

1

2 The Impact of *Parabacteroides distasonis* Colonization on Hosts' Microbiome,

3 Metabolome, Immune Responses, and Diabetes Onset

5 **Khyati Girdhar¹, Audrey Randall¹, Yusuf Dogus Dogru¹, Clarissa Howard¹, Alessandro
6 Pezzella¹, Juan Henao², Umesh K Gautam³, Pavla Šašinková³, Tomas Hudcovic³, Martin
7 Schwarzer³, Michael Kiebisch², Emrah Altindis^{1*}**

11 Affiliations:

12 ¹Boston College Biology Department, Chestnut Hill, Massachusetts, USA

13 ² BPGbio, Inc., Old Connecticut Path, Framingham, MA 01701

14 ³Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, 54922

15 Novy Hradek, Czech Republic.

16

17

18

19

20 *Correspondence to: Emrah Altindis, Boston College Biology Department, Higgins Hall, 140
21 Commonwealth Avenue Chestnut Hill, MA 02467, E-mail: altindis@bc.edu

22

23

24 **Abstract:**

25 Type 1 Diabetes (T1D) is a chronic disease caused by autoimmune destruction of insulin-
26 producing pancreatic β -cells. The insulin B-chain 9-23 (insB:9-23) peptide is established as a
27 critical epitope in triggering T1D. In our previous study, we showed that *Parabacteroides*
28 *distasonis*, a human gut commensal, contains an insB:9-23 mimic in its hprt protein (residues, 4-
29 18). This mimic (hprt4-18) activates insB:9-23 specific T-cells, and colonization of *P. distasonis* in
30 female NOD mice enhanced diabetes onset. Additionally, the presence of hprt:4-18 sequence in
31 the gut microbiome is associated with seropositivity in infants. However, the impact of the
32 colonization on the gut microbiome and intestinal immune cell compositions, gut permeability,
33 cytokine, and serum metabolome profiles were unknown. Here, we addressed this gap using
34 specific pathogen-free (SPF) and germ-free (GF) NOD mouse models. *P. distasonis* colonization
35 had a minimal impact on gut microbiome composition and merely altered 28 ASVs upon
36 colonization. In intraepithelial lymphocytes (IELs) of *P. distasonis* colonized SPF NOD mice, we
37 observed a 1.72-fold reduction in T-helper cells and a 2.3-fold reduction in T- effector cells, along
38 with a 1.85-fold reduction in B-cell populations. Further, *P. distasonis* did not alter serum
39 metabolome and cytokine levels except for a decrease in IL-15. We observed no difference in
40 the gene expression related to gut permeability. Similar to SPF mice, *P. distasonis* colonization in
41 GF NOD mice induced severe insulitis without affecting gut permeability. On the other hand, *P.*
42 *distasonis* lysate could induce insB:9-23 specific T cells. Altogether, these findings demonstrate
43 that *P. distasonis* does not stimulate a nonspecific inflammatory immune response in the
44 intestines, nor does it cause significant alterations in the gut microbiome, gut permeability, serum
45 metabolome, or cytokine response. However, it does induce insulitis in GF NOD mice and
46 activates insB:9-23 specific T-cells. These findings support our original hypothesis that *P.*
47 *distasonis* colonization stimulates a specific immune response and enhances T1D onset in NOD
48 mice via molecular mimicry.

49

50 **1. Introduction:**

51 Type 1 diabetes (T1D) is an autoimmune disease characterized by the selective
52 destruction of pancreatic β -cells by autoreactive T cells¹. The incidence of T1D in children is rising
53 annually, with an increase of 3.4% in Europe and 1.4% in the USA^{2 3}. Genome-wide association
54 studies have identified over 60 loci that influence the risk of developing T1D⁴; however, genetics
55 alone cannot account for the increasing incidence rates. Various environmental factors, including
56 diet, birth mode, infections, and antibiotics, have also been studied⁵⁻⁷. However, the trigger of T1D
57 autoimmunity remains elusive.

58 Gut microbiota has been increasingly understood over the last 20 years for its role in health
59 and disease. The environmental factors mentioned above can induce functional and
60 compositional changes in the gut microbiota⁸. Several studies have highlighted the continuous
61 crosstalk between the immune system and gut microbes starting immediately after birth⁹.
62 Microbial colonization and exposure to self- and non-antigens shape the host immune system
63 early in life¹⁰. This coincides with the period when the incidence of T1D is most common. Previous
64 reports have documented changes in gut microbiome composition and diversity in individuals with
65 T1D¹¹. The DIABIMMUNE study, a longitudinal examination of the fecal microbiome in HLA and
66 age-matched infants, revealed that there was a higher abundance of pathobionts such as
67 *Ruminococcus gnavus* in seroconverted children compared to the seronegative subjects¹². In a
68 follow-up study, they found a higher prevalence of *Bifidobacterium* in Russians and LPS-
69 producing *Bacteroides* species in Finns and Estonians. Interestingly *Bacteroides* LPS inhibited
70 innate immune signaling and endotoxin tolerance and *Bacteroides dorei* LPS did not reduce
71 autoimmune diabetes incidence in non-obese diabetic (NOD) mice¹³. Strain-level analysis also
72 revealed significant differences for *Bifidobacterium* species¹⁴.

73 The Environmental Determinants of Diabetes in the Young (TEDDY) study, another key
74 longitudinal cohort, used samples from 903 high-risk infants reported, *Parabacteroides* as the
75 only genus significantly associated with the T1D onset¹⁵. Similarly, the Innovative Approaches to

76 Understanding and Arresting Type 1 Diabetes (INNODIA) study identified *Parabacteroides*
77 *distasonis* as one of the 30 most abundant species in newly diagnosed individuals¹⁶. These
78 longitudinal studies offer valuable insights into gut microbiome changes, identifying specific
79 alterations for specific gut commensals, including a significant association between
80 *Parabacteroides* and T1D before disease onset. However, they are descriptive and do not
81 establish causality. *P. distasonis* is a gram-negative, strictly anaerobic gut commensal of humans
82 and other animals. *P. distasonis* was previously reported for its beneficial effects in alleviating
83 inflammatory arthritis¹⁷, colitis¹⁸, type 2 diabetes¹⁹, obesity²⁰, non-alcoholic steatohepatitis
84 (NASH)²¹, chronic abdominal pain²², and tumorigenesis^{23 24} in different mouse models. *P.*
85 *distasonis* colonization also increased intestinal barrier integrity and modulated inflammatory
86 markers in A/J mice²⁵.

87 In our previous study²⁶, we identified an insB:9-23 mimic in the hypoxanthine
88 phosphoribosyltransferase (hprt) protein of *Parabacteroides distasonis* (hprt4-18). Insulin B chain
89 amino acids 9-23 (insB:9-23)²⁷ is one of the most immunodominant T-cell epitopes in the islets²⁸
90 and peripheral blood of human T1D patients³⁰⁻³². In the NOD mouse³³, over 90% of the anti-
91 insulin CD4⁺ T cell clones target amino acids 9-23 of the insulin B chain (insB:9-23)²⁷. In our
92 study, we hypothesized that T1D is caused by a gut microbiota-derived epitope via molecular
93 mimicry mechanism and we demonstrated that the hprt4-18 peptide could activate insB:9-23
94 specific T-cells. Further, colonization of the female NOD mice enhanced T1D onset, increasing
95 inflammatory cells in the spleen and pancreatic lymph nodes (PLNs). Finally, using data from the
96 DIABIMMUNE study, we showed that children harboring the hprt4-18 sequence had a higher rate
97 of seroconversion.

98 Recent studies suggest that alterations in the gut microbes and T1D could be linked to
99 several factors, such as increased gut permeability³⁴ and microbial metabolites, including
100 SCFAs^{16 35} and other proinflammatory metabolites. Here, we further investigated the impact of *P.*
101 *distasonis* on the host. We focused on the gut microbiome and intestinal immune cell composition,

102 gut permeability, cytokine levels, and serum metabolome using specific pathogen-free (SPF) NOD
103 mice and germ-free (GF) NOD mice. Finally, to further test our molecular mimicry hypothesis, we
104 tested whether *P. distasonis* lysate could stimulate insB:9-23 specific T-cells.

105

106 **2. Materials and Methods:**

107 **2.1 Animals:**

108 NOD/ShiLtJ mice were purchased from the Jackson Laboratory facility. Mice were maintained and
109 bred in the Boston College Animal Care Facility. The mice were housed in specific pathogen-free
110 conditions with unrestricted access to autoclaved water and bedding in a 12-h dark/light cycle. All
111 the animal experiments were conducted as per the regulations and ethics guidelines of the
112 National Institute of Health (NIH) and were approved by the Institutional Animal Care and Use
113 Committee (IACUC) of Boston College (Protocol No.#B2019-003, B2022-006, 2019-004 and
114 2022-010). Mice were weaned at 3- weeks of age.

115

116 NOD GF mice were housed in sterile conditions utilizing Trexler-type plastic isolators. Mice were
117 exposed to a 12:12-hour light-dark cycle and provided with autoclaved tap water and irradiated
118 sterile pellet (breeding diet: Altromin 1414, Altromin, Germany) ad libitum. The sterility of NOD GF
119 mice was verified biweekly by ensuring the absence of bacteria, molds, and yeast through aerobic
120 and anaerobic cultivation of mouse feces and swabs from the isolators in meat-peptone broth,
121 Sabouraud-dextrose and VL (Viande-Levure), followed by plating on blood, VL and Sabouraud
122 agar plates³⁶. The animal experiments were conducted as per the regulations and ethics
123 guidelines approved by the Committee for Protection and Use of Experimental Animals of the
124 Institute of Microbiology of the Czech Academy of Science, v.v.i. (approval ID: 117/2013).

125

126 **2.2 Animal Treatment:**

127 3-week-old NOD mice, after weaning, were colonized as described previously. Briefly, the mice
128 were orally gavaged for 4 weeks with either saline or live *P. distasonis* bacteria at the
129 concentration of 1×10^8 cfu/mouse/day. Bacterial colonization was determined at 10 weeks of
130 age. Mice were sacrificed at 12 weeks of age and the pancreas, intestine, and serum were
131 collected to perform further analysis.

132 For GF mice colonization, GF mice were orally gavaged once either with saline or *P. distasonis*
133 bacteria at the concentration of 1×10^8 cfu/mouse. Bacterial colonization was determined at 10
134 weeks of age. Mice were sacrificed at 12 weeks of age, and organs such as the pancreas,
135 intestine, and serum were collected to perform further analysis.

136 For Trimethylamine N-oxide dihydrate (TMAO) treatment, TMAO powder was diluted in 1x PBS
137 to make stock concentrations of 16 mg/ml and 32 mg/ml followed by filtration through 0.2 μ M
138 filters with syringes. Stocks were aliquoted and stored at -20°C and only defrosted when the mice
139 were about to be injected. Littermate-matched NOD female mice were divided into three groups,
140 1. Saline, 2. Low TMAO (80 mg/kg body weight), and 3. High TMAO (160 mg/kg body weight).
141 Mice were weighed weekly, then intraperitoneally injected with saline and TMAO-designated
142 concentrations twice per week according to their assigned group for seven weeks. At 12 weeks
143 of age, NOD mice were sacrificed to collect serum, pancreas, feces, spleen, kidney, liver, and
144 intestines.

145

146 **2.3 Histopathological sectioning and staining**

147 The formalin-fixed pancreas was dehydrated using an ethanol gradient, followed by embedding
148 in paraffin to perform histological and eosin staining. The pancreas was sectioned transversely at
149 a thickness of 5 μ m per section using a Leica RM2155 microtome. The paraffin sections were
150 then stained with a hematoxylin and eosin (H&E) staining kit (Vector Laboratories). Images of the
151 islets were captured using a Zeiss AxioImager Z2 upright microscope to determine the insulitis

152 score. The islets were scored as follows: no insulitis, peri-insulitis, moderate insulitis, and severe
153 insulitis. The insulitis scores were analyzed, and treatment groups were compared using an
154 unpaired student t-test with Welch's correction or one-way ANOVA with post-hoc test. The insulitis
155 index was calculated to quantify the degree of inflammation and immune cell infiltration in the
156 islets. No insulitis islets (0% infiltration) were scored as 0, peri-insulitis islets (<25% infiltration)
157 were scored as 1, moderate insulitis islets (<50% infiltration) were scored as 2, and severe insulitis
158 islets (>50% infiltration) were scored as 3. To calculate the insulitis index, the following formula was
159 used:

$$160 \quad \text{Insulitis Index} = \frac{\sum(\text{number of islets at each score} \times \text{score})}{\text{total number of islets examined}}$$

161 For example:

162 *Insulitis index*

$$163 \quad = \frac{(\text{islet with score 0} \times 0) + (\text{islet with score 1} \times 1) + (\text{islet with score 2} \times 2) + (\text{islet with score 3} \times 3)}{\text{Total number of islets}}$$

164

165 **2.4 Intraepithelial Lymphocyte (IEL) isolation and flow cytometry**

166 Intraepithelial lymphocyte (IEL) cells were isolated following previously established protocols³⁷.
167 Briefly, intestines were collected post-sacrifice, washed with phosphate-buffered saline (PBS),
168 and longitudinally cut into 1-inch pieces to expose the inner epithelial layer. The intestine pieces
169 were thoroughly washed with PBS containing 2% fetal bovine serum (FBS) to remove fecal
170 particulates, repeating the process 2–3 times. Subsequently, the washed intestine pieces were
171 agitated in freshly prepared 1mM dithiothreitol (DTE) solution for 20 minutes. After incubation,
172 cells were collected from the supernatant and filtered through a 70µm filter. The DTE incubation
173 process was repeated once more to ensure maximum cell recovery. The collected cells from both
174 rounds of incubation were combined and further purified using a 44/67 Percoll gradient to isolate
175 the intraepithelial lymphocyte (IEL) cells. The cell suspension was washed twice with RPMI media

176 containing FBS before surface labeling with appropriate fluorochrome-conjugated monoclonal
177 antibodies, as detailed in **Table S2**. The samples were analyzed using a BD FACSAria flow
178 cytometer, and the acquired data were analyzed using FlowJo10 software. The gating strategy
179 employed to identify the cell population is described in **Fig S2** and **Fig S3**.

