
1 The continuous differentiation of multiscale structural gradients from 

2 childhood to adolescence correlates with the maturation of cortical 

3 morphology and functional specialization

4 Yirong He1, Debin Zeng2, Qiongling Li1,3,4, Lei Chu2, Xiaoxi Dong1, Xinyuan Liang1,3,4, Lianglong 

5 Sun1,3,4, Xuhong Liao5, Tengda Zhao1,3,4, Xiaodan Chen1,3,4, Tianyuan Lei1,3,4, Weiwei Men6,7, 

6 Yanpei Wang1, Daoyang Wang1,8, Mingming Hu1, Zhiying Pan1, Haibo Zhang1, Ningyu Liu1, 

7 Shuping Tan9, Jia-Hong Gao6,7,10, Shaozheng Qin1,3,4,11, Sha Tao1, Qi Dong1, Yong He1,3,4,11, Shuyu 

8 Li1*

9 1State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 

10 100875, China

11 2Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science & 

12 Medical Engineering, Beihang University, Beijing 100083, China

13 3Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 

14 100875, China

15 4IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China

16 5School of Systems Science, Beijing Normal University, Beijing 100875, China

17 6Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 

18 100871, China,

19 7Beijing City Key Laboratory for Medical Physics and Engineering, Institute of Heavy Ion Physics, 

20 School of Physics, Peking University, Beijing 100871, China

21 8Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, 

22 Hangzhou Normal University, Hangzhou, 311121, China,

23 9Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 

24 100096, China

25 10IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China

26 11Chinese Institute for Brain Research, Beijing 102206, China

27 *Corresponding author: shuyuli@bnu.edu.cn

28

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 15, 2024. ; https://doi.org/10.1101/2024.06.14.598973doi: bioRxiv preprint 

mailto:shuyuli@bnu.edu.cn
https://doi.org/10.1101/2024.06.14.598973
http://creativecommons.org/licenses/by/4.0/


29 Abstract
30 From childhood to adolescence, the structural organization of the human brain undergoes 

31 dynamic and regionally heterogeneous changes across multiple scales, from synaptic pruning 

32 to the reorganization of large-scale anatomical wiring. However, during this period, the 

33 developmental process of multiscale structural architecture, its association with cortical 

34 morphological changes, and its role in the maturation of functional organization remain largely 

35 unknown. Here, we utilized a longitudinal multimodal imaging dataset including 276 children 

36 aged 6 to 14 years to investigate the developmental process of multiscale cortical wiring. We 

37 used an in vivo model of cortical wiring that combines features of white matter tractography, 

38 cortico–cortical proximity, and microstructural similarity to construct a multiscale brain 

39 structural connectome. By employing the gradient mapping method, the gradient space derived 

40 from the multiscale structural connectome effectively recapitulated the sensory-association axis 

41 and anterior-posterior axis. Our findings revealed a continuous expansion of the multiscale 

42 structural gradient space during development, with the principal gradient increasingly 

43 distinguishing between primary and transmodal regions. This age-related differentiation 

44 coincided with regionally heterogeneous changes in cortical morphology. Furthermore, our 

45 study revealed that developmental changes in coupling between multiscale structural and 

46 functional connectivity were correlated with functional specialization refinement, as evidenced 

47 by changes in the participation coefficient. We also found that the differentiation of the 

48 principal multiscale structural gradient was associated with improved cognitive abilities, such 

49 as enhanced working memory and attention performance, and potentially supported by 

50 molecular processes related to synaptic functions. These findings advance our understanding 

51 of the intricate maturation process of brain structural organization and its implications for 

52 cognitive performance. 

53 Keywords: Brain development; structural connectome gradient; sensorimotor-association 

54 cortical axis; brain morphology
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58 Abbreviations
59 AIC, Akaike information criterion; AHBA, Allen Human Brain Atlas; ANT, Attention Network 

60 Test; CBD, Children School Functions and Brain Development Project in China (Beijing 

61 Cohort); DMN, default mode network; DAN, dorsal attention network; EC, executive control; 

62 FPN, frontoparietal network; FC, functional connectivity; FDR, false discovery rate; GD, 

63 geodesic distance; GC, Gaussian curvature; GO, Gene Ontology; HARDI, high angular 

64 resolution diffusion imaging; HCP, Human Connectome Project; LN, limbic network; LME, 

65 linear mixed-effect; LC, latent component; MPC, microstructural profile covariance; MC, mean 

66 curvature; PCA, principal component analysis; PLSC, partial least square correlation; PLSR, 

67 partial least squares regression; PaC, participation coefficient; S-A, sensorimotor-association; 

68 SA, surface area; SN, somatomotor network; TS, tract strength; VAN, ventral attention network; 

69 WM, working memory.
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70 Introduction
71 The human brain is a complex network that exhibits coordinated structural organizational 

72 principles at multiple spatial scales (1). From microscale neuron-to-neuron interactions to 

73 macroscale anatomical pathways connecting different brain regions, the anatomical 

74 connections encompass a range of scales (2, 3). Multiscale structural organization serves as a 

75 foundational framework to support various brain functions and is embedded within complex 

76 biological mechanisms (1, 2). Reconstructing the human brain structural connectome across 

77 multiple scales has implications for comprehending the principles of human brain organization 

78 and the foundation of cognitive function.

79

80 To comprehensively characterize neural organizations across multiple scales, an in vivo 

81 structural wiring model integrating complementary neuroimaging features based on multimodal 

82 magnetic resonance imaging (MRI) has recently been proposed (4). These features include 

83 macroscale structural characteristics, encompassing diffusion MRI tractography, cortical 

84 geodesic distance (GD), and microscale structural features called microstructural profile 

85 covariance (MPC) (4). By incorporating GD and microstructural similarity as additional 

86 structural connectivity features, this multiscale structural model compensates for the limitations 

87 of relying solely on white matter fibers as the predominant method for inferring structural 

88 connectivity (4). The GD quantifies the wiring cost and spatial proximity of the cortex (5). 

89 Moreover, the MPC evaluates the strength of structural connections by assessing 

90 microstructural similarity between cortical regions, based on the cortico-cortical “structural 

91 model”, which posits a close association between connectivity likelihood and similarity of 
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92 cytoarchitecture across cortical regions (6, 7). Thus, these two features enhance the modeling 

93 of superficial and approximate distance connections within the gray matter (4). By employing 

94 the gradient mapping technique, previous studies revealed the existence of the principal 

95 organizational axis derived from the multiscale structural connectome in healthy adults (4) and 

96 individuals aged 14-25 years (8). Remarkably, this principal organizational axis spatially aligns 

97 with the principal axis of large-scale cortical organization known as the "sensorimotor-

98 association (S-A) cortical axis" (9, 10). This axis signifies feature transition and functional 

99 processing across the cortical mantle from primary to association regions, capturing a 

100 hierarchical organization that manifests in anatomy (11), function(10), and evolution(12).

101

102 Childhood and adolescence (6-14 years of age) represent a critical period of rapid and 

103 continuous brain development marked by the restructuring of neural circuits influenced by 

104 puberty hormones. This restructuring leads to permanent brain structural reorganization and 

105 significant gains in cognitive and emotional functions, with a cognitive transition from concrete 

106 to abstract and logical thinking (13-15). Concurrently, the functional organization of the brain 

107 undergoes significant reconfigurations, with the principal axis shifting from a visual-

108 sensorimotor gradient to a pattern gradient delineated by the S-A axis (16, 17). This period is 

109 also characterized by dynamic and regionally heterogeneous changes in brain structural features 

110 across multiple scales. For example, there are pronounced changes at the microscale level, 

111 including the growth of intracortical myelination and synaptic pruning (18, 19). Moreover, the 

112 maturation of white matter leads to a substantial reorganization of large-scale brain structural 

113 networks (20, 21). Consequently, delineating the development of multiscale structural 
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114 organization during this period can yield structural insights into the significant functional 

115 reorganization and cognitive development.

