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Summary
40
Adult-type diffuse gliomas are a family of aggressive brain tumours with few effective
treatments. Their complex cellular makeup adds to the challenge of finding successful
therapies. This intratumoural heterogeneity is fuelled by a subpopulation of glioma stem-like
cells (GSCs) that drive tumour growth and resistance to standard treatments. Previous
45  research focused on the three glioma types (astrocytoma, oligodendroglioma, glioblastoma)
individually revealed malignant cells mimic the transcriptional profiles of normal brain cell
types. Whether these diverse cellular states stem from a shared biological origin is unknown.
Here, we show through single-cell RNA sequencing of 40 glioma tumours that all gliomas
are described by seven recurring cell states. We aso identify a shared astrocyte-like GSC
50 population. Our unique method of identifying GSCs, based on reconstructed tumour
phylogenies, repositions astrocyte-like cells at the apex of a differentiation hierarchy in
glioma. Our findings indicate the transcriptional heterogeneity observed in gliomas stems
from a GSC population recapitulating lineages of healthy adult neural stem cells. These
results suggest a shared lineage drives the intratumoural heterogeneity observed in adult-type
55 diffuse gliomas. We anticipate that a deeper understanding of the molecular mechanisms
maintaining the GSC state will provide a new framework for future therapeutic development

and research into glioma cell biology.
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| ntroduction

Adult-type diffuse gliomas collectively account for most adult neuro-oncology cases and
remain incurable due to their intrinsic tumour heterogeneity and the persistence of glioma
70  stem cells (GSCs)*. The three tumour types, astrocytoma (IDH-mutant), oligodendroglioma
(IDH-mutant and 1p/19q co-deleted), and glioblastoma (IDH-wildtype) differ in their genetic
architecture, mitotic activity, histological features, preferential localisation, patient
demographics, and clinical outcomes. Despite these differences, morphological examination
and, more recently, single-cell RNA-sequencing (scCRNA-seq) analysis, indicate malignant
75 cells of al three tumour types mimic cells of astrocytic, oligodendroglial, and neuronal
lineages®™®. These transcriptional signatures persist despite the unique genetic architecture of
each tumour, suggesting a potential common origin in a multipotent GSC. GSCs have been
best characterised in glioblastoma, demonstrating potent tumour-initiating ability, self-
renewal capacity, and resistance to standard therapies™'®. An improved understanding of
80 commonalities in GSCs across the gliomas could reveal shared mechanisms of tumour
growth and resistance to standard therapies. This knowledge would provide a framework for
developing pan-glioma therapies that target these vulnerabilities, such as selectively
eliminating GSCs, targeting the molecular pathways that maintain their quiescence or
promote their differentiation.
85
Previous research, focused individualy on glioblastoma, oligodendroglioma, and
astrocytoma, has identified glioma cells recapitul ate specific brain cell lineages?™®. This work
hints at a shared origin of GSC-driven intratumoural heterogeneity across gliomas. However,
a detailed understanding of whether GSCs represent a truly shared population across these
90 tumour types, and their role in shaping the cellular composition of each tumour type, is
lacking. Here, we address this gap with a cohort of glioma tissue samples that include each of
the three cancer types. Profiling these samples with scRNA-seq, we employ a novel method
to classify multi-dimensiona cell states, and identify seven cell states shared amongst
gliomas, although differing in their proportions. We identify a prospective common GSC cell
95 date, and validate its identification based on the accumulation of somatic mutations and
clona evolution. This method leverages the genetic relationship between tumour cells and
how genetic information flows within a cell hierarchy, originating with GSCs. We inferred
copy number variations (CNVs) from the scRNA-seq data to construct clonal phylogenies for

each tumour. Since tumour cells pass their CNV's down to their differentiating descendants,
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100 later-arising alterations won't be present in earlier populations of cells, allowing us to identify
the progenitor population. We apply this approach to identify a quiescent, astrocyte-like GSC
population shared across the three tumour types. To rigorously validate our findings, the
reconstructed tumour phylogenies and linkage to GSCs were confirmed through both single-
cell DNA-sequencing and analysis of mitochondrial DNA mutations. These findings offer a

105 new perspective on the genomic heterogeneity of gliomas by framing it within the context of
normal adult neural stem cell (NSC) differentiation. Our work marks a significant step
forward by uncovering shared biological features among adult-type gliomas, thereby

suggesting new potential avenues for therapeutic intervention.
110 Results

scRNA-seq captures shared transcriptional heter ogeneity in glioma tumour cells
To examine the shared biology amongst the three types of adult-type diffuse gliomas, fresh
tumour tissue from seven oligodendrogliomas, nine astrocytomas and twenty-four
115 glioblastomas was collected, dissociated directly following surgery and initially profiled with
single-cell RNA-sequencing (scRNA-seq) (Table S1). From these samples, post quality
control (Methods), the transcriptional profiles of 543,088 cells were obtained. Cell types
were annotated using marker gene sets (Figure S1A, Table S2) and were comprised
predominantly of four major cell types: tumour cells, myeloid cells, T cells and
120 oligodendrocytes (Figure 1A) as wel as a small number of other cell types (Figure S1B,
Table S3). Interestingly, the proportion of non-tumour cells was markedly higher in
glioblastoma tissue compared with the other tumour types (Figure 1B, Table $4). This may
be due to this tumour's highly infiltrative growth characteristics, resulting in a higher average
proportion of non-tumour brain tissue in these specimens. Of the 543,088 total cells, 77,250
125 oligodendroglioma, 111,063 astrocytoma, and 129,292 glioblastoma tumour cells were
identified. To ensure tumour cells were accurately distinguished from normal diploid cells,
CNVs were inferred from the scRNA-seq data by measuring shifts in transcript abundance
and allelic imbalance in expressed heterozygous single-nucleotide polymorphisms (SNPs)*.
CNVs were detected in all tumour cells (Figure 1C). Reassuringly, hallmark genomic
130 dterations were consistently identified, including 1p/19qg co-deletion in oligodendroglioma
tumour cells and trisomy seven and monosomy ten in glioblastoma tumour cells, consistent
with observations from bulk tumour tissue (Figure 1D). Following the identification of

tumour cells, gene expression data from al samples was integrated. After data pre-
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processing, dimension reduction and clustering, cells from all three tumour types separated
into distinct expression-based clusters rather than by tumour type (Figure 1E).
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Figure 1 | Classification of single cells from 40 adult-type diffuse gliomas.

(A) Two-dimensional uniform manifold approximation and progression (UMAP) embedding plot of normal and tumour cells
from adult-type diffuse glioma tissue samples. Colours correspond to distinct cell types. Minor cell type populations are
grouped as ‘other’ (See Figure S1 for full detail).

(B) The percentage of cell types comprising each tumour. Samples are organised left to right by the three tumour types,
oligodendroglioma, astrocytoma and glioblastoma.

(C) Single-cell heatmap of window-smoothed expression signals across 100 genes. Colours indicate shiftsin gene expression
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145  relative to cells without CNVs, illustrating inferred copy number events for each chromosome (column). Rows,
corresponding to individual cells, are grouped by tumour sample and organised by tumour type: oligodendroglioma (top),
astrocytoma (middle) and glioblastoma (bottom).

