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29  Abstract

30  From childhood to adolescence, the structural organization of the human brain undergoes
31 dynamic and regionally heterogeneous changes across multiple scales, from synaptic pruning
32  to the reorganization of large-scale anatomical wiring. However, during this period, the
33  developmental process of multiscale structural architecture, its association with cortical
34  morphological changes, and its role in the maturation of functional organization remain largely
35  unknown. Here, we utilized a longitudinal multimodal imaging dataset including 276 children
36  aged 6 to 14 years to investigate the developmental process of multiscale cortical wiring. We
37  used an in vivo model of cortical wiring that combines features of white matter tractography,
38  cortico—cortical proximity, and microstructural similarity to construct a multiscale brain
39  structural connectome. By employing the gradient mapping method, the gradient space derived
40  from the multiscale structural connectome effectively recapitulated the sensory-association axis
41 and anterior-posterior axis. Our findings revealed a continuous expansion of the multiscale
42  structural gradient space during development, with the principal gradient increasingly
43  distinguishing between primary and transmodal regions. This age-related differentiation
44  coincided with regionally heterogeneous changes in cortical morphology. Furthermore, our
45  study revealed that developmental changes in coupling between multiscale structural and
46  functional connectivity were correlated with functional specialization refinement, as evidenced
47 by changes in the participation coefficient. We also found that the differentiation of the
48  principal multiscale structural gradient was associated with improved cognitive abilities, such
49  as enhanced working memory and attention performance, and potentially supported by
50  molecular processes related to synaptic functions. These findings advance our understanding
51 of the intricate maturation process of brain structural organization and its implications for
52  cognitive performance.

53 Keywords: Brain development; structural connectome gradient; sensorimotor-association
54  cortical axis; brain morphology
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Abbreviations

AIC, Akaike information criterion; AHBA, Allen Human Brain Atlas; ANT, Attention Network
Test; CBD, Children School Functions and Brain Development Project in China (Beijing
Cohort); DMN, default mode network; DAN, dorsal attention network; EC, executive control;
FPN, frontoparietal network; FC, functional connectivity; FDR, false discovery rate; GD,
geodesic distance; GC, Gaussian curvature; GO, Gene Ontology; HARDI, high angular
resolution diffusion imaging; HCP, Human Connectome Project; LN, limbic network; LME,
linear mixed-effect; LC, latent component; MPC, microstructural profile covariance; MC, mean
curvature; PCA, principal component analysis; PLSC, partial least square correlation; PLSR,
partial least squares regression; PaC, participation coefficient; S-A, sensorimotor-association;
SA, surface area; SN, somatomotor network; TS, tract strength; VAN, ventral attention network;

WM, working memory.
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70 Introduction

71 The human brain is a complex network that exhibits coordinated structural organizational
72  principles at multiple spatial scales (1). From microscale neuron-to-neuron interactions to
73  macroscale anatomical pathways connecting different brain regions, the anatomical
74  connections encompass a range of scales (2, 3). Multiscale structural organization serves as a
75  foundational framework to support various brain functions and is embedded within complex
76  biological mechanisms (1, 2). Reconstructing the human brain structural connectome across
77  multiple scales has implications for comprehending the principles of human brain organization
78  and the foundation of cognitive function.

79

80 To comprehensively characterize neural organizations across multiple scales, an in vivo
81 structural wiring model integrating complementary neuroimaging features based on multimodal
82  magnetic resonance imaging (MRI) has recently been proposed (4). These features include
83  macroscale structural characteristics, encompassing diffusion MRI tractography, cortical
84  geodesic distance (GD), and microscale structural features called microstructural profile
85  covariance (MPC) (4). By incorporating GD and microstructural similarity as additional
86  structural connectivity features, this multiscale structural model compensates for the limitations
87  of relying solely on white matter fibers as the predominant method for inferring structural
88  connectivity (4). The GD quantifies the wiring cost and spatial proximity of the cortex (5).
89  Moreover, the MPC evaluates the strength of structural connections by assessing
90  microstructural similarity between cortical regions, based on the cortico-cortical “structural

91 model”, which posits a close association between connectivity likelihood and similarity of
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92  cytoarchitecture across cortical regions (6, 7). Thus, these two features enhance the modeling

93  of superficial and approximate distance connections within the gray matter (4). By employing

94  the gradient mapping technique, previous studies revealed the existence of the principal

95  organizational axis derived from the multiscale structural connectome in healthy adults (4) and

96 individuals aged 14-25 years (8). Remarkably, this principal organizational axis spatially aligns

97  with the principal axis of large-scale cortical organization known as the "sensorimotor-

98  association (S-A) cortical axis" (9, 10). This axis signifies feature transition and functional

99  processing across the cortical mantle from primary to association regions, capturing a

100  hierarchical organization that manifests in anatomy (11), function(10), and evolution(12).

101

102  Childhood and adolescence (6-14 years of age) represent a critical period of rapid and

103  continuous brain development marked by the restructuring of neural circuits influenced by

104  puberty hormones. This restructuring leads to permanent brain structural reorganization and

105  significant gains in cognitive and emotional functions, with a cognitive transition from concrete

106  to abstract and logical thinking (13-15). Concurrently, the functional organization of the brain

107  undergoes significant reconfigurations, with the principal axis shifting from a visual-

108  sensorimotor gradient to a pattern gradient delineated by the S-A axis (16, 17). This period is

109  also characterized by dynamic and regionally heterogeneous changes in brain structural features

110  across multiple scales. For example, there are pronounced changes at the microscale level,

111 including the growth of intracortical myelination and synaptic pruning (18, 19). Moreover, the

112  maturation of white matter leads to a substantial reorganization of large-scale brain structural

113  networks (20, 21). Consequently, delineating the development of multiscale structural
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114  organization during this period can yield structural insights into the significant functional

115  reorganization and cognitive development.

116

117  From childhood to adolescence, cortical morphology undergoes remarkable refinements,

118  including cortical surface area (SA) expansion and cortical thinning (22-24). Previous studies

119  associated cortical morphology with multiscale structural connectivity, revealing that regions

120  with similar morphological features were more likely to exhibit axonal connectivity and to

121 share comparable cytoarchitecture (25, 26). In addition, biological processes potentially linked

122  to the refinement of multiscale structural wiring architecture, such as microscale myelin

123  proliferation into the periphery of the cortical neuropil, dynamic synapse reorganization,

124  macroscale white matter fiber development, and axonal mechanical tension, are hypothesized

125  to contribute to the maturation of cortical morphology (27-32). Thus, the potential association

126  between the development of multiscale structural gradients and regionally heterogeneous

127  maturation of cortical morphology warrants further exploration. Furthermore, although

128  dynamic functional interactions between brain regions are constrained by invariant multiscale

129  structural wiring, divergence between structural and functional networks may support flexible

130  and diverse cognitive functions (1, 33). Corresponding to the development of structural brain

131 networks, large-scale functional networks exhibit a shift toward a more segregated network

132  topology, facilitating flexible and specialized brain functions (34-37). Therefore, it is

133  worthwhile to investigate how structural constraints contribute to the maturation of functional

134  organization and cognitive development. In addition, accumulating evidence indicates that

135  genetic factors closely regulate the development of brain structure across regions (38). Axon
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136  guidance, which is closely linked to the formation of neural circuits during neural development,
137  isassociated with structural wiring (39-41). Therefore, investigating associated gene expression
138  can reveal the underlying biological mechanisms driving multiscale structural development
139  processes.

140

141 In this study, we utilized a longitudinal dataset of 437 scans, encompassing multimodal images
142 from diffusion MRI (dMRI), T1-weighted (T1w) MRI, T2-weighted (T2w) MRI, and resting-
143  state functional MRI (rs-fMRI), from 276 developing children (aged 6-14 years). Using the
144  gradient mapping algorithm and linear mixed effect models, we first characterized the
145  developmental patterns of multiscale structural gradients during childhood and adolescence.
146  Furthermore, we explored the associations of these gradients with the refinement of cortical
147  morphology. We also examined the associations between multiscale structure—function
148  coupling and the maturation of cortical organization. Moreover, we investigated the underlying
149  genetic basis and examined the relationships between multiscale structural gradients and
150  individual cognition.

