

¹ Wide-scale Geographical Analysis of Genetic Ancestry in the South ² African Coloured Population

³ Imke Lankheet^{1*}, Rickard Hammarén^{1*}, Lucía Ximena Alva Caballero^{1*}, Maximilian
⁴ Larena¹, Helena Malmström^{1,5}, Cecile Jolly¹, Himla Soodyall^{2,3}, Michael de Jongh⁴, and
⁵ Carina Schlebusch^{1,5,6}

⁶ *These authors contributed equally

⁷ ¹Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Sweden

⁸ ²Division of Human Genetics, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand,
⁹ Johannesburg, South Africa

¹⁰ ³Academy of Science of South Africa, Pretoria, South Africa

¹¹ ⁴Department of Anthropology and Archaeology, University of South Africa, Pretoria, South Africa

¹² ⁵Palaeo-Research Institute, University of Johannesburg, Johannesburg, South Africa

¹³ ⁶SciLife Lab, Uppsala, Sweden

¹⁴ Corresponding authors:

¹⁵ Carina Schlebusch (carina.schlebusch@ebc.uu.se)

¹⁶ Imke Lankheet (imke.lankheet@ebc.uu.se)

17 Wide-scale Geographical Analysis of Genetic Ancestry in the South
18 African Coloured Population

19 **Abstract**

20 The South African Coloured (SAC) population, a prominent admixed population in South Africa,
21 reflects centuries of migration, admixture, and historical segregation. Descendants of local Khoe-San
22 and Bantu-speaking populations, European settlers, and enslaved individuals from Africa and Asia, SAC
23 individuals embody diverse ancestries. This study investigates the genetic makeup of SAC individuals,
24 utilizing autosomal genotypes, mitochondrial DNA and Y-chromosome data. We analyze new genotype
25 data for 125 SAC individuals from seven locations. Our analysis, based on a dataset comprising 356 SAC
26 individuals from 22 geographic locations, revealed significant regional variations in ancestry. Khoe-San
27 ancestry predominates in 14 locations, highlighting its lasting influence. Inland regions exhibit higher
28 proportions of Khoe-San ancestry, eastern regions show more Bantu-speaker/West African ancestry, and
29 western/coastal areas, particularly around Cape Town, display increased Asian ancestry. These patterns
30 reflect historical migrations and settlement patterns. Additionally, sex-biased admixture ratios show
31 male-biased admixture from East Africans and Europeans, and female-biased admixture from Khoe-San
32 populations, which is supported by mitochondrial and Y-chromosome data. This research underscores the
33 importance of studying the SAC population to understand South Africa's historical migrations, providing
34 insights into the complex genetic heritage of South Africans.

35 **Keywords**

36 South African Coloured population, genetic admixture, Khoe-San ancestry, sex-biased admixture

37 Introduction

38 The South African Coloured (SAC) population is among the most admixed populations in the world, and SAC
39 individuals trace their genetic roots to local Khoekhoe and Bantu-speaking groups, European colonists, and
40 enslaved people from other regions in Africa as well as from Asia. Genetically, Khoekhoe populations represent
41 one of the two branches of the earliest population divergence of the human population tree and therefore
42 show high genetic diversity [1, 2, 3]. They also host early diverging mitochondrial and Y-chromosome lineages
43 [4, 5, 6, 7]. Until approximately 2000 years ago, the San ancestors were the only inhabitants of Southern
44 Africa and they practiced hunter-gathering [8]. Around 2000 years ago, East-African pastoralists arrived
45 in Southern Africa, and admixed with the local San populations [1, 2, 9, 10, 11], which gave rise to the
46 Khoekhoe herding groups. Today, Khoekhoe is the term used to refer to both populations collectively; the
47 hunter-gatherer San and the herder Khoekhoe [12, 13]. The arrival of East-African pastoralists was followed
48 by the arrival of Bantu-speaking groups practicing agriculture and carrying West African ancestry around
49 1800 years ago as part of the Bantu expansion [14, 15, 16, 17, 18]. The colonial times introduced both
50 European and Asian ancestries into Southern Africa [19]. In 1652, the Dutch East India company founded
51 a small refueling station that gradually grew over the decades into what became known as the Cape Colony
52 and later on as Cape Town. The Dutch settlers interacted heavily with the local Khoekhoe communities
53 from the very foundation of the colony. They traded for cattle and, as time went by, some Khoekhoe would
54 work on settler farmsteads [20]. There were disproportionately few women among the settlers in the colony
55 which led to formal and informal unions between European men and Khoekhoe women [20].

