

1 **Human cytomegalovirus induces neuronal gene expression for viral maturation**

2

3 Laurel E Kelnhofer-Millevolte^{1,2,3}, Julian R Smith¹, Daniel H Nguyen¹, Lea S Wilson¹, Hannah C
4 Lewis^{1,2}, Edward A Arnold^{1,4}, Mia R Brinkley¹, Adam P Geballe¹, Srinivas Ramachandran^{5,6}, and
5 Daphne C Avgousti^{1*}

6

7 1 Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA

8 2 Molecular and Cellular Biology, Graduate Program, University of Washington and Fred
9 Hutchinson Cancer Center, Seattle, WA, USA

10 3 University of Washington Medical Scientist Training Program, Seattle, WA, USA

11 4 Department of Microbiology, University of Washington, Seattle, WA, USA

12 5 RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, USA

13 6 Department of Biochemistry and Molecular Genetics, University of Colorado School of
14 Medicine, Aurora, CO, USA

15 * Corresponding author

16

17

18 **Abstract**

19 Viral invasion of the host cell causes some of the most dramatic changes in biology. Human
20 cytomegalovirus (HCMV) extensively remodels host cells, altering nuclear shape and generating
21 a cytoplasmic viral-induced assembly compartment (vIAC). How these striking morphology
22 changes take place in the context of host gene regulation is still emerging. Here, we discovered
23 that histone variant macroH2A1 is essential for producing infectious progeny. Because virion
24 maturation and cellular remodeling are closely linked processes, we investigated structural
25 changes in the host cell upon HCMV infection. We discovered that macroH2A1 is necessary for
26 HCMV-induced reorganization of the host nucleus, cytoskeleton, and endoplasmic reticulum.
27 Furthermore, using RNA-seq we found that while all viral genes were highly expressed in the
28 absence of macroH2A1, many HCMV-induced host genes were not. Remarkably, hundreds of
29 these HCMV-induced macroH2A1-dependent host genes are associated with neuronal synapse
30 formation and vesicle trafficking. Knock-down of these HCMV-induced neuronal genes during
31 infection resulted in malformed vIACs and smaller plaques, establishing their importance to
32 HCMV infection. Together, our findings demonstrate that HCMV manipulates host gene
33 expression by hijacking a dormant neuronal secretory pathway for efficient virion maturation.

34

35

36 **Introduction**

37 Human Cytomegalovirus (HCMV) is a ubiquitous herpesvirus with seropositivity ranging from 65
38 to 100%^{1,2}. In immunocompetent individuals, HCMV is typically asymptomatic or results in mild
39 cold-like symptoms³. In contrast, congenital HCMV infection is one of the leading causes of
40 infectious birth defects affecting about 1 in every 200 live births⁴. Additionally, cytomegalovirus
41 is a chief cause of morbidity and mortality in both solid organ and stem cell transplant recipients⁵
42 and individuals with poorly controlled HIV⁶.

43 HCMV infection of the host cell induces large scale cellular remodeling⁷. The host nucleus forms
44 a characteristic kidney-bean shape while host chromatin becomes polarized to one side⁸ and
45 large-scale cytoskeletal rearrangement causes the nucleus to spin^{8,9}. Simultaneously, the Golgi,
46 endosome, and other cellular membranes are reorganized during HCMV infection to form the
47 viral-induced assembly compartment (vIAC)¹⁰. Viral replication occurs in the nucleus, after
48 which progeny capsids exit from the nucleus and pass through the vIAC for tegumentation and
49 final maturation¹¹⁻¹³. Importantly, unlike other lytic herpesvirus infections, HCMV does not shut
50 down host transcription¹⁴, though how host gene expression is altered by HCMV remains
51 actively under investigation.

52 Cellular remodeling is closely controlled by host gene expression, which in turn is regulated by
53 histone modifications and histone variants¹⁵⁻¹⁷. MacroH2A1 is a histone variant that can replace
54 the core histone H2A. MacroH2A1 was initially discovered on the inactive X chromosome
55 associated with transcriptional repression^{18,19}. In contrast, macroH2A1 is also required for gene
56 activation in several contexts including serum starvation response¹⁹, smooth muscle
57 differentiation²⁰, and neuronal differentiation²¹. We previously showed how macroH2A1-
58 dependent heterochromatin is critical for herpes simplex (HSV-1) egress from the nuclear
59 compartment²². Therefore, we hypothesized that macroH2A1 may also function in
60 cytomegalovirus infection. Here, we demonstrate that HCMV predominantly upregulates
61 hundreds of exclusively neuronal genes in a macroH2A1-dependent manner. This upregulation
62 of neuronal genes is essential for efficient HCMV infectious progeny production and defines a
63 new mechanism wherein HCMV has evolved to control host gene expression to promote
64 progeny maturation and viral spread.

66 **Results**

67 *MacroH2A1 is required for production of infectious HCMV progeny*

68 Due to the importance of macroH2A1 in lytic HSV-1 infection²² and the observation that
69 macroH2A1 mRNA levels increase during lytic HCMV infection²³, we hypothesized that
70 macroH2A1 is also necessary for efficient HCMV lytic infection. To investigate this hypothesis,
71 we infected wild-type human foreskin fibroblast cells (WT HFF-T) and our established
72 macroH2A1 CRISPR knock-out cells (macroH2A1 KO HFF-T)²² with HCMV (*Towne*) and
73 measured infectious viral progeny. We found that HCMV grown in macroH2A1 KO cells
74 produced approximately 30-fold fewer infectious progeny, than HCMV grown in control cells
75 (**Figure 1A, Sup Figure 1A**).

76 We next asked whether macroH2A1 loss affected viral protein and RNA accumulation. We
77 measured viral protein levels by western blot of representative immediate early (IE1/2), early
78 (UL44), late tegument (pp28 and pp65), and late envelope (gB) proteins. We found that all
79 measured viral proteins were robustly expressed at earlier time points, and to a stronger degree
80 in macroH2A1 KO cells (**Figure 1B**).

81 To determine whether other viral genes not measured by western blot might explain the
82 decrease in infectious progeny produced, we next measured the viral transcriptome by RNA
83 sequencing. We performed bulk RNA sequencing of HCMV-infected WT and macroH2A1 KO
84 cells at 4, 16, 24, 48, and 72 hours post infection (hpi). We found that in macroH2A1 KO cells,
85 early gene expression was initiated by 4 hpi and that immediate early viral genes were
86 expressed at a higher level compared to their levels in WT cells. By 16 hpi, many late viral
87 transcripts were already expressed in macroH2A1 KO cells, while late transcripts were not
88 expressed in WT control cells until 48 hpi (**Figure 1C, Sup Figure 1B-C**). Thus, HCMV
89 transcripts and proteins were expressed earlier and to a higher level in macroH2A1 KO cells
90 compared to WT cells.

91 As increased protein and RNA expression in macroH2A1 KO cells did not explain the strong
92 reduction in infectious progeny, we next investigated genome replication. We found that within
93 cells, there was no significant change in viral genomes between WT and macroH2A1 KO cells
94 measured by droplet digital PCR (ddPCR) (**Figure 1D**). Similarly, we found no significant
95 change in nuclease-resistant genomes released into the supernatant (**Figure 1E**), indicating

96 that the reduction in infectious progeny is not due to replication or egress defects but rather that
97 viral progeny grown in macroH2A1 KO cells are defective.

98 *MacroH2A1 is required for nuclear rearrangement and viAC formation.*

99 Proper maturation of HCMV progeny occurs in the viAC. Therefore, we hypothesized that the
100 loss of macroH2A1 results in a viral maturation defect due to a defective viAC. We used
101 immunofluorescence to visualize infected cells. Strikingly, we found that the viACs were
102 significantly smaller in macroH2A1 KO cells (**Figure 1F-G, Sup Figure 1D**), the nuclei did not
103 expand as expected, and the nuclei did not form the characteristic kidney-bean shape (**Figure**
104 **1F and H, Sup Figure 1E**). Furthermore, we observed that infected macroH2A1 KO cells also
105 retained the centrosomes and tubulin boundary between cells, suggesting that HCMV-induced
106 syncytia are malformed in infected macroH2A1 KO cells compared to infected WT cells (**Sup**
107 **Figure 1F**). Our findings demonstrate that macroH2A1 plays a key role in HCMV-induced
108 cellular remodeling and formation of viACs.

109 *HCMV rearranges host cytosolic structures in a macroH2A1-dependent manner.*

110 To determine if the structural rearrangements that are required for viAC formation occur in the
111 absence of macroH2A1, we examined cell organization using transmission electron microscopy
112 (TEM). We found that while the overall cellular structure was comparable in mock-treated WT
113 and macroH2A1 KO cells (**Figure 2A**), at 4 days post infection (dpi) HCMV infected cells
114 exhibited dramatically different cytoplasmic structures. We observed that the measurable length
115 of ER regions was significantly shorter in WT cells compared to macroH2A1 KO cells (**Figure**
116 **2B-D, Sup Figure 2A-B**). Our findings suggest that without macroH2A1, HCMV is unable to
117 disrupt the host ER.

118 Moreover, by TEM we observed further differences in viAC formation. In WT cells the viAC was
119 made up of large subcompartments, consistent with previous findings²⁴. Each subcompartment
120 was surrounded by a heterogeneous population of dense bodies, which are non-infectious
121 HCMV particles comprised of enveloped viral proteins^{25,26}. In contrast, the HCMV-infected
122 macroH2A1 KO cells rarely formed these distinct large subcompartments (**Figure 2E-F, Sup**
123 **Figure 2C-D**). In the macroH2A1 KO cells, the largest observable subcompartments, whose
124 area was significantly smaller than those formed in WT cells, were rarely surrounded by dense
125 bodies (**Figure 2E**). The dense bodies in the infected macroH2A1 KO cells were largely

126 homogenous individual structures distributed throughout the cytosol, compared to the
127 heterogenous and conglomerated dense bodies in infected WT cells. Furthermore, virus
128 particles observed in macroH2A1 KO cells frequently appeared malformed, consistent with the
129 finding that macroH2A1 KO cells produce defective progeny (**Figure 2E, arrowhead**). Taken
130 together, these results support our hypothesis that macroH2A1 plays a major role in HCMV-
131 induced cellular remodeling and viral maturation.

132 *Loss of macroH2A1 prevents activation of neuronal genes during HCMV infection.*

133 To profile changes in host gene expression that might lead to the observed phenotypic effects
134 on HCMV infection upon loss of macroH2A1, we analyzed the host transcriptomes of WT and
135 macroH2A1 KO cells during the course of HCMV infection. Principal component analysis of our
136 RNA-seq data showed all replicates clustering close to each other, indicating reproducibility.
137 PC1 captured the time course of infection whereas PC2 captured the genotype (**Sup Figure**
138 **3A**). We first identified a superset of genes that significantly changed in either one of the time
139 points and/or one of the genotypes and then performed k-means (k=4) clustering of Z-scores of
140 gene expression across time and genotype. This analysis captured both time-dependent and
141 genotype-dependent changes in gene expression during HCMV infection (**Figure 3A**). Cluster 1
142 contained genes that had mixed to low expression in mock-treated cells but steadily increased
143 in expression over the course of infection, peaking at 72 hpi in WT but remained low in the
144 macroH2A1 KO cells. Genes in this cluster were highly enriched for macroH2A1 and
145 heterochromatin marker H3K27me3 in uninfected cells in our previously published CUT&Tag
146 data set²² (**Sup Figure 3B-E**). Clusters 2-4 captured time-dependent changes in expression that
147 were mostly similar between WT and macroH2A1 (**Sup Figure 3F-H**). Cluster 2 contained
148 genes that were activated at 48-72 hpi and expectedly includes genes that would assist in viral
149 trafficking such as those associated with cellular reorganization and protein trafficking within the
150 cell (**Sup Figure 3J**). Cluster 3 contained genes that were activated at 16-24 hpi before
151 returning to low expression. Also as expected, this cluster contains genes associated with
152 immune response and transcription (**Sup. Figure 3K**). Cluster 4 contained genes that were
153 repressed throughout infection and contains genes associated with DNA repair, metabolic
154 processes, and apoptosis (**Sup Figure 3L**). In striking contrast to clusters 2-4, cluster 1 genes
155 were highly enriched for neuronal genes belonging to several Gene Ontology categories that
156 highlighted neuronal function (**Figure 3B, Sup Figure 3I**). Notably, cluster 1 genes strikingly
157 had significantly lower expression in macroH2A1 KO cells, with large fold changes, especially at

158 72 hpi (**Figure 3C**). Cluster 1 genes, which are the most affected by the loss of macroH2A1,
159 suggest that HCMV induces a neuronal-like transcriptional profile that increases over the course
160 of infection.

161 To test the hypothesis that HCMV induces a neuronal-like phenotype that is blunted by the loss
162 of macroH2A1, we compared our gene expression profiles to those of different cell types from
163 ENCODE^{27,28}. From ENCODE, we included expression profiles of IMR90 fibroblast cells, similar
164 to our HFF cells, and cells differentiated from induced pluripotent stem cells to form cells in the
165 neuronal, muscle, and liver lineages. We first generated a distance matrix and observed that
166 IMR90 clustered with all macroH2A1 KO time points and WT mock and early time points.

167 However, WT cells at 48 and 72 hpi cluster with the other lineages we included in the analysis
168 (**Figure 3D**). This suggests that later time points of HCMV infection cause a transition of HFF
169 cells to a non-fibroblast identity, and this transition is suppressed in the absence of macroH2A1.

170 To explore this further, we performed a principal component analysis of the expression matrix
171 comprising genes from Cluster 1. PC1 captures the differences between fibroblast and non-
172 fibroblast lineages, whereas PC3 captures the differences between neuronal and non-neuronal
173 lineages (**Figure 3E**). We found PC1 and PC3 to capture the infection time course. WT mock-

174 infected cells had similar values to IMR90 in PC1 and PC3. We observed an increase in PC1
175 and PC3 loadings with increasing time of infection in the direction toward neural cells. A similar
176 trend is observed in macroH2A1 KO cells, but the starting time points (mock and 4 hpi) have
177 much lower PC1 and PC3 loadings such that by the final time point, PC1 and PC3 values for
178 macroH2A1 KO cells are similar to that of mock-infected WT cells. Thus, an increase in both
179 PC1 and PC3 observed over the course of infection captures the loss of fibroblast identity and a
180 gain of neuronal identity in WT cells. Interestingly, in macroH2A1 KO cells, the starting point is
181 much lower in PC1 and PC3, suggesting an inability of macroH2A1 KO cells to transition from
182 fibroblast to neuronal identity over the course of infection. In summary, our gene expression
183 analysis highlights the profound effect of macroH2A1 on transcriptional upregulation of many
184 host genes during HCMV infection and that this upregulation transitions infected cells away from
185 a fibroblast expression profile and towards a neuronal expression profile.

186 As macroH2A1 frequently colocalizes with H3K27me3 and cluster 1 was also enriched for
187 H3K27me3 (**Sup Figure 3D-E**), we used the small molecule tazemetostat (an EZH2 inhibitor)²⁹,
188 to deplete H3K27me3 prior to HCMV infection. We found that although H3K27me3 depletion
189 caused a significant reduction in titer, the reduction was modest compared to that induced by

190 loss of macroH2A1 (**Sup Figure 4A**). Furthermore, H3K27me3 depletion did not impact nuclear
191 rearrangement or viAC formation (**Sup Figure 4B-D**). We also investigated by western blot the
192 induction of cluster 1 gene KIF1A, a kinesin motor for axonal transport in neurons³⁰, and found
193 that its induction was not diminished significantly by the depletion of H3K27me3 (**Sup Figure**
194 **4E**). Our results suggest that while H3K27me3 is likely also important for HCMV infection, its
195 role on cluster 1 genes appears less significant for HCMV infection than that of macroH2A1.

196 *Knockdown of several neuronal genes reduced HCMV spread and viAC formation.*

197 We next sought to determine if the transition from a fibroblast to neuronal expression profile is
198 essential for HCMV infectivity. Following the observation that many of the genes differentially
199 expressed in HCMV infection between WT and macroH2A1 KO cells were associated with axon
200 formation and neurotransmitter trafficking, we hypothesized that HCMV hijacks these pathways
201 for progeny maturation and spread. To test this hypothesis, we designed a targeted siRNA
202 screen selecting 12 genes with low FDRs and large fold changes in expression between WT
203 and macroH2A1 KO cells induced by HCMV at 72 hpi (**Sup Figure 5A-C**).