151

152 Results

153  Age-related changes in multiscale structural gradient during

154  development revealed the gradual maturation of the S-A axis

155  We examined 437 scans, including structural MR, diffusion MR, T1w and T2w images, from
156 276 children aged 6-14 years (135 females) in a longitudinal dataset from the Children School

157  Functions and Brain Development Project in China (Beijing Cohort) (CBD). To compute the
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158  multiscale structural gradients for each scan, we utilized a complementary model that integrated

159  three cortical structural connectivity features (GD, MPC, and dMRI tractography) mapped onto

160  a Schaefer 1000 parcellation (42). By implementing the diffusion map embedding algorithm, a

161 set of components was derived and arranged in descending order based on the proportion of the

162  variance accounted for by the component (Fig 1A, middle panel). We focused on the first two

163  gradients, as they collectively accounted for a substantial proportion (approximately 45%) of

164  the variance in cortical connectivity and represented principal axes of spatial variation in

165  cortical wiring. Consistent with the two gradient patterns observed in previous studies of

166  individuals aged 14-25 years and adults (4, 8), the principal gradient differed between the

167  primary regions (somatomotor network [SN] and visual network [VN]) (positive values) and

168  transmodal regions (default mode network [DMN]) (negative values), reflecting the

169  hierarchical organization of the cortex. The second gradient demarcated the anterior and

170  posterior cortex. To demonstrate the overall pattern of age-related changes in gradients, we

171 computed group-averaged gradients for six age groups (6-7, 8, 9, 10, 11, and 12-13 years) and

172  compared their global distributions. The group-averaged gradient maps for each group are

173  shown in Supplementary S1 Fig. Our results demonstrated a consistent trend of the principal

174  gradient becoming progressively distributed toward both ends during development (Fig 1B).

175  Subsequently, we summarized the first two gradients at the network level according to intrinsic

176  functional communities (43) and the atlas of laminar differentiation (44), as illustrated in Fig

177 1C. Our analysis demonstrated an increase of the principal gradient in the primary regions (SN,

178  VN)and the dorsal attention network (DAN) and a decrease in higher-order networks, including

179  the ventral attention network (VAN), limbic network (LN), frontoparietal network (FPN), and


https://doi.org/10.1101/2024.06.14.598973
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.14.598973; this version posted June 15, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

180  DMN. These findings also suggested an expansion pattern in the first gradient, which was

181 further supported by results derived from the laminar differentiation atlas (Fig 1C, right panel).

182  The second gradient showed an increase in the DAN and a decrease in the VN and LN

183  throughout development (Supplementary S2A, B Fig). We next constructed a 2-dimensional

184  gradient space to qualitatively assess global distribution patterns in the 6—7-year-old, 9-year-

185  old, and 12-13-year-old groups, as depicted in Figure 1D. The gradient space demonstrated an

186  expansion trend throughout development (the developmental process of the gradient space

187  across different ages is depicted in Supplementary S1 Movie). Similar observations were also

188  documented in the Schaefer 400 atlas (Supplementary S3 Fig and S2 Movie).

189

190  Fig 1. Multiscale structural gradients during childhood and adolescence. (A) The matrices

191 containing the structural features of geodesic distance, microstructural profile covariance, and

192  diffusion MRI tractography were concatenated and transformed into an affinity matrix,

193  followed by the diffusion map embedding algorithm. The first two gradients capture the largest

194  proportion of the variance. The group-averaged gradients were projected onto the cortical

195  surface and visually represented (right). (B) The global density map of the principal gradient

196  for six age-specific groups showed a gradual dispersal pattern with development. (C) Radar

197  plot of the principal gradient for comparison between the 6—7-year-old group and other age-

198  specific groups based on Yeo functional networks (left) (45) and laminar differentiation

199  parcellation (right) (44). (D) The first two structural gradients mapped into a 2D gradient space

200  for the 6-7-, 9-, and 12—13-year-old groups demonstrated an expansion pattern during

201 development.
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202

203  To quantify the effect of age on multiscale structural gradients during development, linear

204  mixed-effect (LME) models (candidate models are described in Materials and Methods, Table

205 1) were constructed, and the optimal model was chosen based on the Akaike information

206  criterion (AIC) (46). We first computed several global measures to describe the overall

207  characteristics of the first two gradients, including the explanation ratio, range, and standard

208  deviation. A higher explanation ratio signified a more prominent role in the organization of the

209 structural connectome, while the range indicated differentiation between extremes, and the

210  standard deviation measured inconsistency. We observed age-related increases in the principal

211 gradient (age effect p < 0.001) and decreases in the second gradient (age effect p < 0.001) for

212 all three global measures (Fig 2A). Additionally, dispersion was calculated by summing the

213  Euclidean distances between each point and the centroid within the 2D space formed by the

214 first two gradients for each individual, providing a quantification of the overall dissimilarity

215  within the gradient space. The gradient dispersion exhibited an increasing pattern during

216  development (Fig 2B). These findings indicated a shift toward a more distributed structural

217  network topology during development, with the principal gradient increasingly differentiating

218  between primary and transmodal regions. This finding is consistent with the increasing

219  dominance of the principal gradient. In contrast, the second gradient suggested a progressive

220  weakening of the anterior-posterior pattern.

221

222  Fig 2. Age-related changes in gradients at both the global level and the node level. (A)

223  Global measures of the first two gradients changed across age groups, including the explanation
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224 ratio (left), range (middle), and standard deviation (right) (age effect p <0.01). (B) Age-related
225  changes in gradient dispersion computed from the first two gradients (age effect p <0.01). (C)
226  T-statistic of age-related changes in nodewise gradients and the eccentricity map (p<0.05). The
227  results that survived Bonferroni correction are circled by black lines (Bonferroni corrected
228  p<0.05). (D) The primary-to-transmodal functional gradient derived from the group-averaged
229  functional connectivity matrix. (E) Age-related changes in the correlation coefficient between
230  the multiscale structural principal gradient and the primary-to-transmodal functional gradient
231 (age effect p < 0.01). (F) Spatial correlation between the structural principal gradient age-
232  related t-map and the primary-to-transmodal functional gradient. Each dot represents a brain
233  node. The significance level was corrected for spatial autocorrelation (P surogaie<0.01).

234  To examine the statistical age effect across the whole brain, we also leveraged the LME model
235  at the node level. As depicted in Fig 2C, the principal gradient revealed age-related increases
236  inthe SN and VN corresponding to the positive extremum (t>1.976), while regions associated
237  with the negative extremum (t<-1.967), such as the temporal, medial, and lateral prefrontal
238  lobes, exhibited a pattern of decline (p < 0.05, Bonferroni corrected). For the second gradient,
239  asignificant decrease was observed in the VN (p < 0.05, Bonferroni corrected). Additionally,
240  we calculated the eccentricity in each participant for each node by measuring the Euclidean
241 distance between the given node and the centroid of the template gradient space derived from
242  the averaged multiscale matrix. This metric quantified the deviation of each node from the
243  central position. The eccentricity map demonstrated significant increases in the SN, VN, and
244  medial lobe, corresponding to either end of the first gradient (p < 0.05, Bonferroni corrected).

245  These results indicated an expansion of the gradient space during development, reflected in the
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246  strengthening differentiation of the principal gradient, which corresponded to the S-A axis. To
247  further examine whether the S-A pattern of the principal gradient strengthened during
248  development, we used the primary-to-transmodal functional gradient derived from the group-
249  averaged functional connectivity (FC) matrix as the S-A axis (Fig 2D). We computed the
250  correlation coefficient between the principal structural gradient and functional gradient for each
251 scan. The LME model revealed a significant increase in the correlation coefficient during
252  development, which indicated a strengthened S-A pattern in multiscale structural organization
253  (t=7.41,p<0.001) (Fig 2E). In contrast, the correlation coefficient between the second gradient
254  and the functional gradient did not exhibit a significant effect of age (Supplementary S2C Fig).
255  Inaddition, the age-related t-map of the multiscale structural principal gradient demonstrated a
256  significant correlation with the primary-to-transmodal gradient, indicating temporal changes
257  following the S-A organization pattern (r= -0.54, Psurogate<0.01) (Fig 2F). Therefore, this
258  analysis demonstrated that multiscale structural wiring architecture shifted toward a more
259  distributed hierarchical organization during childhood and adolescence.