(D) Line plotsillustrating the mean gene-level CNV signal across 197 oligodendrogliomas (top), 195 astrocytomas (middle)
and 488 glioblastomas (bottom) from The Cancer Genome Atlas (TCGA). The chromosomal location of genes associated

150  with recurring focal CNVs are labelled below.
(E) UMAP embedding plot of tumour cells from all samples, merged into one dataset and split by tumour type.

scRNA-seq identifies seven recurring glioma cell states
To provide a framework for understanding patterns of intratumoural heterogeneity that span
155  tumour types, we sought to define cell states shared across tumours. The high-dimensional
gene expression matrix comprised of all tumour cells was decomposed into a small set of
underlying factors with non-negative matrix factorisation (NMF) to achieve this aim. An
advantage to NMF is that it allows for additive combinations of intrinsic features. For
example, a cell expressing genes consistent with an astrocyte-like cell identity may also
160 express genes associated with transient cellular processes such as cell division. The
combination of two states defines such a cell. From this analysis we identify seven recurring
cell states (Figure 2A, Table S5) observed in all tumour types. Interestingly, most tumour
cells across the three tumour types exist predominantly in a single cell state (Figure 2A, B
and Table S6). This suggests that differentiation pathways remain relatively constrained,
165  with tumour cells committed to a specific lineage rather than a high degree of plasticity or

residing in multiple intermediate states.

Three cell states showed enrichment of gene ontology terms associated with both
oligodendroglial and neuronal lineage development (Figure 2C). Of these, cells in one state

170  expressed markers of neural progenitor cells (HEY1 and NDRG2) as well as regulators of
neuron growth and adhesion (C1QL1, NCAN and SPARCL1) (herein called neuro-lineage)
(Figure 2B and S2B). Another state was enriched for expression of key oligodendroglial
lineage regulators (MYRF and GPR17) and oligodendrocyte identity marker genes (MOG,
MAG and CLDN11) (herein called oligo-lineage) (Figure S2D). A third, intermediate state,

175 which we termed ‘neuro-oligo-lineage’ was identified to be strongly associated with key
oligodendrocyte progenitor markers (OLIG1 and OLIG2) as well as neuronal lineage markers
(SOX4, SOX11 and DCX) (Figure S2C).

Two cell states demonstrated high expression of hallmark cell cycle genes and enrichment of
180 associated gene sets (Figure 2B and 2C). Expression of genes essential for the initiation and
progression of DNA replication (CENPA, NEK2 and PLK1) identified the first cell state as
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capturing cells in the GL/S cell cycle phase. Enrichment of genes controlling mitotic spindle
formation and chromosome separation (CENPA, NEK2 and CDC20) marked cells in the
second state as transitioning through G2/M. These states were marked ‘cycling G1/S and

185 ‘cycling G2/M’, respectively. Interestingly, proliferating cells comprised a transcriptionally
distinct population that did not overlap other cell states. This suggests that rather than
representing a transient state within a differentiating population, the proliferative states
capture a distinct cellular program driven by specific signals or transitions within the GSC
hierarchy.

190
A sixth cell state demonstrated strong enrichment of genes and pathways associated with
cellular adaptation to compromised oxygen availability, increased glycolysis and promotion
of angiogenesis (Figure 2B and 2C). Enriched expression of hypoxia-inducible target genes
(EGLN3, VEGFA and CAV1) and genes associated with increased glycolysis (PGK1, ENO1

195 and ENO2) imply this state captured a cellular response to low tumour oxygenation and was

labelled ‘hypoxia accordingly.

Finally, a transcriptionally distinct state was identified that was associated with elevated
expression of key astrocyte lineage markers (GFAP, AQP4 and MLC1) (Figure 2B). These
200 astrocyte-like cells were also enriched for expression of GSC markers ITGB4 and S100A4
(Figure S2F). ITGB4 expression levels have recently been shown to correlate with glioma
grade and promote GSC self-renewal and gliomagenesis'. In addition, SI00A4 has been
identified as a key regulator of quiescent GSCs and its expression is correlated with
significantly worse prognosis among glioma patients™. These observations suggest this
205 astrocyte-like cell state may represent a GSC population and was labelled ‘ glioma stem cell’

accordingly.

Having identified these states, we sought to understand how they aligned with transcriptional
signatures described in previous studies, many of which have primarily focused on
210 glioblastoma. To assess the similarity of our identified cell states to established

transcriptional patterns, we performed gene set enrichment analysis using published signature

5,7,14,15

gene sets (Figure 2D). Our neuro-, oligo-, and neuro-oligo-lineage states align with the

proneural subtype®**®

and the neura progenitor state>’. The hypoxia state strongly aligns
with the mesenchymal subtype'**® and state®’. Our proliferative states overlap with a

215  previously described population of cycling progenitor-like cells’, likely driven by the strong
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contribution of cell cycle genes. Interestingly, GSCs show the greatest overlap with the
mesenchymal states/subtypes®”*®, which include hypoxia and glycolysis-related genes.
However, it is important to note that we capture hypoxia and glycolysis-related cell stress
signatures in our distinct hypoxia state. This observation is likely due to the advantage that

220 NMF offers in separating cell states that exist in a continuum through additive combinations
of intrinsic features. As such, we are able to identify the specific contributions of hypoxia-
associated and GSC-defining gene sets.

Oligodendroglioma Astrocytoma Glichlastoma

Cycling G1/S
Cycling G2/M
Gliomz gtem cell
Hypoxia

>9

o s | A
‘¢4 ¢
v

UMAP-2
e e aae

Neurp-oligo-lineage
Neuro-lineage
QOligo-ineage

UMARP-1
B

Ham i QOOSCOOCR0OC0C00s 0000000023330 0066a0G
oltman (JOQOQCOD0NC000G009000c 0G0 0G30006060000
e " elelplolelel) O O D efeEeleR-To Y10 [o]@'() @ IeR-R-N-R-R-No R B -3 - N- Ne] eroqe Exzraaste

e Q000 QCQOLQOCORBPBD0O0Q00c2060C0a0000¢ ® -
(L Relolp 01e1e]0 0[0TG PIIOLIOE!  GOEEREEITEEEEETN R

=

ourgcie-OQ00R00G0000906000 0000 (IINIIPROS0050 J 4
o QGO00000C0000000G00 020000000
AP0 P S O PP LRI PP AP o#
c D

Hog10{aEA
EHad{usisd Ontology Sudy gens ast

Poe n eic-aigo- inegae

':EI".L . e

218 [ |

GBS
Cyoling G173

f ’ & <P, Cyoling
P ;J” Fp.r‘lfvw{‘sp ..” /'

& fr {Af% % f*'{"l‘;": '{?:}.‘fﬁ@ ',:.“ /{1:5" f ‘(J

F y e e it

)

225  Figure2 |Adult-type diffuse gliomas are defined by seven recurring cell states characterised by distinct cell markers and
functional enrichment. (align panels)

(A) UMAP embedding plots show tumour cells from each tumour type. Cells are coloured by one of seven recurring
transcriptional cell states.
(B) Key gene markers define seven distinct cell states.