180

181 **2.5 16S rRNA gene sequencing**

182 Fecal pellets were obtained from 10-week-old colonized NOD mice immediately snap freezed,
183 and stored at -80°C. Stored fecal pellets were used to obtain DNA samples using a Qiagen
184 Powerfecal pro-DNA isolation kit. 16S sequencing was performed at the TGen Integrated
185 Microbiomics Center (TIMC). Bacterial DNA was quantitated by BactQuant assay³⁸. 16S rRNA
186 gene libraries were created by amplifying the variable region 4 (V4) using dual-index primers that
187 included the Illumina adapters³⁹. The quality of the 16S rRNA amplicon library pool was assured
188 using Tapestation, Qubit, and KapaQuant analysis. Amplicons were pooled and sequenced on
189 one Illumina MiSeq Nano (2 x 250 bp) run. The resulting data from the MiSeq run (MiSeq 1027)
190 yielded 711,008 bp that successfully passed the filter, with a read range of 6,497 – 28,665 reads
191 per sample. The average quality score (Q30) obtained was 32.9.

192

193 **2.6 Serum metabolomic analysis**

194 All serum samples were thawed at room temperature on a rotating plate for 20-30 minutes and
195 then kept on ice during aliquoting. Each sample was vortexed before extracting 75µL with 450µL
196 of cold extraction solvent (3:3:2 IPA: ACN: H₂O at -20°C). An additional 5µL of serum from each
197 sample was combined and extracted (1.44mL cold extraction solvent) to form a pooled QC
198 sample. Alongside the samples, 5 QC plasma aliquots (75µL each) were extracted following the
199 same protocol. All sample mixtures were vortexed for 5 seconds and stored overnight at -20°C.
200 After the overnight extraction, all samples, QC plasma, and the pooled sample were centrifuged
201 at 21,000 g for 10 minutes. The supernatant (100µL) was then transferred to glass LCMS vials

202 for analysis. Samples were analyzed on a Sciex 5500 Triple Quadrupole Mass Spectrometer
203 (Sciex, MA, USA) coupled to a Shimadzu NEXERA XR UPLC system (Shimadzu, Columbia, MD,
204 USA). A two-solvent liquid gradient system consisting of 50 mM ammonium bicarbonate at pH =
205 9.4 (aqueous) and 100% Acetonitrile (organic) was used over 30 minutes applying Hydrophobic
206 Interaction Liquid Chromatography (HILIC) to separate targeted metabolites. An ApHeraTM NH2
207 HPLC column (5 μ m, 15cm x 2mm) coupled to an apHeraTM NH2 HPLC guard column (5 μ m, 1cm
208 x 2mm) and a pre-column filter (0.5 μ m A-102 frit) were used for chromatographic separation.
209 Samples were analyzed using a scheduled MRM method with a 4-minute detection window for
210 each metabolite transition. Resulting data was trimmed of non-detected metabolites and then
211 statistically analyzed via MetaboAnalyst based on desired sample groupings, using: mean
212 normalization, log transformation, and Pareto scaling.

213

214 **2.7 Luminex assay**

215 Luminex cytokine assay was performed utilizing the Mouse Cytokine/ Chemokine Magnetic Bead
216 Panel (Millipore# MCYTOMAG-70K). Reagents were prepared as per kit instructions (including
217 wash buffers, sample matrix, beads, standards, etc.). The assay was performed as per the
218 manufacturer's instructions. Briefly, 200 μ L of Wash Buffer was added into each well and the
219 sealed plate was shaken for 10 minutes at room temperature. Following this, the Wash Buffer was
220 decanted, 25 μ L of each Standard or Control was added to the appropriate wells, and 25 μ L of
221 Assay Buffer was added to the sample wells. For background, standards, and control wells, 25
222 μ L of the Serum Matrix solution was added. 25 μ L of diluted serum samples (1:1 in assay buffer)
223 were added into the appropriate wells. 25 μ L of premixed beads were added to each well. The
224 plate was sealed, wrapped with foil, and incubated with agitation overnight at 2-8°C. After
225 incubation, the plate was washed twice, and 25 μ L of Detection Antibodies were added into each
226 well and incubated with shaking for 1 hour. Next, 25 μ L of Streptavidin-Phycoerythrin was added
227 to each well containing Detection Antibodies; the plate was sealed, covered with foil, and

228 incubated with shaking for 30 minutes. Following incubation, the plate was washed twice, and
229 150 μ L of Sheath Fluid was added to all wells; then, the beads were resuspended on a plate
230 shaker for 5 minutes. The plates were read using the then read on Bio-Plex®200 following
231 manufacturers' specifications and using Bio-Plex Manager software v6.2. The samples were
232 analyzed for 32 analytes, including Eotaxin, G-CSF, GM-CSF, IFN- γ , IL-1 α , IL-1 β , IL-2, IL-3, IL-4,
233 IL-5, IL-6, IL-7, IL-9, IL-10, IL-12 (p40), IL-12 (p70), IL-13, IL-15, IL-17, IP-10, KC, LIF, LIX, MCP-
234 1, M-CSF, MIG, MIP-1 α , MIP-1 β , MIP-2, RANTES, TNF- α , and VEGF.

235

236 **2.8 NOD T-cell hybridomas stimulation assay**

237 The NOD T-cell hybridomas activation experiment was performed as described previously²⁶. To
238 obtain *P. distasonis* lysate, bacteria were diluted at concentrations of 10^6 , 10^7 , and 10^8 CFU/ml in
239 DMEM and sonicated for 10 min in a bath sonicator at room temperature. The C3g7 cell line,
240 which expresses an abundance of MHC-II I-Ag7 (corresponding human DQ8), was used as an
241 antigen-presenting cell (APCs). 10 μ M of hprt4-18 peptide (dissolved in DMSO), live *P. distasonis*
242 at concentrations of 10^6 and 10^7 CFU, and *P. distasonis* lysate at concentrations of 10^5 , 10^6 , and
243 10^7 were treated on 5×10^4 C3g7 cells for 4 hours. Next, C3g7 cells were washed with PBS three
244 times. 5×10^4 T-cell hybridomas were co-incubated with treated C3g7 cells for another 20 hours.
245 At the end of the experiment, the supernatant and cells were collected from each well. The
246 supernatant was used to determine the IL-2 secretion using the IL2 Elisa kit (#BioLegend), and
247 the cells were used to determine the protein concentration using BCA assay (#Thermo) for
248 normalization.

249

250 **2.9 Bioinformatic analysis and statistics**

251 Bacterial 16S rRNA amplicon sequencing reads were filtered and trimmed to assess microbial
252 diversity and perform statistical analysis. Dada2⁴⁰ was used to convert amplicon sequences into
253 an Amplicon Sequence Variant (ASV) table using the Ribosomal Database Project Training Set⁴¹.

254 The R (version 4.1.2) packages Phyloseq⁴² and vegan were employed for exploratory and
255 inferential analyses, including alpha and beta diversity estimates, non-metric multidimensional
256 scaling (NMDS) analysis using Bray–Curtis dissimilarity, Principal Components Analysis (PCA),
257 and taxa agglomeration. Statistical significance for alpha diversity was assessed using ANOVA,
258 while PERMANOVA was used for Bray-Curtis dissimilarity. Differential ASV abundance was
259 evaluated at each time point using edgeR⁴³ with two-sided empirical Bayes quasi-likelihood F-
260 tests. P-values were corrected using the Benjamini-Hochberg false discovery rate (FDR), with
261 FDR < 0.05 considered statistically significant⁴⁴.

262

263 **2.10 Statistics:**

264 Statistical analysis was conducted using the unpaired Student's t-test to compare two groups.
265 Significance levels were denoted as *p < 0.05, **p < 0.01, and ***p < 0.001.

266 For insulitis scores, either an unpaired Student's t-test or a one-way analysis of variance
267 (ANOVA) with Tukey's post-hoc test was performed to compare multiple groups. Significance was
268 determined at p < 0.05. All statistical analyses were conducted using GraphPad Prism Version
269 9.0 unless otherwise specified in the figure legends.

270

271 **3.0 Results**

272 **3.1 *P. distasonis* colonization has a limited impact on gut microbiome composition in**

273 **female NOD mice**

274 To examine the impact of *P. distasonis*, we first focused on the gut microbiome composition after
275 the colonization. To this end, we used fecal samples from 10-week-old female NOD mice, which
276 were either orally gavaged with *P. distasonis* or saline for four weeks (starting with 3-week-old
277 mice). *P. distasonis* colonization did not affect alpha diversity, indicating that overall species
278 richness remains stable (**Fig1A and Fig S1A-C**). On the other hand, the beta diversity was
279 significantly altered by the colonization, indicating an alteration in the microbiome composition

280 (p=0.016) (**Fig 1B**). We also observed no significant differences in the phylum (**Fig 1C**), family
281 (**Fig 1D**), class and order levels (**Fig S1D & S1E**), as well as the genus (**Fig 1E**) level. In total, we
282 identified 188 amplicon sequencing variants (ASVs) (**Table S1**), with 17 ASVs showing increased
283 abundance and 11 ASVs showing decreased abundance following *P. distasonis* colonization (p
284 <0.05). Interestingly, most significant alterations within the annotated 28 ASVs occurred in
285 members of *Lachnospiraceae* family. However, the alteration was not unidirectional; while ASV6,
286 ASV7, and ASV37 were decreased, ASV36, ASV85, and ASV66 were increased (**Table S1** and
287 **Fig 1F**). Overall, these results indicate that *P. distasonis* colonization had a limited impact on the
288 gut microbiome composition.

289

290 **3.2 *P. distasonis* decreases inflammatory immune cells in small intestines without altering 291 gut permeability**

292 We previously reported that *P. distasonis* colonized NOD female mice, had an increase in CD8+
293 T-cells, F4/80+ macrophages, and dendritic cells, along with a decrease in FoxP3+ regulatory T
294 cells in splenocytes. Similar alterations were also observed in the pancreatic lymph nodes for
295 FoxP3+ T-regulatory cells and macrophages. However, the effect of *P. distasonis* on systemic
296 inflammation and intestinal immune cell composition remained elusive. To determine whether the
297 elevated incidence of T1D is associated with increased inflammation in the gut, we examined the
298 direct effects of *P. distasonis* in the intestines, where the bacterium directly interacts with the
299 immune system. We initially assessed the intestinal intraepithelial lymphocytes (IELs)
300 composition in 12-weeks old female NOD mice.

301 Flow cytometry data revealed a 2.4-fold decrease in CD4+ T-cells (**Fig. 2A**) and a 2.6-fold
302 decrease in B-cells (**Fig. 2B**) in *P. distasonis* colonized mice. However, there was no significant
303 difference in total T-cells, CD4+CD25+ T-cells, and CD8+ T-cells (**Fig. S2C-E**). Additionally, we
304 examined the innate cell composition in IELs, including dendritic cells, macrophages (total,
305 resident, and circulatory macrophages), and eosinophils. We observed a 1.7-fold decrease in

306 resident macrophages (**Fig. 2C**) in *P. distasonis* colonized mice, while no significant differences
307 were observed in dendritic cells, total macrophages, circulatory macrophages, and eosinophils
308 populations (**Fig. S3B-F**). Further analysis of CD4+ and CD8+ T-cell subsets showed a 1.76-fold
309 decrease in CD4+ T-effector and a 2.1-fold decrease in CD4+ T-central cell populations (**Fig. 2D**).
310 We also observed a 3-fold decrease in CD8+ T-central memory cell population upon *P. distasonis*
311 colonization in IELs (**Fig. 2E**). Overall, *P. distasonis* colonization reduced CD4+ effector T-cells,
312 both CD4+ and CD8+ central memory T-cells, B-cells, and resident macrophage populations.
313 These results suggest that *P. distasonis* does not stimulate any inflammatory immune cell
314 population in the small intestine upon colonization; in contrast, colonization creates a less
315 inflammatory intestinal environment.

316 To determine the impact of *P. distasonis* colonization on the systemic immune response,
317 we employed a Luminex assay analyzing 32 different cytokines, chemokines, and growth factors
318 on serum samples from 12-week-old *P. distasonis*-colonized female NOD mice compared to
319 control mice (n=8-9/group). From those 32 analytes, only IL-15 levels were 1.9-fold decreased
320 upon *P. distasonis* colonization (**Fig. S4**). Altogether, these results are consistent with our
321 observations in the intestines and indicate that *P. distasonis* does not stimulate a non-specific,
322 pro-inflammatory, or anti-inflammatory cytokine response that can explain increased insulitis or
323 diabetes rates of NOD female mice upon colonization. Subsequently, we investigated the impact
324 of *P. distasonis* on gut permeability as another potential mechanism that might stimulate
325 inflammation and contribute to diabetes acceleration. Gene expression analysis of claudin family
326 proteins (claudin1, claudin4, and claudin15) and tight junction proteins (ZO1, Occludin, Mucin2)
327 in the duodenum, jejunum, and ileum did not reveal significant changes upon *P. distasonis*
328 colonization (**Fig. 2F-H**). Taken together, *P. distasonis* colonization doesn't increase gut
329 permeability in the small intestines.

330

331

332 **3.3 *P. distasonis* does not alter serum metabolome composition**

333 While there were only 28 ASVs altered by the *P. distasonis* colonization, we observed a significant
334 alteration in beta diversity. To determine whether these alterations have an impact on the serum
335 metabolome, we employed, targeted metabolomics using serum samples from 12-week-old
336 female NOD mice. In total, 255 metabolites were determined in this analysis. The principal
337 component analysis (PCA) did not reveal any significant differences between the groups (**Fig.**
338 **3A**). Among all 255 targeted metabolites, we identified no significant change in any of the
339 metabolites between *P. distasonis* and the saline-treated group (**Table S3, Fig 3B-C**). However,
340 TMAO, a metabolite directly related to the gut microbiome and inflammation tended to increase
341 but it was not a significant increase (**Table S3, Fig. 3B**). Overall, these findings suggest that *P.*
342 *distasonis* colonization has no impact on the serum metabolome composition.