260

261 The multiscale structural principal gradient and its
262 maturation are associated with the development of cortical

263 morphology

264  Considering that cortical regions with similar morphological features are more likely to have
265  structural connections and that structural connectivity features such as myelin and white matter
266  tracts are potentially interrelated with the maturation processes of cortical morphology, we

267  hypothesized that the refinement of the multiscale structural principal gradient may coincide
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268  with the heterogencous maturation of cortical morphology. Subsequently, we employed five
269  cortical morphometric measures that are relevant to the aforementioned biological processes
270  and delineated a comprehensive cortical morphological profile. These measures included
271 cortical thickness (CT), gray matter volume (GMV), SA, mean curvature (MC), and Gaussian
272  curvature (GC). We investigated the associations between the multiscale structural principal
273  gradient and morphometric features (Fig 3A). Given the similarities in the spatial patterns of
274  these metrics, we performed principal component analysis (PCA) to project the five features
275 onto a set of principal axes that effectively captured the spatial variation in the cortical
276  morphological profile. The first component (PC1) explained nearly 85% of the variance, and
277  we incorporated PC1 into subsequent analyses. As shown in Fig 3B, the group-averaged PC1
278  exhibited differentiation between primary regions (i.e., the SN and VN) and transmodal regions
279  (i.e., the FPN and DMN), indicating that distinct morphometric attributes distinguish these two
280  types of brain regions. Then, as depicted in Fig 3C, we explored the relationship between PC1
281 and multiscale structural gradient 1 and identified a strong correlation (r=0.69, Psurrogare <0.01).
282  These findings suggested a potential association between cortical morphology and cortical
283  wiring architecture across the cortical mantle, as regions exhibiting similar morphological
284  features also display comparable multiscale structural connectivity profiles.

285

286  Fig 3. Association between the multiscale structural principal gradient and morphometric
287  features. (A) Group-averaged morphometric features, including cortical thickness, gray matter
288  volume, surface area, mean curvature, and Gaussian curvature. (B) The five morphometric

289  features were input into the PCA algorithm, and components were ordered according to the
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290  proportion of variance they accounted for. The principal component (PC1) was mapped on the
291 surface (right). (C) Spatial correlation between the multiscale structural principal gradient and
292  morphometric PC1. Each dot represents a brain node. The significance level was corrected for
293  spatial autocorrelation (P sumrogaie<0.01). (D) Spatial correlation between age-related t-maps of
294  the multiscale structural principal gradient and morphometric PC1 (P surrogate<0.01). (E) Spatial
295  correlation between age-related t-maps of the multiscale structural principal gradient and
296  morphometric features, including surface area, cortical thickness, gray matter volume, mean
297 curvature, and Gaussian curvature.

298

299  To validate the presence of a developmental association between cortical wiring and cortical
300 morphology, we investigated the spatial correlation of mature patterns between them.
301 Specifically, we employed the previously mentioned LME model on PC1 to characterize the
302  effect of age on cortical morphology. As illustrated in the right panel of Fig 3D, we observed
303 an increase in the prefrontal lobe, which occupies the positive end of PC1. This observation
304  suggested distinct maturation processes between the prefrontal lobe and other brain regions.
305  Moreover, as shown in the left panel of Fig 3D, the correlation analysis between the t-maps of
306  multiscale structural gradient 1 and morphometric PC1 revealed a congruent developmental
307  pattern with a correlation coefficient of 1=-0.33 (Psyrrogare <0.01). The increase in the multiscale
308  structural principal gradient in the SN was accompanied by a decrease in PC1, while the
309  decrease in the principal gradient in the prefrontal and temporal lobes was accompanied by an
310  increase in PC1. The obtained results validated our hypothesis that there are synchronized

311 maturation patterns between cortical wiring and cortical morphology. As shown in Fig 3E, to
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312  investigate the extent to which individual morphological features co-evolve with the multiscale
313  structural gradient, we also conducted a correlation analysis between the t-map of multiscale
314 structural gradient 1 and the t-map of each morphometric feature. Notably, a significant
315  association was observed between t-maps of the principal gradient and SA (Psurrogae <0.01),
316 GMV (Psurogae <0.01), and MC (Psurrogae = 0.01). These findings provide evidence of
317  interconnected spatial patterns and developmental influences between the multiscale structural
318  connectome and cortical morphology.

319

320 Development of multiscale structure—function coupling
321 associated with the refinement of cortical functional

322 specialization

323  The coupling between structure and function indicates that structure is the fundamental
324  framework that facilitates synchronized fluctuations in functional activities underlying
325  cognition (47). To further investigate the role of the multiscale structural connectome in shaping
326  the development of functional architecture, we analyzed the coupling between structure and
327  function for each region. Coupling was assessed through Spearman rank correlation between
328  the connectivity profiles of structure and function (Fig 4A). As shown in Fig 4B, the group-
329  averaged coupling map revealed distinct patterns across the cortex, ranging from -0.01 to 0.34,
330  reflecting the alignment of functional and multiscale structural connectivity profiles of the
331 given region. The network-level analysis, based on intrinsic functional communities (43),
332  further revealed a hierarchical pattern across the cortical mantle characterized by greater levels

333  of coupling in primary regions and lower levels in transmodal regions (Fig 4C). A previous
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334  study revealed that wvariability in structure—function coupling is related to functional
335  specialization (47). To investigate whether multiscale structure—function coupling is associated
336  with functional specialization, we calculated the participation coefficient (PaC) for each node
337  based on both multiscale structural and functional networks. The PaC was employed to assess
338  intermodule connectivity and quantify the degree of each node's involvement in other
339  functionally specialized modules. Nodes with lower values indicated a greater degree of
340  functional specialization. The correlation between multiscale structure—function coupling and
341 group-averaged PaC maps is illustrated in Fig 4D, revealing a significant relationship
342 (correlation with structural PaC: r = -0.61, pguogae <0.01; functional PaC: r = -0.51, purogate
343  <0.01). These findings indicated that greater structure—function coupling was associated with
344  greater functional specialization, while lower coupling corresponded to greater functional
345  integration. Furthermore, we demonstrated that structure—function coupling aligned with both
346  structural and functional hierarchies (correlations with the multiscale structural gradient: r =
347 0.39, Psurrogate <0.01; functional gradient: r = -0.55, Psurrogate <0.01) (Supplementary S4A, B Fig).
348  These findings demonstrated that the coupling of multiscale structure and function reflected
349  functional specialization and hierarchy.

350

351 Fig 4. Multiscale structure—function coupling during development. (A) For each region,
352  multiscale structure—function coupling was calculated as the Spearman correlation coefficient
353  between the multiscale SC and FC profiles of that region. (B) A group-averaged multiscale
354  structure—function coupling map of the cortical surface is depicted. (C) The distributions of the

355  coupling map in Yeo functional networks (45). (D) Spatial correlation between the multiscale
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356  structure—function coupling map and the structural/functional participation coefficient map (p
357 quogaie<0.01). (E) Age-related changes in multiscale structure—function coupling. Age-related
358 increases/decreases are shown in red/blue, and the results surviving false discovery rate (FDR)
359  correction are circled by black lines. (F) Spatial correlation between t-maps of multiscale
360  structure—function coupling and the structural/functional participation coefficients (p
361 urrogae<0.01).

362

363  Tocharacterize age-related changes in regional multiscale structure—function coupling, we used
364  the LME model. As depicted in Figure 4E, the prefrontal cortex exhibited enhanced coupling
365  during development, whereas the insula demonstrated reduced coupling. The Yeo atlas was
366  subsequently employed to provide a network-level summary of these findings; however, no
367  statistically significant results were observed in the network-level analysis (Supplementary S5
368  Fig). Considering the close interplay between structure—function coupling and segregation, we
369  further hypothesized that age-related changes in coupling are accompanied by alterations in the
370  PaC. As depicted in Figure 4F, the correlation analysis between t-maps of coupling and
371 structural as well as functional PaCs revealed a congruent developmental pattern (correlation
372 with structural PaC: r = -0.14, pogae <0.01; functional PaC: r = -0.19, peurogaie <0.01). This
373  finding suggested that brain regions exhibiting increases in structure—function coupling were
374  more likely to be accompanied by an increased degree of functional specialization. Taken
375  together, these findings demonstrated that the maturation of multiscale structure—function
376  coupling was related to the refinement of functional specialization from childhood to

377 adolescence.
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378

379 The differentiation of the principal multiscale structural

380 gradient was related to better cognitive performance

381 Structural connectivity serves as the fundamental basis for neuronal interactions that underlie
382  the emergence of cognition and behavior (33). Throughout childhood and adolescence,
383 attention and executive function undergo continuous enhancement (48). Subsequently, we
384  sought to explore the implications of cortical wiring for individual cognition by investigating
385  two cognitive dimensions: working memory (WM) and attentional ability. WM is associated
386  with complex tasks such as temporary storage and manipulation of information (49). Attention
387  involves prioritizing task-relevant information processing while disregarding irrelevant
388  information (49). Here, WM was measured by a typical numerical n-back task, while attention
389  performance was measured by response time for alerting, orienting and executive control (EC)
390 tasks (see Methods for further details). We next assessed the associations between the gradient
391 data and cognition data across individuals via partial least square correlation (PLSC) analysis.
392  PLSC offers a multivariate perspective that can capture complex relationships within
393  multidimensional data. Considering the distinct cognitive aspects assessed by the two tests,
394  separate PLSC analyses were performed for each cognitive domain. Through PLSC, we
395  generated latent components (LCs) that captured the optimal associations between the principal
396  gradient and cognitive scores.

