

Chromatin enables precise and scalable gene regulation with factors of limited specificity

Mindy Liu Perkins^a, Justin Crocker^a, and Gašper Tkačík^{b,1}

This manuscript was compiled on June 13, 2024

Biophysical constraints limit the specificity with which transcription factors (TFs) can target regulatory DNA. While individual nontarget binding events may be low affinity, the sheer number of such interactions could present a challenge for gene regulation by degrading its precision or possibly leading to an erroneous induction state. Chromatin can prevent nontarget binding by rendering DNA physically inaccessible to TFs, at the cost of energy-consuming remodeling orchestrated by pioneer factors (PFs). Under what conditions and by how much can chromatin reduce regulatory errors on a global scale? We use a theoretical approach to compare two scenarios for gene regulation: one that relies on TF binding to free DNA alone, and one that uses a combination of TFs and chromatin-regulating PFs to achieve desired gene expression patterns. We find, first, that chromatin effectively silences groups of genes that should be simultaneously OFF, thereby allowing more accurate graded control of expression for the remaining ON genes. Second, chromatin buffers the deleterious consequences of nontarget binding as the number of OFF genes grows, permitting a substantial expansion in regulatory complexity. Third, chromatin-based regulation productively co-opts nontarget TF binding for ON genes in order to establish a “leaky” baseline expression level, which targeted activator or repressor binding subsequently up- or down-modulates. Thus, on a global scale, using chromatin simultaneously alleviates pressure for high specificity of regulatory interactions and enables an increase in genome size with minimal impact on global expression error.

chromatin | gene regulation | crosstalk | optimization | regulatory networks | non-equilibrium regulation

Many biological functions require certain subsets of genes to be active independently of others. The targeted activation or repression of gene expression is achieved by regulatory factors including transcription factors, which must specifically locate and bind the regulatory regions for their target genes. However, some level of nontarget binding is unavoidable due to the chemical nature of protein-DNA interactions (1–5). Organisms have therefore evolved several different mechanisms for increasing the ratio of target to nontarget binding. In prokaryotes, transcription factors bind almost uniquely to their cognate binding sites, which are long enough to appear only very rarely by chance in the genome. Paradoxically, though the eukaryotic genome is two to three orders of magnitude larger than the prokaryotic genome, binding sites in eukaryotes tend to be shorter and more degenerate than in prokaryotes and, consequently, cannot specify unique genomic locations (6). This biophysical observation has motivated researchers to propose alternative means for eukaryotes to maintain targeted gene regulation, including cooperativity (7–9), clustering of low-affinity sites (6, 10–13), kinetic proofreading (14–18), and combinatorial control of transcription (9, 19–22).

One notable possibility for reducing unwanted gene expression involves the use of chromatin, the physical packaging of DNA by nucleosomes and associated proteins largely unique to eukaryotes (23). Nucleosomes may physically obstruct transcription factor binding to DNA wrapped around the core (24–26) or directly inhibit transcription initiation by blocking the assembly of the preinitiation complex (27–31). Longer-term silencing of gene expression additionally requires specific patterns of DNA methylation (32), histone modifications (33), and/or higher-order chromatin structures to maintain a transcriptionally repressive state (34–36). Although condensed or compacted chromatin may hinder large regulatory factors or complexes from accessing binding sites (26, 37–40) and most transcription factors, if they manage to bind nucleosomal DNA, will dissociate quickly (26), some factors are capable of reversing chromatin-based repression by recruiting other factors to decompactify chromatin (41–43) or evict, displace, or disassemble nucleosomes from DNA (38, 44). Such transcription factors with “pioneering activity” (PFs)

Significance Statement

Reliably keeping a gene off is as important as controlling its expression level when the gene is on. Yet both tasks become challenging in the packed nuclear environment of a eukaryotic cell, where the numerous and diverse regulatory proteins that are present cannot bind enhancers for target genes with perfect specificity. While regulatory schemes based on prokaryotic models would be overwhelmed by errors in such conditions, we show that chromatin-based regulation, an evolutionary innovation of eukaryotic cells, successfully rescues precise gene expression control by reliably keeping desired genes off. Our systems-level computational analysis demonstrates that this result is nontrivial, because chromatin opening must itself be correctly regulated. We furthermore identify when and how chromatin-based regulation outperforms alternative schemes.

Author affiliations: ^aDevelopmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; ^bInstitute of Science and Technology Austria, AT-3400 Klosterneuburg, Austria

M.L.P., J.C., and G.T. conceived the work. J.C. obtained funding. M.L.P. carried out the simulations. M.L.P. and G.T. performed the analysis. M.L.P. and G.T. wrote the manuscript. All authors contributed to editing the manuscript.

The authors declare no competing interests.

¹To whom correspondence should be addressed. E-mail: g.tkacik@ist.ac.at

125 induce the dynamic changes to genetic silencing that are
126 associated with proper cell fate specification during embryonic
127 development (32, 34, 45, 46). Whether “pioneer factors” are
128 an entirely distinct category from “ordinary” transcription
129 factors (47), or whether TFs simply vary in their capacity
130 to induce “pioneering activity” based on context, remains a
131 subject of open discussion (48).

132 Introducing chromatin alleviates some nontarget trans-
133cription factor binding by rendering DNA inaccessible—
134 but not without a cost. In order to selectively (de)silence
135 genes, chromatin remodelers and PFs must themselves be
136 able to target certain binding sites in chromatin while
137 ignoring others. Indeed, it has been proposed that PFs
138 may enhance the recruitment of chromatin remodelers to
139 appropriate nucleosomes (16) as part of an energy-consuming
140 kinetic proofreading scheme (49, 50), variants of which may
141 improve specificity by a factor of 300-400 over equilibrium
142 schemes (51). The relationship between target specificity
143 and chromatin appears even more intricate in light of recent
144 work indicating that chromatin can improve the functional
145 specificity of proteins with otherwise degenerate DNA bind-
146 ing domains, for instance the Hox class of homeodomain
147 proteins (7, 52). Thus, chromatin-based transcriptional
148 regulation may contribute in nontrivial ways to the resolution
149 of the binding site specificity paradox in eukaryotes (12).

150 While many works have considered chromatin-based trans-
151criptional regulation at individual loci (24, 29, 42, 43, 53–59),
152 we are unaware of any that consider the *global* implications of
153 using a combination of chromatin and free DNA-binding
154 transcription factors for gene regulatory programs. The
155 omission is notable for two reasons. First, using both
156 chromatin and transcription factors enables new modes of
157 genetic regulation spanning multiple genes or regulatory
158 regions; for example, the same TF could be reused in multiple
159 networks simply by changing the accessibility of its target
160 regulatory regions. Second, limited binding site specificity
161 constitutes a challenge only insomuch as multiple factors
162 and multiple nontarget sites are present simultaneously; in
163 other words, it emerges as a nontrivial constraint only when
164 considered at the global level (9).

165 Here, we address this knowledge gap by employing a
166 theoretical approach. Our focus is on global gene expression
167 patterning: the task of accurately modulating individual ex-
168 pression levels for multiple active (ON) genes simultaneously,
169 while keeping subsets of silent (OFF) genes from expressing
170 altogether. We ask whether gene expression patterning bene-
171 fits from chromatin-based mechanisms relative to regulatory
172 schemes relying on TFs alone, and find biophysically realistic
173 regimes of operation where chromatin lowers gene expression
174 patterning errors by one to two orders of magnitude. The
175 systems-level benefits we identify in this work synergize with
176 the recently identified evolutionary benefits of chromatin-
177 based regulation, suggesting how such complex schemes could
178 have evolved and become selectively maintained (60).

181 Model setup

182 Our model of chromatin landscaping and transcriptional regu-
183 lation is deliberately simple, retaining only the key features of
184 gene expression patterning that can be treated independently
185 of the exact molecular implementation. Where possible, we