56 Over time, non-Europeans in the colony became less accepted, leading to the formation of a distinct
57 community. Sometime after 1700, the term “Cape coloureds” emerged to refer to people of mixed ancestry
58 [21]. The Cape coloureds were descendants of Khoekhoe, Bantu-speaking populations, European settlers
59 and enslaved people from the West and East Coast of Africa, the Indian subcontinent, Madagascar, and
60 Indonesia, brought to South Africa during the slave trade period (1658-1806) [20]. The apartheid regime,
61 the institutionalised racial segregation in place from 1948 to the early 1990s, enhanced the unity of the South
62 African Coloured group identity [22, 20].

63 Currently, the SAC population is the largest admixed population in the country [22]. They constitute
64 more than half of the population of the Western Cape Province today, with large presences in the Northern
65 and Eastern Cape provinces as well, see Figure 2F. The majority of the SAC speak Afrikaans as their
66 first language, 75.8% according to the 2011 South Africa (SA) census, and most SAC individuals identify
67 as Christian. Religion serves as an essential characteristic that differentiates SAC from the Cape Malay
68 population, who practice Islam [21] and are also the result of admixture events between Africans and Asians
69 [23]. Despite the term “Coloured” originating as a construct during the apartheid regime, its usage persists
70 in contemporary South Africa, albeit with varied acceptance.

71 A number of studies has investigated the genetics of the SAC individuals [24, 25, 26, 11, 27]. They
72 confirm the inferences drawn from historical records: the six main demographic groups that contributed
73 to the genetic pool of the SAC were the Khoekhoe, Bantu-speakers/West Africans, East Africans, South
74 Asians/Indians, Southeast Asians and Europeans. A mitochondrial DNA study revealed that the Khoekhoe
75 San had a large maternal contribution to the SAC (60.0%), while the West Eurasian/European maternal
76 contribution was very limited (4.6%) [25]. However, most of these studies focused on single locations and
77 the majority of locations were close to Cape Town.

78 In this study, we analyzed new genome-wide data for 125 individuals self-identifying as SAC. The studied
79 individuals are from a wide range of locations, spanning the broad geographic region inhabited by the
80 SAC community, thereby providing a more comprehensive representation of this population. Together with
81 previously published genetic data from SAC individuals, as well as comparative groups, we shed light on
82 the ancestral genetic components present in various SAC populations and identify geographical differences
83 among these components. We also investigate the difference in paternal and maternal contributions for
84 various admixture events through mitogenomes and Y chromosomes, as well as through X-to-autosomal
85 comparisons.

86 Materials and Methods

87 Sampling and genome-wide SNP typing

88 Saliva samples were obtained from 152 SAC individuals from seven different sites in South Africa; two in
89 the Eastern Cape Province (Graaff-Reinet (N=45) and Nieu-Bethesda (N=20)), and five in the Western
90 Cape Province (Genadendal (N=29), Greyton (N=16), Kranshoek (N=11), Oudtshoorn (N=17), and Prince
91 Albert (N=14)). Participants donated saliva samples with written informed consent. Sample collection of
92 SAC, Khoi-San and Khoi-San descendant groups were approved by the University of the Witwatersrand
93 Human Research Ethics board, clearance numbers M980553, with renewals M050902, M090576, M1604104.
94 This specific project was approved by the University of the Witwatersrand Human Research Ethics board,
95 clearance number M180655 and the National Ethics review board of Sweden, clearance number Dnr 2021-
96 01448.