204 Following infection of WT cells with HCMV tagged with GFP, we transfected siRNAs to dampen
205 the induction of these target genes later in infection (**Figure 4A**). We confirmed that all siRNA
206 targeted transcripts were reduced by at least 50% compared to their levels at 4 dpi in the
207 condition treated with a non-targeting control (NC) siRNA (**Figure 4B Sup Figure 5D**). Upon
208 initial infection, representative HCMV RNA and protein levels did not differ among any
209 conditions (**Sup Figure 5E-F**). This indicates viral transcription and translation were not
210 impacted by the siRNA treatment. We used supernatants harvested from the siRNA-treated
211 HCMV-infected cells to set up GFP foci assays and measure plaque size. We found that several
212 siRNA knockdowns caused a reduction in GFP foci to 40-70% of control levels though these
213 groups did not reach significance (**Figure 4C**). Knockdown of WWC1, however, did significantly
214 reduce GFP foci. Interestingly, we also noted that several of the knockdown conditions
215 produced viral progeny that generated smaller plaque sizes compared to the control. To
216 investigate this observation, we imaged crystal violet plaques and quantified the area of these
217 plaques (**Sup Figure 6A**). We found that five of our target genes, IFI27, KIF1A, LAMA1,
218 NPTX2, and WWC1, had significantly smaller plaques compared to control (**Figure 4D-E**).
219 Next, we investigated whether depletion of these five targets impacted HCMV-induced cellular
220 remodeling and viAC formation. We found that IFI27 and KIF1A KD cells had smaller nuclei and

221 significantly smaller vIACs compared to control. Additionally, LAMA1, NPTX2, and WWC1 KD
222 resulted in vIACs that were malformed with either a hollow or nonspherical appearance (**Figure**
223 **4F-H and Sup Figure 6B-D**). Taken together, our results from this screen demonstrate that
224 cells unable to induce these genes to a high level are unable to produce viral progeny that can
225 spread efficiently, underscoring the importance of these genes in HCMV spread.

226 **Discussion**

227 In this study, we demonstrated that human cytomegalovirus induces expression of numerous
228 neuronal genes involved in synapse formation and neurotransmitter vesicle trafficking in a
229 macroH2A1-dependent manner. We further showed that macroH2A1 and several of these
230 induced neuronal genes are crucial to HCMV maturation and spread (**Figure 4I**). Our findings
231 indicate that viral reprogramming of the host cell is dependent on host chromatin-controlled
232 changes and uncovers previously unappreciated pathway critical for HCMV infection.

233 The formation of a vIAC and kidney-bean shaped nucleus was thought to be an exclusive
234 feature of HCMV infection, however, these changes have also been observed in HSV-1
235 infection of neuron-like cells³¹. In fact, one of our identified neuronal genes important for HCMV
236 maturation, *KIF1A*, a kinesin motor protein involved in axonal transport, was shown to be
237 important for the spread of HSV-1 and pseudorabies virus (PRV)³². These observations raise an
238 interesting question about whether HCMV hijacking of neurotransmitter trafficking pathways is a
239 retained evolutionary feature of many viruses or a novel pathway exploited specifically by
240 HCMV. MacroH2A1 is also highly conserved and not rapidly evolving³³, suggesting that it is
241 more likely to be HCMV that evolved to hijack this histone. Future work into the evolution of
242 HCMV will uncover how these mechanisms of chromatin manipulation have developed.

243 Murine CMV was recently reported to control large scale transcriptional profiles and alter the
244 identity of infected macrophages to escape innate immune response and increase spread³⁴. Our
245 work builds on this finding in HCMV, suggesting that betaherpesviruses may drive cellular
246 reprogramming for infection spread in various cell-type specific ways. Importantly, we find
247 primarily structural genes associated with terminal differentiation to be upregulated during
248 HCMV infection, as opposed to developmental genes. Taken together with the recent findings
249 on murine CMV, our work suggests that HCMV cellular reprogramming is not limited to a
250 particular set of genes, but rather is controlled through chromatin mechanisms. Furthermore,
251 our discovery that HCMV upregulates genes associated with synapse formation and

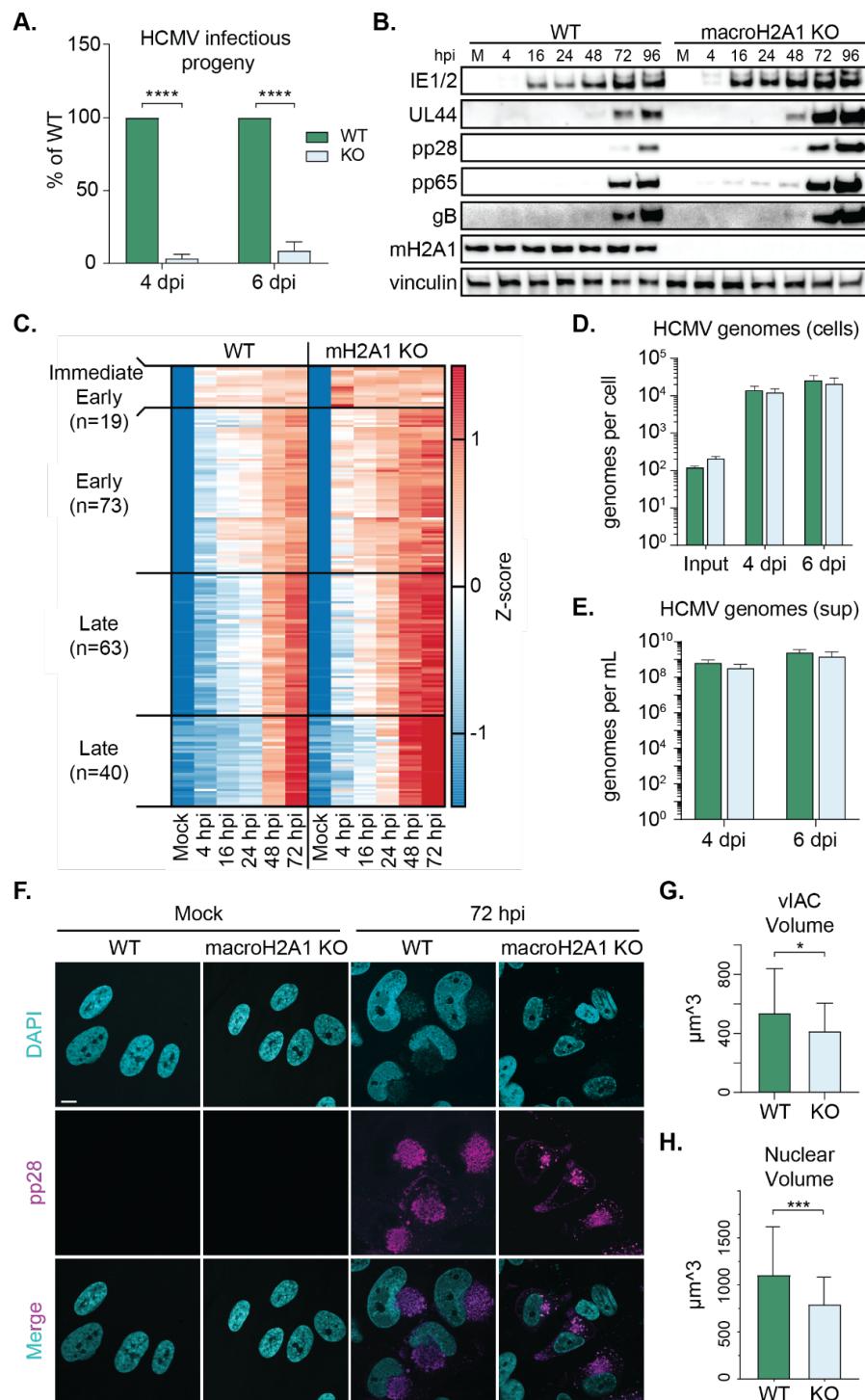
252 neurotransmitter trafficking for their efficient spread provides a functional context for the
253 previous findings wherein HCMV virions resemble synaptic-like vesicles in their lipid content³⁵.
254 It is important to note that these neurotransmitter pathways are dormant in uninfected fibroblast
255 cells. Thus, there are no normal neuronal secretory functions that the virus must compete with,
256 nor are there specific neuronal immune defenses to subvert. Furthermore, neuronal trafficking is
257 one of the fastest and most efficient mechanisms by which to exit the cell³⁶. Therefore, HCMV
258 has pinpointed and activated an entirely dormant pathway to both avoid competition and
259 successfully egress from the infected cell. Interestingly, the idea that ancient human retrovirus
260 integration gave rise to the neuronal trafficking protein, Arc³⁷, further supports the hypothesis
261 that viral and neurotransmitter trafficking rely on similar mechanisms.
262 Our study has revealed how HCMV remodels the host transcriptome in a macroH2A1-
263 dependent manner to promote viral maturation and spread. Future work to identify the viral
264 mechanism that drives this macroH2A1-dependent cellular reprogramming is expected to shed
265 light on many new questions arising from this study. Extensive previous work demonstrated that
266 the HCMV protein IE1/2 can directly bind the acid patch of the nucleosome to affect
267 chromatin^{38,39}, however, it is unknown whether IE1/2 interacts with macroH2A1-containing
268 nucleosomes. New screening methods may also uncover unknown strategies for chromatin
269 manipulation through other factors to promote viral maturation⁴⁰, though targeted approaches
270 for chromatin may be required. Given our findings that HCMV induces expression of neuronal
271 genes through chromatin manipulation, it is likely that many additional mechanisms of chromatin
272 hijacking by viruses have yet to be uncovered.

273 **Author Contributions:**

274 LEKM- Conceptualization, Methodology, Formal analysis, Investigation, Data Curation, Writing-
275 Original Draft, Writing- Review and Editing, Visualization, Supervision. JRS- Conceptualization,
276 Methodology, Formal analysis, Investigation, Data Curation, Writing- Review and Editing,
277 Visualization. HCL- Conceptualization, Investigation, Writing- Review and Editing. LSW-
278 Investigation, Data Curation, Writing- Review and Editing. DHN- Investigation, Data Curation,
279 Writing- Review and Editing, Visualization. EAA- Investigation, Writing- Review and Editing.
280 MRB- Investigation, Writing- Review and Editing. APG- Conceptualization, Methodology,
281 Writing- Review and Editing, Resources, Supervision. SR- Conceptualization, Methodology,
282 Formal analysis, Software, Data Curation, Writing- Original Draft, Writing- Review and Editing,

283 Visualization, Supervision. DCA- Conceptualization, Methodology, Formal analysis,
284 Investigation, Resources, Data Curation, Writing- Original Draft, Writing- Review and Editing,
285 Visualization, Supervision, Funding acquisition.

286 **Acknowledgements:**


287 We thank members of the Avgousti lab, M. Lagunoff, S. Parkhurst, S. Tapscott, L. Goo and M.
288 Weitzman for their insightful comments. We thank the Electron Microscopy (EMSR), and
289 Genomics and Bioinformatics Shared Resource Facilities at the Fred Hutchinson Cancer Center
290 for help with sequencing and data analysis. We thank H. West-Foyle, L. Schroeder, and the
291 Cellular Imaging Shared Resource (CISR) for their help with image analysis.

292 This research was supported by the Electron Microscopy Shared Resource,
293 RRID:SCR_022611, The EMSR, CISR, and Genomics core are supported in part by the Fred
294 Hutch/University of Washington Cancer Consortium (P30 CA015704). This study was also
295 supported by start-up funds from the RNA Bioscience Initiative at the University of Colorado
296 School of Medicine (S. Ramachandran), the Fred Hutch (D.C. Avgousti), National Institutes of
297 Health funding to E.A. Arnold (AI083203), A.P. Geballe (AI145945), S. Ramachandran
298 (GM133434), and D.C. Avgousti (GM133441), and the University of Washington Magnuson
299 Scholarship to L.E. Kelnhofer-Millevolte.

300

301 **Figures**

Figure 1. HCMV requires macroH2A1 for efficient production of infectious progeny, but not protein, RNA, or genome accumulation.

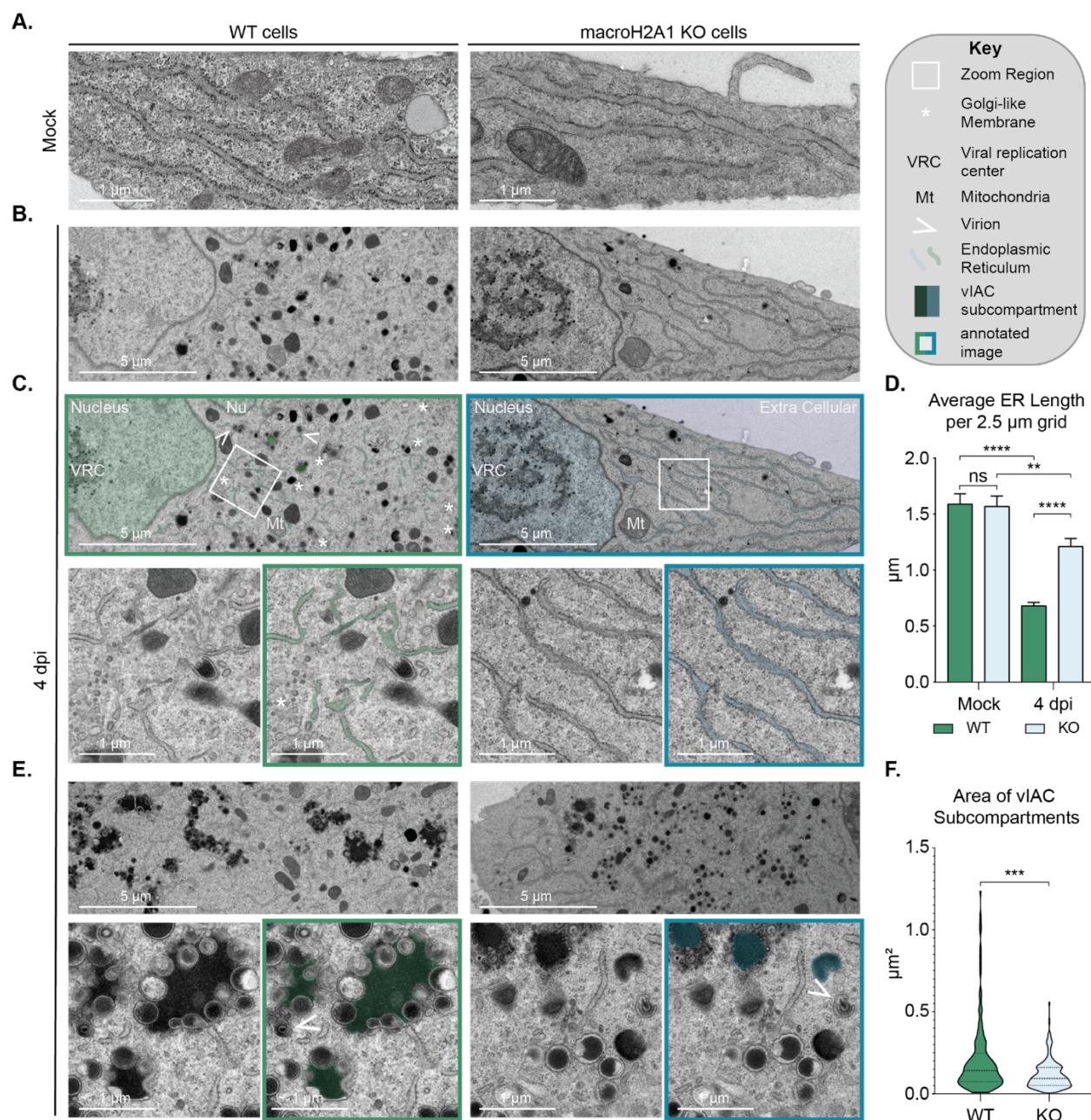
303 **Figure 1.** HCMV requires macroH2A1 for efficient production of infectious progeny, but not
304 protein, RNA, or genome accumulation.

305 A) Infectious progeny produced from HCMV infected WT and macroH2A1 KO HFF-T cells
306 quantified by plaque assay at 4 or 6 days post infection (dpi) as indicated. Viral yield is
307 indicated as the percent yield compared to wild type, with errors bars representing SEM.
308 $P < 0.0001$ at both time points by unpaired T-test. N=3 biological replicates.