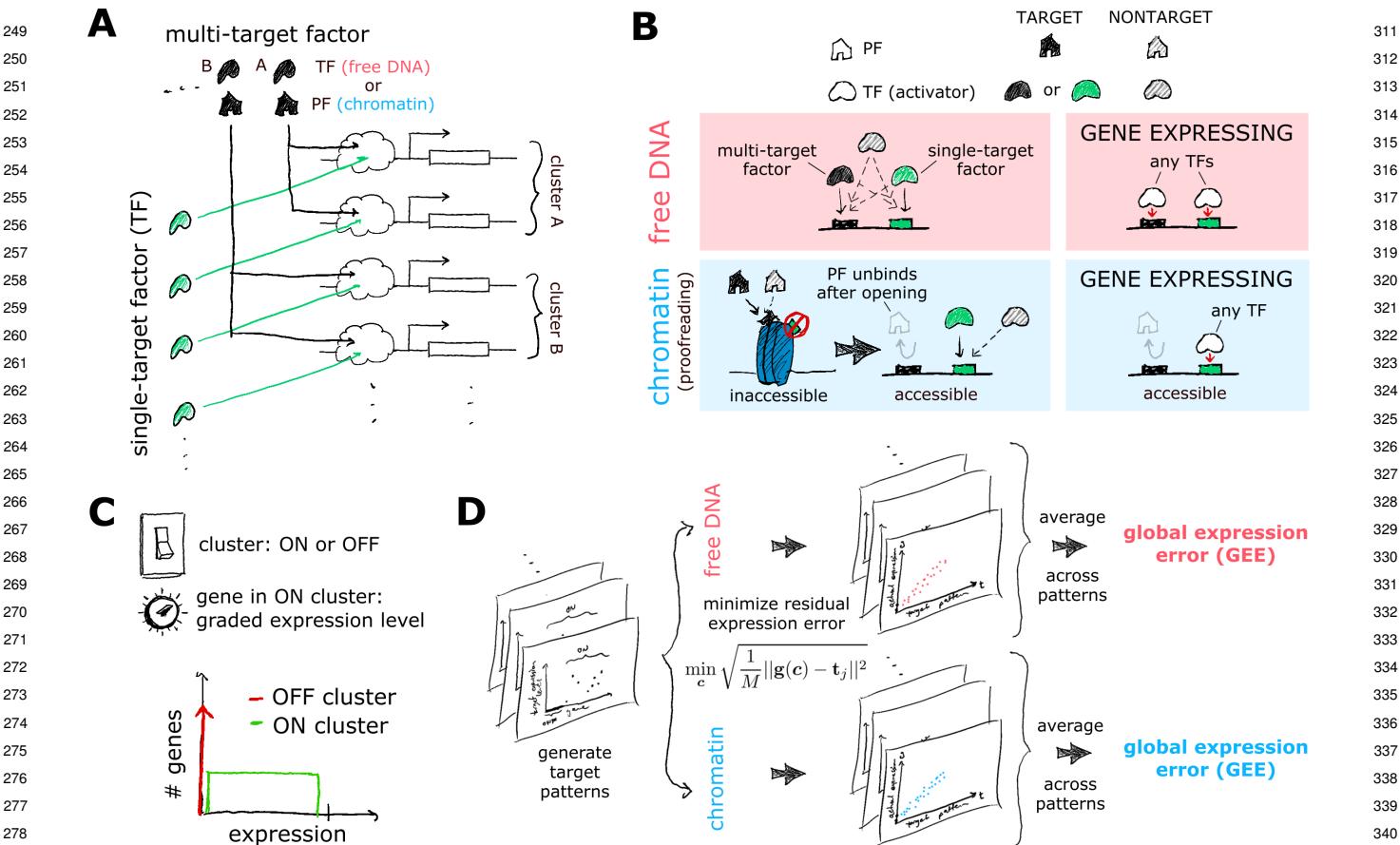
187 have chosen parameter values to match measurements or
188 estimates available in the literature.

189 We first define a gene regulatory architecture and then
190 comparatively evaluate the ability of that given architecture
191 to realize target patterns of gene expression in two scenarios:
192 *free DNA* and *chromatin*. Specifically, for simulated genes
193 of interest we will compute how precisely they could be
194 driven towards different target expression patterns, assuming
195 that the concentrations of their regulating factors could be
196 optimized without constraint towards each target (Figure 1).
197 Because no practical control scenario could ever outperform
198 the mathematical optimum, the residual (minimal) *global*
199 *expression error* (GEE) of this “best-case” outcome is a well-
200 defined and theoretically justified performance measure – a
201 loss function – for each scenario, introduced in previous work
202 as “regulatory crosstalk” (9).

203 Gene regulatory architecture consists of specifying how
204 genes are targeted and regulated by various factors. Ex-
205 perimental evidence indicates that clusters of genes share
206 temporal patterns of chromatin accessibility (61) and TFs
207 outnumber factors with strong pioneering activity (62, 63).
208 We therefore consider two classes of regulatory factors: *single-
209 target* and *multi-target*. A single-target factor targets a single
210 gene (i.e., there is a one-to-one mapping from single-target
211 factors to genes), while a multi-target factor targets multiple
212 genes that together form a co-regulated cluster. In our
213 model, clusters are fixed and identical in size and each gene
214 is targeted by exactly one single-target and one multi-target
215 factor (Figure 1A). We initially assume all regulatory factors
216 behave as activators and lift this assumption later.

217 We compare two regulatory scenarios: (1) the *free DNA scenario*, in which both the single-target and the multi-
218 target factors are TFs; and (2) the *chromatin scenario*, in
219 which the single-target factors are TFs and the multi-target
220 factors are PFs. In the free DNA case, both TFs need to
221 be bound simultaneously to activate a gene, but there is
222 no sense of temporal ordering—that is, it does not matter
223 whether the multi-target or single-target factor binds first.
224 The expression level of a gene is thus simply the probability
225 that both the single-target and multi-target factors are
226 bound. In contrast, in the chromatin scenario, PFs must
227 bind first to open enhancer chromatin (35, 61, 64) before
228 TFs can bind to modulate transcription levels (Figure 1B);
229 gene expression is thus the product of the steady-state
230 probabilities that chromatin is permissive and the single-
231 target TF is bound (35, 61, 64). This scenario thus does not
232 require simultaneous binding by PFs and TFs at a regulatory
233 locus. An identical genetic architecture can then be assessed
234 comparatively in both the free DNA and chromatin scenarios,
235 simply by changing the model for multi-target factor binding
236 from TFs to PFs, respectively (Section S1).

237 In principle, transcription or chromatin opening can be
238 initiated by any binding event—be it “target” or “nontarget”—
239 albeit with different probability. To account for this observa-
240 tion, we assume that nontarget binding is weaker than target
241 binding and occurs only among sites of the same type; that
242 is, TFs cannot bind PF sites and vice versa. In contrast
243 to the chromatin scenario, the free DNA scenario therefore
244 experiences nontarget binding between single- and multi-
245 target factors. The two scenarios also differ in their ability
246 to distinguish between target and nontarget binding. While



280 **Fig. 1. Model schematic.** (A) Each gene is targeted for regulation by one multi-target factor (black; house-shaped PF in chromatin, bean-shaped TF in free DNA) and one
281 single-target factor (green; TF). Genes targeted by the same multi-target factor are said to belong to the same cluster. (B) PFs (house shapes) and TFs (bean shapes) bind
282 target and nontarget sites on inaccessible chromatin and free DNA/accessible chromatin, respectively, leading to chromatin opening or gene expression. (C) A target pattern is
283 randomly generated by assigning all genes in the same cluster to the same ON or OFF state. OFF genes have zero target expression (red), while ON genes have randomly
284 drawn graded expression, here a uniform distribution (green). (D) Global gene expression error (GEE) measures the patterning accuracy of a regulatory scenario (*free DNA* in
285 red vs *chromatin* in blue) given a fixed architecture (which gene is regulated by which factors, as in panel A). GEE is calculated by optimizing regulatory factor concentrations to
286 achieve target expression patterns as closely as possible for all genes simultaneously. Expression levels are calculated based on mathematical models for TF and PF binding
287 (see Section S1).

288 TFs follow a typical thermodynamic (equilibrium) binding
289 scheme, we adopt a kinetic proofreading scheme for chromatin
290 opening that allows for stronger rejection of nontarget
291 binding by PFs than is possible at equilibrium (Figure S1).
292 Kinetic proofreading expends energy to pass through at
293 least one intermediate transition step between initial PF
294 binding and final transcriptionally permissive state, e.g.,
295 by recruiting remodelers to stabilize chromatin in an open
296 conformation (5, 65). To enable fair comparison between the
297 two scenarios, we assign to all factors, TFs and PFs alike, the
298 same intrinsic dissociation constants: K_T for their target and
299 K_{NT} for all other (nontarget) sites. The ratio $S = K_{NT}/K_T$ is the *intrinsic specificity* of the factors; we vary it between
300 simulations by changing K_{NT} . Our model is agnostic to
301 whether nontarget binding arises from low-affinity binding,
302 from truly nonspecific TF-DNA interactions, or by some other
303 molecular mechanism. Further details of the models may be
304 found in Section S1.

305 We can now mathematically define the *global expression*
306 *error* (GEE), our main metric for comparing the “expressive
307 capacity” of different regulatory scenarios. To compute
308 the GEE, we begin by generating N_T random target gene
309

310 expression patterns $\mathbf{t} = \{t_i\}$ for genes $i = 1, \dots, M$ according
311 to two rules: (1) all genes in the same cluster (i.e., sharing
312 a multi-target factor) are randomly chosen to either not
313 express (OFF, $t_i = 0$) or express (ON, $t_i > 0$), such that the
314 number of ON clusters is held fixed; (2) each gene within
315 an ON cluster is independently assigned a random non-
316 negative expression level from a uniform distribution. Thus,
317 target expression levels across all genes follow a “spike and
318 slab” distribution (Figure 1C), qualitatively recapitulating
319 observations in early embryos (66). For each scenario
320 (free DNA or chromatin) and each target pattern, the
321 concentrations \mathbf{c} of regulatory factors (PFs and TFs) are
322 optimized to reduce the root mean square error between
323 target patterns \mathbf{t} and expression levels \mathbf{g} realized by our
324 model. The residual RMS error averaged over many target
325 patterns finally yields the *global expression error* (Figure 1D):

$$\text{GEE} = \frac{1}{N_T} \sum_{j=1}^{N_T} \left(\min_c \sqrt{\frac{1}{M} \|\mathbf{g}(\mathbf{c}) - \mathbf{t}_j\|^2} \right). \quad [1]$$

326 Unless stated otherwise, we report results averaged over sets
327 of $N_T = 100$ target patterns that are shared between the two

