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ABSTRACT

Viral infection leads to heterogeneous cellular outcomes ranging from refractory to abortive
and fully productive states. Single cell transcriptomics enables a high resolution view of these
distinct post-infection states. Here, we have interrogated the host-pathogen dynamics following
reactivation of Epstein-Barr virus (EBV). While benign in most people, EBV is responsible for
infectious mononucleosis, up to 2% of human cancers, and is a trigger for the development of
multiple sclerosis. Following latency establishment in B cells, EBV reactivates and is shed in
saliva to enable infection of new hosts. Beyond its importance for transmission, the lytic cycle is
also implicated in EBV-associated oncogenesis. Conversely, induction of Iytic reactivation in
latent EBV-positive tumors presents a novel therapeutic opportunity. Therefore, defining the
dynamics and heterogeneity of EBV lytic reactivation is a high priority to better understand
pathogenesis and therapeutic potential. In this study, we applied single-cell techniques to analyze
diverse fate trajectories during lytic reactivation in two B cell models. Consistent with prior work,
we find that cell cycle and MYC expression correlate with cells refractory to lytic reactivation. We
further found that lytic induction yields a continuum from abortive to complete reactivation.
Abortive lytic cells upregulate NFKB and IRF3 pathway target genes, while cells that proceed
through the full Iytic cycle exhibit unexpected expression of genes associated with cellular
reprogramming. Distinct subpopulations of lytic cells further displayed variable profiles for
transcripts known to escape virus-mediated host shutoff. These data reveal previously unknown
and promiscuous outcomes of lytic reactivation with broad implications for viral replication and

EBV-associated oncogenesis.
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AUTHOR SUMMARY / SIGNIFICANCE

Viral infections profoundly alter host cell biological programming in ways that potentiate
disease. Epstein-Barr virus (EBV) is a particularly prevalent human pathogen associated with
diverse cancers and several autoimmune disorders. EBV predominantly establishes latent
infection in B cells and can promote B cell malignancies through functions of well-characterized
latent oncoproteins. Aspects of the viral lytic cycle also clearly contribute to EBV-associated
diseases, although pathologic roles of Iytic reactivation are incompletely understood. Here we use
single-cell techniques to examine cellular responses to EBV lytic reactivation in multiple B cell
models. Consistent with prior studies, reactivation from latency is incomplete (abortive) in some
cells and successful in others. Abortive and full Iytic trajectories exhibit distinct biological
responses that each may promote pathogenesis and reinforce bimodal latent-lytic control.
Intriguingly, a portion on cells that proceed through the lytic cycle exhibits unexpected and striking
expression of genes associated with cellular reprogramming, pluripotency, and self-renewal.
Collectively, this study provides a valuable resource to understand diverse host-virus dynamics
and fates during viral reactivation and identifies multiple modes of EBV Iytic pathogenesis to

investigate in future research.
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INTRODUCTION

Viral infections lead to heterogeneous cell fate outcomes including resistance, abortive
infection, latency, or full virion amplification often leading to cell death. Cells that resist viral
infection often display elevated pre-existing anti-viral responses**. Likewise, cell responses that
enable survival following virus replication can prime for further anti-viral responses®®.
Herpesviruses are large double-stranded DNA viruses that provide a unique and complex
infection paradigm to model the heterogeneity of viral infection as they reactivate from a latent
state in response to diverse stimuli.

Epstein-Barr virus (EBV) was the first oncogenic human virus to be discovered’. Since its
isolation from endemic Burkitt Lymphoma (BL) cells in 1964, EBV infection has been linked to an
expansive set of human cancers and, more recently, autoimmune diseases®!!. EBV infection in
immunosuppressed individuals can lead to post-transplant lymphoproliferative disease (PTLD)!?
and HIV-related diffuse large B cell lymphomas (DLBCL)*® as well as up to 40% of Hodgkin
Lymphoma (HL)*. and rare individuals with chronic active EBV (CAEBV) can develop T and NK
cell lymphomas'®!6. Beyond these hematologic malignancies, EBV infection is associated with
epithelial cancers such as nasopharyngeal carcinoma (NPC)Y” and gastric carcinomas®®.
Collectively, EBV causes is or otherwise associated with nearly 2% of all cancers diagnhosed
annually®,

This prevalence in malignant disease vastly underrepresents the success of EBV as a human
pathogen. Globally, it is estimated that over 95% of adults are infected with EBV®. EBV is
transmitted via saliva, which enables the virus to traverse oral epithelial tissues and infect B
lymphocytes within the tonsils?°. EBV infects B cells via the surface receptor CD21 (CR2)??2 and
rapidly induces B cell adaptive immune programs to mimic germinal center (GC)-like dynamics®
%6 Successful evasion of antiviral defenses, immune tolerance checkpoints, and growth-induced
damage?”?° allows memory B cells latently infected with EBV to exit from this virus-manipulated
GC reaction. Viral latency establishment within the memory B cell compartment yields lifelong
persistence®3L, Lytic reactivation from this latent state triggers the production of new virions and
is essential to the replicative cycle and transmission between hosts. The lytic gene program is
transcriptionally orchestrated by two immediate early (IE) lytic genes: BZLF1 (encodes for the
transcription factor Zta/ Z / ZEBRA) and BRLF1 (encodes for the transcription factor Rta / R)3%34,
While Zta and Rta both play essential roles in lytic reactivation, Zta is the master lytic
transactivator in B cells. BZLF1 expression is induced upon cell differentiation and stress®*%, a
prototypical example being post-GC B cell differentiation into plasmablasts®’. Host cell

transcriptional regulators of plasma cell generation including XBP1 and BLIMP1 (PRDM1) induce
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99  EBV lytic reactivation via direct transactivation of the BZLF1 promoter¥-4°, Zta then transactivates
100 subsequent expression of early and late lytic genes by binding at Z-responsive elements (ZREs)
101  throughout the viral genome*!. As an AP-1 family homolog®3, Zta also binds loci throughout the
102 host genome*? and has characteristics of a ‘pioneer’ transcription factor. Consistent with this,
103  BZLF1 expression and the early stages of EBV reactivation cause considerable alterations to the
104  host cell epigenome and resulting gene expression*344,

105 Prior work suggests that lytic gene expression is functionally important for tumorigenesis.
106  Notably, viral strains that carry the NFATcl-responsive Z promoter variant Zp-V3 exhibit
107 increased lytic replication and are enriched in EBV-associated cancers relative to strains with
108 prototypical Zp*. In SCID and NSG mouse models with reconstituted human immune systems,
109 significantly fewer animals developed EBV* lymphomas after infection with BZLF1 knockout virus
110 versus a wild-type (WT) control strain®®. Further, infection with a Zta-overexpressing strain that
111 failed to complete reactivation (i.e., abortive lytic) promoted tumor growth in mice similar to WT
112 EBV*. Recent experiments in immunocompromised mice confirmed the tumorigenic role of
113 abortive lytic infection by using EBV lacking the BALF5 gene, which encodes a viral DNA
114  polymerase subunit essential for lytic replication*®. These studies demonstrated that expression
115 of BZLF1 (and possibly other early lytic genes) contributes to tumorigenesis in vivo regardless of
116 the potential for horizontal infection of bystander cells by new virions. While detailed insights
117 regarding the oncogenic effects of successful or abortive lytic replication are limited, tumor
118 microenvironment inflammatory conditioning by cytokines secreted from reactivating cells has
119  been proposed**-=3,

120 Another complication in the relation between viral reactivation and oncogenicity stems from
121  observations that a significant proportion of EBV-infected tumor cells are resistant or otherwise
122  refractory to lytic reactivation. In Burkitt Lymphoma-derived P3HR1 and Akata cells, high
123  expression of the oncoprotein c-Myc promotes viral latency maintenance and suppresses lytic
124  reactivation via direct interaction with the origin of lytic replication (oriLyt) and inhibition of
125 chromatin looping to activate BZLF1 expression®*. Accordingly, MYC suppression facilitates
126 BZLF1 expression and the subsequent induction of viral lytic genes. It is noteworthy that
127  constitutive oncogene expression favors viral genome propagation through proliferation of latently
128 infected host cells whereas lytic replication becomes a more advantageous strategy in its
129 absence. Similarly, BL-derived cells refractory to lytic reactivation have also been found to
130 express high levels of STAT3%%7, which functions as an oncogene in B cells and inhibits
131  apoptosis via induction of BCL2 expression. Beyond simply being expressed by refractory cells,

132 STATS3 antagonizes lytic reactivation of EBV* cells through the functions of its transcriptional
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133 targets®®. In fact, LCLs derived from patients with autosomal dominant hyper-IgE syndrome (AD-
134  HIES), a disease that leads to non-functional STAT3 activity, went lytic at a higher rate than LCLs
135 derived from healthy donors®8. Given the therapeutic potential of drug-induced lytic reactivation
136 followed by viral DNA synthesis inhibition to treat EBV-latent cancers, investigators are actively
137  exploring means to make refractory cells more sensitive to lytic induction®®-%!, However, such
138 efforts should be weighed against the known associations between the EBV lytic cycle and
139 oncogenesis, which remain to be fully elucidated.

