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Chromatin enables precise and scalable gene
regulation with factors of limited specificity
Mindy Liu Perkinsa, Justin Crockera, and Gašper Tkačikb,1

This manuscript was compiled on June 13, 2024

Biophysical constraints limit the specificity with which transcription factors (TFs) can target
regulatory DNA. While individual nontarget binding events may be low affinity, the sheer
number of such interactions could present a challenge for gene regulation by degrading
its precision or possibly leading to an erroneous induction state. Chromatin can prevent
nontarget binding by rendering DNA physically inaccessible to TFs, at the cost of energy-
consuming remodeling orchestrated by pioneer factors (PFs). Under what conditions and by
how much can chromatin reduce regulatory errors on a global scale? We use a theoretical
approach to compare two scenarios for gene regulation: one that relies on TF binding to
free DNA alone, and one that uses a combination of TFs and chromatin-regulating PFs
to achieve desired gene expression patterns. We find, first, that chromatin effectively
silences groups of genes that should be simultaneously OFF, thereby allowing more accurate
graded control of expression for the remaining ON genes. Second, chromatin buffers
the deleterious consequences of nontarget binding as the number of OFF genes grows,
permitting a substantial expansion in regulatory complexity. Third, chromatin-based regulation
productively co-opts nontarget TF binding for ON genes in order to establish a “leaky” baseline
expression level, which targeted activator or repressor binding subsequently up- or down-
modulates. Thus, on a global scale, using chromatin simultaneously alleviates pressure
for high specificity of regulatory interactions and enables an increase in genome size with
minimal impact on global expression error.

chromatin | gene regulation | crosstalk | optimization | regulatory networks | non-equilibrium
regulation

Many biological functions require certain subsets of genes to be active
independently of others. The targeted activation or repression of gene

expression is achieved by regulatory factors including transcription factors, which
must specifically locate and bind the regulatory regions for their target genes.
However, some level of nontarget binding is unavoidable due to the chemical
nature of protein-DNA interactions (1–5). Organisms have therefore evolved several
different mechanisms for increasing the ratio of target to nontarget binding. In
prokaryotes, transcription factors bind almost uniquely to their cognate binding
sites, which are long enough to appear only very rarely by chance in the genome.
Paradoxically, though the eukaryotic genome is two to three orders of magnitude
larger than the prokaryotic genome, binding sites in eukaryotes tend to be shorter
and more degenerate than in prokaryotes and, consequently, cannot specify unique
genomic locations (6). This biophysical observation has motivated researchers to
propose alternative means for eukaryotes to maintain targeted gene regulation,
including cooperativity (7–9), clustering of low-affinity sites (6, 10–13), kinetic
proofreading (14–18), and combinatorial control of transcription (9, 19–22).

One notable possibility for reducing unwanted gene expression involves the
use of chromatin, the physical packaging of DNA by nucleosomes and associated
proteins largely unique to eukaryotes (23). Nucleosomes may physically obstruct
transcription factor binding to DNA wrapped around the core (24–26) or directly
inhibit transcription initiation by blocking the assembly of the preinitiation
complex (27–31). Longer-term silencing of gene expression additionally requires
specific patterns of DNA methylation (32), histone modifications (33), and/or higher-
order chromatin structures to maintain a transcriptionally repressive state (34–36).
Although condensed or compacted chromatin may hinder large regulatory factors or
complexes from accessing binding sites (26, 37–40) and most transcription factors,
if they manage to bind nucleosomal DNA, will dissociate quickly (26), some factors
are capable of reversing chromatin-based repression by recruiting other factors
to decompactify chromatin (41–43) or evict, displace, or disassemble nucleosomes
from DNA (38, 44). Such transcription factors with “pioneering activity” (PFs)
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induce the dynamic changes to genetic silencing that are
associated with proper cell fate specification during embryonic
development (32, 34, 45, 46). Whether “pioneer factors” are
an entirely distinct category from “ordinary” transcription
factors (47), or whether TFs simply vary in their capacity
to induce “pioneering activity” based on context, remains a
subject of open discussion (48).

Introducing chromatin alleviates some nontarget tran-
scription factor binding by rendering DNA inaccessible—
but not without a cost. In order to selectively (de)silence
genes, chromatin remodelers and PFs must themselves be
able to target certain binding sites in chromatin while
ignoring others. Indeed, it has been proposed that PFs
may enhance the recruitment of chromatin remodelers to
appropriate nucleosomes (16) as part of an energy-consuming
kinetic proofreading scheme (49, 50), variants of which may
improve specificity by a factor of 300-400 over equilibrium
schemes (51). The relationship between target specificity
and chromatin appears even more intricate in light of recent
work indicating that chromatin can improve the functional
specificity of proteins with otherwise degenerate DNA bind-
ing domains, for instance the Hox class of homeodomain
proteins (7, 52). Thus, chromatin-based transcriptional
regulation may contribute in nontrivial ways to the resolution
of the binding site specificity paradox in eukaryotes (12).

