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Summary 

 40 

Adult-type diffuse gliomas are a family of aggressive brain tumours with few effective 

treatments. Their complex cellular makeup adds to the challenge of finding successful 

therapies. This intratumoural heterogeneity is fuelled by a subpopulation of glioma stem-like 

cells (GSCs) that drive tumour growth and resistance to standard treatments. Previous 

research focused on the three glioma types (astrocytoma, oligodendroglioma, glioblastoma) 45 

individually revealed malignant cells mimic the transcriptional profiles of normal brain cell 

types. Whether these diverse cellular states stem from a shared biological origin is unknown. 

Here, we show through single-cell RNA sequencing of 40 glioma tumours that all gliomas 

are described by seven recurring cell states. We also identify a shared astrocyte-like GSC 

population. Our unique method of identifying GSCs, based on reconstructed tumour 50 

phylogenies, repositions astrocyte-like cells at the apex of a differentiation hierarchy in 

glioma. Our findings indicate the transcriptional heterogeneity observed in gliomas stems 

from a GSC population recapitulating lineages of healthy adult neural stem cells. These 

results suggest a shared lineage drives the intratumoural heterogeneity observed in adult-type 

diffuse gliomas. We anticipate that a deeper understanding of the molecular mechanisms 55 

maintaining the GSC state will provide a new framework for future therapeutic development 

and research into glioma cell biology. 
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Introduction 

 

Adult-type diffuse gliomas collectively account for most adult neuro-oncology cases and 

remain incurable due to their intrinsic tumour heterogeneity and the persistence of glioma 

stem cells (GSCs)1. The three tumour types, astrocytoma (IDH-mutant), oligodendroglioma 70 

(IDH-mutant and 1p/19q co-deleted), and glioblastoma (IDH-wildtype) differ in their genetic 

architecture, mitotic activity, histological features, preferential localisation, patient 

demographics, and clinical outcomes. Despite these differences, morphological examination 

and, more recently, single-cell RNA-sequencing (scRNA-seq) analysis, indicate malignant 

cells of all three tumour types mimic cells of astrocytic, oligodendroglial, and neuronal 75 

lineages2–8. These transcriptional signatures persist despite the unique genetic architecture of 

each tumour, suggesting a potential common origin in a multipotent GSC. GSCs have been 

best characterised in glioblastoma, demonstrating potent tumour-initiating ability, self-

renewal capacity, and resistance to standard therapies9,10. An improved understanding of 

commonalities in GSCs across the gliomas could reveal shared mechanisms of tumour 80 

growth and resistance to standard therapies. This knowledge would provide a framework for 

developing pan-glioma therapies that target these vulnerabilities, such as selectively 

eliminating GSCs, targeting the molecular pathways that maintain their quiescence or 

promote their differentiation. 

 85 

Previous research, focused individually on glioblastoma, oligodendroglioma, and 

astrocytoma, has identified glioma cells recapitulate specific brain cell lineages2–8. This work 

hints at a shared origin of GSC-driven intratumoural heterogeneity across gliomas. However, 

a detailed understanding of whether GSCs represent a truly shared population across these 

tumour types, and their role in shaping the cellular composition of each tumour type, is 90 

lacking. Here, we address this gap with a cohort of glioma tissue samples that include each of 

the three cancer types. Profiling these samples with scRNA-seq, we employ a novel method 

to classify multi-dimensional cell states, and identify seven cell states shared amongst 

gliomas, although differing in their proportions. We identify a prospective common GSC cell 

state, and validate its identification based on the accumulation of somatic mutations and 95 

clonal evolution. This method leverages the genetic relationship between tumour cells and 

how genetic information flows within a cell hierarchy, originating with GSCs. We inferred 

copy number variations (CNVs) from the scRNA-seq data to construct clonal phylogenies for 

each tumour. Since tumour cells pass their CNVs down to their differentiating descendants, 
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later-arising alterations won't be present in earlier populations of cells, allowing us to identify 100 

the progenitor population. We apply this approach to identify a quiescent, astrocyte-like GSC 

population shared across the three tumour types. To rigorously validate our findings, the 

reconstructed tumour phylogenies and linkage to GSCs were confirmed through both single-

cell DNA-sequencing and analysis of mitochondrial DNA mutations. These findings offer a 

new perspective on the genomic heterogeneity of gliomas by framing it within the context of 105 

normal adult neural stem cell (NSC) differentiation. Our work marks a significant step 

forward by uncovering shared biological features among adult-type gliomas, thereby 

suggesting new potential avenues for therapeutic intervention. 

 

Results 110 

 

scRNA-seq captures shared transcriptional heterogeneity in glioma tumour cells 

To examine the shared biology amongst the three types of adult-type diffuse gliomas, fresh 

tumour tissue from seven oligodendrogliomas, nine astrocytomas and twenty-four 

glioblastomas was collected, dissociated directly following surgery and initially profiled with 115 

single-cell RNA-sequencing (scRNA-seq) (Table S1). From these samples, post quality 

control (Methods), the transcriptional profiles of 543,088 cells were obtained. Cell types 

were annotated using marker gene sets (Figure S1A, Table S2) and were comprised 

predominantly of four major cell types: tumour cells, myeloid cells, T cells and 

oligodendrocytes (Figure 1A) as well as a small number of other cell types (Figure S1B, 120 

Table S3). Interestingly, the proportion of non-tumour cells was markedly higher in 

glioblastoma tissue compared with the other tumour types (Figure 1B, Table S4). This may 

be due to this tumour's highly infiltrative growth characteristics, resulting in a higher average 

proportion of non-tumour brain tissue in these specimens. Of the 543,088 total cells, 77,250 

oligodendroglioma, 111,063 astrocytoma, and 129,292 glioblastoma tumour cells were 125 

identified. To ensure tumour cells were accurately distinguished from normal diploid cells, 

CNVs were inferred from the scRNA-seq data by measuring shifts in transcript abundance 

and allelic imbalance in expressed heterozygous single-nucleotide polymorphisms (SNPs)11. 

CNVs were detected in all tumour cells (Figure 1C). Reassuringly, hallmark genomic 

alterations were consistently identified, including 1p/19q co-deletion in oligodendroglioma 130 

tumour cells and trisomy seven and monosomy ten in glioblastoma tumour cells, consistent 

with observations from bulk tumour tissue (Figure 1D). Following the identification of 

tumour cells, gene expression data from all samples was integrated. After data pre-
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processing, dimension reduction and clustering, cells from all three tumour types separated 

into distinct expression-based clusters rather than by tumour type (Figure 1E). 135 

 

 
Figure 1 | Classification of single cells from 40 adult-type diffuse gliomas.  
(A) Two-dimensional uniform manifold approximation and progression (UMAP) embedding plot of normal and tumour cells 
from adult-type diffuse glioma tissue samples. Colours correspond to distinct cell types. Minor cell type populations are 140 
grouped as ‘other’ (See Figure S1 for full detail).   
(B) The percentage of cell types comprising each tumour. Samples are organised left to right by the three tumour types; 
oligodendroglioma, astrocytoma and glioblastoma.  
(C) Single-cell heatmap of window-smoothed expression signals across 100 genes. Colours indicate shifts in gene expression 
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relative to cells without CNVs, illustrating inferred copy number events for each chromosome (column). Rows, 145 
corresponding to individual cells, are grouped by tumour sample and organised by tumour type: oligodendroglioma (top), 
astrocytoma (middle) and glioblastoma (bottom).  
(D) Line plots illustrating the mean gene-level CNV signal across 197 oligodendrogliomas (top), 195 astrocytomas (middle) 
and 488 glioblastomas (bottom) from The Cancer Genome Atlas (TCGA). The chromosomal location of genes associated 
with recurring focal CNVs are labelled below. 150 
(E) UMAP embedding plot of tumour cells from all samples, merged into one dataset and split by tumour type. 