343

344 **3.4 TMAO does not alter insulitis in NOD female mice.**

345 TMAO is one of the most studied inflammatory microbial metabolites and has been associated
346 with cardiovascular and metabolic diseases⁴⁵⁻⁴⁹. To determine whether increased diabetes rates
347 in *P. distasonis* colonized SPF NOD mice are linked to the trend of increase in the TMAO, we
348 decided to examine its effect on diabetes onset. To this end, we intraperitoneally injected female
349 NOD mice (n=5-6 mice/group) either with saline (control group), 80mg/kg TMAO (low dose), or
350 160mg/kg TMAO (high TMAO group) (**Fig. 4A**). Mice were weighed weekly and there were no
351 significant differences in body weight upon TMAO administration (**Fig. 4B**). After seven weeks of
352 consecutive injections, 12-week-old, prediabetic mice were sacrificed to determine the insulitis
353 scores. We demonstrated that there was no significant difference in the insulitis scores between
354 the control mice and the TMAO groups (85-113 islets per group, **Fig. 4C**). We further calculated
355 the insulitis index scores (**Fig. 4D**), however, once again, we did not identify any significant
356 differences.

357

358 **3.5 *P. distasonis* accelerates insulitis in NOD germ-free (GF) female mice.**

359 To determine the isolated impact of *P. distasonis* colonization on insulitis and mitigate potential
360 influences from other gut microbes in specific pathogen-free (SPF) NOD mice, we utilized female
361 GF NOD mice. This approach aimed to eliminate any confounding factors stemming from the
362 presence of other gut microbes. The GF female NOD mice (n=5-6) were orally gavaged once with
363 *P. distasonis* after weaning (**Fig. 5A**). Colonization was confirmed in 10-week-old GF NOD mice
364 using qPCR (**Fig. 5B**). The mice were sacrificed at 12 weeks of age to determine the insulitis
365 scores. Consistent with our previous study in SPF NOD mice, *P. distasonis* colonization alone
366 increased insulitis in GF NOD mice (**Fig. 5C**). It caused a 2.8-fold increase in severe insulitis in
367 islets and a 5.6-fold decrease in islets with no insulitis compared to the control animals. This data
368 indicates that *P. distasonis*, independent of other gut microbes, can induce insulitis in NOD mice.
369 To investigate the mechanism of *P. distasonis*-induced insulitis and its potential link to gut
370 permeability, we assessed the expression of gut permeability associated genes. We assessed
371 the gene expression of claudin 1, claudin 4, ZO1, claudin 15, mucin2, and occludin in different
372 parts of the small intestine. Similar to our findings in SPF mice, we did not observe any differences
373 in the duodenum (**Fig. 5D**), jejunum (**Fig. 5E**), and ileum (**Fig. 5F**) indicating that *P. distasonis*
374 colonization does not alter gut permeability.

375

376 **3.6 *P. distasonis* colonization does not alter serum metabolite composition in GF NOD
377 mice.**

378 To determine the direct impact of *P. distasonis* on metabolome, we performed targeted metabolite
379 analysis using serum samples obtained from the GF mice. In total, we identified 255 metabolites
380 (**Table S4**) and among them, only three metabolites were significantly altered. However, the
381 magnitude of these changes was relatively low. The PCA did not identify significant differences
382 between groups (**Fig. 5G**). Specifically, cystine levels increased by 1.9-fold, and acetylcarnitine
383 levels increased only by 1.06-fold, while riboflavin levels decreased by 1.4-fold in *P. distasonis*

384 colonized mice (**Fig. 5H**). Overall, our findings are consistent with our SPF findings and indicate
385 that *P. distasonis* has minimal impact on serum metabolome composition in GF mice.

386

387 **3.7 *P. distasonis* lysate activates insB:9-23 specific T-cells hybridomas.**

388 In this study, we examined different effects of *P. distasonis* colonization on SPF NOD mice and
389 GF NOD mice to identify potential other factors that could affect diabetes onset stimulated by *P.*
390 *distasonis*. However, we could not identify any factors including gut permeability, a non-specific
391 inflammatory immune response in the gut, or significant alterations in the metabolome, or any
392 effect related to TMAO. These observations reaffirm our original hypothesis that *P. distasonis*
393 stimulates diabetes onset via molecular mimicry. In our previous study, we used chemically
394 synthesized 15-amino acid long, hprt4-18, and insB:9-23 peptides and showed that hprt4-18 can
395 stimulate both insB:9-23 specific human T-cell clones and NOD mice T-cell hybridomas²⁶.
396 Nonetheless, it was previously unknown whether APCs could effectively process the whole
397 bacterial lysate and present hprt4-18. To test this, we treated APCs either with live *P. distasonis*
398 or *P. distasonis* lysate. After 4 hours of treatment, APCs were co-cultured with insB:9-23 specific
399 IIT-3 T-cell hybridomas, and T-cell activation was assessed by measuring IL-2 secretion. hprt4-
400 18 peptide (10 μ M) used as a positive control, successfully activated the T-cell hybridomas (**Fig.**
401 **6**). Notably, APCs were also able to process *P. distasonis* lysate (CFUs, 10^5 and 10^6) and activate
402 these insB:9-23 specific T-cells. The live *P. distasonis* did not stimulate the T-cells potentially
403 because hprt is a cytoplasmic protein. These findings support our molecular mimicry hypothesis
404 and show that the APCs can effectively process *P. distasonis* proteins, specifically the hprt protein,
405 and stimulate insB:9-23 specific T-cell hybridomas (**Fig 6**).

406

407 **4.0 Discussion**

408 T1D is one of the oldest chronic autoimmune diseases, and it is still not curable. Although we
409 have better tools to manage the disease, it still decreases life expectancy by an average of 9.9

410 years⁵⁰. We cannot prevent new cases because the trigger of T1D autoimmunity is unknown.
411 Therefore, there is an urgent need to identify environmental factors contributing to T1D onset. In
412 this study, we examined the involvement of *P. distasonis* in T1D pathogenesis. As previously
413 mentioned, the TEDDY and INNODIA studies reported that *Parabacteroides* is the most
414 significantly associated genus with T1D onset¹⁵.

415 In our previous study, we also showed that the *P. distasonis* D13 strain colonization
416 accelerates T1D onset in female NOD mice. To further define the impact of *P. distasonis*
417 colonization on the host, we completed this comprehensive study. Our results on gut microbiome
418 composition indicated a significant change in beta diversity, with 28 differentially abundant ASVs,
419 mostly members of the *Lachnospiraceae* family. Interestingly, *Clostridium* species are found in
420 this family and some of them including *Clostridium asparagiforme*, *Clostridium hathewayi*,
421 *Clostridium sporogenes* are TMA producers⁴⁵. This might explain the trend of increasing TMAO
422 levels in the serum metabolome.

423 When we evaluated the effects of colonization on immune cell composition in the IELs, we
424 observed a decrease in residential macrophages, B-cells, and CD4+ cells. Notably, there was
425 also a reduction in CD4+ T-effector, T-central subsets, and CD8+ T-central subsets. Intestinal
426 CD4+ T cells are a major population in IELs, crucial for maintaining host protective and
427 homeostatic responses to gut microbes. However, an accumulation of CD4+ T cells, particularly
428 the CD4+ T-effector subtype, is a hallmark of inflammation and inflammatory bowel disease
429 (IBD)^{51 52 53}. Similarly, B-cells play a significant role in increasing gut inflammation and villous
430 atrophy in celiac disease⁵⁴. Reduction in these immune cells on colonization indicates a non-
431 inflammatory phenotype.

432 *P. distasonis* significantly reduced intestinal inflammation in murine models of acute and
433 chronic colitis⁵⁵ induced by dextran sulphate sodium (DSS) in BALB/c mice. This anti-
434 inflammatory effect is mediated by a decrease in proinflammatory cytokines and stabilization of
435 the intestinal microbiota⁵⁶. In our study, we also observed a decrease in serum IL-15

436 concentration, consistent with our observations in the IELs. One of the potential mechanisms
437 explaining this anti-inflammatory function is related to having a unique surface layer that breaks
438 down complex polysaccharides and helps them blend with intestinal tissue⁵⁷. These findings on
439 reduced intestinal inflammation align well with our results. Interestingly, treating high-fat diet-fed
440 and ob/ob mice, two different models of Type 2 Diabetes and obesity, with *P. distasonis*
441 CGMCC1.30169 reduced weight gain, hyperglycemia, and hepatic steatosis by activating
442 intestinal gluconeogenesis and FXR pathways⁵⁸. The authors explained this phenotype with
443 succinate production by the bacterium. However, we did not identify an increase in succinate
444 either in SPF NOD or in GF NOD mouse models.

445 There are also controversial findings indicating potential pathogenic effects of the
446 bacterium. For example, the stools of Crohn's disease patients repeatedly contained *P. distasonis*
447 bacteria⁵⁹. Likewise, in a DSS-induced colitis model, there was a correlation between *P. distasonis*
448 abundance and severity of colitis⁶⁰. *P. distasonis* inoculation increased inflammation in mice that
449 already have Crohn's disease⁶¹. In a similar study, *P. distasonis* weakened the gut barrier and
450 triggered inflammation, suggesting a link to IBD⁶². In addition, *P. distasonis* produces an enzyme
451 that can inactivate antimicrobial peptides, including β-defensin 2, keratin-derived antimicrobial
452 peptides (KAMPs), and human neutrophil peptide 3⁶³. The differences observed in all these
453 studies may be attributed to the variety of disease models, strains, and animal models tested.

454 Overall, our data indicate that *P. distasonis* colonization does not create a pro-
455 inflammatory environment in the intestine of NOD mice. In contrast, it causes a reduction in the
456 immune cells indicating a potential anti-inflammatory effect in the gut. The underlying mechanism
457 behind the decrease or migration of the immune cells from the intestine still needs to be
458 determined.

459 The antigen presentation assay revealed that *P. distasonis* lysate can activate insB:9-23
460 specific T-cell hybridomas. This indicates that the APCs processing *P. distasonis* lysate proteins
461 are capable of activating T-cells, potentially leading to anti-insulin autoimmunity. The molecular

462 mimicry mechanism is based on the degeneracy of T-cell recognition^{64 65} and can be either
463 pathogenic⁶⁶ or protective⁶⁷. While molecular mimicry has long been postulated as a potential
464 factor in autoimmune diseases⁶⁸⁻⁷⁰, including T1D⁷¹⁻⁷⁴ (coxsackie B and rubella viruses), progress
465 was hindered due to a lack of genomic sequences of the potential microbial proteins that might
466 trigger this response. In our previous study, we took advantage of the growing genome databases
467 for microbes, including growing microbiome datasets, and identified hprt4-18⁷⁵. We showed its
468 potential rolling T1D pathophysiology establishing cross-reactivity and determining the enhanced
469 T1D in *P. distasonis* colonized NOD mice. Our findings reported here could not identify any other
470 potential mechanisms that might stimulate T1D. Therefore, we decided to test our original
471 molecular mimicry mechanism with a key missing experiment, antigen presentation. Indeed, we
472 showed that APCs can process *P. distasonis* proteins and present and activate insB:9-23 T-cells.
473 However, the specific role of hprt4-18 still needs to be determined in future studies using mutation
474 models. Lumen presents a high challenge for microbial survival. Despite the evolutionary
475 adaptations of gut microbes to colonize the gut, cell death and cell lysis remain inevitable. These
476 findings support our original hypothesis and indicate that lysed *P. distasonis* may be processed
477 by the APCs in the GI tract. In addition to our findings, molecular mimicry was recently linked to
478 other autoimmune diseases including multiple sclerosis (MS). Recent studies identified
479 pathogenic and cross-reactive antibodies as a potential link between Epstein–Barr virus (EBV)
480 and MS onset. Researchers showed the cross-reactivity between EBV nuclear antigen EBNA1
481 and glial cell adhesion protein in the central nervous system⁷⁶. Epidemiological evidence supports
482 this link between EBV infection and MS autoimmunity⁷⁷.

483 While further studies are needed to establish a causal link between human T1D and *P.*
484 *distasonis*, we believe that our findings serve as a proof-of-concept study, shedding light on a
485 potential link between gut microbiota-derived neo-epitopes and autoimmunity. While our study
486 focused on *P. distasonis*, other pathobionts in the gut may also generate insB:9-23 specific T-
487 cells. Furthermore, hundreds of epitopes have been identified in the pathogenesis of T1D^{78 79},

488 with the potential for T-cells to be stimulated by several gut microbiota-derived mimic epitopes.
489 Identifying these commensal microbes could provide a better understanding of gut-immune
490 interactions and reveal mechanisms underlying autoimmune diseases such as T1D. Identification
491 of causal factors will guide us in developing novel therapeutic tools to prevent, cure, and manage
492 the disease.

493

494 **Acknowledgments**

495 We thank Prof. Emil Unanue, Xiaoxiao Wan, and Dr. Anthony Vomund (University of Washington,
496 St. Louis) for providing insB:9-23 specific T-cell hybridomas and C3g7 APCs cells. Thanks to
497 Patrick Autissier and Bret Judson for their assistance with flow cytometry and imaging at the
498 Microscopy Core at Boston College, respectively. Special thanks to Dr. Babak Momeni (Boston
499 College) for sharing his laboratory's anaerobic chamber. We are grateful to Nancy McGilloway
500 and Todd Gaines for their support in the Boston College Animal Care Facility. We thank our
501 students, Lukas Rhodes and Maria Jove, for their assistance with animal maintenance. This work
502 was supported by The G. Harold and Leila Y. Mathers Charitable Foundation Research Grant No.
503 MF-1905-00311, a JDRF Foundation grant (K 98-99D-12813-01A), the Beatson Foundation
504 (2023-003), and a Diabetes Research Connect grant to KG.

505 **Contributions:**

506 K.G. and E.A. designed the research, analyzed the data, and wrote the paper. E.A oversaw the
507 project. Y.D.D. assisted with the bioinformatic analysis of the 16S data. K.G., C.H., and A.P.
508 assisted with all animal experiments. K.G. performed the FACS staining and analysis, while A.R.
509 assisted with TMAO experiment and M.S., P.S., U.K.G, and T.H. assisted with GF mice
510 experiments and maintenance. M.K. and J.H. conducted the serum metabolomic analysis.

511

512 **Consent for publication**

513 Not applicable.

514 **Competing interests**

515 None.

516 **FIGURE LEGENDS**

517 **Fig 1: The effect of *P. distasonis* on gut microbiome profile of NOD female mice. (A) Alpha**

518 diversity index (B) Beta diversity (C) Average relative abundance of bacterial phylum (D) family

519 and (E) genera. Statistical analysis was performed with the Benjamini and Hochberg method

520 using two-tailed t-tests to control the false discovery rate (FDR). (F) Heat map showing the relative

521 abundance of the ASVs significantly different between *P. distasonis* colonized and saline-gavaged

522 mice. Each column represents the mean of each group, and each row represents an ASV.