230  (C) Heatmap of functional enrichment and overlap of the seven identified glioma cell states with cell statesidentified in
existing studies. Columns represent molecular signatures associated with biological processes and states (left) or published
cell state gene signatures (right); rows are glioma cell states. Colours represent Benjamini-Hochberg adjusted gene set
enrichment analysis p-values.
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235 Céll state composition varies acr oss glioma tumour types
Although all cell states were shared across the three tumour types, consistent differences in
cell state composition were observed (Figure 3A, 3B and Table S7). A notable trend was the
increased proportion of tumour cells in both oligodendroglioma and astrocytoma tumours of
the neuro-, oligo- or neuro-oligo-lineage cell states, 83.0% and 80.0%, respectively,
240 compared to only 50.7% in glioblastoma tumours. Conversely, glioblastoma tumours
harboured a significantly greater proportion of cells in the hypoxia, cycling and stem cell
states. A larger fraction of proliferative cellsis consistent with the aggressive growth of these
tumours. Rapid growth outpaces the supply of a disorganised blood vessel network, creating
large necrotic areas that occupy a large fraction of the total tumour volume'. Thus, the higher
245  proportion of hypoxic cell states is consistent with these growth characteristics. Significant
differences in the proportion of cells in a GSC state were also observed between all three
tumour types (Figure 3B). The mean proportion of GSCs observed in oligodendrogliomas
was 2.8%, 4.6% in astrocytoma and 11.4% in glioblastoma. Interestingly, this relation
matches the trend in overall survival observed among the three tumour types, with a higher
250 percentage of GSCs linked to poorer survival outcomes (Figure S3A). Only the proportion of
GSC state was associated with survival outcomes, identifying this cell state as an important

target for therapeutic development and research.
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Figure 3 | Glioma tumours comprise varying proportions of seven recurring cell states.

(A) Bar plot illustrating the percentage of tumour cellsin each cell state for each tumour sample. Samples are organised by

tumour type: oligodendroglioma (left), astrocytoma (middle), and glioblastoma (right).

(B) Box plots compare the percentage of cellsin seven cell states for each tumour type. p values were obtained with the
260  wilcoxon signed-rank test. *p < 0.05; **p < 0.00L.

Tumour phylogeniesidentify a shared glioma stem cell population
Next, to further elucidate the nature of the GSC state population, we used clone-
discriminative CNVs to reconstruct the clonal structure of each tumour sample. Distinct
265  tumour subclones were successfully identified, containing a median number of seven, eight
and nine unique CNVs for oligodendroglioma, astrocytoma and glioblastoma samples,
respectively (Figure 4A). A CNV-based subclonal phylogeny was reconstructed for each
tumour (Figure 4B). The number of distinct mutations separating them from the parent clone
was identified for each subclone. The clonal evolution can be determined based on the
270 acquisition of new mutations from the origina parent clone. For example, focusing on the
first glioblastoma patient sample (Figure 4A), the parent clone is identified by a gain of
chromosome seven and loss of chromosomes ten and fifteen. A second clone arises with the
acquisition of a subsequent deletion at chromosome thirteen, leading to the observation of
two independent sub-clones. We observe greater clonal mutational diversity in glioblastomas

275 compared with oligodendroglia and astrocytomas. These mutational patterns are consistent
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with those observed in clinical cohorts profiled with SNP array -based CNV profiling of bulk

tumour tissue (Figure S4A).

Reconstructing the clonal evolution across tumours we are able to identify cells that comprise
280 the parent population. Using this information, we subsequently tested for the relationship
between subclones and cell states. Aggregating this information across subclones over all
samples, unique CNVs of the parent clone were enriched only in the population of cells
corresponding to the putative GSCs (Figure 4C and Table S8). These results demonstrate
that the GSC cell state population, across all diffuse gliomas, has a mutational signature of
285 the parent clone. This provides further evidence that the astrocyte-like cell state identified
represents diffuse glioma stem cells. In a differentiation hierarchy in which GSCs represent
the apex, mutations arising in differentiating lineages are expected to be absent in the parent
cells. We observe no enrichment of clona architecture and other cell states, suggesting
differentiation of GSCs does not follow a strict sequential progression.
290
The transcriptional similarity between GSCs and astrocytes suggested a connection with the
neural stem cells (NSCs) that persist in the adult ventricular-subventricular zone, and have
long been considered a potential substrate for neoplastic tansformation®. To explore this
potential connection, we projected a pseudotime trajectory of normal mouse NSC
295 differentiation onto our glioma dataset (Figure S5). The quiescent NSC population aligned
with our astrocyte-like GSC population, supporting the hypothesis that this population
represents a primitive stem-like state in gliomas. These observations align with recent
findings that dormant glioblastoma tumour cells resembling astrocytes progress though active
and differentiated stages, mirroring the structured cellular hierarchy seen in adult NSCs and
300 their progeny™.
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Figure4 | Tumour phylogenies reveal earliest tumour subclones.

305 (A) Heatmap of tumour subclones. Rows represent individual subclones; columns represent chromosomes. CNVs that define
each subclone are coloured by the type of ateration (AMP, amplification; DEL, deletion; CNLoH, copy-neutral loss of
heterozygosity).

(B) Tumour phylogenies for each tumour sample. Cells with the same genotype are aggregated into one node, with lines
indicating the mutational history between individual subclones. Subclones are coloured by the number of distinct mutations

310  separating them from the parent clone.

(C) UMAP plots of tumour cells coloured by the density of cells assigned to subclones with n mutations. Red indicates an
enrichment of cells from subclones with n mutations.

Glioma cell states ar e associated with recurring genomic alterations
315 We hypothesised that a tumour cell’s genetic makeup may be a driver of its transcriptional

phenotype. To investigate whether specific genomic alterations were enriched within distinct
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cell states, we used the following approach. For each genomic position, we identified cells
harbouring CNVs. Using these cells, for each sample the proportion of cells in each state was
calculated. We then averaged these proportions across all samples to determine an overall

320 mean proportion per cell state. To detect significant associations, we repeated this process
after randomly shuffling the cell state labels within each sample (while maintaining the
overall proportion of each state) (Table 9).

The results of this analysis revealed several interesting trends. Cells in the neuro-, oligo- and
325 neuro-oligo states showed a genome-wide depletion of copy number alterations (Figure 5A-
C). These observations are consistent with the reduced exposure to mitotic errors and
replication stress expected in terminally differentiated cells. Conversely, proliferating and
hypoxia-associated cells showed a genera enrichment of alterations (Figure 5D,F,G). The
genomes of rapidly dividing cells are subject to a higher risk of replication-associated errors,
330 which may result in the acquisition of alterations that confer a growth advantage or survival
benefit, accumulating in descendant cell populations with subsequent divisions. Interestingly,
cells in the hypoxia state were associated with significant enrichment of alterations to
chromosomes seven, twelve, thirteen, fourteen, and sixteen (Figure 5D). Hypoxia has been
demonstrated to fuel homologous recombination deficiency in many cancers’®'. The
335 resulting increase in genomic instability may facilitate the acquisition of adaptive copy
number changes, alowing tumour cells to overcome the microenvironmental stresses of
hypoxia. These results identify a significant relationship between specific genomic aterations
and distinct cell states. This suggests that a tumour cell's genetic composition may shape its
transcriptional phenotype.
340
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Figure5 | Tumour cell states are associated with recurring copy number alterations.