309 B) Representative western blots of viral proteins in cells as in (A) during HCMV infection at
310 4, 16, 24, 48, 72, and 96 hours post infection (hpi) compared to mock (M). These time
311 points correspond to immediate early gene expression (4 hpi), early gene expression (16
312 hpi), genome replication (24 hpi), and late gene expression (48 and 72 hpi). Vinculin is
313 shown as loading control.

314 C) Heat map of viral genes measured by RNA sequencing at 4, 16, 24, 48, and 72 hpi
315 compared to mock (M). N=3 biological replicates.

316 D) Droplet digital PCR (ddPCR) quantification of HCMV genomes extracted from infected
317 WT and macroH2A1 KO cells at 4 hours (input), 4, and 6 dpi. Bar graphs show the mean
318 with error bars indicating SEM. No significance at any time point by paired T-test.


319 E) ddPCR quantification of HCMV genomes released from cells as in (D) and isolated from
320 supernatants (sups) at 4 and 6 dpi after nuclease treatment, indicating encapsidated
321 genomes. Error bars represent the SEM of three biological replicates. No significance at
322 any time point by paired T-test.

323 F) Representative immunofluorescence images of WT and macroH2A1 KO cells during
324 HCMV infection at mock and 72 hpi. DAPI is shown in cyan, and viral protein pp28 is
325 shown in magenta. Scale bar represents 10 μ m.

326 G) Quantification of the volume of viral induced assembly compartments (vIACs) measured
327 by pp28 fluorescence. Bar graphs show mean with error bars indicating SEM. $P < 0.05$
328 by unpaired T-test. N>40 vIACs.

329 H) Quantification of nuclear volume of WT and macroH2A1 knockout HCMV-infected cells
330 at 72 hpi. Bar graphs show mean with error bars indicating SEM. $p < 0.001$ by unpaired
331 T-test. N>40 cells.

Figure 2. HCMV cellular remodelling and viAC formation is dependent on macroH2A1.

332

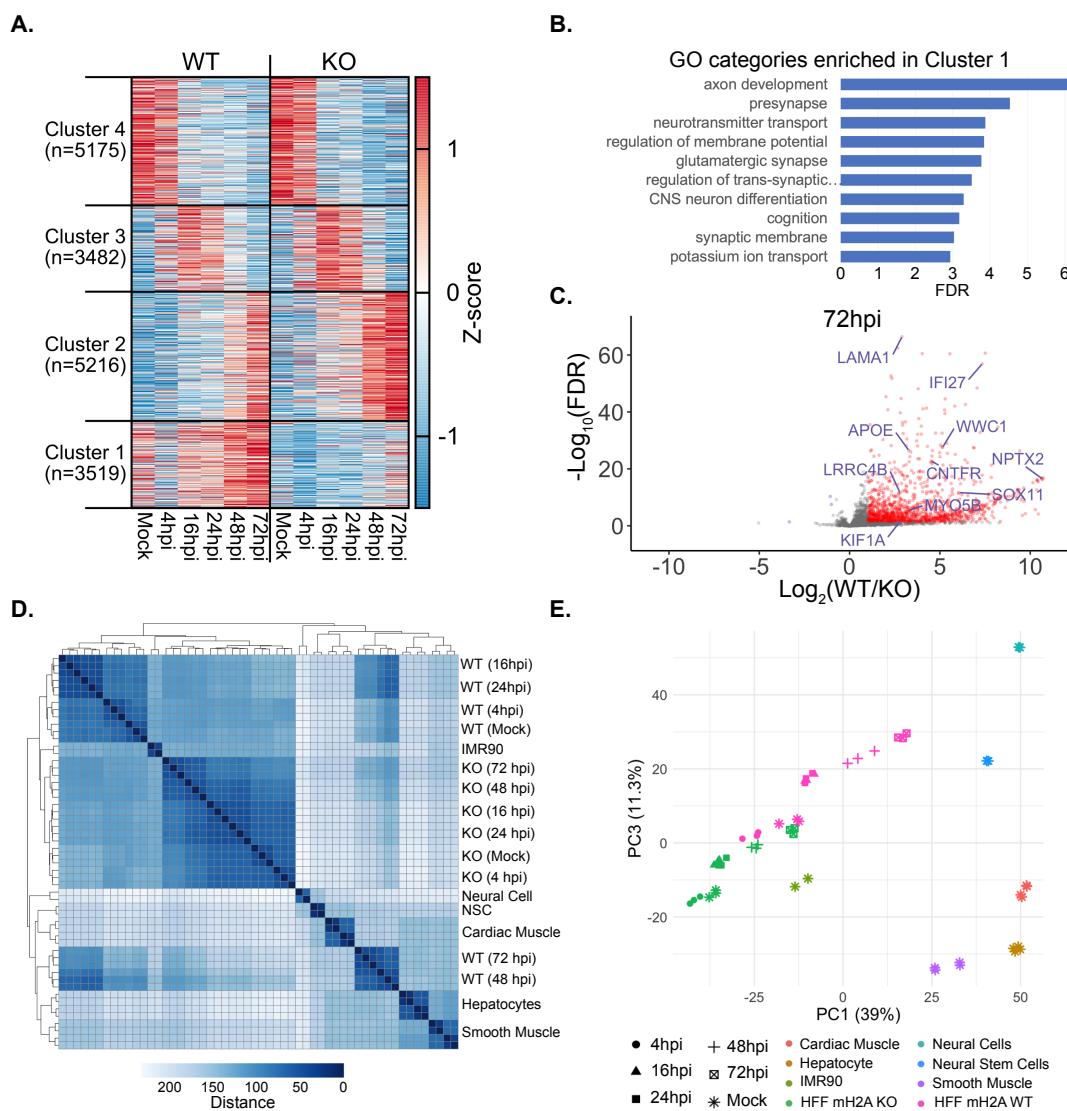
333

334 **Figure 2. HCMV cellular remodeling and viAC formation is dependent on macroH2A1.**

335 A) Representative transmission electron microscopy images of mock-treated WT and
 336 macroH2A1 KO HFF-T cells showing the uninfected state of the endoplasmic reticulum
 337 (ER).

338 B) Representative transmission electron microscopy images of WT and macroH2A1 KO
339 cells at 4 days post infection with HCMV.

340 C) Annotation of images from (B). *Right*: Key for annotation. *Below*: Zooms of boxed
341 regions of interest with annotated images of zoomed panels to the right.


342 D) Average endoplasmic reticulum trace per $2.5 \mu\text{m}$ by $2.5 \mu\text{m}$ grid of WT and macroH2A1
343 KO cells in mock and 4 dpi. Bar graph shows mean length of ER per field of view with
344 error bars indicating SEM. ** denotes $p < 0.01$, **** denotes $p < 0.0001$ by one-way
345 ANOVA with subsequent Dunnett's tests of pairs of interest. N=40 grids for mock cells
346 and 100 for infected cells.

347 E) Representative transmission electron microscopy images viral-induced assembly
348 compartments (vIAC) at 4dpi in WT and macroH2A1 KO cells as indicated. *Below*:
349 Zooms from image with annotated versions to the right as in (C).

350 F) Quantification of vIAC subcompartment area. Violin plot depicts median, and upper, and
351 lower quartiles as dotted lines. $P < 0.001$ by paired T-test. N>100 subcompartments.
352 Scale bars as indicated.

353

Figure 3. Host gene expression is altered upon loss of macroH2A1 during HCMV infection.

354

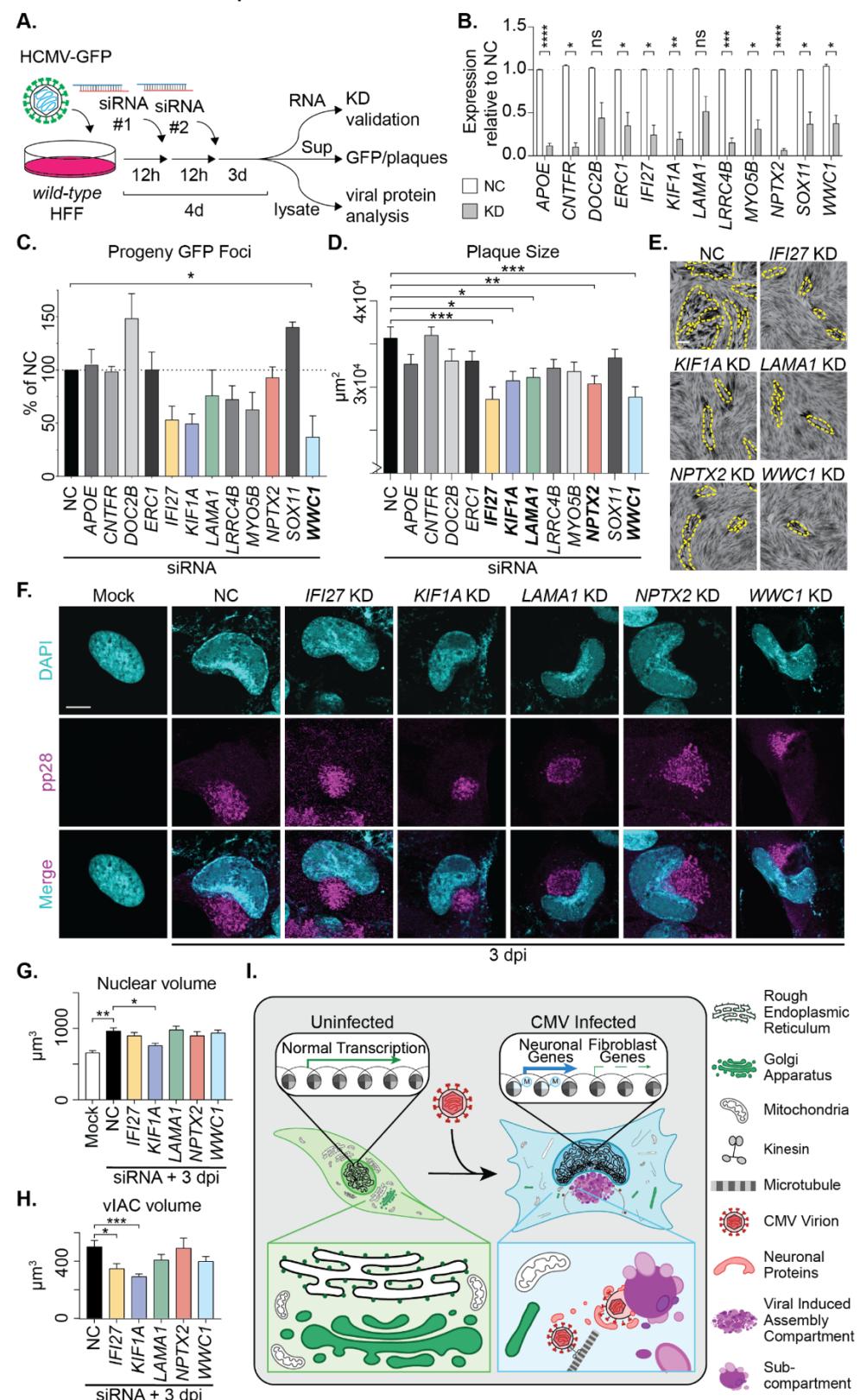
355 **Figure 3.** Host gene expression is altered upon loss of macroH2A1 during HCMV infection.

356 A) K-means clustering ($k=4$) of gene expression changes over 72 hours of infection shown
357 as a heatmap. Z-scores were calculated for each gene from its normalized count across
358 the time course of CMV infection for WT and macroH2A1 KO cells.

359 B) The $-\log_{10}(\text{FDR})$ value for enrichment of neuronal GO categories in Cluster 1.

360 C) Volcano plot where the $\text{Log}_2(\text{Fold Change})$ for WT vs. macroH2A.1 KO is plotted against
361 $-\log_{10}(\text{FDR})$ for genes in Cluster 1. Genes with $\text{Log}_2(\text{Fold Change}) > 1$ and $\text{FDR} \leq 0.05$ are
362 marked in red. Neuronal genes selected for further characterization are labeled in blue.

363 D) Matrix of Euclidean distance between normalized expression profiles of CMV infection
364 time course for WT and macroH2A1 KO, and other cell types. Gene expression datasets
365 for other cell types were obtained from ENCODE.


366 E) PCA plot showing PC1 and PC3 for the same expression profiles plotted in (D).

367

368

369

Figure 4. Successful HCMV maturation requires induction of dormant neuronal proteins.

371 **Figure 4.** Successful HCMV maturation requires induction of dormant neuronal proteins.

372 A) Schematic of targeted siRNA screen methodology.

373 B) RT-qPCR quantification of RNA levels of target genes during HCMV infection. These
374 genes include *APOE*, a lipoprotein associated with Alzheimer's disease and synaptic
375 vesicle release^{41,42}; *CNTFR*, a ciliary neurotrophic factor receptor that supports motor
376 neuron axons⁴³; *DOC2B* a calcium sensor that promotes synaptic vesicle release⁴⁴;
377 *ERC1*, a cellular scaffolding protein⁴⁵; *IFI27*, an interferon-induced gene expressed in
378 the cerebellum in response to viral CNS infection⁴⁶; *KIF1A*, a neuronal kinesin³⁰; *LAMA1*,
379 a laminin essential for neurite growth^{47,48}; *LRRC4B*, a transmembrane protein that
380 regulates synapse formation⁴⁹; *MYO5B*, a myosin associated with polarity and axon
381 development⁵⁰; *NPTX2* (formerly *NARP*), a small molecule released in excitatory
382 synapses⁵¹; *SOX11*, a transcription factor associated with neuron development⁵²; and
383 *WWC1*, a synaptic scaffolding protein⁵³. Knockdown of each gene at 4dpi is normalized
384 to its expression in cells treated with the non-targeting control (NC) at 4 dpi. Bar graphs
385 show mean with error bars indicating SEM. N=3 biological replicates.

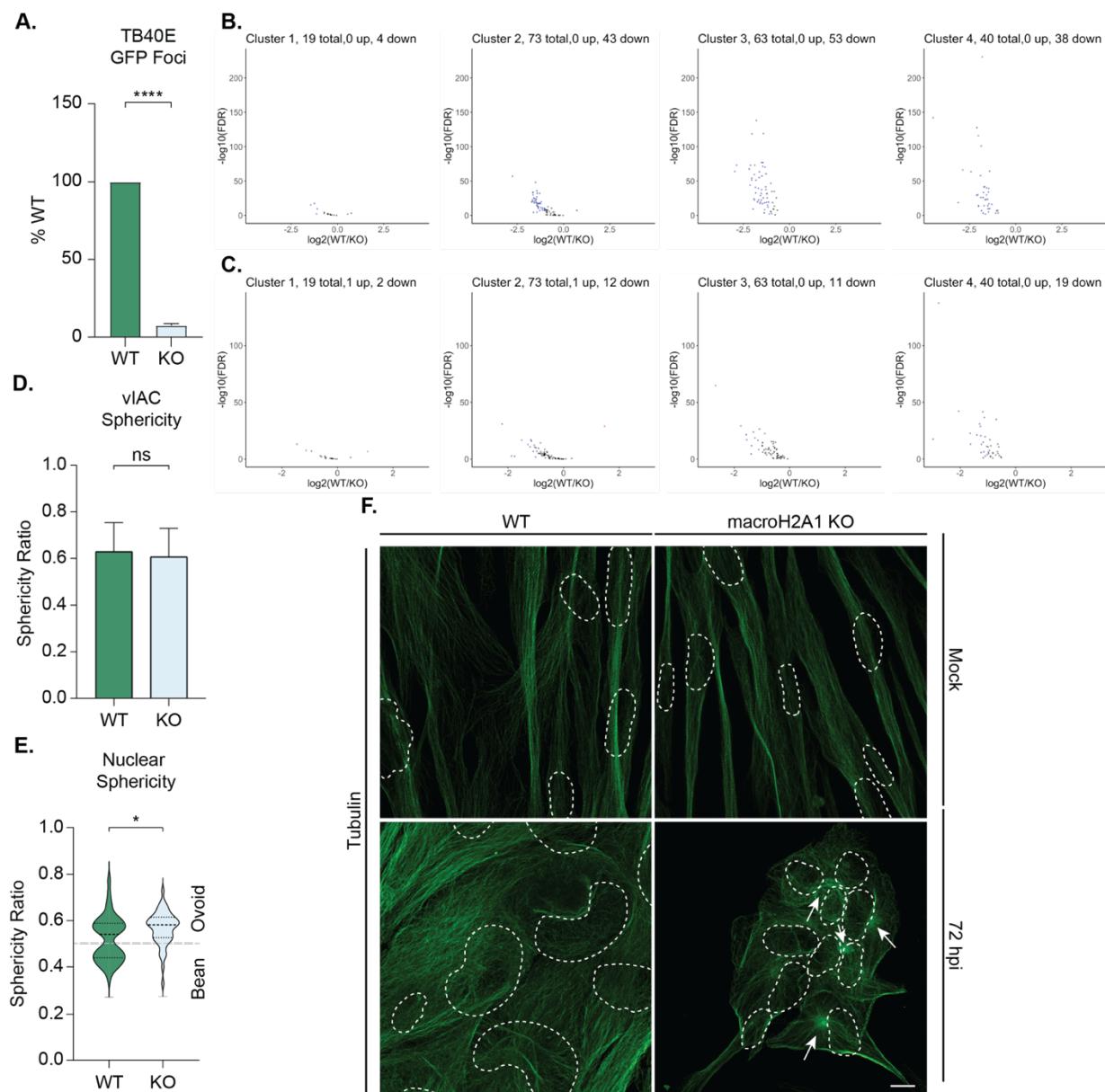
386 C) Quantification of GFP foci in cells infected with supernatant harvested from cells treated
387 with indicated siRNA as depicted in (A). Bar graphs show mean with error bars indicating
388 SEM. * indicates $P < 0.05$ by one way ANOVA with follow up Dunnett's test. N=3
389 biological replicates.