140 Many EBV gene products contribute to virus-driven malignancies by mediating functions
141  associated with cancer hallmarks including uncontrolled proliferation, tumor suppressor inhibition,
142  epigenetic reprogramming, genome instability, apoptotic resistance, and immune evasion®. EBV*
143 cells with cancer stem cell (CSC) features have also been reported in NPC and gastric
144  carcinoma®*®*, suggesting the potential for cellular self-renewal associated with infection. In the
145 CSC model, a small subset of tumor cells retain the capacity for self-renewal and proliferation
146  through activation of signaling pathways (e.g., Wnt, Notch), transactivators of the epithelial-to-
147  mesenchymal (EMT) transition, and critical regulators of pluripotency (e.g., SOX2, OCT4). CSCs
148 may serve as progenitors for other tumor cells, especially in lymphoid malignancies that are
149  derived from cells of origin that intrinsically retain self-renewal properties to support immunologic
150 memory®®’, Aberrant expression of self-renewal genes and other CSC biomarkers® may
151  originate from significant (epi)genomic reprogramming and result in cellular phenotypic plasticity.
152  Lytic replication of EBV (and DNA viruses from several other families®) clearly constitutes a major
153 reprogramming event for the host cell. Nuclear chromatin is globally disrupted by IE gene
154  expression, the formation of viral replication compartments, and the accumulation of viral
155 DNA®7 Moreover, preferential binding of BZLF1 to methylated promoters can reverse
156 epigenetic silencing of both EBV and cellular genes through nucleosome eviction, resulting in
157  heterochromatin-to-euchromatin conversion* 773 While evidence for stem-like reprogramming
158 and CSC gene expression during the EBV lytic cycle has not been reported to our knowledge, it
159 is noteworthy that reactivation of HSV-1 (another herpesvirus) induces embryonic development
160 programs including Wnt/B-catenin activity that licenses late viral gene expression’.

161 These previous studies demonstrate that EBV reactivation from latency is a complex process
162 that culminates in heterogeneous host cell responses germane to the progression of virus-
163 associated cancers. Single-cell sequencing techniques are particularly well suited to dissect the
164  inherent complexity of host-virus interactions and their effects on cell fate’*"". In recent studies of
165 early EBV infection®?® and established latency’®’®, we have used single-cell sequencing to

166  successfully resolve and study diverse phenotypes arising from complex host-pathogen


https://doi.org/10.1101/2024.06.14.598975
http://creativecommons.org/licenses/by/4.0/

167
168
169
170
171
172
173
174
175

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.14.598975; this version posted June 14, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

dynamics. We reasoned that a similar high-resolution experimental and informatic approach
would clarify distinct courses of lytic reactivation, provide essential data for future studies of viral
pathogenesis, and inform potential therapeutic strategies to address EBV-driven oncogenesis. To
this end, we performed time-resolved single-cell RNA sequencing (scRNA-seq), flow cytometry,
and RNA Flow-FISH (fluorescence in situ hybridization) in P3HR1-ZHT cells to define initial cell
state diversity, differential fate trajectories, and previously unknown lytic response phenotypes
within this widely used EBV* Burkitt Lymphoma model. Cellular transcriptomic responses to lytic
reactivation were investigated with respect to IE and early versus late viral gene programs and
subsequently validated in the B958-ZHT LCL.
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176 RESULTS

177
178  Heterogeneous responses to EBV lytic reactivation in individual cells
179 P3HR1-ZHT cells are an inducible model of EBV Iytic reactivation (Fig. 1A). This model

180 system constitutively expresses the EBV immediate early lytic transactivator Zta (encoded by the
181 BZLF1 gene) fused with a modified murine estrogen receptor hormone binding domain. While the
182 encoded fusion protein is normally rapidly degraded, addition of 4-hydroxytamoxifen (4HT)
183 stabilizes it and promotes its nuclear translocation, whereupon the Zta domain binds and
184 transactivates Zta-responsive elements (ZRESs) in both host and viral genomes. Because Zta has
185 positive regulatory control of its own promoter via ZRE binding®, 4HT treatment also leads to
186 expression of endogenous BZLF1, thus initiating viral lytic reactivation. Although all cells in the
187 P3HR1-ZHT line express the inducible construct, it has been observed that complete EBV lytic
188 reactivation occurs only in a subset of 4HT treated cells®:82,

189 We confirmed inducible yet non-uniform viral reactivation of P3HR1-ZHT cells in response to
190 4HT treatment using FACS staining for the viral glycoprotein gp350, which was expressed in cells
191 that reached the late stage of lytic reactivation. Unstimulated P3HR1-ZHT cells expressed
192  minimal gp350 (1.1%), but treatment with 100 nM 4HT for 24 hours resulted in gp350 expression
193 in 19.2% of cells. When we simultaneously treated cells with 4HT and PAA, an inhibitor of viral
194  DNA replication, we observed a significant reduction in gp350 expression by 24 hours (Fig. 1B,
195 Fig. S1). These results indicated that cells exhibited heterogenous responses to viral lytic
196 reactivation and that completion of the full lytic cycle was dependent upon successful viral DNA
197 replication, which has been previously described in herpesviruses®*®’. We expanded upon these
198 gp350 FACS results using RNA Flow-FISH assays to detect viral RNAs from genes expressed at
199 different stages of the lytic cycle: the immediate early lytic gene BZLF1, the early lytic gene
200 BGLF4, and the late lytic gene BLLF1. After 24 hours of 4HT treatment, we observed a significant
201 increase in expression of all three lytic transcripts compared to mock treated cells. However, there
202 was a stepwise decrease in expression level between early and late lytic genes (Fig. 1C, Fig.
203  S2). These results confirmed that a significant proportion of Z-HT induced P3HR1 cells were
204  refractory to full lytic reactivation.

205 Since we observed heterogeneous responses upon lytic reactivation, we applied time-
206  resolved single-cell RNA sequencing (scRNA-seq) to study the concurrent cellular responses in
207  the P3HR1-ZHT system after 24, 48, and 72 hours of 4HT treatment compared to untreated cells
208 (Fig. 1D). UMAP projection of samples by timepoint demonstrated that substantial transcriptomic

209 changes occurred after 4HT stimulation (Fig. 1E). Cells expressing high levels of viral reads
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210 clustered together, however there was a distinction between cells expressing immediate early,
211  early, and late viral transcripts (Fig. 1F). Analysis of all EBV transcripts identified genes with high,
212  moderate, and low expression; however, all 4HT-treated samples expressed more viral transcripts
213  compared to untreated cells (Fig. 1G). These results confirmed heterogeneous responses to lytic
214  reactivation observed by flow cytometry and enabled subsequent genome-wide analyses.

215

216 Identification of distinct EBV reactivation response clusters

217 Cells from integrated timecourse scRNA-seq libraries were hierarchically clustered by host
218 and viral transcriptome similarity, which led to the identification of five main clusters (Fig. 2A).
219  Unstimulated cells were mostly present in clusters A and B, while clusters C, D, and E primarily
220 comprised 4HT-treated cells across the experimental time course (Fig. 2B) and displayed
221  elevated viral gene expression compared to clusters A and B (Fig. S3). Further examination of
222  these clusters revealed differences in the number of total and unique RNAs, the percentage of
223  viral RNAs, and the percentage of mitochondrial RNAs (Fig. 2C). These differences in unique and
224  total RNA features suggested major phenotypic differences both in unstimulated and reactivated
225 cells. Therefore, we scored the clusters based on cell cycle state and found that there was a
226  decrease in G,/M specific gene expression and an increase in G1 gene expression after 24 hours
227  of 4HT treatment, consistent with EBV lytic reactivation occurring in a pseudo-S phase®*® (Fig.
228  S4A). We confirmed this finding using BrdU/7-AAD staining of untreated versus 4HT-treated cells
229 (Fig. S4B). Consistent with induced cell cycle arrest, lytic reactivation upon 4HT treatment led to
230 a reduction of S phase cells (43.2% vs. 54.3%) and modest increase in Go/G;: cells. Because
231 pulsed BrdU staining does not discriminate cellular and viral DNA synthesis, a portion of S phase
232  4HT-treated cells were likely undergoing viral but not cellular DNA synthesis. This was further
233 evidenced by a significant fraction of gp350* cells within the gated S phase population (Fig. S4B).
234  We also assayed MitoTracker signal stratified by gp350 expression and found that gp350* cells
235 had lower mitochondrial content (Fig. S4C).