While many works have considered chromatin-based tran-
scriptional regulation at individual loci (24, 29, 42, 43, 53–59),
we are unaware of any that consider the global implications of
using a combination of chromatin and free DNA-binding
transcription factors for gene regulatory programs. The
omission is notable for two reasons. First, using both
chromatin and transcription factors enables new modes of
genetic regulation spanning multiple genes or regulatory
regions; for example, the same TF could be reused in multiple
networks simply by changing the accessibility of its target
regulatory regions. Second, limited binding site specificity
constitutes a challenge only insomuch as multiple factors
and multiple nontarget sites are present simultaneously; in
other words, it emerges as a nontrivial constraint only when
considered at the global level (9).

Here, we address this knowledge gap by employing a
theoretical approach. Our focus is on global gene expression
patterning: the task of accurately modulating individual ex-
pression levels for multiple active (ON) genes simultaneously,
while keeping subsets of silent (OFF) genes from expressing
altogether. We ask whether gene expression patterning bene-
fits from chromatin-based mechanisms relative to regulatory
schemes relying on TFs alone, and find biophysically realistic
regimes of operation where chromatin lowers gene expression
patterning errors by one to two orders of magnitude. The
systems-level benefits we identify in this work synergize with
the recently identified evolutionary benefits of chromatin-
based regulation, suggesting how such complex schemes could
have evolved and become selectively maintained (60).

Model setup

Our model of chromatin landscaping and transcriptional regu-
lation is deliberately simple, retaining only the key features of
gene expression patterning that can be treated independently
of the exact molecular implementation. Where possible, we

have chosen parameter values to match measurements or
estimates available in the literature.

We first define a gene regulatory architecture and then
comparatively evaluate the ability of that given architecture
to realize target patterns of gene expression in two scenarios:
free DNA and chromatin. Specifically, for simulated genes
of interest we will compute how precisely they could be
driven towards different target expression patterns, assuming
that the concentrations of their regulating factors could be
optimized without constraint towards each target (Figure 1).
Because no practical control scenario could ever outperform
the mathematical optimum, the residual (minimal) global
expression error (GEE) of this “best-case” outcome is a well-
defined and theoretically justified performance measure – a
loss function – for each scenario, introduced in previous work
as “regulatory crosstalk” (9).

Gene regulatory architecture consists of specifying how
genes are targeted and regulated by various factors. Ex-
perimental evidence indicates that clusters of genes share
temporal patterns of chromatin accessibility (61) and TFs
outnumber factors with strong pioneering activity (62, 63).
We therefore consider two classes of regulatory factors: single-
target and multi-target. A single-target factor targets a single
gene (i.e., there is a one-to-one mapping from single-target
factors to genes), while a multi-target factor targets multiple
genes that together form a co-regulated cluster. In our
model, clusters are fixed and identical in size and each gene
is targeted by exactly one single-target and one multi-target
factor (Figure 1A). We initially assume all regulatory factors
behave as activators and lift this assumption later.

We compare two regulatory scenarios: (1) the free DNA
scenario, in which both the single-target and the multi-
target factors are TFs; and (2) the chromatin scenario, in
which the single-target factors are TFs and the multi-target
factors are PFs. In the free DNA case, both TFs need to
be bound simultaneously to activate a gene, but there is
no sense of temporal ordering—that is, it does not matter
whether the multi-target or single-target factor binds first.
The expression level of a gene is thus simply the probability
that both the single-target and multi-target factors are
bound. In contrast, in the chromatin scenario, PFs must
bind first to open enhancer chromatin (35, 61, 64) before
TFs can bind to modulate transcription levels (Figure 1B);
gene expression is thus the product of the steady-state
probabilities that chromatin is permissive and the single-
target TF is bound (35, 61, 64). This scenario thus does not
require simultaneous binding by PFs and TFs at a regulatory
locus. An identical genetic architecture can then be assessed
comparatively in both the free DNA and chromatin scenarios,
simply by changing the model for multi-target factor binding
from TFs to PFs, respectively (Section S1).

In principle, transcription or chromatin opening can be
initiated by any binding event—be it “target” or “nontarget”—
albeit with different probability. To account for this observa-
tion, we assume that nontarget binding is weaker than target
binding and occurs only among sites of the same type; that
is, TFs cannot bind PF sites and vice versa. In contrast
to the chromatin scenario, the free DNA scenario therefore
experiences nontarget binding between single- and multi-
target factors. The two scenarios also differ in their ability
to distinguish between target and nontarget binding. While
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Fig. 1. Model schematic. (A) Each gene is targeted for regulation by one multi-target factor (black; house-shaped PF in chromatin, bean-shaped TF in free DNA) and one
single-target factor (green; TF). Genes targeted by the same multi-target factor are said to belong to the same cluster. (B) PFs (house shapes) and TFs (bean shapes) bind
target and nontarget sites on inaccessible chromatin and free DNA/accessible chromatin, respectively, leading to chromatin opening or gene expression. (C) A target pattern is
randomly generated by assigning all genes in the same cluster to the same ON or OFF state. OFF genes have zero target expression (red), while ON genes have randomly
drawn graded expression, here a uniform distribution (green). (D) Global gene expression error (GEE) measures the patterning accuracy of a regulatory scenario (free DNA in
red vs chromatin in blue) given a fixed architecture (which gene is regulated by which factors, as in panel A). GEE is calculated by optimizing regulatory factor concentrations to
achieve target expression patterns as closely as possible for all genes simultaneously. Expression levels are calculated based on mathematical models for TF and PF binding
(see Section S1).

