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Abstract 
Genome-wide association studies (GWAS) have linked thousands of genetic variants to various complex 

traits or diseases. However, most identified variants have weak individual effects, are correlated with 

nearby polymorphisms due to linkage disequilibrium (LD), and are located in non-coding cis-regulatory 

elements (CREs). These characteristics complicate the assessment of the direct impact of each variant on 

tissue specific gene expression and phenotype. To address this challenge, we have developed a novel 

algorithm that leverages polymer folding and 3D chromatin interactions to prioritize and identify putative 

causal variants and their target genes. From the millions of eQTL-Gene pairs identified by GTEx in human 

somatic tissues, we classify only ~10-20% as putative functional eQTL-Gene pairs supported by phenotypic 

associations confirmed through CRISPR deletion experiments. Our findings show that unlike most variants, 

functional eQTL-Gene pairs predominantly reside within the same topologically associating domain (TAD) 

and have strong associations with cell-type specific cis-regulatory elements (CREs), enriched for binding 

sites of tissue-specific transcription factors. Unlike most approaches that rely on linear distance or other 

chromatin features (histone code, accessibility), our algorithm emphasizes the importance of physical 

interactions and 3D chromatin folding in gene regulation, as the identified eQTL-Gene pairs are all among 

the small fraction of physical chromatin interactions sufficient for chromatin locus folding. Overall, our 

algorithm reduces false positive associations between DNA variants and genes identified by eQTL analysis 

and uncovers novel variant-gene pair associations. These findings suggest a mechanism where a small 

number of regulatory variants control tissue specific gene expression via their physical association with 

target genes confined within the same TAD. Our approach provides new insights into the molecular 

mechanisms driving GWAS phenotypes. 

Introduction 
Genome-wide association studies (GWAS) reveal associations between thousands of genetic variants and 

complex traits or diseases [1], [2]. However, only rarely we are able to define the causal variants and their 

target genes, which hinders the mechanistic understanding of the molecular pathways connecting genetic 

variants to common diseases [3], [4].  Due to linkage disequilibrium (LD) with nearby polymorphisms , 

multiple variants can appear to contribute to a phenotype simply owing to a correlation with a causal site 
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[5], [6], [7]. Most of these variants have individually weak effects [8], [9]   make it difficult to pinpoint the 

‘driver’ or most contributing ones. Statistical fine-mapping [10], [11], [12] can narrow down candidate 

causal variants but requires a large sample size. Even the largest GWAS studies rarely achieve single-SNP 

resolution. Moreover, over 90% of these variants are situated within noncoding sequence [13], which may 

regulate distal genes [14], [15], making it difficult to identify the target causal gene. Perturbation 

experiments can link variants at cis-regulatory elements (CREs) to target genes but are low throughput 

[16]. Systematic efforts to pinpoint functional and causative disease-associated variants and their target 

genes on a larger scale would enhance our understanding of human disease etiology and provide a target 

for therapeutic interventions.  

Extensive efforts by ENCODE [17], Roadmap Epigenomics [18], and others [13], [19] have shown that 

disease-risk-associated variants are enriched at cis-regulatory elements (CREs) which are only active in 

relevant cell types, highlighting important regulatory roles for noncoding variants. Inferring target genes 

of CREs is challenging because CREs can regulate distant genes, making 'nearest gene mapping' often 

ineffective [14], [15], [20], [21]. Recent studies using chromosome conformation capture methods have 

shown that disease-associated noncoding elements interact with corresponding genes through long-

range chromatin interactions [22], with interacting loci enriched for disease-associated SNPs [23], [24]. 

This suggests that noncoding variants may influence target genes via 3D chromatin interactions, 

emphasizing the need for high-resolution cis-regulatory interaction maps to understand how these 

variants affect gene expression.  

While eQTL analysis can help to establish genetic connections between regulatory elements (CREs or 

SNPs) and their respective target genes [25], chromosome conformation methods can establish physical 

connections between them [26]. Together, these two approaches offer a unique route to mechanistic 

understanding of how genetic variants affect gene expression by establishing the physical basis of their 

3D spatial organization. While important progress has been made in understanding the physical basis of 

genetic associations between eQTLs and their target genes, existing studies have certain limitations. 

Studies based on HiChIP [24], [27] and PCHi-C [28] techniques focus solely on the subset of eQTLs that 

overlap with active cis-regulatory elements or promoter interacting regions, respectively. Consequently, 

they do not provide information on eQTLs outside of the specific capture regions. On the other hand, Hi-

C offers an unbiased view of all possible pairwise interactions between genomic loci genome-wide [29] 

making it more suitable for generating hypotheses and discovering novel interactions. However, studies 

employing Hi-C techniques [30], [31] have typically remained at the levels of topologically associating 

domains (TADs) rather than extensively exploring the chromatin interactions involving eQTLs. 

Furthermore, quantifying chromatin interactions involving eQTLs using Hi-C is challenging due to the 

potential presence of numerous chromatin contacts, many of which may arise from generic effects of 

confined polymers [32], [33]. Existing methods integrating Hi-C with eQTL data are also unable to 

effectively remove these random polymer effects. 

In this study, we developed a novel computational pipeline to link genetic variants with their target genes 

by integrating genetic and physical interaction data. Our approach prioritizes putative functional variants 

and genes that exhibit both genetic and physical interactions. Our findings show that unlike most variants, 

functional eQTL-Gene pairs predominantly reside within the same topologically associating domain (TAD) 

and have strong associations with cell-type specific cis-regulatory elements (CREs), enriched for binding 

sites of tissue-specific transcription factors. Furthermore, these prioritized variants show higher 

enrichment in causal variants identified by reporter assays, statistically fine-mapped eQTLs, and disease-
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associated GWAS. They are also enriched with motifs for tissue-specific transcription factors, which in turn 

are linked to genes involved in tissue-specific biological processes. CRISPR-based experimental data 

further validates the variant-gene map predicted by our method. Our physical proximity-based approach 

predicts the long-range target genes of enhancers more accurately than state-of-the-art methods. 

Overall, our study provides a physical basis for genetic associations by systematically linking genetic 

variants with their target genes. This enables the identification of functional regulatory variants and offers 

a mechanistic understanding of how genetic variants affect specific tissues or gene expression. 

 

Results 

A Small Proportion of eQTLs Are Identified as Physical eQTLs. 

GTEx analysis has revealed a significant number of eQTL-eGene associations, ranging from 0.4 to 2.4 

million across different tissues (Supplementary Fig. S1c). On average, this translates to over 100 eQTLs 

per eGene. Identifying functionally important eQTLs from this vast pool presents a formidable challenge. 

Deciphering the functional relevance of these associations is therefore inherently complex. Chromatin 

interactions enable the spatial juxtaposition of distal cis-regulatory elements and promoters, they can 

directly modulate the expression of the target gene [22]. We hypothesized that eQTLs exhibiting both 

genetic and physical interactions with their target genes may have enhanced functional significance. 