390 D) Quantification of plaque area produced from supernatant harvested from cells treated
391 with siRNA indicated. Those that reach statistical significance are bolded. Bar graphs
392 show mean with error bars indicating SEM. * denotes $P < 0.05$, ** denotes $p < 0.01$, ***
393 denotes $p < 0.001$ by one way ANOVA with follow up Dunnett's test. N > 300 plaques.

394 E) Representative images of plaque sizes for those with significant differences as indicated.
395 Yellow dashed line frames plaque example. Scale bar indicates 150 μ m.

396 F) Representative immunofluorescence images of HCMV-infected cells treated with
397 indicated siRNA knockdown. DAPI is shown in cyan and pp28 is shown in magenta.
398 Scale bar represents 10 μ m.

399 G) Quantification of nuclear volume in siRNA-treated cells infected with HCMV. Bar graph
400 shows mean with error bars indicating SEM. * denotes $P < 0.05$, ** denotes $p < 0.01$ by
401 one way ANOVA with follow up Dunnett's test. N > 60 cells.


402 H) Quantification of viral induced assembly compartment (vIAC) volume in siRNA-treated
403 cells infected with HCMV. Bar graph shows mean with error bars indicating SEM. *
404 denotes $P < 0.05$, *** denotes $p < 0.001$ by one way ANOVA with follow up Dunnett's
405 test. N > 60 vIACs.

406 I) Model schematic. HCMV-infected cells upregulate numerous neuronal genes and these
407 genes are required by the virus for proper cellular remodeling, formation of the viral
408 assembly compartment, and viral maturation to promote viral spread.

409

410 **Supplemental Figures**

Supplemental Figure 1. HCMV nuclear and cytoskeletal reorganization requires macroH2A1.

411

412 **Supplemental Figure 1. HCMV nuclear and cytoskeletal reorganization requires macroH2A1.**

413 A) Infectious progeny produced from **TB40E-GFP** HCMV infected WT and macroH2A1 KO

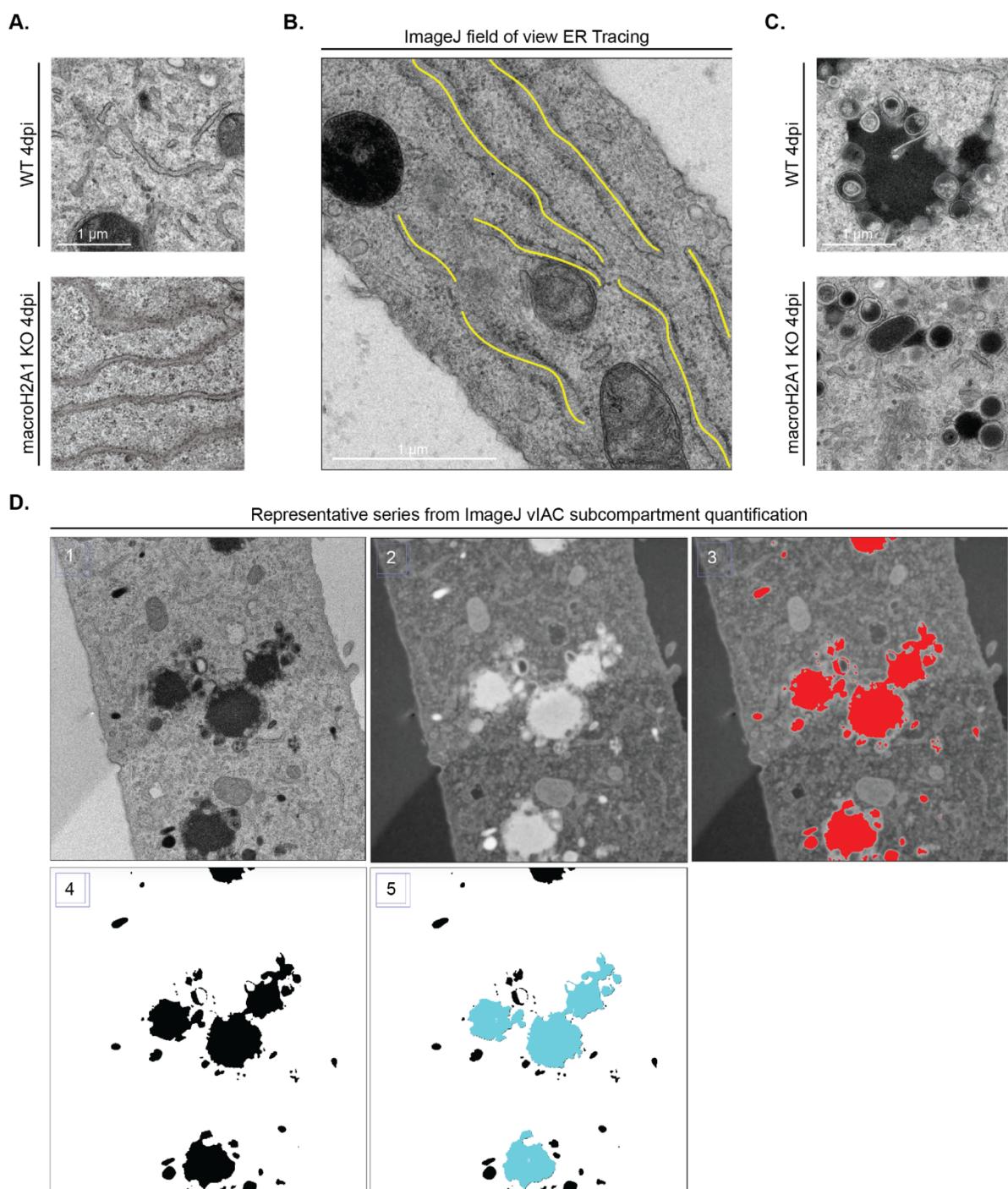
414 HFF-T cells quantified by plaque assay at 4 or 6 days post infection (dpi) as indicated.

415 Viral yield is indicated as the percent yield compared to wild type, with errors bars

416 representing SEM. $P < 0.0001$ at both time points by unpaired T-test. $N=3$ biological
417 replicates.

418 B) Volcano plots where the $\text{Log}_2(\text{Fold Change})$ for WT vs. macroH2A1 KO at 48 hpi is
419 plotted against $-\log_{10}(\text{FDR})$ for genes in clusters as marked. Significantly upregulated
420 genes (Genes with $\text{Log}_2(\text{Fold Change}) > 1$ and $\text{FDR} \leq 0.05$) are marked in red, and
421 significantly downregulated genes (Genes with $\text{Log}_2(\text{Fold Change}) < 1$ and $\text{FDR} \leq 0.05$)
422 are marked in blue.

423 C) Volcano plots as in (B) for gene expression at 72 hpi.


424 D) Sphericity of viral induced assembly compartment as measured by pp28 staining. Bar
425 graphs show mean with error bars indicating SEM. No significance by unpaired T-test.
426 $N > 40$ vIACs.

427 E) Nuclear sphericity of WT and macroH2A1 KO HCMV infected cells at 72 hpi. Violin plot
428 depicts median and quartiles in dashed lines. Division of oval and bean shape as
429 marked. $p < 0.05$ by unpaired T-test. $N > 40$ cells.

430 F) Representative immunofluorescence images of WT and macroH2A1 KO cells during
431 CMV infection at mock and 72 hpi with tubulin staining in green. Arrows indicate
432 centrosomes and dashed white lines outline nuclei. Scale bar represents 10
433 micrometers.

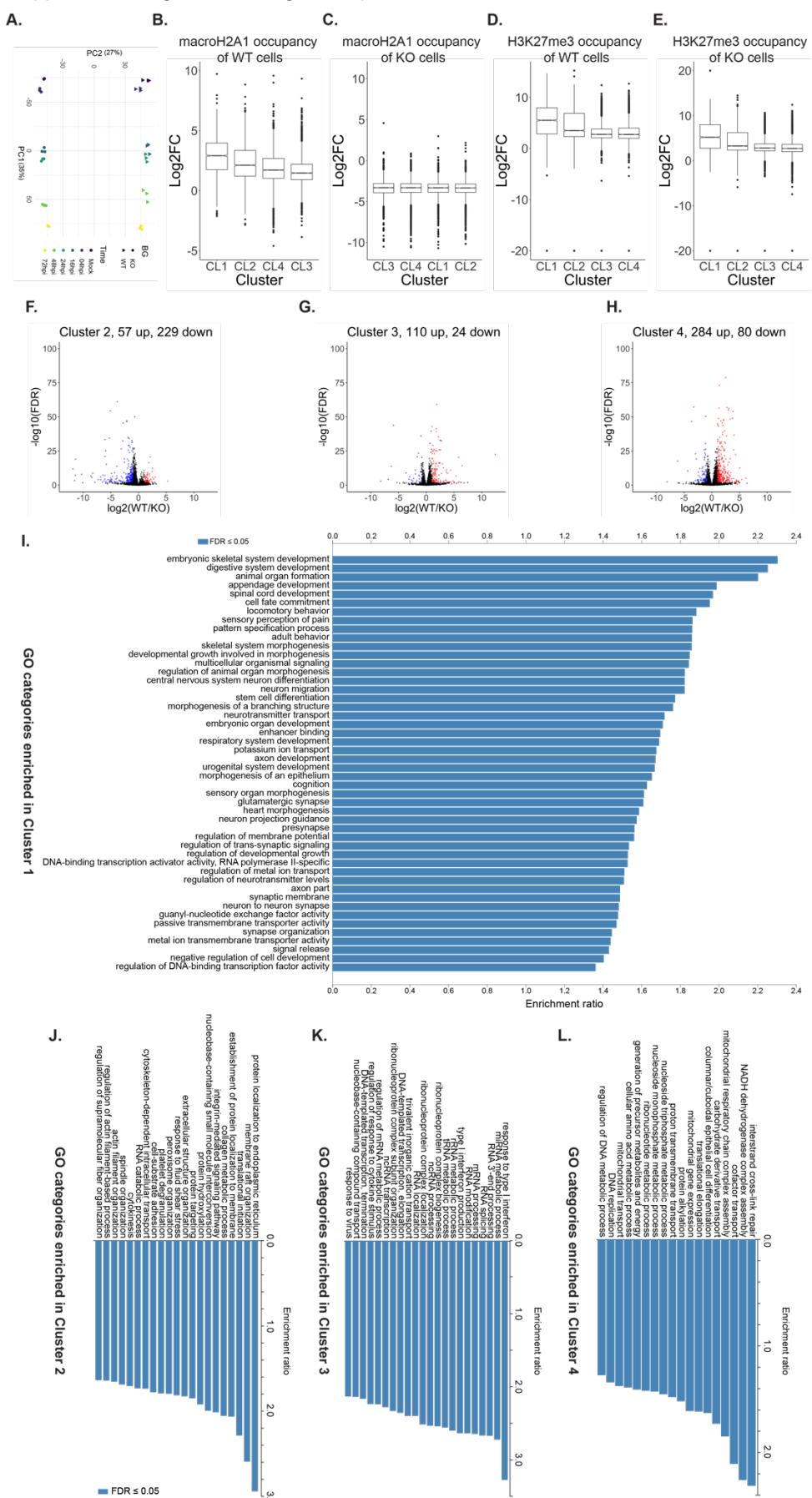
434

Supplemental Figure 2. Image analysis pipeline for electron microscopy data.

436 **Supplemental Figure 2.** Image analysis pipeline for electron microscopy data.

437 A) Additional transmission electron microscopy image of WT and macroH2A1 KO cells at 4
438 dpi with HCMV. Scale bar as indicated.

439 B) Representative image highlighting the ER tracing in ImageJ for quantification in Figure
440 2D. Yellow lines represent traces made with “Freehand line tool”, length of line was
441 measured with ImageJ “Measure” function.


442 C) Additional transmission electron microscopy images of vIACs from WT and macroH2A1
443 KO cells at 4 dpi.

444 D) Representative images indicating the ImageJ macro for quantification shown in Figure
445 2F. 1) Original image, 2) invert and gaussian blur, 3) thresholding to define
446 subcompartments, 4) convert to mask and fill holes, 5) size exclusion on dense bodies
447 and virions.

448

449

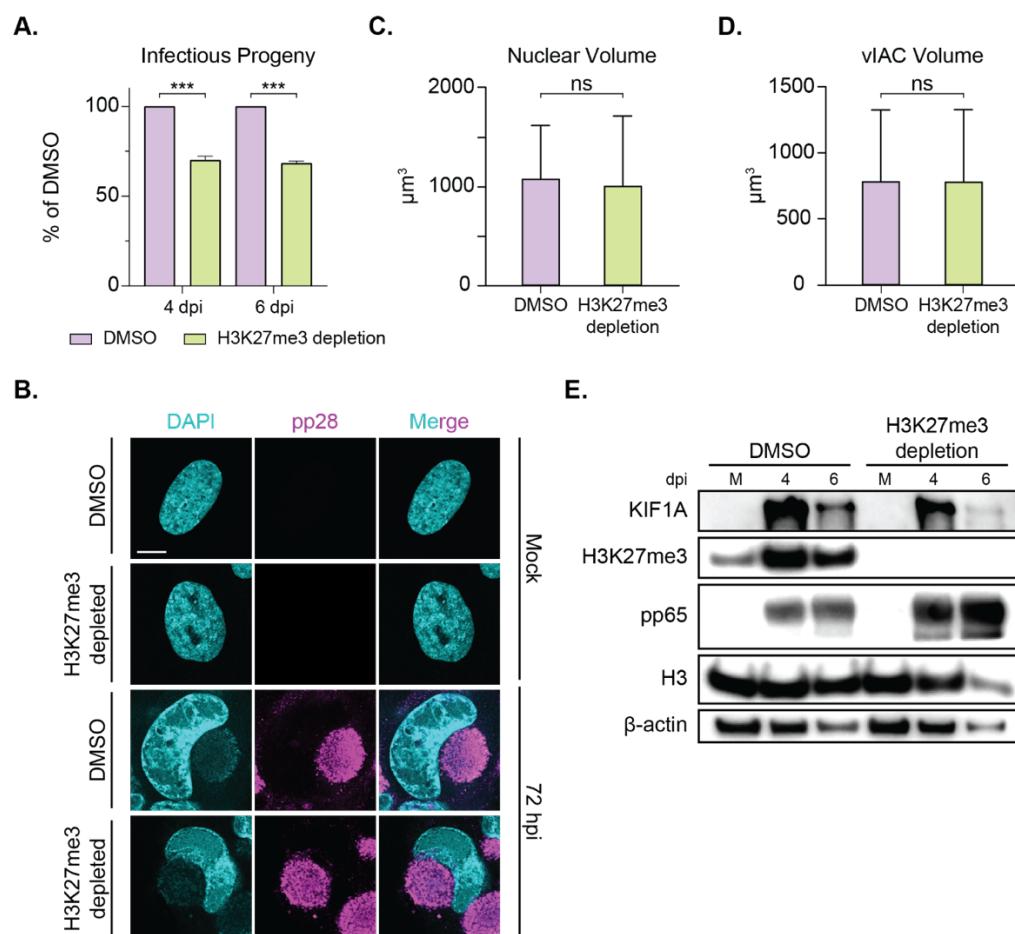
Supplemental Figure 3. Host gene expression and chromatin states.