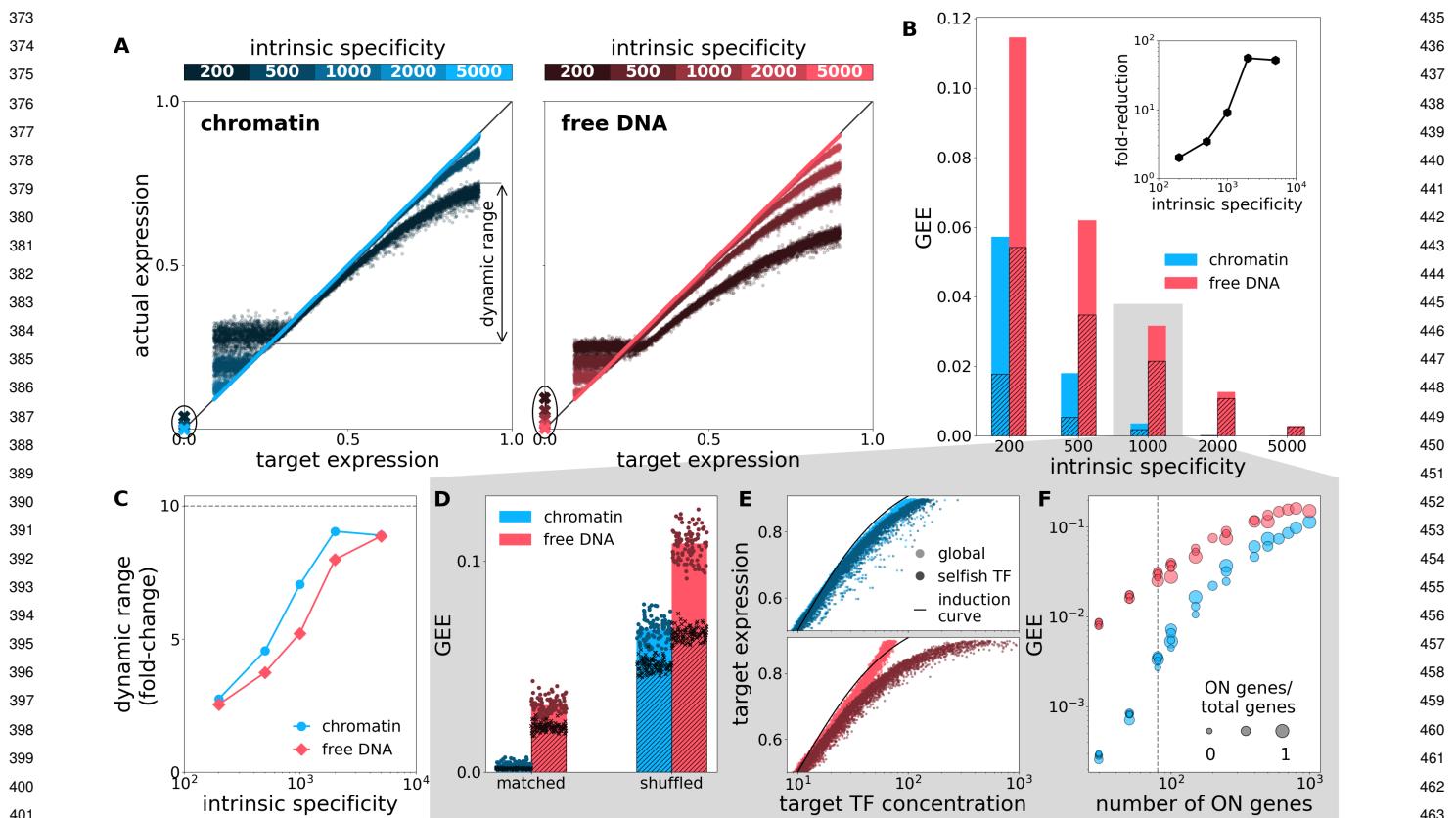


Fig. 2. Chromatin achieves smaller global expression error compared to free DNA. (A) Actual vs. target expression levels after optimization of regulatory factor concentrations for chromatin (blue, left) and free DNA (red, right) for different intrinsic specificities S (colorbar, top). Points are ON genes in individual target patterns; crosses are OFF genes. Compared to free DNA, chromatin achieves expression levels for OFF genes much closer to zero (circled). (B) Global expression error is lower for chromatin (blue) than free DNA (red). Hatching indicates the GEE fraction due to erroneous expression of OFF genes. Inset: GEE fold-reduction for chromatin vs. free DNA. (C) Dynamic range (denoted in A) is greater for chromatin than free DNA. Dashed line indicates the maximal target dynamic range for this simulation. (D) GEE is lower for regulatory architectures where genes in the same cluster are either ON or OFF together (“matched”; left) compared to when OFF genes are randomly assigned to clusters (“shuffled”; right). Points are individual target patterns; bars are as in B. (E) Chromatin decouples regulatory control over ON genes. Light dots are individual gene expression levels achieved via global optimization over all PF and TF concentrations. Dark dots are optimization over individual single-target TF concentrations (see text). Ideal single-gene induction curve shown in black. (F) GEE is primarily determined by the number of ON genes rather than the absolute genome size or fraction of active genes (circle sizes). Dashed line indicates number of ON genes used for analyses in the other subpanels.

scenarios for fixed intrinsic specificity $S = 1000$, with the number of genes M fixed at 250. Multi-target factors each regulate 10 genes, and the number of ON clusters is fixed at 8 (80 active genes). We commonly analyze 5-fold variation around $S = 1000$ to visualize trends. Remaining parameters can be found in Table S1.

Results

Chromatin outperforms free DNA in expressive capacity. We optimized the concentrations of all regulatory factors for each target gene expression pattern to minimize GEE (Equation 1), both in the chromatin as well as the free DNA scenario. At high intrinsic specificity of the factors ($S \gg 10^3$), target patterns are achieved with high accuracy in both scenarios. Yet as S decreases, the free DNA scenario suffers visibly larger deviations from target expression levels compared to chromatin (Figure 2A). This is reflected in the respective GEEs of the two scenarios (Figure 2B), where chromatin outperforms free DNA for every S , with highest (10–50-fold) reductions in error seen at realistic values of $S \gtrsim 10^3$. This effect is so stark that the intrinsic specificity of regulatory

factors in the free DNA scenario would have to be $\sim 5\times$ as high compared to the chromatin scenario to become competitive.

Detailed analysis reveals that two effects predominantly contribute to the substantial improvements in expressive capacity of chromatin over free DNA. First, chromatin much more effectively silences the genes that are supposed to be OFF, i.e., their expression can be regulated closer towards the 0 target (Figure 2A, circled crosses); this is reflected in a lower contribution to GEE from the OFF genes (Figure 2B, hatched) compared to free DNA. Second, while regulators in both free DNA and chromatin have difficulty inducing genes towards high expression levels, the failure at limited intrinsic specificity is much more pronounced in the free DNA scenario. This is reflected in its significantly smaller dynamic range of regulation—the mean difference between the highest and lowest achievable expression for the ON genes—compared to chromatin (Figure 2C).

Intuitively, the benefits of chromatin silencing should be maximized when the regulatory architecture groups genes into clusters that turn ON or OFF together (“matched”

497 architecture), such that each cluster is regulated by a
498 dedicated PF and TFs are employed solely to fine-tune a
499 the precise expression levels of ON genes. Our analysis
500 in [Figure 2D](#) confirms this intuition: in the “matched”
501 architecture, the GEE is 3-fold lower already for the free DNA
502 scenario compared to its “shuffled” control, with the difference
503 growing to more than 10-fold for chromatin. The shuffled
504 architecture can no longer protect OFF genes: the need
505 to express ON genes forces PFs to open chromatin, thereby
506 exposing OFF genes in mixed clusters to regulatory influences
507 from nontarget binding, which increases GEE. Therefore, for
508 optimal expressive capacity, the genetic architecture needs
509 to be matched to the co-activation structure of the desired
510 target expression patterns.

511 Chromatin-based regulation has another important and
512 biologically relevant benefit: it decouples and modularizes
513 the regulation of ON genes. Consider the following. At
514 global optimum, no gene will have perfectly achieved its
515 target expression level. Suppose we choose a “selfish” gene
516 that, starting from this global optimum, must reach its target
517 expression level at any cost to other genes. The simplest way
518 to regulate the selfish gene is to modulate the concentration
519 of its corresponding single-target TF. [Figure 2E](#) shows that,
520 in the chromatin case, we need not change the single-target
521 TF concentration very much to appease the selfish gene:
522 the required change is in line with the effective optimal
523 induction curve of individual genes. In contrast, in the free
524 DNA scenario, the concentration of single-target TF must
525 be significantly increased if the “selfish” gene is to reach a
526 high target expression level, at a cost of increasing error due
527 to nontarget binding elsewhere. Chromatin-based regulation
528 mitigates this effect by leveraging a division of labor between
529 PFs and TFs, where PFs keep OFF genes OFF nearly without
530 fail, while each TF modularly changes the expression level of
531 its target ON gene without much impact on other expression
532 levels.

533 Owing to this division of labor between PFs and TFs,
534 chromatin retains an absolute advantage in GEE across a
535 broad range of regulatory network sizes. The error tends
536 to track the number of ON genes and varies little with
537 the number of OFF genes ([Figure 2F](#)). For a fixed error,
538 chromatin admits a much larger number of ON genes than
539 free DNA, across two orders of magnitude in absolute genome
540 size. Thus, regulating gene expression through chromatin
541 accessibility could conceivably support the evolution of larger
542 genomes with more genes active simultaneously, even if the
543 intrinsic specificity of binding factors remains fixed.