116

117 From childhood to adolescence, cortical morphology undergoes remarkable refinements, 

118 including cortical surface area (SA) expansion and cortical thinning (22-24). Previous studies 

119 associated cortical morphology with multiscale structural connectivity, revealing that regions 

120 with similar morphological features were more likely to exhibit axonal connectivity and to 

121 share comparable cytoarchitecture (25, 26). In addition, biological processes potentially linked 

122 to the refinement of multiscale structural wiring architecture, such as microscale myelin 

123 proliferation into the periphery of the cortical neuropil, dynamic synapse reorganization, 

124 macroscale white matter fiber development, and axonal mechanical tension, are hypothesized 

125 to contribute to the maturation of cortical morphology (27-32). Thus, the potential association 

126 between the development of multiscale structural gradients and regionally heterogeneous 

127 maturation of cortical morphology warrants further exploration. Furthermore, although 

128 dynamic functional interactions between brain regions are constrained by invariant multiscale 

129 structural wiring, divergence between structural and functional networks may support flexible 

130 and diverse cognitive functions (1, 33). Corresponding to the development of structural brain 

131 networks, large-scale functional networks exhibit a shift toward a more segregated network 

132 topology, facilitating flexible and specialized brain functions (34-37). Therefore, it is 

133 worthwhile to investigate how structural constraints contribute to the maturation of functional 

134 organization and cognitive development. In addition, accumulating evidence indicates that 

135 genetic factors closely regulate the development of brain structure across regions (38). Axon 
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136 guidance, which is closely linked to the formation of neural circuits during neural development, 

137 is associated with structural wiring (39-41). Therefore, investigating associated gene expression 

138 can reveal the underlying biological mechanisms driving multiscale structural development 

139 processes.

140

141 In this study, we utilized a longitudinal dataset of 437 scans, encompassing multimodal images 

142 from diffusion MRI (dMRI), T1-weighted (T1w) MRI, T2-weighted (T2w) MRI, and resting-

143 state functional MRI (rs-fMRI), from 276 developing children (aged 6-14 years). Using the 

144 gradient mapping algorithm and linear mixed effect models, we first characterized the 

145 developmental patterns of multiscale structural gradients during childhood and adolescence. 

146 Furthermore, we explored the associations of these gradients with the refinement of cortical 

147 morphology. We also examined the associations between multiscale structure–function 

148 coupling and the maturation of cortical organization. Moreover, we investigated the underlying 

149 genetic basis and examined the relationships between multiscale structural gradients and 

150 individual cognition.

151

152 Results

153 Age-related changes in multiscale structural gradient during 

154 development revealed the gradual maturation of the S-A axis

155 We examined 437 scans, including structural MR, diffusion MR, T1w and T2w images, from 

156 276 children aged 6-14 years (135 females) in a longitudinal dataset from the Children School 

157 Functions and Brain Development Project in China (Beijing Cohort) (CBD). To compute the 
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158 multiscale structural gradients for each scan, we utilized a complementary model that integrated 

159 three cortical structural connectivity features (GD, MPC, and dMRI tractography) mapped onto 

160 a Schaefer 1000 parcellation (42). By implementing the diffusion map embedding algorithm, a 

161 set of components was derived and arranged in descending order based on the proportion of the 

162 variance accounted for by the component (Fig 1A, middle panel). We focused on the first two 

163 gradients, as they collectively accounted for a substantial proportion (approximately 45%) of 

164 the variance in cortical connectivity and represented principal axes of spatial variation in 

165 cortical wiring. Consistent with the two gradient patterns observed in previous studies of 

166 individuals aged 14-25 years and adults (4, 8), the principal gradient differed between the 

167 primary regions (somatomotor network [SN] and visual network [VN]) (positive values) and 

168 transmodal regions (default mode network [DMN]) (negative values), reflecting the 

169 hierarchical organization of the cortex. The second gradient demarcated the anterior and 

170 posterior cortex. To demonstrate the overall pattern of age-related changes in gradients, we 

171 computed group-averaged gradients for six age groups (6-7, 8, 9, 10, 11, and 12-13 years) and 

172 compared their global distributions. The group-averaged gradient maps for each group are 

173 shown in Supplementary S1 Fig. Our results demonstrated a consistent trend of the principal 

174 gradient becoming progressively distributed toward both ends during development (Fig 1B). 

175 Subsequently, we summarized the first two gradients at the network level according to intrinsic 

176 functional communities (43) and the atlas of laminar differentiation (44), as illustrated in Fig 

177 1C. Our analysis demonstrated an increase of the principal gradient in the primary regions (SN, 

178 VN) and the dorsal attention network (DAN) and a decrease in higher-order networks, including 

179 the ventral attention network (VAN), limbic network (LN), frontoparietal network (FPN), and 
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180 DMN. These findings also suggested an expansion pattern in the first gradient, which was 

181 further supported by results derived from the laminar differentiation atlas (Fig 1C, right panel). 

182 The second gradient showed an increase in the DAN and a decrease in the VN and LN 

183 throughout development (Supplementary S2A, B Fig). We next constructed a 2-dimensional 

184 gradient space to qualitatively assess global distribution patterns in the 6–7-year-old, 9-year-

185 old, and 12–13-year-old groups, as depicted in Figure 1D. The gradient space demonstrated an 

186 expansion trend throughout development (the developmental process of the gradient space 

187 across different ages is depicted in Supplementary S1 Movie). Similar observations were also 

188 documented in the Schaefer 400 atlas (Supplementary S3 Fig and S2 Movie).

189

190 Fig 1. Multiscale structural gradients during childhood and adolescence. (A) The matrices 

191 containing the structural features of geodesic distance, microstructural profile covariance, and 

192 diffusion MRI tractography were concatenated and transformed into an affinity matrix, 

193 followed by the diffusion map embedding algorithm. The first two gradients capture the largest 

194 proportion of the variance. The group-averaged gradients were projected onto the cortical 

195 surface and visually represented (right). (B) The global density map of the principal gradient 

196 for six age-specific groups showed a gradual dispersal pattern with development. (C) Radar 

197 plot of the principal gradient for comparison between the 6–7-year-old group and other age-

198 specific groups based on Yeo functional networks (left) (45) and laminar differentiation 

199 parcellation (right) (44). (D) The first two structural gradients mapped into a 2D gradient space 

200 for the 6–7-, 9-, and 12–13-year-old groups demonstrated an expansion pattern during 

201 development.
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202

203 To quantify the effect of age on multiscale structural gradients during development, linear 

204 mixed-effect (LME) models (candidate models are described in Materials and Methods, Table 

205 1) were constructed, and the optimal model was chosen based on the Akaike information 

206 criterion (AIC) (46). We first computed several global measures to describe the overall 

207 characteristics of the first two gradients, including the explanation ratio, range, and standard 

208 deviation. A higher explanation ratio signified a more prominent role in the organization of the 

209 structural connectome, while the range indicated differentiation between extremes, and the 

210 standard deviation measured inconsistency. We observed age-related increases in the principal 

211 gradient (age effect p < 0.001) and decreases in the second gradient (age effect p < 0.001) for 

212 all three global measures (Fig 2A). Additionally, dispersion was calculated by summing the 

213 Euclidean distances between each point and the centroid within the 2D space formed by the 

214 first two gradients for each individual, providing a quantification of the overall dissimilarity 

215 within the gradient space. The gradient dispersion exhibited an increasing pattern during 

216 development (Fig 2B). These findings indicated a shift toward a more distributed structural 

217 network topology during development, with the principal gradient increasingly differentiating 

218 between primary and transmodal regions. This finding is consistent with the increasing 

219 dominance of the principal gradient. In contrast, the second gradient suggested a progressive 

220 weakening of the anterior-posterior pattern.

221

222 Fig 2. Age-related changes in gradients at both the global level and the node level. (A) 

223 Global measures of the first two gradients changed across age groups, including the explanation 
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224 ratio (left), range (middle), and standard deviation (right) (age effect p < 0.01). (B) Age-related 

225 changes in gradient dispersion computed from the first two gradients (age effect p < 0.01). (C) 

226 T-statistic of age-related changes in nodewise gradients and the eccentricity map (p<0.05). The 

227 results that survived Bonferroni correction are circled by black lines (Bonferroni corrected 

228 p<0.05). (D) The primary-to-transmodal functional gradient derived from the group-averaged 

229 functional connectivity matrix. (E) Age-related changes in the correlation coefficient between 

230 the multiscale structural principal gradient and the primary-to-transmodal functional gradient 

231 (age effect p < 0.01). (F) Spatial correlation between the structural principal gradient age-

232 related t-map and the primary-to-transmodal functional gradient. Each dot represents a brain 

233 node. The significance level was corrected for spatial autocorrelation (p surrogate<0.01).