(A-G) Panels present results for each tumour cell state, illustrating the enrichment or depletion of genetic events at each

genomic position. X-axis values represent the genomic position in 1-megabase intervals. Y -axis values represent the mean
345 proportion of cellsin acell gate standardised by subtracting the mean of shuffled data. Values above zero indicate

enrichment, while values below zero indicate depletion of alterations at a given genomic position. Grey shading represents

the 1% to 99% confidence intervals obtained from shuffling cell states within each sample. Colours indicate the statistical

significance of the observed data compared to the shuffled data.

350 Validation of clonal evolution using sScONA-seq and mitochondrial DNA variants
The clonal phylogenies and observed association of GSCs with parental clones rely on CNV's
inferred from the scRNA-seq data. As such, we sought to validate our observation that the
parental clonal population is concordant with the GSC cell state using independent
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approaches. To validate the inferred CNV's, we first performed single-cell DNA sequencing
355 (scDNA-seq) on selected samples using a custom glioma panel we designed (Table S10).
This allowed us to directly measure DNA copy numbers in individual cells, providing a

definitive confirmation of the genomic alterations identified.

The scDNA-seq data confirmed the presence of CNVs inferred by scRNA-seq (Figure 6A
360 and 6B). This included whole chromosome gains and losses, such as the characteristic
trisomy seven and monosomy ten. Our glioma panel design included known glioma
oncogenes and tumour suppressors, hence the smaller alterations inferred by scRNA-seq,
such as the focal deletion of MEIS2 (15914) and TP53 (17p13) could aso be validated
(Figure 6B). Alterations to chromosomes 20-22 could not be confirmed, as the panel did not

365 include amplicons covering these chromosomes.

Further, to establish the accuracy of the subclones identified, we examined mitochondrial
DNA (mtDNA) single nucleotide variants (SNVs). mtDNA SNVs can serve as natural
genetic barcodes to recover cell lineages®*. mtDNA has a higher mutation rate than nuclear

370 DNA. Astumour subclones diverge, unique SNV's accumulate and propagate in the resulting
lineages. These SNVs can then be recovered from the scRNA-seq reads. If the tumour
subclones are accurate, we expect distinct mtDNA SNV's to accumulate as subclones diverge,
creating significant differencesin their frequencies. Testing for this, significant differencesin
mtDNA SNV freguencies were detected across tumour subclones (Figure 6C). These results

375  demonstrate that the sub-clonal tumour architecture based on the CNVs inferred from our
scRNA-seq data are accurate, lending additional support to the reconstructed phylogenies,
and the relationship between the parental clone and GSC.
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Figure6 | Single-cell DNA sequencing and clonally informative mitochondrial DNA (mtDNA) single nucleotide variants
(SNVs) confirm copy number alterations and tumour subclones.

(A) and (B) Copy number events from two tumour samples. The top panel shows the log fold-change of 100-gene window-
smoothed scRNA-seq expression values. The bottom panel shows ploidy values from scDNA-seq of tissue samples from the
same tumours across the same genomic regions. Coloursindicate the type of genomic dteration at a given genomic position
(AMP, amplification; DEL, deletion; CNLoH, copy-neutra loss of heterozygosity; NEU, neutral).

(C) Heatmapsiillustrate mtDNA SNV allele frequency shifts between tumour subclones. Each heatmap presents results from
comparisons between subclones within an individual tumour. SNV's are demarcated by a coloured bar to the heatmap's | eft
and are grouped by subclone. Grey shading represents p-values obtained with the Wilcoxon signed-rank test, comparing
SNV allele frequency value distributions between each subclone pair.

Discussion
Recent single-cell analyses of adult-type diffuse gliomas have revealed malignant cells
recapitulate lineages of glial differentiation. However, this work has focused on the tumour
types in isolation. This has left a critical gap in our understanding of whether these
transcriptional patterns are consistent and universally present across the gliomas, potentially
indicating a common biological basis that could inform more effective treatment strategies.
Here, we use cellular genomics combined with novel analysis methods to identify a shared
cell state architecture across diffuse gliomas. We show that the glioma stem cell displays an
astrocyte-like genomic signature, and confirm this observation using the somatic mutations

arising from the clonal evolution of cancers.
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Our findings demonstrate that despite each tumour type's unique genetic aterations and
clinical presentations, cells converge to a common, limited repertoire of seven recurring cell
405 states. These states encompass neura lineage development (neuro-, oligo-, neuro-oligo-
lineage), proliferation (cycling G1/S, cycling G2/M), cellular stress response (hypoxia), and
an astrocyte-like GSC population. Overlap was observed with transcriptional patterns
described in previous work within individual glioma types (Figure 2D). Yet, our results
diverge from previous research regarding the proliferative and GSC states. Firstly, we define
410 GSCs as having an astrocyte-like expression profile. Secondly, we find the GSC and

proliferative cell states do not overlap.

Early single-cell investigations of glioma identified a gradient of stemness to differentiation
within glioblastoma tumour cells. In a pioneering study, tumour cells with stem-like
415 phenotypes were identified using a stemness signature based on genes differentialy
expressed between stem-like and differentiated cells derived from primary tumours?. This
highlighted a continuous spectrum of stemness within tumours, with GSCs expressing genes
associated with neural stem cell self-renewal and quiescence. Expanding on this idea by
incorporating work characterising GSCs in bulk glioblastoma tumour tissue®, it was
420 suggested that GSCs exist on a spectrum spanning from proneural to mesenchymal
phenotypes®. Interestingly, consistent with the notion that stemlike cells divide at lower
overall rates, GSCs defined in these studies were shown to represent a relatively quiescent
founder state. Subsequent studies supported patterns of transcriptional heterogeneity from a
gradient of stemness to lineage differentiation. For example, glioblastoma cells compared
425  against GSC-enriched cells from neurospheres identified a GSC-driven tri-lineage hierarchy,
with GSCs a the apex’. Investigations of IDH-wildtype gliomas similarly concluded
astrocytomas and oligodendrogliomas share a developmental hierarchy composed of GSCs
resembling neural progenitors that give rise to differentiated cells of astrocytic and
oligodendrocytic lineages*®. These studies share the observation that most cycling cells are
430 GSCs.

Diverging from the concept of a unidirectional GSC-driven developmental hierarchy, it has
also been suggested four primary cellular states exist in glioblastoma, and that tumour cells
can reversibly transition®. Uniquely, the authors identify cellular proliferation within all
435 states, albeit weighted toward oligodendrocytic and neura lineages. Summarising these

developments, most findings support one of two broad concepts. a stemness gradient driven
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by quiescent GSCs or a neurodevelopmental hierarchy driven by proliferative GSCs. With

this context we now examine our findings.