TFs follow a typical thermodynamic (equilibrium) binding
scheme, we adopt a kinetic proofreading scheme for chromatin
opening that allows for stronger rejection of nontarget
binding by PFs than is possible at equilibrium (Figure S1).
Kinetic proofreading expends energy to pass through at
least one intermediate transition step between initial PF
binding and final transcriptionally permissive state, e.g.,
by recruiting remodelers to stabilize chromatin in an open
conformation (5, 65). To enable fair comparison between the
two scenarios, we assign to all factors, TFs and PFs alike, the
same intrinsic dissociation constants: KT for their target and
KNT for all other (nontarget) sites. The ratio S = KNT /KT

is the intrinsic specificity of the factors; we vary it between
simulations by changing KNT . Our model is agnostic to
whether nontarget binding arises from low-affinity binding,
from truly nonspecific TF-DNA interactions, or by some other
molecular mechanism. Further details of the models may be
found in Section S1.

We can now mathematically define the global expression
error (GEE), our main metric for comparing the “expressive
capacity” of different regulatory scenarios. To compute
the GEE, we begin by generating NT random target gene

expression patterns t = {ti} for genes i = 1, . . . , M according
to two rules: (1) all genes in the same cluster (i.e., sharing
a multi-target factor) are randomly chosen to either not
express (OFF, ti = 0) or express (ON, ti > 0), such that the
number of ON clusters is held fixed; (2) each gene within
an ON cluster is independently assigned a random non-
negative expression level from a uniform distribution. Thus,
target expression levels across all genes follow a “spike and
slab” distribution (Figure 1C), qualitatively recapitulating
observations in early embryos (66). For each scenario
(free DNA or chromatin) and each target pattern, the
concentrations c of regulatory factors (PFs and TFs) are
optimized to reduce the root mean square error between
target patterns t and expression levels g realized by our
model. The residual RMS error averaged over many target
patterns finally yields the global expression error (Figure 1D):

GEE = 1
NT

NT∑
j=1

(
min

c

√
1

M
||g(c) − tj ||2

)
. [1]

Unless stated otherwise, we report results averaged over sets
of NT = 100 target patterns that are shared between the two
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Fig. 2. Chromatin achieves smaller global expression error compared to free DNA. (A) Actual vs. target expression levels after optimization of regulatory factor
concentrations for chromatin (blue, left) and free DNA (red, right) for different intrinsic specificities S (colorbar, top). Points are ON genes in individual target patterns; crosses
are OFF genes. Compared to free DNA, cromatin achieves expression levels for OFF genes much closer to zero (circled). (B) Global expression error is lower for chromatin
(blue) than free DNA (red). Hatching indicates the GEE fraction due to erroneous expression of OFF genes. Inset: GEE fold-reduction for chromatin vs. free DNA. (C) Dynamic
range (denoted in A) is greater for chromatin than free DNA. Dashed line indicates the maximal target dynamic range for this simulation. (D) GEE is lower for regulatory
architectures where genes in the same cluster are either ON or OFF together (“matched”; left) compared to when OFF genes are randomly assigned to clusters (“shuffled”;
right). Points are individual target patterns; bars are as in B. (E) Chromatin decouples regulatory control over ON genes. Light dots are individual gene expression levels
achieved via global optimization over all PF and TF concentrations. Dark dots are optimization over individual single-target TF concentrations (see text). Ideal single-gene
induction curve shown in black. (F) GEE is primarily determined by the number of ON genes rather than the absolute genome size or fraction of active genes (circle sizes).
Dashed line indicates number of ON genes used for analyses in the other subpanels.

scenarios for fixed intrinsic specificity S = 1000, with the
number of genes M fixed at 250. Multi-target factors each
regulate 10 genes, and the number of ON clusters is fixed at
8 (80 active genes). We commonly analyze 5-fold variation
around S = 1000 to visualize trends. Remaining parameters
can be found in Table S1.

Results

Chromatin outperforms free DNA in expressive capacity. We
optimized the concentrations of all regulatory factors for each
target gene expression pattern to minimize GEE (Equation 1),
both in the chromatin as well as the free DNA scenario. At
high intrinsic specificity of the factors (S ≫ 103), target
patterns are achieved with high accuracy in both scenarios.
Yet as S decreases, the free DNA scenario suffers visibly
larger deviations from target expression levels compared to
chromatin (Figure 2A). This is reflected in the respective
GEEs of the two scenarios (Figure 2B), where chromatin
outperforms free DNA for every S, with highest (10−50-fold)
reductions in error seen at realistic values of S ≳ 103. This
effect is so stark that the intrinsic specificity of regulatory

factors in the free DNA scenario would have to be ∼ 5×
as high compared to the chromatin scenario to become
competitive.