234 To examine the statistical age effect across the whole brain, we also leveraged the LME model 

235 at the node level. As depicted in Fig 2C, the principal gradient revealed age-related increases 

236 in the SN and VN corresponding to the positive extremum (t>1.976), while regions associated 

237 with the negative extremum (t<-1.967), such as the temporal, medial, and lateral prefrontal 

238 lobes, exhibited a pattern of decline (p < 0.05, Bonferroni corrected). For the second gradient, 

239 a significant decrease was observed in the VN (p < 0.05, Bonferroni corrected). Additionally, 

240 we calculated the eccentricity in each participant for each node by measuring the Euclidean 

241 distance between the given node and the centroid of the template gradient space derived from 

242 the averaged multiscale matrix. This metric quantified the deviation of each node from the 

243 central position. The eccentricity map demonstrated significant increases in the SN, VN, and 

244 medial lobe, corresponding to either end of the first gradient (p < 0.05, Bonferroni corrected). 

245 These results indicated an expansion of the gradient space during development, reflected in the 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 15, 2024. ; https://doi.org/10.1101/2024.06.14.598973doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.14.598973
http://creativecommons.org/licenses/by/4.0/


246 strengthening differentiation of the principal gradient, which corresponded to the S-A axis. To 

247 further examine whether the S-A pattern of the principal gradient strengthened during 

248 development, we used the primary-to-transmodal functional gradient derived from the group-

249 averaged functional connectivity (FC) matrix as the S-A axis (Fig 2D). We computed the 

250 correlation coefficient between the principal structural gradient and functional gradient for each 

251 scan. The LME model revealed a significant increase in the correlation coefficient during 

252 development, which indicated a strengthened S-A pattern in multiscale structural organization 

253 (t=7.41, p < 0.001) (Fig 2E). In contrast, the correlation coefficient between the second gradient 

254 and the functional gradient did not exhibit a significant effect of age (Supplementary S2C Fig). 

255 In addition, the age-related t-map of the multiscale structural principal gradient demonstrated a 

256 significant correlation with the primary-to-transmodal gradient, indicating temporal changes 

257 following the S-A organization pattern (r= -0.54, psurrogate<0.01) (Fig 2F). Therefore, this 

258 analysis demonstrated that multiscale structural wiring architecture shifted toward a more 

259 distributed hierarchical organization during childhood and adolescence.

260

261 The multiscale structural principal gradient and its 

262 maturation are associated with the development of cortical 

263 morphology

264 Considering that cortical regions with similar morphological features are more likely to have 

265 structural connections and that structural connectivity features such as myelin and white matter 

266 tracts are potentially interrelated with the maturation processes of cortical morphology, we 

267 hypothesized that the refinement of the multiscale structural principal gradient may coincide 
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268 with the heterogeneous maturation of cortical morphology. Subsequently, we employed five 

269 cortical morphometric measures that are relevant to the aforementioned biological processes 

270 and delineated a comprehensive cortical morphological profile. These measures included 

271 cortical thickness (CT), gray matter volume (GMV), SA, mean curvature (MC), and Gaussian 

272 curvature (GC). We investigated the associations between the multiscale structural principal 

273 gradient and morphometric features (Fig 3A). Given the similarities in the spatial patterns of 

274 these metrics, we performed principal component analysis (PCA) to project the five features 

275 onto a set of principal axes that effectively captured the spatial variation in the cortical 

276 morphological profile. The first component (PC1) explained nearly 85% of the variance, and 

277 we incorporated PC1 into subsequent analyses. As shown in Fig 3B, the group-averaged PC1 

278 exhibited differentiation between primary regions (i.e., the SN and VN) and transmodal regions 

279 (i.e., the FPN and DMN), indicating that distinct morphometric attributes distinguish these two 

280 types of brain regions. Then, as depicted in Fig 3C, we explored the relationship between PC1 

281 and multiscale structural gradient 1 and identified a strong correlation (r=0.69, psurrogate <0.01). 

282 These findings suggested a potential association between cortical morphology and cortical 

283 wiring architecture across the cortical mantle, as regions exhibiting similar morphological 

284 features also display comparable multiscale structural connectivity profiles.

285

286 Fig 3. Association between the multiscale structural principal gradient and morphometric 

287 features. (A) Group-averaged morphometric features, including cortical thickness, gray matter 

288 volume, surface area, mean curvature, and Gaussian curvature. (B) The five morphometric 

289 features were input into the PCA algorithm, and components were ordered according to the 
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290 proportion of variance they accounted for. The principal component (PC1) was mapped on the 

291 surface (right). (C) Spatial correlation between the multiscale structural principal gradient and 

292 morphometric PC1. Each dot represents a brain node. The significance level was corrected for 

293 spatial autocorrelation (p surrogate<0.01). (D) Spatial correlation between age-related t-maps of 

294 the multiscale structural principal gradient and morphometric PC1 (p surrogate<0.01). (E) Spatial 

295 correlation between age-related t-maps of the multiscale structural principal gradient and 

296 morphometric features, including surface area, cortical thickness, gray matter volume, mean 

297 curvature, and Gaussian curvature.

298

299 To validate the presence of a developmental association between cortical wiring and cortical 

300 morphology, we investigated the spatial correlation of mature patterns between them. 

301 Specifically, we employed the previously mentioned LME model on PC1 to characterize the 

302 effect of age on cortical morphology. As illustrated in the right panel of Fig 3D, we observed 

303 an increase in the prefrontal lobe, which occupies the positive end of PC1. This observation 

304 suggested distinct maturation processes between the prefrontal lobe and other brain regions. 

305 Moreover, as shown in the left panel of Fig 3D, the correlation analysis between the t-maps of 

306 multiscale structural gradient 1 and morphometric PC1 revealed a congruent developmental 

307 pattern with a correlation coefficient of r=-0.33 (psurrogate <0.01). The increase in the multiscale 

308 structural principal gradient in the SN was accompanied by a decrease in PC1, while the 

309 decrease in the principal gradient in the prefrontal and temporal lobes was accompanied by an 

310 increase in PC1. The obtained results validated our hypothesis that there are synchronized 

311 maturation patterns between cortical wiring and cortical morphology. As shown in Fig 3E, to 
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312 investigate the extent to which individual morphological features co-evolve with the multiscale 

313 structural gradient, we also conducted a correlation analysis between the t-map of multiscale 

314 structural gradient 1 and the t-map of each morphometric feature. Notably, a significant 

315 association was observed between t-maps of the principal gradient and SA (psurrogate <0.01), 

316 GMV (psurrogate <0.01), and MC (psurrogate = 0.01). These findings provide evidence of 

317 interconnected spatial patterns and developmental influences between the multiscale structural 

318 connectome and cortical morphology.

319

320 Development of multiscale structure–function coupling 

321 associated with the refinement of cortical functional 

322 specialization

323 The coupling between structure and function indicates that structure is the fundamental 

324 framework that facilitates synchronized fluctuations in functional activities underlying 

325 cognition (47). To further investigate the role of the multiscale structural connectome in shaping 

326 the development of functional architecture, we analyzed the coupling between structure and 

327 function for each region. Coupling was assessed through Spearman rank correlation between 

328 the connectivity profiles of structure and function (Fig 4A). As shown in Fig 4B, the group-

329 averaged coupling map revealed distinct patterns across the cortex, ranging from -0.01 to 0.34, 

330 reflecting the alignment of functional and multiscale structural connectivity profiles of the 

331 given region. The network-level analysis, based on intrinsic functional communities (43), 

332 further revealed a hierarchical pattern across the cortical mantle characterized by greater levels 

333 of coupling in primary regions and lower levels in transmodal regions (Fig 4C). A previous 
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334 study revealed that variability in structure‒function coupling is related to functional 

335 specialization (47). To investigate whether multiscale structure‒function coupling is associated 

336 with functional specialization, we calculated the participation coefficient (PaC) for each node 

337 based on both multiscale structural and functional networks. The PaC was employed to assess 

338 intermodule connectivity and quantify the degree of each node's involvement in other 

339 functionally specialized modules. Nodes with lower values indicated a greater degree of 

340 functional specialization. The correlation between multiscale structure‒function coupling and 

341 group-averaged PaC maps is illustrated in Fig 4D, revealing a significant relationship 

342 (correlation with structural PaC: r = -0.61, psurrogate <0.01; functional PaC: r = -0.51, psurrogate 

343 <0.01). These findings indicated that greater structure‒function coupling was associated with 

344 greater functional specialization, while lower coupling corresponded to greater functional 

345 integration. Furthermore, we demonstrated that structure–function coupling aligned with both 

346 structural and functional hierarchies (correlations with the multiscale structural gradient: r = 

347 0.39, psurrogate <0.01; functional gradient: r = -0.55, psurrogate <0.01) (Supplementary S4A, B Fig). 

