mapped to a 682 
multispecies reference genome, integrated into a single data object, and analyzed. 683 
(E) UMAP representation of single cells captured across the experimental timecourse. Plots 684 
display the number of cells in each library after QC filtering. 685 
(F) EBV gene expression overview in merged timecourse scRNA-seq data. (From left to right) 686 
Viral fraction of captured transcripts per cell; scores for an immediate early (IE) expression module 687 
(BZLF1, BRLF1); scores for an early gene expression module (BRRF1, BBLF4, BALF1, LF3, 688 
BARF1, BaRF1, BVLF1, and BALF3); scores for a late gene expression module (BZLF2, BLLF1, 689 
BILF2, BBRF3, BcLF1, BRRF2, BSRF1, BCRF1, and BBRF1). Modules were curated based on 690 
viral expression kinetics determined by CAGE-seq161. 691 
(G) Hierarchically clustered average expression of all detected viral genes by timepoint. 692 
 693 
  694 
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 695 
 696 
Figure 2. P3HR1-ZHT phenotypic heterogeneity and response trajectories during lytic 697 
induction. 698 
(A) P3HR1-ZHT cell clusters identified in merged timecourse data via unsupervised methods. 699 
(B) Cluster composition of cells from individual timepoints. Cluster colors are coded as in 2A. 700 
(C) QC feature distributions by cluster. The total number of mapped reads per cell is given by 701 
nCount_RNA. The number of unique RNA features (i.e., genes, lncRNAs) per cell is given by 702 
nFeature_RNA. The viral fraction of mapped reads per cell (viral.pct)  and mitochondrial transcript 703 
fractions (percent.mt) were calculated using the PercentageFeatureSet() function in Seurat152,154. 704 
(D) Differential RNA expression by cluster. Sequences are annotated by their known biological 705 
roles and functions derived from gene ontology (GO) analysis and primary literature. Dot size 706 
represents the percentage of cells in each cluster that express a given gene and color encodes 707 
average expression across the cluster. 708 
(E) UMAP expression profiles (top row) and pairwise correlation plots (bottom row, Pearson R) 709 
for BZLF1, MYC, and STAT3. Correlation plots depict individual cells colored by cluster. 710 
(F) RNA Flow-FISH validation of reduced MYC expression in BZLF1+BLLF1+ cells (top panel). 711 
Asterisks in the middle panel bar plot denote significantly reduced frequency of MYC+ P3HR1-712 
ZHT cells and increased frequencies of BZLF1+ and BLLF1+ cells after 4HT treatment (n=3 per 713 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 14, 2024. ; https://doi.org/10.1101/2024.06.14.598975doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.14.598975
http://creativecommons.org/licenses/by/4.0/


 27 

condition; two-tailed Welch’s t-test; ***p<0.001). Asterisks in the bottom panel bar plot denote 714 
significantly increased frequencies of BZLF1+MYC+ and BZLF1+MYC- cells after 4HT treatment 715 
(n=3 per condition; two-tailed Welch’s t-test; **p<0.01). 716 
(G) UMAP of graph-based pseudotime trajectory calculation for timecourse-merged scRNA-seq 717 
data. Trajectory root cells were selected from both clusters A and B, which were present in the 718 
unstimulated (day 0) P3HR1-ZHT library (top panel). Viral read content in individual cells ordered 719 
by pseudotime and coded by cluster (bottom panel). 720 
(H) Cluster- and pseudotime-informed annotated cell state model of EBV lytic reactivation in 721 
P3HR1-ZHT. Solid line arrows denote cell response trajectories supported by time-resolved 722 
scRNA-seq data. The dashed line denotes a putative state interconversion. 723 
(I) Gene expression dynamics along distinct pseudotime trajectories in the lytic reactivation 724 
timecourse. Highlighted genes were selected from those differentially expressed across 725 