544 **Optimal chromatin-based regulation co-opts nontarget bind-**
545 **ing.** In all globally optimal solutions, genes with low target
546 expression levels tend to be overexpressed relative to their
547 targets, except at the highest specificities S that we con-
548 sider ([Figure 2A](#)). This excess expression is almost entirely
549 due to the high prevalence of nontarget binding ([Figure 3A](#)):
550 already for ON genes with a middling desired expression
551 level of 0.5, nontarget binding of single- and/or multi-target
552 factors drives about 14% of expression in chromatin and 20%
553 in the free-DNA scenario ([Figure 3B](#)). This observation led us
554 to wonder whether globally optimal solutions that minimize
555 GEE also implicitly minimize nontarget binding and vice
556 versa, or whether GEE minimization perhaps productively
557 co-opts nontarget binding to achieve target expression levels.

559 To test the co-option hypothesis, we again turned to
560 optimization. However, instead of optimizing factor con-
561 centrations towards matching target expression levels by
562 any kind of binding, target or nontarget, as before, the
563 new analysis only counts target binding as correct and all
564 nontarget binding as erroneous regulation (see [Section S2.1](#)).
565 We find that this alternative strategy based on target
566 binding alone does allow graded expression of ON genes, but
567 systematically over- (under-)expresses genes with low (high)
568 target levels ([Figure 3C](#)). As a result, the GEE is substantially
569 increased relative to the original scheme across the entire
570 range of intrinsic specificities S ; this effect is particularly
571 pronounced in the chromatin scenario, where penalizing
572 nontarget binding can increase GEE by up to two orders
573 of magnitude ([Figure 3D](#)). Thus, optimizing for globally
574 accurate gene expression patterning is not synonymous with
575 maximizing regulation by target factors and minimizing
576 the influence of nontarget factors. Rather, when intrinsic
577 specificity is limited, co-opting nontarget binding is the most
578 effective way to minimize global gene expression error.

579 Multiple regulatory strategies can achieve comparable
580 expressive capacity. For example, a chromatin scheme that
581 co-opts nontarget binding at intrinsic specificity $S = 500$ has
582 a similar GEE as (1) a free-DNA scheme with $S \approx 2000$
583 that co-opts nontarget binding; (2) a chromatin scheme
584 with $S \approx 2000$ that penalizes nontarget binding; and (3)
585 a free-DNA scheme with $S \sim 5000$ that penalizes nontarget
586 binding ([Figure 3D](#)). This observation suggests a route by
587 which chromatin might have alleviated the evolutionary
588 pressure to maintain high intrinsic specificity: Starting from
589 the free DNA scenario, if chromatin emerged due to selective
590 forces not directly related to gene regulation (e.g., to protect
591 DNA from damage ([67](#))), the newly chromatinized genetic
592 regulatory apparatus could “relax” itself into a new state
593 with lower intrinsic factor specificity (in this example, by an
594 order of magnitude) without incurring any increase in GEE,
595 while at the same time accommodating the “spike-and-slab”
596 distribution of target gene expression levels at lower cost of
597 selection ([68](#)).

598 **Combining activation with repression enhances the benefits**
599 **of chromatin-based regulation.** Our analysis thus far has
600 assumed that all TFs behave as activators. We now relax
601 this assumption and allow each gene to be regulated by both
602 activators and repressors. Specifically, we stipulate that each
603 gene is regulated by three factors: one multi-target factor,
604 always an activator; one single-target activating TF; and
605 one single-target repressing TF. Thus, if we have M genes,
606 we now have $2M$ total single-target TFs. Many eukaryotic
607 TFs possess binding domains separate from the activating or
608 repressing domains, therefore we consider the activating or
609 repressing behavior to be inherent to the factor, not to the
610 site to which it is bound. The single-target activating and
611 repressing TFs target separate sites, and nontarget binding
612 is permitted across all TF sites independent of the nature of
613 their targeting factor. The dissociation rates for target and
614 nontarget binding remain the same for all factors. We adopt a
615 simple model for repression whereby a single bound repressor
616 completely counteracts any activation. Thus, in free DNA, a
617 gene is expressing only if the multi-target factor site is bound,
618 at least one activator (which could be a multi-target factor)
619 is bound to a single-target TF site, and no site (including the
620

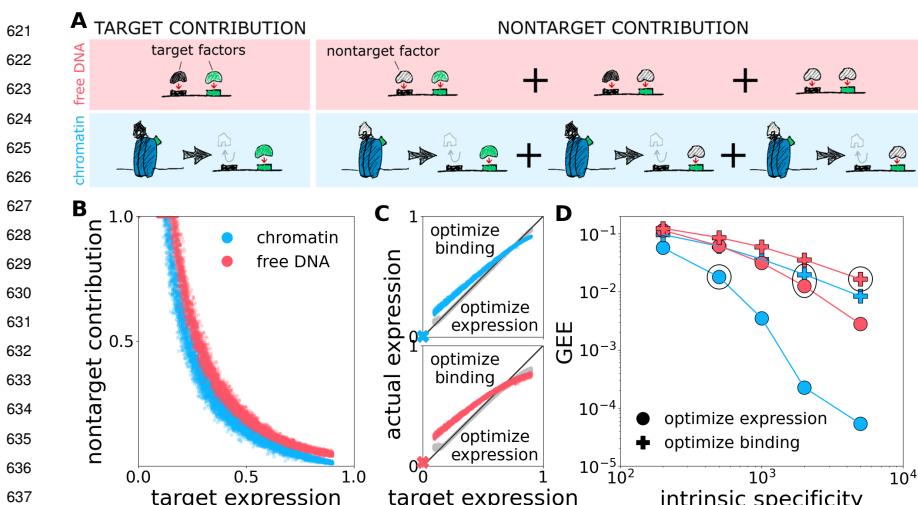


Fig. 3. Co-opting nontarget binding contributes substantially to gene expressive capacity. (A) Nontarget binding contributions are defined as instances of gene expression in which the binding of at least one factor is nontarget. (B) Fraction of expression level (vertical axis) attributable to nontarget vs. target binding for chromatin (blue) and free DNA (red). Dots are individual genes pooled across target patterns with $S = 1000$. (C) Expression levels attained by optimizing to reduce global expression error (as in Figure 2, gray) compared to optimizing for target binding and against nontarget binding (color). (D) GEE is minimized when intrinsic specificity is high, chromatin is present, and nontarget binding is co-opted (blue circles). Nevertheless, multiple combinations of intrinsic specificity and regulatory scheme will often suffice to yield a very similar GEE (e.g., the circled points, see text).

multi-target factor site) is bound by a repressor (Figure 4A). In chromatin, a gene expresses only if chromatin is permissive, at least one activator is bound, and no repressors are bound.

We reasoned that adding repressors to either scenario may serve to counteract the overexpression of lowly expressing genes due to nontarget binding. To ensure such an effect would be clearly visible in our simulation results, we lowered the minimum target expression level for ON genes from 0.09 to 0.009, thereby extending the target dynamic range by an order of magnitude, from 10-fold analyzed in Figure 2, to 100-fold. Simulations for this 100-fold modulation task clearly show that adding repressors indeed improves the accuracy of expression in the low-expression regime for both chromatin and free DNA (Figure 4B). Yet while adding repressors improves the dynamic range for both free DNA and chromatin, it decreases GEE only in the chromatin scenario, and actually *increases* the GEE in the free DNA scenario (Figure 4C). As suggested by previous analyses (9), this counterintuitive effect likely emerges due to the fact that adding new TFs requires new binding sites, which introduce new opportunities for nontarget interactions that limit expressive capacity. With the exception of the lowest tested intrinsic specificity ($S = 200$), chromatin compensates for this deleterious expansion of nontarget interactions by the orthogonal PF regulation and the PFs' proofreading capacity. Thus, the opposing effects of adding repressor-mediated regulation to free DNA further widen the expressive capacity advantage for the chromatin scenario (Figure 4C).

To understand how repressors contribute to improved regulation, we plotted the optimal concentrations of single-target regulatory factors for each gene at each target expression level (Figure 4D). We observe a clear division of labor between activators and repressors: genes with high expression levels are regulated almost entirely by activators, while genes with low expression levels are regulated almost entirely by repressors. This observation implies that repressors act almost exclusively to counteract nontarget activation. The “crossover point” between regulation by repressors vs. regulation by activators—that is, the target expression level at which both repressor and activator concentration are nearly 0—indicates the baseline (“leaky”) expression level established by the combined nontarget binding activity of repressors and

activators at a gene locus (Figure 4D). Subsequent modulation of specific repressor or activator concentrations therefore serves to tune the expression away from this baseline to the desired level for each target gene.

Lastly, we explored the ability of the two regulatory architectures to generate different distributions of target expression levels for ON genes. When we bias this distribution away from uniform, to favor either low or high values of gene expression, the GEE in the chromatin scenario barely changes and stays very low, while it varies substantially and is generally much higher in the free DNA scenario (Figure 4E). Thus, regulation that combines activation and repression in the chromatin scenario increases the flexibility of the regulatory apparatus: in addition to extending the target dynamic range, it can accommodate more general variations in the desired distribution of expression levels.

Robustness to regulatory factor concentration fluctuations. In living cells, stochastic fluctuations in regulator concentrations may introduce variation in downstream gene expression levels. To examine the effect of regulator variability on expressive capacity, we start from the optimized solutions developed in the previous sections and incorporate random variation into the optimized regulator concentrations, then calculate the resulting GEE. Specifically, for each globally optimized solution that generates a target gene expression pattern, we add multiplicative noise to each optimal factor concentration c^* of regulatory factor as

$$c' = c^* (1 + \text{Normal}(0, \sigma^2)), \quad [2]$$

such that c' is normally distributed at c^* with standard deviation $c^* \sigma$. In this way, single- and multi-target factors are perturbed relative to their individual optima and we can vary the fluctuation level by changing the parameter σ (see Section S2.2 for details).