348 These findings demonstrated that the coupling of multiscale structure and function reflected 

349 functional specialization and hierarchy.

350

351 Fig 4. Multiscale structure–function coupling during development. (A) For each region, 

352 multiscale structure‒function coupling was calculated as the Spearman correlation coefficient 

353 between the multiscale SC and FC profiles of that region. (B) A group-averaged multiscale 

354 structure–function coupling map of the cortical surface is depicted. (C) The distributions of the 

355 coupling map in Yeo functional networks (45). (D) Spatial correlation between the multiscale 
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356 structure‒function coupling map and the structural/functional participation coefficient map (p 

357 surrogate<0.01). (E) Age-related changes in multiscale structure–function coupling. Age-related 

358 increases/decreases are shown in red/blue, and the results surviving false discovery rate (FDR) 

359 correction are circled by black lines. (F) Spatial correlation between t-maps of multiscale 

360 structure–function coupling and the structural/functional participation coefficients (p 

361 surrogate<0.01).

362

363 To characterize age-related changes in regional multiscale structure‒function coupling, we used 

364 the LME model. As depicted in Figure 4E, the prefrontal cortex exhibited enhanced coupling 

365 during development, whereas the insula demonstrated reduced coupling. The Yeo atlas was 

366 subsequently employed to provide a network-level summary of these findings; however, no 

367 statistically significant results were observed in the network-level analysis (Supplementary S5 

368 Fig). Considering the close interplay between structure–function coupling and segregation, we 

369 further hypothesized that age-related changes in coupling are accompanied by alterations in the 

370 PaC. As depicted in Figure 4F, the correlation analysis between t-maps of coupling and 

371 structural as well as functional PaCs revealed a congruent developmental pattern (correlation 

372 with structural PaC: r = -0.14, psurrogate <0.01; functional PaC: r = -0.19, psurrogate <0.01). This 

373 finding suggested that brain regions exhibiting increases in structure‒function coupling were 

374 more likely to be accompanied by an increased degree of functional specialization. Taken 

375 together, these findings demonstrated that the maturation of multiscale structure‒function 

376 coupling was related to the refinement of functional specialization from childhood to 

377 adolescence.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 15, 2024. ; https://doi.org/10.1101/2024.06.14.598973doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.14.598973
http://creativecommons.org/licenses/by/4.0/


378

379 The differentiation of the principal multiscale structural 

380 gradient was related to better cognitive performance

381 Structural connectivity serves as the fundamental basis for neuronal interactions that underlie 

382 the emergence of cognition and behavior (33). Throughout childhood and adolescence, 

383 attention and executive function undergo continuous enhancement (48). Subsequently, we 

384 sought to explore the implications of cortical wiring for individual cognition by investigating 

385 two cognitive dimensions: working memory (WM) and attentional ability. WM is associated 

386 with complex tasks such as temporary storage and manipulation of information (49). Attention 

387 involves prioritizing task-relevant information processing while disregarding irrelevant 

388 information (49). Here, WM was measured by a typical numerical n-back task, while attention 

389 performance was measured by response time for alerting, orienting and executive control (EC) 

390 tasks (see Methods for further details). We next assessed the associations between the gradient 

391 data and cognition data across individuals via partial least square correlation (PLSC) analysis. 

392 PLSC offers a multivariate perspective that can capture complex relationships within 

393 multidimensional data. Considering the distinct cognitive aspects assessed by the two tests, 

394 separate PLSC analyses were performed for each cognitive domain. Through PLSC, we 

395 generated latent components (LCs) that captured the optimal associations between the principal 

396 gradient and cognitive scores.

397

398 Fig 5. Partial least square correlation (PLSC) analysis revealed an association between 

399 the principal gradient and cognitive scores. (A, D) Pearson correlations between the principal 
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400 gradient and composite scores of working memory/attention. The inset figure shows the null 

401 distribution of singular values estimated by the permutation test (n = 1000). (B, E) Loadings of 

402 WM/attention were calculated by Pearson correlation between the cognitive measurements and 

403 their composite scores. The shadows represent significant loadings tested by bootstrap 

404 resampling (n=1000). (C, F) Gradient loadings were calculated by Pearson correlation between 

405 gradient 1 and their composite scores. The loadings of regions with black lines were subjected 

406 to a significance test by bootstrap resampling (n=1000).

407

408 For WM, the first LC (LC1) exhibited significance in the permutation test (p<0.01). For LC1, 

409 the composite scores were computed by projecting the original data onto their corresponding 

410 weights. The correlation between the WM composite score and the gradient 1 composite score 

411 was significant, indicating a strong positive relationship between the cognitive and gradient 

412 data (r=0.48, p<0.01) (Fig 5A). Additionally, we calculated the loadings of gradient 1 and WM 

413 by computing the Pearson correlation between the original data and the composite scores, 

414 thereby quantifying the contribution of the given brain (cognitive) measure for the LC. As 

415 shown in Fig 5B and Fig 5C, higher WM composite scores were associated with worse WM 

416 performance, while greater gradient composite scores were linked to higher values of gradient 

417 1 in transmodal regions and lower values in primary regions. These significant loadings, tested 

418 by bootstrap resampling (n=1000), are depicted with shadows in WM and black lines in 

419 gradient 1. Better WM performance was associated with higher gradient 1 values in primary 

420 regions and lower values in transmodal regions.

421
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422 Similar to the WM results, LC1 derived from the attention-related PLSC analysis accounted for 

423 46.57% of the covariance (p=0.001), showing a significant association between attention and 

424 gradient 1 composite scores (r=0.39, p<0.01) (Fig 5D). As shown in Fig 5E and Fig 5F, better 

425 attention scores were associated with higher gradient 1 values in transmodal regions and lower 

426 values in primary regions. Given that attention performance was measured through response 

427 time, larger attention scores indicated poorer attention performance. Therefore, these findings 

428 were consistent with the results obtained from the WM analysis, suggesting a significant 

429 association between improved cognitive performance and decreased negative value as well as 

430 increased positive value of the principal gradient (strengthened S-A pattern in multiscale 

431 structural organization). Consequently, these collective outcomes provide evidence that the 

432 enhancement of the S-A axis pattern along multiscale structural gradient 1 was associated with 

433 better cognitive performance.

434

435 The maturation of the principal multiscale structural 

436 gradient was associated with gene expression profiles

437 To explore the underlying biological mechanisms of the maturation of multiscale structural 

438 gradients, we applied genome expression data from the Allen Human Brain Atlas (AHBA) 

439 (https://human.brain-map.org (50)). The microarray data were preprocessed using the abagen 

440 toolbox (version 0.1.3; https://github.com/rmarkello/abagen). Given that data from the right 

441 hemisphere were incomplete, we only used the data from the left hemisphere. By mapping the 

442 microarray data to the Schaefer 1000 atlas, we obtained a 416 ×15631 (region × gene) matrix 

443 (Fig 6A).
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444

445 Fig 6. Association between age-related changes in the principal gradient and gene 

446 expression profiles. (A) Gene expression profiles across 416 brain regions. (B) The explained 

447 ratios for the first 10 components derived from the partial least squares regression algorithm. 

448 The first component (PLS1) accounted for the largest proportion of the variance and is depicted 

449 in the right panel. (C) Spatial correlation between age-related changes in the multiscale 

450 structural principal gradient and PLS1 scores. Each dot represents a brain node. The 

451 significance level was corrected for spatial autocorrelation (p surrogate<0.01). (D, E) Gene 

452 Ontology (GO) enrichment pathways of the top 10% of genes with positive/negative PLS1 

453 weights. The 10 most significant GO terms are displayed (false discovery ratio-corrected).