451 **Supplemental Figure 3.** Host gene expression and chromatin states.

452 A) Loadings of first two principal components from principal component analysis of the matrix of
453 quantification of all genes for all 36 samples. PC1 captures the time course of infection, whereas
454 PC2 captures the genotype.

455 B) Log2 fold change of macroH2A CUT&Tag enrichment compared to IgG from uninfected cells
456 at genes (from gene start to gene end) in each cluster plotted as boxplots.

457 C) Same as (B) for macroH2A1 KO cells.


458 D) Same as (B) for H3K27me3 CUT&Tag in WT cells.

459 E) Same as (B) for H3K27me3 for macroH2A1 KO cells. Published macroH2A, H3K27me3, and
460 IgG CUT&Tag data were used for (B-E).

461 F-H) Volcano plots where the Log₂(Fold Change) for WT vs. macroH2A.1 KO at 72 hpi is plotted
462 against -log₁₀(FDR) for genes in clusters 2 (F), 3(G), and 4 (H) shown. Significantly upregulated
463 genes (Genes with Log2(Fold Change) >1 and FDR≤0.05) are marked in red, and significantly
464 downregulated genes (Genes with Log2(Fold Change) <1 and FDR≤0.05) are marked in blue.

465 I-L) Enrichment of GO categories with FDR<0.05 plotted for Cluster 1 (I), 2 (J), 3(K), and 4 (L).

Supplemental Figure 4. H3K27me3 is not required for cellular remodeling or KIF1A induction by HCMV.

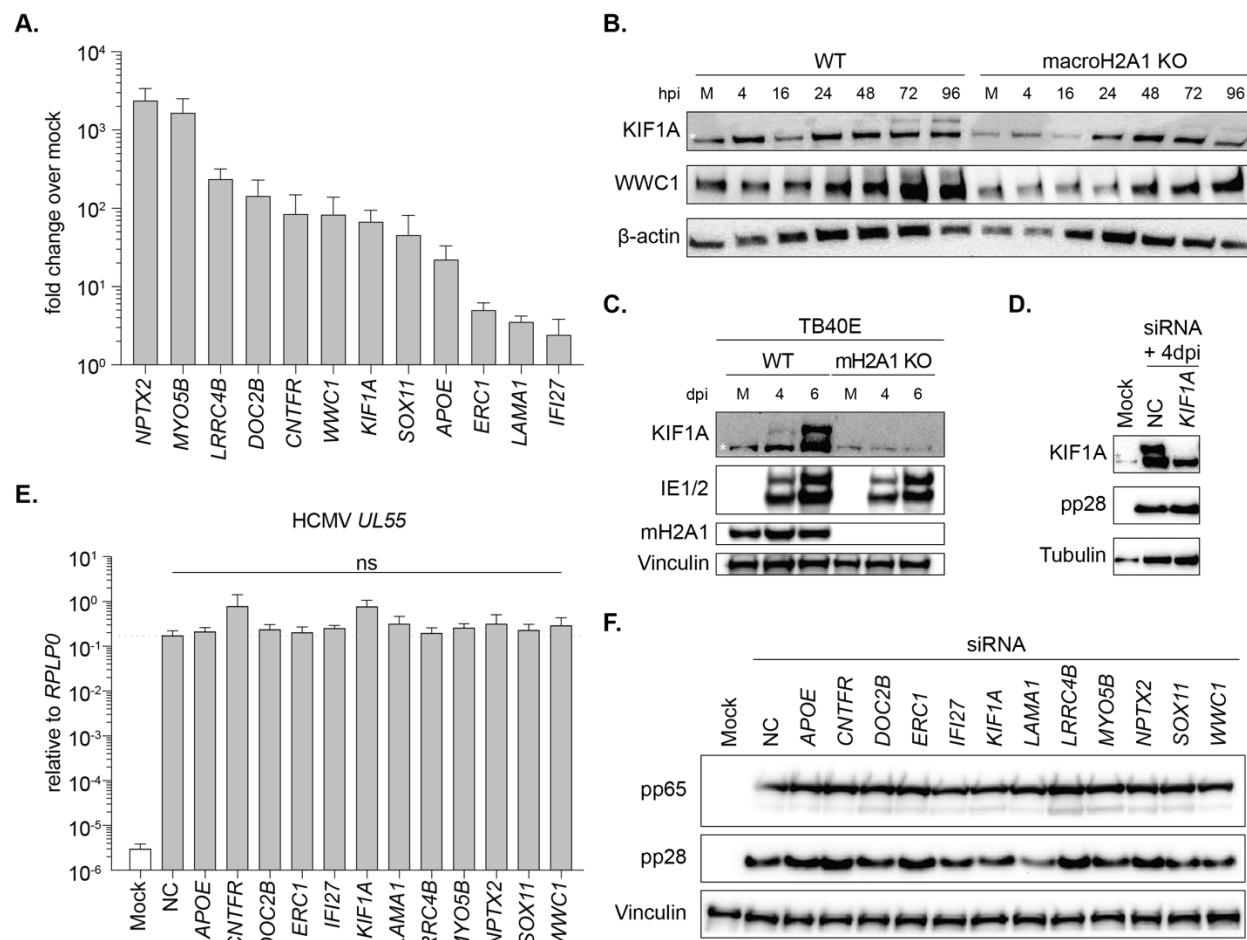
466

467 **Supplemental Figure 4. H3K27me3 is not required for cellular remodeling or KIF1A induction**
468 **by HCMV.**

469 A) Infectious progeny produced from HCMV-infected WT and H3K27me3 depletion by
470 tazemetostat cells quantified by plaque assay. Viral yield is indicated as the percent yield
471 compared to wild type, with errors bars representing SEM. $P < 0.001$ at both time points
472 by unpaired T-test. N=3 biological replicates at 4 dpi N=2 at 6 dpi.

473 B) Representative immunofluorescence images of WT and H3K27me3 depleted cells
474 during HCMV infection at mock and 72 hpi. DAPI is shown in cyan and viral protein pp28
475 is shown in magenta. Images are merged in bottom row. Scale bar represents 10 μ m.

476 C) Nuclear volume of WT and H3K27me3-depleted HCMV-infected cells at 72 hpi. Bar
477 graphs show mean with error bars indicating SEM. No significance by unpaired T-test. N
478 > 40 cells.


479 D) Volume of viral induced assembly compartment as measured by pp28 staining. Bar
480 graphs indicate mean with error bars indicating SEM. No significance by unpaired T-test.
481 N > 40 vIACs.

482 E) Representative western blot of viral proteins in WT and H3K27me3 depleted cells during
483 HCMV infection at 4 or 6dpi compared to mock (M) as indicated. Vinculin is shown as
484 loading control.

485

486

Supplemental Figure 5. Gene expression analysis of siRNA screen during HCMV infection.

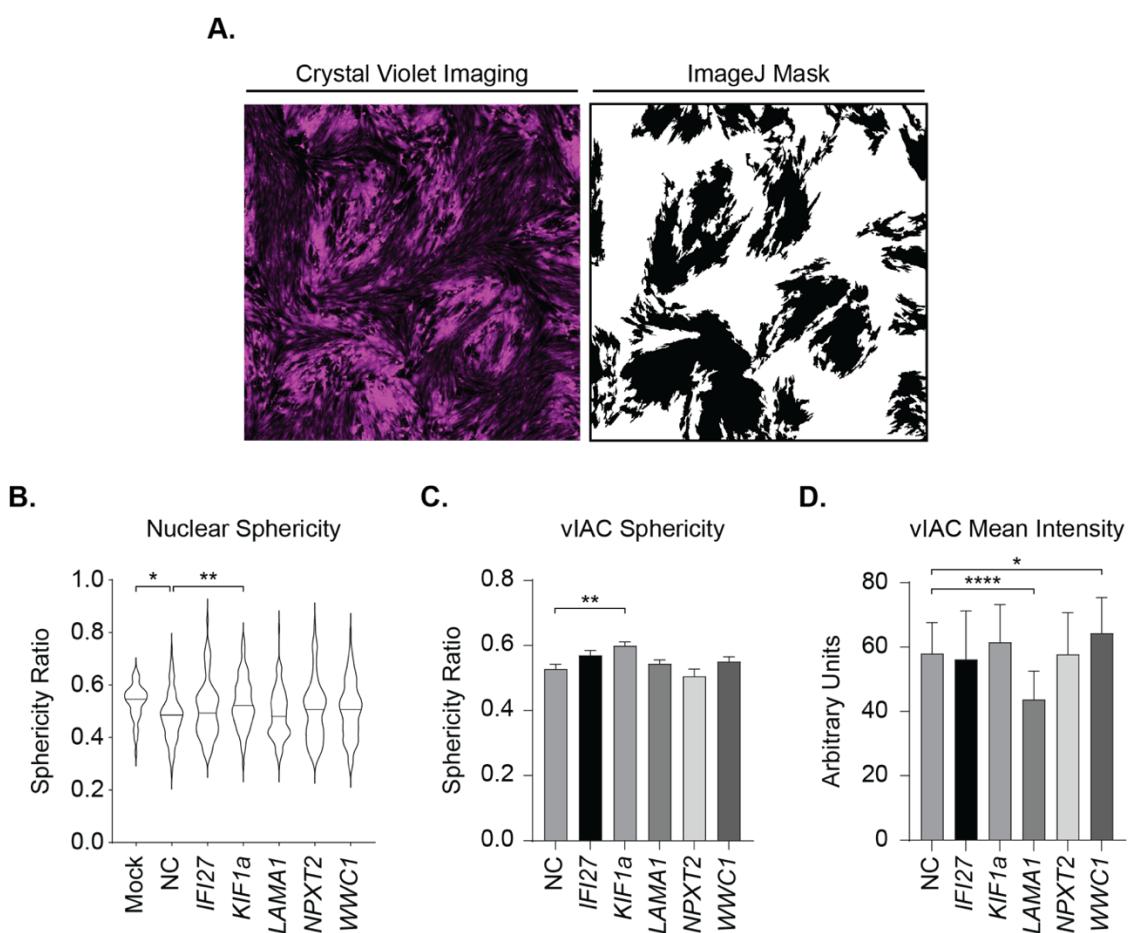
487

488 **Supplemental Figure 5.** Gene expression analysis of siRNA screen during HCMV infection.

489 A) RT-qPCR of target gene RNA levels during HCMV infection at 4 dpi. Bar graphs indicate
490 mean with error bars indicating SEM. N=3 biological replicates.

491 B) Representative western blot of neuronal proteins in WT and macroH2A1 KO cells during
492 HCMV infection at 4, 16, 24, 48, 72, and 96 hpi compared to mock (M). Asterisk
493 indicates a non-specific band. Actin is shown as loading control.

494 C) Representative western blot of KIF1A in WT and macroH2A1 KO cells during *TB40E*-
495 *GFP* HCMV infection at 4 and 6 dpi compared to mock (M). Asterisk indicates a non-
496 specific band. Vinculin is shown as loading control.


497 D) Representative western blot of siRNA knockdown in WT cells during HCMV infection at
498 4 dpi compared to mock (M). Asterisk indicates a non-specific band. Tubulin is shown as
499 loading control and pp28 is shown as infection control.

500 E) RT-qPCR of HCMV UL55 in siRNA treated cells during CMV infection. Expression is
501 normalized to the non-targeting control treated mock-infected cells. Bar graphs show
502 mean with error bars indicating SEM. N=3 biological replicates. No significance by
503 ANOVA.

504 F) Representative western blot of viral proteins pp65 and pp28 in siRNA knockdown in WT
505 cells during HCMV infection at 4 dpi compared to mock (M). Vinculin is shown as loading
506 control.

507

Supplemental Figure 6. Image analysis of siRNA screen.

508

509 Supplemental Figure 6. Image analysis of siRNA screen.

510 A) Representative Cy-5 imaging of Crystal Violet stained HCMV plaques in HFF cells and
511 subsequent ImageJ quantification.

512 B) Nuclear sphericity of HCMV-infected WT and siRNA treated cells as indicated at 72 hpi.
513 Violin plot depicts median and quartiles in dashed lines. * indicates $p < 0.05$ ANOVA with
514 follow up Dunnett's test. N > 40 cells.

515 C) Sphericity of viral-induced assembly compartment as measured by pp28 staining. Bar
516 graphs show mean with error bars indicating SEM. No significance by unpaired T-test. N
517 > 40 vIACs.

518 D) Average intensity of viral-induced assembly compartments as measured by pp28
519 staining. Bar graphs show mean with error bars indicating SEM. * indicates $p < 0.05$
520 ANOVA with follow up Dunnett's test. $N > 40$ vIACs.

521

522

523

524

525 **Material and Methods**

526 *Cells and viruses*

527 hTERT-immortalized HFFs, and hTERT-immortalized macroH2A1 knockout HFFs generated as
528 previously described²², were cultured using standard methods with 10% FBS and 1% penicillin-
529 streptomycin as previously described⁵⁴. Cells were grown at 37°C with 5% CO₂ and routinely
530 tested for mycoplasma contamination.

531 The lab-adapted strain of HCMV *Towne*⁵⁵ was used for all experiments unless otherwise noted.
532 GFP-*Towne*⁵⁶ and *TB40E*-GFP⁵⁷ were used for experiments indicated at an MOI of 1.
533 Monolayers of cells were infected for 1 h at 37°C as previously described⁵⁸. Cells were collected
534 at 4, 16, 24, 48, 72, 96 hpi for western blot and RNA-sequencing. The supernatant was collected
535 at 4 and 6 dpi for plaque assays. Virus stock was grown by infecting WT HFF cells at an MOI of
536 0.0001. The virus was harvested ~16-20 dpi and titered on HFF cells to determine stock
537 plaque-forming units per ml (PFU/ml). Experimental plaque assays were set up in WT HFF
538 cells. Plaque assays were set up as serial 10-fold dilutions in serum-free DMEM. The virus was
539 left on the cells for 1 h and then aspirated. Cells were washed with 1× PBS (pH 7.46) and 2%
540 methylcellulose overlay in DMEM with 2% FBS, and 0.5% penicillin-streptomycin was added to
541 wells. Plaques were fixed with 0.2% crystal violet at 14 dpi and plaques were counted by hand.
542 All plaque assays were set up with two technical replicates.

543 In the case of GFP-tagged viruses, foci were read at 7 dpi using the Cy-5 filter on a Typhoon
544 Trio Imager and quantified using FIJI is Just ImageJ version 2.1.0: Java 1.8.0_172 [64-bit].

545 *Infections with tazemetostat pretreatment*

546 HFFs were treated with DMSO or 10 μM of tazemetostat (HY-13803; MedChem) in DMSO for 3
547 d prior to infection as previously described²². Cells were then infected at an MOI of 1, and after
548 1 h of incubation with the virus, fresh media with 10 μM tazemetostat was added to previously
549 treated cells. Control samples were treated with equivalent volumes of DMSO. Samples were
550 harvested as above.

551 *Western blotting*

552 Western blotting was performed as previously described⁵⁴. Briefly, cells were counted, pelleted,
553 resuspended in 1× NuPAGE lithium dodecyl sulfate (LDS) sample buffer (NP007; Thermo
554 Fisher Scientific) + 5% β-mercaptoethanol at 300,000 cells per 200 μl, and boiled for 15 min.

555 Protein lysates were separated by 13.5% SDS-PAGE gels using 1× NuPAGE MOPS buffer
556 (NP0001; Thermo Fisher Scientific) at 75 V for 30 min, then 110 V for 100 min, and then wet
557 transferred to a nitrocellulose membrane (Bio-Rad) at 100 V for 70 min using Transfer Buffer
558 (25 mM Tris Base, 100 mM glycine, 20% methanol). Membranes were ponceau stained and
559 imaged. Membranes were blocked in 5% milk in Tris-buffered saline with Tween (TBST) for 1 h
560 and then probed with primary antibody overnight (**Table 1**). Membranes were washed with
561 TBST for 30 min, incubated with secondary antibodies conjugated to horseradish peroxidase (α -
562 mouse or α -rabbit; 1:5,000) at room temperature for 1 h, washed with TBST for 30 min, and
563 detected using Clarity Western ECL Substrate (1705061; Bio-Rad) and Chemidoc MP Imaging
564 System (Bio-Rad). Images were formatted using Adobe Photoshop and Illustrator.