Figure 5 shows the results for fluctuations introduced to the 100-fold modulation task with a uniform distribution of target ON expression levels when both activators and repressors are present. As expected, larger fluctuations significantly decrease the accuracy of regulation and thus increase the GEE (Figure 5A, top). While chromatin still allows for smaller expression errors, it is affected more strongly

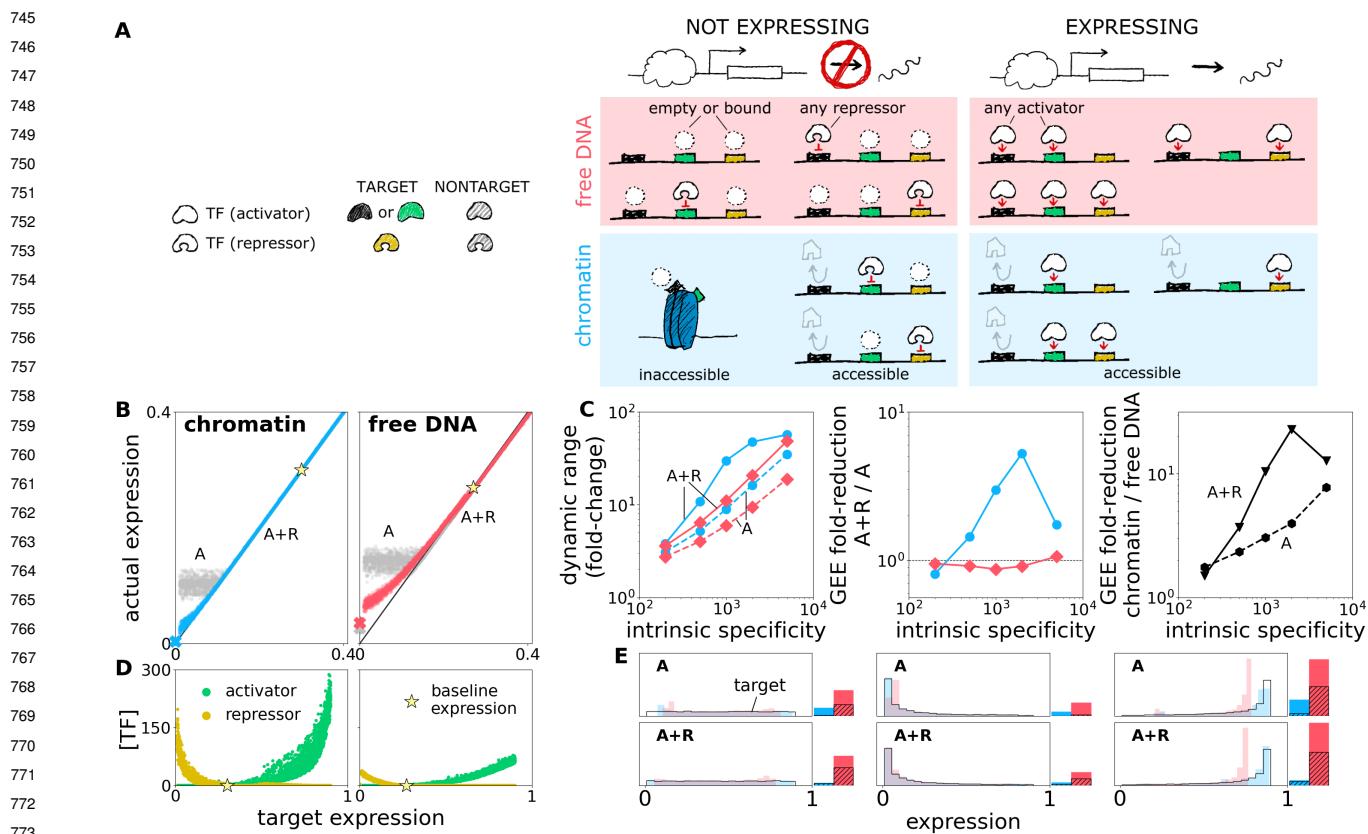


Fig. 4. Adding repressors boosts the expressive capacity advantage of chromatin over free DNA. (A) A schematic of bound factor combinations that do or do not lead to gene expression. (B) Target vs. actual expression for simulations with activators only (as in Figure 2, “A”, gray) and with repressors (“A+R”, color) show that repressors improve accuracy at low target expression levels. (C) Repressors improve the expressive capacity of chromatin, but have mixed effects on free DNA. Left, the dynamic range under both scenarios is larger when repressors are present (“A+R”, solid) than when they are not (“A”, dashed), but increases more for chromatin (blue) than for free DNA (red). Middle, the fold-reduction in error when using activators and repressors vs. the activators only is typically large for chromatin (blue) but may even lead to a GEE increase for free DNA (red). Right, the fold-reduction in error upon switching to chromatin is greater when repressors are present (“A+R”, solid) than when only activators are used for regulation (“A”, dashed). (D) Concentrations of single-target activator (green) and single-target repressor (gold) vs. target expression level of the corresponding gene. Both concentrations reach 0 around the same target expression level, or “baseline”, where nontarget binding by activators and repressors fully accounts for expression in the corresponding genes. Expression of individual genes is modulated above this level by activators, and below it by repressors. (E) A regulatory architecture employing both activators and repressors (“A+R”), bottom three panels, vs. activator-only architecture “A”, top three panels) enables chromatin scenario (blue) to accommodate various target distributions of expression levels (black outlined distributions) with minimal GEE, compared to free DNA (red), whose error is significantly higher and strongly dependent on the desired gene expression level distribution. GEE with concentrations optimally adjusted to each target distribution is shown at right for each distribution, following plotting conventions of Figure 2B.

by concentration fluctuations at high intrinsic specificity of regulatory factors. Surprisingly, we find that there is an intermediate level of specificity at which chromatin maximizes its advantage over free DNA (Figure 5A, bottom).

Do multi-target or single-target factors contribute more to the degradation in accuracy upon introducing fluctuations? We added fluctuations either only to multi-target or only to single-target factors and compared the GEE between the two cases. Figure 5B shows that, across most of the specificity range, fluctuations in single-target factor concentrations result in larger expression errors than fluctuations in multi-target factor concentrations (see also Figure S4). A detailed analysis reveals the reason for this observation (Section S2.2). In optimal solutions, the multi-target factors are generally tasked with either keeping the genes entirely OFF or permitting expression. This means that the multi-target factors (and especially the PF system in chromatin scenario) operate closer to saturation, where fluctuations in the factor concentration do not propagate to gene expression. In contrast, the single-target TF system in both scenarios needs to fine-tune the

expression levels of ON genes and is thereby more sensitive to fluctuations (Figure S2, S3).

Taken together, our results suggest that chromatin is well-suited when selection for extremely reliable ON/OFF control over gene expression is essential. Precise expression control is possible, but seems to require a corresponding precision in TF expression levels. As a future research direction, we note that the entire regulatory architecture and concentrations could have been optimized in the presence of fluctuations (rather than in absence, as in the setup we report here), possibly leading to an identification of noise-robust chromatin regulatory regimes.

Discussion

Chromatin is often regarded as a central innovation in eukaryotes, but much remains to be understood concerning its implications for the global structure and strategy of gene regulatory programs. Here, we argue that chromatin, when understood as an integral and active component of

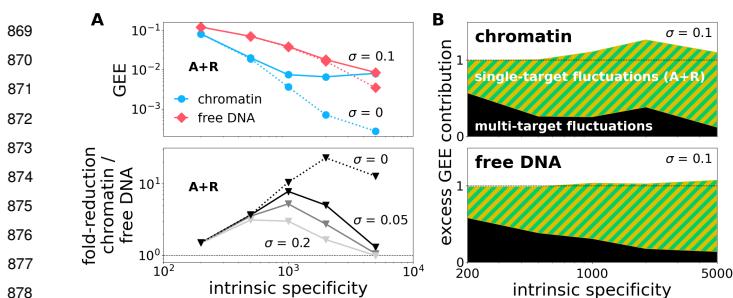


Fig. 5. Robustness to regulatory factor concentration fluctuations. (A) Adding fluctuations to all single-target and multi-target factor concentrations deteriorates GEE (top) at higher levels of intrinsic specificity, more dramatically so for chromatin (blue) than for free DNA (red). Increasing fluctuation strength σ shifts the peak fold-reduction in GEE of chromatin vs. free DNA toward lower levels of intrinsic specificity (bottom; original noise-free results shown in dashed line). (B) Relative increase in GEE due to fluctuations can be attributed primarily to single-target factors. Area plots show GEE when only single-target factors (striped) or only multi-target factors (black) fluctuate with $\sigma = 0.1$, normalized to the GEE when all factors fluctuate simultaneously (dashed line). Results for all panels are shown for the 100-fold modulation task using activators and repressors ("A+R"), with uniform distribution of target ON expression levels.

gene regulatory architecture, allows for a substantially more accurate and scalable control of gene expression than is possible using TFs alone.