440  An astrocyte-like population was identified as GSCs based on their early positioning in
reconstructed tumour phylogenies, supported by both scDNA-sequencing and the distribution
of mtDNA SNVs. Cycling cells were identified by an analytical approach that can effectively
decompose mixed transcriptional signatures to separate cellular processes. This analysis
revealed proliferating cells form a distinct transcriptional group in gliomas, rather than

445  representing a transient state blended within GSCs or the larger differentiating population.
These results strongly suggest a quiescent population of astrocyte-like GSCs at the apex of a
differentiation hierarchy. The non-proliferative nature of GSCs is consistent with early
single-cell studies in glioblastoma®®, while a differentiation hierarchy is consistent with

recent pan-glioma findings*®’

. Uniquely, this result repositions astrocyte-like cells as the
450 basis of this hierarchy, despite these cells being consistently classified as belonging to the
differentiated population of tumour cells. However, this converges with recent work into the
glioma cell of origin. Direct genetic evidence has demonstrated that primary glioblastoma
tumours arise from astrocyte-like NSCs within the human adult subventricular zone®. This
aligns with pre-clinical evidence, in which inactivation of tumour suppressors in NSCs is
455  necessary and sufficient for astrocytoma formation in fully penetrant mouse models®. In the
healthy adult brain, NSCs maintain a quiescent state, sharing transcriptional similarities with
parenchymal astrocytes, until activated to generate proliferating progenitors that ultimately
differentiate®. Analogous hierarchies have been demonstrated within GSCs®. Indeed, a
recent investigation of glioblastoma offers strong evidence for quiescent, astrocyte-like cells
460 as GSCs, capable of establishing tumour lineages that closely resemble those of healthy adult

neural stem cells®.

Our results suggest the shared patterns of transcriptional heterogeneity observed across the
three tumour types of adult-type diffuse glioma stem from a GSC population recapitulating
465 lineages of healthy adult NSCs. The extent to which tumour cell states resemble those of
normal NSC development will likely depend on the genetic landscape of each tumour and the
extent to which GSCs retain the multipotent characteristics of NSCs. While our findings
identify GSCs in each tumour type, they do not reveal the specific cells of origin. The link
between GSCs and the origin of these gliomas remains an unresolved question. Historically,

470 differences in preferential localisation and molecular and clinical characteristics supported


https://doi.org/10.1101/2024.06.13.598923
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.13.598923; this version posted June 15, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

the notion that gliomagenesis occurs in the three tumour types through distinct cellular
pathogenic mechanisms. Thus, the GSCs we identified may originate through distinct
mechanisms in each tumour type: neoplastic transformation of existing NSCs or
dedifferentiation of more lineage-restricted cells. Progress through the tumour cell hierarchy
475  can be conceptualised by viewing cell states as stable phenotypes represented by low-energy
attractor states on the proverbial Waddington landscape™. Different mechanisms of
gliomagenesis influence GSC multipotency, determining their starting positions on this

26,28
S

landscap . Subsequent genetic events skew differentiation toward distinct lineages. These
factors shape the unique blend of cell states observed within each tumour type, with
480 astrocytomas and oligodendrogliomas displaying a higher proportion of terminally
differentiated cells than the greater stem and cycling progenitor populations in glioblastoma.
Understanding of the factors governing transitions within the tumour cell hierarchy will be

crucial for designing rational treatment strategies.

485 One potential driver of cell state transitions is the underlying genetic instability of each
tumour. Previous investigations suggest specific genomic alterations influence transcriptomic
diversity but do not completely define cell states*™. In this study, several notable patterns
were observed. Cells in the neuro-, oligo- and neuro-oligo states showed a genome-wide
depletion of copy number alterations. Conversely, proliferating and hypoxia-associated cells

490 showed a general enrichment of alterations. Hypoxia-associated cells were specificaly
enriched in alterations to chromosomes seven, twelve, thirteen, fourteen, and sixteen. These
findings underscore the relationship between a tumour cell's genetic landscape and
transcriptional state. Further functional validation will be required to determine the extent to
which genomic alterations drive cell fate or if microenvironmental pressures create specific

495  niches where cells with corresponding alterations outcompete others.

In summary, our study represents a significant advance in understanding the cellular
complexity of adult-type diffuse gliomas. By unveiling the shared cell states across different
glioma types, particularly the role of astrocyte-like GSCs, we provide a foundation for
500 developing new therapeutic strategies that target these common elements. While our findings
are compelling, they also underscore the complexity of glioma biology and the challenges in
translating these insights into clinical practice. Future studies should focus on functiona
validation of the proposed GSC population to demonstrate self-renewal, differentiation, and

enhanced tumour initiation potential. A more detailed understanding of the mechanisms
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505 underlying the formation and maintenance of the GSC state will provide insights into

potential therapeutic avenues.
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M ethods
510
Resour ce availability
Lead contact and Materials availability
Further information and requests for resources and reagents should be directed to and will be
fulfilled by Joseph Powell (j.powell@garvan.org.au).
515

Data and code availability
All single-cell RNA-seq data have been deposited at GEO ___ and are publicly available as
of the date of publication. All code IS available from

github.com/powellgenomicslab/brain_cancer_paper and is publicly available as of the date of

520 publication. Any additional information required to reanalyse the data reported in this paper
is available from the lead contact upon request (j.powell @garvan.org.au).

Experimental mode and study participant details
Human tumour tissue acquisition
525 This study comprised adult diffuse glioma patients treated at the Prince of Wales Private
Hospital in Sydney, Australia. The study was approved by Bellberry Human Research Ethics
(HREC 2019-08-682), and all patients provided preoperative informed consent for
participation. The study cohort comprised 26 male and 14 female patients. We included IDH
mutant and wildtype gliomas, specifically astrocytomas (grades 2, 3, and 4),
530 oligodendrogliomas (grades 2 and 3), and glioblastomas. Table S1 summarises the clinical

information.

Method details
Sample preparation for single cell experiments
535  Freshly resected brain tumour tissue samples were collected in Gibco Hibernate-A Medium
(Cat#A1247501) with neuronal cell culture supplement Gibco B-27 (Cat#17504044) and
transported on ice. The tissue was rinsed with Ringer’s solution (Cat#AHF7163) to remove
blood. Tissue was cut into 1-2 mm3 sections and then dissociated using the Miltenyi Biotec
Brain Tumor Dissociation Kit (Cat#130-095-942), following the manufacturer's instructions.
540 Red blood cell lysis solution from Miltenyi Biotec (Cat#130-094-183) was used to remove
the remaining red blood cells following the manufacturer's protocol. The single-cell

suspension was centrifuged three times (150 x g for 5 minutes) to remove debris. The
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resulting cell pellet was resuspended in B-27-supplemented Hibernate-A media and kept on
ice. After passing through a 40uM filter, viability was assessed using Gibco Trypan Blue
545 Solution (Cat#15250061). Samples with >80% viability were processed for single-cell

capture using the 10x Genomics Chromium system.