454

455 Subsequently, we employed a partial least squares (PLS) regression algorithm to investigate 

456 the relationships between the age-related gradient 1 t-map and the gene expression matrix. The 

457 first component (PLS1) accounted for the largest proportion of the variance (55.35%) and 

458 represented the optimally weighted linear combinations of gene expression patterns (Fig 6B). 

459 The spatial pattern of PLS1 was spatially correlated with the multiscale structural gradient 1 t-

460 map (r=0.74, psurrogate<0.01, corrected for spatial autocorrelation) (Fig 6C).

461

462 To further investigate the biological implications, the genes were ranked based on the weights 

463 from PLS1, and the top 10% of genes from both the positive (PLS1 +) and negative (PLS1 -) 

464 weights were input into the Metascape web tool for gene enrichment analysis and visualization 

465 (all pFDR<0.05) (51). Notably, the expression of positively weighted genes was positively 
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466 correlated with the gradient 1 t-map.

467

468 Gene Ontology (GO) analysis was performed to identify related molecular functions, biological 

469 processes, and cellular components. As shown in Fig 6D, several meaningful brain 

470 development-related terms emerged for the PLS1+ genes, such as “head development”, “metal 

471 ion transmembrane transporter activity”, “neuronal cell body membrane” and “presynapse” 

472 (Fig 6D). On the other hand, the PLS1- genes were enriched in several synapse-related terms, 

473 such as “presynapse”, “axon”, “synaptic signaling”, “exocytic vesicle”, “modulation of 

474 chemical synaptic transmission”, and “calcium ion binding” (Fig 6E). The 20 most significant 

475 GO terms are depicted in Supplementary S6 Fig.

476

477 Discussion
478 In this study, we documented the typical development process of multiscale structural gradients 

479 from childhood to adolescence based on an advanced structural connectome model. The results 

480 demonstrated that the maturation of a multiscale structural gradient was differentiated along the 

481 S-A cortical axis during the developmental period of 6-14 years of age. The shared 

482 developmental consequences of the multiscale structural gradient and cortical macrostructure 

483 indicated a potential interconnected maturation mechanism between the structural connectome 

484 and cortical morphology. The developmental changes in multiscale structure–function coupling 

485 reflected the refinement of functional specialization. In addition, the enhancement of the S-A 

486 axis pattern along the principal gradient demonstrated associations with enhanced cognitive 

487 performance and synapse-related gene expression. These findings provide a comprehensive 
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488 understanding of the maturation principles of multiscale structural organization in the human 

489 brain during childhood and adolescence, as well as the underlying biological mechanisms 

490 involved.

491

492 Differentiation of the multiscale structural principal gradient 

493 with development

494 The multiscale structural connectome model in this study integrated three complementary 

495 neuroimaging features, diffusion MRI tractography, MPC, and cortical GD (4). Tract strength 

496 is the dominant measure for assessing white matter connectivity, while GD can infer short 

497 adjacent cortico-cortical connections (4, 5). MPC measures similarities between cortical 

498 regions, as connectivity is more likely to exist between regions with similar cytoarchitectures 

499 (6, 7). Consistent with findings in healthy adults and adolescents aged 14-25 years (4, 8), our 

500 study identified two principal axes of multiscale structural connectome organization, the 

501 primary-transmodal axis and anterior-posterior axis, in an accelerated longitudinal cohort aged 

502 6-14 years. In this population, both qualitative (Fig 1D) and quantitative (Fig 2B, C) analyses 

503 indicated an expanding gradient space during development that was mainly driven by the 

504 continuous differentiation of the principal gradient. Furthermore, given the more pronounced 

505 differentiation of the S-A axis, a primary-to-transmodal functional gradient was utilized as a 

506 proxy for this axis, and a tendency for the principal multiscale structural gradient to align with 

507 the S-A axis during development was revealed (Fig 2E). The continuous differentiation 

508 between the primary and transmodal cortex along the principal gradient aligned with the 

509 neurodevelopmental hierarchy from multiple findings, which suggested a varied developmental 
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510 pattern between the primary and transmodal cortex (9). First, this differentiation pattern along 

511 the principal structural gradient mirrored the increasing differentiation across the functional 

512 hierarchy during this period, as indicated by the shift in the principal functional gradient from 

513 the visual-sensorimotor gradient toward a pattern gradient characterized by the S-A axis (16, 

514 17). Second, this differentiation pattern was also consistent with evidence from white matter 

515 connectivity and myeloarchitecture, which demonstrated augmented differentiation of this axis 

516 during development (52, 53). In addition, the differentiation of cortical features along the S-A 

517 axis may delineate distinct cognitive functions and facilitate executive, socioemotional, and 

518 mentalizing functions within the transmodal region (9). Recent studies have indicated that 

519 differentiation along the S-A axis is related to flexible cognitive processing and better cognitive 

520 function (54, 55). Our results corroborated this finding that a more differentiated gradient along 

521 the S-A axis was related to better WM and attention performance.

522

523 Interactions between the development of the multiscale 

524 structural gradient and cortical morphometric features

525 Our findings revealed coordinated spatiotemporal developmental patterns of cortical 

526 morphometric profiles that encompass multiple morphometric features and the principal 

527 multiscale structural gradient incorporating white matter and cortical microstructure. Some 

528 empirical evidence and theoretical hypotheses have established associations between changes 

529 in cortical morphology and structural wiring; one hypothesis is Seldon’s "balloon model" (56), 

530 which states that akin to an expanding balloon, the growth of white matter induces tangential 

531 stretching and thinning of its connected cortex. This hypothesis was supported by correlations 
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532 found between cortical surface expansion and increased subcortical white matter fibers during 

533 development (30). The theory proposed by Essen (31) links the cortical folding pattern to axonal 

534 mechanical tension, with gyri potentially formed through mechanical tension pulling closely 

535 interconnected regions together. Gray matter thinning during childhood and adolescence is 

536 attributed to biological processes such as synaptic pruning, apoptosis (28, 57), and proliferation 

537 of myelin at the interface between gray matter and white matter (27-29). Previous studies also 

538 revealed associations between cortical thinning and increased white matter fibers during 

539 development (58, 59). Furthermore, considering the brain's organization as a network of 

540 interconnected regions, a recent study adopting a network perspective demonstrated the 

541 constraints of the WM network on the maturation of CT from childhood to adolescence (60). 

542 Our study also revealed that regions exhibiting analogous structural connection profiles 

543 demonstrated congruent cortical morphology in spatial and maturation patterns, which can be 

544 elucidated through various mechanisms. First, structurally interconnected regions tend to 

545 possess similar cytoarchitecture and may develop during comparable time windows (61-63). 

546 Regions with similar cytoarchitectonic patterns tend to exhibit similar morphological 

547 characteristics (25). Second, the regionally heterogeneous developmental patterns of cortical 

548 morphology may be attributed to mutual trophic influences supported by structural wiring (64). 

549 Third, a recent study demonstrated that regions with similar cytoarchitectonic features and 

550 white matter interconnections are more likely to exhibit similar neurotransmitter receptor 

551 profiles (65). Consequently, these regions may be subject to coregulation through similar 

552 physiological mechanisms (60, 66). The findings of this study offer novel insights into the 

553 interconnected maturation mechanisms between cortical wiring and macrostructure, suggesting 
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554 a potential role for structural connectivity in shaping cortical morphology.

555

556 Relationships between changes in multiscale structural 

557 organization and functional organization during 

558 development

559 Our study revealed a continuous differentiation pattern along the principal multiscale structural 

560 gradient during development, paralleling the primary-to-transmodal functional gradient results 

561 reported by (17) in the same population as ours. This finding indicated a harmonized process 

562 of structural and functional maturation in human brain development, characterized by 

563 increasingly enhanced hierarchical organization and segregated topology. Previous studies also 

564 highlighted the synchronized maturation of structural and functional organization. A study 

565 based on functional intrinsic cortical activity revealed a hierarchical neurodevelopmental axis, 

566 which was linked to a progressive increase in intracortical myelination (67). Moreover, 

567 throughout the developmental process, both the structural and functional topology displayed a 

568 more distributed and segregated pattern (68, 69). These results suggested a mature process of 

569 enhanced segregation, manifested in structural and functional synchronization.