We motivated our study with the paradoxical observation that eukaryotes generally have much longer genomes than prokaryotes, but binding sites for transcription factors in metazoans appear to be less specific than in prokaryotes (12). This lack of specificity could lead to highly deleterious "crosstalk" in metazoan gene regulation: theory suggests that cooperative or combinatorial regulation schemes operating at equilibrium might be insufficient to ensure reliable expression control (9). Changes to effective genome size due to chromatinized sequence inaccessibility also cannot fully explain this paradox (6). Its possible resolution is a two-layer gene regulatory architecture that we propose in our work. The first layer of the architecture, namely proofreading-based modulation of chromatin accessibility, sets the discrete, ON/OFF state of the gene; the precise expression levels of ON genes are subsequently quantitatively modulated by activator and repressor TFs, acting as the second layer of the architecture. This paradigm of an "on-off switch followed by a rheostat" is well-suited to generate the "spike-and-slab" distribution of expression levels across genes (Figure 1C), with strong clustering of OFF genes across cell types and states. It is also consistent with recent experimental results showing that random stretches of DNA inserted into the genome are significantly more likely to express a reporter if a known PF binding site is included in the sequence (69).

An essential part of our approach is a global, systems-level analysis of end-to-end regulatory performance of both layers. This reveals a key insight responsible for a large boost in performance of chromatin-based regulation: Because OFF genes can be kept reliably silent via proofreading-based PF regulation, the regulatory system can indeed operate with TFs of lesser specificity and productively co-opt their non-target binding. This sets a leaky baseline expression level for all genes that targeted TF binding then up- or down- modulates to a precise desired level. Without reliable

silencing of expression by PFs via chromatin, such co-opting necessarily leads to a possibly deleterious unwanted induction of OFF genes, as can be seen in our free DNA scenario.

Our qualitative conclusions concerning the benefits of chromatin are not specific to a particular molecular pathway, but apply broadly to any kinetic proofreading mechanism whereby increasing concentrations of regulatory factors favor transcriptionally permissive states. The parameter values we selected for our simulations were based on the kinetics of nucleosome repositioning in response to remodeler recruitment; however, higher levels of chromatin organization also show dose-dependent responses to regulator concentrations commensurate with our key assumptions. For example, experiments and modeling indicate that compacted chromatin can decompact with increasing concentrations of targeted activator (42, 43) (though whether compacted chromatin is truly less accessible than non-compacted chromatin is a subject of continuing debate (40, 70)). Absent from our model is explicit regulation of chromatin closing or the maintenance of transcriptionally repressive states, for which experimental evidence suggests repressor complexes such as Polycomb may be essential (36, 71–73). As in the case of TF repressors, we expect these elements to change the quantitative but not the qualitative conclusions of the study.

Perhaps the most notable omission in our analysis is that of dynamics. The chromatin regulation mechanisms discussed above differ substantially in their rates: Chromatin decompaction occurs on a timescale that is rapid compared to the length of a cell cycle (1.5 h vs. 20 h) (43), but it is still orders of magnitude slower than nucleosome repositioning (on the order of s or min). Similarly, TF binding and unbinding events as well as transcription initiation are faster than most chromatin remodeling processes (74). Therefore, in systems where speed is more important than accuracy in absolute expression levels, we may expect TFs to remain in use despite the reduced global error facilitated by chromatin-based regulation.

Because we evaluate expression levels at steady state, our results most directly apply to genes that must stably maintain a constant expression level over a long timespan relative to the rates of transcription and protein decay. The most salient biological analogs include "housekeeping" genes that carry out basal functions in all cells, as well as tissue- or cell type-specific genes that show little cell-to-cell or temporal variation in transcript levels (75–77). In addition to constant expression, three features make stably expressed genes (SEGs) particularly suitable for analysis with our paradigm. First, SEGs vary in the absolute expression levels they maintain, with one analysis revealing a 3–4-fold difference between the 25th and 75th percentiles of expression, with an absolute dynamic range of >50-fold overall (78). Researchers have also hypothesized means for graded control of housekeeping genes specifically, for example, through the activity of corepressors (79). Second, chromatin remodeling may silence some sets of SEGs during the development of particular cell lineages (80). Third, experimental evidence from embryonic fruit flies suggests that housekeeping genes (expressed in all cells) rely on chromatin remodelers to position nucleosomes downstream from transcriptional start sites, rather than to regulate which TFs can bind. In contrast, developmental genes rely on a different set of remodelers to maintain accessibility at

enhancers (81). Thus, housekeeping genes and cell type-specific SEGs may offer a natural comparison between two alternative regulatory schemes, one of which (housekeeping) more closely resembles the free DNA scenario, and the other of which (developmental) more closely resembles the chromatin scenario.

Whether in chromatin or free DNA, an essential feature of our model is nontarget binding by regulatory factors, i.e., binding weakly to enhancers that do not regulate the factors' central, "functional" targets. The extent to which weakly binding factors are essential, as opposed to merely consequential, for transcriptional regulation remains a subject of open discussion (10, 13, 82–84). Evidence for biologically significant weak binding emerges from studies on TF co-occupancy at enhancers, which show high prevalence in regions of accessible chromatin even between TFs with divergent binding site preferences and disparate functions (85). Weak but functional regulatory interactions have also been inferred in developmental networks, which appear to rely to a high degree on "non-canonical" TF binding interactions to establish cell type identity (86).

Our model suggests that genes may cope with unwanted weak binding by co-opting it to establish baseline expression levels for genes. Though the "leaky" expression in our model arises from uniform low-rate binding of nontarget TFs to enhancer binding sites, in practice TFs will vary along a continuum of specificity in their binding to different DNA sequences. Furthermore, it is likely that molecular steps between TF binding and transcription initiation can filter out signals emerging from binding of sufficiently low specificity (15, 87, 88) or of TFs lacking the appropriate cofactors. One prediction from these observations is that individual genes may establish baseline expression levels from subsets of the TFs that weakly bind their enhancer sequences, leading to a continuous distribution of baseline expression levels across genes. At least some data do indicate such distributions for genes expressed at less than one transcript per cell (i.e., for putatively OFF genes) (89), although we cannot rule out either natural stochasticity or binding of specific TFs in erroneously open chromatin as the cause.

How does the notion of baseline expression we propose relate to previous discussions of biologically significant weak binding? We postulate that whether a given weak interaction is "functional" may be a more nuanced question than whether large changes to TF concentration noticeably modulate a gene's expression. In particular, some weak interactions may be *interchangeable*, in the sense that it may not matter to an enhancer *which* weakly binding TFs are present so long as *some* are. Such agnosticism to TF identity could conceivably improve the robustness of expression to uncorrelated local variations in the concentrations of weakly binding TFs.

An example of interchangeability comes from evidence that collectives of TFs can compete with nucleosomes to bind DNA and potentially activate genes (56). In particular, genomic analysis of yeast indicates that regions of DNA predicted to have high levels of nonspecific DNA binding are depleted of nucleosomes, including at the majority of promoters (90). Furthermore, DNA footprinting studies in mouse enhancers suggest simultaneous binding at regions of nucleosome competition is largely independent of TF identity and generally does not require direct TF-TF interaction (91). It would

be interesting to couple such assays with measurements of the resulting gene expression driven by enhancers of interest, particularly if their strongest-binding TFs could be knocked out. Under a hypothesis of baseline expression driven by weak binding, we would expect identity-independent binding to induce some level of residual regulatory activity after knockout. A caveat to this approach is that it would not detect situations in which the activity of interchangeable weakly binding TFs is negligible or absent unless specific TFs are also present, for example, if the specific TF is an activator and the weakly binding TFs are repressors.

Nontarget binding may be co-opted or tolerated when relatively few genes are actively regulated. As more enhancers and corresponding genes become accessible, however, the unwanted effects of nontarget binding become harder to avoid. Some stem cells, for example, express genes specific to multiple possible differentiated lineages simultaneously, without performing the functions of cells belonging to these lineages (92). Such promiscuous expression might arise simply through the accessibility of regulating enhancers even if their specific binding factors are absent. Interestingly, many cancers also express embryonic stem cell markers or pluripotency factors, including PFs like OCT4 (93, 94). This may help to explain some of the phenotypic plasticity of cancerous cells as follows (95): Suppose a differentiated cell escapes into a cancerous state simultaneous with the erroneous expression of PFs. At the moment of escape, the regulatory concentrations of TFs present in the cell were optimized for the differentiated cell—that is, in an environment in which the appropriate genes were silenced. If these genes are suddenly made accessible to regulation, we might expect a higher probability of spuriously activating an unwanted transcriptional program than in an endogenous stem cell, where the regulatory concentrations would be optimized assuming these genes were accessible. Indeed, stem cells may maintain appropriate function despite susceptibility to high levels of nontarget binding due to a reliance on signaling factors secreted by other stem cells; the tumor-like behavior of cancer cells can be suppressed by these same signaling factors (96).

Chromatin may not have emerged for the purpose of regulating genes, but subsequent evolution has dramatically expanded its capacity to do so. With our work, we have aimed to provide comparative, quantitative arguments to help interpret the qualitative differences in regulatory schemes observed between prokaryotes and their eukaryotic descendants. It is our hope that further research will eventually explain, not merely the varying capacities of these genetic regulatory systems, but how their interaction with evolutionary pressures eventually gave rise to the complex, multicellular organisms that have so long excited the scientific imagination.

Materials and Methods

Code for all simulations is available on GitHub at https://github.com/officerredshirt/network_crosstalk.