Assessing whether physical interactions exist between two genomic loci through Hi-C data poses 

significant challenges. Hi-C studies often record numerous chromatin contacts, but majority of which may 

arise from generic effects of confined polymers [32], [33]. To identify Hi-C interactions unlikely to occur 

due to such random collisions, we employed the CHROMATIX method [33]. We begin by generating an 

ensemble of random self-avoiding chromatin polymers under nuclear confinement using the fractal 

Monte Carlo sampling method [33]. We then bootstrap over this ensemble, which serves as our null model 

of random physical interaction, to assign p-values to Hi-C interactions. Those interactions with BH-FDR 

adjusted p-values below a threshold of 0.05 are considered significant (see Fig. 1b). These significant non-

random interactions have been demonstrated to be able to drive chromatin folding (see Supplementary 

Fig. S1b) [33], [34], [35]. In addition they have been shown to enable the identification of specific 

chromatin many-body interactions [33] and the quantification of heterogeneity in 3D chromatin 

structures within the cell population [35]. We refer these significant non-random interaction as folding 

reconstitutive (FoldRec) interactions. 

Here, we carry out our study on four GTEx [36] tissues, EBV-transformed lymphocytes (LCL), whole blood 

(WHLBLD), lung, and liver with corresponding 4DN Hi-C datasets of GM12878, K562, IMR90, and HepG2 

cell lines, respectively (Supplementary Fig. S1a) [37], [38]. These tissues were selected due to the 

availability of both Hi-C and eQTL datasets, allowing us to apply our approach across a variety of tissues 

to ensure robustness and comprehensiveness. Across all tissues, only a minimal proportion, ranging from 

3% to 9% of Hi-C interactions were identified as FoldRec interactions (See Fig. 1c), consistent with the 

earlier studies [33], [35].  

We investigate whether an eQTL and its associated eGene exhibit a 3D physical interaction, we categorize 

eQTL-eGene pairs based on whether FoldRec interaction exists between them or not. If both genetic and 
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FoldRec interactions exist between an eQTL and its associated eGene, we referred to them as physical-

eQTL (PhyeQTL) and physical-eGene (PhyeGene), respectively. Conversely, if only genetic association 

exists, we referred them as non-physical-eQTL (non-PhyeQTL) and non-physical-eGene (non-PhyeGene), 

respectively (refer to Fig. 1a). 

Among all eQTL associations identified by GTEx, approximately 11% to 16% correspond to pairs where the 

eQTL is positioned within 10kb from the transcription start site (TSS) of the associated eGene 

(Supplementary Fig. S1d). We focus on long-range interaction and exclude them from our analysis due to 

the resolution limitations of Hi-C data. We overlay the long range (>10kb) eQTL-eGene pairs with FoldRec 

interactions to determine whether the eQTL physically interacts with the promoter of the eGene. Our 

results show that about 52% to 79% of eGenes harbor at least one PhyeQTL, and 17% to 21% of eQTLs are 

Figure 1 : Small Percentage of eQTL identified as Phy-eQTLs. 
(a) Schematic representation distinguishing Phy-eQTL and non-Phy-eQTL. Phy-eQTL involves both genetic and physical 

interactions with the target gene (eGene1), while non-Phy-eQTL lacks physical interaction despite its genetic association with 

the gene (eGene2). (b) Steps involved in identifying FoldRec interactions from Hi-C data. It includes generating a random 

polymer ensemble, creating a null model with a bootstrap distribution, and filtering out background interactions to identify 

FoldRec interactions. (c) Percentages of the Hi-C interactions identified as FoldRec interactions. (d) Percentage and number of 

the eQTL-eGene pairs identified as Phy-eQTL-eGene. The top axis represents the percentage, while the bottom axis represents 

the count of Phy-eQTL-eGene pairs. (e) Left: Percentage of eGenes physically interacting with at least one eVariant. Right: 

Percentage of eQTL physically interacting with at least one eGene. 
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associated with at least one PhyeGene (Fig. 1e). However, only a small percentage of all eQTL-eGene pairs, 

ranging from 16% to 19%, are identified as PhyeQTL-Gene (Fig. 1d). These results reveal that only a small 

fraction of eQTLs are PhyeQTL.  

To evaluate the functional significance of those PhyeQTL, we assessed their enrichment in functionally 

validated genetic variants by  Massively Parallel Reporter Assays (MPRAs), specifically SuRE, which 

systematically screen millions of human SNPs for potential effects on regulatory activity [39]. Our analysis 

revealed that PhyeQTLs exhibit higher enrichment in reporter assay QTL (raQTL) compared to non-

PhyeQTLs, indicating their functional relevance (Supplementary Fig. S2b). This suggests that PhyeQTL can 

serve as a physically informed approach for fine mapping of eQTLs.  

Additionally, we examined whether PhyeQTL are enriched for statistically fine-mapped putative causal 

variants for expression quantitative loci (eQTL). These variants are identified by the three different 

methods: CaVEMaN [10], CAVIAR [11] and dap-g [12]. Strikingly, PhyeQTL displayed greater enrichment 

in causal variants identified by all three methods compared to non-PhyeQTL (Supplementary Fig. S2a), 

further highlighting the importance of PhyeQTL.  

Furthermore, we also assessed whether PhyeQTL exhibits any preference for disease or trait associated 

GWAS variants. Again, we observed that this enrichment was notably higher for PhyeQTL compared to 

non-PhyeQTL (Supplementary Fig. S2c). 

In summary, our findings demonstrate that, among all eQTL variants, only a small fraction are Physical 

QTLs. This underscores the potential of utilizing physical interaction information to prioritize causal eQTL 

variants and GWAS variants. 

Physical eQTL-eGene Pairs Predominantly Fall Within the Same TAD.  

Several studies have suggested that Topologically Associating Domains (TADs) play a dual role in 

facilitating and constraining enhancer-promoter interactions [40], [41]. Deletions or rearrangements of 

TAD boundaries can disrupt the regulation of gene expression by losing or hijacking of regulatory elements 

[42], [43]. To investigate the relationship between eQTL-eGene pairs and TADs, we stratified eQTL-eGene 

pairs based on whether they crossed TAD boundaries or remained within the same TAD (Fig. 2a). Pairs 

where the eQTL and its associated eGene resided within the same TAD were classified as TAD boundary 

non-crossing, while pairs where they were located in different TADs, thus associated by crossing TAD 

boundaries, were classified as TAD boundary crossing. We found, over 85% of PhyeQTL-eGene pairs were 

contained within the same TAD, and a small fraction of ~15% are crossing the TAD boundary. Conversely, 

approximately 50% of the non-PhyeQTL-eGene pairs fell into both TAD boundary crossing and non-

crossing categories (Fig. 2b). This striking difference between PhyeQTL and non-PhyeQTL suggests that 

they employ different mechanisms to regulate eGene expression. As, PhyeQTL-eGene pairs 

predominantly fall within the same TAD, consistent with the observation that  enhancer-promoter (E-P) 

communication occurs primarily within insulated neighborhoods [41], [43]. These results suggest the 

direct effects of PhyeQTL on eGene expression. In contrast, non-PhyeQTL exhibit no relationship with 