unstimulated, abortive, and fully lytic cells. 726 
 727 
 728 
  729 
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 730 
 731 
Figure 3. Validation of an abortive response with elevated NF-B activity distinct from full 732 
lytic reactivation. 733 
(A) Identification of CD38, BCL2A1, and BLLF1 as respective biomarkers for unstimulated, 734 
abortive, and lytic P3HR1-ZHT cells. 735 
(B) Co-detection of BZLF1 and NF-B pathway transcriptional targets in abortive cells (co-positive 736 
cells in red) by timepoint. 737 
(C) RNA Flow-FISH validation of full (BLLF1+) and abortive (BCL2A1+) reactivation as orthogonal 738 
responses. DMSO control-treated cells are predominantly CD38+ and exhibit minimal 739 
spontaneously lytic (full or abortive) cells (top panel). 4HT treatment induces distinct full lytic and 740 
abortive subsets (middle panels). Inhibition of viral DNA synthesis with PAA blocks full lytic 741 
reactivation and increases the frequency of BCL2A1+ abortive cells (bottom panels). Colored 742 
circles denote predicted corresponding model states defined from scRNA-seq. 743 
(D) Frequencies of CD38+ and BCL2A1+ cells presented in 3C by treatment condition at 24 h and 744 
48 h. Asterisks denote significantly decreased frequencies of CD38+ cells and increased 745 
frequencies of BCL2A1+ cells upon 4HT and 4HT+PAA treatment versus respective control 746 
treatments (n=3 per condition; two-tailed Welch’s t-test; **p<0.01). 747 
(E) EBV LMP-1, which encodes a potent activator of NF-B signaling, is expressed in late lytic 748 
cells (left panel) but not associated with abortive cells that exhibit upregulated NF-B 749 
transcriptomic signature including BCL2A1 (right panel, Pearson R=-0.06). 750 
(F) Flow cytometry analysis of protein biomarkers of full lytic reactivation (gp350) and NF-B 751 
activity (ICAM1). Consistent with mRNA measurements, separate gp350+ and ICAM1+ 752 
populations are induced following 4HT treatment. Co-treatment with PAA reduces gp350+ cell 753 
frequency and increases ICAM1+ fractions. IKK inhibitor co-treatment reduces ICAM1+ cell 754 
frequency but does not substantially affect gp350+ cell frequency. 755 
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 756 
 757 
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 759 
 760 
Figure 4. Cancer-associated cellular plasticity and self-renewal signature identification in 761 
EBV lytic cell subsets. 762 
(A) Total mapped RNA reads per cell (top panel) versus total unique genes expressed across 763 
each cluster (bottom panel). 764 
(B) Unsupervised identification of high-resolution subclusters across P3HR1-ZHT timecourse 765 
scRNA-seq data. 766 
(C) Differentially expressed genes upregulated in lytic subclusters (E1, E2, and E3). Genes were 767 
identified by comparing each subclusters versus all others, summarized by gene ontology 768 
methods, cross-referenced against primary literature, and curated by biological annotation. 769 
(D) Co-expression of BZLF1 and genes associated with cellular pluripotency and cancer 770 
stemness (SOX2, ALDH1A1) in single cells (co-positive cells in red) by timepoint. 771 
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(E) RNA Flow-FISH validation of ALDH1A1 and SOX2 expression in BZLF1+ cells (top panel). 772 
Frequencies of ALDH1A1+ and SOX2+ cells significantly increase in response to 4HT induction of 773 
the lytic cycle versus DMSO control treatment (bottom panel; n=3 per condition; two-tailed 774 
Welch’s t-test; ***p<0.001; **p<0.01). 775 
(F) Flow cytometry protein level validation of elevated CD44 and CD133 expression in gp350+ 776 
versus gp350-  P3HR1-ZHT cells. 777 
(G) RNA Flow-FISH analysis of ALDH1A1 expression by lytic cycle progression. Rare 778 
spontaneously reactivated BZLF1+BLLF1+ cells express ALDH1A1 without lytic induction 779 