397

398  Fig 5. Partial least square correlation (PLSC) analysis revealed an association between

399  the principal gradient and cognitive scores. (A, D) Pearson correlations between the principal
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400 gradient and composite scores of working memory/attention. The inset figure shows the null

401 distribution of singular values estimated by the permutation test (n = 1000). (B, E) Loadings of

402  WM/attention were calculated by Pearson correlation between the cognitive measurements and

403  their composite scores. The shadows represent significant loadings tested by bootstrap

404  resampling (n=1000). (C, F) Gradient loadings were calculated by Pearson correlation between

405  gradient 1 and their composite scores. The loadings of regions with black lines were subjected

406  to a significance test by bootstrap resampling (n=1000).

407

408  For WM, the first LC (LC1) exhibited significance in the permutation test (p<<0.01). For LC1,

409  the composite scores were computed by projecting the original data onto their corresponding

410  weights. The correlation between the WM composite score and the gradient 1 composite score

411 was significant, indicating a strong positive relationship between the cognitive and gradient

412  data (r=0.48, p<0.01) (Fig 5A). Additionally, we calculated the loadings of gradient 1 and WM

413 by computing the Pearson correlation between the original data and the composite scores,

414  thereby quantifying the contribution of the given brain (cognitive) measure for the LC. As

415  shown in Fig 5B and Fig 5C, higher WM composite scores were associated with worse WM

416  performance, while greater gradient composite scores were linked to higher values of gradient

417 1 in transmodal regions and lower values in primary regions. These significant loadings, tested

418 by bootstrap resampling (n=1000), are depicted with shadows in WM and black lines in

419  gradient 1. Better WM performance was associated with higher gradient 1 values in primary

420  regions and lower values in transmodal regions.

421
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422  Similar to the WM results, LC1 derived from the attention-related PLSC analysis accounted for
423  46.57% of the covariance (p=0.001), showing a significant association between attention and
424  gradient 1 composite scores (r=0.39, p<0.01) (Fig 5D). As shown in Fig 5E and Fig 5F, better
425  attention scores were associated with higher gradient 1 values in transmodal regions and lower
426  values in primary regions. Given that attention performance was measured through response
427  time, larger attention scores indicated poorer attention performance. Therefore, these findings
428  were consistent with the results obtained from the WM analysis, suggesting a significant
429  association between improved cognitive performance and decreased negative value as well as
430  increased positive value of the principal gradient (strengthened S-A pattern in multiscale
431 structural organization). Consequently, these collective outcomes provide evidence that the
432  enhancement of the S-A axis pattern along multiscale structural gradient 1 was associated with
433  better cognitive performance.

434

435 The maturation of the principal multiscale structural

436 gradient was associated with gene expression profiles

437  To explore the underlying biological mechanisms of the maturation of multiscale structural
438  gradients, we applied genome expression data from the Allen Human Brain Atlas (AHBA)

439  (https://human.brain-map.org (50)). The microarray data were preprocessed using the abagen

440  toolbox (version 0.1.3; https://github.com/rmarkello/abagen). Given that data from the right

441  hemisphere were incomplete, we only used the data from the left hemisphere. By mapping the

442  microarray data to the Schaefer 1000 atlas, we obtained a 416 x15631 (region X gene) matrix

443  (Fig 6A).
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444

445  Fig 6. Association between age-related changes in the principal gradient and gene
446  expression profiles. (A) Gene expression profiles across 416 brain regions. (B) The explained
447  ratios for the first 10 components derived from the partial least squares regression algorithm.
448  The first component (PLS1) accounted for the largest proportion of the variance and is depicted
449  in the right panel. (C) Spatial correlation between age-related changes in the multiscale
450  structural principal gradient and PLS1 scores. Each dot represents a brain node. The
451 significance level was corrected for spatial autocorrelation (P surogae<0.01). (D, E) Gene
452  Ontology (GO) enrichment pathways of the top 10% of genes with positive/negative PLS1
453  weights. The 10 most significant GO terms are displayed (false discovery ratio-corrected).
454

455  Subsequently, we employed a partial least squares (PLS) regression algorithm to investigate
456  the relationships between the age-related gradient 1 t-map and the gene expression matrix. The
457  first component (PLS1) accounted for the largest proportion of the variance (55.35%) and
458  represented the optimally weighted linear combinations of gene expression patterns (Fig 6B).
459  The spatial pattern of PLS1 was spatially correlated with the multiscale structural gradient 1 t-
460  map (r=0.74, Psurrogaie<0.01, corrected for spatial autocorrelation) (Fig 6C).

461

462  To further investigate the biological implications, the genes were ranked based on the weights
463  from PLSI1, and the top 10% of genes from both the positive (PLS1 +) and negative (PLS1 -)
464  weights were input into the Metascape web tool for gene enrichment analysis and visualization

465  (all prpr<0.05) (51). Notably, the expression of positively weighted genes was positively
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466  correlated with the gradient 1 t-map.

467

468  Gene Ontology (GO) analysis was performed to identify related molecular functions, biological
469  processes, and cellular components. As shown in Fig 6D, several meaningful brain

9% <¢

470  development-related terms emerged for the PLS1+ genes, such as “head development”, “metal
471 ion transmembrane transporter activity”, “neuronal cell body membrane” and “presynapse”
472  (Fig 6D). On the other hand, the PLS1- genes were enriched in several synapse-related terms,
473  such as “presynapse”, “axon”, “synaptic signaling”, “exocytic vesicle”, “modulation of
474  chemical synaptic transmission”, and “calcium ion binding” (Fig 6E). The 20 most significant
475 GO terms are depicted in Supplementary S6 Fig.

476

477 Discussion

478  Inthis study, we documented the typical development process of multiscale structural gradients
479  from childhood to adolescence based on an advanced structural connectome model. The results
480  demonstrated that the maturation of a multiscale structural gradient was differentiated along the
481 S-A cortical axis during the developmental period of 6-14 years of age. The shared
482  developmental consequences of the multiscale structural gradient and cortical macrostructure
483  indicated a potential interconnected maturation mechanism between the structural connectome
484  and cortical morphology. The developmental changes in multiscale structure—function coupling
485  reflected the refinement of functional specialization. In addition, the enhancement of the S-A

486  axis pattern along the principal gradient demonstrated associations with enhanced cognitive

487  performance and synapse-related gene expression. These findings provide a comprehensive
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488  understanding of the maturation principles of multiscale structural organization in the human
489  brain during childhood and adolescence, as well as the underlying biological mechanisms
490 involved.

491

492  Differentiation of the multiscale structural principal gradient

493  with development

494  The multiscale structural connectome model in this study integrated three complementary
495  neuroimaging features, diffusion MRI tractography, MPC, and cortical GD (4). Tract strength
496  is the dominant measure for assessing white matter connectivity, while GD can infer short
497  adjacent cortico-cortical connections (4, 5). MPC measures similarities between cortical
498  regions, as connectivity is more likely to exist between regions with similar cytoarchitectures
499 (6, 7). Consistent with findings in healthy adults and adolescents aged 14-25 years (4, 8), our
500 study identified two principal axes of multiscale structural connectome organization, the
501 primary-transmodal axis and anterior-posterior axis, in an accelerated longitudinal cohort aged
502  6-14 years. In this population, both qualitative (Fig 1D) and quantitative (Fig 2B, C) analyses
503 indicated an expanding gradient space during development that was mainly driven by the
504  continuous differentiation of the principal gradient. Furthermore, given the more pronounced
505  differentiation of the S-A axis, a primary-to-transmodal functional gradient was utilized as a
506  proxy for this axis, and a tendency for the principal multiscale structural gradient to align with
507  the S-A axis during development was revealed (Fig 2E). The continuous differentiation
508  between the primary and transmodal cortex along the principal gradient aligned with the

509  neurodevelopmental hierarchy from multiple findings, which suggested a varied developmental
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510  pattern between the primary and transmodal cortex (9). First, this differentiation pattern along
511 the principal structural gradient mirrored the increasing differentiation across the functional
512  hierarchy during this period, as indicated by the shift in the principal functional gradient from
513  the visual-sensorimotor gradient toward a pattern gradient characterized by the S-A axis (16,
514 17). Second, this differentiation pattern was also consistent with evidence from white matter
515  connectivity and myeloarchitecture, which demonstrated augmented differentiation of this axis
516  during development (52, 53). In addition, the differentiation of cortical features along the S-A
517  axis may delineate distinct cognitive functions and facilitate executive, socioemotional, and
518  mentalizing functions within the transmodal region (9). Recent studies have indicated that
519  differentiation along the S-A axis is related to flexible cognitive processing and better cognitive
520  function (54, 55). Our results corroborated this finding that a more differentiated gradient along
521 the S-A axis was related to better WM and attention performance.