TADS, suggesting that they may act through more indirect mechanisms to influence eGene expression.  
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Figure 2: Enhanced Gene Expression Levels of Phy-eGenes are Linked to Active Chromatin Enrichment of Phy-eQTLs. 
 (a) Left: Illustration of a Domain boundary non-crossing scenario where the pair of eQTL-eGene lies within the same Hi-C domain. 
Right: Illustration of a Domain boundary crossing scenario where the pair of eQTL and its associated eGene are situated in different 
Hi-C domains. (b) Proportion of eQTL-eGene pairs in both categories: Domain boundary crossing and Domain boundary non-
crossing. Left: Phy-eQTL pairs. Right: non-Phy-eQTL pairs. (c) Representative chromatin states, summarized by merging similar 
states of 15-state CHROMHMM state model. (d) Chromatin states annotation of an example locus. (e) Log-fold enrichment of Phy-
eQTL and non-Phy-eVariant over all eQTL genotyped in GTEx, categorized by the 5 chromatin states. Highlighting the active 
chromatin enrichment of Phy-eQTLs. (f) Gene expression comparison between Phy-eGenes and non-Phy-eGenes, stratified by the 
chromatin state annotation of the associated eVariant. Highlighting the enhanced gene expression levels of Phy-eGenes associated 
with active Phy-eGenes. (g) Correlation between chromatin state enrichment and expression of Phy-eQTL/non-Phy-eQTL and Phy-
eGene/non-eGene, respectively. 
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Enhanced Expression of Target eGenes Linked to Enrichment of Active 

Chromatin in Physical eQTLs. 

Previous studies suggest that intergenic eQTLs demonstrate a remarkable tendency to overlap with 

transcription factor binding sites, open chromatin regions, promoters, and enhancers [44], [45]. To delve 

deeper into the specifics of the chromatin landscape underlying phy-eQTLs and non-PhyeQTLs. We 

harnessed the ChromHMM 15-state model [19] form ENCODE [46], consolidating similar states to derive 

four representative chromatin states (see Fig. 2c). These tissue-specific summarized chromatin state 

annotations were then utilized to annotate the entire genome, providing insights into tissue-specific 

chromatin activity (as depicted in Fig. 2d). 

Using all variants genotyped in GTEx as a comparative background, we evaluated the enrichment for 

overlap of PhyeQTL and non-PhyeQTL across each chromatin state. Notably, PhyeQTL and non-PhyeQTL 

exhibited strikingly divergent levels of enrichment. Specifically, PhyeQTL demonstrated higher enrichment 

within active chromatin states (TSS, Enh, and Tx), whereas non-PhyeQTL showed greater enrichment 

within inactive chromatin states (Repressed) (see Fig. 2e). The pronounced differences in the enrichment 

of PhyeQTL within active regulatory regions highlight the enhanced regulatory potential of PhyeQTL in 

contrast to non-PhyeQTL. This emphasizes that PhyeQTL SNPs are more inclined to disturb active 

regulatory regions, thereby amplifying their functional importance.  

The noticeable differences in chromatin state enrichment linked with PhyeQTL motivate us to explore 

whether this increased regulatory capacity correlates with observable impacts on the expression levels of 

the associated eGenes. To address this question, we conducted an analysis of eGene expression levels, 

stratified by the chromatin state of the corresponding PhyeQTL or non-PhyeQTL, by aligning the active or 

inactive chromatin state of eGenes with their respective associated PhyeQTL or non-PhyeQTL. Notably, 

eGenes associated with active (TSS, Enh and Tx) PhyeQTL display significantly higher expression levels 

than those associated with active non-PhyeQTL. Conversely, eGenes associated with inactive (Repressed) 

PhyeQTL exhibit notably lower expression levels compared to eGenes linked to inactive non-PhyeQTL (see 

Fig. 2f). Moreover, there is a positive correlation between chromatin state enrichment and expression 

levels of PhyeQTL/non-PhyeQTL and PhyeGene/noneGene, respectively (see Fig. 2g). Overall, these 

findings suggest that the chromatin state of PhyeQTL directly influences the expression levels of 

associated eGenes, while non-PhyeQTL do not exert a strong direct influence on expression, implying that 

PhyeQTL have a greater potential to directly modulate eGene expression compared to non-PhyeQTL. Non-

PhyeQTL may instead influence expression through indirect mechanisms. This underscores the 

significance of PhyeQTL information in elucidating functional connections between regulatory elements 

and genes within the genome. 

Physical QTLs Likely Disrupt Potential Regulatory Elements 

The increased enrichment of PhyeQTL in active chromatin states (Fig. 2e) led us to consider whether 

PhyeQTL possesses an enhanced ability to impact regions characterized by open chromatin and active 

enhancers. To investigate this, we assessed whether PhyeQTL sites exhibit greater enrichment for ATC-

seq and H3k27ac signals, which are indicators of open chromatin and active enhancers, respectively. 

Analysis of the average profiles of ATAC signals (Fig. 3a) and H3k27ac signals (Fig. 3b) revealed that 

PhyeQTLs exhibit higher enrichment of both signals across tissues compared to non-PhyeQTLs. These 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 14, 2024. ; https://doi.org/10.1101/2024.06.13.598913doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.13.598913
http://creativecommons.org/licenses/by/4.0/


8 
 

Figure 3: Phy-eQTLs Likely Disrupt Potential Regulatory Elements. 
 (a) Average profiles of ATAC signals centered on either eQTLs or peak summits, when within a 1kb proximity to the eQTL, 
highlighting the potential disruption of accessibility by Phy-eQTLs. (b) Average profiles of H3k27ac signals centered on either 
eQTLs or peak summits, when within a 1kb proximity to the eQTL, highlighting the potential disruption of active enhancers by 
Phy-eQTLs. (c) Fraction of liver eQTLs overlapping with the binding sites of the DNA-associated protein, normalized by the total 
number of binding sites. Liver Phy-eQTLs exhibit a predominant overlap with binding sites compared to non-Phy-eQTLs, 
highlighting the potential disruption of binding sites of DNA-associated protein by Phy-eQTLs. (d) Normalized fraction of Phy-
eQTLs for different tissues overlapping with DNA-associated protein binding sites of the Liver tissues. Liver Phy-eQTLs exhibit a 
predominant overlap with binding sites compared to other tissues, suggesting a potential disruption of tissue-specific binding 
sites by Phy-eQTLs. 
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differences in ATAC and H3k27ac signals imply that PhyeQTLs are proximal to active enhancers and have 

an increased potential to perturb active enhancer in these regions. 

Additionally, we examined whether PhyeQTLs affect the binding sites of DNA-associated proteins (DAPs), 

such as transcription factors (TFs), which bind to genomic regulatory elements such as promoters, 

enhancers, silencers, and insulators [47]. We utilized ChIP-seq data obtained from liver tissue to quantify 

the binding of 17 different DAPs [48] , including liver-specific factors (e.g., HNF4A and RXRA) and 

chromatin structure-related factors (e.g., CTCF and RAD21). Our analysis aimed to evaluate the overlap 

between QTLs and DAP binding sites, and comparing the overlap patterns between PhyeQTLs and non-

PhyeQTLs. Specifically, we calculated the fraction of liver eQTLs overlapping with the binding sites of DAPs, 

normalized by the total number of binding sites for each DAP. Remarkably, Liver PhyeQTLs exhibited a 

predominant overlap with binding sites compared to non-PhyeQTLs. This strongly suggests that PhyeQTLs 

can disrupt the DAP binding sites (Fig. 3c and Fig. S3). 