97 The samples were obtained using an Oragene DNA OG-500 kit. DNA was extracted using the prepIT
98 L2P extraction protocol. The extraction of the biological samples and genotyping followed the procedure
99 described in [11]. The data were generated in four genotyping runs on the Illumina Infinium™ H3Africa
100 Consortium Array by the SNP&SEQ Technology Platform in Uppsala, Sweden. Datasets were analyzed
101 using GenomeStudio 2.0.3 and aligned to the Human Genome build version 37 (hg19). A total of 2,267,346
102 SNP markers were collected in genotyping run 1, 2, and 3, and 2,271,503 SNP markers were collected in
103 genotyping run 4.

104 Quality filtering and autosomal dataset merging

105 The genotype data from 152 SAC individuals was merged with the same dataset as used in [11] [11, 28,
106 29, 30, 31, 32, 33, 34] as well as with data from additional sources [1, 26, 35, 19]. For further information
107 about the populations included in this study, see Supplementary Table 1. The Petersen dataset was
108 converted to hg37 positions with the LiftOver tool from the University of California Santa Cruz (UCSC)
109 (<https://genome.ucsc.edu/cgi-bin/hgLiftOver>). PLINK v1.90b4.9 [36] was used to carry out data processing
110 and quality filtering. Before merging the datasets, duplicate SNPs were removed, only overlapping SNPs
111 between datasets were kept, and C/G and A/T SNPs were eliminated to prevent strand flipping errors.
112 Moreover, 5 individuals with genotyping missingness higher than 15% were excluded (plink –mind 0.15) and
113 SNPs with less than 10% genotyping rate (plink –geno 0.1) were also excluded. Hardy-Weinberg Equilibrium
114 (HWE) was set to 0.00001 (plink –hwe 0.00001) to avoid potential genotyping errors. Once the merging was
115 done, analyses were performed to filter out one individual within each pair of relatives (second-degree or
116 closer) using KING [37]. In total, 22 individuals were removed due to relatedness. Also, SNPs with less
117 than 10% genotyping rate (plink –geno 0.1) were excluded again. To prevent ADMIXTURE and PCA anal-
118 ysis from being negatively affected by linkage disequilibrium (LD) bias, SNPs in LD were removed (plink
119 –indep-pairwise 200 25 0.4). Each of the comparative populations was randomly sub-sampled to 30 indi-
120 viduals per population to avoid a sample-size bias in further analysis. The final dataset comprised 162 382
121 SNPs and 1203 individuals, of which 356 were SAC individuals and 125 were newly typed SAC individuals.
122 Geographic information of the SAC individuals from previously published data was obtained from their
123 respective publications. Sampling locations are displayed in Supplementary Figure 1.

124 Population structure inferences

125 Unsupervised population structure inference analysis for K = 2 to K = 12 was performed with ADMIXTURE
126 [38] version 1.3.0 using a random seed each time, and repeated 50 times. PONG version 1.5 [39] was used to
127 visualize the results and find the major mode and pairwise similarity. Principal component analysis (PCA)
128 was performed using the program smartpca, from the Eigensoft package (version 7.2.1) [40, 41]. To capture
129 more of the global variation, Uniform Manifold Approximation and Projection for Dimension Reduction
130 (UMAP) was performed on the genotypes directly using the umap-learn python library version 0.5.3.

131 Phasing, local ancestry estimation and admixture dating

132 Phasing was carried out using SHAPEIT version 2.r837 [42] using the 1000 genomes phase 3 reference
133 genomes [31] and options --states 500 --main 20 --burn 10 --prune 10. Any misaligned sites between
134 the reference dataset and the panel were excluded. Local ancestry estimation was performed using MOSAIC
135 version 1.5.0 compiled and ran under R version 4.3.2 [43], setting source populations to five (-a 5). Admixture

136 dates were gathered from the reported dates from the co-ancestry curves. The origin of each reconstructed
137 ancestry was determined through F_{st} to the reference populations using MOSAIC.