ACKNOWLEDGMENTS. MLP was supported by the European Molecular Biology Laboratory Interdisciplinary Postdoc Programme (EIPOD4 fellowships), cofunded by Marie Skłodowska-Curie Actions (grant agreement number 847543). J.C. and M.L.P. were supported by EMBL Core Funding and Theory@EMBL. GT acknowledges the support of the Human Frontiers Science Program

1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116

1117 Grant (RGP0034/2018). The authors would like to thank the
1118 members of the Crocker and Tkačík groups, especially Natalia
1119 Misunou, Michal Hledík, and Réka Borbely, for helpful feedback
1120

1121 and discussion. The authors also thank EMBL IT Services for the
1122 use of HPC resources.
1123

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178

1. PHV Hippel, A Revzin, CA Gross, AC Wang, Non-specific DNA Binding of Genome Regulating Proteins as a Biological Control Mechanism: 1. The *lac* Operon: Equilibrium Aspects. *Proc. Natl. Acad. Sci.* **71**, 4808–4812 (1974).
2. J Elf, GW Li, XS Xie, Probing Transcription Factor Dynamics at the Single-Molecule Level in a Living Cell. *Science* **316**, 1191–1194 (2007).
3. SJ Maerkli, SR Quake, A Systems Approach to Measuring the Binding Energy Landscapes of Transcription Factors. *Science* **315**, 233–237 (2007).
4. FM Weinert, RC Brewster, M Rydnefelt, R Phillips, WK Kegel, Scaling of Gene Expression with Transcription-Factor Fugacity. *Phys. Rev. Lett.* **113**, 258101 (2014).
5. EE Swinstead, et al., Steroid Receptors Reprogram FoxA1 Occupancy through Dynamic Chromatin Transitions. *Cell* **165**, 593–605 (2016).
6. Z Wunderlich, LA Mirny, Different gene regulation strategies revealed by analysis of binding motifs. *Trends Genet.* **25**, 434–440 (2009).
7. RS Mann, KM Lelli, R Joshi, Chapter 3 Hox Specificity in *Current Topics in Developmental Biology*. (Elsevier) Vol. 88, pp. 63–101 (2009).
8. AL Todeschini, A Georges, RA Veitia, Transcription factors: Specific DNA binding and specific gene regulation. *Trends Genet.* **30**, 211–219 (2014).
9. T Friedlander, R Prizak, CC Guet, NH Barton, G Tkačík, Intrinsic limits to gene regulation by global crosstalk. *Nat. Commun.* **7**, 12307 (2016).
10. A Tanay, Extensive low-affinity transcriptional interactions in the yeast genome. *Genome Res.* **16**, 962–972 (2006).
11. J Crocker, et al., Low Affinity Binding Site Clusters Confer Hox Specificity and Regulatory Robustness. *Cell* **160**, 191–203 (2015).
12. JF Kribelbauer, C Rastogi, HJ Bussemaker, RS Mann, Low-Affinity Binding Sites and the Transcription Factor Specificity Paradox in Eukaryotes. *Annu. Rev. Cell Dev. Biol.* **35**, 357–379 (2019).
13. A Shahein, et al., Systematic analysis of low-affinity transcription factor binding site clusters in vitro and in vivo establishes their functional relevance. *Nat. Commun.* **13**, 5273 (2022).
14. JJ Hopfield, Kinetic Proofreading: A New Mechanism for Reducing Errors in Biosynthetic Processes Requiring High Specificity. *Proc. Natl. Acad. Sci.* **71**, 4135–4139 (1974).
15. SA Cepeda-Humerez, G Rieckh, G Tkačík, Stochastic Proofreading Mechanism Alleviates Crosstalk in Transcriptional Regulation. *Phys. Rev. Lett.* **115**, 248101 (2015).
16. H Schiessl, R Blossey, Pioneer transcription factors in chromatin remodeling: The kinetic proofreading view. *Phys. Rev. E* **101**, 040401 (2020).
17. NC Lammers, AI Flamholz, HG Garcia, Competing constraints shape the nonequilibrium limits of cellular decision-making. *Proc. Natl. Acad. Sci.* **120**, e2211203120 (2023).
18. H Boeger, Kinetic Proofreading. *Annu. Rev. Biochem.* **91**, 423–447 (2022).
19. S Balaji, MM Babu, LM Iyer, NM Luscombe, L Aravind, Comprehensive Analysis of Combinatorial Regulation using the Transcriptional Regulatory Network of Yeast. *J. Mol. Biol.* **360**, 213–227 (2006).
20. V Chaoensawan, D Wilson, SA Teichmann, Genomic repertoires of DNA-binding transcription factors across the tree of life. *Nucleic Acids Res.* **38**, 7364–7377 (2010).
21. AB Georges, BA Benayoun, S Caburet, RA Veitia, Generic binding sites, generic DNA-binding domains: Where does specific promoter recognition come from? *The FASEB J.* **24**, 346–356 (2010).
22. F Reiter, S Wiernroither, A Stark, Combinatorial function of transcription factors and cofactors. *Curr. Opin. Genet. & Dev.* **43**, 73–81 (2017).
23. X Grau-Bové, et al., A phylogenetic and proteomic reconstruction of eukaryotic chromatin evolution. *Nat. Ecol. & Evol.* (2022).
24. FH Lam, DJ Steger, EK O’Shea, Chromatin decouples promoter threshold from dynamic range. *Nature* **453**, 246–250 (2008).
25. F Zhu, et al., The interaction landscape between transcription factors and the nucleosome. *Nature* **562**, 76–81 (2018).
26. B Fierz, MG Poirier, Biophysics of Chromatin Dynamics. *Annu. Rev. Biophys.* **48**, 321–345 (2019).
27. Y Lorch, JW LaPointe, RD Kornberg, Nucleosomes inhibit the initiation of transcription but allow chain elongation with the displacement of histones. *Cell* **49**, 203–210 (1987).
28. K Struhl, Fundamentally Different Logic of Gene Regulation in Eukaryotes and Prokaryotes. *Cell* **98**, 1–4 (1999).
29. H Boeger, J Griesenbeck, RD Kornberg, Nucleosome Retention and the Stochastic Nature of Promoter Chromatin Remodeling for Transcription. *Cell* **133**, 716–726 (2008).
30. AS Hansen, EK O’Shea, Promoter decoding of transcription factor dynamics involves a trade-off between noise and control of gene expression. *Mol. Syst. Biol.* **9**, 704 (2013).
31. T Kujirai, H Kurumizaka, Transcription through the nucleosome. *Curr. Opin. Struct. Biol.* **61**, 42–49 (2020).
32. E Li, Y Zhang, DNA Methylation in Mammals. *Cold Spring Harb. Perspectives Biol.* **6**, a019133–a019133 (2014).
33. GE Zentner, S Henikoff, Regulation of nucleosome dynamics by histone modifications. *Nat. Struct. & Mol. Biol.* **20**, 259–266 (2013).
34. JS Becker, D Nicetto, KS Zaret, H3K9me3-Dependent Heterochromatin: Barrier to Cell Fate Changes. *Trends Genet.* **32**, 29–41 (2016).
35. SL Klemm, Z Shipony, WJ Greenleaf, Chromatin accessibility and the regulatory epigenome. *Nat. Rev. Genet.* **20**, 207–220 (2019).
36. AL Hughes, JR Kelley, RJ Klose, Understanding the interplay between CpG island-associated gene promoters and H3K4 methylation. *Biochimica et Biophys. Acta (BBA) - Gene Regul. Mech.* **1863**, 194567 (2020).
37. K Maeshima, et al., The physical size of transcription factors is key to transcriptional regulation in chromatin domains. *J. Physics: Condens. Matter* **27**, 064116 (2015).