10x Genomics-based single-cell RNA-sequencing library preparation and sequencing
Single cells were captured for gene expression profiling using the 10x Genomics Chromium
550 Next GEM Single Cell 3 kit (Cat#PN-1000130), Gem beads (Cat#PN-1000129) and
partitioning oil (Cat#PN-1000129) following the manufacturer's protocol. The cell
suspension was diluted to the range of 700-1,200 cells/pL in Gibco Hibernate-A Medium
(Cat#A1247501) for optimal capture efficiency, and volume was calculated for a target of
20,000 cells. cDNA was extracted from the single cell/nuclel gel bead emulsion using
555 Dynabead clean-up mix (Cat#PN-2000048), Qiagen elution buffer (Cat#19086), reducing
agent (Cat#2000087), SPRIselect reagent (Cat#B23318), and cleanup buffer (Cat#2000088).
cDNA amplification was performed using Amp Mix (Cat#2000047) and a thermal cycle as
follows: 98° degrees for 45 seconds, 11 cycles of (98° degrees for 20 seconds, 54° degrees
for 30 seconds, 72° degrees for 20 seconds), and 72° degrees for 1 minute.
560
Individual libraries were pooled to target 30,000 reads per cell. Pooled libraries were
sequenced at the Ramaciotti Centre for Genomics (University of New South Wales Sydney,
Australia) on an Illumina NovaSeq 6000 system using NovaSeq $4 v1.5 200 cycle flowcells
(Cat#20028313). Loading concentration was 294 pM with [llumina PhiX Control v3 spiked
565 at 1%. BCL files were demultiplexed and converted to FASTQ format using the 10x
Genomics Cell Ranger mkfastg pipeline. Reads were aligned to the human genome reference
(GRCh38), cell and UMI barcodes were demultiplexed, and UMI counts were produced with
the 10x Genomics Cell Ranger count pipeline (version 6.0.2) on a high-performance cluster
with a3.10.0-1127.el7.x86_64 operating system.
570
Quantification and Statistical Analysis
Single-cell RNA-seq data preprocessing and quality control
Analysis of sScRNA-seq data was performed with the Seurat R package version 5.0.1%°. To
identify cell-containing droplets, the CellBender version 0.2.0 remove-background tool was
575 run for 150 epochs with a false positive rate of 0.01%°. Droplets with a cell containment

probability score of less than 0.5 were excluded from further anaysis. To remove any
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remaining cell-free droplets, the nuclear fraction was calculated with the DropletQC R
package, which quantifies the fraction of RNA originating from nuclear-unspliced pre-
mMRNA for each dropletal. The remaining cells with more than 15% of reads mapping to the
580 mitochondrial genome were also excluded from the analysis. Next, heterotypic doublets
containing cells of the four main types (tumour, myeloid, oligodendrocyte or T cells), were
identified and removed based on co-expression of marker genes using the scds R package
version 1.14.0%. Cells from all samples were integrated into a single dataset using the rliger
R package (version 1.0.1)®, setting the number of factors (k) to 30. To visualise the
585 integrated dataset, we applied quantile normalization and embedded it into a two-dimensional
space using Uniform Manifold Approximation and Projection (UMAP) with a cosine distance
metric implemented with the rliger R package. A second UMAP was aso calculated using

tumour cells from each sample.

590 Cdll-typeclassification of single-cell RNA-sequencing data
Cells passing quality control formed distinct clusters, the identity of which were determined
by examining the expression of marker genes characteristic of each cell type: tumour cells
(PTPRZ1, BCAN, SOX4, EGFR, IGFBP2, TUBA1A), myeloid cells (C1QA, AIF1, LAPTMS5,
CD14, FCERI1G, FCGR3A, TYROBP, CSF1R), T cells (CD2, CD3D, CD3E, CD3G), and
595 oligodendrocytes (MOG, MAG, CNP, MBP, TF, PLP1, CLDN11). The identity of subclusters
of less common cell types were determined with the following marker genes. astrocytes
(SOX9, GFAP, AQP4), B cells (MAAL, TCL1A, CD27), dendritic cells (CLECAC, CD74,
P2RY14, MZB1), endothelial cells (CD34, CLEC14A, VWF, CLDNS5), epithelial cells (PIFO,
CFAP276, RSPH1), erythrocytes (HBAL, HBA2), fibroblasts (COL5A1, COL1A1, COL1A2),
600 GABAergic neurons (GAD1, GAD2), glutamatergic neurons (SLC17A7, S.C17A6),
keratinocytes (KRT13, KRT6A, KRT5, KRT19, KRT15, TACSID2, LY6D), mast cells
(TPSABL, TPSB2, KIT, GATAl, GATA2), natural killer cells (CCL5, XCL2, XCL1),
oligodendrocyte progenitor cells (GPR17, OLIG1, OLIG2, PDGFRA), plasmas cells (IGLC2,
IGHGL, IGKC, IGHG2, IGHGS, IGHGP, IGLC3, JCHAIN) and vascular leptomeningeal
605 cells (ENPEP, FBLN1, ITIH5).

Copy-number variation analysis and tumour phylogeny reconstruction from scRNA-seq
data
The Numbat package (version 1.3.2.1) was used to infer each tumour's CNVs, clonal

610 architecture, and evolutionary history™. Numbat leverages signals of alelic imbalance in
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expressed heterozygous SNPs and shifts in expression magnitude (reflecting chromosomal
dosage) to detect underlying CNVs. Cell-level phased allele counts were generated using the
pileup_and_phase.R script included in the Numbat R package. Then, leveraging the presence
of non-tumour tissue in each sample, a gene expression reference was created using normal
615 cell types (with a minimum of 30 captured cells) with the aggregate counts function.
Numbat was then run with default parameters, except for max_iter, which was increased to
20. Tumour subclones and the tumour phylogeny are inferred through an iterative process
that alternates between identifying CNVs within clonal lineages and reconstructing the
single-cell lineage tree based on the inferred CNV probabilities. For this cohort of samples,
620 we found that it was necessary to increase the number of iterations to 20 for clonality
predictions to stabilise. To create UMAP plots visualising tumour cell density based on the
number of unique descendant mutations, the average proportion of neighbouring cells with 'n’
mutations was calculated for each point. Cells in each UMAP plot were then colored
according to this density, with red indicating areas enriched for subclones with 'n" mutations.
625
Copy-number variation analysis of TCGA samples
Two analyses were conducted using CNV data from The Cancer Genome Atlas (TCGA)
Research Network®. First, the mean genellevel CNV signa was calculated across
oligodendroglioma, astrocytoma, and glioblastoma tumours. Second, the number of CNVsin
630 diffuse glioma and all other TCGA tumour types was determined. For the first analysis,
clinical and gene-level CNV datafor al diffuse glioma TCGA samples was accessed through
the TCGAbiolinks R package (version 2.28.4)*. Diagnoses were reclassified for consistency
with the fifth edition of the World Heath Organisation Classification of Tumors of the
Central Nervous System (WHO CNS5) guidelines', using a recent reclassification
635 incorporating relevant molecular features®. A genellevel mean CNV value was then
calculated separately for each tumour type. For the second analysis, segment-level CNV data
was accessed through TCGAbiolinks and glioma samples were reclassified as described
above. Non-tumour samples and segments smaller than 1IMb in size were excluded, and the
whole genome doubling status was determined from a recent study characterising CNV

640 patternsin human cancer®’.