 
scRNA-seq identifies seven recurring glioma cell states 

To provide a framework for understanding patterns of intratumoural heterogeneity that span 

tumour types, we sought to define cell states shared across tumours. The high-dimensional 155 

gene expression matrix comprised of all tumour cells was decomposed into a small set of 

underlying factors with non-negative matrix factorisation (NMF) to achieve this aim. An 

advantage to NMF is that it allows for additive combinations of intrinsic features. For 

example, a cell expressing genes consistent with an astrocyte-like cell identity may also 

express genes associated with transient cellular processes such as cell division. The 160 

combination of two states defines such a cell. From this analysis we identify seven recurring 

cell states (Figure 2A, Table S5) observed in all tumour types. Interestingly, most tumour 

cells across the three tumour types exist predominantly in a single cell state (Figure 2A, B 

and Table S6). This suggests that differentiation pathways remain relatively constrained, 

with tumour cells committed to a specific lineage rather than a high degree of plasticity or 165 

residing in multiple intermediate states. 

 

Three cell states showed enrichment of gene ontology terms associated with both 

oligodendroglial and neuronal lineage development (Figure 2C). Of these, cells in one state 

expressed markers of neural progenitor cells (HEY1 and NDRG2) as well as regulators of 170 

neuron growth and adhesion (C1QL1, NCAN and SPARCL1) (herein called neuro-lineage) 

(Figure 2B and S2B). Another state was enriched for expression of key oligodendroglial 

lineage regulators (MYRF and GPR17) and oligodendrocyte identity marker genes (MOG, 

MAG and CLDN11) (herein called oligo-lineage) (Figure S2D). A third, intermediate state, 

which we termed ‘neuro-oligo-lineage’ was identified to be strongly associated with key 175 

oligodendrocyte progenitor markers (OLIG1 and OLIG2) as well as neuronal lineage markers 

(SOX4, SOX11 and DCX) (Figure S2C).  

 

Two cell states demonstrated high expression of hallmark cell cycle genes and enrichment of 

associated gene sets (Figure 2B and 2C). Expression of genes essential for the initiation and 180 

progression of DNA replication (CENPA, NEK2 and PLK1) identified the first cell state as 
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capturing cells in the G1/S cell cycle phase. Enrichment of genes controlling mitotic spindle 

formation and chromosome separation (CENPA, NEK2 and CDC20) marked cells in the 

second state as transitioning through G2/M. These states were marked ‘cycling G1/S’ and 

‘cycling G2/M’, respectively. Interestingly, proliferating cells comprised a transcriptionally 185 

distinct population that did not overlap other cell states. This suggests that rather than 

representing a transient state within a differentiating population, the proliferative states 

capture a distinct cellular program driven by specific signals or transitions within the GSC 

hierarchy. 

 190 

A sixth cell state demonstrated strong enrichment of genes and pathways associated with 

cellular adaptation to compromised oxygen availability, increased glycolysis and promotion 

of angiogenesis (Figure 2B and 2C). Enriched expression of hypoxia-inducible target genes 

(EGLN3, VEGFA and CAV1) and genes associated with increased glycolysis (PGK1, ENO1 

and ENO2) imply this state captured a cellular response to low tumour oxygenation and was 195 

labelled ‘hypoxia’ accordingly. 

 

Finally, a transcriptionally distinct state was identified that was associated with elevated 

expression of key astrocyte lineage markers (GFAP, AQP4 and MLC1) (Figure 2B). These 

astrocyte-like cells were also enriched for expression of GSC markers ITGB4 and S100A4 200 

(Figure S2F). ITGB4 expression levels have recently been shown to correlate with glioma 

grade and promote GSC self-renewal and gliomagenesis12. In addition, S100A4 has been 

identified as a key regulator of quiescent GSCs and its expression is correlated with 

significantly worse prognosis among glioma patients13. These observations suggest this 

astrocyte-like cell state may represent a GSC population and was labelled ‘glioma stem cell’ 205 

accordingly. 

 

Having identified these states, we sought to understand how they aligned with transcriptional 

signatures described in previous studies, many of which have primarily focused on 

glioblastoma. To assess the similarity of our identified cell states to established 210 

transcriptional patterns, we performed gene set enrichment analysis using published signature 

gene sets5,7,14,15 (Figure 2D). Our neuro-, oligo-, and neuro-oligo-lineage states align with the 

proneural subtype14,15 and the neural progenitor state5,7. The hypoxia state strongly aligns 

with the mesenchymal subtype14,15 and state5,7. Our proliferative states overlap with a 

previously described population of cycling progenitor-like cells7, likely driven by the strong 215 
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contribution of cell cycle genes. Interestingly, GSCs show the greatest overlap with the 

mesenchymal states/subtypes5,7,15, which include hypoxia and glycolysis-related genes. 

However, it is important to note that we capture hypoxia and glycolysis-related cell stress 

signatures in our distinct hypoxia state. This observation is likely due to the advantage that  

NMF offers in separating cell states that exist in a continuum through additive combinations 220 

of intrinsic features. As such, we are able to identify the specific contributions of hypoxia-

associated and GSC-defining gene sets.  

 

 
Figure 2 |Adult-type diffuse gliomas are defined by seven recurring cell states characterised by distinct cell markers and 225 
functional enrichment. (align panels) 
(A) UMAP embedding plots show tumour cells from each tumour type. Cells are coloured by one of seven recurring 
transcriptional cell states. 
(B) Key gene markers define seven distinct cell states. 
(C) Heatmap of functional enrichment and overlap of the seven identified glioma cell states with cell states identified in 230 
existing studies. Columns represent molecular signatures associated with biological processes and states (left) or published 
cell state gene signatures (right); rows are glioma cell states. Colours represent Benjamini-Hochberg adjusted gene set 
enrichment analysis p-values. 
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Cell state composition varies across glioma tumour types 235 

Although all cell states were shared across the three tumour types, consistent differences in 

cell state composition were observed (Figure 3A, 3B and Table S7). A notable trend was the 

increased proportion of tumour cells in both oligodendroglioma and astrocytoma tumours of 

the neuro-, oligo- or neuro-oligo-lineage cell states, 83.0% and 80.0%, respectively, 

compared to only 50.7% in glioblastoma tumours. Conversely, glioblastoma tumours 240 

harboured a significantly greater proportion of cells in the hypoxia, cycling and stem cell 

states. A larger fraction of proliferative cells is consistent with the aggressive growth of these 

tumours. Rapid growth outpaces the supply of a disorganised blood vessel network, creating 

large necrotic areas that occupy a large fraction of the total tumour volume1. Thus, the higher 

proportion of hypoxic cell states is consistent with these growth characteristics. Significant 245 

differences in the proportion of cells in a GSC state were also observed between all three 

tumour types (Figure 3B). The mean proportion of GSCs observed in oligodendrogliomas 

was 2.8%, 4.6% in astrocytoma and 11.4% in glioblastoma. Interestingly, this relation 

matches the trend in overall survival observed among the three tumour types, with a higher 

percentage of GSCs linked to poorer survival outcomes (Figure S3A). Only the proportion of 250 