236

237 Cells traverse heterogeneous biological response trajectories during lytic reactivation

238 Next, we analyzed differentially expressed genes by cluster and grouped them by ontology
239 using a combined approach with software-based annotation tools®® and primary literature
240  searches (Fig. 2D). Unstimulated cells were almost exclusively present in clusters A and B, which
241  were distinguished from each other by total transcripts and unique features per cell (Fig. 2B-C).
242  Unstimulated cells with high RNA and feature counts (cluster A) exhibited a germinal center (GC)
243 B cell profile including MME (CD10)%, BCL6%%%, BCL11A%, POU2F2 (OCT2)%, and AICDA
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244 (AID)*%®?7. Along with high MYC expression, this phenotype is consistent with the profile of
245  endemic BL from which P3HR1-ZHT is derived. In contrast, unstimulated cells with low RNA and
246  features counts (cluster B) exhibited a cell stress expression signature that included slight
247  enrichment of genes for ribosomal subunits (RPL34, RPS27), nuclear-encoded components of
248  mitochondrial respiratory complexes (COX7C), and the apoptotic resistance genes PTMA® and
249  GSTP1, the latter of which also mediates oxidative stress®. Cluster C, which was comprised of
250 4HT-treated samples, displayed antiviral restriction (APOBEC3G, PPP1R15A, TRIM14, FURIN),
251 inflammatory (CCL4L2, CCL3L1, NKG7), and NF-xB signaling (NFKBIA, ICAM1, CD83, BCL2,
252  BCL2A1) signatures. Cluster D had a similar gene expression pattern to cluster B with the addition
253  of lytic transcripts and several long noncoding RNAs from R-loop “hot spots” (Clorf56,
254  AC092069.1, AC005921.2, AC106707.1) associated with genomic instability related to
255  unscheduled gene expression or DNA synthesis (in contexts including herpesviral reactivation)1°®
256 % Finally, cluster E primarily contained cells that had entered the lytic cycle after 4HT treatment.
257  Lytic cells expressed known host biomarkers of reactivation (SGK1, NHLH1, PRDM1)%,
258 downregulation of genes targeted by virus-induced host shutoff (HLA-A, ACTB, B2M)!% mediated
259 by EBV BGLF5', expression of genes that escape host shutoff (e.g., GADD45B, I1L6, CCND1,
260 JAGI, SERPINB2, FOXC1, ATF3)%11° and numerous IE, early, and late lytic genes.

261 We next focused on individual genes that are differentially expressed between the clusters.
262  We specifically chose STAT3 and MYC because they have been established as key regulators of
263  EBV lytic reactivation®557%° (Fig. 2E). In line with these published results, MYC expression was
264  strongly anti-correlated with BZLF1 induction (Fig 2E, bottom left panel). STAT3 expression,
265  which has been previously shown to be upregulated in cells refractory to lytic reactivation®®, was
266 likewise anti-correlated with expression of BZLF1 (Fig. 2E, bottom middle panel). STAT3 and
267  MYC expression were positively correlated and highest in unstimulated (cluster A) and abortive
268 (cluster C) cells (Fig. 2E, bottom right panel). Prediction of transcription factor activities based on
269 gene regulatory network (GRN) enrichment likewise identified enhanced STAT3 (and NF-«xB)
270 target expression in cluster C (Fig. S5). RNA Flow-FISH detection of BZLF1 and MYC validated
271 scRNA-seq data and provided additional insight with respect to partial versus complete
272  reactivation indicated by expression of the late lytic gene BLLF1 (Fig. 2F). Specifically, 4HT
273 treatment induced significant increases in BZLF1*and BLLF1* cells and a concomitant decrease
274  in MYC® cells relative to DMSO-treated controls (Fig. 2F, top and middle panels). Moreover, the
275  majority of BLLF1* cells were BZLF1*/MYC" (Fig. 2F, bottom panel).

276 Given the observed heterogeneity of phenotypic states before and after lytic induction, we

277 aimed to better understand the distinct response trajectories of EBV-infected cells using

10
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278 pseudotemporal ordering (Fig. 2G). Pseudotime analyses'!! are preferable over purely
279  chronologic sampling for studying biological state transitions due to initial state variability and
280  asynchronous responses to infection among individual cells?®. Root cells (pseudotime=0) for the
281 reactivation trajectory graph were chosen within clusters A and B since both of these phenotypes
282  were represented by unstimulated cells (Fig. 2G, top panel). As shown by per cell viral fractions
283  of captured mRNA transcripts, reactivation generally progresses in pseudotime, with limited viral
284  expression in abortive cells at intermediate coordinates and high viral expression in fully lytic cells
285 in late pseudotime (Fig. 2G, bottom panel). Notably, trajectories from both clusters A and B pass
286  through incomplete reactivation states (C and D, respectively) before convening within the lytic
287  phenotype (cluster E) at late pseudotime (Fig. 2G).

288 Collectively, cluster-resolved expression, MYC and STAT3 profiles, and pseudotime trajectory
289 analysis enabled us to construct a state model for lytic reactivation in the P3HR1-ZHT system
290 (Fig. 2H). Unstimulated cells express elevated MYC and STAT3 and may undergo abortive
291 reactivation in response to 4HT in which BZLF1 expression is minimal while MYC and STAT3
292 levels are largely maintained. Alternatively, cells may proceed to lytic reactivation, during which
293 both MYC and STAT3 expression are severely diminished. Although clusters C and E were
294  connected by a bridge of cells in the UMAP embedding, we cannot make definitive conclusions
295  from these data alone regarding possible interconversion between abortive and lytic states. While
296 global mRNA levels decrease along the transition from A to E consistent with host shutoff, the
297  trajectory from cluster B (unstimulated) through D (intermediate) toward E (lytic) was
298 characterized by relative increases in total and unique host and viral mMRNA content. However,
299 reduced MYC expression was also observed along the B to E trajectory. Overall, these results
300 indicated that heterogeneity in unstimulated cells and differential responses to BZLF1 induction
301 each contributed to the generation of distinct cell states during lytic reactivation. Analysis of gene
302 expression along state-specific pseudotime trajectories captured these distinct biological
303 response coordinates (Fig. 21). For example, trajectories starting from clusters A and B both
304  exhibited upregulated BZLF1 and net MYC reduction. However, STAT3 expression was
305 consistently low across B, D, and E while STAT3 increased from A to C and decreased from A to
306 E. Likewise, dynamic expression of GC B cell and NF-«xB signature genes along A>(C)>E were
307  not observed along B>D->E.

308

309 Abortive Iytic cells are characterized by high NF-«xB pathway gene expression

310 Abortive lytic replication, or the initiation of the lytic cycle without expression of late Iytic genes

311 / proteins, has been identified in various systems?*”12, We sought to characterize this replication

11
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312  sub-state further through analysis of the abortive lytic cells in the cluster C phenotype. Using
313  markers identified in Fig. 2D we were able to clearly distinguish unstimulated, abortive lytic, and
314  lytic cells using CD38, BCL2A1, and BLLF1 expression, respectively (Fig. 3A). STAT3" cells in
315 the BZLF1* abortive lytic state (cluster C) notably co-expressed BCL2A1 and other NF-xB
316 pathway target genes (Fig. 3B). RNA Flow-FISH for CD38, BCL2A1, and BLLF1 in cells treated
317  with DMSO (control), 4HT (lytic), and 4HT + PAA (an abortive lytic model due to inhibited viral
318 DNA synthesis) confirmed these distinct response states (Fig. 3C, Fig. S6). This experiment
319 confirmed that CD38 RNA was primarily expressed in unstimulated cells and decreased upon
320  4HT treatment. BLLF1 (gp350) RNA was almost exclusively expressed in 4HT treated cells, and
321 its expression was blocked upon PAA treatment as expected. BCL2A1 RNA was significantly
322  elevated in 4HT + PAA-treated cells, especially by 48 hours post-treatment (Fig. 3D). Thus, these
323  markers reliably delineated latent, abortive, and lytic phenotypes identified from scRNA-seq as
324  clusters A, C, and E.