We further ask whether the disruption of DAP binding sites by PhyeQTLs is tissue specific.  As reported by 

Ramaker et al., the data on DAP binding sites derived from liver tissue closely reflects liver biology than 

that from the HepG2 cell line [48]. Given the unavailability of primary tissue-based data on DAP binding 

sites for other tissues analyzed in this study, we utilized liver tissue-derived DAP binding site data to assess 

tissue-specificity and evaluate the overlap enrichment of PhyeQTLs from other tissues with DAP binding 

sites. Notably, Liver PhyeQTLs exhibited a prominent overlap with binding sites of Liver DAPs compared 

to PhyeQTLs from other tissues (see Fig. 3d), suggesting a potential disruption of tissue-specific binding 

sites by PhyeQTLs.  

In summary, these results reinforce the idea that PhyeQTLs exhibit increased regulatory capacity and are 

prone to disturb active regulatory elements, such as open chromatin, active enhancers, and tissue-specific 

TF binding sites. 

Physical eQTLs are Enriched with Tissue-specific Motifs. 

The enrichment of PhyeQTL overlapping with liver DAP binding sites underscores the importance of 

identifying all putative transcription factors (TFs) binding at these sites to understand how PhyeQTL 

disrupt regulatory mechanisms. However, the lack of comprehensive tissue-specific DAP binding data 

across all four tissues analyzed in this study presents a formidable challenge in identifying these TFs. To 

overcome this challenge, we aim to quantify the enriched TF motifs at PhyeQTL sites, thereby identifying 

putative TFs bound to these regions. 

We employed the HOMER algorithm [49] for de novo motif discovery to uncover DNA motifs 

overrepresented within PhyeQTL sites. In each tissue, we conducted motif enrichment analysis on all 

sequences within PhyeQTL sites (± 100 bp), taking sequences from non-PhyeQTL sites (± 100 bp) 

identified within that tissue as background. This enables the identification of motifs enriched specifically 

at PhyeQTL sites compared to non-PhyeQTL sites, facilitating insight into their regulatory significance. 

For each identified TF motif, we retained those TFs expressed in the corresponding GTEx tissue (median 

TPM > 1). The collective analysis of TF motifs identified across all tissues underscores their tissue specificity 

both in motif enrichment and expression (see Supplementary Fig. S4 and Fig. S5). Notably, in LCL, we 

detected motifs corresponding to transcription factors implicated in B-cell development and immune 

responses [50], including PAX5 [51], NF-KB [52] and SP1/PU.1 [53]. In Whole Blood, we identified motifs 
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Figure 4: Phy-eQTLs are enriched with Tissue-specific Motifs.  
(a) Motif enrichment was computed on the Phy-eQTL sites for each tissue. From all identified motifs, only the top 10 
expressed transcription factors (TFs) in the corresponding tissue are plotted. The x-axis represents the enrichment (-log(p-
value)) computed by HOMMER, while the size of the scatter points represents the expression (TPM) of the corresponding 
motif. (b) Gene Ontology (GO) enrichments of a subset of Phy-eGenes associated with Phy-eQTLs containing one of the top 
ten tissue-specific motifs depicted in (a) for each tissue. 
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associated with immune and inflammatory responses, as well as hematopoiesis and erythroid 

development, such ETS-1, ETS-2 [54], NF-KB1 [55] and GATA-1 [56]. In lung tissue, motifs linked to lung 

development and morphogenesis emerged, including GATA6 [57], FOXA2 [58] and CEBPB [59]. Lastly, in 

liver tissue, motifs corresponding to liver development-associated transcription factors [60], [61] were 

identified, including HNF4A, CEBpB, and FOXA3. 

Motif enrichment analysis in each tissue unveiled that PhyeQTL sites exhibit enrichment with binding sites 

of tissue-specific TFs. This observation prompted us to delve deeper into the PhyeGenes linked to PhyeQTL 

that coincide with TF binding sites. To systematically conduct this analysis, we selected the top 10 

expressed TFs (median TPM) from the pool of all TF motifs identified within a tissue (Fig. 4a). 

Subsequently, we scanned for instances of these motifs overlapping with PhyeQTL and retrieved the 

corresponding PhyeGenes. Taking these PhyeGenes as a gene set, we performed gene list enrichment 

analysis using Enrichr [62]. Our analysis revealed that these PhyeGenes are involved in tissue-specific GO 

Biological Processes (Fig. 4b). Specifically, GO terms associated with LCL and whole blood included 

immune response and antigen presentation, among others. Liver-related GO terms included blood fluid 

secretion and metabolic processes. Conversely, lung-related GO terms exhibited relatively less tissue 

specificity. Overall, these findings underscore the functional significance of PhyeQTL, as they are enriched 

with motifs for tissue-specific TFs, which in turn are linked to PhyeGenes involved in tissue-specific 

biological processes.  

In summary, our results suggest that PhyeQTL influences the expression of tissue-specific PhyeGenes by 

disrupting the binding sites of tissue-specific TFs. 

Tissue-specific Enh Phy-eQTL modulates tissue-specific gene expression.  

As PhyeQTLs exhibit characteristics typical of active cis-regulatory elements (CREs), including enriched 

active chromatin states, open chromatin, and H3k27ac signals. Moreover, they significantly overlap with 

tissue-specific DNA binding sites for DAP (DNA-associated proteins) and transcription factor motifs known 

to regulate tissue-specific genes. These distinct features of PhyeQTLs have prompted us to leverage their 

potential for constructing tissue-specific enhancer-gene maps. 

Our approach begins by annotating tissue-specific PhyeQTLs within the respective tissue as well as across 

other tissues. Remarkably, over 75% of Enhancer (Enh) PhyeQTLs are exclusively annotated as active 

enhancers in a single tissue, underscoring the tissue-specific regulatory role of PhyeQTLs (Fig. 5a). 

Furthermore, the PhyeGenes associated with tissue-specific Enh PhyeQTLs in each tissue exhibit minimal 

overlap with those in other tissues, reinforcing the tissue-specific nature of their regulatory activity (Fig. 

5b). This observation prompted us to investigate the expression patterns of PhyeGenes across various 

tissues. 

Comparative gene expression analysis between PhyeGenes associated with tissue-specific Enhancer 

PhyeQTLs and their counterparts in other tissues shows significantly higher expression levels of 

PhyeGenes linked to tissue-specific Enhancer PhyeQTLs, compared to those in other tissues (Fig. 5c). 

These findings collectively underscore the potential of PhyeQTLs in identifying cis-regulatory elements 

and their target genes. 
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Validation of Physical eQTLs-eGene Associations Using CRISPR Data 

For functional validation of our PhyeQTL-derived enhancer-gene maps, we utilized CRISPR-based 

experimental data from K562 cells [16] and integrated it with our PhyeQTL-PhyeGene pairs identified in 

whole blood. Our analysis, employing FoldRec, identified MYO1D and TMEM98 as PhyeGenes associated 

with PhyeQTLs. Notably, these PhyeQTLs colocalized within the same 5kb Hi-C bin as experimentally 

validated enhancer elements for MYO1D and TMEM98 genes (Fig. 6a), thereby validating the accuracy of 

our PhyeQTL-based enhancer-gene maps.  