570

571 In addition, numerous studies have consistently demonstrated that structure‒function coupling 

572 exhibits regional heterogeneity, with the degree of coupling aligning along the S-A axis (47, 

573 70, 71). Our findings supported the prevailing trend, with a greater degree of coupling in the 

574 primary cortex than in the transmodal cortex. The primary regions exhibit more rapid and 

575 accurate responses to external stimuli, necessitating stronger structural constraints. In contrast, 
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576 the transmodal regions are untethered from structural constraints, consistent with their more 

577 flexible and diverse functional roles (6, 72). Low coupling in the transmodal cortex may be 

578 related to functional flexibility and diverse task demands (73). A previous study utilizing the 

579 white matter connectivity network and functional network demonstrated that coupling reflects 

580 functional segregation (47). Consistent with this study, our study also revealed a significant 

581 spatial correlation between multiscale structure–function coupling and the PaC, as well as their 

582 interrelated developmental patterns. Our findings revealed that during development, regions 

583 exhibiting stronger coupling between structure and function demonstrated stronger functional 

584 specialization, characterized by a greater degree of segregation. Conversely, regions with 

585 weaker coupling showed a greater degree of integration. Notably, stronger coupling between 

586 structure and function supports faster and more accurate specialized functions, while regions 

587 with fewer structural constraints are associated with greater flexibility and integrative roles (6, 

588 72). These results established a compelling connection between structural-functional coupling 

589 and the underlying mechanisms of cortical organization.

590

591 Transcriptional profiling of the developmental multiscale 

592 structural gradient

593 Using gene expression data from the AHBA dataset, our transcriptome analysis revealed that 

594 developmental changes in multiscale structural gradient 1 were associated with the 

595 transcriptional profiles of genes involved in development- and synapse-related terms, such as 

596 “presynapse”, “axon”, “synaptic signaling”, and “calcium ion binding”. Synapses serve as the 

597 foundation for communication between neurons in the nervous system. The elimination of 
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598 synapses persists throughout development, with the pruning process exhibiting heterogeneity 

599 across brain regions and refining functional circuits (19, 74). Sensory regions complete this 

600 process during late childhood, while higher-order regions continue to experience synaptic 

601 pruning into adolescence (75). Calcium ions trigger the release of neurotransmitters and initiate 

602 synaptic transmission (76). Myelinated axons serve as the primary conduits for transmitting 

603 information within the central nervous system, constituting the majority of white matter. White 

604 matter pathways undergo continuous remodeling during brain maturation (77). Moreover, 

605 combined with gene enrichment, previous studies on the development of functional networks, 

606 CT, and intracortical myelination have also reported associations with synapse-related terms 

607 (17, 23, 78, 79). Our findings may indicate possible synapse-related developmental process 

608 mechanisms underlying multiscale structural connectome development from childhood to 

609 adolescence.

610

611 Limitations and future directions

612 There are several limitations to this study. First, our current dataset lacked pubertal hormone 

613 measurements, leading us to define ages chronologically instead of by pubertal stage. This 

614 limitation may constrain our ability to investigate the effect of pubertal hormone levels on 

615 multiscale structural gradients. Incorporating pubertal-related measures into future analyses 

616 may yield significant biological insights. Second, the gene expression profiles were exclusively 

617 derived from postmortem adult brains, potentially overlooking any developmental impact on 

618 gene expression levels. Nevertheless, postnatal spatial gene patterns may exhibit stability (38). 

619 To validate our findings, future studies should incorporate pediatric-specific gene expression 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 15, 2024. ; https://doi.org/10.1101/2024.06.14.598973doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.14.598973
http://creativecommons.org/licenses/by/4.0/


620 datasets with spatial resolution comparable to that of the AHBA.

621
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622 Materials and Methods

623 Participants

624 We obtained multimodal MR images from the Children School Functions and Brain 

625 Development Project in China (Beijing Cohort), which contains a longitudinal dataset of 643 

626 scans from 360 participants (163 females) aged 6-14 years. The final sample included 276 

627 participants (aged 6-14 years, 135 females; 437 scans (159 for 1 timepoint, 83 for 2 timepoints, 

628 and 39 for 3 timepoints)) with complete, quality-controlled T1w and T2w images, dMRI scans, 

629 and rs-fMRI scans. All participants in this study were cognitively normal, and those with a 

630 history of neurological disorders, mental disorders, head injuries, physical illness, or 

631 contraindications for MRI were excluded. All study procedures were approved by the Ethics 

632 Committee of Beijing Normal University, and written informed consent was obtained from all 

633 participants or their parents/guardians.

634

635 Data acquisition

636 MRI acquisition

637 High-resolution T1w MRI, diffusion MRI, and rs-fMRI data were obtained using 3T Siemens 

638 Prisma scanners at Peking University, Beijing, China. T2w scans were acquired using 3T 

639 Siemens Prisma scanners at HuiLongGuan Hospital, Beijing, China. The parameters of the T1w 

640 scans were as follows: repetition time (TR) = 2530 ms; echo time (TE) = 2.98 ms; inversion 

641 time (TI) = 1100 ms; flip angle = 7°; field of view (FOV) = 256 × 224 mm2; number of slices 

642 = 192; slice thickness = 1 mm; and bandwidth (BW) = 240 Hz/Px. The parameters of the T2w 

643 scans were as follows: 3D T2-SPACE sequence, TR = 3200 ms, TE = 564 ms, acquisition 
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644 matrix = 320 × 320, FOV = 224 × 224 mm2, number of slices = 256, slice thickness = 0.7 mm, 

645 and BW = 744 Hz/Px. The rs-fMRI scans were acquired using an echo-planar imaging sequence 

646 with the following parameters: TR = 2000 ms; TE = 30 ms; flip angle = 90°; FOV =224 × 224 

647 mm2; number of slices = 33; number of volumes = 240; and voxel size = 3.5 × 3.5 × 3.5 mm3. 

648 Diffusion MRI was performed using a high angular resolution diffusion imaging (HARDI) 

649 sequence with a 64-channel head coil with the following parameters: TR = 7500 ms, TE = 64 

650 ms, acquisition matrix = 112×112, FOV = 224×224 mm2, slices = 70, slice thickness = 2 mm, 

651 BW = 2030 Hz/Px, and 64 diffusion weighted directions (b-value = 1000 s/mm2) with 10 non-

652 diffusion weighted b0 (0 s/mm2).

653

654 Behavioral data

655 1) Working memory test. We used a numerical N-back task to estimate WM capacity (48). 

656 Twelve blocks of tasks under three workload conditions—0-, 1-, and 2-back—were completed 

657 by participants. For the 0-back condition, participants were instructed to judge whether the 

658 current digit was 1. For the 1- and 2-back conditions, participants were asked to judge whether 

659 the current digit was identical to the previous one or two digits in the sequence. The d-prime 

660 index was computed for each condition to assess WM performance. The index was calculated 

661 as the inverse of the cumulative Gaussian distribution of the hit ratio subtracted by the inverse 

662 of the cumulative Gaussian distribution of the false alarm ratio. The detailed task design can be 

663 found in Hao et al.(48). In this study, we included 365 data points.

664 2) Attentional test. We used a child-friendly version of the Attention Network Test (ANT) (80) 

665 to evaluate attention performance, which was measured by the response time for the alerting, 
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666 orienting and executive control tasks. The detailed task design can be found in Hao et al.(48). 

667 We included 372 data points in our study.

668

669 MRI preprocessing.

670 Structural and functional images underwent preprocessing with the modified Human 

671 Connectome Project (HCP) pipeline (81).

672 Structural MRI.

673 We performed anterior commissure-posterior commissure (AC-PC) alignment and brain 

674 extraction. Subsequently, the T1w and T2w images were coregistered using a rigid body 

675 transformation with a boundary-based registration cost function (82). Then, the square root of 

676 the product of the T1w and T2w images was used to correct for the bias field (83). These images 

677 were registered to the Chinese Pediatric Atlas (CHN-PD) (84). Using FreeSurfer 6.0-HCP (85), 

678 cortical surfaces were generated in native space, and T2w images were used to refine the pial 

679 surfaces. Moreover, cortical ribbon volume myelin maps were generated (83).