522

523 Interactions between the development of the multiscale

524  structural gradient and cortical morphometric features

525  Our findings revealed coordinated spatiotemporal developmental patterns of cortical
526  morphometric profiles that encompass multiple morphometric features and the principal
527  multiscale structural gradient incorporating white matter and cortical microstructure. Some
528  empirical evidence and theoretical hypotheses have established associations between changes
529  in cortical morphology and structural wiring; one hypothesis is Seldon’s "balloon model" (56),
530  which states that akin to an expanding balloon, the growth of white matter induces tangential

531 stretching and thinning of its connected cortex. This hypothesis was supported by correlations
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532  found between cortical surface expansion and increased subcortical white matter fibers during

533  development (30). The theory proposed by Essen (31) links the cortical folding pattern to axonal

534  mechanical tension, with gyri potentially formed through mechanical tension pulling closely

535  interconnected regions together. Gray matter thinning during childhood and adolescence is

536 attributed to biological processes such as synaptic pruning, apoptosis (28, 57), and proliferation

537  of myelin at the interface between gray matter and white matter (27-29). Previous studies also

538 revealed associations between cortical thinning and increased white matter fibers during

539  development (58, 59). Furthermore, considering the brain's organization as a network of

540 interconnected regions, a recent study adopting a network perspective demonstrated the

541 constraints of the WM network on the maturation of CT from childhood to adolescence (60).

542  Our study also revealed that regions exhibiting analogous structural connection profiles

543  demonstrated congruent cortical morphology in spatial and maturation patterns, which can be

544  elucidated through various mechanisms. First, structurally interconnected regions tend to

545  possess similar cytoarchitecture and may develop during comparable time windows (61-63).

546  Regions with similar cytoarchitectonic patterns tend to exhibit similar morphological

547  characteristics (25). Second, the regionally heterogeneous developmental patterns of cortical

548  morphology may be attributed to mutual trophic influences supported by structural wiring (64).

549  Third, a recent study demonstrated that regions with similar cytoarchitectonic features and

550  white matter interconnections are more likely to exhibit similar neurotransmitter receptor

551 profiles (65). Consequently, these regions may be subject to coregulation through similar

552  physiological mechanisms (60, 66). The findings of this study offer novel insights into the

553  interconnected maturation mechanisms between cortical wiring and macrostructure, suggesting
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554  apotential role for structural connectivity in shaping cortical morphology.

555

556 Relationships between changes in multiscale structural
557 organization and  functional organization during

558 development

559  Our study revealed a continuous differentiation pattern along the principal multiscale structural
560  gradient during development, paralleling the primary-to-transmodal functional gradient results
561 reported by (17) in the same population as ours. This finding indicated a harmonized process
562  of structural and functional maturation in human brain development, characterized by
563 increasingly enhanced hierarchical organization and segregated topology. Previous studies also
564  highlighted the synchronized maturation of structural and functional organization. A study
565  based on functional intrinsic cortical activity revealed a hierarchical neurodevelopmental axis,
566  which was linked to a progressive increase in intracortical myelination (67). Moreover,
567  throughout the developmental process, both the structural and functional topology displayed a
568  more distributed and segregated pattern (68, 69). These results suggested a mature process of
569  enhanced segregation, manifested in structural and functional synchronization.

570

571  In addition, numerous studies have consistently demonstrated that structure—function coupling
572  exhibits regional heterogeneity, with the degree of coupling aligning along the S-A axis (47,
573 70, 71). Our findings supported the prevailing trend, with a greater degree of coupling in the
574  primary cortex than in the transmodal cortex. The primary regions exhibit more rapid and

575  accurate responses to external stimuli, necessitating stronger structural constraints. In contrast,
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576  the transmodal regions are untethered from structural constraints, consistent with their more
577  flexible and diverse functional roles (6, 72). Low coupling in the transmodal cortex may be
578  related to functional flexibility and diverse task demands (73). A previous study utilizing the
579  white matter connectivity network and functional network demonstrated that coupling reflects
580  functional segregation (47). Consistent with this study, our study also revealed a significant
581 spatial correlation between multiscale structure—function coupling and the PaC, as well as their
582 interrelated developmental patterns. Our findings revealed that during development, regions
583  exhibiting stronger coupling between structure and function demonstrated stronger functional
584  specialization, characterized by a greater degree of segregation. Conversely, regions with
585  weaker coupling showed a greater degree of integration. Notably, stronger coupling between
586  structure and function supports faster and more accurate specialized functions, while regions
587  with fewer structural constraints are associated with greater flexibility and integrative roles (6,
588  72). These results established a compelling connection between structural-functional coupling
589  and the underlying mechanisms of cortical organization.

590

501  Transcriptional profiling of the developmental multiscale

592 structural gradient

593  Using gene expression data from the AHBA dataset, our transcriptome analysis revealed that
594  developmental changes in multiscale structural gradient 1 were associated with the
595  transcriptional profiles of genes involved in development- and synapse-related terms, such as

596  “presynapse”, “axon”, “synaptic signaling”, and “calcium ion binding”. Synapses serve as the

597  foundation for communication between neurons in the nervous system. The elimination of
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598  synapses persists throughout development, with the pruning process exhibiting heterogeneity
599  across brain regions and refining functional circuits (19, 74). Sensory regions complete this
600  process during late childhood, while higher-order regions continue to experience synaptic
601 pruning into adolescence (75). Calcium ions trigger the release of neurotransmitters and initiate
602  synaptic transmission (76). Myelinated axons serve as the primary conduits for transmitting
603  information within the central nervous system, constituting the majority of white matter. White
604  matter pathways undergo continuous remodeling during brain maturation (77). Moreover,
605  combined with gene enrichment, previous studies on the development of functional networks,
606  CT, and intracortical myelination have also reported associations with synapse-related terms
607 (17, 23, 78, 79). Our findings may indicate possible synapse-related developmental process
608  mechanisms underlying multiscale structural connectome development from childhood to
609  adolescence.

610

611 Limitations and future directions

612  There are several limitations to this study. First, our current dataset lacked pubertal hormone
613  measurements, leading us to define ages chronologically instead of by pubertal stage. This
614  limitation may constrain our ability to investigate the effect of pubertal hormone levels on
615  multiscale structural gradients. Incorporating pubertal-related measures into future analyses
616  may yield significant biological insights. Second, the gene expression profiles were exclusively
617  derived from postmortem adult brains, potentially overlooking any developmental impact on
618  gene expression levels. Nevertheless, postnatal spatial gene patterns may exhibit stability (38).

619  To validate our findings, future studies should incorporate pediatric-specific gene expression
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620  datasets with spatial resolution comparable to that of the AHBA.

621
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622 Materials and Methods
623 Participants

624  We obtained multimodal MR images from the Children School Functions and Brain
625  Development Project in China (Beijing Cohort), which contains a longitudinal dataset of 643
626  scans from 360 participants (163 females) aged 6-14 years. The final sample included 276
627  participants (aged 6-14 years, 135 females; 437 scans (159 for 1 timepoint, 83 for 2 timepoints,
628  and 39 for 3 timepoints)) with complete, quality-controlled T1w and T2w images, dMRI scans,
629  and rs-fMRI scans. All participants in this study were cognitively normal, and those with a
630  history of neurological disorders, mental disorders, head injuries, physical illness, or
631 contraindications for MRI were excluded. All study procedures were approved by the Ethics
632  Committee of Beijing Normal University, and written informed consent was obtained from all
633  participants or their parents/guardians.