523

524 **Fig 2: The effect of *P. distasonis* colonization on intestinal inflammation in NOD female**

525 mice. (A) CD4+ cells as a percentage of TCR- β + CD45+ immune cell subsets. (B) Percentage of

526 B-cells in CD45+ cells subsets. (C) Percentage of CD11b+ (dendritic cells subsets in

527 CD45+ immune cells. (D) CD44^{hi}CD62L^{lo} (T_{EM}), CD44^{hi} CD62L^{hi} (T_{CM}), CD44^{lo} CD62L^{hi} (Naive) T-

528 cells in CD4+ T-cells. (E) CD44^{hi}CD62L^{lo} (T_{EM}), CD44^{hi} CD62L^{hi} (T_{CM}), CD44^{lo} CD62L^{hi} (Naive) in

529 CD8+ T-cells subsets population in saline and *P. distasonis*-gavaged mice. Relative gene

530 expression of gut permeability-related genes in (F) duodenum, (G) jejunum, (H) ileum in *P.*

531 *distasonis* colonized NOD mice compared to saline NOD mice (n=5/group). Data were expressed

532 as mean \pm SEM. *p<0.05, **p <0.01, ***p <0.0001. Statistical analysis was performed using the

533 two-tailed unpaired Student's t-test.

534

535 **Fig 3: The effect of *P. distasonis* colonization on serum metabolites composition in NOD**

536 **female mice.** (A) Principal Coordinate Analysis (PCA) plot showing serum metabolites

537 comparison in saline and *P. distasonis* colonized SPF female NOD mice. (B) Heatmap showing

538 25 of the most altered metabolites between saline and *P. distasonis* oral gavaged mice. Each

539 column represents an individual mouse, and each row represents a metabolite. (C) Volcano plot

540 of serum metabolites with fold change threshold ($|\log_2(\text{FC})| > 1.2$) and t-tests threshold (-
541 $\log_{10}(p) > 0.1$). The red dots represent metabolites above the threshold. Fold changes are \log_2
542 transformed, and p-values are \log_{10} transformed of saline (n=6) and *P. distasonis* (n=5) oral
543 gavaged NOD female mice.

544

545 **Fig 4: The effect of TMAO on NOD female mice insulitis.** (A) Schematic overview of the low
546 (80mg/kg) and high Dose (160mg/kg) TMAO-injected NOD female mice experiment (n =5-
547 6/group). 5-week-old NOD mice were injected with different doses of TMAO for seven weeks. (B)
548 Change in body weight per week. (C) Percentage of insulitis score in low and high-dose treated
549 mice compared to saline-treated mice. Statistical analysis was performed using the one-way
550 ANOVA.

551

552 **Fig 5: The effect of *P. distasonis* colonization on insulitis, gut permeability, and serum
553 metabolome in germ-free (GF) NOD female mice.** (A) Schematic overview of the *P.
554 distasonis* oral gavage experiments (n = 13, saline, n=11, *P. distasonis*). The time point of week
555 10 represents the fecal sample collection for qPCR colonization experiment for *P.
556 distasonis* colonization, and the red arrow shows the time point (week 12) for pancreata collection
557 for insulitis analysis (n = 5 mice/group). (B) Quantification of insulitis scores from *P. distasonis*
558 colonized, or saline-gavaged female NOD GF mice at week 12 (n = 5/group, n = 150 to 180
559 islets/group). (C) Relative gene expression of gut permeability-related genes in duodenum, (D)
560 jejunum, (E) ileum in *P. distasonis* colonized NOD GF Female mice compared to saline NOD GF
561 mice (n=3-5/group). Data were expressed as mean \pm SEM. *p<0.05, **p <0.01, ***p <0.0001.
562 Statistical analysis was performed using an unpaired Student's t-test for insulitis and gene
563 expression analysis. (F) Principal Coordinate Analysis (PCA) plot showing a comparison of serum
564 metabolites between saline and *P. distasonis* oral-gavaged GF female NOD mice. (G) Heatmap
565 showing 25 of the most altered metabolites between saline and *P. distasonis* oral-gavaged GF

566 female NOD mice. Each column represents an individual mouse, and each row represents a
567 metabolite. **(C)** Volcano plot of serum metabolites with fold change threshold ($|\log_2(\text{FC})| > 1.2$)
568 and t-tests threshold ($-\log_{10}(p) > 0.1$). The red dots represent metabolites above the threshold.
569 Fold changes are log2transformed, and p values are log10 transformed of saline (n=5) and *P.*
570 *distasonis* (n=6) oral gavaged NOD GF female mice.

571

572 **Fig 6: The effect of *P. distasonis* on insB:9-23 specific NOD Mice T-cells hybridomas.** IIT-3
573 hybridomas response to DMSO (control), hprt4-18 peptide, *P. distasonis* live or dead (10^7 , 10^6 ,
574 and 10^5 CFU) where peptides/live or dead bacteria were presented to hybridomas as covalently
575 linked to I-A^{g7} expressed on macrophages (C3g7 cells). Data are presented as IL-2 concentration
576 measured using ELISA. Data were expressed as mean \pm SEM. *p<0.05, **p <0.01, ***p <0.0001.
577 Statistical analysis was performed using one-way ANOVA.

578

579 **Fig S1: Alpha diversity indexes and Relative abundance of gut bacterium upon *P.***
580 ***distasonis* colonization.** **(A)** Alpha diversity Chao index **(B)** Shannon index **(C)** Fisher index **(D)**
581 Average relative abundance of bacterial class **(E)** Order between *P. distasonis* colonized and
582 saline gavaged mice.

583

584 **Fig S2: Gating Strategy and T-Cell Population in IEL of female NOD mice.** **(A)** Gating strategy
585 for T-cell populations **(B)** B-cell population. **(C)** TCR β + CD45+ cell population represents a %
586 fraction of CD45+ cells. **(D)** CD8+ T-cells population represents a % fraction of TCR β + CD45+
587 cells. **(E)** CD4+ CD25+ T-cell population represents as a % fraction of CD4+ population. Statistical
588 analysis was performed using one-way ANOVA for insulitis and two-tailed unpaired Student's t-
589 test for the gene expression.

590

591 **Fig S3: Gating Strategy and Innate Cell Population in IEL of female NOD mice. (A)** Gating
592 Strategy for innate immune-cell population. **(B)** CD11b+ CD11c+ Dendritic cells, **(C)** CD11b-
593 CD11c+ Dendritic cells in % of CD45+ cells. **(D)** Total F4/80+ macrophages in CD11b+ cell
594 population. **(E)** Circulatory Macrophages **(D)** Eosinophils represent a % fraction of F4/80+ cells.
595 Statistical analysis was performed using one-way ANOVA for insulitis and two-tailed unpaired
596 Student's t-test for the gene expression.

597

598 **Fig S4: Cytokine profile of *P. distasonis* colonized mice compared to control: IL-15 Cytokine**
599 concentration in 12-week *P. distasonis* colonized NOD female mice. saline (n=8), *P. distasonis*
600 (n=9). Statistical analysis was performed using one-way ANOVA for insulitis and two-tailed
601 unpaired Student's t-test for the gene expression.

602

603 REFERENCES

- 604 1. Pugliese A. Autoreactive T cells in type 1 diabetes. *J Clin Invest* 2017;127(8):2881-91. doi:
605 10.1172/JCI94549 [published Online First: 2017/08/02]
- 606 2. Patterson CC, Harjutsalo V, Rosenbauer J, et al. Trends and cyclical variation in the incidence
607 of childhood type 1 diabetes in 26 European centres in the 25 year period 1989-2013: a
608 multicentre prospective registration study. *Diabetologia* 2019;62(3):408-17. doi:
609 10.1007/s00125-018-4763-3 [published Online First: 2018/11/30]
- 610 3. Mayer-Davis EJ, Lawrence JM, Dabelea D, et al. Incidence Trends of Type 1 and Type 2
611 Diabetes among Youths, 2002-2012. *N Engl J Med* 2017;376(15):1419-29. doi:
612 10.1056/NEJMoa1610187 [published Online First: 2017/04/14]
- 613 4. Pociot F. Type 1 diabetes genome-wide association studies: not to be lost in translation. *Clin
614 Transl Immunology* 2017;6(12):e162. doi: 10.1038/cti.2017.51 [published Online First:
615 2018/01/16]
- 616 5. Op de Beeck A, Eizirik DL. Viral infections in type 1 diabetes mellitus--why the beta cells? *Nat
617 Rev Endocrinol* 2016;12(5):263-73. doi: 10.1038/nrendo.2016.30
- 618 6. Christen U, Hintermann E, Holdener M, et al. Viral triggers for autoimmunity: is the 'glass of
619 molecular mimicry' half full or half empty? *J Autoimmun* 2010;34(1):38-44. doi:
620 10.1016/j.jaut.2009.08.001
- 621 7. Rewers M, Ludvigsson J. Environmental risk factors for type 1 diabetes. *Lancet*
622 2016;387(10035):2340-48. doi: 10.1016/S0140-6736(16)30507-4 [published Online First:
623 2016/06/16]

624 8. Rewers M, Hyoty H, Lernmark A, et al. The Environmental Determinants of Diabetes in the
625 Young (TEDDY) Study: 2018 Update. *Curr Diab Rep* 2018;18(12):136. doi:
626 10.1007/s11892-018-1113-2 [published Online First: 2018/10/26]

627 9. Maynard CL, Elson CO, Hatton RD, et al. Reciprocal interactions of the intestinal microbiota
628 and immune system. *Nature* 2012;489(7415):231-41. doi: 10.1038/nature11551
629 [published Online First: 2012/09/14]

630 10. Korpela K, Helve O, Kolho KL, et al. Maternal Fecal Microbiota Transplantation in Cesarean-
631 Born Infants Rapidly Restores Normal Gut Microbial Development: A Proof-of-Concept
632 Study. *Cell* 2020;183(2):324-34 e5. doi: 10.1016/j.cell.2020.08.047 [published Online
633 First: 2020/10/03]

634 11. Dedrick S, Sundaresan B, Huang Q, et al. The Role of Gut Microbiota and Environmental
635 Factors in Type 1 Diabetes Pathogenesis. *Front Endocrinol (Lausanne)* 2020;11:78. doi:
636 10.3389/fendo.2020.00078 [published Online First: 2020/03/17]

637 12. Kostic AD, Gevers D, Siljander H, et al. The dynamics of the human infant gut microbiome in
638 development and in progression toward type 1 diabetes. *Cell Host Microbe*
639 2015;17(2):260-73. doi: 10.1016/j.chom.2015.01.001 [published Online First:
640 2015/02/11]

641 13. Vatanen T, Kostic AD, d'Hennezel E, et al. Variation in Microbiome LPS Immunogenicity
642 Contributes to Autoimmunity in Humans. *Cell* 2016;165(4):842-53. doi:
643 10.1016/j.cell.2016.04.007 [published Online First: 2016/05/03]

644 14. Vatanen T, Plichta DR, Soman J, et al. Genomic variation and strain-specific functional
645 adaptation in the human gut microbiome during early life. *Nat Microbiol* 2019;4(3):470-
646 79. doi: 10.1038/s41564-018-0321-5 [published Online First: 2018/12/19]

647 15. Stewart CJ, Ajami NJ, O'Brien JL, et al. Temporal development of the gut microbiome in early
648 childhood from the TEDDY study. *Nature* 2018;562(7728):583-88. doi: 10.1038/s41586-
649 018-0617-x [published Online First: 2018/10/26]

650 16. Vatanen T, de Beaufort C, Marcovecchio ML, et al. Gut microbiome shifts in people with type
651 1 diabetes are associated with glycaemic control: an INNODIA study. *Diabetologia* 2024
652 doi: 10.1007/s00125-024-06192-7 [published Online First: 2024/06/04]

653 17. Sun H, Guo Y, Wang H, et al. Gut commensal *Parabacteroides distasonis* alleviates
654 inflammatory arthritis. *Gut* 2023;72(9):1664-77. doi: 10.1136/gutjnl-2022-327756
655 [published Online First: 2023/01/06]

656 18. Cuffaro B, Assohoun ALW, Boutillier D, et al. In Vitro Characterization of Gut Microbiota-
657 Derived Commensal Strains: Selection of *Parabacteroides distasonis* Strains Alleviating
658 TNBS-Induced Colitis in Mice. *Cells* 2020;9(9) doi: 10.3390/cells9092104 [published
659 Online First: 2020/09/20]

660 19. Liu D, Zhang S, Li S, et al. Indoleacrylic acid produced by *Parabacteroides distasonis* alleviates
661 type 2 diabetes via activation of AhR to repair intestinal barrier. *BMC Biol* 2023;21(1):90.
662 doi: 10.1186/s12915-023-01578-2 [published Online First: 2023/04/19]

663 20. Cuffaro B, Boutillier D, Desramaut J, et al. Characterization of Two *Parabacteroides distasonis*
664 Candidate Strains as New Live Biotherapeutics against Obesity. *Cells* 2023;12(9) doi:
665 10.3390/cells12091260 [published Online First: 2023/05/13]

666 21. Wei W, Wong CC, Jia Z, et al. *Parabacteroides distasonis* uses dietary inulin to suppress NASH
667 via its metabolite pentadecanoic acid. *Nat Microbiol* 2023;8(8):1534-48. doi:
668 10.1038/s41564-023-01418-7 [published Online First: 2023/06/30]

669 22. Gervason S, Meleine M, Lolignier S, et al. Antihyperalgesic properties of gut microbiota:
670 *Parabacteroides distasonis* as a new probiotic strategy to alleviate chronic abdominal
671 pain. *Pain* 2024;165(5):e39-e54. doi: 10.1097/j.pain.0000000000003075 [published
672 Online First: 2023/09/27]

673 23. Koh GY, Kane A, Lee K, et al. *Parabacteroides distasonis* attenuates toll-like receptor 4
674 signaling and Akt activation and blocks colon tumor formation in high-fat diet-fed
675 azoxymethane-treated mice. *Int J Cancer* 2018;143(7):1797-805. doi: 10.1002/ijc.31559
676 [published Online First: 2018/04/27]

677 24. benlin Wang YQ, Ming Xie, Pengcheng Huang, Yao Yu, Qi Sun, Wentai Shangguan, Weijia Li,
678 Zhangrui Zhu, Jingwen Xue, Zhengyuan Feng, Yuexuan Zhu, Qishen Yang, Peng Wu. Gut
679 microbiota *Parabacteroides distasonis*
680 enhances the efficacy of immunotherapy for
681 bladder cancer by activating anti-tumor immune
682 responses, 2023.

