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Network connectivity differences in music listening among

older adults following a music-based intervention

Music-based interventions are a common feature in long-term care with clinical reports
highlighting music’s ability to engage individuals with complex diagnoses. While these findings
are promising, normative findings from healthy controls are needed to disambiguate treatment
effects unique to pathology and those seen in healthy aging. The present study examines brain
network dynamics during music listening in a sample of healthy older adults before and after a
music-based intervention. We found intervention effects from hidden Markov model-estimated
fMRI network data. Following the intervention, participants demonstrated greater occupancy (the
amount of time a network was occupied) in a temporal-mesolimbic network. We conclude that
network dynamics in healthy older adults are sensitive to music-based interventions. We discuss

these findings’ implications for future studies with individuals with neurodegeneration.
Keywords: Music, Aging, Network Neuroscience, Computational Neuroscience
Introduction

Listening to music is an enjoyable activity for younger and older adults and is a common feature
in long-term care settings. Studies of music-based interventions offer promising glimpses into
the efficacy of music as an intervention for clinical populations (see Sarkdmo et al., 2014; Cuddy
& Duffin, 2005, Satoh et al., 2015; Guétin et al., 2009; Svansdottir & Snaedal, 2006). Few
studies exist on music-based interventions in healthy populations, rendering clinical work
findings difficult to contextualize. Further complicating the research landscape is heterogeneity
in healthy adult populations with no clear consensus on how to predict the onset and trajectory of

age-related pathologies, such as dementia.

As the brain ages, its organizational structure changes, culminating in network reconfigurations.
At rest and during cognitive tasks, within-network functional connectivity (FC) in canonical

networks (such as the default mode, salience, and dorsal attentional networks) is reduced in older
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adults compared to young adults, with corresponding increases in FC between networks (Grady
et al., 2016). These reconfigurations describe dedifferentiation: a process where brain activity
associated with specific cognitive networks (such as the default mode network) becomes more

integrated across the brain and less functionally segregated (Grady et al., 2012).

Dedifferentiation has been seen in the default mode network (DMN), fronto-parietal network
(FPN), and salience ventral attention network at rest (Malagurski et al., 2020). The activity of
these networks also changes with age with older adults showing lower attenuation of the DMN
and correspondingly lower activation in the dorsal attention network (DAN) during cognitive
tasks. These organizational shifts start in middle age and do not predict task performance, which
emerges much later in adulthood (Rieck et al., 2017). Between the networks, FC patterns become
less distinct between the DMN, DAN, FPN, and the auditory subsection of the somatomotor
network (Rieck et al., 2021) with the FPN becoming more connected to the DMN and DAN with
age (Rieck et al., 2017). This is not a blanket effect across the brain: the ventral attention
network and the motor subsection of the somatomotor network show increased within-network

connectivity later in life (Grady et al., 2016; Rieck et al., 2021).

In dynamic FC studies differences between rest and task again emerge with older adults showing
reduced within-network FC in the DMN during cognitive tasks compared to younger adults, but
not at rest (Grady et al., 2016). Older adults also show higher occupancy in higher-order visual
networks compared to younger adults in visual tasks (Tibon et al., 2020), indicating

modality-specific aging effects.

While dedifferentiation-related changes in network organization are reliably seen with age, they
may not consistently predict behavioural performance (Rieck et al., 2017), and vary between
sensory modalities (Grady et al., 2016; Rieck et al., 2021). Certain reconfigurations may also
contribute to resilience. In inhibitory processing and executive function tasks, greater integration
between the DAN and other networks has been shown to correlate positively with task

performance (Rieck et al., 2021; Reinberg et al., 2015).
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In the auditory domain, age is commensurate with a decline in auditory acuity (Freiherr et al.,
2013), but while hearing loss is associated with poor cognition (Lin et al. 2013), whether hearing
loss leads to cognitive decline, or whether cognitive decline leads to degradation of the auditory
system, remains unclear (Sardone et al., 2019). Parsing complex signals becomes more difficult
with age (Alain et al., 2006), which has been studied with language (see Schneider et al., 2010)
and music (Andrews et al., 1998), and may be mitigated by musical training (Zendel & Alain,
2012; Alain et al., 2014).