634

635 Data acquisition

636 MRI acquisition

637  High-resolution T1w MRI, diffusion MRI, and rs-fMRI data were obtained using 3T Siemens
638  Prisma scanners at Peking University, Beijing, China. T2w scans were acquired using 3T
639  Siemens Prisma scanners at HuiLongGuan Hospital, Beijing, China. The parameters of the T1w
640  scans were as follows: repetition time (TR) = 2530 ms; echo time (TE) = 2.98 ms; inversion
641 time (TT) = 1100 ms; flip angle = 7°; field of view (FOV) = 256 x 224 mm?; number of slices
642  =192; slice thickness = 1 mm; and bandwidth (BW) = 240 Hz/Px. The parameters of the T2w

643  scans were as follows: 3D T2-SPACE sequence, TR = 3200 ms, TE = 564 ms, acquisition
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644  matrix = 320 x 320, FOV = 224 x 224 mm?, number of slices = 256, slice thickness = 0.7 mm,
645  and BW =744 Hz/Px. The rs-fMRI scans were acquired using an echo-planar imaging sequence
646  with the following parameters: TR = 2000 ms; TE = 30 ms; flip angle = 90°; FOV =224 x 224
647  mm?; number of slices = 33; number of volumes = 240; and voxel size = 3.5 x 3.5 x 3.5 mm>.
648  Diffusion MRI was performed using a high angular resolution diffusion imaging (HARDI)
649  sequence with a 64-channel head coil with the following parameters: TR = 7500 ms, TE = 64
650  ms, acquisition matrix = 112x112, FOV = 224x224 mm?, slices = 70, slice thickness = 2 mm,
651 BW = 2030 Hz/Px, and 64 diffusion weighted directions (b-value = 1000 s/mm?) with 10 non-
652  diffusion weighted b0 (0 s/mm?).

653

654 Behavioral data

655 1) Working memory test. We used a numerical N-back task to estimate WM capacity (48).
656  Twelve blocks of tasks under three workload conditions—0-, 1-, and 2-back—were completed
657 by participants. For the 0-back condition, participants were instructed to judge whether the
658  current digit was 1. For the 1- and 2-back conditions, participants were asked to judge whether
659  the current digit was identical to the previous one or two digits in the sequence. The d-prime
660 index was computed for each condition to assess WM performance. The index was calculated
661 as the inverse of the cumulative Gaussian distribution of the hit ratio subtracted by the inverse
662  of the cumulative Gaussian distribution of the false alarm ratio. The detailed task design can be
663  found in Hao et al.(48). In this study, we included 365 data points.

664  2) Attentional test. We used a child-friendly version of the Attention Network Test (ANT) (80)

665  to evaluate attention performance, which was measured by the response time for the alerting,
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666  orienting and executive control tasks. The detailed task design can be found in Hao et al.(48).
667  We included 372 data points in our study.

668

669 MRI preprocessing.

670  Structural and functional images underwent preprocessing with the modified Human
671 Connectome Project (HCP) pipeline (81).

672  Structural MRI.

673  We performed anterior commissure-posterior commissure (AC-PC) alignment and brain
674  extraction. Subsequently, the Tlw and T2w images were coregistered using a rigid body
675  transformation with a boundary-based registration cost function (82). Then, the square root of
676  the product of the T1w and T2w images was used to correct for the bias field (83). These images
677  were registered to the Chinese Pediatric Atlas (CHN-PD) (84). Using FreeSurfer 6.0-HCP (85),
678  cortical surfaces were generated in native space, and T2w images were used to refine the pial
679  surfaces. Moreover, cortical ribbon volume myelin maps were generated (83).

680 Diffusion MRI.

681 Diffusion images were initially preprocessed using MRtrix3 (86), which included denoising
682  and removing Gibbs ringing artifacts (87). Subsequently, the FSL eddy tool was employed to
683  correct eddy current-induced distortions, head movements, and signal dropout (88-90). Next,
684  the eddy-corrected diffusion images and corresponding field maps were preprocessed using the
685 FSL epireg script to effectively mitigate EPI  susceptibility  artifacts

686  (https:/fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT/UserGuide# epi_reg). The diffusion images were

687  finally corrected for B1 field inhomogeneity using the N4 algorithm provided by ANTs (91).
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688  Detailed information on the dMRI preprocessing steps can be found in (60).

689

690 Functional MRI.

691 To correct for head motion, each frame of the functional time series was registered to the first
692  frame using rigid body registration. The distortions in the phase encoding direction were
693  corrected using the corresponding field map. The first frame was subsequently registered to the
694  Tlw image using rigid body and boundary-based registrations to correct for distortions. The
695 relevant transformations were concatenated to register each frame of functional time series to
696  the first frame, native Tlw space, and finally the CHN-PD atlas space. Then, bias field
697 correction, extraction of the brain, and normalization of the whole-brain intensity were
698  performed. Next, followed by a bandpass filter (0.01 Hz < £ < 0.08 Hz), we performed ICA-
699  based Automatic Removal Of Motion Artifacts (ICA-AROMA) for denoising (92). We also
700  removed the shared variance between the global signal and time series. Subsequently, the time
701 series in the CHN-PD volume space were projected onto native cortical surfaces using a partial
702  volume weighted ribbon-constrained mapping algorithm. Next, the signals on the cortical
703  surface were resampled and precisely aligned with the Conte69 template through registration,
704  followed by resampling onto the fsaverage5 surface.

705

706  Generation of multiscale structural features

707  Consistent with the previously reported multiscale model, three complementary structural
708 features were calculated based on Tlw, T2w, and diffusion images. The three features were

709  mapped onto Schaefer 1000 parcellations and calculated as described below (the Schaefer 400
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710  atlas was used for validation analysis) (42).

711 1) Geodesic distance. Based on the mid-thickness surface of the individual native surface, the

712  GD was calculated as the shortest distance between two nodes along the surface. In particular,

713  we utilized workbench commands (-surface-geodesic-distance) to compute the distance of each

714 pair of centroid vertices within the given parcel, resulting in a node-by-node GD matrix. Given

715  the limitation of this approach in calculating the GD solely within hemispheres, the

716  interhemispheric GD was calculated by averaging the GD across two hemispheres.

717  2) Microstructure profile covariance. According to a previously reported protocol, we acquired

718 12 equivolumetric surfaces between the pial and white surfaces and sampled T1w/T2w values

719  along the vertices of these surfaces (6). The intensity profiles of T1w/T2w images were

720  averaged within parcels, excluding any outlier vertices. Then, we calculated pairwise Pearson

721 product-moment correlations between the intensity profiles of each pair of parcels while

722 controlling for the average whole-cortex intensity profile. The matrix was log-transformed after

723  thresholding at zero, resulting in the final MPC matrix.

724  3) Tract strength. We used MRtrix3 to generate a white matter connectivity network. We

725  registered T1lw images and their corresponding data to the native diffusion MRI space. An

726  unsupervised algorithm was used to estimate response function (RF) in different brain tissue

727  types (93). Then, we performed single-shell 3-tissue constrained spherical deconvolution

728  (SS3T-CSD) (94) using MRtrix3Tissue (https://3Tissue.github.io), a branch of MRtrix3 (86),

729  to obtain the fiber orientation distribution in all voxels. Following intensity normalization, we

730  chose the gray matter/white matter boundary as the streamline seed mask. Based on

731 anatomically constrained tractography (ACT) (95) with the segmentation results of the
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732  structural MR images, second-order integration over fiber orientation distributions was
733  employed to generate streamlines (96). Streamline generation was terminated when 20 million
734  streamlines were counted (maximum tract length =250 mm; fractional anisotropy cutoff = 0.06;
735  angle threshold = 45°). The spherical deconvolution-informed filtering of tracks (SIFT)
736  approach was used to correct for the bias of streamline density (97). The tract strength (TS) was
737  measured by the number of streamlines. Finally, white matter connectivity was generated by
738  mapping the streamlines onto the Schaefer 1000 atlas and log-transformed.

739

740 Calculation of multiscale structural gradients

741 We used the BrainSpace Toolbox to compute connectome gradients (https://github.com/MICA -

742  MNI/micaopen/tree/master/structural _manifold) (98). Consistent with a previous study, the

743  nonzero values of the MPC, TS and inverted GD matrices were rank normalized and rescaled

744  to the same numerical range (4). The three matrices were horizontally concatenated and

745  subjected to a diffusion map embedding algorithm with a kernel of normalized angle similarity,

746  which mapped the high-dimensional multiscale structural connectome data into a low-

747  dimensional space (99). The distances in the gradient space reflect dissimilarities in

748  connectivity patterns between regions. In line with previous studies, we set parameter o = 0.5.