Similarly, we identified CD164 as a PhyeGene associated with PhyeQTL. This PhyeQTL was found to co-

locate with a CRISPR-validated enhancer element of the CD164 gene within the same Hi-C bin (Fig. 6b), 

further validating the reliability of our PhyeQTL-derived enhancer-gene maps. 

 

Figure 5: Tissue-specific Enh Phy-eQTL modulates tissue-specific gene expression.  
(A) Percentage of Phy-eQTL annotated as Enhancer state across one tissue (76%), two tissues (16%), three tissues (4%), and all 
four tissues (0.2%). (B) UpSet plots illustrating the intersection of Phy-eGenes associated with Tissue-specific Enh Phy-eQTL. (C) 
Comparative gene expression analysis between Phy-eGenes associated with Tissue-specific Enhancer Phy-eQTL and the 
corresponding genes in other tissues. Highlighting the enhanced gene expression levels of Phy-eGenes linked to Tissue-specific 
Enhancer Phy-eQTL in contrast to those observed in other tissues. 
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These instances of functional validation highlight the robustness of PhyeQTLs in identifying functional 

enhancer-gene associations, thereby emphasizing their potential in uncovering the regulatory landscape 

of the genome. 

Figure 6: Phy-eQTL-gene association validated by Crispr data. 
 (a) A set of Phy-eQTLs, co-located within the same Hi-C bin, exhibiting physical interactions with eGenes 
MYO1D and TMEM98, demonstrating consensus with Crispr data. (b) A set of Phy-eQTLs, co-located within 
the same Hi-C bin, exhibiting physical interactions with eGene CD164 demonstrating consensus with Crispr 
data. 
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Identification of Targets of eQTLs Beyond Their eGenes Validated by 

CRISPR Data 

A significant portion, approximately 80%, of eQTLs do not exhibit direct physical interactions with any of 

their associated eGenes (Fig. 1d). To gain deeper insights into how non-PhyeQTL exert their influence on 

the expression of target eGenes, we seek to identify the potential alternative interacting partners of these 

non-PhyeQTL when they do not directly interact with the associated eGene (Fig. 7a). These partners 

referred here as “other integrating end of non-PhyeQTL”. Using whole genome as a comparative 

background, we evaluated the chromatin state enrichment of these other integrating end of non-

PhyeQTL. Our analysis reveals a positive log-fold enrichment of active chromatin states (TSS, Enh, and Tx) 

in these regions, indicative of their regulatory potential.  

Based on these findings, we propose a hypothesis that non-PhyeQTL may exert regulatory effects on genes 

beyond those directly associated with eQTL. To test this hypothesis, we integrated CRISPR-based 

experimental data from K562 cells [16] in our analysis of alternative interacting partners of non-PhyeQTL.  

Remarkably, functional enhancers of JUNB and PRDX2 identified by CRISPR are within the same Hi-C bin 

as two non-PhyeQTLs, namely chr19_12784786_C_G_b38 and chr19_12784786_C_G_b38 (Fig. 7b). 

Although these eQTLs are not genetically associated with JUNB and PRDX2, the physical interaction with 

these genes suggests their functional relevance. Similarly, we observed a non-Phy-eQTL interacting 

physically with HBG1, a gene not associated with this eQTL. This finding is also supported by CRISPR data 

(Fig. 7c). These functional data validate our hypothesis that non-PhyeQTL influences the expression of 

non-eGenes through physical interaction. 

Our findings suggest two possibilities: non-PhyeQTL may indirectly impact eGenes through alternative 

mechanisms. It is also possible that the statistical power of eQTL studies may limit their ability to identify 

these genes as true eGenes. Further investigation is warranted to comprehensively understand the 

regulatory landscape of non-PhyeQTL and their implications for gene expression regulation.  

FoldRec-Based Method for Enhancer Target Prediction. 

The application of FoldRec-predicted 3D chromatin interactions to identify regulatory eQTL holds promise 

for extending our understanding of enhancer-gene relationships beyond eQTL loci. The widely adopted 

activity-by-contact (ABC) model [16] for predicting enhancer-gene connections originally utilize the Hi-C 

data. However, their subsequent results indicate that alternative approaches of estimating 3D contact 

based on genomic distance or average values of Hi-C data yield comparable results in predicting CRISPR 

data. This unexpected outcome underscores the need for a critical reassessment of how Hi-C data is 

utilized, suggesting that current methodologies may not fully exploit the rich insights offered by 3D 

chromatin interaction studies. 

Distinguishing the presence or absence of physical interactions between enhancers and genes from Hi-C 

data poses a significant challenge. Rather than relying solely on all Hi-C interactions, we leverage FoldRec 

interactions to predict enhancer-gene interactions. Evaluation on CRISPR-based experimental data 

provided by Fulco et al. [16] demonstrates the superior performance of our FoldRec-based method in 

predicting long-range enhancer-gene connections compared to the ABC model (see Fig. 8). These results 

highlight the potential of FoldRec interactions in predicting functional enhancer-gene relationships, 
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providing a promising avenue for advancing our understanding of gene regulation within the framework 

Figure 7: FoldRec Identified Targets of Non-Phy-eQTLs Beyond Their eGene which are Validated by Crispr Data (a) 
Schematic representation of the other interacting end of the non-Phy-eQTLs. These are the genomic regions (other than 
genetically associated eGene) that physically interacting with the non-Phy-eVariant. (b) A set of two non-Phy-eQTLs, 
collocated within the same Hi-C bin, demonstrating physical interactions with JUNB and PRDX2, which are non-eGenes 
of these eQTLs. These interactions are validated by Crispr data. (c) A non-Phy-eQTLs demonstrating physical interactions 
with HBG1, which is non-eGene of this eQTL. This interaction is validated by Crispr data. 
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of chromatin architecture.  

Discussion 
We have introduced a novel computational framework that integrates genetic (eQTL) and chromatin 

interactions (Hi-C) to establish physical and functional connections between genetic variants and their 

target genes. Although both Hi-C and eQTL methodologies provide complementary insights into the 

associations between regulatory elements (CREs) and target genes, it is challenging to distinguish 

functionally significant interactions from the vast number of interactions obtained in a Hi-C data. 

Our method, based on FoldRec interactions, selectively identifies a small subset of significant Hi-C 

interactions. These interactions are then overlapped with eQTL-eGene interactions to identify a subset of 

eQTLs variants that exhibit both genetic and physical interactions, referred as PhyeQTLs. They exhibit 

enrichment for both statistically and experimentally identified causal variants. Additionally, PhyeQTLs 

have strong regulatory characteristics, including enrichmnet with open chromatin and tissue-specific 

transcription factor binding sites, and are associated with tissue-specific PhyeGenes.  These findings show 

that we propose PhyeQTLs can be used as a physical proximity-based method for fine-mapping functional 

eQTLs. 

Validation through CRISPR-based experiments confirms the target genes identified by PhyeQTLs, 

underscoring their functional significance over other eQTLs. Furthermore, FoldRec interactions also can 

uncover putative target genes of non-PhyeQTLs which are beyond their annotated eGenes, validated 

through CRISPR-based experiments. The efficacy of enhancer target prediction based on FoldRec 

Figure 8: Comparison of FoldRec enhancer target prediction with ABC model.  Enhancer–gene pair 

classification performance (CRISPRi-validated versus non validated candidate enhancers), stratified by relative 

distance between enhancer–gene pairs. Our model performs better particularly in predicting long-range targets 

of enhancers. 
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interactions for long range interactions further demonstrates the utility of FoldRec interactions beyond 

traditional eQTL loci.  