Musical training and listening can change the brain structurally. Older adults with a history of
musical training and music listening show greater volume in the parahippocampus, and inferior
frontal gyrus (specifically the pars opercularis and pars orbitalis); regions related to memory and
language processing (Chaddock-Heyman et al., 2021). In healthy adults, music is a common tool
for mood regulation (see Thayer et al., 1994; Saarikallio & Erkkild, 2007). For those with
Alzheimer’s disease, music listening and musical memory have been shown to engage a network
of regions, including the ventral pre-supplementary motor area and caudal anterior cingulate
gyrus, that show little atrophy and metabolic disruption, despite equivalent amyloid deposits with
the rest of the brain (Jacobsen et al., 2015). Global FC increases immediately following preferred
music listening (King et al., 2018), and familiar music listening in Alzheimer’s disease and mild
cognitive impairment (MCI) is associated with greater activity in medial pre-frontal regions, the
anterior insula, precuneus, basal ganglia, hippocampus, amygdala, and cerebellum compared to
listening to novel music (Thaut et al., 2020). In healthy older adults, greater FC between auditory
and reward regions has been observed following a regular music listening intervention (Quinci et

al., 2022).

Behaviourally, individuals with mild and moderate Alzheimer’s disease perform on par with
cognitively healthy peers in emotion recognition in music tasks (Arroyo-Annlo et al., 2019) and
identification of familiar melodies (Hsieh et al., 2011). A recent review of music-based
interventions in Alzheimer’s care reported better outcomes for individually-selected music

versus other-selected music in cognitive domains and for behavioural downregulation, while
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active interventions, such as singing, playing, etc., had better outcomes for behavioural

upregulation (Leggieri et al., 2019).

Establishing how the brain network landscape changes with music-based interventions in healthy
older adults will provide vital information for music and health research by establishing an
age-appropriate normative baseline for future clinical work. In the present study, we use data
from Quinci et al. (2022) to quantify brain network differences in a healthy older adult
population before and after an 8-week music listening-based intervention. We aim to provide
normative patterns of brain network activity for future comparative work with individuals with

cognitive decline.

Methods

Participants

Older adults (age range 54-89, N =27, 13 males, mean age = 67.34, SD = 8.27) were recruited
for a music listening study through Northeastern University. They were right-handed and
cognitively healthy and had normal hearing established via audiogram. Participants were
excluded from the study if they had a change in medication within six weeks of screening, a
history of cognitive impairments, a history of chemotherapy 10 years before screening, and any
medical conditions requiring medical treatment three months prior to screening. The study
complied with the Declaration of Helsinki and received ethics approval by the Northeastern

University Institutional Review Board.

Participants were screened by researchers before data collection both to confirm their eligibility
for the study and to collect a selection of familiar, well-liked songs to be presented during
scanning. A pre-intervention scanning session included fMRI data collection, a blood draw, and a
battery of neuropsychological tests. Participants then met with a board-certified music therapist
(MT-BC) to develop personalized music playlists to be used during the intervention. Following
completion of the intervention, participants returned for a post-intervention scanning session
where they repeated the measures in the pre-intervention session. The present report details fMRI

findings exclusively. Other measures will be detailed in future reports.
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Data Acquisition

Scanning occurred at Northeastern University. A Siemens Magnetom 3T scanner (64-channel
head coil) was used to collect functional scans at a TR of 475 ms over 1440 volumes.
Participants completed a resting state block followed by blocks of music listening. There were 24
musical excerpts, and each excerpt was either participant-selected and well-liked and familiar
(6/24); or experimenter-selected. The experimenter-selected music fell into two sub-categories:
songs that were from the popular canon during the participant’s youth (10/24), or songs that were
selected to optimize novelty (8/24). Each excerpt was presented for 20 seconds in a random order
and participants rated liking and familiarity on a 4-point Likert scale following each excerpt.