683 25. Koh GY, Kane AV, Wu X, et al. *Parabacteroides distasonis* attenuates tumorigenesis,
684 modulates inflammatory markers and promotes intestinal barrier integrity in
685 azoxymethane-treated A/J mice. *Carcinogenesis* 2020;41(7):909-17. doi:
686 10.1093/carcin/bgaa018 [published Online First: 2020/03/03]

687 26. Girdhar K, Huang Q, Chow IT, et al. A gut microbial peptide and molecular mimicry in the
688 pathogenesis of type 1 diabetes. *Proc Natl Acad Sci U S A* 2022;119(31):e2120028119.
689 doi: 10.1073/pnas.2120028119 [published Online First: 2022/07/26]

690 27. Daniel D, Gill RG, Schloot N, et al. Epitope specificity, cytokine production profile and
691 diabetogenic activity of insulin-specific T cell clones isolated from NOD mice. *Eur J
692 Immunol* 1995;25(4):1056-62. doi: 10.1002/eji.1830250430

693 28. Pathiraja V, Kuehlich JP, Campbell PD, et al. Proinsulin-specific, HLA-DQ8, and HLA-DQ8-
694 transdimer-restricted CD4+ T cells infiltrate islets in type 1 diabetes. *Diabetes*
695 2015;64(1):172-82. doi: 10.2337/db14-0858

696 29. Michels AW, Landry LG, McDaniel KA, et al. Islet-Derived CD4 T Cells Targeting Proinsulin in
697 Human Autoimmune Diabetes. *Diabetes* 2017;66(3):722-34. doi: 10.2337/db16-1025
698 [published Online First: 2016/12/07]

699 30. Alleva DG, Crowe PD, Jin L, et al. A disease-associated cellular immune response in type 1
700 diabetics to an immunodominant epitope of insulin. *J Clin Invest* 2001;107(2):173-80.
701 doi: 10.1172/JCI8525

702 31. Nakayama M, McDaniel K, Fitzgerald-Miller L, et al. Regulatory vs. inflammatory cytokine T-
703 cell responses to mutated insulin peptides in healthy and type 1 diabetic subjects. *Proc
704 Natl Acad Sci U S A* 2015;112(14):4429-34. doi: 10.1073/pnas.1502967112 [published
705 Online First: 2015/04/02]

706 32. Yang J, Chow IT, Sosinowski T, et al. Autoreactive T cells specific for insulin B:11-23 recognize
707 a low-affinity peptide register in human subjects with autoimmune diabetes. *Proc Natl
708 Acad Sci U S A* 2014;111(41):14840-5. doi: 10.1073/pnas.1416864111

709 33. Unanue ER. Antigen presentation in the autoimmune diabetes of the NOD mouse. *Annu Rev*
710 *Immunol* 2014;32:579-608. doi: 10.1146/annurev-immunol-032712-095941 [published
711 Online First: 2014/02/07]

712 34. Monsted MO, Falck ND, Pedersen K, et al. Intestinal permeability in type 1 diabetes: An
713 updated comprehensive overview. *J Autoimmun* 2021;122:102674. doi:
714 10.1016/j.jaut.2021.102674 [published Online First: 2021/06/29]

715 35. Bell KJ, Saad S, Tillett BJ, et al. Metabolite-based dietary supplementation in human type 1
716 diabetes is associated with microbiota and immune modulation. *Microbiome*
717 2022;10(1):9. doi: 10.1186/s40168-021-01193-9 [published Online First: 2022/01/21]

718 36. Schwarzer M, Makki K, Storelli G, et al. Lactobacillus plantarum strain maintains growth of
719 infant mice during chronic undernutrition. *Science* 2016;351(6275):854-7. doi:
720 10.1126/science.aad8588 [published Online First: 2016/02/26]

721 37. Girdhar K, Dogru YD, Huang Q, et al. Dynamics of the gut microbiome, IgA response, and
722 plasma metabolome in the development of pediatric celiac disease. *Microbiome*
723 2023;11(1):9. doi: 10.1186/s40168-022-01429-2 [published Online First: 2023/01/14]

724 38. Liu CM, Aziz M, Kachur S, et al. BactQuant: an enhanced broad-coverage bacterial
725 quantitative real-time PCR assay. *BMC Microbiol* 2012;12:56. doi: 10.1186/1471-2180-
726 12-56 [published Online First: 2012/04/19]

727 39. Kozich JJ, Westcott SL, Baxter NT, et al. Development of a dual-index sequencing strategy
728 and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina
729 sequencing platform. *Appl Environ Microbiol* 2013;79(17):5112-20. doi:
730 10.1128/AEM.01043-13 [published Online First: 2013/06/25]

731 40. Callahan BJ, McMurdie PJ, Rosen MJ, et al. DADA2: High-resolution sample inference from
732 Illumina amplicon data. *Nat Methods* 2016;13(7):581-3. doi: 10.1038/nmeth.3869
733 [published Online First: 2016/05/24]

734 41. Cole JR, Wang Q, Fish JA, et al. Ribosomal Database Project: data and tools for high
735 throughput rRNA analysis. *Nucleic Acids Res* 2014;42(Database issue):D633-42. doi:
736 10.1093/nar/gkt1244 [published Online First: 2013/11/30]

737 42. McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and
738 graphics of microbiome census data. *PLoS One* 2013;8(4):e61217. doi:
739 10.1371/journal.pone.0061217 [published Online First: 2013/05/01]

740 43. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential
741 expression analysis of digital gene expression data. *Bioinformatics* 2010;26(1):139-40.
742 doi: 10.1093/bioinformatics/btp616 [published Online First: 2009/11/17]

743 44. Glickman ME, Rao SR, Schultz MR. False discovery rate control is a recommended alternative
744 to Bonferroni-type adjustments in health studies. *J Clin Epidemiol* 2014;67(8):850-7. doi:
745 10.1016/j.jclinepi.2014.03.012 [published Online First: 2014/05/17]

746 45. Liu Y, Dai M. Trimethylamine N-Oxide Generated by the Gut Microbiota Is Associated with
747 Vascular Inflammation: New Insights into Atherosclerosis. *Mediators Inflamm*
748 2020;2020:4634172. doi: 10.1155/2020/4634172 [published Online First: 2020/03/10]

749 46. Seldin MM, Meng Y, Qi H, et al. Trimethylamine N-Oxide Promotes Vascular Inflammation
750 Through Signaling of Mitogen-Activated Protein Kinase and Nuclear Factor-kappaB. *J Am*
751 *Heart Assoc* 2016;5(2) doi: 10.1161/JAHA.115.002767 [published Online First:
752 2016/02/24]

753 47. Zhang Y, Wang Y, Ke B, et al. TMAO: how gut microbiota contributes to heart failure. *Transl*
754 *Res* 2021;228:109-25. doi: 10.1016/j.trsl.2020.08.007 [published Online First:
755 2020/08/26]

756 48. Dolkar P, Deyang T, Anand N, et al. Trimethylamine-N-oxide and cerebral stroke risk: A
757 review. *Neurobiol Dis* 2024;192:106423. doi: 10.1016/j.nbd.2024.106423 [published
758 Online First: 2024/01/30]

759 49. Saaoud F, Liu L, Xu K, et al. Aorta- and liver-generated TMAO enhances trained immunity for
760 increased inflammation via ER stress/mitochondrial ROS/glycolysis pathways. *JCI Insight*
761 2023;8(1) doi: 10.1172/jci.insight.158183 [published Online First: 2022/11/18]

762 50. Arffman M, Hakkarainen P, Keskimaki I, et al. Long-term and recent trends in survival and life
763 expectancy for people with type 1 diabetes in Finland. *Diabetes Res Clin Pract*
764 2023;198:110580. doi: 10.1016/j.diabres.2023.110580 [published Online First:
765 2023/02/22]

766 51. Abraham C, Cho JH. Inflammatory bowel disease. *N Engl J Med* 2009;361(21):2066-78. doi:
767 10.1056/NEJMra0804647 [published Online First: 2009/11/20]

768 52. Shale M, Schiering C, Powrie F. CD4(+) T-cell subsets in intestinal inflammation. *Immunol Rev*
769 2013;252(1):164-82. doi: 10.1111/imr.12039 [published Online First: 2013/02/15]

770 53. Brucklacher-Waldert V, Carr EJ, Linterman MA, et al. Cellular Plasticity of CD4+ T Cells in the
771 Intestine. *Front Immunol* 2014;5:488. doi: 10.3389/fimmu.2014.00488 [published Online
772 First: 2014/10/24]

773 54. Lejeune T, Meyer C, Abadie V. B Lymphocytes Contribute to Celiac Disease Pathogenesis.
774 *Gastroenterology* 2021;160(7):2608-10 e4. doi: 10.1053/j.gastro.2021.02.063 [published
775 Online First: 2021/03/06]

776 55. Gaifem J, Mendes-Frias A, Wolter M, et al. Akkermansia muciniphila and Parabacteroides
777 distasonis synergistically protect from colitis by promoting ILC3 in the gut. *mbio*
778 2024;15(4):e0007824. doi: 10.1128/mbio.00078-24 [published Online First: 2024/03/12]

779 56. Kverka M, Zakostelska Z, Klimesova K, et al. Oral administration of Parabacteroides distasonis
780 antigens attenuates experimental murine colitis through modulation of immunity and
781 microbiota composition. *Clin Exp Immunol* 2011;163(2):250-9. doi: 10.1111/j.1365-
782 2249.2010.04286.x [published Online First: 2010/11/23]

783 57. Fletcher CM, Coyne MJ, Bentley DL, et al. Phase-variable expression of a family of
784 glycoproteins imparts a dynamic surface to a symbiont in its human intestinal
785 ecosystem. *Proc Natl Acad Sci U S A* 2007;104(7):2413-8. doi: 10.1073/pnas.0608797104
786 [published Online First: 2007/02/08]

787 58. Wang K, Liao M, Zhou N, et al. Parabacteroides distasonis Alleviates Obesity and Metabolic
788 Dysfunctions via Production of Succinate and Secondary Bile Acids. *Cell Rep*
789 2019;26(1):222-35 e5. doi: 10.1016/j.celrep.2018.12.028 [published Online First:
790 2019/01/04]

791 59. Lopetuso LR, Petito V, Graziani C, et al. Gut Microbiota in Health, Diverticular Disease,
792 Irritable Bowel Syndrome, and Inflammatory Bowel Diseases: Time for Microbial Marker
793 of Gastrointestinal Disorders. *Dig Dis* 2018;36(1):56-65. doi: 10.1159/000477205
794 [published Online First: 2017/07/07]

795 60. Okayasu I, Hatakeyama S, Yamada M, et al. A novel method in the induction of reliable
796 experimental acute and chronic ulcerative colitis in mice. *Gastroenterology*

797 1990;98(3):694-702. doi: 10.1016/0016-5085(90)90290-h [published Online First:
798 1990/03/01]

799 61. Ezeji JC, Sarikonda DK, Hopperton A, et al. *Parabacteroides distasonis*: intriguing
800 aerotolerant gut anaerobe with emerging antimicrobial resistance and pathogenic and
801 probiotic roles in human health. *Gut Microbes* 2021;13(1):1922241. doi:
802 10.1080/19490976.2021.1922241 [published Online First: 2021/07/02]

803 62. Gonzalez-Paez GE, Roncase EJ, Wolan DW. X-ray structure of an inactive zymogen clostripain-
804 like protease from *Parabacteroides distasonis*. *Acta Crystallogr D Struct Biol* 2019;75(Pt
805 3):325-32. doi: 10.1107/S2059798319000809 [published Online First: 2019/04/06]

806 63. Xu JH, Jiang Z, Solania A, et al. A Commensal Dipeptidyl Aminopeptidase with Specificity for
807 N-Terminal Glycine Degrades Human-Produced Antimicrobial Peptides in Vitro. *ACS
808 Chem Biol* 2018;13(9):2513-21. doi: 10.1021/acschembio.8b00420 [published Online
809 First: 2018/08/08]

810 64. Mason D. A very high level of crossreactivity is an essential feature of the T-cell receptor.
811 *Immunol Today* 1998;19(9):395-404. doi: 10.1016/s0167-5699(98)01299-7 [published
812 Online First: 1998/09/24]

813 65. Calis JJ, de Boer RJ, Kesmir C. Degenerate T-cell recognition of peptides on MHC molecules
814 creates large holes in the T-cell repertoire. *PLoS Comput Biol* 2012;8(3):e1002412. doi:
815 10.1371/journal.pcbi.1002412 [published Online First: 2012/03/08]

816 66. Wucherpfennig KW, Strominger JL. Molecular mimicry in T cell-mediated autoimmunity: viral
817 peptides activate human T cell clones specific for myelin basic protein. *Cell*
818 1995;80(5):695-705. doi: 10.1016/0092-8674(95)90348-8 [published Online First:
819 1995/03/10]

820 67. Mana P, Goodyear M, Bernard C, et al. Tolerance induction by molecular mimicry:
821 prevention and suppression of experimental autoimmune encephalomyelitis with the
822 milk protein butyrophilin. *Int Immunol* 2004;16(3):489-99. doi: 10.1093/intimm/dxh049
823 [published Online First: 2004/02/24]

824 68. Greiling TM, Dehner C, Chen X, et al. Commensal orthologs of the human autoantigen Ro60
825 as triggers of autoimmunity in lupus. *Sci Transl Med* 2018;10(434) doi:
826 10.1126/scitranslmed.aan2306 [published Online First: 2018/03/30]

827 69. Gil-Cruz C, Perez-Shibayama C, De Martin A, et al. Microbiota-derived peptide mimics drive
828 lethal inflammatory cardiomyopathy. *Science* 2019;366(6467):881-86. doi:
829 10.1126/science.aav3487 [published Online First: 2019/11/16]