325 Because EBV LMP-1 partially mimics the activated CD40 receptor that induces NF-xB
326  signaling, we reasoned that LMP-1 might be associated with the abortive lytic phenotype.
327 However, LMP-1 expression was largely restricted to cluster E (Fig. 3E), consistent with its
328 transcription during the lytic cycle!*®!4 This observation suggested that the abortive lytic
329 phenotype and associated NF-kB signaling was not dependent upon LMP-1 expression. We
330 confirmed this finding through FACS detection of gp350 (lytic cells) and ICAM1, a surface-
331 expressed proxy for NF-kB pathway transcriptional activation (and in this context, abortive
332 reactivation). Untreated P3HR1-ZHT cells did not express gp350 or ICAM1 (Fig. 3F, Fig. S7).
333  Treatment with 4HT induced expression of both gp350 and ICAM1; notably, expression of these
334  proteins was observed in distinct cell subpopulations, supporting our finding that NF-xB signaling
335 was primarily active in cells that had not entered the full lytic cycle. Accordingly, co-treatment with
336 4HT + PAA to induce an abortive lytic state by blocking viral DNA synthesis led to increased
337 ICAM1* cell frequency consistent with the BCL2A1 upregulation observed in Fig. 3D. Conversely,
338  co-treatment with 4HT and an inhibitor of IKKB (a key component of NF-kB signaling) eliminated
339 ICAM1 expression, but did not increase gp350 expression. These results demonstrated that NF-
340 «B signaling is a feature of abortive lytic cells that is independent of LMP-1 activity, but does not
341  restrict late viral gene expression.

342

343 Lytic subpopulations are reprogrammed to stem-like plasticity during EBV reactivation

344 We next focused on the lytic fate by analyzing cells in cluster E. Paradoxically, Iytic cells in

345  cluster E collectively expressed the most unique genes (i.e., transcript diversity) of any cluster
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346  despite having low mRNA density per cell consistent with host shutoff (Fig. 4A). In addition to
347  differences in early and late lytic gene expression across cluster E (Fig. 1F), this observation was
348  consistent with enhanced cell-to-cell variability in gene expression. We therefore subclustered
349 cells at higher resolution to examine heterogeneity among lytic subpopulations (Fig. 4B). This
350 yielded three subclusters of BZLF1"* cells — one with high late gene expression corresponding to
351 complete reactivation (cluster E1) and two with comparatively lower late gene expression (clusters
352 E2 and E3). Differential expression analysis by subcluster revealed remarkably broad cellular
353 plasticity and developmental pluripotency signatures in E2 and E3 (Fig. 4C). Although MYC was
354  downregulated, the master pluripotency regulators POU5F1 (OCT4), SOX2, KLF4, NANOG, and
355  LIN28A were expressed in E2 and E3'%5120 |ntriguingly, many essential transcriptional regulators
356  of pluripotency exit and germ layer specification were also co-expressed with BZLF1* in E2 and
357  ESlytic subpopulations. Expression of ALDH1A1, ALPL, ITGA6, CD44, PROM1 (CD133), LGR5,
358 and YAP1 upregulated in the E2 and E3 phenotypes was consistent with cancer hallmarks
359 including cell plasticity, self-renewal, and drug-tolerant persistence®121-126, Related to YAP1
360 expression, we identified distinct Hedgehog!?’, Notch!?®, and Wnt'?1% signaling pathway
361 signatures in E2 and E3 lytic phenotypes as well as Hippo-independent YAP pathway!3!
362 components reported in cancer. E3 cells also expressed genes encoding several PIWI-like family
363  proteins, which protect germline cell genomes from transposable element insertion, maintain
364 stemness, and are upregulated in some cancers32135,

365 In total, 6,900 of 26,728 cells (25.8%) across all sampled timepoints expressed BZLF1
366 transcripts. Co-expression of genes including ALDH1A1 and SOX2 in a subset of BZLF1" cells
367 demonstrated an association between cellular plasticity and EBV lytic reactivation (Fig. 4D). GRN
368 analysis further supported a role for SOX2 transcriptional activity in a fraction of lytic cells (Fig.
369  S9). RNA Flow-FISH validated ALDH1A1 and SOX2 expression in BZLF1* cells in 4HT treated
370 P3HR1-ZHT cultures (Fig. 4E, Fig. S8). We also used flow cytometry to validate increased
371  expression of the CSC biomarkers CD44, CD133 (PROM1), and CD166 (ALCAM) at the protein
372 level in gp350* cells (late lytic) relative to gp350 subsets across treatment conditions (Fig. 4F,
373  Fig. S10).

374 We next examined whether lytic cycle initiation was sufficient to induce CSC-associated
375  pluripotency expression or if successful viral DNA synthesis was required. To do so, we used
376 RNA Flow-FISH to detect BZLF1, ALDH1Al1, and BLLF1. ALDH1Al was expressed in
377 BZLF1'BLLF1* cells following 4HT treatment, consistent with its expression in late stages of lytic
378 reactivation (Fig. 4G, left and middle panels). Consistent with a role for viral DNA replication in
379  CSC gene induction, co-treatment with PAA and 4HT diminished BZLF1*BLLF1" cell frequency
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380 and ablated ALDH1A1 expression (Fig. 4G, right panel). Collectively, these data support a unique
381  program of cellular plasticity induced in the late phase of EBV lytic reactivation.

382

383  Host shutoff escapees in lytic subclusters exhibit distinct ontologies

384 Because lytic subclusters identified at high resolution displayed distinct cellular
385 transcriptomes, we asked whether host shutoff responses differed among lytic cells. RNA for
386 BGLF5, an early EBV lytic gene that mediates host shutoff!?’, was detected at variable levels
387  across lytic cells and inversely correlated with per cell mMRNA feature density as expected (Fig.
388 5A). Moreover, transcripts for genes previously found to escape host shutoff!?%11° were identified
389 in each lytic subcluster (E1, E2, and E3) (Fig. 5B-C). Host shutoff escapee expression could be
390 broadly categorized by two patterns — some escapees (e.g., C190rf66, CDKN1B) were expressed
391 in unstimulated P3HR1-ZHT cells and retained across abortive and lytic cells, whereas other
392 escapees (e.g., IL6, SERPINB2, LHX1, JAG1) were exclusively expressed in lytic cells (Fig. 5C).
393 Intriguingly, lytic subclusters exhibited different host shutoff escapee profiles. Anecdotally, we
394  also noted that several escapees in clusters E2 and E3 were related to inflammatory responses
395 and overlapped with CSC and developmental pluripotency signatures (Fig. 5D). We applied gene
396 ontology (GO) analyses to differentially expressed genes among lytic subclusters to further
397 investigate potential biological differences. Cells in E2 displayed significant enrichment of GO
398 terms related to mRNA splicing and post-transcriptional regulation and epigenetic regulation
399 versus cells in E3 (Fig. 5E, top panel). RNA processing GO terms were also upregulated in E2
400 when compared jointly against clusters E3 and A to filter out differences related to transcripts
401 basally expressed in unstimulated cells (Fig. 5E, bottom panel). Conversely, the top enriched GO
402 terms in cluster E3 versus E2 were related to cell-cell adhesion, morphogenesis, and diverse
403 tissue-specific developmental programs (Fig. 5F). Relatively few cellular GO terms were enriched
404  in fully Iytic cells (E1), consistent with extensive host shutoff and predominantly viral gene
405  expression (Fig. 5G).

406

407 Phenotype validation across viral strain and host background

408 Finally, we confirmed key findings through additional independent scRNA-seq experiments
409  capturing responses of B958-ZHT cell lines to 4HT treatment (Fig. 6) and technical replication in
410 P3HR1-ZHT (Fig. S13). Unstimulated and 24 h post-4HT B958-ZHT cell libraries were generated
411 and analyzed as in previous experiments (Fig. 6A). High-resolution cluster annotations from
412  P3HR1-ZHT scRNA-libraries were mapped to B958-ZHT cells by anchor feature identification and

413 transfer to evaluate the preservation of biological phenotypes across cell systems (Fig. 6B). Cells
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414  corresponding to each high-resolution cluster were identified in the B958-ZHT dataset. Viral IE,
415 early, and late gene expression modules were also scored across B958-ZHT cells and compared
416  against scores for the three lytic subclusters (Fig. 6C). As in the P3HR1-ZHT system, E1 cells
417  exhibited high late gene expression consistent with complete reactivation while E2 and E3 cells
418 displayed reduced late gene scores. In B958-ZHT, the E3 cluster most closely associated with
419 plasticity and self-renewal signatures had the lowest IE, early, and late expression relative to other
420 cells in lytic clusters. Prior findings of viral gene anticorrelation with MYC, STAT3, and BCL2A1
421  (Fig. 6D) and lytic cell upregulation of cancer-associated stem-like pluripotency and host shutoff
422  escapees (Fig. 6E, Figs. S11-S12) were conserved in B958-ZHT. Thus, our findings in the
423  P3HR1-ZHT system are applicable across EBV strains and host cell genetic backgrounds.