Cell state delineation with non-negative matrix factorisation
Non-negative matrix factorisation (NMF) was employed to extract significant features from

the cell-by-gene expression matrix, consisting of tumour cells from all glioma samples, as
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645 implemented in the RcppML R package (version 0.3.7)®. The factorisation was performed
with default parameters, except for a tolerance of 1x10® and a maximum of 1,000 iterations.
For each rank parameter (from 2 to 25), the factorization was repeated 40 times, each
initialised with arandom seed. Two measures were used to select the optimal rank parameter:
mean sgquared error (MSE) and normalised mutual information (NMI). MSE measures the

650 average squared difference between the origina data and the approximation created by the
matrix factorisation. A lower MSE indicates a better fit. NMI measures the reduction in the
entropy of class labels (in this case, cells assigned to a factor) obtained if the cluster labels
are known. In this case, the |abels are unknown, but an increase in NMI val ues suggests more
stable clusters. An NMI of 1 would mean a perfect clustering agreement. Considering both

655 MSE and NMI, a rank parameter of seven provided the best balance between producing
stable patterns and accurately representing the data.

Survival analysis of TCGA glioma samples
Adult-type diffuse glioma patient clinical information generated by TCGA Research
660 Network was obtained using the RTCGA .clinical R package (version 20151101.30.0)%.
Guided by a recent study incorporating molecular features®, tumours were reclassified to
align with WHO CNS5 guidelines. Kaplan-Meier survival curves were generated based on
patient vital status, days to last follow-up, and days to death, with the survival R package
(version 3.5.5)%.
665
Cell state characterisation with gene set enrichment analysis
To explore the biological functions associated with each of the seven cell states, gene set
enrichment analysis (GSEA) was conducted using the fgsea R package (version 1.26.0)*.
GSEA identifies gene sets that are significantly enriched at the top or bottom of a ranked
670 gene list. This ranking was created using the gene-by-factor matrix from the NMF analysis.
Hallmark and ontology gene sets, representing well-defined biological states, processes, and
cellular components, were sourced from the Molecular Signatures Database™. Published
subtype gene signatures obtained from bulk gene expression profiling®, and cell state

35715 \were obtained from

signatures generated through single-cell gene expression profiling
675 the supplementary material of the associated publications. Finally, the Benjamini-Hochberg

procedure was used to adjust the GSEA p-values to account for multiple testing.

Statistical comparison of cell state proportions
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Box plots were used to visualise differences in the proportion of cells in each identified seven
680 cell states amongst the three tumour types: oligodendroglioma, astrocytoma, and
glioblastoma. The Wilcoxon signed-rank test was used to determine whether differences in

cell state proportions between tumours were statistically significant.

Comparison with healthy adult mouse neural stem cell lineage

685 Toinvestigate the transcriptional similarities between human gliomatumour cells and healthy
adult mouse ventricular-subventricular zone neura stem cell (NSC) lineage, the following
comparative analysis was performed. A suitable NSC lineage reference dataset was
constructed by incorporating data from four studies™* using the Seurat R package version
5.0.1 integration pipeline®. Next, single cell trajectory analysis was performed with the

690 Monocle 3 R package version 1.3.7*, producing “pseudotime” values that describe the
progress of individual cells along the neurogenic lineage. The resulting pseudotime values

were transferred to the query glioma dataset using the Seurat TransferData function®.

Statistical assessment of genomic alter ation enrichment within cell states

695 The following analysis was performed to determine if there is a significant association
between tumour cell states and copy number changes in any genomic region. For each
tumour cell, the following information was provided as input: cell state, associated CNVs
(chromosome, start and end coordinates), tumour type, and patient I1D. First, chromosomes
were tiled with 1 Mb wide segments, and the overlap between each CNV and genome tile

700 was determined. The proportion of cells in each state was calculated for each tile and sample,
followed by the mean proportion across all samples. This process was repeated 10,000 times
to create a null distribution to test for statistical significance while randomly shuffling cell
states within each sample. A p-value was calculated for each genomic position to assess
whether the observed mean was greater or lesser than expected by chance. To facilitate

705 visualization of the results, the data was standardised by subtracting the mean of the shuffled
data from the 19%/99% confidence intervals and the observed data. The results were displayed
by visualising confidence intervals with grey shading and colouring log10 p-values by the
statistical significance of the observed data compared to the shuffled data for each genomic
position.

710

Validation of copy number variations with single-cell DNA sequencing
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Nuclei were extracted from frozen tissue for single-cell DNA sequencing via the following
method. Frozen tissue pieces were first washed with a nuclel suspension buffer (NSB)
solution consisting of 1xPBS, 1% BSA, and 0.1U/uL RNase inhibitor. Tissue was minced
715 manually using a scalpel blade and incubated on ice in Sigma Aldrich EZ lysis buffer
(Cat#NUC101-1KT) for 5 minutes for cellular membrane disruption. The resulting solution
was then passed through a 70um filter and centrifuged at 500xg for 5 minutes, resuspended in
lysis buffer and passed through a 40um filter before centrifugation again at 500xg for 5
minutes. The nuclel pellet was resuspended in cell buffer at a concentration of 3,500
720 nuclei/uL and loading volume of 35uL for capture with the Mission Bio Tapestri platform.
Nuclei were loaded into a Tapestri microfluidics cartridge, encapsulated, lysed, and barcoded
following the manufacturer’s protocol. Barcoded samples were then subjected to targeted
PCR amplification using a custom 221-amplicon panel (supplementary materials), designed
to cover recurring genomic alterations in diffuse glioma. Libraries were pooled for
725  sequencing on an lllumina NextSeq 500 platform. FASTQ files were aligned to the human
reference genome (GRCh37) using the BWA-MEM algorithm***°, and genotyped following
Genome Analysis Toolkit Best Practices™?, as implemented in the MissionBio Tapestri
DNA analysis pipeline (version 2.0.2). The resulting HDF5 output file was imported for
further analysis in R using the rhdf5 R package (version 2.44.0). The cell-by-amplicon read
730 counts were normalised with the following procedure. High-quality cell barcodes were
defined as those with total read counts greater than one-tenth of the total read counts of the
tenth-highest barcode. Each read count was then divided by the mean read count for its
barcode and then divided by the median read count of the high-quality barcodes for its
amplicon. Finally, ploidy values were computed by dividing the normalised counts by the

735 median counts of the diploid (non-tumour) cells and multiplying by two.

Subclone assessment using mitochondrial DNA single nucleotide variants
Mitochondrial DNA single nucleotide variants were employed as lineage markers to validate
the subclonal structures identified from the inferred CNVs. For each sample, a separate BAM
740 file containing reads aligned to the mitochondrial genome was created specifically for tumour
cells. The tool cellsnp-lite (version 1.2.2) was then employed to cal variants within the
mitochondrial genome™. To distinguish informative variants from background noise, MQuad
was executed (with the AD and DP sparse matrices output by cellsnp-lite) with default
parameters except for a minimum read depth of 3%°. For validated variants, allele frequency
745  vaues were calculated for each cell. Finaly, the Mann-Whitney U test (stats R package,
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version 4.3.1) was used to assess significant differences in allele frequencies between tumour

subclones.
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Supplementary Tables

Supplementary Table 1 | Clinical cohort information. This file describes the clinical characteristics of the forty tumour
765 samples captured for ScRNA-seq. Each row describes a patient sample. The six columns contain the following information.
Patient 1D: a unique identifier for each patient. Tumour type: adult-type diffuse glioma classfication (oligodendroglioma,
astrocytoma, or glioblastoma). Grade: WHO CNS 5 tumour grade (1 to 4). Sex: patient's biological sex (M: Male, F:
Female). Primary/Recurrent: indicates whether the tumour sample was from the initial diagnosis or a recurrence. IDH
mutation status: presence or absence of an IDH gene mutation within the tumour.
770
Supplementary Table 2 | Cell type markers. This file lists the genes used for cell type classification. The first column

contains the cell type, and the second column lists the corresponding gene marker.