38. KS Zaret, Pioneer Transcription Factors Initiating Gene Network Changes. *Annu. Rev. Genet.* **54**, 367–385 (2020).
39. A Mota, et al., FRET-FISH probes chromatin compaction at individual genomic loci in single cells. *Nat. Commun.* **13**, 6680 (2022).
40. K Maeshima, S Iida, MA Shimazoe, S Tamura, S Ide, Is euchromatin really open in the cell? *Trends Cell Biol.* p. S0962892423000909 (2023).
41. MG Poirier, E Oh, HS Tims, J Widom, Dynamics and function of compact nucleosome arrays. *Nat. Struct. & Mol. Biol.* **16**, 938–944 (2009).
42. F Erdel, et al., Mouse Heterochromatin Adopts Digital Compaction States without Showing Hallmarks of HP1-Driven Liquid-Liquid Phase Separation. *Mol. Cell* **78**, 236–249.e7 (2020).
43. NA Pease, et al., Tunable, division-independent control of gene activation timing by a polycomb switch. *Cell Reports* **34**, 108888 (2021).
44. GO Bryant, et al., Activator Control of Nucleosome Occupancy in Activation and Repression of Transcription. *PLoS Biol.* **6**, e317 (2008).
45. P Trojer, D Reinberg, Facultative Heterochromatin: Is There a Distinctive Molecular Signature? *Mol. Cell* **28**, 1–13 (2007).
46. A Gaspar-Maia, A Alajem, E Meshorer, M Ramalho-Santos, Open chromatin in pluripotency and reprogramming. *Nat. Rev. Mol. Cell Biol.* **12**, 36–47 (2011).
47. KS Zaret, JS Carroll, Pioneer transcription factors: Establishing competence for gene expression. *Genes & Dev.* **25**, 2227–2241 (2011).
48. JL Hansen, KJ Loeffl, BA Cohen, A test of the pioneer factor hypothesis using ectopic liver gene activation. *eLife* **11**, e73358 (2022).
49. R Blossey, H Schiessl, Kinetic proofreading of gene activation by chromatin remodeling. *Hfsp J.* **2**, 167–170 (2008).
50. R Blossey, H Schiessl, Kinetic Proofreading in Chromatin Remodeling: The Case of ISWI/ACF. *Biophys. J.* **101**, L30–L32 (2011).
51. G Brysbaert, MF Lensink, R Blossey, Regulatory motifs on ISWI chromatin remodelers: Molecular mechanisms and kinetic proofreading. *J. Physics: Condens. Matter* **27**, 064108 (2015).
52. D Porcelli, B Fischer, S Russell, R White, Chromatin accessibility plays a key role in selective targeting of Hox proteins. *Genome Biol.* **20**, 115 (2019).
53. KJ Polach, J Widom, Mechanism of Protein Access to Specific DNA Sequences in Chromatin: A Dynamic Equilibrium Model for Gene Regulation. *J. Mol. Biol.* **254**, 130–149 (1995).
54. T Raveh-Sadka, M Levo, E Segal, Incorporating nucleosomes into thermodynamic models of transcription regulation. *Genome Res.* **19**, 1480–1496 (2009).
55. O Igoshin, J Narula, Thermodynamic models of combinatorial gene regulation by distant enhancers. *IET Syst. Biol.* **4**, 393–408 (2010).
56. LA Mirny, Nucleosome-mediated cooperativity between transcription factors. *Proc. Natl. Acad. Sci.* **107**, 22534–22539 (2010).
57. L Bintu, et al., Dynamics of epigenetic regulation at the single-cell level. *Science* **351**, 720–724 (2016).
58. R Shelansky, H Boeger, Nucleosomal proofreading of activator–promoter interactions. *Proc. Natl. Acad. Sci.* **117**, 2456–2461 (2020).
59. S Bruno, RJ Williams, D Del Vecchio, Mathematical analysis of the limiting behaviors of a chromatin modification circuit. *Math. Control. Signals. Syst.* **35**, 399–432 (2023).
60. M Hledík, “Genetic Information and Biological Optimization,” Phd thesis, Institute of Science and Technology Austria (2024).
61. HA Pliner, et al., Cicero Predicts cis-Regulatory DNA Interactions from Single-Cell Chromatin Accessibility Data. *Mol. Cell* **71**, 858–871.e8 (2018).
62. YA Medvedeva, et al., EpiFactors: A comprehensive database of human epigenetic factors and complexes. *Database* **2015**, bav067 (2015).
63. SA Lambert, et al., The Human Transcription Factors. *Cell* **172**, 650–665 (2018).
64. J Cao, et al., Joint profiling of chromatin accessibility and gene expression in thousands of single cells. *Science* **361**, 1380–1385 (2018).
65. TC Voss, GL Hager, Dynamic regulation of transcriptional states by chromatin and transcription factors. *Nat. Rev. Genet.* **15**, 69–81 (2014).
66. RJ White, et al., A high-resolution mRNA expression time course of embryonic development in zebrafish. *eLife* **6**, e30860 (2017).
67. IA Drinnenberg, et al., EvoChromo: Towards a synthesis of chromatin biology and evolution. *Development* **146**, dev178962 (2019).
68. M Hledík, N Barton, G Tkačík, Accumulation and maintenance of information in evolution. *Proc. Natl. Acad. Sci.* **119**, e2123152119 (2022).
69. R Galupa, et al., Enhancer architecture and chromatin accessibility constrain phenotypic space during Drosophila development. *Dev. Cell* **58**, 51–62.e4 (2023).
70. RV Chereji, PR Eriksson, J Ocampo, HK Prajapati, DJ Clark, Accessibility of promoter DNA is not the primary determinant of chromatin-mediated gene regulation. *Genome Res.* **29**, 1985–1995 (2019).
71. K Snepen, L Ringrose, Theoretical analysis of Polycomb-Trithorax systems predicts that poised chromatin is bistable and not bivalent. *Nat. Commun.* **10**, 2133 (2019).
72. J Reinig, F Ruge, M Howard, L Ringrose, A theoretical model of Polycomb/Trithorax action unites stable epigenetic memory and dynamic regulation. *Nat. Commun.* **11**, 4782 (2020).
73. NP Blackledge, RJ Klose, The molecular principles of gene regulation by Polycomb repressive complexes. *Nat. Rev. Mol. Cell Biol.* **22**, 815–833 (2021).
74. NC Lammers, YJ Kim, J Zhao, HG Garcia, A matter of time: Using dynamics and theory to uncover mechanisms of transcriptional bursting. *Curr. Opin. Cell Biol.* **67**, 147–157 (2020).
75. E Eisenberg, EY Levanon, Human housekeeping genes, revisited. *Trends Genet.* **29**, 569–574 (2013).

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178

1241 76. Y Lin, et al., Evaluating stably expressed genes in single cells. *GigaScience* **8**, giz106
(2019). 1303

1242 77. L Qiu, et al., Identification of Human Global, Tissue and Within-Tissue Cell-Specific Stably
1304
1243 Expressed Genes at Single-Cell Resolution. *Int. J. Mol. Sci.* **23**, 10214 (2022). 1305

1244 78. CJ Joshi, W Ke, A Drangowska-Way, EJ O'Rourke, NE Lewis, What are housekeeping
1306
1245 genes? *PLOS Comput. Biol.* **18**, e1010295 (2022). 1307

1246 79. A Mitra, AM Raicu, SL Hickey, LA Pile, DN Arnosti, Soft repression: Subtle transcriptional
1308
1247 regulation with global impact. *BioEssays* **43**, 2000231 (2021). 1308

1248 80. L Thorez, et al., Tissue-specific disallowance of housekeeping genes: The other face of
1309
1249 cell differentiation. *Genome Res.* **21**, 95–105 (2011). 1309

1250 81. O Hendy, et al., Developmental and housekeeping transcriptional programs in Drosophila
1310
1251 require distinct chromatin remodelers. *Mol. Cell* **82**, 3598–3612.e7 (2022). 1311

1252 82. MD Biggin, Animal Transcription Networks as Highly Connected, Quantitative Continua.
1312
1253 *Dev. Cell* **21**, 611–626 (2011). 1312

1254 83. WW Fisher, et al., DNA regions bound at low occupancy by transcription factors do not drive
1313
1255 patterned reporter gene expression in Drosophila. *Proc. Natl. Acad. Sci.* **109**, 21330–21335
(2012). 1314

1256 84. J Crocker, E Preger-Ben Noon, DL Stern, The Soft Touch in *Current Topics in
1315
Developmental Biology*. (Elsevier) Vol. 117, pp. 455–469 (2016). 1315

1257 85. S MacArthur, et al., Developmental roles of 21 Drosophila transcription factors are
1317
1258 determined by quantitative differences in binding to an overlapping set of thousands of
1318
1259 genomic regions. *Genome Biol.* **10**, R80 (2009). 1318

1260 86. AR Sonawane, et al., Understanding Tissue-Specific Gene Regulation. *Cell Reports* **21**,
1077–1088 (2017). 1319

1261 87. R Grah, B Zoller, G Tkacik, Nonequilibrium models of optimal enhancer function. *Proc. Natl.
1320
1262 Acad. Sci.* **117**, 31614–31622 (2020). 1321

1263 88. B Zoller, T Gregor, G Tkacik, Eukaryotic gene regulation at equilibrium, or non? *Curr.
1322
opinion systems biology* **31**, 100435 (2022). 1322

1264 89. D Hebenstreit, et al., RNA sequencing reveals two major classes of gene expression levels
1323
1265 in metazoan cells. *Mol. Syst. Biol.* **7**, 497 (2011). 1324

1266 90. A Afek, I Sela, N Musa-Lempel, DB Lukatsky, Nonspecific Transcription-Factor-DNA Binding
1325
1267 Influences Nucleosome Occupancy in Yeast. *Biophys. J.* **101**, 2465–2475 (2011). 1325

1268 91. C Sönmezler, et al., Molecular Co-occupancy Identifies Transcription Factor Binding
1326
1269 Cooperativity In Vivo. *Mol. Cell* **81**, 255–267.e6 (2021). 1327

1270 92. D Zipori, The nature of stem cells: State rather than entity. *Nat. Rev. Genet.* **5**, 873–878
1328
1271 (2004). 1328

1272 93. M Monk, C Holding, Human embryonic genes re-expressed in cancer cells. *Oncogene* **20**,
8085–8091 (2001). 1329

1273 94. M Schoenhals, et al., Embryonic stem cell markers expression in cancers. *Biochem.
1330
1274 Biophys. Res. Commun.* **383**, 157–162 (2009). 1330

1275 95. E Vlashi, F Pajonk, Cancer stem cells, cancer cell plasticity and radiation therapy. *Semin.
1331
1276 Cancer Biol.* **31**, 28–35 (2015). 1331

1277 96. LM Postovit, et al., Human embryonic stem cell microenvironment suppresses the
1332
1278 tumorigenic phenotype of aggressive cancer cells. *Proc. Natl. Acad. Sci.* **105**, 4329–4334
1333
1279 (2008). 1333

1280 1274 1336

1281 1275 1337

1282 1276 1338

1283 1277 1339

1284 1278 1340

1285 1279 1341

1286 1280 1342

1287 1281 1343

1288 1282 1344

1289 1283 1345

1290 1284 1346

1291 1285 1347

1292 1286 1348

1293 1287 1349

1294 1288 1350

1295 1289 1351

1296 1290 1352

1297 1291 1353

1298 1292 1354

1299 1293 1355

1300 1294 1356

1301 1295 1357

1302 1296 1358

1297 1301 1359

1298 1302 1360

1299 1300 1361

1300 1301 1362

1301 1302 1363

1302 1303 1364