GSC state was associated with survival outcomes, identifying this cell state as an important 

target for therapeutic development and research.  
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 255 
Figure 3 | Glioma tumours comprise varying proportions of seven recurring cell states.  
(A) Bar plot illustrating the percentage of tumour cells in each cell state for each tumour sample. Samples are organised by 
tumour type: oligodendroglioma (left), astrocytoma (middle), and glioblastoma (right).  
(B) Box plots compare the percentage of cells in seven cell states for each tumour type. p values were obtained with the 
Wilcoxon signed-rank test. ∗p < 0.05; ∗∗∗p < 0.001. 260 

 

Tumour phylogenies identify a shared glioma stem cell population 

Next, to further elucidate the nature of the GSC state population, we used clone-

discriminative CNVs to reconstruct the clonal structure of each tumour sample. Distinct 

tumour subclones were successfully identified, containing a median number of seven, eight 265 

and nine unique CNVs for oligodendroglioma, astrocytoma and glioblastoma samples, 

respectively (Figure 4A). A CNV-based subclonal phylogeny was reconstructed for each 

tumour (Figure 4B). The number of distinct mutations separating them from the parent clone 

was identified for each subclone. The clonal evolution can be determined based on the 

acquisition of new mutations from the original parent clone. For example, focusing on the 270 

first glioblastoma patient sample (Figure 4A), the parent clone is identified by a gain of 

chromosome seven and loss of chromosomes ten and fifteen. A second clone arises with the 

acquisition of a subsequent deletion at chromosome thirteen, leading to the observation of 

two independent sub-clones. We observe greater clonal mutational diversity in glioblastomas 

compared with oligodendroglia and astrocytomas. These mutational patterns are consistent 275 
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with those observed in clinical cohorts profiled with SNP array -based CNV profiling of bulk 

tumour tissue (Figure S4A). 

 

Reconstructing the clonal evolution across tumours we are able to identify cells that comprise 

the parent population. Using this information, we subsequently tested for the relationship 280 

between subclones and cell states. Aggregating this information across subclones over all 

samples, unique CNVs of the parent clone were enriched only in the population of cells 

corresponding to the putative GSCs (Figure 4C and Table S8). These results demonstrate 

that the GSC cell state population, across all diffuse gliomas, has a mutational signature of 

the parent clone. This provides further evidence that the astrocyte-like cell state identified 285 

represents diffuse glioma stem cells. In a differentiation hierarchy in which GSCs represent 

the apex, mutations arising in differentiating lineages are expected to be absent in the parent 

cells. We observe no enrichment of clonal architecture and other cell states, suggesting 

differentiation of GSCs does not follow a strict sequential progression. 

 290 

The transcriptional similarity between GSCs and astrocytes suggested a connection with the 

neural stem cells (NSCs) that persist in the adult ventricular-subventricular zone, and have 

long been considered a potential substrate for neoplastic tansformation16. To explore this 

potential connection, we projected a pseudotime trajectory of normal mouse NSC 

differentiation onto our glioma dataset (Figure S5). The quiescent NSC population aligned 295 

with our astrocyte-like GSC population, supporting the hypothesis that this population 

represents a primitive stem-like state in gliomas. These observations align with recent 

findings that dormant glioblastoma tumour cells resembling astrocytes progress though active 

and differentiated stages, mirroring the structured cellular hierarchy seen in adult NSCs and 

their progeny17. 300 
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Figure 4 | Tumour phylogenies reveal earliest tumour subclones. 
(A) Heatmap of tumour subclones. Rows represent individual subclones; columns represent chromosomes. CNVs that define 305 
each subclone are coloured by the type of alteration (AMP, amplification; DEL, deletion; CNLoH, copy-neutral loss of 
heterozygosity). 
(B) Tumour phylogenies for each tumour sample. Cells with the same genotype are aggregated into one node, with lines 
indicating the mutational history between individual subclones. Subclones are coloured by the number of distinct mutations 
separating them from the parent clone. 310 
(C) UMAP plots of tumour cells coloured by the density of cells assigned to subclones with n mutations. Red indicates an 
enrichment of cells from subclones with n mutations. 

 
Glioma cell states are associated with recurring genomic alterations 

We hypothesised that a tumour cell’s genetic makeup may be a driver of its transcriptional 315 

phenotype. To investigate whether specific genomic alterations were enriched within distinct 
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cell states, we used the following approach. For each genomic position, we identified cells 

harbouring CNVs. Using these cells, for each sample the proportion of cells in each state was 

calculated. We then averaged these proportions across all samples to determine an overall 

mean proportion per cell state. To detect significant associations, we repeated this process 320 

after randomly shuffling the cell state labels within each sample (while maintaining the 

overall proportion of each state) (Table S9). 

 

The results of this analysis revealed several interesting trends. Cells in the neuro-, oligo- and 

neuro-oligo states showed a genome-wide depletion of copy number alterations (Figure 5A-325 

C). These observations are consistent with the reduced exposure to mitotic errors and 

replication stress expected in terminally differentiated cells. Conversely, proliferating and 

hypoxia-associated cells showed a general enrichment of alterations (Figure 5D,F,G). The 

genomes of rapidly dividing cells are subject to a higher risk of replication-associated errors, 

which may result in the acquisition of alterations that confer a growth advantage or survival 330 

benefit, accumulating in descendant cell populations with subsequent divisions. Interestingly, 

cells in the hypoxia state were associated with significant enrichment of alterations to 

chromosomes seven, twelve, thirteen, fourteen, and sixteen (Figure 5D). Hypoxia has been 

demonstrated to fuel homologous recombination deficiency in many cancers18,19. The 

resulting increase in genomic instability may facilitate the acquisition of adaptive copy 335 

number changes, allowing tumour cells to overcome the microenvironmental stresses of 

hypoxia. These results identify a significant relationship between specific genomic alterations 

and distinct cell states. This suggests that a tumour cell's genetic composition may shape its 

transcriptional phenotype. 

 340 
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Figure 5 | Tumour cell states are associated with recurring copy number alterations. 
(A-G) Panels present results for each tumour cell state, illustrating the enrichment or depletion of genetic events at each 
genomic position. X-axis values represent the genomic position in 1-megabase intervals. Y-axis values represent the mean 
proportion of cells in a cell state standardised by subtracting the mean of shuffled data. Values above zero indicate 345 
enrichment, while values below zero indicate depletion of alterations at a given genomic position. Grey shading represents 
the 1% to 99% confidence intervals obtained from shuffling cell states within each sample. Colours indicate the statistical 
significance of the observed data compared to the shuffled data. 

 

Validation of clonal evolution using scDNA-seq and mitochondrial DNA variants 350 

The clonal phylogenies and observed association of GSCs with parental clones rely on CNVs 

inferred from the scRNA-seq data. As such, we sought to validate our observation that the 

parental clonal population is concordant with the GSC cell state using independent 
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approaches.  To validate the inferred CNVs, we first performed single-cell DNA sequencing 

(scDNA-seq) on selected samples using a custom glioma panel we designed (Table S10). 355 

This allowed us to directly measure DNA copy numbers in individual cells, providing a 

definitive confirmation of the genomic alterations identified. 