565 Table 1. Antibodies used for western blot and immunofluorescence.

Antibody	Source	Identifier	Use (concentration)
Mouse anti-CMV IE1/2	Virusys Corporation	Cat: p1215	WB (1:5,000)
Mouse anti-CMV UL44	Virusys Corporation	Cat: CA006-100	WB (1:36,000)
Mouse anti-CMV pp28	Virusys Corporation	Cat: CA004-1	WB (1:4,000) IF (1:250)
Mouse anti-CMV pp65	Virusys Corporation	Cat: CA003-100	WB (1:2,000)
Mouse anti-CMV gB	Virusys Corporation	Cat: CA005-100	WB (1:4,000)
Rabbit anti-macroH2A1	Abcam	Cat: 37264	WB (1:1,000)
Mouse anti-Vinculin	Sigma Aldrich	Cat: V9131	WB (1:10,000)
Mouse anti- α -Tubulin	Thermo Fisher Scientific	Cat: 32-2500	IF (1:1000)
Mouse anti- α -Tubulin	Santa Cruz Biotechnology	Cat: sc-69969	WB (1:1,000)
Mouse anti- β -actin	Abcam	Cat: 5441	WB (1:10,000)
Rabbit anti-KIF1A	Abcam	Cat: ab180153	WB (1:2,500)

Rabbit anti-KIBRA (WWC1)	Cell Signaling Technologies	Cat: 8774S	WB (1:1,000)
Rabbit anti-H3	Abcam	Cat: 1791	WB (1:20,000)
Rabbit anti-H3K27me3	Cell Signaling Technologies	Cat: 9733T	WB (1:100)
Peroxidase-AffiniPure goat anti-rabbit	Jackson ImmunoResearch Laboratories	Cat: 111-035-045	WB (1:5,000)
Peroxidase-AffiniPure goat anti-mouse	Jackson ImmunoResearch Laboratories	Cat: 115-035-003	WB (1:5,000)
Goat anti-mouse IgG (H+L) AlexaFluor 555	Thermo Fisher Scientific	Cat: A-32727	IF (1:300)

566

567 *Quantification of HSV-1 genomes by droplet digital (ddPCR)*

568 Quantification was carried out as previously described²². In brief, cells were harvested at the
569 indicated times after infection by trypsinization, washed with 1× PBS, and centrifuged at 5,000
570 × g for 2 min. Pellets were flash-frozen in liquid nitrogen and stored at –80°C until processed.
571 HCMV DNA within cells was isolated from frozen pellets using QIAamp DNAMini Kit (51304;
572 Qiagen).

573 Supernatants were harvested at the indicated times after infection, centrifuged at >3,500
574 × g, and filtered through 40-µm sterile syringe filters. DNA on the exterior of filtered capsids was
575 digested for 1 h at 25°C with 20.3 units DNase (79254; Qiagen) supplemented with 10 mM
576 MgCl₂. DNase was inactivated at 75°C for 10 min followed by vortexing. Capsids were then
577 digested with 3 mg/ml proteinase K (BP1700; Thermo Fisher Scientific) in 100 mM KCl, 25 mM
578 EDTA, 10 mM Tris-HCl pH 7.4, and 1% Igepal for 1 h at 50°C. HCMV genomes from digested
579 capsids were isolated using QIAamp DNAMini Kit.

580 A duplexed droplet digital PCR was performed to measure the levels of cellular or supernatant
581 HCMV genomes on the QX100 droplet digital PCR system (Bio-Rad Laboratories) using a
582 primer/probe set specific to HCMV UL55. Cell numbers were determined using a primer/probe
583 set specific to human Beta-globin, a reference gene that exists at two copies per cell. The
584 ddPCR reaction mixture consisted of 12.5 µl of a 2× ddPCR Supermix for Probes no dUTP

585 (1863024; Bio-Rad), 1.25 μ l of each 20 \times primer-probe mix (**Table 2**), and 10 μ l of template
586 DNA. 20 μ l of each reaction mixture was loaded onto a disposable plastic cartridge (1864008;
587 Bio-Rad) with 70 μ l of droplet generation oil (1863005; Bio-Rad) and placed in the droplet
588 generator (Bio-Rad). Droplets generated were transferred to a 96-well PCR plate (12001925;
589 Bio-Rad), and PCR amplification was performed on a Bio-Rad C1000 Touch Thermal Cycler
590 with the following conditions: 95°C for 10 min, 40 cycles of 94°C for 30 s, and 60°C for 1 min,
591 followed by 98°C for 10 min, and ending at 4°C. After amplification, the plate was loaded onto
592 the droplet reader (QX200; Bio-Rad) and the droplets from each well of the plate were
593 automatically read with droplet reader oil (186-3004; Bio-Rad) at a rate of 32 wells per hour.
594 Data were analyzed with QuantaSoft analysis software and the quantitation of target molecules
595 presented as copies per microliter of the PCR reaction. HCMV genome values were
596 standardized to cellular β -globin levels. Experiments were completed in biological triplicate and
597 statistical analysis was performed as indicated in figure legends using Prism v10 (GraphPad
598 Software).

599 Table 2: Primers and probes for ddPCR

Target	Forward Primer	Reverse Primer	Probe
HCMV UL55	TGGGCGAGG ACAAACGAA	TGAGGCTGGG AAGCTGACAT	6FAM-TGGGCAACCACC GCACTGAGG-BHQ1
Human Beta-Globin	TGAAGGCTCA TGGCAAGAAA	GCTCACTCAGT GTGGCAAAGG	5HEX-TCCAGGTGAGCCAGGCCATCACTA-3BHQ1

600

601 *RNA sequencing*

602 Three biological replicates per time point were obtained from independent infections. Cells were
603 harvested at the indicated times after infection by trypsinization, washed with PBS, and
604 centrifuged at 5,000 \times g for 2 min. RNA was harvested using New England BioLabs Monarch®
605 Total RNA Miniprep Kit (T2010S) as per kit instructions.

606 RNA was quantified by Nanodrop and integrity was analyzed with the 4200 Tapestation
607 Bioanalyzer system (Agilent). 500 ng of total RNA with an RNA Integrity Number (RIN) >9.5
608 were used to prepare sequencing libraries with the TruSeq Stranded mRNA Library Prep Kit
609 (20020594; Illumina). Library concentrations were measured with Qubit dsDNA HS Assay Kit

610 (Q32854; Thermo Fisher Scientific) and then analyzed with Agilent High Sensitivity D5000
611 ScreenTape System and pooled. Libraries were sequenced with 100-bp paired-end reads on an
612 Illumina NextSeq 2000 sequencer at the Fred Hutch Genomics Core Facility.

613 *RNA-seq analysis*

614 A concatenated fasta file was created using cDNA sequences from release 110 of Ensembl for
615 the human genome and *Towne-HCMV* genome generated from sequencing map in Murphy *et*
616 *al.* 2003⁵⁹ and genbank sequences, which was then used to construct a Salmon index⁶⁰.
617 Expression for each transcript was quantified from raw reads using Salmon v1.9 with libType set
618 as automatic. DESeq2⁶¹ (v1.30.1) in R (v4.0.3) was used first to perform all pairwise
619 comparisons for WT and macroH2A1 KO both across time points and between the two
620 genotypes. There were six time points each in biological triplicates, resulting in 36 datasets: six
621 time points compared against each other for each genotype (15x2) and six time points
622 compared between WT and macroH2A1 KO (6). A superset of genes was made by combining
623 lists of genes with adjusted p-value ≤ 0.05 from each comparison. The expression matrix across
624 genotypes and time points was transformed using the “rlog” function in DESeq2, and then the
625 expression values for the superset of genes were extracted. The normalized read count for each
626 gene was averaged across replicates, Z-transformed across time points and genotypes, and
627 then the matrix of Z-scores was subjected to k-means clustering (k=4). Raw reads for ENCODE
628 datasets were obtained and quantified with Salmon in the same manner as the CMV samples.
629 CMV samples and ENCODE samples were loaded together in DESeq2 as a single DESeq
630 dataset and transformed using the “rlog” function. Normalized expression values for genes in
631 cluster 1 were then extracted to plot the distance matrix and principal components. The distance
632 matrix was calculated using the “dist” function in R and plotted using the pheatmap package.
633 Principal component analysis was performed using the “prcomp” function in R and plotted using
634 ggplot2. GO enrichment analysis was performed with WebGestalt⁶². macroH2A and H3K27me3
635 enrichment at genes from different clusters were performed using published data for WT and
636 macroH2A.1 KO HFF cells. Enrichment was calculated across the whole gene (Gene start and
637 Gene end definitions from Ensembl).

638 *Targeted siRNA screen*

639 HFFs were plated in 6-well plates and infected at MOI of 1 with HCMV-GFP Towne as described.
640 Cells were transfected at 12 and 24 hours post infection with 25 pmol/well siRNA (Silencer select,

641 Ambion distributed by Thermo Fisher) (**Table 3**) using lipofectamine RNAiMAX (Thermo Fisher).
642 Non-targeting “Negative Control #1” (Cat. 4390843) was used as siRNA control. At 4 days post
643 infection, supernatants were collected and flash frozen in liquid nitrogen for GFP-foci and plaque
644 assay. Cells were pelleted and split, 75:25 for protein lysate and RNA respectively. Cells for
645 protein lysate were lysed as previously described. Cell pellets for RNA extraction were flash
646 frozen in liquid nitrogen and stored at -80C.

647 *RT-qPCR*

648 RNA was extracted by TRIzol (Invitrogen) and cDNA was generated using Iscript Reverse
649 Transcription kit (Bio-Rad). RT-qPCR was performed using a CFX384 Touch Real-Time PCR
650 Detection System (Bio-Rad) and iTaq Universal SYBR Green One-Step kit (Bio-Rad). Primers for
651 RT-qPCR are described in Table 3.

652 Table 3. RT-qPCR primers and siRNA IDs.

Target	Forward RT-qPCR Primer	Reverse RT-qPCR Primer	Ambion Silencer Select siRNA (Cat. 4392420) ID:
<i>APOE</i> ⁶³	CCTCAAGAGCTGG TTCGAG	TCGGCGTTCAAGTG ATTGTC	s532836
<i>CNTFR</i>	CACCTGTTCTCCAC CATCAA	CACAAATGGTGAAC TCGTCAAAG	s3270
<i>DOC2B</i>	CAGGAGGCCAGTAA GGCAAATA	GTCTTCATCTGTGA TCCCCTAG	s16033
<i>ERC1</i>	TCAGGCGAGAGAT AACACAATC	TGCTCTCCTTTACT TCCACATC	s22995
<i>IFI27</i>	CTGTCATTGCGAG GTTCTACT	ATTTGGGATAGTTG GCTCCTC	s194542
<i>KIF1A</i>	ACATGACACTCTCC GCTTATATC	CTTGGCATCACGG GAATAGA	s1827
<i>LAMA1</i>	CTGGACATAGCCA GCTCTAATG	GTATTCCATCCACG CGGTAATA	s531309
<i>LRRC4B</i>	AAGCGGCTGGAAT ACATCTC	ATGTCCTTGAGGTT GCACAT	s41228
<i>MYO5B</i>	GTGGCAGAAGAAG CCTACAA	CATACTGGCTGAT ACCGTCTT	s532220
<i>NPXT2</i>	CCATTAGAAGAAG GCTCCCATT	ATGAAGACAGTCC AGTGCTTAC	s9696
<i>SOX11</i>	CCTCTTCCGCTAGT TGTGAAA	GGAGGAGGTGAGA AAGGAAATG	s224668
<i>WWC1</i>	CAAAGGAAAGCAG ATGCAAGAG	GACTGCAGATACA GTGAGGATG	s23477

<i>UL55</i>	TGGGCGAGGACAA CGAA	TGAGGCTGGGAAG CTGACAT	N/A
<i>RPLP0</i>	GCAGCATCTACAA CCCTGAAG	CACTGGCAACATT GCGGAC	N/A

653

654 *Immunofluorescence*

655 As previously described⁸, in brief: Cells were plated on poly-L coated glass coverslips the day
656 prior to infection. Cells were then infected with HCMV at an MOI of 1 and collected at 72 hpi.
657 For harvest, cells were fixed with cold 4% PFA in 1× PBS for 15 min. Cells were permeabilized
658 with 0.5% Triton-X in 1× PBS for 15 min, then blocked in 10% human serum in 1× PBS for 1 h,
659 incubated with primary antibody (diluted as noted in **Table 2**) in 10% human sera in 1× PBS for
660 1 h. Slides were incubated with secondary antibodies at a dilution of 1:300 in 3% BSA in 1×
661 PBS for 1 h. Coverslips were fixed to microscope slides with Invitrogen ProLong Gold Antifade
662 Mountant or Vectashield (Tubulin stain). Images were taken on Leica Stellaris Confocal with
663 63× oil objective at room temperature. Images were formatted using Adobe Photoshop and
664 Illustrator.

665 Images were analyzed using Bitplane Imaris v9.1.1. Labeled nuclei and vIACs were segmented
666 using the Surfaces tool on DAPI and pp28 stains respectively, and average volumes, sphericity
667 and mean fluorescence intensities were reported for each field.

668 *Plaque area quantification*

669 Once plaque assays were fixed (as per Cells and Virus section), plates were imaged on a
670 Molecular Devices ImageXpress Micro high-content imaging system equipped with a Nikon
671 4x/0.2 Plan Apo objective. To provide a quantitative measurement of staining intensity, we
672 acquired fluorescence images with a Cy5 filter set. Twenty-four overlapping fields were imaged
673 per well, providing 73% coverage of the total well area.

674 Using FIJI is Just ImageJ version 2.1.0: Java 1.8.0_172 [64-bit] threshold was set to top 8% of
675 pixel intensity (to account for well-to-well variation in crystal violet staining). The image was
676 converted to binary and “analyze particles” feature was used to acquire area for particles over
677 1000 pixel units squared (**Sup Figure 6A**).

678 We also acquired transmitted light images of selected samples on a Nikon Eclipse Ti inverted
679 microscope equipped with a Nikon 4x/0.2 Plan Apo objective. Images were acquired on a

680 Photometrics Prime BSI Express sCMOS camera through an orange (580-610 nm) filter. This
681 wavelength range was chosen to match the absorbance spectrum of crystal violet, thus
682 maximizing staining contrast and ensuring high dynamic range.

683 *Electron microscopy*

684 Cells were fixed in 2% paraformaldehyde and 2.5% glutaraldehyde in 0.1 M sodium cacodylate
685 buffer (pH 7.3) at 4°C. Fixed cells were rinsed briefly in 1% sucrose in 50 mM cacodylate (pH
686 7.2), then postfixed on ice for 30 min in a solution of 1% osmium tetroxide (RT19152; EM
687 Sciences) and 0.8% potassium ferricyanide in 50 mM cacodylate (pH 7.2). Cell pellets were
688 washed twice briefly at 25°C in 1% sucrose in 50 mM cacodylate (pH 7.2) and then washed in
689 three changes of 50 mM cacodylate (pH 7.2) for 5 min each. Cell pellets were treated with 0.2%
690 tannic acid (1401-55-4; Sigma-Aldrich) in 50 mM cacodylate (pH 7.2) for 15 min at 25°C and
691 then rinsed several times in water. Cells were dehydrated through a graded ethanol series and
692 embedded in Epon 12 resin (18010; Ted Pella). 70-nm thin sections were cut using an Ultracut
693 UC7 ultramicrotome (Leica Mikrosysteme) and collected on 200 mesh formvar/carbon coated
694 copper grids (01800; Ted Pella). Sections were stained with 2% aqueous uranyl acetate and
695 Reynolds lead citrate. Cell pellet sections were imaged using a Talos L120C microscope
696 operated at 120 kV with a Ceta-16 M (4,096 × 4,096) camera (Thermo Fisher Scientific).