138 Formal tests of admixture

139 The dataset was merged with a chimpanzee genome and f4-statistics were computed using popstats [44, 45]
140 in the format f4(Chimp,SAC,Pop1,Pop2). It was used to test whether SAC individuals were more admixed
141 with Pop1 or Pop2. If the f4-value is significantly negative, it implies gene flow between either SAC and
142 Pop1 (or Chimp and Pop2). If it is significantly positive, it implies gene flow between SAC and Pop2 (or
143 Chimp and Pop1).

144 Sex-biased admixture

145 To test if the admixture was sex-biased, X-chromosome/Autosomal ratios were computed for the SAC
146 individuals. The genotyping data from the individuals from these seven newly sampled sites were merged with
147 a comparative dataset consisting of 20 Central Europeans (CEU), 20 Sri Lankan Tamil (STU), 20 Nigerian
148 Yoruba (YRI), 20 Ethiopian Amhara and 17 Namibian Ju/'hoansi. The data were filtered as described in the
149 section *Quality filtering and autosomal dataset merging*. To avoid differences in chromosome size affecting the
150 admixture proportions, chromosome 1 to 6 were cut to the length of the X-chromosome (180 centiMorgan),
151 and chromosome 7, 10 and 12 were selected as they roughly have the same length (in centiMorgan) as the
152 X-chromosome. For the autosomes, the number of SNPs was downsampled to the number of SNPs found
153 on the X-chromosome (7452 SNPs). Supervised ADMIXTURE (K = 5) was run separately for each of the
154 the autosomes and the X-chromosome with 50 iterations each [38]. The results were visualized with Pong
155 [39]. The ADMIXTURE results provided the ancestry proportions on the X-chromosome per individual and
156 per ancestry. Average autosomal proportions were calculated from the ADMIXTURE runs of each of the
157 autosomes, for each individual and each ancestry. Female X-chromosomal proportions were weighed twice,
158 as females have two X-chromosomes and males only one [46]. One individual was removed because we lacked
159 information to determine whether it was male or female, both from the informed consent form as well as
160 plink sex analysis (plink -check-sex). Corrected X and autosomal proportions were bootstrapped (10 000
161 times) and average X-to-autosomal difference ratios were calculated as in [47] for each of the five ancestries
162 as follows:

$$\overline{\Delta Admix} = F_{anc,total} * (F_{anc,X} - F_{anc,auto}) / (F_{anc,X} + F_{anc,auto})$$

163 where $F_{anc,total}$ is the genome-wide admixture proportion for a given ancestry, $F_{anc,X}$ is the X chromosome
164 admixture proportion for a given ancestry and $F_{anc,auto}$ is the autosomal admixture proportion
165 for a given ancestry. Negative X-to-autosomal difference ratios are indicative of male-biased admixture for
166 that ancestry, positive X-to-autosomal difference ratios are indicative of a female-biased admixture for that
167 ancestry.

168 Uniparental markers

169 Barcoded primers [48](in preparation) were used to amplify the full mitochondrial sequences from 72 SAC
170 individuals. Using a uniquely barcoded primer combination for every sample, we performed a PCR to
171 amplify the whole mitochondrial genome (30x (98 °C, 10 sec; 67 °C, 15 min); 4 °C ∞) (300 ng DNA, 2.4 nM
172 primers, 200 µM of each dNTP, 1x PCR buffer and 1.25 U Takara LA Taq polymerase in 25 µl reaction).
173 Specificity of PCR products was confirmed on a 1% agarose gel and purified with AMPure PB beads.
174 Concentrations of the cleaned PCR products were measured (Qubit). Samples were pooled (100 ng/sample).
175 The pool was purified with 0.5x volumes AMPure PB beads. Elution was performed in 10 mM Tris-HCl,
176 pH 8.5. Concentration of the cleaned pool was measured on the Qubit. The full mitochondrial genomes
177 were sequenced on the PacBio Sequel II. Demultiplexing of the sequencing data was performed by Uppsala
178 Genome Centre (UGC) at NGI-SciLifeLab using the SMRT analysis pipeline ([www.pacb.com/products-and-](http://www.pacb.com/products-and-services/analytical-software/smrt-analysis/)
179 [services/analytical-software/smrt-analysis/](http://www.pacb.com/products-and-services/analytical-software/smrt-analysis/)). The full mtDNA sequence reads were mapped to the Revised
180 Cambridge Reference Sequence (rCRS, NCBI accession number: NC_012920.1) to create BAM files. These
181 were converted to FASTA files using DeepVariant (version 1.3.0, settings: -model_type=PACBIO) and
182 bcftools consensus (version 1.12). Mitochondrial haplogroups were assigned using HaploGrep3 [49]. All
183 haplogroups were associated with an ancestry, according to literature (see Supplementary Table 4).