treatment (left panel). The frequency of BZLF1+BLLF1+ALDH1A1+ cells increases upon 4HT 780 
treatment (middle panel). ALDH1A1+ P3HR1-ZHT cells are significantly enriched after 4HT 781 
treatment but not in the context of co-treatment with PAA to block viral DNA synthesis (right panel; 782 
n=3 per condition; two-tailed Welch’s t-test; ***p<0.001; **p<0.01; *p<0.05). 783 
 784 
 785 
  786 
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 787 
 788 
Figure 5. Distinct virus-mediated host shutoff responses and escapees in lytic subclusters. 789 
(A) UMAP representation of host shutoff mediator BGLF5 expression (left panel) and per cell 790 
feature RNA (right panel) in P3HR1-ZHT timecourse scRNA-seq data. 791 
(B) Module scores for a curated set of genes that escape host shutoff (GADD45B, IL6, CCND1, 792 
IL1R1, JAG1, SERPINB2, EPHB2, FOXC1, ATF3, ZNF526, P2RY11, and HES4) by high 793 
resolution cluster. 794 
(C) Subcluster-level expression of host shutoff escapees curated from primary literature. 795 
(D) Detail of distinct host shutoff escapee signatures in two lytic subclusters (E2 and E3). 796 
(E) Biological process gene ontology (GO) analysis for genes upregulated in lytic subcluster E2 797 
versus E3 (top panel) and E2 versus E3 + A (unstimulated cells). 798 
(F) Biological process GO analysis for genes upregulated in lytic subcluster E3 versus E2. 799 
(G) Biological process GO analysis for genes upregulated in lytic subcluster E1 versus E2 and 800 
E3. 801 
 802 
 803 
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 804 
 805 
Figure 6. Lytic subset reprogramming and host shutoff escape signatures are conserved 806 
in B958-ZHT lymphoblastoid cells. 807 
(A) UMAP representation of scRNA-seq data from the inducible lytic marmoset lymphoblastoid 808 
cell line B958-ZHT before (Unstim) and 24 h after 4HT treatment. 809 
(B) Mapping of cell subclusters defined from P3HR1-ZHT analyses to B958-ZHT scRNA-seq data 810 
via transfer anchor integration (left panel). Subcluster composition is presented for unstimulated 811 
and 4HT-treated cell libraries (right panel). 812 
(C) Viral expression module (IE, early, late) and mapped lytic subcluster scores in timecourse 813 
merged B958-ZHT data. Of note, the assigned subclusters in 6B represent qualitative 814 
classifications based on maximum annotation signature scores for each cell. Accordingly, a given 815 
cell may score highly for more than one related signature while being assigned to a single 816 
classification. The underlying quantitative signature scores for E1, E2, and E3 presented here 817 
thus reflect a lytic phenotypic continuum rather than purely discrete states. 818 
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(D) Conserved anticorrelation between EBV gene expression (Viral_1 module score) and genes 819 
characteristic of unstimulated and abortive phenotypes (MYC, STAT3, BCL2A1). Values denote 820 
pairwise Pearson R coefficients.  821 
(E) Conservation of key gene expression signatures identified from P3HR1-ZHT (a BL cell line) 822 
within B958-ZHT (a lymphoblastoid cell line) during EBV lytic reactivation. 823 
 824 
  825 
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SUPPORTING FIGURE LEGENDS 826 
 827 
 828 
Figure S1. Flow cytometry replicates for gp350 expression in P3HR1-ZHT cells. 829 
(A) Lymphocyte, singlet, live-cell, and gp350+ gating for unstimulated cells. 830 
(B) The same gating strategy as above applied for 4HT-treated cells. 831 
(C) The same gating strategy as above applied for cells co-treated with 4HT and PAA. 832 
 833 
 834 
Figure S2. RNA Flow-FISH replicates for IE, early, and late lytic gene expression in P3HR1-835 
ZHT cells. 836 
(A) Co-expression of BZLF1 with BGLF4 or BLLF1 in DMSO control treatment and 4HT-induced 837 
reactivation. 838 