Total scan time was 11.4 minutes.

Data pre-processing

Functional MRI data were preprocessed using customized scripts from the TVB-UKBB pipeline
(Frazier-Logue et al., 2022). MNI T1 templates were used for T1 image registration, and
functional data preprocessing employed a sub-pipeline using tools from the FMRIB software
library (Woolrich et al., 2009) to complete gradient echo field map distortion correction and
motion correction (using MCFLIRT). We classified artifacts using independent component
analysis (ICA) and, using MELODIC and FIX, assembled a training set for automatic artifact
detection of the sample using the data from eight participants in the current study. Output was
visually inspected by researchers for accuracy in artifact classification. Preprocessed datasets
were downsampled to 220 regions using the Schaefer cortical and Tian sub-cortical atlases
(Schaefer et al., 2018; Tian et al., 2020), and z-score normalized region timeseries data were

exported to MatLab (MathWorks, 2019) for further analyses.

Twenty-four older adults passed MRI screening and completed pre-intervention scans. At the
time of writing, eighteen participants had completed the intervention and post-intervention scans.

Three participants were excluded from the final analysis for excessive head motion and/or
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problems with the behavioural data recording apparatus, resulting in a final sample of fifteen

older adults (8 men, age range: 54-89 years, mean age = 62.67, SD = 15.35).

Intervention and protocol

The music-based intervention (MBI) was a self-administered active listening music intervention
based on work detailed by Hanser and Thompson (1994). Participants met with a board-certified
music therapist (MT-BC) prior to the start of the intervention to collaboratively develop two
personalized playlists: one of relaxing songs, and one of energizing songs. Each playlist was
stored on a YouTube Premium account provided by the researchers and part of the MT-BC’s
initial meeting with participants was to provide instruction in accessing and modifying the
playlists. The MBI consisted of one hour of active listening to selections from one or both
playlists each day for eight weeks. Participants were instructed to attend to any music-induced
images, feelings, or memories; and to note if and how the music affected their mood during
listening. Following listening, participants were asked to record their observations in a journal.
Once weekly, participants would meet via Zoom with the MT-BC to review these observations,

discuss the intervention, and adjust the playlists, if necessary.

Participants completed two fMRI scanning sessions, one prior to beginning the intervention, and
the second following completion of the intervention. Task fMRI were the same stimuli described
in the data acquisition section (six self-selected excerpts, and 18 experimenter-selected excerpts;
10 excerpts that were popular and/or recognizable, eight purpose-composed for research

purposes), and were repeated during the post-intervention fMRI scanning session.

State Estimation and Analysis

Brain state estimation was completed using the HMM-MAR toolbox (Vidaurre et al., 2017) and
has previously been reported in Faber et al., 2023. A review of the estimation is presented here,

with a re-print of the regions of interest (ROIs) comprising each estimated state.
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Figure 1: Mean activity plots returned from HMM analysis. Colours represent relative activity of

the states and all have been normalized within-state. See Table 1 for subcortical regions not

displayed here.
State | Main Regions Anatomical label
1 Bilateral middle-frontal and left temporal regions. Subcortical Medial
regions include the bilateral temporal pole, left nucleus frontoparietal

accumbens, and right hippocampal body

2 Bilateral temporal and frontal regions Temporal
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3 Bilateral temporal and mesolimbic regions Temporal
Subcortical regions include the left globus pallidus, left mesolimbic

hippocampal body, right putamen, and right hippocampal tail

4 Bilateral superior frontal and middle parietal regions Frontoparietal

Table 1: Regions of interest and anatomical labels from HMM analysis. Anatomical labels are

based on the work of Uddin et al. (2019).

We extracted two key features from the HMM model output for further analysis: fractional
occupancy and transitional probability matrices. Fractional occupancy describes the number of
time windows each state is occupied per target time window, and the transitional probability

matrix describes the pairwise likelihood of transitioning from each state to each other state.