Supplementary Table 3 | Cell annotation metadata. This file provides cell type and state annotations for each of the
775 543,088 cells profiled with sScRNA-seq. Each row represents an individual cell with the following information. Patient ID: a
unique identifier for each patient. Tumour type: adult-type diffuse glioma classification (oligodendroglioma, astrocytoma, or
glioblastoma). Cell barcode: a unique s xteen-nucleotide identifier for each cell. Note that while cell barcodes are unique
within a sample, some are shared across samples. Cdll type: the assigned cell type. Cell state: one of seven tumour cell states
(neuro-lineage, oligo-lineage, neuro-oligo-lineage, cycling G1/S, cycling G2/M, hypoxia, or glioma stem cell).
780
Supplementary Table4 | Percentage of cell types per sample. This file contains the percentage of cell types comprising the
forty tumours profiled with scRNA-seq. The four columns contain the following information. Tumour type: adult-type

diffuse glioma classification (oligodendroglioma, astrocytoma, or glioblastoma). Patient ID: a unique identifier for each
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patient. Cell type: the assigned cell type. Percentage: the percentage of each cell type. The datain this file is associated with
785  FigureSl.

Supplementary Table 5 | Cel state markers. This file contains gene scores used for cell state classification. The first
column contains the gene name. The remaining seven columns contain scores representing each gene's contribution to a
specific cell state. Higher scores indicate a stronger association between the gene and that state. Values represent the gene-
790 by-factor output from non-negative matrix factorisation anal ysis. Column scores sum to one, indicating the relative weight of

each genewithin acell state.

Supplementary Table 6 | Cell state scores. This file contains cell state scores for the 317,605 tumour cells profiled with
scRNA-seq. Each row represents an individual cell with the following information. Tumour type: adult-type diffuse glioma

795 classification (oligodendroglioma, astrocytoma, or glioblasoma). Patient ID: a unique identifier for each patient. Cell
barcode: A unique sixteen-nucleotide identifier for each cell. Note that while cell barcodes are unique within a sample, some
are shared across samples. The remaining seven columns contain scores representing the contribution of each cell state to the
transcriptional profile of each cell. Column scores sum to one. Values represent the cell-by-factor output from non-negative
matrix factorisation analysis.

800
Supplementary Table 7 | Percentage of cell states per sample. This file contains the percentage of tumour cells assigned to
each of seven tumour cell states for each sample. The four columns contain the following information. Tumour type: adult-
type diffuse glioma classification (oligodendroglioma, astrocytoma, or glioblastoma). Patient 1D: a unique identifier for each
patient. Cell state: one of seven tumour cell states (neuro-lineage, oligo-lineage, neuro-oligo-lineage, cycling G1/S, cycling

805 G2/M, hypoxia, or glioma stem cell). Percentage: the percentage of tumour cells assigned to that state. The datain thisfileis
associated with Figure 3.

Supplementary Table 8 | Subclone and cell state relationships. This file provides the data used to anayse the association
between tumour subclones and cell states. Each row represents a single cell with the following information. Tumour type:
810 adult-type diffuse glioma classification (oligodendroglioma, astrocytoma, or glioblastoma). Patient ID: a unique patient
identifier. Cell barcode: a unique sixteen-nucleotide identifier for each cell. Note, while cell barcodes are unique within a
sample, some are shared across samples. The remaining six columns indicate the density of cells belonging to subclones with

n (zero to five) mutations distinct from each tumour’ s parental subclone. The datain thisfile is associated with Figure 4.

815 Supplementary Table 9 | Enrichment of recurring copy number alterations within cell states. This file contains data used to
investigate the associ ation between copy number aterations and different cell states. The nine columns contain the following
information. Cell state: one of seven tumour cell states (neuro-lineage, oligo-lineage, neuro-oligo-lineage, cycling G1/S,
cycling G2/M, hypoxia, or glioma stem cell). Chromosome: GRCh38 chromosome name. Genome tile: A 1-megabase
chromosomal region. Observed data: the mean proportion of cells in a given cell state exhibiting a copy number ateration.

820  The next three columns describe the null distribution (1%, 50%, 99% quantiles), obtained by shuffling cell states 10,000
times. The remaining two columns indicate whether the observed proportion is significantly higher or lower than expected
by chance (compared to the null distribution). The datain this file is associated with Figure 5.

Supplementary Table 10 | Custom glioma DNA panel. This file describes a custom 221-amplicon panel designed to cover
825 recurring genomic alterations in diffuse glioma The four columns contain the following information about each amplicon.
Chromosome: GRCh37 chromosome name. Start coordinate: GRCh37 start coordinate. End coordinate: GRCh37 end

coordinate. Amplicon ID: a unique amplicon identifier.
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Figure S1 | Extended classification of single cells from 40 adult-type diffuse gliomas.
(A) Detailed cdll type classification. The percentage of cell types that comprise each tumour is shown. The plot is split l€ft to
right into the three tumour types; astrocytoma, glioblastoma and oligodendroglioma.
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Figure S2 | Defining an optimal NMF rank parameter and gene markers that define tumour cell states.
(A) Two measures to select the optimal rank parameter: normaised mutual information (NMI) and mean squared error
(MSE). NMI measures the reduction in the entropy of class labels obtained if the cluster labels are known. Anincrease in
NMI values suggests more stable clusters. M SE measures the average squared difference between the origina data and the
840 approximation created by the matrix factorisation. A lower M SE indicates a better fit. A rank parameter of seven provided
the best balance between producing stable patterns and accurately representing the data. Additional gene markers
characteristic of the neuro-lineage (B), neuro-oligo-lineage (C), oligo-lineage (D), hypoxia (E) and glioma stem cell (F)
states are visualised on UMAP embedding plots of tumour cells from al samples.
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845 Figure S3 | Kaplan-Meier curves demonstrating overall survival of 826 Cancer Genome Atlas project adult-type diffuse
glioma patients reclassified to be consistent with 2021 WHO Classification of Tumors of the Central Nervous System
guidelines.
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Figure S5 | Comparison of the adult mouse ventricular-subventricular zone (V-SVZ) neural stem cell (NSC) lineage and
human adult-type diffuse glioma cells.

(A) UMAP embedding of the integrated reference NSC dataset with cells colored by each of the constituent four studies. (B)
UMAP embedding of the reference dataset colored by cell type. (C) UMAP embedding of the reference dataset colored by
pseudotime values inferred with Monocle 3. (D) UMAP embedding of the glioma dataset colored by transferred pseudotime
values.
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