Despite the strengths of our approach, certain limitations exist. We interchangeably utilize primary tissue-

based data and matching cell line-based data, potentially affecting the degree of reliability of our results. 

Additionally, a resolution gap exists between eQTL-eGene interactions and Hi-C interactions, which could 

be addressed with the availability of high-resolution Hi-C data to improves the accuracy of our findings. 

Methods 

Data description 

We obtained eQTL data from the GTEx Analysis V8 release using the ‘signif_variant_gene_pairs.txt.gz’ files 

for four tissues: Cells-EBV-transformed lymphocytes (LCL), Whole Blood (WHLBLD), Lung, and Liver. Hi-C 

datasets were downloaded from the 4DN Data Portal for the cell lines GM12878, K562, IMR90, and 

HepG2. Additionally, we downloaded ATAC-seq, RNA-seq, ChIP-seq for H3K27ac, and ChromHMM 

annotation data from the ENCODE Data Portal. Detailed dataset information is provided in Supplementary 

Table 1. We analyzed eQTL data for the four GTEx tissues and used matching cell line data when tissue-

specific data were unavailable. 

Genomic assembly 
All data is based on GRCh38/hg38 genome assemblies unless otherwise specified. 

FoldRec interactions identification  

Constructing a physical null model of chromatin chains: We model random chromatin fibers as self-

avoiding polymer chains consisting of beads, employing a fractal Monte Carlo sampling approach. 

Specifically, we generated a random ensemble of 300,000 polymer chains, sampled uniformly from all 

geometrically feasible chains confined within the nuclear volume. Each polymer chain comprises 400 

spherical monomer beads. These beads, each with a diameter of approximately 40 nm, represent ~5 kb 

of DNA, matching the resolution of Hi-C data. To account for confinement and volume exclusion effects, 

each self-avoiding polymer chain was constrained to reside within a spherical nuclear volume specific to 

the corresponding cell type. For GM12878, the nuclear volume was taken as 237 μm³; for K562, 904 μm³; 

for IMR90, 381 μm³; and for HepG2, 850 μm³. The nuclear volume of each cell type was then scaled to 

preserve a constant base pair density, resulting in volumes of 608 nm³, 822 nm³, 616 nm³, and 805 nm³ 

for GM12878, K562, IMR90, and HepG2, respectively. The contact frequency matrix of the randomly 

sampled chromatin chains was obtained by counting the frequency of interacting monomer pairs. Two 

chromatin monomers were considered interacting if their Euclidean distance was ≤80 nm. 

Calculating p-values for calling FoldRec interactions: To determine the statistical significance of each Hi-

C measured interaction, we employ a scalable Bag of Little Bootstraps resampling procedure over the 

uniform random 3-D polymer ensemble, using 10,000 outer replicates to obtain a null distribution of 

random chromatin contacts. For each cell type, p-values are assigned to each Hi-C contact frequency 

based on the proportion of bootstrap replicate contact frequencies that exceed the measured Hi-C contact 

frequency at the same genomic distance for the corresponding cell type. Finally, to control for multiple 

testing, a Hi-C interaction is deemed significant (called FoldRec) if the FDR-adjusted p-value is less than 

0.05. 
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Code availability. 

Source code for null model chromatin folding by fractal Monte Carlo is available via git repository at 

https://bitbucket.org/aperezrathke/chr-folder.  

Acknowledgements  

This work is supported by NIH grants 1R03OD032628-01, 1R03OD036492-01 and 2R35GM127084-06. An 

award for computer time was provided by the U.S. Department of Energy’s (DOE) Innovative and Novel 

Computational Impact on Theory and Experiment (INCITE) Program. This research used resources from 

the Argonne Leadership Computing Facility, a U.S. DOE Office of Sciensce user facility at Argonne National 

Laboratory, which is supported by the Office of Science of the U.S. DOE under Contract No. DE-AC02-

06CH11357. We thank the labs in the 4DN and ENCODE consortium for generating the data. 

 

References 

[1] E. Sollis et al., “The NHGRI-EBI GWAS Catalog: knowledgebase and deposition resource,” Nucleic 

Acids Res, vol. 51, no. D1, pp. D977–D985, Jan. 2023, doi: 10.1093/nar/gkac1010. 

[2] L. A. Hindorff et al., “Potential etiologic and functional implications of genome-wide association 

loci for human diseases and traits,” Proc. Natl. Acad. Sci. U.S.A., vol. 106, no. 23, pp. 9362–9367, Jun. 

2009, doi: 10.1073/pnas.0903103106. 

[3] A. Abdellaoui, L. Yengo, K. J. H. Verweij, and P. M. Visscher, “15 years of GWAS discovery: 

Realizing the promise,” The American Journal of Human Genetics, vol. 110, no. 2, pp. 179–194, Feb. 

2023, doi: 10.1016/j.ajhg.2022.12.011. 

[4] G. M. Cooper and J. Shendure, “Needles in stacks of needles: finding disease-causal variants in a 

wealth of genomic data,” Nat Rev Genet, vol. 12, no. 9, pp. 628–640, Sep. 2011, doi: 10.1038/nrg3046. 

[5] M. A. Schaub, A. P. Boyle, A. Kundaje, S. Batzoglou, and M. Snyder, “Linking disease associations 

with regulatory information in the human genome,” Genome Res, vol. 22, no. 9, pp. 1748–1759, Sep. 

2012, doi: 10.1101/gr.136127.111. 

[6] M. Slatkin, “Linkage disequilibrium — understanding the evolutionary past and mapping the 

medical future,” Nat Rev Genet, vol. 9, no. 6, pp. 477–485, Jun. 2008, doi: 10.1038/nrg2361. 

[7] The International HapMap Consortium, “A haplotype map of the human genome,” Nature, vol. 

437, no. 7063, pp. 1299–1320, Oct. 2005, doi: 10.1038/nature04226. 

[8] Multicenter Genetic Studies of Schizophrenia Consortium et al., “Genome-wide association 

analysis identifies 13 new risk loci for schizophrenia,” Nat Genet, vol. 45, no. 10, pp. 1150–1159, Oct. 

2013, doi: 10.1038/ng.2742. 

[9] L. J. O’Connor, “The distribution of common-variant effect sizes,” Nat Genet, vol. 53, no. 8, pp. 

1243–1249, Aug. 2021, doi: 10.1038/s41588-021-00901-3. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 14, 2024. ; https://doi.org/10.1101/2024.06.13.598913doi: bioRxiv preprint 

https://bitbucket.org/aperezrathke/chr-folder
https://doi.org/10.1101/2024.06.13.598913
http://creativecommons.org/licenses/by/4.0/


19 
 

[10] A. A. Brown, A. Viñuela, O. Delaneau, T. D. Spector, K. S. Small, and E. T. Dermitzakis, “Predicting 

causal variants affecting expression by using whole-genome sequencing and RNA-seq from multiple 

human tissues,” Nat Genet, vol. 49, no. 12, pp. 1747–1751, Dec. 2017, doi: 10.1038/ng.3979. 