(B) Co-expression of BZLF1, BGLF4, and BLLF1 (red cells) in DMSO control treatment and 4HT-839 
induced reactivation. 840 
 841 
 842 
Figure S3. Dot plot of cluster-resolved EBV expression annotated by latent and lytic genes. 843 
 844 
 845 
Figure S4. Cell cycle and mitochondrial features of P3HR1-ZHT cells. 846 
(A) Cell cycle phase annotations in P3HR1-ZHT scRNA-seq data. 847 
(B) Flow cytometry cell cycle analysis in unstimulated and 4HT-treated P3HR1-ZHT cells with 848 
gp350+ cells highlighted. 849 
(C) MitoTracker staining by gp350 status in 4HT-treated P3HR1-ZHT cells. 850 
 851 
 852 
Figure S5. Transcription factor activity prediction in abortive P3HR1-ZHT cells. 853 
 854 
 855 
Figure S6. RNA Flow-FISH replicates for CD38, BCL2A1, and BLLF1 expression in P3HR1-856 
ZHT cells. 857 
(A) Technical controls, 24 h, and 48 h responses to DMSO, 4HT, and 4HT+PAA for BCL2A1 858 
versus BLLF1 expression. 859 
(B) Technical controls, 24 h, and 48 h responses to DMSO, 4HT, and 4HT+PAA for CD38 versus 860 
BLLF1 expression. 861 
(C) Technical controls, 24 h, and 48 h responses to DMSO, 4HT, and 4HT+PAA for BCL2A1 862 
versus CD38 expression. 863 
 864 
 865 
Figure S7. Quantification and statistical analysis of gp350+ cell frequencies in P3HR1-ZHT 866 
dependent on 4HT-induced reactivation, PAA inhibition of viral DNA synthesis, and NF-B 867 
pathway inhibition. 868 
Statistical comparisons between groups (n=3 replicates per treatment condition) were evaluated 869 
via Welch’s two-tailed t tests (***p<0.001) 870 
 871 
 872 
Figure S8. RNA Flow-FISH replicates for ALDH1A1 and SOX2 expression in BZLF1+ P3HR1-873 
ZHT cells with and without 4HT treatment. 874 
 875 
 876 
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Figure S9. Prediction of transcription factor activity associated with reprogrammed 877 
pluripotency in lytic P3HR1-ZHT cells. 878 
(A) SOX2 scRNA-seq expression and gene regulatory network activity. 879 
(B) Hierarchical clustering of predicted TF activities by P3HR1-ZHT subcluster. 880 
 881 
 882 
Figure S10. Flow cytometry replicates for CD44, CD133 (PROM1), and CD166 (ALCAM) 883 
expression in P3HR1-ZHT cells. 884 
(A) Controls, gating, and stemness biomarker expression by gp350 status in unstimulated cells. 885 
(B) Controls, gating, and stemness biomarker expression by gp350 status in 4HT-treated cells. 886 
(C) Controls, gating, and stemness biomarker expression by gp350 status in cells co-treated with 887 
4HT and PAA. 888 
 889 
 890 
Figure S11. Flow cytometry replicates for gp350 expression in B958-ZHT cells. 891 
(A) Controls, gating, and gp350 expression in unstimulated cells. 892 
(B) Controls, gating, and gp350 expression in 4HT-treated cells. 893 
(C) Controls, gating, and gp350 expression in cells co-treated with 4HT and PAA. 894 
 895 
 896 
Figure S12. Flow cytometry replicates for CD44, CD133 (PROM1), and CD166 (ALCAM) 897 
expression inB958-ZHT cells. 898 
(A) Controls, gating, and stemness biomarker expression by gp350 status in unstimulated cells. 899 
(B) Controls, gating, and stemness biomarker expression by gp350 status in 4HT-treated cells. 900 
(C) Controls, gating, and stemness biomarker expression by gp350 status in cells co-treated with 901 
4HT and PAA. 902 
 903 
 904 
Figure S13. Independent scRNA-seq replicate validation of key heterogeneous responses 905 
in P3HR1-ZHT cells. 906 
(A) Overview of P3HR1-ZHT replicate experiment treatments (methanol control and 4HT) and 907 
identified clusters. 908 
(B) UMAP visualization of global QC metrics (top row), differential abortive and lytic responses 909 
correlated with STAT3 and MYC levels (2nd and 3rd rows), and upregulated pluripotency signature 910 
in lytic cell subsets (4th and 5th rows).  911 
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