 

The scDNA-seq data confirmed the presence of CNVs inferred by scRNA-seq (Figure 6A 

and 6B). This included whole chromosome gains and losses, such as the characteristic 360 

trisomy seven and monosomy ten. Our glioma panel design included known glioma 

oncogenes and tumour suppressors, hence the smaller alterations inferred by scRNA-seq, 

such as the focal deletion of MEIS2 (15q14) and TP53 (17p13) could  also be validated 

(Figure 6B). Alterations to chromosomes 20-22 could not be confirmed, as the panel did not 

include amplicons covering these chromosomes. 365 

 

Further, to establish the accuracy of the subclones identified, we examined mitochondrial 

DNA (mtDNA) single nucleotide variants (SNVs). mtDNA SNVs can serve as natural 

genetic barcodes to recover cell lineages20,21. mtDNA has a higher mutation rate than nuclear 

DNA. As tumour subclones diverge,  unique SNVs accumulate and propagate in the resulting 370 

lineages. These SNVs can then be recovered from the scRNA-seq reads. If the tumour 

subclones are accurate, we expect distinct mtDNA SNVs to accumulate as subclones diverge, 

creating significant differences in their frequencies. Testing for this, significant differences in 

mtDNA SNV frequencies were detected across tumour subclones (Figure 6C). These results 

demonstrate that the sub-clonal tumour architecture based on the CNVs inferred from our 375 

scRNA-seq data are accurate, lending additional support to the reconstructed phylogenies, 

and the relationship between the parental clone and GSC. 
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Figure 6 | Single-cell DNA sequencing and clonally informative mitochondrial DNA (mtDNA) single nucleotide variants 380 
(SNVs) confirm copy number alterations and tumour subclones. 
(A) and (B) Copy number events from two tumour samples. The top panel shows the log fold-change of 100-gene window-
smoothed scRNA-seq expression values. The bottom panel shows ploidy values from scDNA-seq of tissue samples from the 
same tumours across the same genomic regions. Colours indicate the type of genomic alteration at a given genomic position 
(AMP, amplification; DEL, deletion; CNLoH, copy-neutral loss of heterozygosity; NEU, neutral). 385 
(C) Heatmaps illustrate mtDNA SNV allele frequency shifts between tumour subclones. Each heatmap presents results from 
comparisons between subclones within an individual tumour. SNVs are demarcated by a coloured bar to the heatmap's left 
and are grouped by subclone. Grey shading represents p-values obtained with the Wilcoxon signed-rank test, comparing 
SNV allele frequency value distributions between each subclone pair. 

 390 
 

Discussion 

Recent single-cell analyses of adult-type diffuse gliomas have revealed malignant cells 

recapitulate lineages of glial differentiation. However, this work has focused on the tumour 

types in isolation. This has left a critical gap in our understanding of whether these 395 

transcriptional patterns are consistent and universally present across the gliomas, potentially 

indicating a common biological basis that could inform more effective treatment strategies. 

Here, we use cellular genomics combined with novel analysis methods to identify a shared 

cell state architecture across diffuse gliomas. We show that the glioma stem cell displays an 

astrocyte-like genomic signature, and confirm this observation using the somatic mutations 400 

arising from the clonal evolution of cancers.  
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Our findings demonstrate that despite each tumour type's unique genetic alterations and 

clinical presentations, cells converge to a common, limited repertoire of seven recurring cell 

states. These states encompass neural lineage development (neuro-, oligo-, neuro-oligo-405 

lineage), proliferation (cycling G1/S, cycling G2/M), cellular stress response (hypoxia), and 

an astrocyte-like GSC population. Overlap was observed with transcriptional patterns 

described in previous work within individual glioma types (Figure 2D). Yet, our results 

diverge from previous research regarding the proliferative and GSC states. Firstly, we define 

GSCs as having an astrocyte-like expression profile. Secondly, we find the GSC and 410 

proliferative cell states do not overlap.  

 

Early single-cell investigations of glioma identified a gradient of stemness to differentiation 

within glioblastoma tumour cells. In a pioneering study, tumour cells with stem-like 

phenotypes were identified using a stemness signature based on genes differentially 415 

expressed between stem-like and differentiated cells derived from primary tumours2. This 

highlighted a continuous spectrum of stemness within tumours, with GSCs expressing genes 

associated with neural stem cell self-renewal and quiescence. Expanding on this idea by 

incorporating work characterising GSCs in bulk glioblastoma tumour tissue22, it was 

suggested that GSCs exist on a spectrum spanning from proneural to mesenchymal 420 

phenotypes3. Interestingly, consistent with the notion that stemlike cells divide at lower 

overall rates, GSCs defined in these studies were shown to represent a relatively quiescent 

founder state. Subsequent studies supported patterns of transcriptional heterogeneity from a 

gradient of stemness to lineage differentiation. For example, glioblastoma cells compared 

against GSC-enriched cells from neurospheres identified a GSC-driven tri-lineage hierarchy, 425 

with GSCs at the apex7. Investigations of IDH-wildtype gliomas similarly concluded 

astrocytomas and oligodendrogliomas share a developmental hierarchy composed of GSCs 

resembling neural progenitors that give rise to differentiated cells of astrocytic and 

oligodendrocytic lineages4,6. These studies share the observation that most cycling cells are 

GSCs.  430 

 

Diverging from the concept of a unidirectional GSC-driven developmental hierarchy, it has 

also been suggested four primary cellular states exist in glioblastoma, and that tumour cells 

can reversibly transition5. Uniquely, the authors identify cellular proliferation within all 

states, albeit weighted toward oligodendrocytic and neural lineages. Summarising these 435 

developments, most findings support one of two broad concepts: a stemness gradient driven 
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by quiescent GSCs or a neurodevelopmental hierarchy driven by proliferative GSCs. With 

this context we now examine our findings. 

 

An astrocyte-like population was identified as GSCs based on their early positioning in 440 

reconstructed tumour phylogenies, supported by both scDNA-sequencing and the distribution 

of mtDNA SNVs. Cycling cells were identified by an analytical approach that can effectively 

decompose mixed transcriptional signatures to separate cellular processes. This analysis 

revealed proliferating cells form a distinct transcriptional group in gliomas, rather than 

representing a transient state blended within GSCs or the larger differentiating population. 445 

These results strongly suggest a quiescent population of astrocyte-like GSCs at the apex of a 

differentiation hierarchy. The non-proliferative nature of GSCs is consistent with early 

single-cell studies in glioblastoma2,3, while a differentiation hierarchy is consistent with 

recent pan-glioma findings4,6,7. Uniquely, this result repositions astrocyte-like cells as the 

basis of this hierarchy, despite these cells being consistently classified as belonging to the 450 

differentiated population of tumour cells. However, this converges with recent work into the 

glioma cell of origin. Direct genetic evidence has demonstrated that primary glioblastoma 

tumours arise from astrocyte-like NSCs within the human adult subventricular zone23. This 

aligns with pre-clinical evidence, in which inactivation of tumour suppressors in NSCs is 

necessary and sufficient for astrocytoma formation in fully penetrant mouse models24. In the 455 

healthy adult brain, NSCs maintain a quiescent state, sharing transcriptional similarities with 

parenchymal astrocytes, until activated to generate proliferating progenitors that ultimately 

differentiate25. Analogous hierarchies have been demonstrated within GSCs26.  Indeed, a 

recent investigation of glioblastoma offers strong evidence for quiescent, astrocyte-like cells 

as GSCs, capable of establishing tumour lineages that closely resemble those of healthy adult 460 

neural stem cells17. 