830 70. Harkiolaki M, Holmes SL, Svendsen P, et al. T cell-mediated autoimmune disease due to low-
831 affinity crossreactivity to common microbial peptides. *Immunity* 2009;30(3):348-57. doi:
832 10.1016/j.jimmuni.2009.01.009 [published Online First: 2009/03/24]

833 71. Tian J, Lehmann PV, Kaufman DL. T cell cross-reactivity between coxsackievirus and
834 glutamate decarboxylase is associated with a murine diabetes susceptibility allele. *J Exp
835 Med* 1994;180(5):1979-84. doi: 10.1084/jem.180.5.1979 [published Online First:
836 1994/11/01]

837 72. Atkinson MA, Bowman MA, Campbell L, et al. Cellular immunity to a determinant common
838 to glutamate decarboxylase and coxsackie virus in insulin-dependent diabetes. *J Clin
839 Invest* 1994;94(5):2125-9. doi: 10.1172/JCI117567 [published Online First: 1994/11/01]

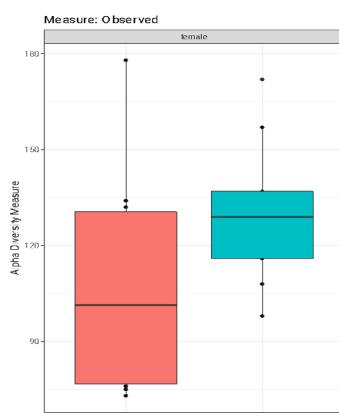
840 73. Tai N, Peng J, Liu F, et al. Microbial antigen mimics activate diabetogenic CD8 T cells in NOD
841 mice. *J Exp Med* 2016;213(10):2129-46. doi: 10.1084/jem.20160526 [published Online
842 First: 2016/09/14]

843 74. Honeyman MC, Stone NL, Falk BA, et al. Evidence for molecular mimicry between human T
844 cell epitopes in rotavirus and pancreatic islet autoantigens. *J Immunol* 2010;184(4):2204-
845 10. doi: 10.4049/jimmunol.0900709 [published Online First: 2010/01/20]

846 75. Huang Q, Chow I-T, Brady C, et al. *Parabacteroides distasonis* insulin B:9-23 epitope mimic
847 stimulates insulin specific T-cells and enhances Type 1 Diabetes in NOD mice. *bioRxiv*
848 2020:2020.10.22.350801. doi: 10.1101/2020.10.22.350801

849 76. Lanz TV, Brewer RC, Ho PP, et al. Clonally expanded B cells in multiple sclerosis bind EBV
850 EBNA1 and GlialCAM. *Nature* 2022;603(7900):321-27. doi: 10.1038/s41586-022-04432-7
851 [published Online First: 2022/01/25]

852 77. Bjornevik K, Cortese M, Healy BC, et al. Longitudinal analysis reveals high prevalence of
853 Epstein-Barr virus associated with multiple sclerosis. *Science* 2022;375(6578):296-301.
854 doi: 10.1126/science.abj8222 [published Online First: 2022/01/14]


855 78. Kent SC, Mannering SI, Michels AW, et al. Deciphering the Pathogenesis of Human Type 1
856 Diabetes (T1D) by Interrogating T Cells from the "Scene of the Crime". *Curr Diab Rep*
857 2017;17(10):95. doi: 10.1007/s11892-017-0915-y [published Online First: 2017/09/03]

858 79. James EA, Mallone R, Kent SC, et al. T-Cell Epitopes and Neo-epitopes in Type 1 Diabetes: A
859 Comprehensive Update and Reappraisal. *Diabetes* 2020;69(7):1311-35. doi:
860 10.2337/dbi19-0022 [published Online First: 2020/06/21]

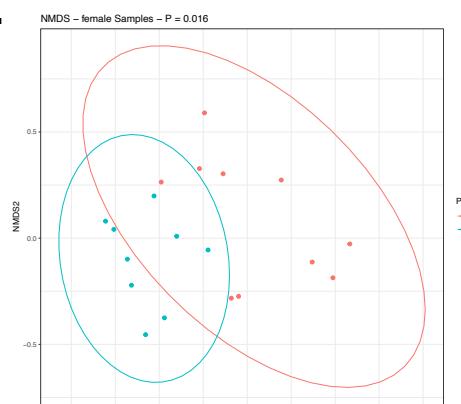
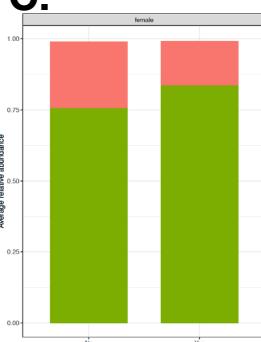
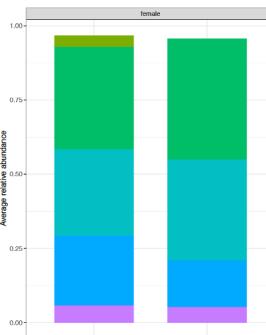
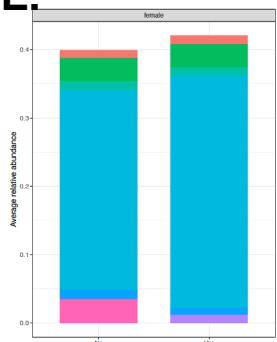

861

Fig 1: The effect of *P. distasonis* on gut microbiome profile of NOD female mice.


A.


B.


C.

D.

E.

F.

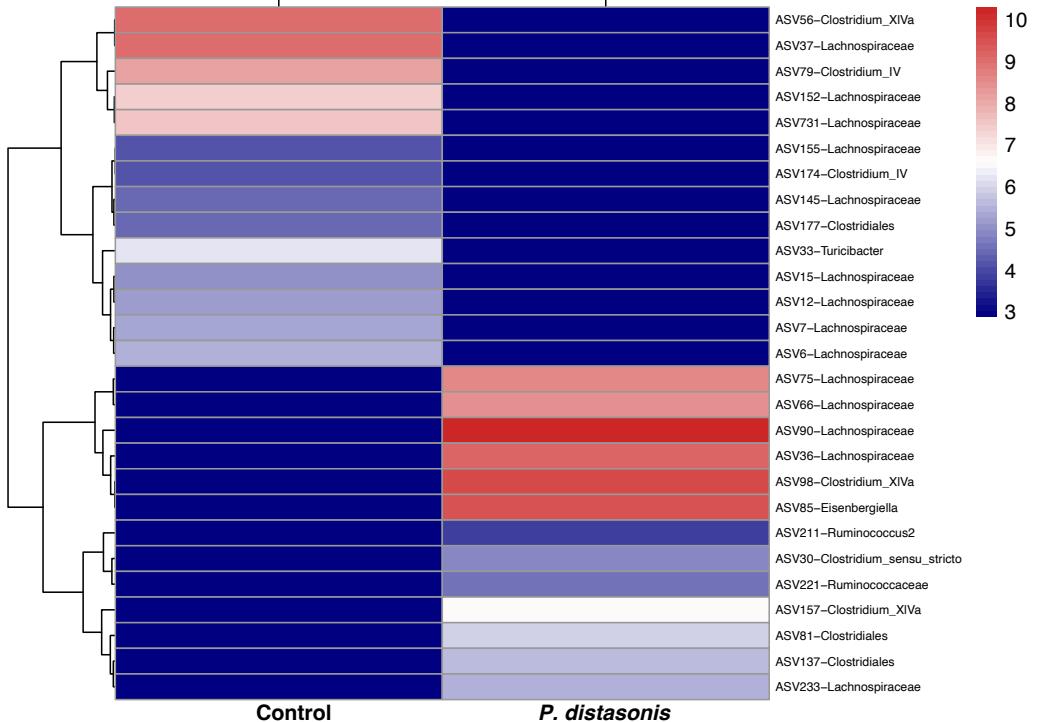
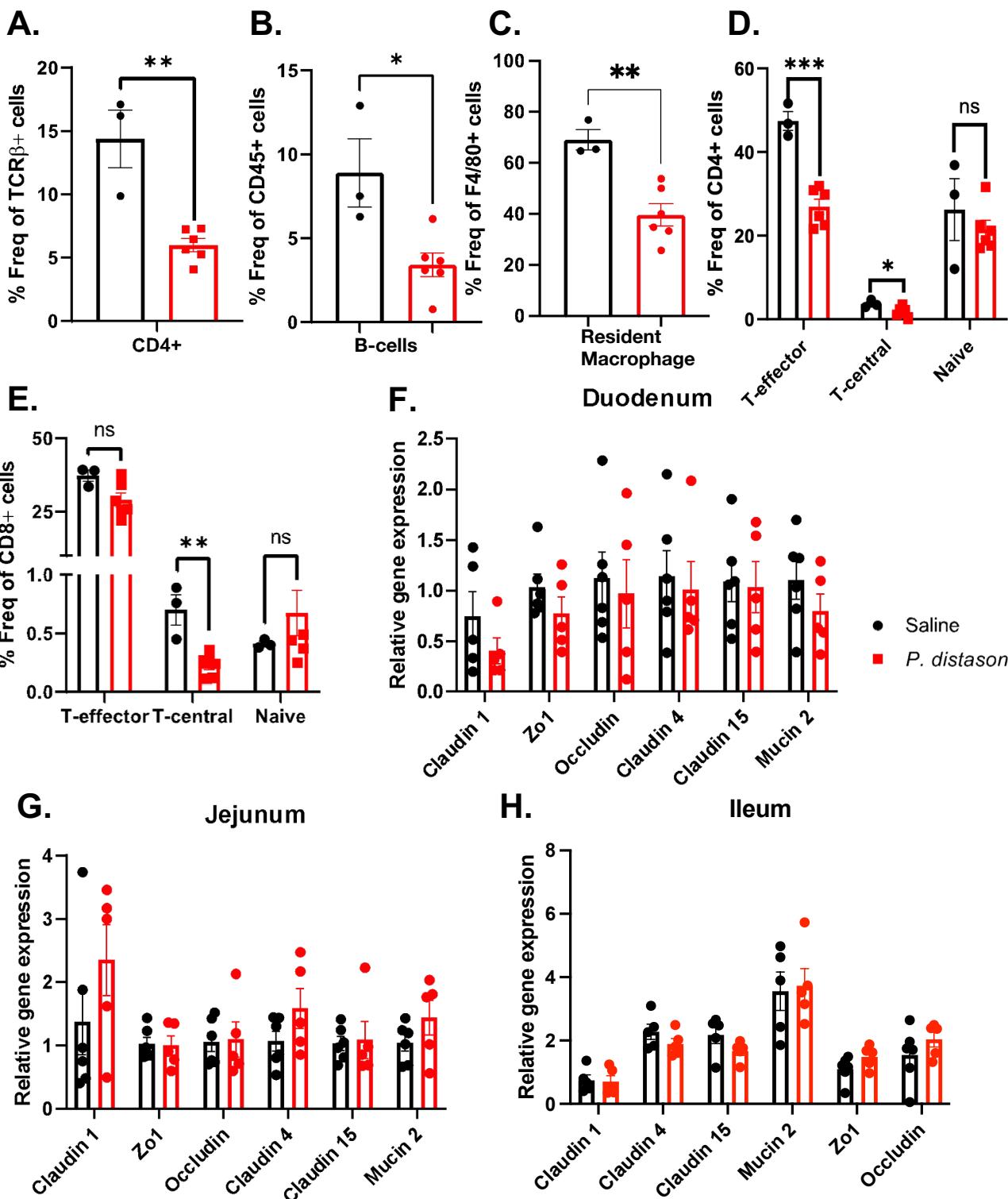
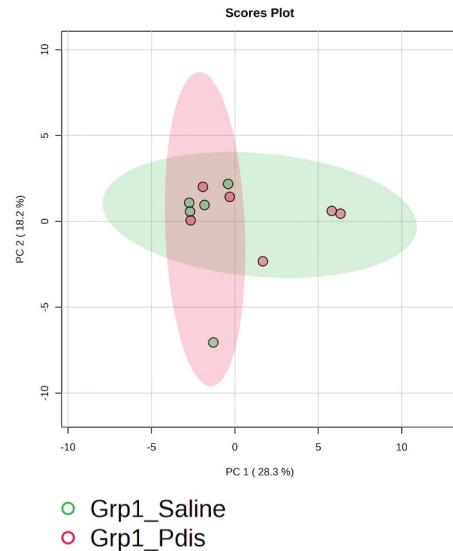




Fig 2: The effect of *P. distasonis* colonization on intestinal inflammation in NOD female mice.