We used partial least squares (PLS) analysis to differentiate the combined pattern of HMM
features that distinguished treatment effects. PLS is a multivariate technique that identifies latent
patterns in matrices of manifest variables. These patterns are returned as latent variables (LVs),
and bootstrap estimation and permutation testing are used to establish reliability and statistical
significance for each LV (Mclntosh & Lobaugh, 2004). We have chosen PLS over other similar
methods (most notably, canonical correlation analysis) as it performs reliably with the presence

of high within-block correlations (McIntosh, 2021).

Results
Fractional occupancy and transitional probabilities

We calculated fractional occupancy and transitional probability matrices for each participant
during music listening for each category of musical stimulus (self-selected,

experimenter-selected popular, and experimenter-selected novel) pre- and post-MBI.
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There was an intervention effect showing higher occupancy in the medial frontoparietal state
(state1) and the temporal-mesolimbic state (state 3) for all music categories in the

post-intervention condition (Figure 2).
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Figure 2: PLS results showing an intervention effect in music listening. (4) PLS contrasts in pre-
and post-intervention during music listening. Error bars were calculated using bootstrap
resampling and reflect the 95% confidence interval. The contrasts show an intervention effect on
FO (B). The colour scale represents the bootstrap ratio for each state. Participants pre-MBI
have higher fractional occupancy in state 2 (temporal state) while participants post-MBI have
higher fractional occupancy in states 1 (medial frontoparietal) and 3 (temporal-mesolimbic). SS

= self-selected, Pop = popular, Nov = novel.

PLS analysis on the average fractional occupancy data returned no significant differences

between pre- and post-intervention data (p = 0.32).

An intervention effect was observed when the data were split into stimulus categories. In these

results, the pre-MBI condition showed a higher likelihood of transitioning into state 2 and a
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higher likelihood of persisting in state 2 in experimenter-selected pieces. The post-MBI condition

showed a higher likelihood of transitioning from state 2 to state 3 in all stimulus categories

(Figure 3).
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Figure 3: PLS results showing an intervention effect in music listening in transitional probability
matrices. (A) PLS contrasts between groups in stimulus categories and transitional probabilities
(SS = self-selected, Pop = popular, Nov = novel). Error bars were calculated using bootstrap
resampling and reflect the 95% confidence interval. The contrasts (B) show an intervention effect
on transitional probability (TP), illustrated in panel C. Panel C shows the between-network TP
with solid lines representing self-selected music and dashed lines representing
experimenter-selected music. Participants pre-MBI have are more likely to transition into state 2
(temporal) and to stay in this state during experimenter-selected music while participants
post-MBI have are more likely to transition from state 2 (temporal) to state 3

(temporal-mesolimbic) for all stimulus categories.

PLS analysis on the averaged pre- and post-MBI transitional probability matrices did not return

any significant LVs (p = 0.31).

We ran a within-group PLS analysis on the relation between age and HMM features to control
for possible age effects in these results. These analyses returned no significant results indicating

no age effects on fractional occupancy or transitional probabilities within this sample.

Effects of liking and familiarity on brain measures

We next correlated participants’ fractional occupancy and vectorized transitional probability
ratings with their piece-wise liking and familiarity ratings. PLS analysis returned no significant

LVs for fractional occupancy or transitional probability data.

Behavioural ratings

Behaviourally, liking and familiarity were not significantly different post-MBI, nor were they

significantly differently correlated pre- or post-MBI (p = 0.89).

Discussion

In this study, we tested brain state metrics extracted with HMM for intervention effects in

healthy older adults who had undergone an eight-week music-based intervention (MBI), finding
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evidence of an intervention effect following the MBI. Quinci and colleagues found increased
functional connectivity between seeds in the auditory network and the medial prefrontal cortex in
these data following the MBI (Quinci et al., 2022). The present findings complement those
results in the network domain with a few key differences. In the present study, we estimated
functional connectivity states from timeseries data using HMM. Working in this state space
limits the conclusions we can draw from changes in functional connectivity - when the smallest
unit of measurement is a state, the connection weights between regions are fixed. This allows us
instead to examine the temporal properties between the states, namely, how often each state is
visited and the likelihood of transitioning between each state. While Quinci and colleagues found
increased functional connectivity between key seed regions (2022), we here add temporal detail
showing that the increased connectivity may be due to more frequent visits and/or a more

well-established path to a state containing auditory and reward regions.