Detailed analysis reveals that two effects predominantly
contribute to the substantial improvements in expressive
capacity of chromatin over free DNA. First, chromatin much
more effectively silences the genes that are supposed to be
OFF, i.e., their expression can be regulated closer towards
the 0 target (Figure 2A, circled crosses); this is reflected in a
lower contribution to GEE from the OFF genes (Figure 2B,
hatched) compared to free DNA. Second, while regulators in
both free DNA and chromatin have difficulty inducing genes
towards high expression levels, the failure at limited intrinsic
specificity is much more pronounced in the free DNA scenario.
This is reflected in its significantly smaller dynamic range
of regulation—the mean difference between the highest and
lowest achievable expression for the ON genes—compared to
chromatin (Figure 2C).

Intuitively, the benefits of chromatin silencing should be
maximized when the regulatory architecture groups genes
into clusters that turn ON or OFF together (“matched”
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architecture), such that each cluster is regulated by a
dedicated PF and TFs are employed solely to fine-tune
the precise expression levels of ON genes. Our analysis
in Figure 2D confirms this intuition: in the “matched”
architecture, the GEE is 3-fold lower already for the free DNA
scenario compared to its “shuffled” control, with the difference
growing to more than 10-fold for chromatin. The shuffled
architecture can no longer protect OFF genes: the need
to express ON genes forces PFs to open chromatin, thereby
exposing OFF genes in mixed clusters to regulatory influences
from nontarget binding, which increases GEE. Therefore, for
optimal expressive capacity, the genetic architecture needs
to be matched to the co-activation structure of the desired
target expression patterns.

Chromatin-based regulation has another important and
biologically relevant benefit: it decouples and modularizes
the regulation of ON genes. Consider the following. At
global optimum, no gene will have perfectly achieved its
target expression level. Suppose we choose a “selfish” gene
that, starting from this global optimum, must reach its target
expression level at any cost to other genes. The simplest way
to regulate the selfish gene is to modulate the concentration
of its corresponding single-target TF. Figure 2E shows that,
in the chromatin case, we need not change the single-target
TF concentration very much to appease the selfish gene:
the required change is in line with the effective optimal
induction curve of individual genes. In contrast, in the free
DNA scenario, the concentration of single-target TF must
be significantly increased if the “selfish” gene is to reach a
high target expression level, at a cost of increasing error due
to nontarget binding elsewhere. Chromatin-based regulation
mitigates this effect by leveraging a division of labor between
PFs and TFs, where PFs keep OFF genes OFF nearly without
fail, while each TF modularly changes the expression level of
its target ON gene without much impact on other expression
levels.

Owing to this division of labor between PFs and TFs,
chromatin retains an absolute advantage in GEE across a
broad range of regulatory network sizes. The error tends
to track the number of ON genes and varies little with
the number of OFF genes (Figure 2F). For a fixed error,
chromatin admits a much larger number of ON genes than
free DNA, across two orders of magnitude in absolute genome
size. Thus, regulating gene expression through chromatin
accessibility could conceivably support the evolution of larger
genomes with more genes active simultaneously, even if the
intrinsic specificity of binding factors remains fixed.

Optimal chromatin-based regulation co-opts nontarget bind-
ing. In all globally optimal solutions, genes with low target
expression levels tend to be overexpressed relative to their
targets, except at the highest specificities S that we con-
sider (Figure 2A). This excess expression is almost entirely
due to the high prevalence of nontarget binding (Figure 3A):
already for ON genes with a middling desired expression
level of 0.5, nontarget binding of single- and/or multi-target
factors drives about 14% of expression in chromatin and 20%
in the free-DNA scenario (Figure 3B). This observation led us
to wonder whether globally optimal solutions that minimize
GEE also implicitly minimize nontarget binding and vice
versa, or whether GEE minimization perhaps productively
co-opts nontarget binding to achieve target expression levels.

To test the co-option hypothesis, we again turned to
optimization. However, instead of optimizing factor con-
centrations towards matching target expression levels by
any kind of binding, target or nontarget, as before, the
new analysis only counts target binding as correct and all
nontarget binding as erroneous regulation (see Section S2.1).
We find that this alternative strategy based on target
binding alone does allow graded expression of ON genes, but
systematically over- (under-)expresses genes with low (high)
target levels (Figure 3C). As a result, the GEE is substantially
increased relative to the original scheme across the entire
range of intrinsic specificities S; this effect is particularly
pronounced in the chromatin scenario, where penalizing
nontarget binding can increase GEE by up to two orders
of magnitude (Figure 3D). Thus, optimizing for globally
accurate gene expression patterning is not synonymous with
maximizing regulation by target factors and minimizing
the influence of nontarget factors. Rather, when intrinsic
specificity is limited, co-opting nontarget binding is the most
effective way to minimize global gene expression error.

Multiple regulatory strategies can achieve comparable
expressive capacity. For example, a chromatin scheme that
co-opts nontarget binding at intrinstic specificity S = 500 has
a similar GEE as (1) a free-DNA scheme with S ≈ 2000
that co-opts nontarget binding; (2) a chromatin scheme
with S ≈ 2000 that penalizes nontarget binding; and (3)
a free-DNA scheme with S ∼ 5000 that penalizes nontarget
binding (Figure 3D). This observation suggests a route by
which chromatin might have alleviated the evolutionary
pressure to maintain high intrinsic specificity: Starting from
the free DNA scenario, if chromatin emerged due to selective
forces not directly related to gene regulation (e.g., to protect
DNA from damage (67)), the newly chromatinized genetic
regulatory apparatus could “relax” itself into a new state
with lower intrinsic factor specificity (in this example, by an
order of magnitude) without incurring any increase in GEE,
while at the same time accommodating the “spike-and-slab”
distribution of target gene expression levels at lower cost of
selection (68).