680 Diffusion MRI. 

681 Diffusion images were initially preprocessed using MRtrix3 (86), which included denoising 

682 and removing Gibbs ringing artifacts (87). Subsequently, the FSL eddy tool was employed to 

683 correct eddy current-induced distortions, head movements, and signal dropout (88-90). Next, 

684 the eddy-corrected diffusion images and corresponding field maps were preprocessed using the 

685 FSL epi_reg script to effectively mitigate EPI susceptibility artifacts 

686 (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT/UserGuide# epi_reg). The diffusion images were 

687 finally corrected for B1 field inhomogeneity using the N4 algorithm provided by ANTs (91). 
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688 Detailed information on the dMRI preprocessing steps can be found in (60).

689

690 Functional MRI. 

691 To correct for head motion, each frame of the functional time series was registered to the first 

692 frame using rigid body registration. The distortions in the phase encoding direction were 

693 corrected using the corresponding field map. The first frame was subsequently registered to the 

694 T1w image using rigid body and boundary-based registrations to correct for distortions. The 

695 relevant transformations were concatenated to register each frame of functional time series to 

696 the first frame, native T1w space, and finally the CHN-PD atlas space. Then, bias field 

697 correction, extraction of the brain, and normalization of the whole-brain intensity were 

698 performed. Next, followed by a bandpass filter (0.01 Hz < f < 0.08 Hz), we performed ICA-

699 based Automatic Removal Of Motion Artifacts (ICA-AROMA) for denoising (92). We also 

700 removed the shared variance between the global signal and time series. Subsequently, the time 

701 series in the CHN-PD volume space were projected onto native cortical surfaces using a partial 

702 volume weighted ribbon-constrained mapping algorithm. Next, the signals on the cortical 

703 surface were resampled and precisely aligned with the Conte69 template through registration, 

704 followed by resampling onto the fsaverage5 surface.

705

706 Generation of multiscale structural features

707 Consistent with the previously reported multiscale model, three complementary structural 

708 features were calculated based on T1w, T2w, and diffusion images. The three features were 

709 mapped onto Schaefer 1000 parcellations and calculated as described below (the Schaefer 400 
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710 atlas was used for validation analysis) (42).

711 1) Geodesic distance. Based on the mid-thickness surface of the individual native surface, the 

712 GD was calculated as the shortest distance between two nodes along the surface. In particular, 

713 we utilized workbench commands (-surface-geodesic-distance) to compute the distance of each 

714 pair of centroid vertices within the given parcel, resulting in a node-by-node GD matrix. Given 

715 the limitation of this approach in calculating the GD solely within hemispheres, the 

716 interhemispheric GD was calculated by averaging the GD across two hemispheres.

717 2) Microstructure profile covariance. According to a previously reported protocol, we acquired 

718 12 equivolumetric surfaces between the pial and white surfaces and sampled T1w/T2w values 

719 along the vertices of these surfaces (6). The intensity profiles of T1w/T2w images were 

720 averaged within parcels, excluding any outlier vertices. Then, we calculated pairwise Pearson 

721 product-moment correlations between the intensity profiles of each pair of parcels while 

722 controlling for the average whole-cortex intensity profile. The matrix was log-transformed after 

723 thresholding at zero, resulting in the final MPC matrix.

724 3) Tract strength. We used MRtrix3 to generate a white matter connectivity network. We 

725 registered T1w images and their corresponding data to the native diffusion MRI space. An 

726 unsupervised algorithm was used to estimate response function (RF) in different brain tissue 

727 types (93). Then, we performed single-shell 3-tissue constrained spherical deconvolution 

728 (SS3T-CSD) (94) using MRtrix3Tissue (https://3Tissue.github.io), a branch of MRtrix3 (86), 

729 to obtain the fiber orientation distribution in all voxels. Following intensity normalization, we 

730 chose the gray matter/white matter boundary as the streamline seed mask. Based on 

731 anatomically constrained tractography (ACT) (95) with the segmentation results of the 
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732 structural MR images, second-order integration over fiber orientation distributions was 

733 employed to generate streamlines (96). Streamline generation was terminated when 20 million 

734 streamlines were counted (maximum tract length = 250 mm; fractional anisotropy cutoff = 0.06; 

735 angle threshold = 45°). The spherical deconvolution-informed filtering of tracks (SIFT) 

736 approach was used to correct for the bias of streamline density (97). The tract strength (TS) was 

737 measured by the number of streamlines. Finally, white matter connectivity was generated by 

738 mapping the streamlines onto the Schaefer 1000 atlas and log-transformed.

739

740 Calculation of multiscale structural gradients

741 We used the BrainSpace Toolbox to compute connectome gradients (https://github.com/MICA-

742 MNI/micaopen/tree/master/structural_manifold) (98). Consistent with a previous study, the 

743 nonzero values of the MPC, TS and inverted GD matrices were rank normalized and rescaled 

744 to the same numerical range (4). The three matrices were horizontally concatenated and 

745 subjected to a diffusion map embedding algorithm with a kernel of normalized angle similarity, 

746 which mapped the high-dimensional multiscale structural connectome data into a low-

747 dimensional space (99). The distances in the gradient space reflect dissimilarities in 

748 connectivity patterns between regions. In line with previous studies, we set parameter α = 0.5. 

749 By dividing the population into 6 groups based on age with 1-year intervals, we generated a 

750 group-level multiscale connectome by averaging the individual multiscale matrices. To make 

751 the gradients comparable across individuals and eliminate the randomness of the direction of 

752 the gradients, we used Procrustes rotations to align the individual gradients to their 

753 corresponding age-specific group-level gradients derived from the group-level multiscale 
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754 connectome (100). 

755

756 The global gradient measures were computed to summarize the age-related changes in the 

757 gradients. These global measures included the following: 1) gradient range, calculated as the 

758 difference between the maximum and minimum values; 2) explanation ratio, calculated as the 

759 eigenvalue divided by the sum of all eigenvalues; 3) standard deviation, defined as the standard 

760 deviation of the given gradient; and 4) gradient dispersion, calculated as the sum of the 

761 Euclidean distances of each node to the centroid in the 2D gradient space constructed by the 

762 first two gradients. Moreover, we calculated the eccentricity measure as the Euclidean distance 

763 between each node and the centroid of the template space obtained from averaging the 

764 multiscale matrix across all participants.

765

766 Correlation analysis with cortical morphometric features

767 To investigate the relationships between multiscale structural gradients and cortical 

768 morphometric features, we utilized cortical morphometric features derived from the results of 

769 the FreeSurfer preprocessing procedure. Subsequently, 5 cortical morphometric features, CT, 

770 GMV, SA, MC, and GC, were extracted and mapped onto the Schaefer 1000 atlas. Given the 

771 similarities of cortical patterns across these metrics, we performed PCA to generate a concise 

772 representation of the morphometric features. Specifically, for each participant, we conducted 

773 PCA on matrix X of node×feature. The first component captured the largest variance, and areas 

774 with similar morphological profiles were in close proximity along this principal axis. We 

775 conducted a correlation analysis between the first principal component (PC1) and the multiscale 
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776 structural gradient.

777

778 Calculation of the functional gradient

779 To assess how structure supported the maturation of functional organization, we related 

780 multiscale structural gradients to the FC network. Considering the primary-transmodal 

781 functional gradient as a representative of the functional hierarchy and its gradual maturation 

782 throughout development, we conducted correlation analysis between structural gradients and 

783 functional gradient. We computed pairwise Pearson's correlation coefficients based on time 

784 series with the Schaefer 1000 atlas to obtain individual FC matrices, followed by the generation 

785 of a group-averaged FC matrix. We retained the top 10% of edges per row and computed the 

786 row-wise normalized angle similarity. This matrix was then input into the diffusion map 

787 embedding algorithm, yielding the primary-transmodal functional gradient (99).

788

789 Analysis of multiscale structure–function coupling

790 We investigated multiscale structure–function coupling during youth, calculated as the 

791 Spearman rank correlation between structural connectivity and FC profiles at the nodal level. 

792 We computed the average of these individual maps across all participants to generate an 

793 averaged coupling map. To quantify the functional specialization of brain networks, we 

794 computed the PaC for each scan using the Brain Connectivity Toolbox 

795 (https://sites.google.com/site/bctnet/) (101, 102). Based on the Yeo functional networks (45), the 

796 PaC measured intermodule connectivity and quantified the extent to which a node participated in 

797 other modules.
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798

799 Statistical analysis

800 We employed several LME models to characterize the age effects to adapt for the longitudinal 

801 dataset. The candidate models for each measure considered 6 combinations of fixed-effect and 

802 random-effect terms, as detailed in Table 1. The mean framewise displacement (mFD) for 

803 dMRI was treated as a fixed-effect term and controlled for in this model.