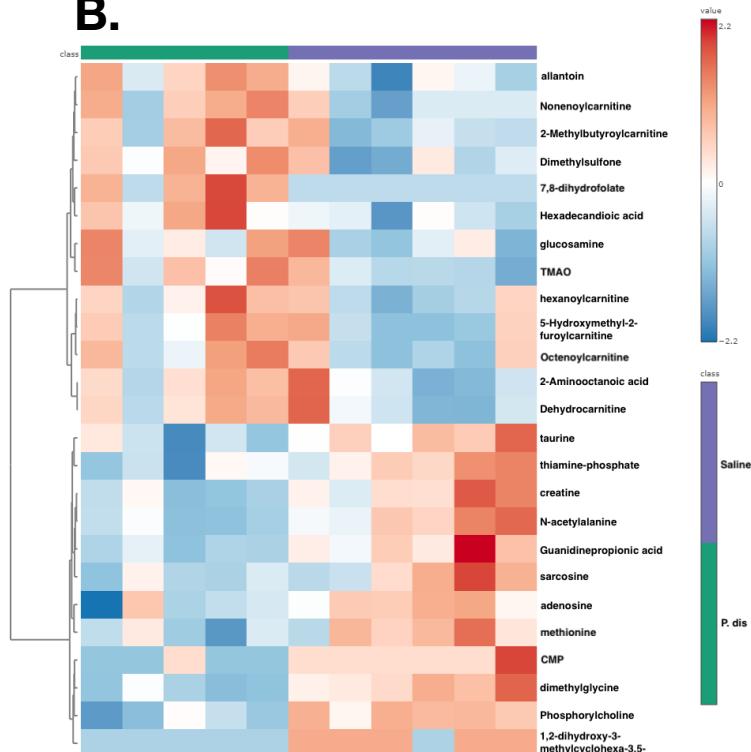
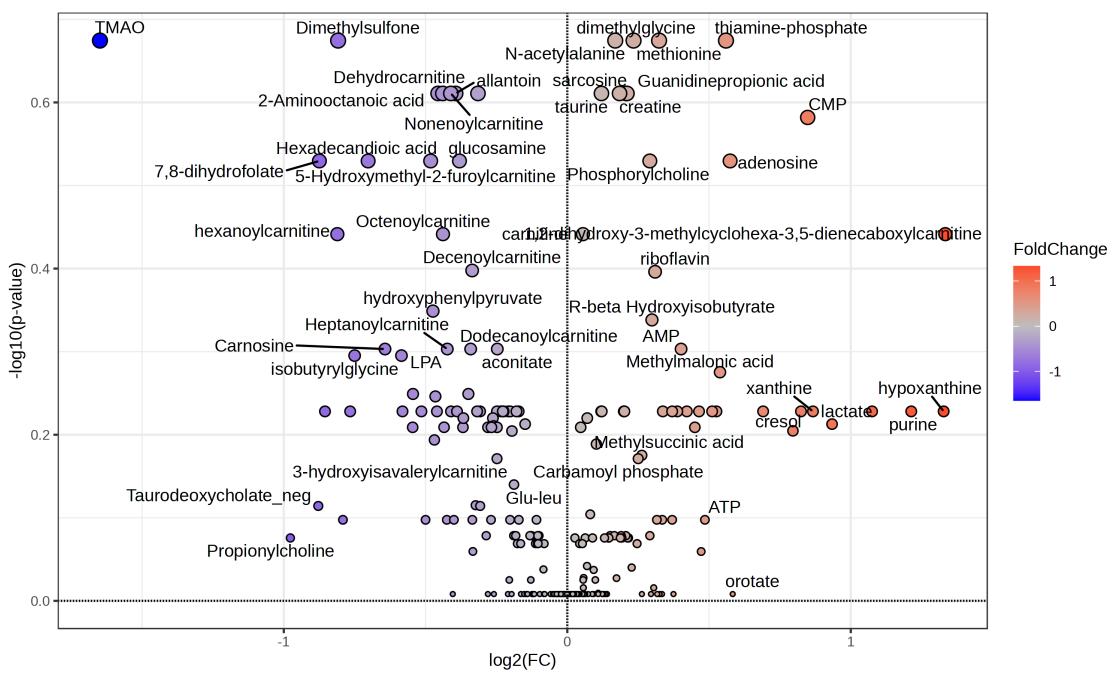
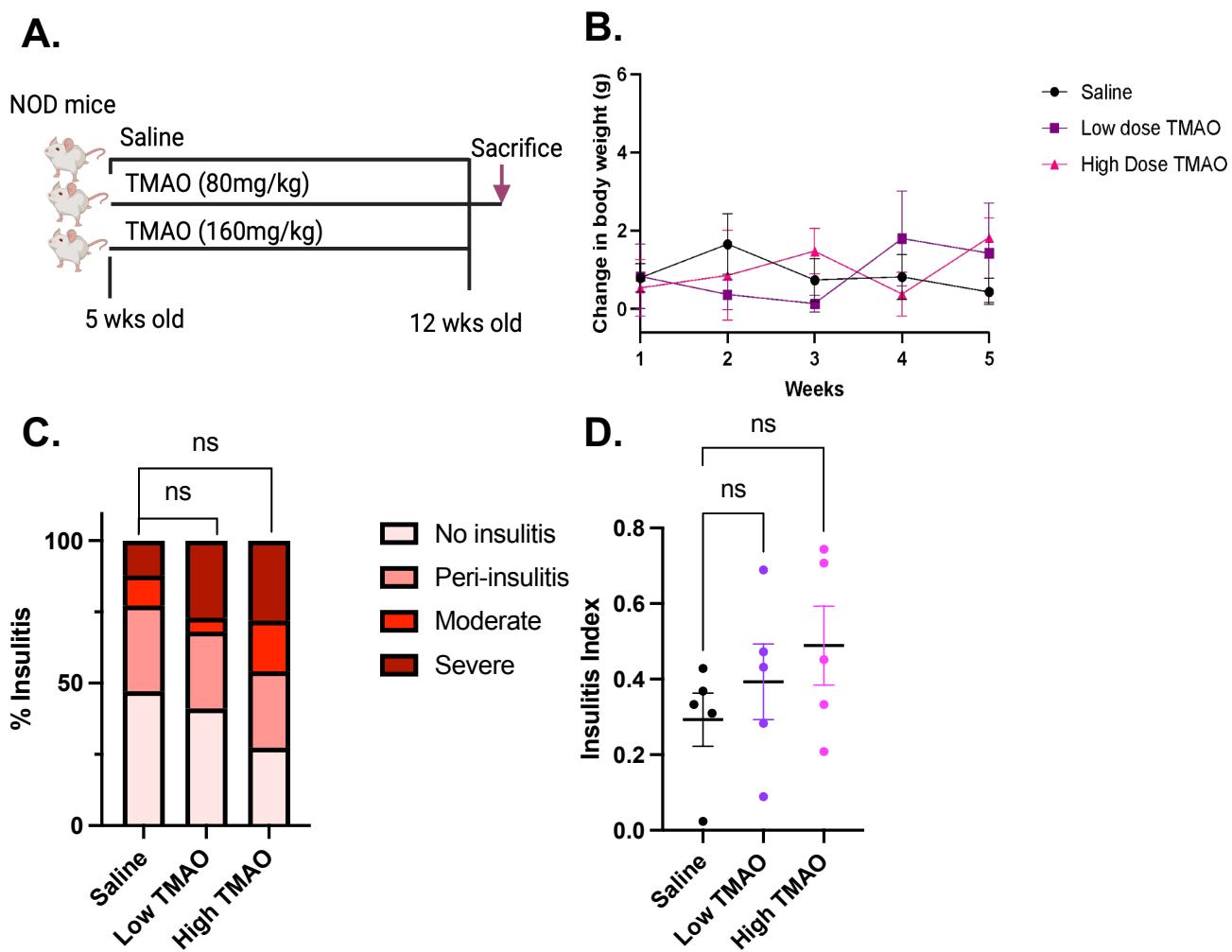
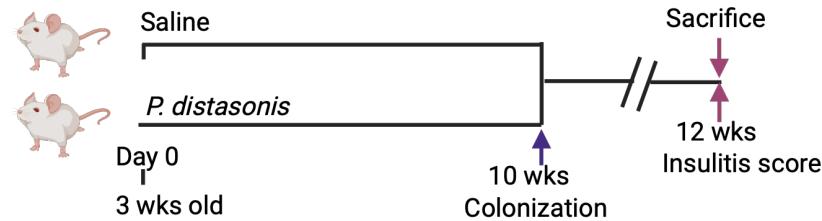


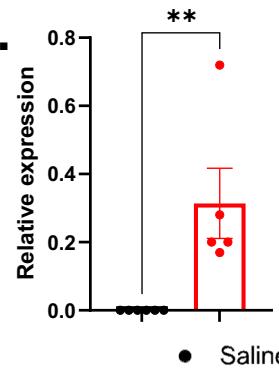
Fig 3: *P. distasonis* colonization effect on serum metabolites composition in NOD female mice.


A.


B.

C.

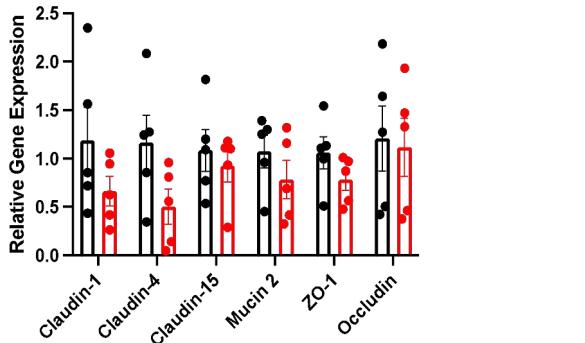

Fig 4: The effect of TMAO on NOD female mice insulitis.


Fig 5: *P. distasonis* colonization effect on insulitis, gut permeability, and serum metabolome in germ-free (GF) NOD female mice

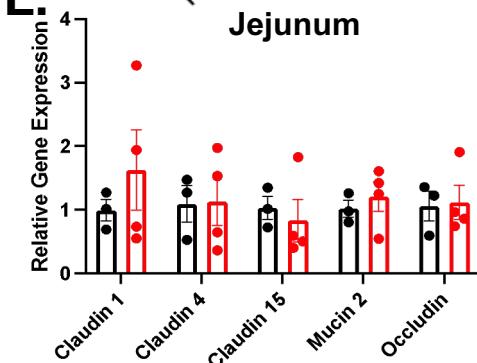
A.


NOD GF mice

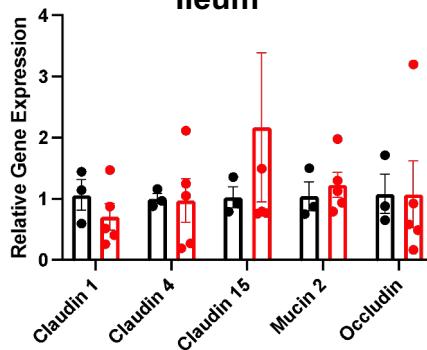
B.



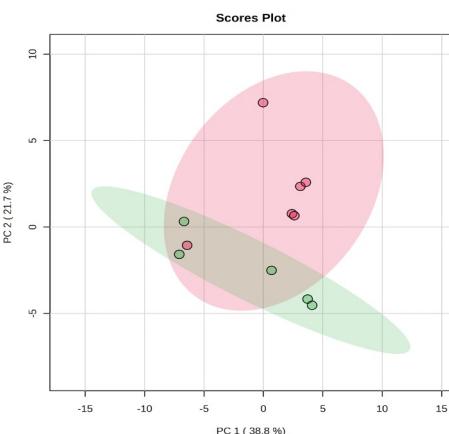
C.


D.

Duodenum


E.

Jejunum



F.

Ileum

G.

H.

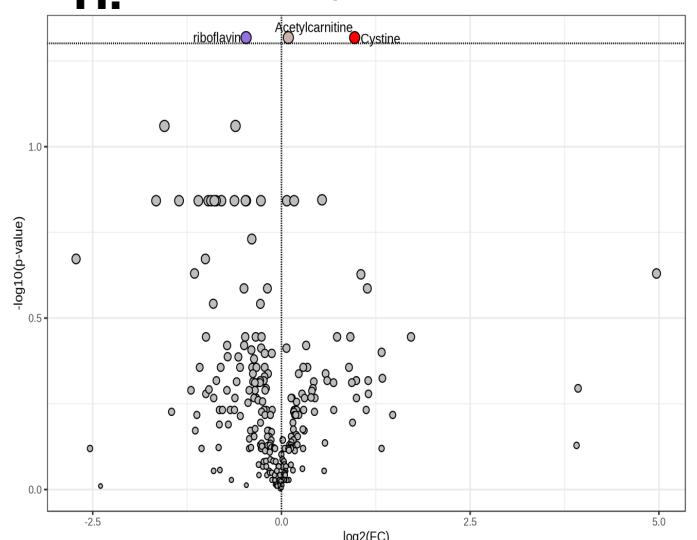
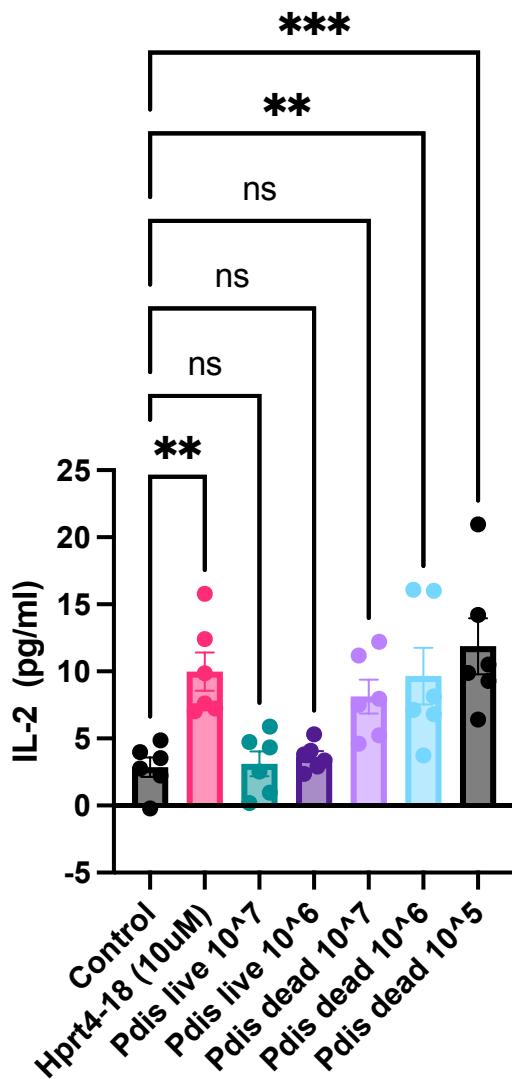
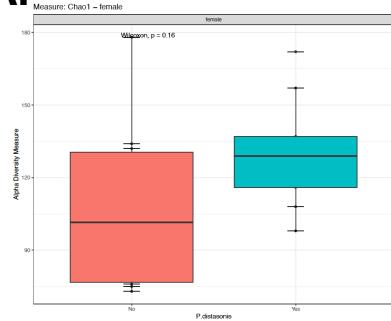




Fig 6: *P. distasonis* response to insB:9-23 specific NOD Mice T-cells hybridomas.