184 Y chromosomal haplogroups were assigned for all 119 males using SNAPPY [50] on the genotyping array
185 data and all haplogroups were associated with an ancestry, according to literature (see Supplementary Table
186 5).

187 Results

188 In this study, we aim to provide a comprehensive analysis of the genetic ancestry of the South African
189 Coloured (SAC) population by investigating genome-wide data from 356 (125 new) individuals self-identifying
190 as SAC, coming from 22 (7 new) locations in South Africa (Supplementary Figure 1). Building upon previous
191 genetic research, our investigation encompasses a thorough examination of ancestral genetic components
192 within the SAC, for the first time focusing on geographically dispersed SAC groups. Employing a com-
193 bination of genomic techniques, including analysis of mitogenomes, Y chromosomes, and X-to-autosomal
194 comparisons, we investigate the complexities of admixture events and explore geographic variations in an-
195 cestral contributions. Through these approaches, we seek to elucidate the complex genetic make up of SAC
196 and shed light on the historical and demographic factors that have shaped this diverse population.

197 Autosomal ancestry contribution in geographically dispersed SAC groups

198 We created a database consisting of 356 SAC individuals and 847 reference individuals. To capture the major
199 genetic variation between continental groups and to investigate the affiliations of SAC individuals in this
200 genetic space, we applied principal component analysis (PCA) to our dataset. The first principal component
201 separates the out-of-Africa populations from the Khoi-San and West-African populations, while the second
202 principal component represents the variation between Khoi-San and West African-related ancestries (Figure
203 1A). The SAC individuals are observed scattered in-between these extremes, with some individuals associ-
204 ating more with either Khoi-San, non-African or West African groups. Moreover, PC3 separates East Asian
205 and European ancestry, with South Asians grouping between these two extremes (Supplementary Figure 2).
206 Certain SAC individuals are off-set towards the Asian extreme, suggesting increased ancestry contributions
207 from Asians. Analyzing the average PC values per population (Supplementary Figure 3) reveals a noticeable
208 west-to-east pattern in the PCA. The western locations District Six, Wellington, Genadendaal, and Greyton
209 tend to cluster nearer to European populations, while the eastern locations Graaff-Reinet and Nieu-Bethesda
210 show closer proximity to Khoi-San and West-African/Bantu-speaking groups. The three other new locations,
211 Kranshoek, Oudtshoorn, and Prince Albert, which are located geographically in between the previously men-
212 tioned groups, also occupy the space in the PCA plot between these groups. Among the three, Kranshoek
213 is closest to Genadendaal and Greyton in the PCA plot.

214 Uniform manifold approximation and projection for dimension reduction (UMAP) identifies the major
215 variation in the data and reduces it down to only two dimensions, thus allowing a graphical overview
216 of the variation [51]. Unlike PCA, UMAP aims to capture more of the global variation [51]. The UMAP
217 analysis recapitulates the major continental ancestries within the dataset, with the more drifted out-of-Africa
218 populations forming tightly clustered groups away from each other (Supplementary Figure 4). Khoi-San,
219 SAC, and Bantu-speaker related ancestry populations form a larger group in the center of the UMAP. Most
220 of the SAC are positioned close to the Khoi-San populations but are drawn towards either the European
221 or Bantu-speaker related ancestry. Some SAC individuals cluster firmly with other populations, rather than
222 with the other SAC individuals. Three individuals from District Six, Northern Cape, and Genadendaal are
223 closely associated with the European populations. Three other individuals are associated with South Asians,
224 two from Wellington and one from District Six. Additionally, five SAC individuals from various locations
225 group with the South African Bantu-speaking populations.