 

Our results suggest the shared patterns of transcriptional heterogeneity observed across the 

three tumour types of adult-type diffuse glioma stem from a GSC population recapitulating 

lineages of healthy adult NSCs. The extent to which tumour cell states resemble those of 465 

normal NSC development will likely depend on the genetic landscape of each tumour and the 

extent to which GSCs retain the multipotent characteristics of NSCs. While our findings 

identify GSCs in each tumour type, they do not reveal the specific cells of origin. The link 

between GSCs and the origin of these gliomas remains an unresolved question. Historically, 

differences in preferential localisation and molecular and clinical characteristics supported 470 
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the notion that gliomagenesis occurs in the three tumour types through distinct cellular 

pathogenic mechanisms. Thus, the GSCs we identified may originate through distinct 

mechanisms in each tumour type: neoplastic transformation of existing NSCs or 

dedifferentiation of more lineage-restricted cells. Progress through the tumour cell hierarchy 

can be conceptualised by viewing cell states as stable phenotypes represented by low-energy 475 

attractor states on the proverbial Waddington landscape27. Different mechanisms of 

gliomagenesis influence GSC multipotency, determining their starting positions on this 

landscape26,28. Subsequent genetic events skew differentiation toward distinct lineages. These 

factors shape the unique blend of cell states observed within each tumour type, with 

astrocytomas and oligodendrogliomas displaying a higher proportion of terminally 480 

differentiated cells than the greater stem and cycling progenitor populations in glioblastoma. 

Understanding of the factors governing transitions within the tumour cell hierarchy will be 

crucial for designing rational treatment strategies. 

 

One potential driver of cell state transitions is the underlying genetic instability of each 485 

tumour. Previous investigations suggest specific genomic alterations influence transcriptomic 

diversity but do not completely define cell states4–8. In this study, several notable patterns 

were observed. Cells in the neuro-, oligo- and neuro-oligo states showed a genome-wide 

depletion of copy number alterations. Conversely, proliferating and hypoxia-associated cells 

showed a general enrichment of alterations. Hypoxia-associated cells were specifically 490 

enriched in alterations to chromosomes seven, twelve, thirteen, fourteen, and sixteen. These 

findings underscore the relationship between a tumour cell's genetic landscape and 

transcriptional state. Further functional validation will be required to determine the extent to 

which genomic alterations drive cell fate or if microenvironmental pressures create specific 

niches where cells with corresponding alterations outcompete others. 495 

 

In summary, our study represents a significant advance in understanding the cellular 

complexity of adult-type diffuse gliomas. By unveiling the shared cell states across different 

glioma types, particularly the role of astrocyte-like GSCs, we provide a foundation for 

developing new therapeutic strategies that target these common elements. While our findings 500 

are compelling, they also underscore the complexity of glioma biology and the challenges in 

translating these insights into clinical practice. Future studies should focus on functional 

validation of the proposed GSC population to demonstrate self-renewal, differentiation, and 

enhanced tumour initiation potential. A more detailed understanding of the mechanisms 
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underlying the formation and maintenance of the GSC state will provide insights into 505 

potential therapeutic avenues.  
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Methods 

 510 

Resource availability 

Lead contact and Materials availability 

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by Joseph Powell (j.powell@garvan.org.au). 

 515 

Data and code availability 

All single-cell RNA-seq data have been deposited at GEO ___ and are publicly available as 

of the date of publication. All code is available from 

github.com/powellgenomicslab/brain_cancer_paper and is publicly available as of the date of 

publication. Any additional information required to reanalyse the data reported in this paper 520 

is available from the lead contact upon request (j.powell@garvan.org.au). 

 

Experimental model and study participant details 

Human tumour tissue acquisition 

This study comprised adult diffuse glioma patients treated at the Prince of Wales Private 525 

Hospital in Sydney, Australia. The study was approved by Bellberry Human Research Ethics 

(HREC 2019-08-682), and all patients provided preoperative informed consent for 

participation. The study cohort comprised 26 male and 14 female patients. We included IDH 

mutant and wildtype gliomas, specifically astrocytomas (grades 2, 3, and 4), 

oligodendrogliomas (grades 2 and 3), and glioblastomas. Table S1 summarises the clinical 530 

information. 

 

Method details 

Sample preparation for single cell experiments 

Freshly resected brain tumour tissue samples were collected in Gibco Hibernate-A Medium 535 

(Cat#A1247501) with neuronal cell culture supplement Gibco B-27 (Cat#17504044) and 

transported on ice. The tissue was rinsed with Ringer’s solution (Cat#AHF7163) to remove 

blood. Tissue was cut into 1-2 mm³ sections and then dissociated using the Miltenyi Biotec 

Brain Tumor Dissociation Kit (Cat#130-095-942), following the manufacturer's instructions. 

Red blood cell lysis solution from Miltenyi Biotec (Cat#130-094-183) was used to remove 540 

the remaining red blood cells following the manufacturer's protocol. The single-cell 

suspension was centrifuged three times (150 x g for 5 minutes) to remove debris. The 
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resulting cell pellet was resuspended in B-27-supplemented Hibernate-A media and kept on 

ice. After passing through a 40μM filter, viability was assessed using Gibco Trypan Blue 

Solution (Cat#15250061). Samples with >80% viability were processed for single-cell 545 

capture using the 10x Genomics Chromium system. 

 

10x Genomics-based single-cell RNA-sequencing library preparation and sequencing 

Single cells were captured for gene expression profiling using the 10x Genomics Chromium 

Next GEM Single Cell 3� kit (Cat#PN-1000130), Gem beads (Cat#PN-1000129) and 550 

partitioning oil (Cat#PN-1000129) following the manufacturer's protocol. The cell 

suspension was diluted to the range of 700-1,200 cells/µL in Gibco Hibernate-A Medium 

(Cat#A1247501) for optimal capture efficiency, and volume was calculated for a target of 

20,000 cells. cDNA was extracted from the single cell/nuclei gel bead emulsion using 

Dynabead clean-up mix (Cat#PN-2000048), Qiagen elution buffer (Cat#19086), reducing 555 

agent (Cat#2000087), SPRIselect reagent (Cat#B23318), and cleanup buffer (Cat#2000088). 

cDNA amplification was performed using Amp Mix (Cat#2000047) and a thermal cycle as 

follows: 98° degrees for 45 seconds, 11 cycles of (98° degrees for 20 seconds, 54° degrees 

for 30 seconds, 72° degrees for 20 seconds), and 72° degrees for 1 minute. 

 560 

Individual libraries were pooled to target 30,000 reads per cell. Pooled libraries were 

sequenced at the Ramaciotti Centre for Genomics (University of New South Wales Sydney, 

Australia) on an Illumina NovaSeq 6000 system using NovaSeq S4 v1.5 200 cycle flowcells 

(Cat#20028313). Loading concentration was 294 pM with Illumina PhiX Control v3 spiked 

at 1%. BCL files were demultiplexed and converted to FASTQ format using the 10x 565 

Genomics Cell Ranger mkfastq pipeline. Reads were aligned to the human genome reference 

(GRCh38), cell and UMI barcodes were demultiplexed, and UMI counts were produced with 

the 10x Genomics Cell Ranger count pipeline (version 6.0.2) on a high-performance cluster 

with a 3.10.0-1127.el7.x86_64 operating system.  