697 All data were collected at spot size 5 with a 100-μm C2 aperture and 70-μm objective aperture.
698 Images were formatted using Adobe Photoshop and Illustrator.

699 Image analysis was done using FIJI is Just ImageJ version 2.1.0: Java 1.8.0_172 [64-bit]. For
700 analysis 2.5 micron by 2.5 micron grids were drawn on non-overlapping regions of cytosol.
701 “Freehand line tool” was used to trace all lengths of ER in the field of view and length of line was
702 measured with ImageJ “Measure” function (**Sup Figure 2B**). Macro code for vIAC
703 subcompartments can be found at: **10.5281/zenodo.11521560 (Sup Figure 2D)**.

704 *Statistical Analysis*

705 Graphs were generated and statistical analysis were run as marked in figure legends using
706 GraphPad Prism v 9.1.2.

707

708 **References Cited:**

709

710 1. Cannon, M. J., Schmid, D. S. & Hyde, T. B. Review of cytomegalovirus seroprevalence and
711 demographic characteristics associated with infection. *Rev. Méd. Virol.* **20**, 202–213 (2010).

712 2. Fowler, K., Mucha, J., Neumann, M., Lewandowski, W., Kaczanowska, M., Grys, M.,
713 Schmidt, E., Natenshon, A., Talarico, C., Buck, P. O. & Diaz-Decaro, J. A systematic literature
714 review of the global seroprevalence of cytomegalovirus: possible implications for treatment,
715 screening, and vaccine development. *BMC Public Heal.* **22**, 1659 (2022).

716 3. Zanghellini, F., Boppana, S. B., Emery, V. C., Griffiths, P. D. & Pass, R. F. Asymptomatic
717 Primary Cytomegalovirus Infection: Virologic and Immunologic Features. *J. Infect. Dis.* **180**,
718 702–707 (1999).

719 4. Manicklal, S., Emery, V. C., Lazzarotto, T., Boppana, S. B. & Gupta, R. K. The “Silent” Global
720 Burden of Congenital Cytomegalovirus. *Clin Microbiol Rev* **26**, 86–102 (2013).

721 5. Azevedo, L. S., Pierrotti, L. C., Abdala, E., Costa, S. F., Strabelli, T. M. V., Campos, S. V.,
722 Ramos, J. F., Latif, A. Z. A., Litvinov, N., Maluf, N. Z., Filho, H. H. C., Pannuti, C. S., Lopes, M.
723 H., Santos, V. A. dos, Linardi, C. da C. G., Yasuda, M. A. S. & Marques, H. H. de S.
724 Cytomegalovirus infection in transplant recipients. *Clinics* **70**, 515–523 (2015).

725 6. Christensen-Quick, A., Vanpouille, C., Lisco, A. & Gianella, S. Cytomegalovirus and HIV
726 Persistence: Pouring Gas on the Fire. *AIDS Res. Hum. Retroviruses* **33**, S-23-S-30 (2017).

727 7. Alwine, J. C. The Human Cytomegalovirus Assembly Compartment: A Masterpiece of Viral
728 Manipulation of Cellular Processes That Facilitates Assembly and Egress. *Plos Pathog* **8**,
729 e1002878 (2012).

730 8. Procter, D. J., Furey, C., Garza-Gongora, A. G., Kosak, S. T. & Walsh, D. Cytoplasmic control
731 of intranuclear polarity by human cytomegalovirus. *Nature* **587**, 109–114 (2020).

732 9. Procter, D. J., Banerjee, A., Nukui, M., Kruse, K., Gaponenko, V., Murphy, E. A., Komarova,
733 Y. & Walsh, D. The HCMV Assembly Compartment Is a Dynamic Golgi-Derived MTOC that
734 Controls Nuclear Rotation and Virus Spread. *Dev Cell* **45**, 83-100.e7 (2018).

735 10. Tandon, R. & Mocarski, E. S. Viral and host control of cytomegalovirus maturation. *Trends
736 Microbiol* **20**, 392–401 (2012).

737 11. Severi, B., Landini, M. P. & Govoni, E. Human Cytomegalovirus morphogenesis: an
738 ultrastructural study of the late cytoplasmic phases. *Arch. Virol.* **98**, 51–64 (1988).

739 12. Pignatelli, S., Monte, P. D., Landini, M. P., Severi, B., Nassiri, R., Gilloteaux, J.,
740 Papadimitriou, J. M., Shellam, G. R., Mertens, T., Buser, C., Michel, D. & Walther, P.
741 Cytomegalovirus Primary Envelopment at Large Nuclear Membrane Infoldings: What’s New? *J
742 Virol* **81**, 7320–7322 (2007).

743 13. Tooze, J., Hollinshead, M., Reis, B., Radsak, K. & Kern, H. Progeny vaccinia and human
744 cytomegalovirus particles utilize early endosomal cisternae for their envelopes. *Eur. J. cell Biol.*
745 **60**, 163–78 (1993).

746 14. Walsh, D., Perez, C., Notary, J. & Mohr, I. Regulation of the Translation Initiation Factor
747 eIF4F by Multiple Mechanisms in Human Cytomegalovirus-Infected Cells. *J. Virol.* **79**, 8057–
748 8064 (2005).

749 15. Jenuwein, T. & Allis, C. D. Translating the Histone Code. *Science* **293**, 1074–1080 (2001).

750 16. Lee, J.-S., Smith, E. & Shilatifard, A. The Language of Histone Crosstalk. *Cell* **142**, 682–685
751 (2010).

752 17. Talbert, P. B. & Henikoff, S. Histone variants at a glance. *J. Cell Sci.* **134**, jcs244749 (2021).

753 18. Costanzi, C. & Pehrson, J. R. Histone macroH2A1 is concentrated in the inactive X
754 chromosome of female mammals. *Nature* **393**, 599–601 (1998).

755 19. Gamble, M. J., Frizzell, K. M., Yang, C., Krishnakumar, R. & Kraus, W. L. The histone
756 variant macroH2A1 marks repressed autosomal chromatin, but protects a subset of its target
757 genes from silencing. *Gene Dev* **24**, 21–32 (2010).

758 20. Dell'Orso, S., Wang, A. H., Shih, H.-Y., Saso, K., Berghella, L., Gutierrez-Cruz, G.,
759 Ladurner, A. G., O'Shea, J. J., Sartorelli, V. & Zare, H. The Histone Variant MacroH2A1.2 Is
760 Necessary for the Activation of Muscle Enhancers and Recruitment of the Transcription Factor
761 Pbx1. *Cell Rep.* **14**, 1156–1168 (2016).

762 21. Ma, H., Su, L., Xia, W., Wang, W., Tan, G. & Jiao, J. MacroH2A1.2 deficiency leads to
763 neural stem cell differentiation defects and autism-like behaviors. *EMBO Rep.* **22**, e52150
764 (2021).

765 22. Lewis, H. C., Kelnhofer-Millevolte, L. E., Brinkley, M. R., Arbach, H. E., Arnold, E. A.,
766 Sanders, S., Bosse, J. B., Ramachandran, S. & Avgousti, D. C. HSV-1 exploits host
767 heterochromatin for nuclear egress. *J. Cell Biol.* **222**, e202304106 (2023).

768 23. Albright, E. R., Morrison, K., Ranganathan, P., Carter, D. M., Nishikiori, M., Lee, J.-H.,
769 Slayton, M. D., Ahlquist, P., Terhune, S. S. & Kalejta, R. F. Human cytomegalovirus lytic
770 infection inhibits replication-dependent histone synthesis and requires stem loop binding protein
771 function. *Proc. Natl. Acad. Sci.* **119**, e2122174119 (2022).

772 24. Craighead, J. E., Kanich, R. E. & Almeida, J. D. Nonviral Microbodies with Viral Antigenicity
773 Produced in Cytomegalovirus-Infected Cells. *J. Virol.* **10**, 766–775 (1972).

774 25. Pepperl, S., Münster, J., Mach, M., Harris, J. R. & Plachter, B. Dense Bodies of Human
775 Cytomegalovirus Induce both Humoral and Cellular Immune Responses in the Absence of Viral
776 Gene Expression. *J. Virol.* **74**, 6132–6146 (2000).

777 26. Büscher, N., Paulus, C., Nevels, M., Tenzer, S. & Plachter, B. The proteome of human
778 cytomegalovirus virions and dense bodies is conserved across different strains. *Méd. Microbiol.*
779 *Immunol.* **204**, 285–293 (2015).

780 27. Dunham, I., Kundaje, A., Aldred, S. F., Collins, P. J., Davis, C. A., Doyle, F., Epstein, C. B.,
781 Frietze, S., Harrow, J., Kaul, R., Khatun, J., Lajoie, B. R., Landt, S. G., Lee, B.-K., Pauli, F.,
782 Rosenbloom, K. R., Sabo, P., Safi, A., Sanyal, A., Shores, N., Simon, J. M., Song, L., Trinklein,
783 N. D., Altshuler, R. C., Birney, E., Brown, J. B., Cheng, C., Djebali, S., Dong, X., Dunham, I.,
784 Ernst, J., Furey, T. S., Gerstein, M., Giardine, B., Greven, M., Hardison, R. C., Harris, R. S.,
785 Herrero, J., Hoffman, M. M., Iyer, S., Kellis, M., Khatun, J., Kheradpour, P., Kundaje, A.,
786 Lassmann, T., Li, Q., Lin, X., Marinov, G. K., Merkel, A., Mortazavi, A., Parker, S. C. J., Reddy,
787 T. E., Rozowsky, J., Schlesinger, F., Thurman, R. E., Wang, J., Ward, L. D., Whitfield, T. W.,
788 Wilder, S. P., Wu, W., Xi, H. S., Yip, K. Y., Zhuang, J., Bernstein, B. E., Birney, E., Dunham, I.,
789 Green, E. D., Gunter, C., Snyder, M., Pazin, M. J., Lowdon, R. F., Dillon, L. A. L., Adams, L. B.,
790 Kelly, C. J., Zhang, J., Wexler, J. R., Green, E. D., Good, P. J., Feingold, E. A., Bernstein, B. E.,
791 Birney, E., Crawford, G. E., Dekker, J., Elnitski, L., Farnham, P. J., Gerstein, M., Giddings, M.,
792 Gingeras, T. R., Green, E. D., Guigó, R., Hardison, R. C., Hubbard, T. J., Kellis, M., Kent, W.,
793 J., Lieb, J. D., Margulies, E. H., Myers, R. M., Snyder, M., Stamatoyannopoulos, J. A.,
794 Tenenbaum, S. A., Weng, Z., White, K. P., Wold, B., Khatun, J., Yu, Y., Wrobel, J., Risk, B. A.,
795 Gunawardena, H. P., Kuiper, H. C., Maier, C. W., Xie, L., Chen, X., Giddings, M. C., Bernstein,
796 B. E., Epstein, C. B., Shores, N., Ernst, J., Kheradpour, P., Mikkelsen, T. S., Gillespie, S.,
797 Goren, A., Ram, O., Zhang, X., Wang, L., Issner, R., Coyne, M. J., Durham, T., Ku, M., Truong,
798 T., Ward, L. D., Altshuler, R. C., Eaton, M. L., Kellis, M., Djebali, S., Davis, C. A., Merkel, A.,
799 Dobin, A., Lassmann, T., Mortazavi, A., Tanzer, A., Lagarde, J., Lin, W., Schlesinger, F., Xue,
800 C., Marinov, G. K., Khatun, J., Williams, B. A., Zaleski, C., Rozowsky, J., Röder, M., Kokocinski,
801 F., Abdelhamid, R. F., Alioto, T., Antoshechkin, I., Baer, M. T., Batut, P., Bell, I., Bell, K.,
802 Chakraborty, S., Chen, X., Chrast, J., Curado, J., Derrien, T., Drenkow, J., Dumais, E., Dumais,
803 J., Duttagupta, R., Fastuca, M., Fejes-Toth, K., Ferreira, P., Foissac, S., Fullwood, M. J., Gao,
804 H., Gonzalez, D., Gordon, A., Gunawardena, H. P., Howald, C., Jha, S., Johnson, R., Kapranov,
805 P., King, B., Kingswood, C., Li, G., Luo, O. J., Park, E., Preall, J. B., Presaud, K., Ribeca, P.,
806 Risk, B. A., Robyr, D., Ruan, X., Sammeth, M., Sandhu, K. S., Schaeffer, L., See, L.-H.,
807 Shahab, A., Skancke, J., Suzuki, A. M., Takahashi, H., Tilgner, H., Trout, D., Walters, N., Wang,
808 H., Wrobel, J., Yu, Y., Hayashizaki, Y., Harrow, J., Gerstein, M., Hubbard, T. J., Reymond, A.,
809 Antonarakis, S. E., Hannon, G. J., Giddings, M. C., Ruan, Y., Wold, B., Carninci, P., Guigó, R.,
810 Gingeras, T. R., Rosenbloom, K. R., Sloan, C. A., Learned, K., Malladi, V. S., Wong, M. C.,
811 Barber, G. P., Cline, M. S., Dreszer, T. R., Heitner, S. G., Karolchik, D., Kent, W. J., Kirkup, V.,
812 M., Meyer, L. R., Long, J. C., Maddren, M., Raney, B. J., Furey, T. S., Song, L., Grasfeder, L. L.,
813 Giresi, P. G., Lee, B.-K., Battenhouse, A., Sheffield, N. C., Simon, J. M., Showers, K. A., Safi,
814 A., London, D., Bhinge, A. A., Shestak, C., Schaner, M. R., Kim, S. K., Zhang, Z. Z.,
815 Mieczkowski, P. A., Mieczkowska, J. O., Liu, Z., McDaniell, R. M., Ni, Y., Rashid, N. U., Kim, M.,
816 J., Adar, S., Zhang, Z., Wang, T., Winter, D., Keefe, D., Birney, E., Iyer, V. R., Lieb, J. D.,
817 Crawford, G. E., Li, G., Sandhu, K. S., Zheng, M., Wang, P., Luo, O. J., Shahab, A., Fullwood,
818 M. J., Ruan, X., Ruan, Y., Myers, R. M., Pauli, F., Williams, B. A., Gertz, J., Marinov, G. K.,
819 Reddy, T. E., Vielmetter, J., Partridge, E., Trout, D., Varley, K. E., Gasper, C., Bansal, A.,
820 Pepke, S., Jain, P., Amrhein, H., Bowling, K. M., Anaya, M., Cross, M. K., King, B., Muratet, M.,
821 A., Antoshechkin, I., Newberry, K. M., McCue, K., Nesmith, A. S., Fisher-Aylor, K. I., Pusey, B.,
822 DeSalvo, G., Parker, S. L., Balasubramanian, S., Davis, N. S., Meadows, S. K., Eggleston, T.,
823 Gunter, C., Newberry, J. S., Levy, S. E., Absher, D. M., Mortazavi, A., Wong, W. H., Wold, B.,
824 Blow, M. J., Visel, A., Pennachio, L. A., Elnitski, L., Margulies, E. H., Parker, S. C. J.,
825 Petrykowska, H. M., Abyzov, A., Aken, B., Barrell, D., Barson, G., Berry, A., Bignell, A.,
826 Boychenko, V., Bussotti, G., Chrast, J., Davidson, C., Derrien, T., Despacio-Reyes, G.,
827 Diekhans, M., Ezkurdia, I., Frankish, A., Gilbert, J., Gonzalez, J. M., Griffiths, E., Harte, R.,
828 Hendrix, D. A., Howald, C., Hunt, T., Jungreis, I., Kay, M., Khurana, E., Kokocinski, F., Leng, J.,