Pre-MBI, participants showed higher fractional occupancy and a greater likelihood of
transitioning to and persisting in the temporal state in experimenter-selected music. This finding
is consistent with results presented in our previous work (Faber et al., 2023), and shows
participants occupying the temporal state most often during experimenter-selected music. In our
previous study (Faber et al., 2023), older adults showed higher occupancy in the
temporal-mesolimbic state compared to younger adults in experimenter-selected music; we now
know that this effect is more pronounced post-MBI. Post-MBI, transitioning into the
temporal-mesolimbic state was higher than pre-MBI, and transition to, and state persistence in
the auditory state was lower following the MBI. These results indicate that the temporal state
may become less engaged in favour of the temporal-mesolimbic state following the MBI, similar
to the dedifferentiation-like effects seen in the previous study but with an interesting twist: this

effect is malleable over time, especially with the intervention.

Numerous studies have focused on dedifferentiation as an age-related process (see Koen and
Rugg, 2019), with cross-sectional and longitudinal studies showing effects emerging with age in
rest and task experiments (Malagursky et al., 2020; Grady et al., 2016). Dedifferentiation does

not robustly predict poor cognition (Koen & Rugg, 2019), and may serve as a beneficial
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adaptation to age-related perturbations (Rieck et al., 2017; Rieck et al., 2021). With this in mind,
the post-intervention increases in fractional occupancy and transitional probabilities involving
the temporal-mesolimbic state may be a positive adaptation of the brain in response to music
listening. The recruitment of auditory-reward regions where previously a network of
auditory-only regions would be employed indicates music, in general, is more rewarding

post-MBI.

Though test-retest effects cannot be discounted entirely, the lack of accompanying increases in
liking and familiarity ratings suggests that the differences in network activity in the post-MBI
group cannot be attributed simply to a greater familiarity with the stimuli. Similarly, the
relatively short intervention period renders longitudinal aging-related effects unlikely. Rather,
these results suggest a true intervention effect. This is an exciting possibility for clinical research
as it suggests that music-based interventions can strengthen the activity of the auditory reward
system (or lower its threshold for activation). If music listening stimulates more auditory-reward
activity with regular listening in healthy older adults, what results and/or benefits could we

expect in clinical populations, namely those with neurodegeneration?

Though these findings are promising, they are not without limitations. The effects we observed,
while statistically significant, were calculated on a small sample without a control group. These
findings show a dedifferentiation-type pattern where all types of music post-intervention
preferentially involve auditory reward regions, but more work is needed, including data from
younger adults to establish the wider applicability of these findings. The age range of
participants in this sample was broad and while it did not significantly affect these results, a
larger sample size may provide enough variability to observe cohort effects within the older adult

sample.

These findings add promising information to the growing research on the relationship between
brain network dynamics and music-based intervention. Research studies and popular media have
shown that music continues to engage individuals with neurodegeneration (Cuddy & Dulffin,

2005; Sarkdmo et al., 2014, Satoh et al., 2015; Baird et al., 2020; Rossato-Bennett, 2014), and
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from here, several exciting avenues emerge. We have shown changes in state connectivity in a
healthy older adult population following a music-based intervention, which will prove useful in
further work with clinical populations. This healthy baseline provides a starting point for
music-based work with individuals with neurodegeneration. Will these individuals show a
similar pattern of auditory reward network activity during music listening? Will these pathways
change with music-based intervention, and if so, will it mirror the changes seen in adults without
neurodegeneration? Music is unique in its ability to remain engaging and accessible to
individuals with neurodegeneration, and has immense potential to teach us about how the brain
ages and adapts to neurodegeneration. It is our hope that these findings spark new collaborations
between clinicians, researchers, and patient groups striving to better understand the lived
experiences of individuals with dementia and the role that music can play as a therapy and as an

investigative tool.
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