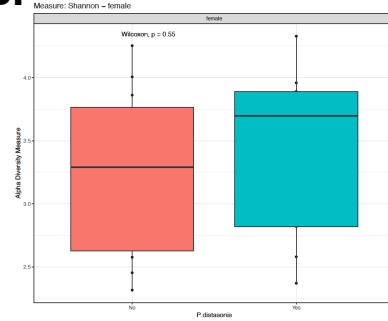
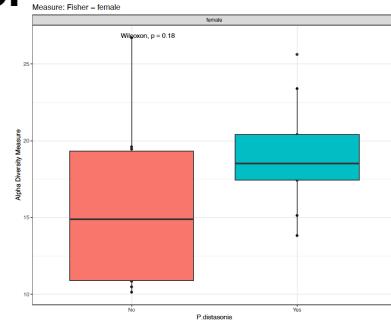
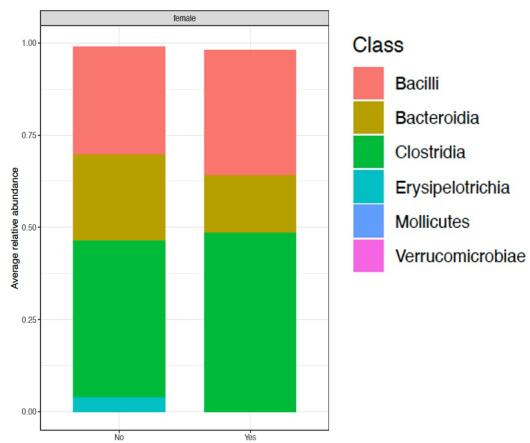
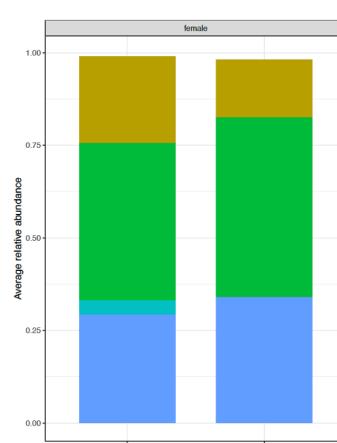
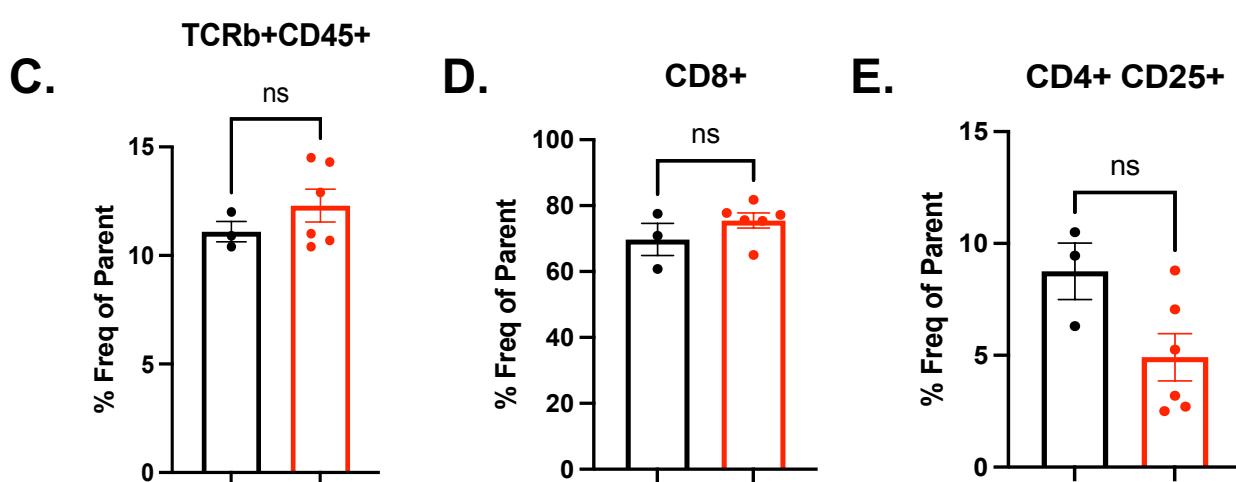
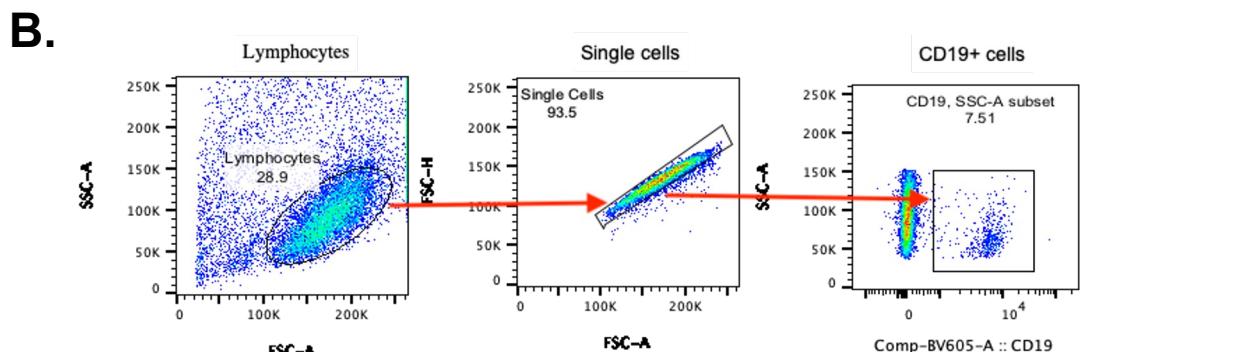
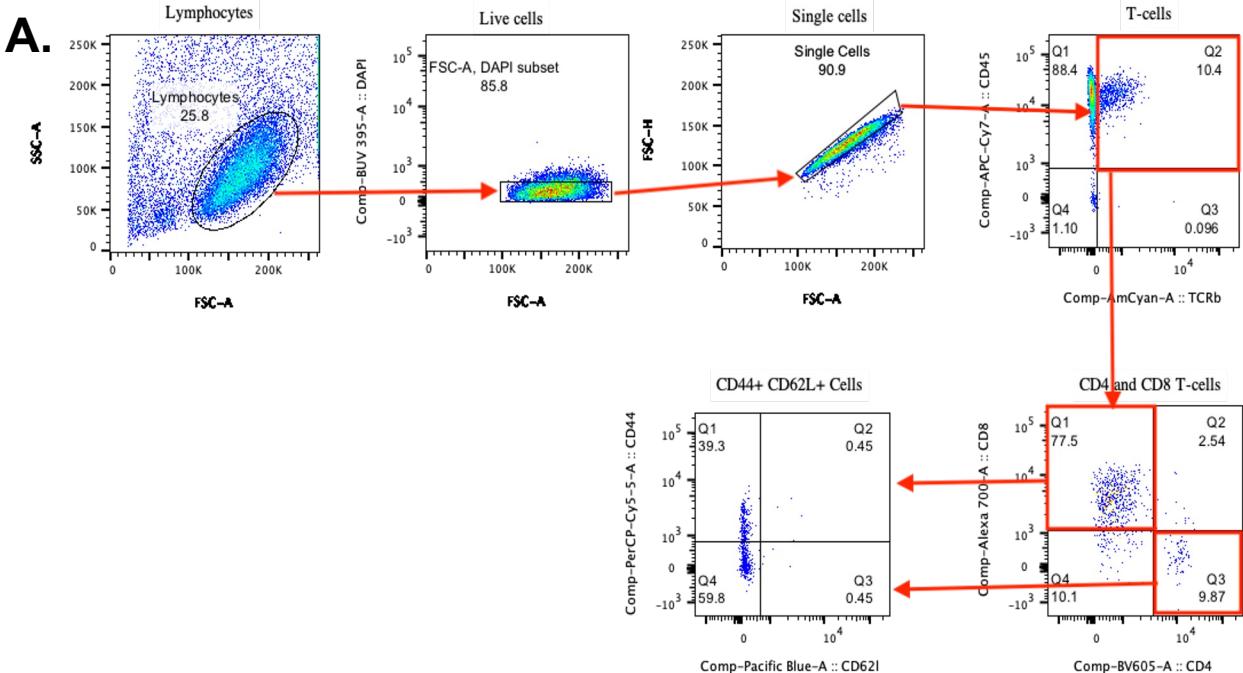


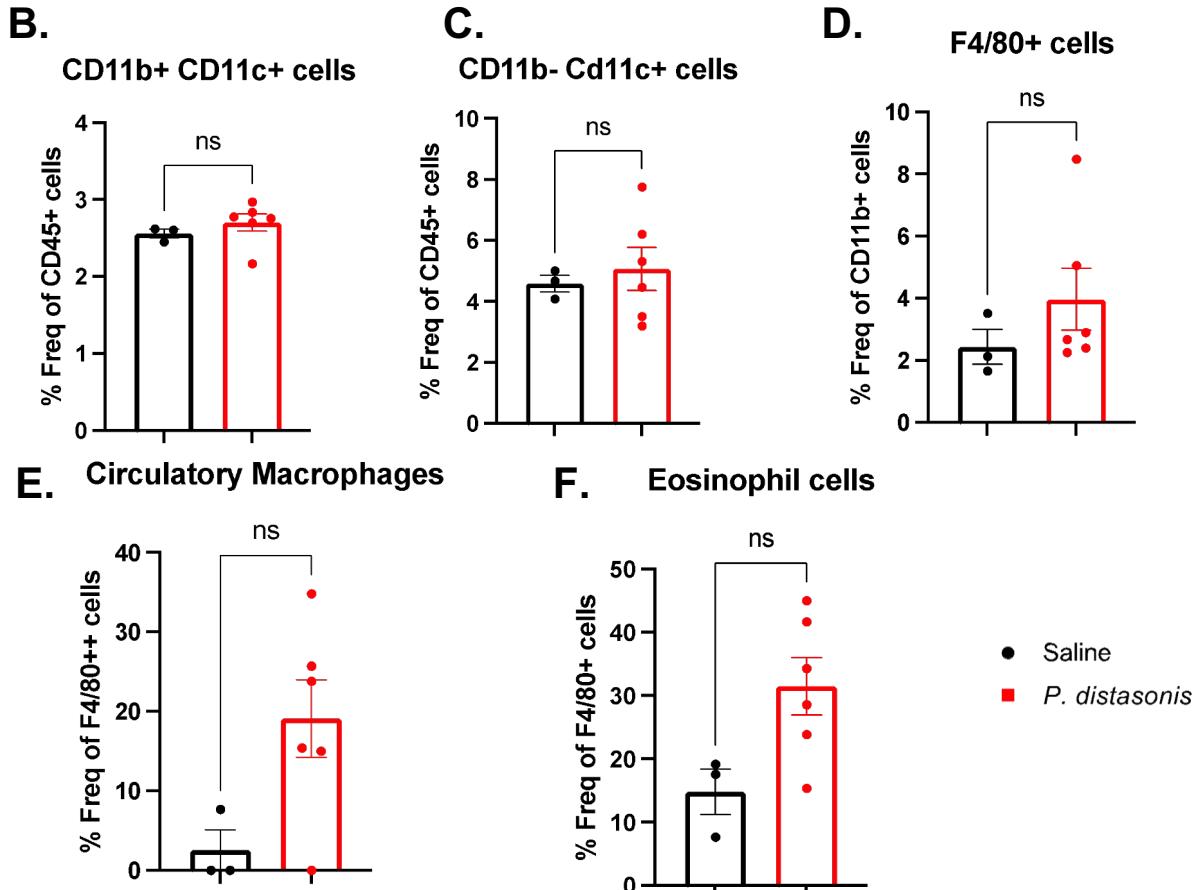
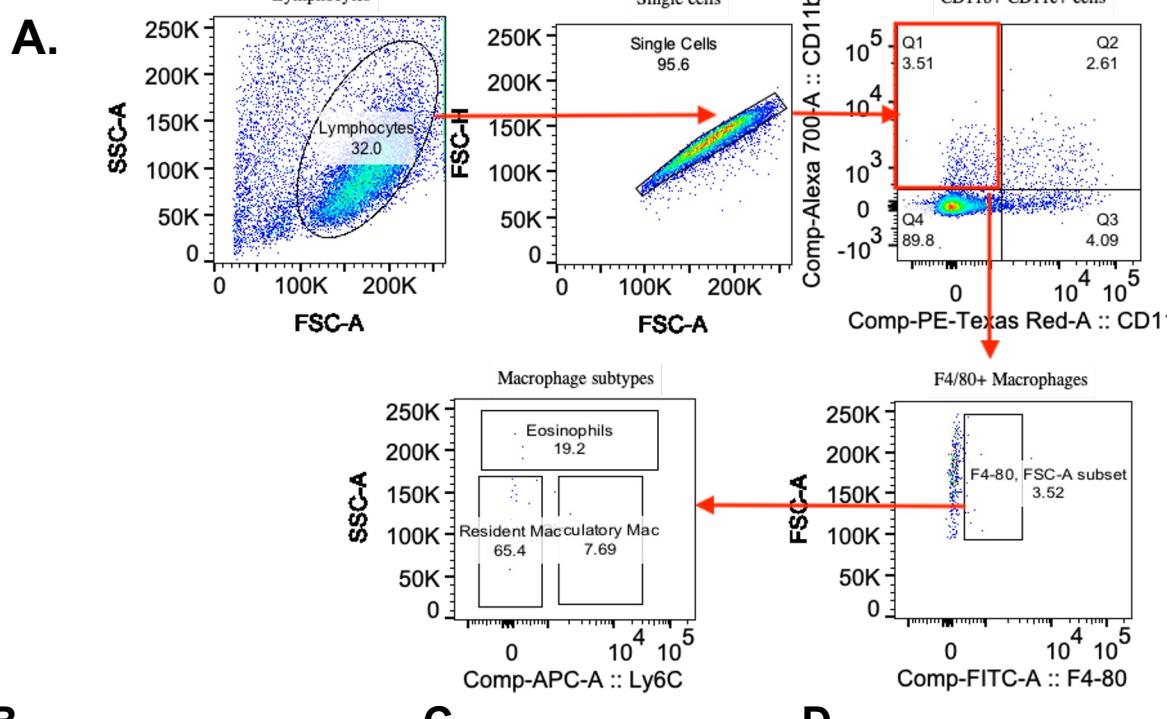
Fig S1: Alpha diversity indexes and Relative abundance of gut bacterium upon *P. distasonis* colonization.


A.


B.


C.




D.



E.

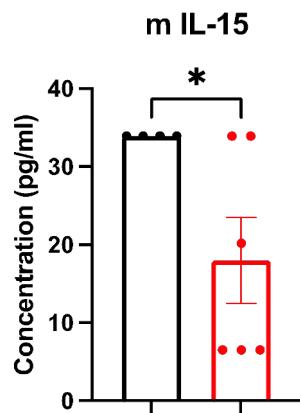

Fig S2 : Gating Strategy and T-Cell Population in IEL of female NOD mice.

Fig S3: Gating Strategy and Innate Cell Population in IEL of female NOD mice.

Fig S4: Cytokine profile of *P. distasonis* colonized mice compared to control