829 Lin, M. F., Loveland, J., Lu, Z., Manthavadi, D., Mariotti, M., Mudge, J., Mukherjee, G.,
830 Notredame, C., Pei, B., Rodriguez, J. M., Saunders, G., Sboner, A., Searle, S., Sisu, C., Snow,
831 C., Steward, C., Tanzer, A., Tapanari, E., Tress, M. L., Baren, M. J. van, Walters, N., Washietl,
832 S., Wilming, L., Zadissa, A., Zhang, Z., Brent, M., Haussler, D., Kellis, M., Valencia, A.,
833 Gerstein, M., Reymond, A., Guigó, R., Harrow, J., Hubbard, T. J., Landt, S. G., Frietze, S.,
834 Abyzov, A., Addleman, N., Alexander, R. P., Auerbach, R. K., Balasubramanian, S., Bettinger,
835 K., Bhardwaj, N., Boyle, A. P., Cao, A. R., Cayting, P., Charos, A., Cheng, Y., Cheng, C.,
836 Eastman, C., Euskirchen, G., Fleming, J. D., Grubert, F., Habegger, L., Hariharan, M.,
837 Harmanci, A., Iyengar, S., Jin, V. X., Karczewski, K. J., Kasowski, M., Lacleoute, P., Lam, H.,
838 Lamarre-Vincent, N., Leng, J., Lian, J., Lindahl-Allen, M., Min, R., Miotto, B., Monahan, H.,
839 Moqtaderi, Z., Mu, X. J., O'Geen, H., Ouyang, Z., Patacsil, D., Pei, B., Raha, D., Ramirez, L.,
840 Reed, B., Rozowsky, J., Sboner, A., Shi, M., Sisu, C., Slifer, T., Witt, H., Wu, L., Xu, X., Yan, K.-
841 K., Yang, X., Yip, K. Y., Zhang, Z., Struhl, K., Weissman, S. M., Gerstein, M., Farnham, P. J.,
842 Snyder, M., Tenenbaum, S. A., Penalva, L. O., Doyle, F., Karmakar, S., Landt, S. G.,
843 Bhanvadia, R. R., Choudhury, A., Domanus, M., Ma, L., Moran, J., Patacsil, D., Slifer, T.,
844 Victorsen, A., Yang, X., Snyder, M., White, K. P., Auer, T., Centanin, L., Eichenlaub, M., Gruhl,
845 F., Heermann, S., Hoeckendorf, B., Inoue, D., Kellner, T., Kirchmaier, S., Mueller, C., Reinhardt,
846 R., Schertel, L., Schneider, S., Sinn, R., Wittbrodt, B., Wittbrodt, J., Weng, Z., Whitfield, T. W.,
847 Wang, J., Collins, P. J., Aldred, S. F., Trinklein, N. D., Partridge, E. C., Myers, R. M., Dekker, J.,
848 Jain, G., Lajoie, B. R., Sanyal, A., Balasundaram, G., Bates, D. L., Byron, R., Canfield, T. K.,
849 Diegel, M. J., Dunn, D., Ebersol, A. K., Frum, T., Garg, K., Gist, E., Hansen, R. S., Boatman, L.,
850 Haugen, E., Humbert, R., Jain, G., Johnson, A. K., Johnson, E. M., Kutyavin, T. V., Lajoie, B.,
851 R., Lee, K., Lotakis, D., Maurano, M. T., Neph, S. J., Neri, F. V., Nguyen, E. D., Qu, H.,
852 Reynolds, A. P., Roach, V., Rynes, E., Sabo, P., Sanchez, M. E., Sandstrom, R. S., Sanyal, A.,
853 Shafer, A. O., Stergachis, A. B., Thomas, S., Thurman, R. E., Vernot, B., Vierstra, J., Vong, S.,
854 Wang, H., Weaver, M. A., Yan, Y., Zhang, M., Akey, J. M., Bender, M., Dorschner, M. O.,
855 Groudine, M., MacCoss, M. J., Navas, P., Stamatoyannopoulos, G., Kaul, R., Dekker, J.,
856 Stamatoyannopoulos, J. A., Dunham, I., Beal, K., Brazma, A., Flieck, P., Herrero, J., Johnson,
857 N., Keefe, D., Lukk, M., Luscombe, N. M., Sobral, D., Vaquerizas, J. M., Wilder, S. P.,
858 Batzoglou, S., Sidow, A., Hussami, N., Kyriazopoulou-Panagiotopoulou, S., Libbrecht, M. W.,
859 Schaub, M. A., Kundaje, A., Hardison, R. C., Miller, W., Giardine, B., Harris, R. S., Wu, W.,
860 Bickel, P. J., Banfai, B., Boley, N. P., Brown, J. B., Huang, H., Li, Q., Li, J. J., Noble, W. S.,
861 Bilmes, J. A., Buske, O. J., Hoffman, M. M., Sahu, A. D., Kharchenko, P. V., Park, P. J., Baker,
862 D., Taylor, J., Weng, Z., Iyer, S., Dong, X., Greven, M., Lin, X., Wang, J., Xi, H. S., Zhuang, J.,
863 Gerstein, M., Alexander, R. P., Balasubramanian, S., Cheng, C., Harmanci, A., Lochovsky, L.,
864 Min, R., Mu, X. J., Rozowsky, J., Yan, K.-K., Yip, K. Y. & Birney, E. An integrated encyclopedia
865 of DNA elements in the human genome. *Nature* **489**, 57–74 (2012).

866 28. Luo, Y., Hitz, B. C., Gabdank, I., Hilton, J. A., Kagda, M. S., Lam, B., Myers, Z., Sud, P.,
867 Jou, J., Lin, K., Baymuradov, U. K., Graham, K., Litton, C., Miyasato, S. R., Strattan, J. S.,
868 Jolanki, O., Lee, J.-W., Tanaka, F. Y., Adenekan, P., O'Neill, E. & Cherry, J. M. New
869 developments on the Encyclopedia of DNA Elements (ENCODE) data portal. *Nucleic Acids
870 Res.* **48**, D882–D889 (2019).

871 29. Lue, J. K. & Amengual, J. E. Emerging EZH2 Inhibitors and Their Application in Lymphoma.
872 *Curr Hematol Malig R* **13**, 369–382 (2018).

873 30. Kondo, M., Takei, Y. & Hirokawa, N. Motor Protein KIF1A Is Essential for Hippocampal
874 Synaptogenesis and Learning Enhancement in an Enriched Environment. *Neuron* **73**, 743–757
875 (2012).

876 31. White, S., Kawano, H., Harata, N. C. & Roller, R. J. Herpes Simplex Virus Organizes
877 Cytoplasmic Membranes To Form a Viral Assembly Center in Neuronal Cells. *J. Virol.* **94**,
878 (2020).

879 32. Scherer, J., Hogue, I. B., Yaffe, Z. A., Tanneti, N. S., Winer, B. Y., Vershinin, M. & Enquist,
880 L. W. A kinesin-3 recruitment complex facilitates axonal sorting of enveloped alpha herpesvirus
881 capsids. *PLoS Pathog.* **16**, e1007985 (2020).

882 33. Guberovic, I., Farkas, M., Corujo, D. & Buschbeck, M. Evolution, structure and function of
883 divergent macroH2A1 splice isoforms. *Semin. Cell Dev. Biol.* **135**, 43–49 (2023).

884 34. Baasch, S., Giansanti, P., Kolter, J., Riedl, A., Forde, A. J., Runge, S., Zenke, S., Elling, R.,
885 Halenius, A., Brabertz, S., Hengel, H., Kuster, B., Brabertz, T., Cicin-Sain, L., Arens, R.,
886 Vlachos, A., Rohr, J. C., Stemmler, M. P., Kopf, M., Ruzsics, Z. & Henneke, P. Cytomegalovirus
887 subverts macrophage identity. *Cell* **184**, 3774-3793.e25 (2021).

888 35. Liu, S. T. H., Sharon-Friling, R., Ivanova, P., Milne, S. B., Myers, D. S., Rabinowitz, J. D.,
889 Brown, H. A. & Shenk, T. Synaptic vesicle-like lipidome of human cytomegalovirus virions
890 reveals a role for SNARE machinery in virion egress. *Proc. Natl. Acad. Sci.* **108**, 12869–12874
891 (2011).

892 36. Martin, T. F. J. Tuning exocytosis for speed: fast and slow modes. *Biochim. Biophys. Acta*
893 (*BBA*) - *Mol. Cell Res.* **1641**, 157–165 (2003).

894 37. Pastuzyn, E. D., Day, C. E., Kearns, R. B., Kyrke-Smith, M., Taibi, A. V., McCormick, J.,
895 Yoder, N., Belnap, D. M., Erlendsson, S., Morado, D. R., Briggs, J. A. G., Feschotte, C. &
896 Shepherd, J. D. The Neuronal Gene Arc Encodes a Repurposed Retrotransposon Gag Protein
897 that Mediates Intercellular RNA Transfer. *Cell* **172**, 275-288.e18 (2018).

898 38. Mücke, K., Paulus, C., Bernhardt, K., Gerrer, K., Schön, K., Fink, A., Sauer, E.-M., Asbach-
899 Nitzsche, A., Harwardt, T., Kieninger, B., Kremer, W., Kalbitzer, H. R. & Nevels, M. Human
900 Cytomegalovirus Major Immediate Early 1 Protein Targets Host Chromosomes by Docking to
901 the Acidic Pocket on the Nucleosome Surface. *J Virol* **88**, 1228–1248 (2014).

902 39. Nitzsche, A., Paulus, C. & Nevels, M. Temporal Dynamics of Cytomegalovirus Chromatin
903 Assembly in Productively Infected Human Cells. *J Virol* **82**, 11167–11180 (2008).

904 40. Finkel, Y., Nachshon, A., Aharon, E., Arazi, T., Simonovsky, E., Dobešová, M., Saud, Z.,
905 Gluck, A., Fisher, T., Stanton, R. J., Schwartz, M. & Stern-Ginossar, N. A virally encoded high-
906 resolution screen of cytomegalovirus dependencies. *Nature* 1–8 (2024). doi:10.1038/s41586-
907 024-07503-z

908 41. Lane-Donovan, C. & Herz, J. ApoE, ApoE Receptors, and the Synapse in Alzheimer's
909 Disease. *Trends Endocrinol. Metab.* **28**, 273–284 (2017).

910 42. Dumanis, S. B., DiBattista, A. M., Miessau, M., Moussa, C. E. H. & Rebeck, G. W. APOE
911 genotype affects the pre-synaptic compartment of glutamatergic nerve terminals. *J. Neurochem.*
912 **124**, 4–14 (2013).

913 43. DeChiara, T. M., Vejsada, R., Poueymirou, W. T., Acheson, A., Suri, C., Conover, J. C.,
914 Friedman, B., McClain, J., Pan, L., Stahl, N., Ip, N. Y., Kato, A. & Yancopoulos, G. D. Mice
915 lacking the CNTF receptor, unlike mice lacking CNTF, exhibit profound motor neuron deficits at
916 birth. *Cell* **83**, 313–322 (1995).

917 44. Groffen, A. J., Martens, S., Arazola, R. D., Cornelisse, L. N., Lozovaya, N., Jong, A. P. H.
918 de, Goriounova, N. A., Habets, R. L. P., Takai, Y., Borst, J. G., Brose, N., McMahon, H. T. &
919 Verhage, M. Doc2b Is a High-Affinity Ca²⁺ Sensor for Spontaneous Neurotransmitter Release.
920 *Science* **327**, 1614–1618 (2010).

921 45. Sala, K., Corbetta, A., Minici, C., Tonoli, D., Murray, D. H., Cammarota, E., Ribolla, L.,
922 Ramella, M., Fesce, R., Mazza, D., Degano, M. & Curtis, I. de. The ERC1 scaffold protein
923 implicated in cell motility drives the assembly of a liquid phase. *Sci. Rep.* **9**, 13530 (2019).

924 46. Lucas, T. M., Richner, J. M. & Diamond, M. S. The Interferon-Stimulated Gene Ifi27l2a
925 Restricts West Nile Virus Infection and Pathogenesis in a Cell-Type- and Region-Specific
926 Manner. *J. Virol.* **90**, 2600–2615 (2016).

927 47. Ichikawa-Tomikawa, N., Ogawa, J., Douet, V., Xu, Z., Kamikubo, Y., Sakurai, T., Kohsaka, S.,
928 Chiba, H., Hattori, N., Yamada, Y. & Arikawa-Hirasawa, E. Laminin $\alpha 1$ is essential for mouse
929 cerebellar development. *Matrix Biol.* **31**, 17–28 (2012).

930 48. Flanagan, L. A., Rebaza, L. M., Derzic, S., Schwartz, P. H. & Monuki, E. S. Regulation of
931 human neural precursor cells by laminin and integrins. *J. Neurosci. Res.* **83**, 845–856 (2006).

932 49. Kim, S., Burette, A., Chung, H. S., Kwon, S.-K., Woo, J., Lee, H. W., Kim, K., Kim, H.,
933 Weinberg, R. J. & Kim, E. NGL family PSD-95–interacting adhesion molecules regulate
934 excitatory synapse formation. *Nat. Neurosci.* **9**, 1294–1301 (2006).

935 50. Liu, Y., Xu, X.-H., Chen, Q., Wang, T., Deng, C.-Y., Song, B.-L., Du, J.-L. & Luo, Z.-G.
936 Myosin Vb controls biogenesis of post-Golgi Rab10 carriers during axon development. *Nat.*
937 *Commun.* **4**, 2005 (2013).

938 51. Chang, M. C., Park, J. M., Pelkey, K. A., Grabenstatter, H. L., Xu, D., Linden, D. J., Sutula, T. P.,
939 McBain, C. J. & Worley, P. F. Narp regulates homeostatic scaling of excitatory synapses
940 on parvalbumin-expressing interneurons. *Nat. Neurosci.* **13**, 1090–1097 (2010).

941 52. Bergsland, M., Werme, M., Malewicz, M., Perlmann, T. & Muhr, J. The establishment of
942 neuronal properties is controlled by Sox4 and Sox11. *Genes Dev.* **20**, 3475–3486 (2006).

943 53. Ji, Z., Li, H., Yang, Z., Huang, X., Ke, X., Ma, S., Lin, Z., Lu, Y. & Zhang, M. Kibra Modulates
944 Learning and Memory via Binding to Dendrin. *Cell Rep.* **26**, 2064–2077.e7 (2019).

945 54. Lynch, K. L., Dillon, M. R., Bat-Erdene, M., Lewis, H. C., Kaai, R. J., Arnold, E. A. &
946 Avgousti, D. C. A viral histone-like protein exploits antagonism between linker histones and
947 HMGB proteins to obstruct the cell cycle. *Curr. Biol.* **31**, 5227–5237.e7 (2021).

948 55. Kemble, G., Duke, G., Winter, R. & Spaete, R. Defined large-scale alterations of the human
949 cytomegalovirus genome constructed by cotransfection of overlapping cosmids. *J. Virol.* **70**,
950 2044–2048 (1996).

951 56. Marchini, A., Liu, H. & Zhu, H. Human Cytomegalovirus with IE-2 (UL122) Deleted Fails To
952 Express Early Lytic Genes. *J. Virol.* **75**, 1870–1878 (2001).

953 57. Sampaio, K. L., Cavignac, Y., Stierhof, Y.-D. & Sinzger, C. Human Cytomegalovirus Labeled
954 with Green Fluorescent Protein for Live Analysis of Intracellular Particle Movements. *J Virol* **79**,
955 2754–2767 (2005).

956 58. Kim, E. T., Roche, K. L., Kulej, K., Spruce, L. A., Seeholzer, S. H., Coen, D. M., Diaz-
957 Griffero, F., Murphy, E. A. & Weitzman, M. D. SAMHD1 Modulates Early Steps during Human
958 Cytomegalovirus Infection by Limiting NF- κ B Activation. *Cell Rep.* **28**, 434-448.e6 (2019).

959 59. Murphy, E., Yu, D., Grimwood, J., Schmutz, J., Dickson, M., Jarvis, M. A., Hahn, G., Nelson,
960 J. A., Myers, R. M. & Shenk, T. E. Coding potential of laboratory and clinical strains of human
961 cytomegalovirus. *Proc. Natl. Acad. Sci.* **100**, 14976–14981 (2003).

962 60. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and
963 bias-aware quantification of transcript expression. *Nat. Methods* **14**, 417–419 (2017).

964 61. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for
965 RNA-seq data with DESeq2. *Genome Biol.* **15**, 550 (2014).

966 62. Liao, Y., Wang, J., Jaehnig, E. J., Shi, Z. & Zhang, B. WebGestalt 2019: gene set analysis
967 toolkit with revamped UIs and APIs. *Nucleic Acids Res.* **47**, W199–W205 (2019).

968 63. Lee, E.-G., Tulloch, J., Chen, S., Leong, L., Saxton, A. D., Kraemer, B., Darvas, M., Keene,
969 C. D., Shutes-David, A., Todd, K., Millard, S. & Yu, C.-E. Redefining transcriptional regulation of
970 the APOE gene and its association with Alzheimer’s disease. *PLoS ONE* **15**, e0227667 (2020).

971

972