Combining activation with repression enhances the benefits
of chromatin-based regulation. Our analysis thus far has
assumed that all TFs behave as activators. We now relax
this assumption and allow each gene to be regulated by both
activators and repressors. Specifically, we stipulate that each
gene is regulated by three factors: one multi-target factor,
always an activator; one single-target activating TF; and
one single-target repressing TF. Thus, if we have M genes,
we now have 2M total single-target TFs. Many eukaryotic
TFs possess binding domains separate from the activating or
repressing domains, therefore we consider the activating or
repressing behavior to be inherent to the factor, not to the
site to which it is bound. The single-target activating and
repressing TFs target separate sites, and nontarget binding
is permitted across all TF sites independent of the nature of
their targeting factor. The dissociation rates for target and
nontarget binding remain the same for all factors. We adopt a
simple model for repression whereby a single bound repressor
completely counteracts any activation. Thus, in free DNA, a
gene is expressing only if the multi-target factor site is bound,
at least one activator (which could be a multi-target factor)
is bound to a single-target TF site, and no site (including the

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 16, 2024. ; https://doi.org/10.1101/2024.06.13.598840doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.13.598840
http://creativecommons.org/licenses/by-nc-nd/4.0/


621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

Fig. 3. Co-opting nontarget binding contributes sub-
stantially to gene expressive capacity. (A) Nontarget
binding contributions are defined as instances of gene
expression in which the binding of at least one factor is
nontarget. (B) Fraction of expression level (vertical axis)
attributable to nontarget vs. target binding for chromatin
(blue) and free DNA (red). Dots are individual genes pooled
across target patterns with S = 1000. (C) Expression
levels attained by optimizing to reduce global expression
error (as in Figure 2, gray) compared to optimizing for target
binding and against nontarget binding (color). (D) GEE is
minimized when intrinsic specificity is high, chromatin is
present, and nontarget binding is co-opted (blue circles).
Nevertheless, multiple combinations of intrinsic specificity
and regulatory scheme will often suffice to yield a very
similar GEE (e.g., the circled points, see text).

multi-target factor site) is bound by a repressor (Figure 4A).
In chromatin, a gene expresses only if chromatin is permissive,
at least one activator is bound, and no repressors are bound.

We reasoned that adding repressors to either scenario may
serve to counteract the overexpression of lowly expressing
genes due to nontarget binding. To ensure such an effect
would be clearly visible in our simulation results, we lowered
the minimum target expression level for ON genes from 0.09
to 0.009, thereby extending the target dynamic range by
an order of magnitude, from 10-fold analyzed in Figure 2,
to 100-fold. Simulations for this 100-fold modulation task
clearly show that adding repressors indeed improves the
accuracy of expression in the low-expression regime for both
chromatin and free DNA (Figure 4B). Yet while adding
repressors improves the dynamic range for both free DNA
and chromatin, it decreases GEE only in the chromatin
scenario, and actually increases the GEE in the free DNA
scenario (Figure 4C). As suggested by previous analyses (9),
this counterintuitive effect likely emerges due to the fact
that adding new TFs requires new binding sites, which
introduce new opportunities for nontarget interactions that
limit expressive capacity. With the exception of the lowest
tested intrinsic specificity (S = 200), chromatin compensates
for this deleterious expansion of nontarget interactions by
the orthogonal PF regulation and the PFs’ proofreading
capacity. Thus, the opposing effects of adding repressor-
mediated regulation to free DNA further widen the expressive
capacity advantage for the chromatin scenario (Figure 4C).

To understand how repressors contribute to improved
regulation, we plotted the optimal concentrations of single-
target regulatory factors for each gene at each target expres-
sion level (Figure 4D). We observe a clear division of labor
between activators and repressors: genes with high expression
levels are regulated almost entirely by activators, while genes
with low expression levels are regulated almost entirely by
repressors. This observation implies that repressors act almost
exclusively to counteract nontarget activation. The “crossover
point” between regulation by repressors vs. regulation by
activators—that is, the target expression level at which
both repressor and activator concentration are nearly 0—
indicates the baseline (“leaky”) expression level established
by the combined nontarget binding activity of repressors and

activators at a gene locus (Figure 4D). Subsequent modulation
of specific repressor or activator concentrations therefore
serves to tune the expression away from this baseline to the
desired level for each target gene.

Lastly, we explored the ability of the two regulatory
architectures to generate different distributions of target
expression levels for ON genes. When we bias this distribution
away from uniform, to favor either low or high values of
gene expression, the GEE in the chromatin scenario barely
changes and stays very low, while it varies substantially and is
generally much higher in the free DNA scenario (Figure 4E).
Thus, regulation that combines activation and repression
in the chromatin scenario increases the flexibility of the
regulatory apparatus: in addition to extending the target
dynamic range, it can accommodate more general variations
in the desired distribution of expression levels.