 570 

Quantification and Statistical Analysis 

Single-cell RNA-seq data preprocessing and quality control 

Analysis of scRNA-seq data was performed with the Seurat R package version 5.0.129. To 

identify cell-containing droplets, the CellBender version 0.2.0 remove-background tool was 

run for 150 epochs with a false positive rate of 0.0130. Droplets with a cell containment 575 

probability score of less than 0.5 were excluded from further analysis. To remove any 
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remaining cell-free droplets, the nuclear fraction was calculated with the DropletQC R 

package, which quantifies the fraction of RNA originating from nuclear-unspliced pre-

mRNA for each droplet31. The remaining cells with more than 15% of reads mapping to the 

mitochondrial genome were also excluded from the analysis. Next, heterotypic doublets 580 

containing cells of the four main types (tumour, myeloid, oligodendrocyte or T cells), were 

identified and removed based on co-expression of marker genes using the scds R package 

version 1.14.032. Cells from all samples were integrated into a single dataset using the rliger 

R package (version 1.0.1)33, setting the number of factors (k) to 30. To visualise the 

integrated dataset, we applied quantile normalization and embedded it into a two-dimensional 585 

space using Uniform Manifold Approximation and Projection (UMAP) with a cosine distance 

metric implemented with the rliger R package. A second UMAP was also calculated using 

tumour cells from each sample. 

 

Cell-type classification of single-cell RNA-sequencing data 590 

Cells passing quality control formed distinct clusters, the identity of which were determined 

by examining the expression of marker genes characteristic of each cell type: tumour cells 

(PTPRZ1, BCAN, SOX4, EGFR, IGFBP2, TUBA1A), myeloid cells (C1QA, AIF1, LAPTM5, 

CD14, FCER1G, FCGR3A, TYROBP, CSF1R), T cells (CD2, CD3D, CD3E, CD3G), and 

oligodendrocytes (MOG, MAG, CNP, MBP, TF, PLP1, CLDN11). The identity of subclusters 595 

of less common cell types were determined with the following marker genes: astrocytes 

(SOX9, GFAP, AQP4), B cells (MS4A1, TCL1A, CD27), dendritic cells (CLEC4C, CD74, 

P2RY14, MZB1), endothelial cells (CD34, CLEC14A, VWF, CLDN5), epithelial cells (PIFO, 

CFAP276, RSPH1), erythrocytes (HBA1, HBA2), fibroblasts (COL5A1, COL1A1, COL1A2), 

GABAergic neurons (GAD1, GAD2), glutamatergic neurons (SLC17A7, SLC17A6), 600 

keratinocytes (KRT13, KRT6A, KRT5, KRT19, KRT15, TACSTD2, LY6D), mast cells 

(TPSAB1, TPSB2, KIT, GATA1, GATA2), natural killer cells (CCL5, XCL2, XCL1), 

oligodendrocyte progenitor cells (GPR17, OLIG1, OLIG2, PDGFRA), plasmas cells (IGLC2, 

IGHG1, IGKC, IGHG2, IGHG3, IGHGP, IGLC3, JCHAIN) and vascular leptomeningeal 

cells (ENPEP, FBLN1, ITIH5). 605 

 

Copy-number variation analysis and tumour phylogeny reconstruction from scRNA-seq 

data 

The Numbat package (version 1.3.2.1) was used to infer each tumour's CNVs, clonal 

architecture, and evolutionary history11. Numbat leverages signals of allelic imbalance in 610 
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expressed heterozygous SNPs and shifts in expression magnitude (reflecting chromosomal 

dosage) to detect underlying CNVs. Cell-level phased allele counts were generated using the 

pileup_and_phase.R script included in the Numbat R package. Then, leveraging the presence 

of non-tumour tissue in each sample, a gene expression reference was created using normal 

cell types (with a minimum of 30 captured cells) with the  aggregate_counts function. 615 

Numbat was then run with default parameters, except for max_iter, which was increased to 

20. Tumour subclones and the tumour phylogeny are inferred through an iterative process 

that alternates between identifying CNVs within clonal lineages and reconstructing the 

single-cell lineage tree based on the inferred CNV probabilities. For this cohort of samples, 

we found that it was necessary to increase the number of iterations to 20 for clonality 620 

predictions to stabilise. To create UMAP plots visualising tumour cell density based on the 

number of unique descendant mutations, the average proportion of neighbouring cells with 'n' 

mutations was calculated for each point. Cells in each UMAP plot were then colored 

according to this density, with red indicating areas enriched for subclones with 'n' mutations. 

 625 

Copy-number variation analysis of TCGA samples 

Two analyses were conducted using CNV data from The Cancer Genome Atlas (TCGA) 

Research Network34. First, the mean gene-level CNV signal was calculated across 

oligodendroglioma, astrocytoma, and glioblastoma tumours. Second, the number of CNVs in 

diffuse glioma and all other TCGA tumour types was determined. For the first analysis, 630 

clinical and gene-level CNV data for all diffuse glioma TCGA samples was accessed through 

the TCGAbiolinks R package (version 2.28.4)35. Diagnoses were reclassified for consistency 

with the fifth edition of the World Health Organisation Classification of Tumors of the 

Central Nervous System (WHO CNS5) guidelines1, using a recent reclassification 

incorporating relevant molecular features36. A gene-level mean CNV value was then 635 

calculated separately for each tumour type. For the second analysis, segment-level CNV data 

was accessed through TCGAbiolinks and glioma samples were reclassified as described 

above. Non-tumour samples and segments smaller than 1Mb in size were excluded, and the 

whole genome doubling status was determined from a recent study characterising CNV 

patterns in human cancer37. 640 

 

Cell state delineation with non-negative matrix factorisation 

Non-negative matrix factorisation (NMF) was employed to extract significant features from 

the cell-by-gene expression matrix, consisting of tumour cells from all glioma samples, as 
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implemented in the RcppML R package (version 0.3.7)38. The factorisation was performed 645 

with default parameters, except for a tolerance of 1x10-8 and a maximum of 1,000 iterations. 

For each rank parameter (from 2 to 25), the factorization was repeated 40 times, each 

initialised with a random seed. Two measures were used to select the optimal rank parameter: 

mean squared error (MSE) and normalised mutual information (NMI). MSE measures the 

average squared difference between the original data and the approximation created by the 650 

matrix factorisation. A lower MSE indicates a better fit. NMI measures the reduction in the 

entropy of class labels (in this case, cells assigned to a factor) obtained if the cluster labels 

are known. In this case, the labels are unknown, but an increase in NMI values suggests more 

stable clusters. An NMI of 1 would mean a perfect clustering agreement. Considering both 

MSE and NMI, a rank parameter of seven provided the best balance between producing 655 

stable patterns and accurately representing the data. 

 

Survival analysis of TCGA glioma samples 

Adult-type diffuse glioma patient clinical information generated by TCGA  Research 

Network was obtained using the RTCGA.clinical R package (version 20151101.30.0)39. 660 

Guided by a recent study incorporating molecular features36, tumours were reclassified to 

align with WHO CNS5 guidelines. Kaplan-Meier survival curves were generated based on 

patient vital status, days to last follow-up, and days to death, with the survival R package 

(version 3.5.5)40. 