[11] F. Hormozdiari, E. Kostem, E. Y. Kang, B. Pasaniuc, and E. Eskin, “Identifying Causal Variants at 

Loci with Multiple Signals of Association,” Genetics, vol. 198, no. 2, pp. 497–508, Oct. 2014, doi: 

10.1534/genetics.114.167908. 

[12] X. Wen, R. Pique-Regi, and F. Luca, “Integrating molecular QTL data into genome-wide genetic 

association analysis: Probabilistic assessment of enrichment and colocalization,” PLoS Genet, vol. 13, no. 

3, p. e1006646, Mar. 2017, doi: 10.1371/journal.pgen.1006646. 

[13] M. T. Maurano et al., “Systematic localization of common disease-associated variation in 

regulatory DNA,” Science, vol. 337, no. 6099, Art. no. 6099, Sep. 2012, doi: 10.1126/science.1222794. 

[14] M. Claussnitzer et al., “FTO Obesity Variant Circuitry and Adipocyte Browning in Humans,” N 

Engl J Med, vol. 373, no. 10, pp. 895–907, Sep. 2015, doi: 10.1056/NEJMoa1502214. 

[15] S. Smemo et al., “Obesity-associated variants within FTO form long-range functional connections 

with IRX3,” Nature, vol. 507, no. 7492, pp. 371–375, Mar. 2014, doi: 10.1038/nature13138. 

[16] C. P. Fulco et al., “Activity-by-contact model of enhancer–promoter regulation from thousands 

of CRISPR perturbations,” Nat Genet, vol. 51, no. 12, Art. no. 12, Dec. 2019, doi: 10.1038/s41588-019-

0538-0. 

[17] The ENCODE Project Consortium, “An integrated encyclopedia of DNA elements in the human 

genome,” Nature, vol. 489, no. 7414, Art. no. 7414, Sep. 2012, doi: 10.1038/nature11247. 

[18] Roadmap Epigenomics Consortium et al., “Integrative analysis of 111 reference human 

epigenomes,” Nature, vol. 518, no. 7539, pp. 317–330, Feb. 2015, doi: 10.1038/nature14248. 

[19] J. Ernst et al., “Mapping and analysis of chromatin state dynamics in nine human cell types,” 

Nature, vol. 473, no. 7345, Art. no. 7345, May 2011, doi: 10.1038/nature09906. 

[20] I. Williamson et al., “Developmentally regulated Shh expression is robust to TAD perturbations,” 

Development, vol. 146, no. 19, Art. no. 19, Oct. 2019, doi: 10.1242/dev.179523. 

[21] V. V. Uslu et al., “Long-range enhancers regulating Myc expression are required for normal facial 

morphogenesis,” Nat Genet, vol. 46, no. 7, pp. 753–758, Jul. 2014, doi: 10.1038/ng.2971. 

[22] S. Schoenfelder and P. Fraser, “Long-range enhancer–promoter contacts in gene expression 

control,” Nat Rev Genet, vol. 20, no. 8, pp. 437–455, Aug. 2019, doi: 10.1038/s41576-019-0128-0. 

[23] B. Mifsud et al., “Mapping long-range promoter contacts in human cells with high-resolution 

capture Hi-C,” Nat Genet, vol. 47, no. 6, pp. 598–606, Jun. 2015, doi: 10.1038/ng.3286. 

[24] M. R. Mumbach et al., “Enhancer connectome in primary human cells identifies target genes of 

disease-associated DNA elements,” Nat Genet, vol. 49, no. 11, pp. 1602–1612, Nov. 2017, doi: 

10.1038/ng.3963. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 14, 2024. ; https://doi.org/10.1101/2024.06.13.598913doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.13.598913
http://creativecommons.org/licenses/by/4.0/


20 
 

[25] Y. Gilad, S. A. Rifkin, and J. K. Pritchard, “Revealing the architecture of gene regulation: the 

promise of eQTL studies,” Trends in Genetics, vol. 24, no. 8, pp. 408–415, Aug. 2008, doi: 

10.1016/j.tig.2008.06.001. 

[26] E. Lieberman-Aiden et al., “Comprehensive Mapping of Long-Range Interactions Reveals Folding 

Principles of the Human Genome,” Science, vol. 326, no. 5950, Art. no. 5950, Oct. 2009, doi: 

10.1126/science.1181369. 

[27] V. Chandra et al., “Promoter-interacting expression quantitative trait loci are enriched for 

functional genetic variants,” Nat Genet, vol. 53, no. 1, pp. 110–119, Jan. 2021, doi: 10.1038/s41588-020-

00745-3. 

[28] B. M. Javierre et al., “Lineage-Specific Genome Architecture Links Enhancers and Non-coding 

Disease Variants to Target Gene Promoters,” Cell, vol. 167, no. 5, Art. no. 5, Nov. 2016, doi: 

10.1016/j.cell.2016.09.037. 

[29] S. S. P. Rao et al., “A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of 

Chromatin Looping,” Cell, vol. 159, no. 7, Art. no. 7, Dec. 2014, doi: 10.1016/j.cell.2014.11.021. 

[30] G. Duggal, H. Wang, and C. Kingsford, “Higher-order chromatin domains link eQTLs with the 

expression of far-away genes,” Nucleic Acids Res, vol. 42, no. 1, Art. no. 1, Jan. 2014, doi: 

10.1093/nar/gkt857. 

[31] J. Yu, M. Hu, and C. Li, “Joint analyses of multi-tissue Hi-C and eQTL data demonstrate close 

spatial proximity between eQTLs and their target genes,” BMC Genet, vol. 20, no. 1, p. 43, Dec. 2019, 

doi: 10.1186/s12863-019-0744-x. 

[32] G. Gürsoy, Y. Xu, A. L. Kenter, and J. Liang, “Spatial confinement is a major determinant of the 

folding landscape of human chromosomes,” Nucleic Acids Res, vol. 42, no. 13, Art. no. 13, Jul. 2014, doi: 

10.1093/nar/gku462. 

[33] A. Perez-Rathke, Q. Sun, B. Wang, V. Boeva, Z. Shao, and J. Liang, “CHROMATIX: computing the 

functional landscape of many-body chromatin interactions in transcriptionally active loci from 

deconvolved single cells,” Genome Biol, vol. 21, no. 1, Art. no. 1, Dec. 2020, doi: 10.1186/s13059-019-

1904-z. 

[34] J. Liang and A. Perez-Rathke, “Minimalistic 3D Chromatin Models: Sparse Interactions in Single 

Cells Drive the Chromatin Fold and Form Many-Body Units,” Current Opinion in Structural Biology, vol. 

71, pp. 200–214, 2021. 

[35] Q. Sun, A. Perez-Rathke, D. M. Czajkowsky, Z. Shao, and J. Liang, “High-resolution single-cell 3D-

models of chromatin ensembles during Drosophila embryogenesis,” Nat Commun, vol. 12, no. 1, Art. no. 

1, Dec. 2021, doi: 10.1038/s41467-020-20490-9. 

[36] GTEx Consortium, “Genetic effects on gene expression across human tissues,” Nature, vol. 550, 

no. 7675, pp. 204–213, Oct. 2017, doi: 10.1038/nature24277. 