Robustness to regulatory factor concentration fluctuations.
In living cells, stochastic fluctuations in regulator concentra-
tions may introduce variation in downstream gene expression
levels. To examine the effect of regulator variability on
expressive capacity, we start from the optimized solutions
developed in the previous sections and incorporate random
variation into the optimized regulator concentrations, then
calculate the resulting GEE. Specifically, for each globally
optimized solution that generates a target gene expression
pattern, we add multiplicative noise to each optimal factor
concentration c∗ of regulatory factor as

c′ = c∗ (1 + Normal(0, σ2)
)

, [2]

such that c′ is normally distributed at c∗ with standard
deviation c∗σ. In this way, single- and multi-target factors
are perturbed relative to their individual optima and we can
vary the fluctuation level by changing the parameter σ (see
Section S2.2 for details).

Figure 5 shows the results for fluctuations introduced to
the 100-fold modulation task with a uniform distribution
of target ON expression levels when both activators and
repressors are present. As expected, larger fluctuations
significantly decrease the accuracy of regulation and thus
increase the GEE (Figure 5A, top). While chromatin still
allows for smaller expression errors, it is affected more strongly
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Fig. 4. Adding repressors boosts the expressive capacity advantage of chromatin over free DNA. (A) A schematic of bound factor combinations that do or do not lead to
gene expression. (B) Target vs. actual expression for simulations with activators only (as in Figure 2, “A”, gray) and with repressors (“A+R”, color) show that repressors improve
accuracy at low target expression levels. (C) Repressors improve the expressive capacity of chromatin, but have mixed effects on free DNA. Left, the dynamic range under both
scenarios is larger when repressors are present (“A+R”, solid) than when they are not (“A”, dashed), but increases more for chromatin (blue) than for free DNA (red). Middle, the
fold-reduction in error when using activators and repressors vs. the activators only is typically large for chromatin (blue) but may even lead to a GEE increase for free DNA (red).
Right, the fold-reduction in error upon switching to chromatin is greater when repressors are present (“A+R”, solid) than when only activators are used for regulation (“A”,
dashed). (D) Concentrations of single-target activator (green) and single-target repressor (gold) vs. target expression level of the corresponding gene. Both concentrations
reach 0 around the same target expression level, or “baseline”, where nontarget binding by activators and repressors fully accounts for expression in the corresponding genes.
Expression of individual genes is modulated above this level by activators, and below it by repressors. (E) A regulatory architecture employing both activators and repressors
(“A+R”, bottom three panels, vs. activator-only architecture “A”, top three panels) enables chromatin scenario (blue) to accommodate various target distributions of expression
levels (black outlined distributions) with minimal GEE, compared to free DNA (red), whose error is significantly higher and strongly dependent on the desired gene expression
level distribution. GEE with concentrations optimally adjusted to each target distribution is shown at right for each distribution, following plotting conventions of Figure 2B.

by concentration fluctuations at high intrinsic specificity of
regulatory factors. Surprisingly, we find that there is an
intermediate level of specificity at which chromatin maximizes
its advantage over free DNA (Figure 5A, bottom).

Do multi-target or single-target factors contribute more to
the degradation in accuracy upon introducing fluctuations?
We added fluctuations either only to multi-target or only to
single-target factors and compared the GEE between the two
cases. Figure 5B shows that, across most of the specificity
range, fluctuations in single-target factor concentrations result
in larger expression errors than fluctuations in multi-target
factor concentrations (see also Figure S4). A detailed analysis
reveals the reason for this observation (Section S2.2). In
optimal solutions, the multi-target factors are generally tasked
with either keeping the genes entirely OFF or permitting
expression. This means that the multi-target factors (and
especially the PF system in chromatin scenario) operate closer
to saturation, where fluctuations in the factor concentration
do not propagate to gene expression. In contrast, the single-
target TF system in both scenarios needs to fine-tune the

expression levels of ON genes and is thereby more sensitive
to fluctuations (Figure S2, S3).

Taken together, our results suggest that chromatin is well-
suited when selection for extremely reliable ON/OFF control
over gene expression is essential. Precise expression control
is possible, but seems to require a corresponding precision in
TF expression levels. As a future research direction, we note
that the entire regulatory architecture and concentrations
could have been optimized in the presence of fluctuations
(rather than in absence, as in the setup we report here),
possibly leading to an identification of noise-robust chromatin
regulatory regimes.

Discussion

Chromatin is often regarded as a central innovation in
eukaryotes, but much remains to be understood concerning
its implications for the global structure and strategy of
gene regulatory programs. Here, we argue that chromatin,
when understood as an integral and active component of
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Fig. 5. Robustness to regulatory factor concentration fluctuations. (A) Adding
fluctuations to all single-target and multi-target factor concentrations deteriorates
GEE (top) at higher levels of intrinsic specificity, more dramatically so for chromatin
(blue) than for free DNA (red). Increasing fluctuation strength σ shifts the peak fold-
reduction in GEE of chromatin vs. free DNA toward lower levels of intrinsic specificity
(bottom; original noise-free results shown in dashed line). (B) Relative increase in
GEE due to fluctuations can be attributed primarily to single-target factors. Area
plots show GEE when only single-target factors (striped) or only multi-target factors
(black) fluctuate with σ = 0.1, normalized to the GEE when all factors fluctuate
simultaneously (dashed line). Results for all panels are shown for the 100-fold
modulation task using activators and repressors (“A+R”), with uniform distribution of
target ON expression levels.

gene regulatory architecture, allows for a substantially more
accurate and scalable control of gene expression than is
possible using TFs alone.