 665 

Cell state characterisation with gene set enrichment analysis 

To explore the biological functions associated with each of the seven cell states, gene set 

enrichment analysis (GSEA) was conducted using the fgsea R package (version 1.26.0)41. 

GSEA identifies gene sets that are significantly enriched at the top or bottom of a ranked 

gene list. This ranking was created using the gene-by-factor matrix from the NMF analysis. 670 

Hallmark and ontology gene sets, representing well-defined biological states, processes, and 

cellular components, were sourced from the Molecular Signatures Database42. Published 

subtype gene signatures obtained from bulk gene expression profiling14, and cell state 

signatures generated through single-cell gene expression profiling3,5,7,15, were obtained from 

the supplementary material of the associated publications. Finally, the Benjamini-Hochberg 675 

procedure was used to adjust the GSEA p-values to account for multiple testing. 

 

Statistical comparison of cell state proportions 
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Box plots were used to visualise differences in the proportion of cells in each identified seven 

cell states amongst the three tumour types: oligodendroglioma, astrocytoma, and 680 

glioblastoma. The Wilcoxon signed-rank test was used to determine whether differences in 

cell state proportions between tumours were statistically significant. 

 

Comparison with healthy adult mouse neural stem cell lineage 

To investigate the transcriptional similarities between human glioma tumour cells and healthy 685 

adult mouse ventricular-subventricular zone neural stem cell (NSC) lineage, the following 

comparative analysis was performed. A suitable NSC lineage reference dataset was 

constructed by incorporating data from four studies43–46 using the Seurat R package version 

5.0.1 integration pipeline29. Next, single cell trajectory analysis was performed with the 

Monocle 3 R package version 1.3.747, producing “pseudotime” values that describe the 690 

progress of individual cells along the neurogenic lineage. The resulting pseudotime values 

were transferred to the query glioma dataset using the Seurat TransferData function48. 

 

Statistical assessment of genomic alteration enrichment within cell states 

The following analysis was performed to determine if there is a significant association 695 

between tumour cell states and copy number changes in any genomic region. For each 

tumour cell, the following information was provided as input: cell state, associated CNVs 

(chromosome, start and end coordinates), tumour type, and patient ID. First, chromosomes 

were tiled with 1 Mb wide segments, and the overlap between each CNV and genome tile 

was determined. The proportion of cells in each state was calculated for each tile and sample, 700 

followed by the mean proportion across all samples. This process was repeated 10,000 times 

to create a null distribution to test for statistical significance while randomly shuffling cell 

states within each sample. A p-value was calculated for each genomic position to assess 

whether the observed mean was greater or lesser than expected by chance. To facilitate 

visualization of the results, the data was standardised by subtracting the mean of the shuffled 705 

data from the 1%/99% confidence intervals and the observed data. The results were displayed 

by visualising confidence intervals with grey shading and colouring log10 p-values by the 

statistical significance of the observed data compared to the shuffled data for each genomic 

position. 
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Validation of copy number variations with single-cell DNA sequencing 
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Nuclei were extracted from frozen tissue for single-cell DNA sequencing via the following 

method. Frozen tissue pieces were first washed with a nuclei suspension buffer (NSB) 

solution consisting of 1xPBS, 1% BSA, and 0.1U/µL RNase inhibitor. Tissue was minced 

manually using a scalpel blade and incubated on ice in Sigma Aldrich EZ lysis buffer 715 

(Cat#NUC101-1KT) for 5 minutes for cellular membrane disruption. The resulting solution 

was then passed through a 70µm filter and centrifuged at 500xg for 5 minutes, resuspended in 

lysis buffer and passed through a 40µm filter before centrifugation again at 500xg for 5 

minutes. The nuclei pellet was resuspended in cell buffer at a concentration of 3,500 

nuclei/µL and loading volume of 35µL for capture with the Mission Bio Tapestri platform. 720 

Nuclei were loaded into a Tapestri microfluidics cartridge, encapsulated, lysed, and barcoded 

following the manufacturer’s protocol. Barcoded samples were then subjected to targeted 

PCR amplification using a custom 221-amplicon panel (supplementary materials), designed 

to cover recurring genomic alterations in diffuse glioma. Libraries were pooled for 

sequencing on an Illumina NextSeq 500 platform. FASTQ files were aligned to the human 725 

reference genome (GRCh37) using the BWA-MEM algorithm49,50, and genotyped following 

Genome Analysis Toolkit Best Practices51,52, as implemented in the MissionBio Tapestri 

DNA analysis pipeline (version 2.0.2). The resulting HDF5 output file was imported for 

further analysis in R using the rhdf5 R package (version 2.44.0). The cell-by-amplicon read 

counts were normalised with the following procedure. High-quality cell barcodes were 730 

defined as those with total read counts greater than one-tenth of the total read counts of the 

tenth-highest barcode. Each read count was then divided by the mean read count for its 

barcode and then divided by the median read count of the high-quality barcodes for its 

amplicon. Finally, ploidy values were computed by dividing the normalised counts by the 

median counts of the diploid (non-tumour) cells and multiplying by two. 735 

 

Subclone assessment using mitochondrial DNA single nucleotide variants 

Mitochondrial DNA single nucleotide variants were employed as lineage markers to validate 

the subclonal structures identified from the inferred CNVs. For each sample, a separate BAM 

file containing reads aligned to the mitochondrial genome was created specifically for tumour 740 

cells. The tool cellsnp-lite (version 1.2.2) was then employed to call variants within the 

mitochondrial genome53. To distinguish informative variants from background noise, MQuad 

was executed (with the AD and DP sparse matrices output by cellsnp-lite) with default 

parameters except for a minimum read depth of 320. For validated variants, allele frequency 

values were calculated for each cell. Finally, the Mann-Whitney U test (stats R package, 745 
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version 4.3.1) was used to assess significant differences in allele frequencies between tumour 

subclones. 

 

Acknowledgements 

We gratefully acknowledge the patients who contributed their tumour tissue, making this 750 

study possible. We extend our appreciation to the members of the Garvan Institute of Medical 

Research Cellular Genomics Platform for their contributions to the processing of samples for 

single-cell capture in this study, with particular thanks to Hira Saeed, Eric Lam, Naushad 

Moti, and Dominik Kaczorowski for their assistance in troubleshooting. We thank Anne 

Senabouth for her assistance in optimising and troubleshooting the computational analysis of 755 

scRNA-seq data. A grant from the Charlie Teo Foundation supported this work. J.E.P is 

supported by the National Health and Medical Research Council Fellowship (APP1107599) 

and with the support of the Fok Family in memory of Dr. and Mrs. Wing Kan Fok. This work 

was supported by a National Health and Medical Research Council project grant 

(APP1143163) and an Australian Research Council Discovery project (DP180101405). 760 

 

Supplementary Tables 

 

Supplementary Table 1 | Clinical cohort information. This file describes the clinical characteristics of the forty tumour 

samples captured for scRNA-seq. Each row describes a patient sample. The six columns contain the following information. 765 
Patient ID: a unique identifier for each patient. Tumour type: adult-type diffuse glioma classification (oligodendroglioma, 

astrocytoma, or glioblastoma). Grade: WHO CNS 5 tumour grade (1 to 4). Sex: patient's biological sex (M: Male, F: 

Female). Primary/Recurrent: indicates whether the tumour sample was from the initial diagnosis or a recurrence. IDH 

mutation status: presence or absence of an IDH gene mutation within the tumour. 