424

425 DISCUSSION

426 The single-cell data presented herein substantially expand and refine transcriptome-wide
427  contours of host-virus dynamics during the EBV lytic cycle. For example, prior studies discovered
428 that EBV-infected BL cells are prone versus resistant to reactivation dependent on STAT3
429  expression, activity, and functions of its downstream transcriptional targets®¢°7°°. A population of
430 STAT3"° cells in unstimulated P3HR1-ZHT revealed by scRNA-seq (cluster B), which exhibits
431 globally reduced mRNA levels consistent with cellular quiescence, may be more permissive to
432  successful reactivation than cells with basally elevated STAT3 (cluster A). Additionally, cells that
433 undergo abortive replication retain STAT3 expression (and predicted transcriptional activity) after
434  stimulation, while STAT3 and host transcript loads are drastically reduced in fully lytic cells,
435  consistent with host shutoff functions exhibited by diverse viruses'®¢-14°, Single-cell data are also
436 consistent with the functional importance of c-MYC in regulating EBV latency versus lytic
437  reactivation®*. MYC expression exhibits cluster-level patterns similar to STAT3, with the notable
438 exception that MYC is more strongly expressed in cluster B cells — likely due to constitutive
439  expression resulting from the chr8:chrl14 (Ig-MYC) translocation in BL. Single-cell sequencing and
440 RNA-FiSH results further identify unique upregulation of NF-xB and IRF3 pathway transcriptional
441  targets in abortive lytic cells. Paired with STAT3 and MYC activity, we speculate that this
442  concerted response might sustain viability and reinforce latency in cells that fail to meet the Iytic
443  switch threshold.

444 Acquisition of cellular plasticity within lytic cell subsets in multiple EBV*® B cell models is
445  particularly striking. Several aspects of the lytic cycle could conceivably contribute to host cell
446  plasticity through reversing epigenetic repression of lineage-ectopic genes. As observed across

447  several DNA virus families, EBV genome replication within intranuclear compartments induces
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448  dramatic reorganization of host chromatin® 707314 Along with this alteration to nuclear
449  architecture, Zta binding at accessible AP-1 recognition sequences®® (particularly methylated
450 sites*’?) may reverse epigenetic silencing through supporting nucleosome eviction,
451 enhancement of chromatin accessibility, and recruitment of transactivators to facilitate aberrant
452  gene expression**44, ChlP-seq for Zta has revealed many such potential sites throughout the host
453  genome, including POU5F1 (Oct-4)%243, From the viral perspective, Zta binding across the cellular
454  genome may function as a “sink” that supports bimodal control of the switch between latency (Zta
455  absence or noise-level expression) and lytic reactivation (high Zta)*3. From the host perspective,
456  our findings suggest that these BZLFL1 interactions with cellular DNA and nuclear chromatin
457  remodeling during later stages the lytic cycle have substantial — and potentially pathogenic —
458 collateral effects on biological reprogramming. Along these lines, developmental reprogramming
459  associated with Wnt/B-catenin signaling has been observed in single-cell study of HSV-1 Iytic
460 infection™.

461 Additionally, DNA damage, antiviral nucleic acid sensing, cytoskeletal rearrangements, and
462  other major mechanobiological changes that manifest during reactivation may activate intrinsic
463  responses to cellular injury leading to NF-xB and IRF3 signaling 142144, Paired with lytic-mediated
464  growth arrest!#>146, we speculate that this process may engage cellular senescence and injury
465 responses that promote autocrine and paracrine cellular reprogramming. An essential feature of
466 damage-associated induction of cellular pluripotency is upregulation of pro-inflammatory
467  cytokines such as IL-6'’. In both PSHR1-ZHT and B958-ZHT scRNA-seq datasets, IL6 was
468  exclusive to fully lytic cell subsets. However, IL6R was expressed in abortive cells in P3HR1-ZHT
469 and most latently infected cells in B958-ZHT. Expression of JAK1/2 and STAT3 in latently infected
470 cells from both lines was suggestive of an IL-6 response axis (IL6(R)/JAK/STAT3) known to be
471  activated in hematologic malignancies#®. This raises the intriguing possibility that cells from one
472  reactivation trajectory and viral replication mode (fully lytic cells) might reinforce the survival and
473  proliferation of tumor cells resulting from an alternative response (abortive, latently infected)
474  through paracrine mechanisms. In addition to its escape from host shutoff!'°, IL-6 autocrine
475  support for latent EBV* B cell proliferation and its depletion in BZLF1- and BRLF1-deificient
476 tumors in murine models of EBV-driven lymphoproliferative disease are especially
477  noteworthy®3149150 A similar effect has been observed during infection with KSHV, which encodes
478  a viral IL-6 homolog. Thus, the developmental pluripotency profiles and responses of lytic cell
479 subsets may be associated with cellular DNA damage responses that have inadvertent
480 pathogenic effects in EBV* tumors. Notably, cytokine production by EBV-infected tumor cells

481 (including abortive lytic cells) has also been proposed to support oncogenesis through
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482  microenvironment conditioning, polarization of tumor infiltrating lymphocytes, and evasion of T-
483  cell surveillance*®*.

484 In summary, our findings support a model of differential response trajectories to EBV lytic
485  induction. The first determinant in this model is initial cell state, where ground-state STAT3 and
486 MYC expression and activity predict a ‘high-resistance’, low-probability path to full reactivation.
487  Conversely, cells with globally reduced transcription and reduced expression of STAT3 (and
488 MYC) at the time of lytic reactivation traverse a ‘low-resistance’ path with high probability of
489 complete reactivation. These data have potentially important clinical implications, as they suggest
490 that quiescent EBV* tumor cells may be more sensitive to lytic induction therapies. However, a
491  critical second fate determinant that manifests in lytic cells may complicate this pursuit. To this
492  point, our scRNA-seq and RNA Flow-FISH results are consistent with the previously identified
493  role of Iytic cycle induction in tumorigenesis*®47°3, Most cells that undergo full reactivation and
494  new virion release are likely to die. However, some lytic cells undergo profound reprogramming
495 to plastic CSC-like states that may promote malignancy through multiple mechanisms, even
496 independent of their own survival. For example, we found transcript-level evidence that lytic cells
497  could reinforce viral latency and survival of abortive or refractory cells via IL6/JAK2/STAT3
498 signaling. Additional studies are necessary to explore, dissect, and therapeutically perturb the IL-
499  6/JAK/STAT3 pathway in EBV* lymphomas. Given these findings, subsequent examinations of
500 the epigenetic consequences of early EBV reactivation at high resolution should be prioritized,
501 and the possibility of double-edged consequences of oncolytic therapies should be specifically
502 examined in detail. Future single-cell approaches should interrogate the frequency of viable
503 abortive lytic cells’! and the particular changes in chromatin accessibility as well as other
504  epigenetic features of this phenotype. Similar experimental approaches should be applied to study

505 clinical EBV* tumor specimens to understand oncogenic correlates of lytic reactivation in situ.
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506 MATERIALS AND METHODS

507
508 Celllines, culture, and treatments
509 P3HR1-ZHT cells (derived from the Type 2 EBV* [P3 strain] Jijoye eBL line) and B958-ZHT

510 (a marmoset lymphoblastoid cell line transformed with Type 1 EBV [B95-8 strain]) were used in
511 this study. Each cell line was cultured at 37°C with 5% CO. in RPMI + 10% FBS (R10) media
512 (Gibco RPMI 1640, ThermoFisher). To induce lytic gene expression, 4x10° cells/mL for a given
513 celllinein log-phase growth were treated with 25 nM, 50 nM, or 100 nM 4-hydroxytamoxifen (4HT)
514 in methanol (4HT, Millipore Sigma). Phosphonoacetic acid (PAA, 1 uM) was included in parallel
515 with lytic induction treatments to inhibit viral DNA synthesis and prevent complete reactivation in
516 separate experimental groups (i.e., abortive lytic replication). Control groups were prepared via
517 treatment with 0.1% DMSO (and DMSO + PAA). All treatments for flow cytometry and RNA Flow-
518 FISH experiments described below were performed in triplicate (technical replicates) in 6-, 12-,
519  or 24-well culture plates.