We motivated our study with the paradoxical observation
that eukaryotes generally have much longer genomes than
prokaryotes, but binding sites for transcription factors in
metazoans appear to be less specific than in prokaryotes (12).
This lack of specificity could lead to highly deleterious
“crosstalk” in metazoan gene regulation: theory suggests that
cooperative or combinatorial regulation schemes operating
at equilibrium might be insufficient to ensure reliable ex-
pression control (9). Changes to effective genome size due
to chromatinized sequence inaccessibility also cannot fully
explain this paradox (6). Its possible resolution is a two-
layer gene regulatory architecture that we propose in our
work. The first layer of the architecture, namely proofreading-
based modulation of chromatin accessibility, sets the discrete,
ON/OFF state of the gene; the precise expression levels
of ON genes are subsequently quantitatively modulated by
activator and repressor TFs, acting as the second layer of the
architecture. This paradigm of an “on-off switch followed
by a rheostat” is well-suited to generate the “spike-and-slab”
distribution of expression levels across genes (Figure 1C),
with strong clustering of OFF genes across cell types and
states. It is also consistent with recent experimental results
showing that random stretches of DNA inserted into the
genome are significantly more likely to express a reporter if a
known PF binding site is included in the sequence (69).

An essential part of our approach is a global, systems-
level analysis of end-to-end regulatory performance of both
layers. This reveals a key insight responsible for a large
boost in performance of chromatin-based regulation: Because
OFF genes can be kept reliably silent via proofreading-based
PF regulation, the regulatory system can indeed operate
with TFs of lesser specificity and productively co-opt their
non-target binding. This sets a leaky baseline expression
level for all genes that targeted TF binding then up- or
down- modulates to a precise desired level. Without reliable

silencing of expression by PFs via chromatin, such co-opting
necessarily leads to a possibly deleterious unwanted induction
of OFF genes, as can be seen in our free DNA scenario.

Our qualitative conclusions concerning the benefits of
chromatin are not specific to a particular molecular pathway,
but apply broadly to any kinetic proofreading mechanism
whereby increasing concentrations of regulatory factors favor
transcriptionally permissive states. The parameter values
we selected for our simulations were based on the kinetics of
nucleosome repositioning in response to remodeler recruit-
ment; however, higher levels of chromatin organization also
show dose-dependent responses to regulator concentrations
commensurate with our key assumptions. For example,
experiments and modeling indicate that compacted chromatin
can decompact with increasing concentrations of targeted
activator (42, 43) (though whether compacted chromatin
is truly less accessible than non-compacted chromatin is a
subject of continuing debate (40, 70)). Absent from our model
is explicit regulation of chromatin closing or the maintenance
of transcriptionally repressive states, for which experimental
evidence suggests repressor complexes such as Polycomb may
be essential (36, 71–73). As in the case of TF repressors, we
expect these elements to change the quantitative but not the
qualitative conclusions of the study.

Perhaps the most notable omission in our analysis is
that of dynamics. The chromatin regulation mechanisms
discussed above differ substantially in their rates: Chromatin
decompaction occurs on a timescale that is rapid compared
to the length of a cell cycle (1.5 h vs. 20 h) (43), but it is still
orders of magnitude slower than nucleosome repositioning (on
the order of s or min). Similarly, TF binding and unbinding
events as well as transcription initiation are faster than
most chromatin remodeling processes (74). Therefore, in
systems where speed is more important than accuracy in
absolute expression levels, we may expect TFs to remain in
use despite the reduced global error facilitated by chromatin-
based regulation.

Because we evaluate expression levels at steady state,
our results most directly apply to genes that must stably
maintain a constant expression level over a long timespan
relative to the rates of transcription and protein decay. The
most salient biological analogs include “housekeeping” genes
that carry out basal functions in all cells, as well as tissue- or
cell type-specific genes that show little cell-to-cell or temporal
variation in transcript levels (75–77). In addition to constant
expression, three features make stably expressed genes (SEGs)
particularly suitable for analysis with our paradigm. First,
SEGs vary in the absolute expression levels they maintain,
with one analysis revealing a 3–4-fold difference between
the 25th and 75th percentiles of expression, with an absolute
dynamic range of >50-fold overall (78). Researchers have also
hypothesized means for graded control of housekeeping genes
specifically, for example, through the activity of corepressors
(79). Second, chromatin remodeling may silence some sets
of SEGs during the development of particular cell lineages
(80). Third, experimental evidence from embryonic fruit flies
suggests that housekeeping genes (expressed in all cells) rely
on chromatin remodelers to position nucleosomes downstream
from transcriptional start sites, rather than to regulate which
TFs can bind. In contrast, developmental genes rely on
a different set of remodelers to maintain accessibility at
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enhancers (81). Thus, housekeeping genes and cell type-
specific SEGs may offer a natural comparison between two
alternative regulatory schemes, one of which (housekeeping)
more closely resembles the free DNA scenario, and the other of
which (developmental) more closely resembles the chromatin
scenario.