749 By dividing the population into 6 groups based on age with 1-year intervals, we generated a

750  group-level multiscale connectome by averaging the individual multiscale matrices. To make

751 the gradients comparable across individuals and eliminate the randomness of the direction of

752  the gradients, we used Procrustes rotations to align the individual gradients to their

753  corresponding age-specific group-level gradients derived from the group-level multiscale
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754  connectome (100).

755

756  The global gradient measures were computed to summarize the age-related changes in the
757  gradients. These global measures included the following: 1) gradient range, calculated as the
758  difference between the maximum and minimum values; 2) explanation ratio, calculated as the
759  eigenvalue divided by the sum of all eigenvalues; 3) standard deviation, defined as the standard
760  deviation of the given gradient; and 4) gradient dispersion, calculated as the sum of the
761 Euclidean distances of each node to the centroid in the 2D gradient space constructed by the
762  first two gradients. Moreover, we calculated the eccentricity measure as the Euclidean distance
763  between each node and the centroid of the template space obtained from averaging the
764  multiscale matrix across all participants.

765

766  Correlation analysis with cortical morphometric features

767  To investigate the relationships between multiscale structural gradients and cortical
768  morphometric features, we utilized cortical morphometric features derived from the results of
769  the FreeSurfer preprocessing procedure. Subsequently, 5 cortical morphometric features, CT,
770 GMYV, SA, MC, and GC, were extracted and mapped onto the Schaefer 1000 atlas. Given the
771 similarities of cortical patterns across these metrics, we performed PCA to generate a concise
772  representation of the morphometric features. Specifically, for each participant, we conducted
773  PCA on matrix X of nodexfeature. The first component captured the largest variance, and areas
774  with similar morphological profiles were in close proximity along this principal axis. We

775  conducted a correlation analysis between the first principal component (PC1) and the multiscale
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776  structural gradient.

777

778 Calculation of the functional gradient

779  To assess how structure supported the maturation of functional organization, we related
780  multiscale structural gradients to the FC network. Considering the primary-transmodal
781 functional gradient as a representative of the functional hierarchy and its gradual maturation
782  throughout development, we conducted correlation analysis between structural gradients and
783  functional gradient. We computed pairwise Pearson's correlation coefficients based on time
784  series with the Schaefer 1000 atlas to obtain individual FC matrices, followed by the generation
785  of a group-averaged FC matrix. We retained the top 10% of edges per row and computed the
786  row-wise normalized angle similarity. This matrix was then input into the diffusion map
787  embedding algorithm, yielding the primary-transmodal functional gradient (99).

788

789  Analysis of multiscale structure—function coupling

790 We investigated multiscale structure—function coupling during youth, calculated as the
791 Spearman rank correlation between structural connectivity and FC profiles at the nodal level.
792  We computed the average of these individual maps across all participants to generate an
793  averaged coupling map. To quantify the functional specialization of brain networks, we
794  computed the PaC for each scan wusing the Brain Connectivity Toolbox

795  (https://sites.google.com/site/betnet/) (101, 102). Based on the Yeo functional networks (45), the

796  PaC measured intermodule connectivity and quantified the extent to which a node participated in

797 other modules.
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Statistical analysis

We employed several LME models to characterize the age effects to adapt for the longitudinal
dataset. The candidate models for each measure considered 6 combinations of fixed-effect and
random-effect terms, as detailed in Table 1. The mean framewise displacement (mFD) for
dMRI was treated as a fixed-effect term and controlled for in this model.

Table 1. Candidate effects of mixed-effect models

Fixed-effect term Random-effect term
1 +Age+mFD 1|subject
1+Sex+Age+mFD Age|subject

1+Sex+Age+Sex*Age+mFD

Gradient measure~1+ Age + mFD + (1 | Subject) (1)

For example, the linear model of the first combination was defined as follows:
We selected the optimal model according to the AIC (46), with a preference for the model
exhibiting the lowest AIC value. For regional gradient statistical analysis, we further corrected

for multiple comparisons with FDR correction.

For all spatial correlation analyses between different cortical maps, we used the variogram
matching approach to estimate the significance (103). By generating 1000 surrogate maps that
preserved the spatial autocorrelation of the given brain map, we repeated the correlation
analysis utilizing these surrogate maps. The resulting correlation coefficients generated a null

distribution comprising 1000 values. The p value was calculated as the proportion of the
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815  surrogate coefficients exceeding the actual coefficient.

816

817 Gene enrichment analysis

818  We collected genome expression data from the AHBA to identify genes associated with age-

819  related multiscale structural gradient changes (https://human.brain-map.org (50)). The AHBA

820  is a regional microarray transcriptomic dataset of 3702 tissue samples from 6 healthy adult

821 donors. We used the abagen toolbox (version 0.1.3; https://github.com/rmarkello/abagen) to

822  preprocess the microarray data using the Schaefer 1000 atlas. Given that right hemisphere data

823  were only available from 2 donors, we opted to utilize the data from the left hemisphere for our

824  analysis. Using the default parameters, we finally obtained a416 x15631 (region x gene) matrix.

825

826  To determine the relationships between age-related changes in the multiscale structural gradient

827  and genes, we used the previously obtained age effect t statistics of the principal gradient (t-

828 map) and gene expression matrix in partial least squares (PLS) regression. Our goal was to

829  identify the components associated with the gradient t-map, which represented optimally

830  weighted linear combinations of expression patterns. The first component (PLS1) was the most

831 strongly correlated with the t-map. By using a previously described spatial autocorrelation

832  correction approach, we examined the statistical significance of the variance explained by the

833 PLS components and the correlation coefficient between PLS1 and the t-map (103).

834  Subsequently, bootstrapping was performed to assess the error of each gene weight from PLS1,

835  and we transformed the weights into Z scores by dividing the weight by the standard deviation

836  of the given weight derived from 1000 bootstrapping results. We selected the top 10% of genes
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837  from both the positive and negative weights, which made the largest contribution to PLS1, for
838  the subsequent gene enrichment analysis.

839

840  The positive and negative genes were then separately entered into the Metascape webtool for
841 gene enrichment analysis (51). According to GO analysis, Metascape was used to search for
842  specific molecular function, biological process, and cellular component terms. The resulting
843  enriched pathways were thresholded for significance at an FDR < 5%.

844

845 Analysis of the relationship between cognition and the

846  principal multiscale structural gradient

847  We performed PLSC analysis (104) with the myPLS toolbox

848  (https://github.com/danizoeller/myPLS) to extract the relationships between the multiscale

849  structural gradient and cognitive scores. PLSC analysis was performed separately for WM and
850  attention performance. We first computed a covariance matrix R between brain variables X and
851 cognition variables Y:

852 R=YTxX 2

853  followed by singular value decomposition on R:

854 R=UxSxV" (3)

855  where U and V reflect the contributions of the cognition and brain variables, respectively, to
856  the LCs, while S represents the singular values. Then, brain scores (Lx = XxV) and cognition
857  scores (Ly=YxU) were computed for each LC by projecting brain and cognition variables onto

858 their corresponding weights. Brain loadings and cognition loadings were computed as Pearson
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859  correlations between the original data and previously obtained scores. Overall, the PLSC
860  analysis generated LCs that represented the optimal weighted linear combinations of the
861 original variables, thereby establishing the strongest relationships between the brain and
862  cognition data. Subsequently, we assessed the statistical significance of each LC using a
863  permutation test (n=1000). Specifically, we randomly shuffled the cognitive data across all
864  subjects, resulting in a null distribution of singular values. By comparing the actual value with
865  the null distribution, we ascertained the statistical significance. The statistical significance of
866  brain and cognition loadings was estimated by bootstrap resampling (n=1000), with
867  replacement across all subjects on X and Y.
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two structural gradients mapped into a 2D gradient space for 6-7, 9, and 12-13 years old group

demonstrated an expansion pattern during development.

S4 Fig. Spatial correlation between multiscale structure-function coupling map and
primary-to-transmodal functional gradient (A) as well as multiscale structural gradient
(B) (P surrogate<0.01).

S5 Fig. Age-related changes in multiscale structure-function coupling. Age-related
increases/decreases were shown in red/blue. The right panel showed t-values distribution
based on Yeo functional networks.

S6 Fig. Association between age-related changes in principal gradient and gene
expression profiles. (A) Gene Ontology (GO) enrichment pathways of top 10% genes with
positive PLS 1 weights. The most significant 20 GO terms were displayed (left panel).
Metascape enrichment network visualization showed the intra-cluster and inter-cluster
similarities of enriched terms. (B) Gene Ontology (GO) enrichment pathways of top 10%
genes with negative PLS 1 weights.