520

521  Flow cytometry

522 Flow cytometric cell cycle analysis of unstimulated and 4HT-treated P3HR1-ZHT cells was
523  performed using pulsed BrdU incorporation (20 min) and nuclear staining with 7-AAD in fixed cells
524  (Invitrogen eBioscience BrdU staining kit, cat #8811-6600-42; 7-AAD, cat #00-6993-50) in
525  addition to surface staining for gp350 (mouse anti-gp350 antibody clone 72A1 prepared in house
526 then conjugated to Alexa 647 by Columbia Biosciences). Mitochondrial content versus gp350
527  expression in 4HT-induced cells was assayed using MitoTracker Green (ThermoFisher, cat
528 #MA46750). Flow cytometry was also used to assay surface expression of gp350, CD44, CD133
529 (PROM1), and CD166 (ALCAM). With the exception of the gp350 antibody, antibodies were
530 purchased from BioLegend (anti-CD44_FITC, cat #397517; anti-CD133_PE, cat #397903; anti-
531 CD166_PE-Cy7, cat #343911). In these experiments, removal of lytic inducing and control
532 treatments at 6, 12, or 24 h via media replacement all yielded similar results. Cell were also
533 stained and gated by viability (ZombieAqua, ThermoFisher, cat #L.34965).

534

535 RNA Flow-FISH

536 RNA Flow FISH analysis of unstimulated and 4HT-induced P3HR1-ZHT cells (24 and 48 h
537  post-treatment) was performed using RNA PrimeFlow reagents (ThermoFisher RNA PrimeFlow
538 Kit Catalog #: 88-18005-210) and validated RNA probes (ThermoFisher. Type 1 probes:
539 BLLF1_A647. Type 4 probes: BZLF1_A488, BCL2A1_A488. Type 10 probes: BGLF4_ A568,
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540 CD38_A568, ALDH1Al_A568, SOX2_A568). PrimeFlow sample preparation was completed per
541  ThermoFisher protocol with no adjustments. Briefly, cells were washed, fixed, and permeabilized.
542  Cells were then incubated with target probes for 2h in a 40°C water bath. Cells were washed and
543  stored overnight at 4°C and then incubated with a Pre-amplification buffer for 1.5h in a 40°C water
544  Dbath followed by a 1.5h incubation in amplification buffer. Cells were then incubated in label
545  probes for 1 hour in a 40°C water bath, washed with FACS buffer and subsequently analyzed on
546  a Cytek Aurora. Spectral flow unmixing was performed with SpectroFlo software and uniformly
547  applied to all samples. Further analysis and gating was completed in FlowJo.

548

549  Single-cell sample and library preparation

550 P3HR1-ZHT cells were plated at 4 x 10° cells/ mL in 5 mL R10 then treated with methanol
551  (mock- 0 h) or with 25 nM 4HT (4-hydroxytamoxifen). The cells incubated in 4HT for 72, 48, and

552 24 hours then all cells were harvested for library preparation at the same time. The viabilities of

553 the 0, 24, 48, and 72 h samples at time of collection were approximately 90%, 80%, 75%, and
554  75%, respectively. Harvested cells were resuspended at the recommended concentration to
555  collect approximately 10,000 cells per sample during GEM generation. Single-cell transcriptomes
556  from all four samples were captured and reverse transcribed into cDNA libraries using the 10x
557  Genomics Chromium Next GEM Single Cell 3’ gene expression kit with v3.1 chemistry and
558  Chromium microfluidic controller according to recommended protocols (10x Genomics,
559 Pleasanton, CA). All cDNA gene expression libraries were pooled for sequencing.

560

561  Sequencing, read alignment, and QC

562 Pooled single-cell libraries were sequenced across two lanes of an S2 flow cell on a
563 NovaSeq6000 (lllumina, San Diego, CA) with 50 bp paired-end reads at a target sequencing
564  depth of 50,000 reads per cell. Output base calls (.bcl) were assembled into sample-
565 demultiplexed reads (.fastq) using cellranger mkfastq with default settings (10x Genomics,
566 Pleasanton, CA). Reads were mapped to a concatenated reference genome package (hg38 +
567 NC_009334 [type 2 EBV]; prepared via cellranger mkref) to generate single-cell expression
568 matrices by running cellranger count (10x Genomics, Pleasanton, CA). Cellranger output files
569 (genes.tsv, barcodes.tsv, matrix.mtx) were used to create Seurat data objects in R4 which
570  were subsequently pre-processed using QC filters. Cells and features were included if they met
571 the following criteria: feature (gene) expression in a minimum of three cells; mitochondrial genes
572  accounting for < 25% of all transcripts; a minimum of 200 unique expressed genes; < 65,000 total

573 transcripts to exclude non-singlets. The elevated mitochondrial transcript and total transcript
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574  cutoffs relative to those used for resting PBMC samples'* were chosen because of the highly
575  proliferative nature of the P3HR1 cell line, the expectation of apoptosis as one outcome to lytic
576 reactivation, and the implementation of viability enrichment prior to library preparation described
577 above. A total of 26,728 cells across the timecourse passed all QC filters (Nuntreated = 10,196; N2an
578  =7,905; nagh = 5,841; n72n = 3146).

579

580 Data pre-processing, dropout imputation, analysis, and visualization

581 A complete list of loaded packages and versions (RStudio sessioninfo() output) is provided
582 as asupplementary file. Single-cell expression data were analyzed and visualized with R (v4.0.5)
583 / RStudio (v2022.07.1+554) using Seurat v4.1.0. Data from each timepoint were analyzed
584  separated and merged into a single object to support time-resolved analysis. Raw count data
585 were normalized and scaled prior to feature identification (NormalizeData and ScaleData
586 functions). Cell cycle scores and phases were assigned based on annotated gene sets provided
587 in the Seurat package (CellCycleScoring function). Expression data were dimensionally reduced
588 using principal component analysis of identified variable features (RunPCA), and the first 30
589 principal components were used for subsequent UMAP dimensional reduction (FindNeighbors,
590 RunUMAP). Cell clusters were identified at multiple resolutions for phenotype identification and
591 comparative analysis (FindClusters).

592 Biological zero-preserving imputation was applied to correct technical read dropout using
593 adaptive low-rank approximation (ALRA) of the RNA count matrix'°¢. Data presented throughout
594  this study was generated from imputed read data. Differential gene expression analysis of the
595 merged timecourse RNA and imputed (ALRA) assays was performed at multiple clustering
596 resolutions. Outputs from this analysis are provided as supplementary files. Single-cell gene
597  expression, co-expression, and cluster-averaged expression were visualized with Seurat
598 functions (e.g., DimPlot, FeaturePlot, FeatureScatter, VInPlot, DotPlot, DoHeatmap). Additional
599 visualization of multi-gene co-expression was generated with the UpSetR package®®’.

600

601 Pseudotime analysis

602 Pseudotime trajectories were calculated for day 0 and merged timecourse datasets using
603  Monocle3!11%8, Briefly, Seurat objects were adapted as cell dataset objects and used to learn
604  and order cells along pseudotime graphs anchored at manually determined root cells. Calculated
605 pseudotime values were added as a feature to original Seurat objects and used for subsequent
606 gene expression analyses. Pseudotime-gene correlation was plotted and fit via smoothing splines

607 to visualize expression dynamics across clusters (cell phenotypes).
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Gene ontology and gene requlatory network analyses

Low and high-resolution cluster gene ontology (GO) enrichment analysis for biological
processes was performed using the enrichGO function in clusterProfiler®™. Statistically significant
enrichment results were visualized using the barplot, pairwise_termism, and emapplot functions.
Cluster-level gene regulatory network (GRN) inference of transcription factor activities was

conducted using CollecTRI in the R package decoupleR*%°:169,

Statistical analyses

Raw and adjusted p values (Bonferroni correction) were calculated and provided for all
identified differentially expressed genes from scRNA-seq data (see supplementary tables 1-4).
For conventional flow cytometry and RNA flow-FISH experiments, statistically significant
differences between treatment groups were determined via two-tailed Welch's t test (n = 3

replicates per condition).
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663 Figure 1. EBV lytic reactivation in the P3HR1-ZHT Burkitt Lymphoma line at single-cell
664 resolution.