804 Table 1. Candidate effects of mixed-effect models

Fixed-effect term Random-effect term

1 +Age+mFD 1|subject

1+Sex+Age+mFD Age|subject

1+Sex+Age+Sex*Age+mFD

805 For example, the linear model of the first combination was defined as follows:

806 We selected the optimal model according to the AIC (46), with a preference for the model 

807 exhibiting the lowest AIC value. For regional gradient statistical analysis, we further corrected 

808 for multiple comparisons with FDR correction.

809

810 For all spatial correlation analyses between different cortical maps, we used the variogram 

811 matching approach to estimate the significance (103). By generating 1000 surrogate maps that 

812 preserved the spatial autocorrelation of the given brain map, we repeated the correlation 

813 analysis utilizing these surrogate maps. The resulting correlation coefficients generated a null 

814 distribution comprising 1000 values. The p value was calculated as the proportion of the 

 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑚𝑒𝑎𝑠𝑢𝑟𝑒~1 + 𝐴𝑔𝑒 + mFD + (1│𝑆𝑢𝑏𝑗𝑒𝑐𝑡) (1)
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815 surrogate coefficients exceeding the actual coefficient.

816

817 Gene enrichment analysis

818 We collected genome expression data from the AHBA to identify genes associated with age-

819 related multiscale structural gradient changes (https://human.brain-map.org (50)). The AHBA 

820 is a regional microarray transcriptomic dataset of 3702 tissue samples from 6 healthy adult 

821 donors. We used the abagen toolbox (version 0.1.3; https://github.com/rmarkello/abagen) to 

822 preprocess the microarray data using the Schaefer 1000 atlas. Given that right hemisphere data 

823 were only available from 2 donors, we opted to utilize the data from the left hemisphere for our 

824 analysis. Using the default parameters, we finally obtained a 416 ×15631 (region × gene) matrix.

825

826 To determine the relationships between age-related changes in the multiscale structural gradient 

827 and genes, we used the previously obtained age effect t statistics of the principal gradient (t-

828 map) and gene expression matrix in partial least squares (PLS) regression. Our goal was to 

829 identify the components associated with the gradient t-map, which represented optimally 

830 weighted linear combinations of expression patterns. The first component (PLS1) was the most 

831 strongly correlated with the t-map. By using a previously described spatial autocorrelation 

832 correction approach, we examined the statistical significance of the variance explained by the 

833 PLS components and the correlation coefficient between PLS1 and the t-map (103). 

834 Subsequently, bootstrapping was performed to assess the error of each gene weight from PLS1, 

835 and we transformed the weights into Z scores by dividing the weight by the standard deviation 

836 of the given weight derived from 1000 bootstrapping results. We selected the top 10% of genes 
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837 from both the positive and negative weights, which made the largest contribution to PLS1, for 

838 the subsequent gene enrichment analysis.

839

840 The positive and negative genes were then separately entered into the Metascape webtool for 

841 gene enrichment analysis (51). According to GO analysis, Metascape was used to search for 

842 specific molecular function, biological process, and cellular component terms. The resulting 

843 enriched pathways were thresholded for significance at an FDR < 5%.

844

845 Analysis of the relationship between cognition and the 

846 principal multiscale structural gradient

847 We performed PLSC analysis (104) with the myPLS toolbox 

848 (https://github.com/danizoeller/myPLS) to extract the relationships between the multiscale 

849 structural gradient and cognitive scores. PLSC analysis was performed separately for WM and 

850 attention performance. We first computed a covariance matrix R between brain variables X and 

851 cognition variables Y:

852 𝑅 = 𝑌𝑇 ×𝑋    (2)

853 followed by singular value decomposition on R:

854 𝑅 = U ×𝑆 ×𝑉𝑇    (3)

855 where U and V reflect the contributions of the cognition and brain variables, respectively, to 

856 the LCs, while S represents the singular values. Then, brain scores (Lx = X×V) and cognition 

857 scores (Ly=Y×U) were computed for each LC by projecting brain and cognition variables onto 

858 their corresponding weights. Brain loadings and cognition loadings were computed as Pearson 
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859 correlations between the original data and previously obtained scores. Overall, the PLSC 

860 analysis generated LCs that represented the optimal weighted linear combinations of the 

861 original variables, thereby establishing the strongest relationships between the brain and 

862 cognition data. Subsequently, we assessed the statistical significance of each LC using a 

863 permutation test (n=1000). Specifically, we randomly shuffled the cognitive data across all 

864 subjects, resulting in a null distribution of singular values. By comparing the actual value with 

865 the null distribution, we ascertained the statistical significance. The statistical significance of 

866 brain and cognition loadings was estimated by bootstrap resampling (n=1000), with 

867 replacement across all subjects on X and Y.
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1146 Supporting information
1147 S1 Fig. The first two multiscale structural gradients projected onto the cortical surface 

1148 for each group.

1149 S2 Fig. Developmental pattern of the second multiscale structural gradient. (A) Radar plot 

1150 of the second gradient for comparison between 6-7 years group and other groups based on Yeo 

1151 functional networks (left) (45) and laminar differentiation parcellation (right) (44). (B) Global 

1152 density map of the second gradient for each group. (C) Correlation coefficient between the 

1153 second structural gradient and primary-to-transmodal functional gradient changed across age 

1154 (not significant).

1155 S3 Fig. Multiscale structural gradients during childhood and adolescence based on 

1156 Schaefer 400 atlas. (A) The group-level gradients based on the Schaefer 400 atlas exhibited a 

1157 spatial pattern that was highly consistent with those derived from the Schaefer 1000 atlas. (B) 

1158 Global density map of the first two gradients for each group showed a similar pattern with those 

1159 derived from the Schaefer 1000 atlas. (C) Radar plot of the first two gradients for comparison 

1160 between 6-7 years group and other groups based on Yeo functional networks (45). (D) The first 
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1161 two structural gradients mapped into a 2D gradient space for 6-7, 9, and 12-13 years old group 

1162 demonstrated an expansion pattern during development.

1163

1164 S4 Fig. Spatial correlation between multiscale structure-function coupling map and 

1165 primary-to-transmodal functional gradient (A) as well as multiscale structural gradient 

1166 (B) (p surrogate<0.01).

1167 S5 Fig. Age-related changes in multiscale structure-function coupling. Age-related 

1168 increases/decreases were shown in red/blue. The right panel showed t-values distribution 

1169 based on Yeo functional networks.

1170 S6 Fig. Association between age-related changes in principal gradient and gene 

1171 expression profiles. (A) Gene Ontology (GO) enrichment pathways of top 10% genes with 

1172 positive PLS 1 weights. The most significant 20 GO terms were displayed (left panel). 

1173 Metascape enrichment network visualization showed the intra-cluster and inter-cluster 

1174 similarities of enriched terms. (B) Gene Ontology (GO) enrichment pathways of top 10% 

1175 genes with negative PLS 1 weights.

1176 S1 Movie. The developmental process of the gradient space across different ages in 

1177 Schaefer 1000 atlas.

1178 S2 Movie. The developmental process of the gradient space across different ages in 

1179 Schaefer 400 atlas.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 15, 2024. ; https://doi.org/10.1101/2024.06.14.598973doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.14.598973
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 15, 2024. ; https://doi.org/10.1101/2024.06.14.598973doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.14.598973
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 15, 2024. ; https://doi.org/10.1101/2024.06.14.598973doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.14.598973
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 15, 2024. ; https://doi.org/10.1101/2024.06.14.598973doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.14.598973
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 15, 2024. ; https://doi.org/10.1101/2024.06.14.598973doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.14.598973
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 15, 2024. ; https://doi.org/10.1101/2024.06.14.598973doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.14.598973
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 15, 2024. ; https://doi.org/10.1101/2024.06.14.598973doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.14.598973
http://creativecommons.org/licenses/by/4.0/