S1 Movie. The developmental process of the gradient space across different ages in
Schaefer 1000 atlas.

S2 Movie. The developmental process of the gradient space across different ages in

Schaefer 400 atlas.


https://doi.org/10.1101/2024.06.14.598973
http://creativecommons.org/licenses/by/4.0/

A Morphometric measures

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.14.598973,; this version posted June 15, 2024. The copyright holder for this preprint

(which tified by peer revi

area thickness volume

C 1 0'3

o

a-display the preprintin p

mean curve (Gaussian curve

O

o
=

0y
=

£
=

FuJ

Scaled eigenvalues
=

L=
F
-

2 3 4
Components

Age-related changes in morphologic PC 1

10 ) r=-069 | r=-0.33 N =
i p <0.01 " p < 0.01 é’b
£ g or
G
g sl
54 5 2F
a 2r ® ol Age-related changes in principal gradient
o s o -' »
E g Mull hypothesis testing . @2} Mull hypothesis testing "'-L "
o | o
[
. E-4t
-5}
-6
g — 0 —
0 -1 0 1 -5 t-'h"ﬂh.lE
Morphologic PC 1 Murphﬂlﬂgm PC1T- map
Es r=-0.33 r=-0.15 L i}
g 33 5l - : ) r=-0.28 s} r=-0.1 8 = -0.05
1 B} p{ﬂﬂ'l &l p:{:'_l[]ﬁ i 2 _ r }
al) - i - p=<0.01 s} p=001 = 0 =0.83
— s . daf 4
E 2F 2k al:
;E i1 3 ok : =
g 2l . .2} 2}
w 4 At 4
.% -G} 1 -
= 8t . At 8
o 5 0 5 % -4 ; o 2 4 4 2 0 2 4 2 F 2 0 2
area thickness volume mean curve Gaussian curve
[ . |
-6 0 6

Figure 3

Morphologic features T - map


https://doi.org/10.1101/2024.06.14.598973
http://creativecommons.org/licenses/by/4.0/

A

. bioR;(iv.preprint doi: https://doi.orglllo.1101/2024.06.14.598973; this version posted June 15, 2024. The copyright holder for this preprint p g
|...(which was not certified by peer review) is the author/funder, who has lanted bioRxiv a license to display the preprint in perpetuity. It is

- Mulﬁ;aqale EC i made available under aCC-BY 4.0 International license.

i N = [ |
]

. . Spearman
correlation

Regional SC

0 010203

o
o
h
L]
S
&

01 0 01 02 03 04 05 . : : :
= ' [ 0.2 0.4 0.6 0.8 03 04 05 06 07 08
Structure-function coupling Structural PaC Functional PaC

L

Age-related changes in coupling

Ik
g2 g
£,k B
= g -
o fma]
E gl =
a0 =
3 2
O-1f ]
-2
]
4 2 0 2 4 . - . : ,
t-value (p<0.05) 6 4 2 0 2 4 -4 -2 0 2

Structural PaC T-map Functional PaC T-map

Figure 4


https://doi.org/10.1101/2024.06.14.598973
http://creativecommons.org/licenses/by/4.0/

A Microstructure Geodesic
profile covanance distance

Tract strength

035y > Gmdienﬂ%@&

01{]

e ~ Gradient 2
U614 ey | q'\

| R R . ‘:

_l.. rr*l.l._-‘_.
0 5 10 15 20 25 30 ﬂnﬁ
Component number '

Hetermodal

e,
-
- )

B . 6-7 Yrs C
A 8 Yrs
9¥rs
10 Yrs
11 Yrs

—12-13 Yrs

-
o = y
- = lu.
- i Sy

Frequency

Q

01 -005_0 005 01 015

Gradient 1 Yeo atlas Gradient 1 Laminar differentiation atlas ‘Gradient 1
D ® Visual
0.1 ® Somatomotor
® Dorsal attention
® Ventral attention
e Limbic
E @ Frontoparietal
B0 ® Default mode
G
-0.05

E

006 -004 -002 0 002 004 -006 -004 002 O 002 004 -006 -004 -002 0 002 004
Gradient 2

Figure 1


https://doi.org/10.1101/2024.06.14.598973
http://creativecommons.org/licenses/by/4.0/

-

Gradient 1

02
018
: &
= 0.18
i
&
= 4
G @ ’
0.12
B

Gradient dispersion

REREERERES

Figure 2

Explanaticn ratic

t=10.86

- - p<0.001

0.24

022

t=11.60
-~ p<0.001 007

Standard deviation
1=11.37

p-.tﬂ.l::n:h

O

Gradient 1

Gradient 2

Eccentricity

0204~ -
0.05
: 0.18 L—o
T B 0 0 11 12 1314 B T 8 6 10 11 12 1314 B 011 12 13 14
Age Age Age
018
t=-5.13 t=-4.85 004 t=-5.01
p<0.001 018 p=<0.001 p<0.001
' 0.035}
014
042} e
_ _ _ 0.1 u.cmr
7 B 5 10 1 12 1214 6 7 B 9 10 11 12 1314 6 7 8 9 10 11 12 13 14
Age Age Age
t=8.57 D Primary-to-transmodal E. |: 0.55
p<0.001 furnclional gradwent P E
; - o 05
K . Eﬁ
» - 'E-g 0,45}
: 5 e 25 0.4
A S
o= ‘)‘ -2 5503
7 & 8 10 1 12 13 14 Ea'as":ag*n1‘a;ai
[l .1 ! | | 1 &4
Age Age

a F4 4 L] [ ]

t-value

@O

t-\.ralua

otele T8

-L|
i

m
b &

Gradient 1 T- map
g B2 r:n-l-:

& &

L

t-value
Bonferroni corrected p<0.05

-':.;-.'; r=-054
LN p<0.01

0.1
Prirmary-to-transmedal functional gradient

- . .
-0.05 0 0.05


https://doi.org/10.1101/2024.06.14.598973
http://creativecommons.org/licenses/by/4.0/

>
1l
o
&

i p<0.01
n
o :
o N
D qt .
wn ",
L - .
= " el R
E EI ':."‘!_l. 2 -
ﬂ_ l":.-' .-.- -IT-“ s ®
= AT dg L, 3 LC1- Null distribution of
O -Fl* -!"; .-l-l; .. ) Ejnﬂu r values
o-1F. ¥, *:":" L0
E :: ‘I:‘-:; ) =
= ol

10 5 0 5 10 15
Gradient 1 composite scores

r=0.39

[}
o
) A
e ® .G
."i - D
—

=
T

Attention composite scores O
=]

Y =Y Let- Nul distribution of
. r .a # & "‘.._. -|,‘|l % T L] 5 lar 'i'ﬂll.l'e's
-1 v . ® " s '-I
; 4 ". [ :f' :-
3 ) ~ ! ; -
10 0 10 20

Gradient 1 composite scores

Figure 5

ings

Load

=
o

=]

LC1-WM

LC1 - Attention

Alerting Orienting

EC

C

Gradient 1 loadings



https://doi.org/10.1101/2024.06.14.598973
http://creativecommons.org/licenses/by/4.0/

>

Gene expression (416 x 15631)

Brain regions

Genes

Enrichment pathways of top genes

with positive PLS1 wei
metal ion transmembrane transporter activity
nuclear receptor activity

neuronal cell body membrane

DNA-binding transcription repras
activity, HH?M!“TEIE&E = s-p-&uﬁt:
insulin receptor substrate binding

phosphorylation

head development

presynapse

cellular response to nutrient levels

ATPase-coupled transmembrane
transporter activity

Figure 6

ghts

=]
i=]

Explained ratio (%) 0

=
L=1

S

L= =

Gradient 1 T map

[ —
o S —

. ™ i i i -y

=1

8
7
&

:

[ I 11X
ZLEs82

T
~log.{pvalue)

~log.[pvalue) axon|

2 3 4 &5 & T 8 8 10
Number of PLS components Ry

1.3 0.1
PLS1 score

Enrichment pathways of top genes

with negative PLS1 weights

presynapse

synaptic signaling

calcium ion binding [ ]

plasma membrane bounded cell projection cyloplasm
exocytic vesicle | @

modulation of chemical synaptic transmission | ®
channel regulator activity | ®

negative regulation of protein modification process | #
localization within membrane |@

50

75 100
=log.dpvalue)

125

-ml;{p“ I“H]
12

count

0
60


https://doi.org/10.1101/2024.06.14.598973
http://creativecommons.org/licenses/by/4.0/