[37] J. Dekker et al., “The 4D nucleome project,” Nature, vol. 549, no. 7671, Art. no. 7671, Sep. 2017, 

doi: 10.1038/nature23884. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 14, 2024. ; https://doi.org/10.1101/2024.06.13.598913doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.13.598913
http://creativecommons.org/licenses/by/4.0/


21 
 

[38] S. B. Reiff et al., “The 4D Nucleome Data Portal as a resource for searching and visualizing 

curated nucleomics data,” Nat Commun, vol. 13, no. 1, p. 2365, May 2022, doi: 10.1038/s41467-022-

29697-4. 

[39] J. van Arensbergen et al., “High-throughput identification of human SNPs affecting regulatory 

element activity,” Nat Genet, vol. 51, no. 7, pp. 1160–1169, Jul. 2019, doi: 10.1038/s41588-019-0455-2. 

[40] G. R. Cavalheiro, T. Pollex, and E. E. Furlong, “To loop or not to loop: what is the role of TADs in 

enhancer function and gene regulation?,” Current Opinion in Genetics & Development, vol. 67, pp. 119–

129, Apr. 2021, doi: 10.1016/j.gde.2020.12.015. 

[41] F. Sun et al., “Promoter-Enhancer Communication Occurs Primarily within Insulated 

Neighborhoods,” Molecular Cell, vol. 73, no. 2, pp. 250-263.e5, Jan. 2019, doi: 

10.1016/j.molcel.2018.10.039. 

[42] D. G. Lupiáñez et al., “Disruptions of Topological Chromatin Domains Cause Pathogenic Rewiring 

of Gene-Enhancer Interactions,” Cell, vol. 161, no. 5, pp. 1012–1025, May 2015, doi: 

10.1016/j.cell.2015.04.004. 

[43] E. P. Nora et al., “Spatial partitioning of the regulatory landscape of the X-inactivation centre,” 

Nature, vol. 485, no. 7398, Art. no. 7398, Apr. 2012, doi: 10.1038/nature11049. 

[44] D. J. Gaffney et al., “Dissecting the regulatory architecture of gene expression QTLs,” Genome 

Biol, vol. 13, no. 1, p. R7, 2012, doi: 10.1186/gb-2012-13-1-r7. 

[45] The GTEx Consortium et al., “The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue 

gene regulation in humans,” Science, vol. 348, no. 6235, pp. 648–660, May 2015, doi: 

10.1126/science.1262110. 

[46] The ENCODE Project Consortium et al., “Expanded encyclopaedias of DNA elements in the 

human and mouse genomes,” Nature, vol. 583, no. 7818, pp. 699–710, Jul. 2020, doi: 10.1038/s41586-

020-2493-4. 

[47] F. Spitz and E. E. M. Furlong, “Transcription factors: from enhancer binding to developmental 

control,” Nat Rev Genet, vol. 13, no. 9, pp. 613–626, Sep. 2012, doi: 10.1038/nrg3207. 

[48] R. C. Ramaker et al., “A genome-wide interactome of DNA-associated proteins in the human 

liver,” Genome Res., vol. 27, no. 11, pp. 1950–1960, Nov. 2017, doi: 10.1101/gr.222083.117. 

[49] S. Heinz et al., “Simple combinations of lineage-determining transcription factors prime cis-

regulatory elements required for macrophage and B cell identities,” Mol Cell, vol. 38, no. 4, pp. 576–589, 

May 2010, doi: 10.1016/j.molcel.2010.05.004. 

[50] T. W. Mak and M. E. Saunders, “The Humoral Response: B Cell Development and Activation,” in 

The Immune Response, Elsevier, 2006, pp. 209–245. doi: 10.1016/B978-012088451-3.50011-9. 

[51] J. Medvedovic, A. Ebert, H. Tagoh, and M. Busslinger, “Pax5: a master regulator of B cell 

development and leukemogenesis,” Adv Immunol, vol. 111, pp. 179–206, 2011, doi: 10.1016/B978-0-12-

385991-4.00005-2. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 14, 2024. ; https://doi.org/10.1101/2024.06.13.598913doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.13.598913
http://creativecommons.org/licenses/by/4.0/


22 
 

[52] B. Zhao et al., “The NF-κB genomic landscape in lymphoblastoid B cells,” Cell Rep, vol. 8, no. 5, 

pp. 1595–1606, Sep. 2014, doi: 10.1016/j.celrep.2014.07.037. 

[53] G. Li, W. Hao, and W. Hu, “Transcription factor PU.1 and immune cell differentiation (Review),” 

Int J Mol Med, vol. 46, no. 6, pp. 1943–1950, Oct. 2020, doi: 10.3892/ijmm.2020.4763. 

[54] L. A. Garrett-Sinha, “Review of Ets1 structure, function, and roles in immunity,” Cell Mol Life Sci, 

vol. 70, no. 18, pp. 3375–3390, Sep. 2013, doi: 10.1007/s00018-012-1243-7. 

[55] A. Oeckinghaus and S. Ghosh, “The NF-kappaB family of transcription factors and its regulation,” 

Cold Spring Harb Perspect Biol, vol. 1, no. 4, p. a000034, Oct. 2009, doi: 10.1101/cshperspect.a000034. 

[56] Y. Fujiwara, C. P. Browne, K. Cunniff, S. C. Goff, and S. H. Orkin, “Arrested development of 

embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1,” Proc Natl Acad Sci 

U S A, vol. 93, no. 22, pp. 12355–12358, Oct. 1996, doi: 10.1073/pnas.93.22.12355. 

[57] H. Yang, M. M. Lu, L. Zhang, J. A. Whitsett, and E. E. Morrisey, “GATA6 regulates differentiation 

of distal lung epithelium,” Development, vol. 129, no. 9, pp. 2233–2246, May 2002, doi: 

10.1242/dev.129.9.2233. 

[58] H. Wan et al., “Compensatory roles of Foxa1 and Foxa2 during lung morphogenesis,” J Biol 

Chem, vol. 280, no. 14, pp. 13809–13816, Apr. 2005, doi: 10.1074/jbc.M414122200. 

[59] T. N. Cassel and M. Nord, “C/EBP transcription factors in the lung epithelium,” Am J Physiol Lung 

Cell Mol Physiol, vol. 285, no. 4, pp. L773-781, Oct. 2003, doi: 10.1152/ajplung.00023.2003. 

[60] E. C. Tachmatzidi, O. Galanopoulou, and I. Talianidis, “Transcription Control of Liver 

Development,” Cells, vol. 10, no. 8, p. 2026, Aug. 2021, doi: 10.3390/cells10082026. 

[61] R. Feng, R. Liebe, and H.-L. Weng, “Transcription networks in liver development and acute liver 

failure,” Liver Research, vol. 7, no. 1, pp. 47–55, Mar. 2023, doi: 10.1016/j.livres.2022.11.010. 

[62] E. Y. Chen et al., “Enrichr: interactive and collaborative HTML5 gene list enrichment analysis 

tool,” BMC Bioinformatics, vol. 14, p. 128, Apr. 2013, doi: 10.1186/1471-2105-14-128. 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 14, 2024. ; https://doi.org/10.1101/2024.06.13.598913doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.13.598913
http://creativecommons.org/licenses/by/4.0/