665 (A) Schematic of 4HT-inducible BZFL1 (Zta) expression initiating lytic reactivation in the Burkitt
666 Lymphoma-derived P3HR1-ZHT cell line.

667 (B) Flow cytometry validation 24 h after 4HT-induced lytic reactivation and inhibition of complete
668 reactivation by phosphonoacetic acid (PAA) in P3HR1-ZHT. Cellular expression of the viral
669 glycoprotein gp350 (encoded by the late lytic gene BLLF1) serves as a proxy for successful
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670 reactivation. Co-treatment with the viral DNA polymerase inhibitor PAA prevents complete
671 reactivation by blocking viral DNA replication, which is required for expression of late viral genes
672 /gene products including gp350.

673 (C) RNA Flow-FISH validation of select inmediate early (IE), early, and late lytic gene expression
674 in P3HR1-ZHT. The majority of cells express detectable BZLF1 24 h after 4HT treatment.
675  Substantial fractions express early genes including the EBV DNA polymerase (BGLF4) and late
676  genes including BLLF1. However, not all BZLF1* cells exhibit early and late gene expression,
677 indicating variable progression of reactivation in individual cells. Asterisks denote significantly
678 higher expression in 4HT-treated samples versus DMSO controls (n=3 per condition; two-tailed
679  Welch’s t-test; ***p<0.001).

680 (D) Experimental design schematic for time-resolved scRNA-seq study of EBV reactivation in
681 P3HR1-ZHT. Single-cell libraries were prepared from unstimulated cells and from cells at three
682 timepoints (24 h, 48 h, and 72 h) after 4HT treatment. Libraries were sequenced, mapped to a
683  multispecies reference genome, integrated into a single data object, and analyzed.

684 (E) UMAP representation of single cells captured across the experimental timecourse. Plots
685  display the number of cells in each library after QC filtering.

686 (F) EBV gene expression overview in merged timecourse scRNA-seq data. (From left to right)
687  Viral fraction of captured transcripts per cell; scores for an immediate early (IE) expression module
688 (BZLF1, BRLF1); scores for an early gene expression module (BRRF1, BBLF4, BALF1, LF3,
689 BARF1, BaRF1, BVLF1, and BALF3); scores for a late gene expression module (BZLF2, BLLF1,
690 BILF2, BBRF3, BcLF1, BRRF2, BSRF1, BCRF1, and BBRF1). Modules were curated based on
691 viral expression kinetics determined by CAGE-seq?¢:.

692 (G) Hierarchically clustered average expression of all detected viral genes by timepoint.

693

694
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697 Figure 2. P3HR1-ZHT phenotypic heterogeneity and response trajectories during lytic
698 induction.

699 (A) P3HR1-ZHT cell clusters identified in merged timecourse data via unsupervised methods.
700  (B) Cluster composition of cells from individual timepoints. Cluster colors are coded as in 2A.
701 (C) QC feature distributions by cluster. The total number of mapped reads per cell is given by
702  nCount_RNA. The number of uniqgue RNA features (i.e., genes, IncRNAs) per cell is given by
703 nFeature_RNA. The viral fraction of mapped reads per cell (viral.pct) and mitochondrial transcript
704  fractions (percent.mt) were calculated using the PercentageFeatureSet() function in Seurat*®21%4,
705 (D) Differential RNA expression by cluster. Sequences are annotated by their known biological
706 roles and functions derived from gene ontology (GO) analysis and primary literature. Dot size
707  represents the percentage of cells in each cluster that express a given gene and color encodes
708 average expression across the cluster.

709 (E) UMAP expression profiles (top row) and pairwise correlation plots (bottom row, Pearson R)
710 for BZLF1, MYC, and STAT3. Correlation plots depict individual cells colored by cluster.

711  (F) RNA Flow-FISH validation of reduced MYC expression in BZLF1'BLLF1" cells (top panel).
712  Asterisks in the middle panel bar plot denote significantly reduced frequency of MYC" P3HR1-
713  ZHT cells and increased frequencies of BZLF1* and BLLF1" cells after 4HT treatment (n=3 per
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714  condition; two-tailed Welch’s t-test; ***p<0.001). Asterisks in the bottom panel bar plot denote
715  significantly increased frequencies of BZLF1*MYC* and BZLF1*MYC cells after 4HT treatment
716  (n=3 per condition; two-tailed Welch’s t-test; **p<0.01).

717  (G) UMAP of graph-based pseudotime trajectory calculation for timecourse-merged scRNA-seq
718 data. Trajectory root cells were selected from both clusters A and B, which were present in the
719  unstimulated (day 0) PSHR1-ZHT library (top panel). Viral read content in individual cells ordered
720 by pseudotime and coded by cluster (bottom panel).

721  (H) Cluster- and pseudotime-informed annotated cell state model of EBV lytic reactivation in
722 P3HR1-ZHT. Solid line arrows denote cell response trajectories supported by time-resolved
723  scRNA-seq data. The dashed line denotes a putative state interconversion.

724 () Gene expression dynamics along distinct pseudotime trajectories in the lytic reactivation
725 timecourse. Highlighted genes were selected from those differentially expressed across
726  unstimulated, abortive, and fully lytic cells.

727

728

729
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732  Figure 3. Validation of an abortive response with elevated NF-xB activity distinct from full
733 lytic reactivation.

734  (A) ldentification of CD38, BCL2A1, and BLLF1 as respective biomarkers for unstimulated,
735  abortive, and lytic PBHR1-ZHT cells.

736  (B) Co-detection of BZLF1 and NF-kB pathway transcriptional targets in abortive cells (co-positive
737  cellsin red) by timepoint.

738 (C) RNA Flow-FISH validation of full (BLLF1*) and abortive (BCL2A1*) reactivation as orthogonal
739 responses. DMSO control-treated cells are predominantly CD38" and exhibit minimal
740  spontaneously lytic (full or abortive) cells (top panel). 4HT treatment induces distinct full lytic and
741  abortive subsets (middle panels). Inhibition of viral DNA synthesis with PAA blocks full lytic
742  reactivation and increases the frequency of BCL2A1" abortive cells (bottom panels). Colored
743  circles denote predicted corresponding model states defined from scRNA-seq.

744 (D) Frequencies of CD38" and BCL2A1" cells presented in 3C by treatment condition at 24 h and
745 48 h. Asterisks denote significantly decreased frequencies of CD38* cells and increased
746  frequencies of BCL2A1" cells upon 4HT and 4HT+PAA treatment versus respective control
747  treatments (n=3 per condition; two-tailed Welch'’s t-test; **p<0.01).

748 (E) EBV LMP-1, which encodes a potent activator of NF-kB signaling, is expressed in late lytic
749  cells (left panel) but not associated with abortive cells that exhibit upregulated NF-xB
750 transcriptomic signature including BCL2A1 (right panel, Pearson R=-0.06).

751 (F) Flow cytometry analysis of protein biomarkers of full lytic reactivation (gp350) and NF-xB
752 activity (ICAM1). Consistent with  mRNA measurements, separate gp350* and ICAM1*
753  populations are induced following 4HT treatment. Co-treatment with PAA reduces gp350* cell
754  frequency and increases ICAM1* fractions. IKK inhibitor co-treatment reduces ICAM1* cell
755  frequency but does not substantially affect gp350* cell frequency.
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761  Figure 4. Cancer-associated cellular plasticity and self-renewal signature identification in
762  EBV lytic cell subsets.
763  (A) Total mapped RNA reads per cell (top panel) versus total unique genes expressed across
764  each cluster (bottom panel).
765  (B) Unsupervised identification of high-resolution subclusters across P3HR1-ZHT timecourse
766  scRNA-seq data.
767  (C) Differentially expressed genes upregulated in lytic subclusters (E1, E2, and E3). Genes were
768 identified by comparing each subclusters versus all others, summarized by gene ontology
769  methods, cross-referenced against primary literature, and curated by biological annotation.
770 (D) Co-expression of BZLF1 and genes associated with cellular pluripotency and cancer
771  stemness (SOX2, ALDH1A1) in single cells (co-positive cells in red) by timepoint.
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(E) RNA Flow-FISH validation of ALDH1A1 and SOX2 expression in BZLF1" cells (top panel).
Freqguencies of ALDH1A1" and SOX2" cells significantly increase in response to 4HT induction of
the Iytic cycle versus DMSO control treatment (bottom panel; n=3 per condition; two-tailed
Welch’s t-test; ***p<0.001; **p<0.01).