Whether in chromatin or free DNA, an essential feature
of our model is nontarget binding by regulatory factors,
i.e., binding weakly to enhancers that do not regulate the
factors’ central, “functional” targets. The extent to which
weakly binding factors are essential, as opposed to merely
consequential, for transcriptional regulation remains a subject
of open discussion (10, 13, 82–84). Evidence for biologically
significant weak binding emerges from studies on TF co-
occupancy at enhancers, which show high prevalence in
regions of accessible chromatin even between TFs with
divergent binding site preferences and disparate functions (85).
Weak but functional regulatory interactions have also been
inferred in developmental networks, which appear to rely to
a high degree on “non-canonical” TF binding interactions to
establish cell type identity (86).

Our model suggests that genes may cope with unwanted
weak binding by co-opting it to establish baseline expression
levels for genes. Though the “leaky” expression in our
model arises from uniform low-rate binding of nontarget
TFs to enhancer binding sites, in practice TFs will vary
along a continuum of specificity in their binding to different
DNA sequences. Furthermore, it is likely that molecular
steps between TF binding and transcription initiation can
filter out signals emerging from binding of sufficiently low
specificity (15, 87, 88) or of TFs lacking the appropriate
cofactors. One prediction from these observations is that
individual genes may establish baseline expression levels from
subsets of the TFs that weakly bind their enhancer sequences,
leading to a continuous distribution of baseline expression
levels across genes. At least some data do indicate such
distributions for genes expressed at less than one transcript
per cell (i.e., for putatively OFF genes) (89), although we
cannot rule out either natural stochasticity or binding of
specific TFs in erroneously open chromatin as the cause.

How does the notion of baseline expression we propose
relate to previous discussions of biologically significant weak
binding? We postulate that whether a given weak interaction
is “functional” may be a more nuanced question than whether
large changes to TF concentration noticeably modulate a
gene’s expression. In particular, some weak interactions may
be interchangeable, in the sense that it may not matter to an
enhancer which weakly binding TFs are present so long as
some are. Such agnosticism to TF identity could conceivably
improve the robustness of expression to uncorrelated local
variations in the concentrations of weakly binding TFs.

An example of interchangeability comes from evidence that
collectives of TFs can compete with nucleosomes to bind DNA
and potentially activate genes (56). In particular, genomic
analysis of yeast indicates that regions of DNA predicted
to have high levels of nonspecific DNA binding are depleted
of nucleosomes, including at the majority of promoters (90).
Furthermore, DNA footprinting studies in mouse enhancers
suggest simultaneous binding at regions of nucleosome com-
petition is largely independent of TF identity and generally
does not require direct TF-TF interaction (91). It would

be interesting to couple such assays with measurements of
the resulting gene expression driven by enhancers of interest,
particularly if their strongest-binding TFs could be knocked
out. Under a hypothesis of baseline expression driven by
weak binding, we would expect identity-independent binding
to induce some level of residual regulatory activity after
knockout. A caveat to this approach is that it would not
detect situations in which the activity of interchangeable
weakly binding TFs is negligible or absent unless specific TFs
are also present, for example, if the specific TF is an activator
and the weakly binding TFs are repressors.

Nontarget binding may be co-opted or tolerated when
relatively few genes are actively regulated. As more enhancers
and corresponding genes become accessible, however, the
unwanted effects of nontarget binding become harder to
avoid. Some stem cells, for example, express genes specific
to multiple possible differentiated lineages simultaneously,
without performing the functions of cells belonging to these
lineages (92). Such promiscuous expression might arise
simply through the accessibility of regulating enhancers even
if their specific binding factors are absent. Interestingly,
many cancers also express embryonic stem cell markers or
pluripotency factors, including PFs like OCT4 (93, 94). This
may help to explain some of the phenotypic plasticity of
cancerous cells as follows (95): Suppose a differentiated
cell escapes into a cancerous state simultaneous with the
erroneous expression of PFs. At the moment of escape,
the regulatory concentrations of TFs present in the cell
were optimized for the differentiated cell—that is, in an
environment in which the appropriate genes were silenced. If
these genes are suddenly made accessible to regulation, we
might expect a higher probability of spuriously activating an
unwanted transcriptional program than in an endogenous
stem cell, where the regulatory concentrations would be
optimized assuming these genes were accessible. Indeed, stem
cells may maintain appropriate function despite susceptibility
to high levels of nontarget binding due to a reliance on
signaling factors secreted by other stem cells; the tumor-
like behavior of cancer cells can be suppressed by these same
signaling factors (96).

Chromatin may not have emerged for the purpose of
regulating genes, but subsequent evolution has dramatically
expanded its capacity to do so. With our work, we have aimed
to provide comparative, quantitative arguments to help inter-
pret the qualitative differences in regulatory schemes observed
between prokaryotes and their eukaryotic descendants. It
is our hope that further research will eventually explain,
not merely the varying capacities of these genetic regulatory
systems, but how their interaction with evolutionary pressures
eventually gave rise to the complex, multicellular organisms
that have so long excited the scientific imagination.

Materials and Methods

Code for all simulations is available on GitHub at https://github.com/
officerredshirt/network crosstalk.
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