 770 
Supplementary Table 2 | Cell type markers. This file lists the genes used for cell type classification. The first column 

contains the cell type, and the second column lists the corresponding gene marker. 

 

Supplementary Table 3 | Cell annotation metadata. This file provides cell type and state annotations for each of the 

543,088 cells profiled with scRNA-seq. Each row represents an individual cell with the following information. Patient ID: a 775 
unique identifier for each patient. Tumour type: adult-type diffuse glioma classification (oligodendroglioma, astrocytoma, or 

glioblastoma). Cell barcode: a unique sixteen-nucleotide identifier for each cell. Note that while cell barcodes are unique 

within a sample, some are shared across samples. Cell type: the assigned cell type. Cell state: one of seven tumour cell states 

(neuro-lineage, oligo-lineage, neuro-oligo-lineage, cycling G1/S, cycling G2/M, hypoxia, or glioma stem cell). 

 780 
Supplementary Table 4 | Percentage of cell types per sample. This file contains the percentage of cell types comprising the 

forty tumours profiled with scRNA-seq. The four columns contain the following information. Tumour type: adult-type 

diffuse glioma classification (oligodendroglioma, astrocytoma, or glioblastoma). Patient ID: a unique identifier for each 
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patient. Cell type: the assigned cell type. Percentage: the percentage of each cell type. The data in this file is associated with 

Figure S1. 785 
 

Supplementary Table 5 | Cell state markers. This file contains gene scores used for cell state classification. The first 

column contains the gene name. The remaining seven columns contain scores representing each gene's contribution to a 

specific cell state. Higher scores indicate a stronger association between the gene and that state. Values represent the gene-

by-factor output from non-negative matrix factorisation analysis. Column scores sum to one, indicating the relative weight of 790 
each gene within a cell state. 

 

Supplementary Table 6 | Cell state scores. This file contains cell state scores for the 317,605 tumour cells profiled with 

scRNA-seq. Each row represents an individual cell with the following information. Tumour type: adult-type diffuse glioma 

classification (oligodendroglioma, astrocytoma, or glioblastoma). Patient ID: a unique identifier for each patient. Cell 795 
barcode: A unique sixteen-nucleotide identifier for each cell. Note that while cell barcodes are unique within a sample, some 

are shared across samples. The remaining seven columns contain scores representing the contribution of each cell state to the 

transcriptional profile of each cell. Column scores sum to one. Values represent the cell-by-factor output from non-negative 

matrix factorisation analysis.  

 800 
Supplementary Table 7 |  Percentage of cell states per sample. This file contains the percentage of tumour cells assigned to 

each of seven tumour cell states for each sample. The four columns contain the following information. Tumour type: adult-

type diffuse glioma classification (oligodendroglioma, astrocytoma, or glioblastoma). Patient ID: a unique identifier for each 

patient. Cell state: one of seven tumour cell states (neuro-lineage, oligo-lineage, neuro-oligo-lineage, cycling G1/S, cycling 

G2/M, hypoxia, or glioma stem cell). Percentage: the percentage of tumour cells assigned to that state. The data in this file is 805 
associated with Figure 3. 

 

Supplementary Table 8 | Subclone and cell state relationships. This file provides the data used to analyse the association 

between tumour subclones and cell states. Each row represents a single cell with the following information. Tumour type: 

adult-type diffuse glioma classification (oligodendroglioma, astrocytoma, or glioblastoma). Patient ID: a unique patient 810 
identifier. Cell barcode: a unique sixteen-nucleotide identifier for each cell. Note, while cell barcodes are unique within a 

sample, some are shared across samples. The remaining six columns indicate the density of cells belonging to subclones with 

n (zero to five) mutations distinct from each tumour’s parental subclone. The data in this file is associated with Figure 4. 

 

Supplementary Table 9 | Enrichment of recurring copy number alterations within cell states. This file contains data used to 815 
investigate the association between copy number alterations and different cell states. The nine columns contain the following 

information. Cell state: one of seven tumour cell states (neuro-lineage, oligo-lineage, neuro-oligo-lineage, cycling G1/S, 

cycling G2/M, hypoxia, or glioma stem cell). Chromosome: GRCh38 chromosome name. Genome tile: A 1-megabase 

chromosomal region. Observed data: the mean proportion of cells in a given cell state exhibiting a copy number alteration. 

The next three columns describe the null distribution (1%, 50%, 99% quantiles), obtained by shuffling cell states 10,000 820 
times. The remaining two columns indicate whether the observed proportion is significantly higher or lower than expected 

by chance (compared to the null distribution). The data in this file is associated with Figure 5. 

 

Supplementary Table 10 | Custom glioma DNA panel. This file describes a custom 221-amplicon panel designed to cover 

recurring genomic alterations in diffuse glioma. The four columns contain the following information about each amplicon. 825 
Chromosome: GRCh37 chromosome name. Start coordinate: GRCh37 start coordinate. End coordinate: GRCh37 end 

coordinate. Amplicon ID: a unique amplicon identifier. 
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Supplementary Figures 830 

 
Figure S1 | Extended classification of single cells from 40 adult-type diffuse gliomas. 
(A) Detailed cell type classification. The percentage of cell types that comprise each tumour is shown. The plot is split left to 
right into the three tumour types; astrocytoma, glioblastoma and oligodendroglioma. 
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 835 
Figure S2 | Defining an optimal NMF rank parameter and gene markers that define tumour cell states. 
(A) Two measures to select the optimal rank parameter: normalised mutual information (NMI) and mean squared error 
(MSE). NMI measures the reduction in the entropy of class labels obtained if the cluster labels are known. An increase in 
NMI values suggests more stable clusters. MSE measures the average squared difference between the original data and the 
approximation created by the matrix factorisation. A lower MSE indicates a better fit. A rank parameter of seven provided 840 
the best balance between producing stable patterns and accurately representing the data. Additional gene markers 
characteristic of the neuro-lineage (B), neuro-oligo-lineage (C), oligo-lineage (D), hypoxia (E) and glioma stem cell (F) 
states are visualised on UMAP embedding plots of tumour cells from all samples. 
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Figure S3 | Kaplan-Meier curves demonstrating overall survival of 826 Cancer Genome Atlas project adult-type diffuse 845 
glioma patients reclassified to be consistent with 2021 WHO Classification of Tumors of the Central Nervous System 
guidelines. 
 

 
Figure S4 | Number of CNVs of all Cancer Genome Atlas project samples split by tumour type. Colours represent the 850 
genome doubling status of each sample: non-genome doubled (green) and genome-doubled (purple). Top, the number of 
available samples of each tumour type. 
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Figure S5 | Comparison of the adult mouse ventricular-subventricular zone (V-SVZ) neural stem cell (NSC) lineage and 855 
human adult-type diffuse glioma cells. 
(A) UMAP embedding of the integrated reference NSC dataset with cells colored by each of the constituent four studies. (B) 
UMAP embedding of the reference dataset colored by cell type. (C) UMAP embedding of the reference dataset colored by 
pseudotime values inferred with Monocle 3. (D) UMAP embedding of the glioma dataset colored by transferred pseudotime 
values. 860 
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