(F) Flow cytometry protein level validation of elevated CD44 and CD133 expression in gp350*
versus gp350° P3HR1-ZHT cells.

(G) RNA Flow-FISH analysis of ALDH1A1l expression by lytic cycle progression. Rare
spontaneously reactivated BZLF1'BLLF1* cells express ALDH1Al without lytic induction
treatment (left panel). The frequency of BZLF1*BLLF1*ALDH1ALl* cells increases upon 4HT
treatment (middle panel). ALDH1A1* P3HR1-ZHT cells are significantly enriched after 4HT
treatment but not in the context of co-treatment with PAA to block viral DNA synthesis (right panel;
n=3 per condition; two-tailed Welch’s t-test; ***p<0.001; **p<0.01; *p<0.05).
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788

789  Figure 5. Distinct virus-mediated host shutoff responses and escapees in lytic subclusters.
790  (A) UMAP representation of host shutoff mediator BGLF5 expression (left panel) and per cell
791  feature RNA (right panel) in PBHR1-ZHT timecourse scRNA-seq data.

792  (B) Module scores for a curated set of genes that escape host shutoff (GADD45B, IL6, CCND1,
793 ILIR1, JAG1, SERPINB2, EPHB2, FOXC1, ATF3, ZNF526, P2RY11, and HES4) by high
794  resolution cluster.

795 (C) Subcluster-level expression of host shutoff escapees curated from primary literature.

796 (D) Detall of distinct host shutoff escapee signatures in two lytic subclusters (E2 and E3).

797  (E) Biological process gene ontology (GO) analysis for genes upregulated in lytic subcluster E2
798  versus E3 (top panel) and E2 versus E3 + A (unstimulated cells).

799 (F) Biological process GO analysis for genes upregulated in lytic subcluster E3 versus E2.

800 (G) Biological process GO analysis for genes upregulated in lytic subcluster E1 versus E2 and
801 Es.

802

803
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806 Figure 6. Lytic subset reprogramming and host shutoff escape signatures are conserved
807 in B958-ZHT lymphoblastoid cells.

808 (A) UMAP representation of scRNA-seq data from the inducible lytic marmoset lymphoblastoid
809 cell line B958-ZHT before (Unstim) and 24 h after 4HT treatment.

810 (B) Mapping of cell subclusters defined from P3HR1-ZHT analyses to B958-ZHT scRNA-seq data
811 via transfer anchor integration (left panel). Subcluster composition is presented for unstimulated
812  and 4HT-treated cell libraries (right panel).

813 (C) Viral expression module (IE, early, late) and mapped lytic subcluster scores in timecourse
814 merged B958-ZHT data. Of note, the assigned subclusters in 6B represent qualitative
815 classifications based on maximum annotation signature scores for each cell. Accordingly, a given
816 cell may score highly for more than one related signature while being assigned to a single
817 classification. The underlying quantitative signature scores for E1, E2, and E3 presented here
818 thus reflect a lytic phenotypic continuum rather than purely discrete states.
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819 (D) Conserved anticorrelation between EBV gene expression (Viral_1 module score) and genes
820 characteristic of unstimulated and abortive phenotypes (MYC, STAT3, BCL2A1). Values denote
821 pairwise Pearson R coefficients.

822 (E) Conservation of key gene expression signatures identified from P3HR1-ZHT (a BL cell line)
823  within B958-ZHT (a lymphoblastoid cell line) during EBV lytic reactivation.

824

825
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826 SUPPORTING FIGURE LEGENDS

827

828

829  Figure S1. Flow cytometry replicates for gp350 expression in P3HR1-ZHT cells.

830 (A) Lymphocyte, singlet, live-cell, and gp350* gating for unstimulated cells.

831 (B) The same gating strategy as above applied for 4HT-treated cells.

832 (C) The same gating strategy as above applied for cells co-treated with 4HT and PAA.

833

834

835 Figure S2. RNA Flow-FISH replicates for IE, early, and late lytic gene expression in P3HR1-
836  ZHT cells.

837  (A) Co-expression of BZLF1 with BGLF4 or BLLF1 in DMSO control treatment and 4HT-induced
838  reactivation.

839 (B) Co-expression of BZLF1, BGLF4, and BLLF1 (red cells) in DMSO control treatment and 4HT-
840  induced reactivation.

841

842

843  Figure S3. Dot plot of cluster-resolved EBV expression annotated by latent and lytic genes.
844

845

846  Figure S4. Cell cycle and mitochondrial features of P3HR1-ZHT cells.

847  (A) Cell cycle phase annotations in P3HR1-ZHT scRNA-seq data.

848 (B) Flow cytometry cell cycle analysis in unstimulated and 4HT-treated P3HR1-ZHT cells with
849  gp350* cells highlighted.

850 (C) MitoTracker staining by gp350 status in 4HT-treated P3HR1-ZHT cells.

851

852

853  Figure S5. Transcription factor activity prediction in abortive P3HR1-ZHT cells.

854

855

856  Figure S6. RNA Flow-FISH replicates for CD38, BCL2A1, and BLLF1 expression in P3HR1-
857  ZHT cells.

858 (A) Technical controls, 24 h, and 48 h responses to DMSO, 4HT, and 4HT+PAA for BCL2A1
859  versus BLLF1 expression.

860  (B) Technical controls, 24 h, and 48 h responses to DMSO, 4HT, and 4HT+PAA for CD38 versus
861  BLLF1 expression.

862 (C) Technical controls, 24 h, and 48 h responses to DMSO, 4HT, and 4HT+PAA for BCL2A1
863  versus CD38 expression.

864

865

866  Figure S7. Quantification and statistical analysis of gp350* cell frequencies in PS3HR1-ZHT
867 dependent on 4HT-induced reactivation, PAA inhibition of viral DNA synthesis, and NF-xB
868 pathway inhibition.

869  Statistical comparisons between groups (n=3 replicates per treatment condition) were evaluated
870  via Welch’s two-tailed t tests (***p<0.001)

871

872

873  Figure S8. RNA Flow-FISH replicates for ALDH1A1 and SOX2 expression in BZLF1* P3HR1-
874  ZHT cells with and without 4HT treatment.

875

876
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877 Figure S9. Prediction of transcription factor activity associated with reprogrammed
878 pluripotency in lytic PBHR1-ZHT cells.

879 (A) SOX2 scRNA-seq expression and gene regulatory network activity.

880  (B) Hierarchical clustering of predicted TF activities by PS3HR1-ZHT subcluster.

881

882

883  Figure S10. Flow cytometry replicates for CD44, CD133 (PROM1), and CD166 (ALCAM)
884  expression in P3HR1-ZHT cells.

885 (A) Controls, gating, and stemness biomarker expression by gp350 status in unstimulated cells.
886 (B) Controls, gating, and stemness biomarker expression by gp350 status in 4HT-treated cells.
887 (C) Controls, gating, and stemness biomarker expression by gp350 status in cells co-treated with
888 4HT and PAA.

889

890

891 Figure S11. Flow cytometry replicates for gp350 expression in B958-ZHT cells.

892 (A) Controls, gating, and gp350 expression in unstimulated cells.

893 (B) Controls, gating, and gp350 expression in 4HT-treated cells.

894  (C) Controls, gating, and gp350 expression in cells co-treated with 4HT and PAA.

895

896

897  Figure S12. Flow cytometry replicates for CD44, CD133 (PROM1), and CD166 (ALCAM)
898 expression inB958-ZHT cells.

899 (A) Controls, gating, and stemness biomarker expression by gp350 status in unstimulated cells.
900 (B) Controls, gating, and stemness biomarker expression by gp350 status in 4HT-treated cells.
901 (C) Controls, gating, and stemness biomarker expression by gp350 status in cells co-treated with
902 4HT and PAA.

903

904

905 Figure S13. Independent scRNA-seq replicate validation of key heterogeneous responses
906 in P3HR1-ZHT cells.

907  (A) Overview of P3HR1-ZHT replicate experiment treatments (methanol control and 4HT) and
908 identified clusters.

909 (B) UMAP visualization of global QC metrics (top row), differential abortive and lytic responses
910 correlated with STAT3 and MYC levels (2" and 3" rows), and upregulated pluripotency signature
911  in Iytic cell subsets (4™ and 5" rows).
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