226 To further investigate the population structure and ancestral contributions to the SAC populations, we
227 performed unsupervised ADMIXTURE analysis for $K = 2$ to $K = 12$ (Supplementary Figure 5). At $K =$
228 6 (Figure 1B), we identified components corresponding to major continental and regional groups: Khoi-
229 San, European, West African/Bantu-speakers, East African, East Asian, and South Asian. Compared
230 to $K = 6$, $K = 10$ revealed additional clusters: one associated with the East African Hadza, another
231 associated with the East African Sabue, a cluster separating northern Khoi-San from southern Khoi-San
232 populations, and a cluster separating Bantu-speakers from West African non-Bantu Niger-Congo speakers.
233 $K = 10$ (Figure 1C) had the lowest cross-validation error, see Supplementary Figure 6. Average admixture
234 fractions at $K = 6$ are shown in Supplementary Table 2. From the 22 locations with SAC individuals, Khoi-
235 San ancestry is predominant at 14 locations, including the new locations of Graaff-Reinet, Nieu-Bethesda,
236 Kranshoek, Oudtshoorn and Prince Albert. Khoi-San ancestry ranges from 12.0% (District Six) to 69.0%
237 (Askham) across all sites, with an average of 33.4%. Based on $K = 10$ ADMIXTURE results, we can
238 conclude that this observed Khoi-San ancestry is mostly southern Khoi-San rather than northern Khoi-San
239 (yellow vs gold respectively in Figure 1C). This was confirmed by f_4 -statistics in the form f_4 -(Chimp, SAC,
240 Ju/'hoansi, Karretjie) (Supplementary Figure 7). European ancestry is predominant in seven locations,

241 including Genadendal and Greyton. Generally, European ancestry ranges between 9.2% (Nieu-Bethesda)
242 and 40.5% (Northern Cape) in the studied SAC populations, with an average of 21.7%. In Railton, West-
243 African ancestry constituted the largest proportion (32.8%) while the West-African ancestry was lowest in
244 Northern Cape (9.4%).

245 At $K = 9$, ADMIXTURE analysis separates the West African ancestral component into a cluster max-
246 imised in West African non-Bantu Niger-Congo speakers (dark-brown) and another in Bantu-speaking pop-
247ulations (light grey)(Supplementary Figure 5). From this K and higher, the component found among the
248 SAC is mostly related to Bantu-speaker ancestry rather than non-Bantu Niger-Congo speakers. In addition,
249 to directly evaluate the genetic affinity of West African/Bantu-speaker ancestry found in SAC, we conducted
250 the test f_4 (Chimp, SAC, YRI_AFR, Zulu) (Supplementary Figure 8). All SAC groups, except the Coloured
251 from Askham exhibit greater genetic affinity to the Yorubans relative to the South African Bantu-speaking
252 Zulu.

253 F4-statistics were computed to assess the genetic affinity of the Asian component in the SAC population
254 (f_4 (Chimp, SAC, CHB_EAS, GIH_SAS)), where CHB_EAS are the Han Chinese (East Asian) and GIH_SAS
255 are the Gujarati Indians (South Asians) (Supplementary Figure 9). Positive values for most SAC groups
256 imply more genetic affinity with South Asians rather than East Asians. The ADMIXTURE results also
257 highlight an additional interesting aspect about the ancestry of the studied SAC populations, namely the
258 presence of a genetic component shared with the Malagasy populations. From $K = 4$ to $K = 10$, the genetics
259 of the Malagasy populations (Mikea, Temoro, Vezo) can be explained as being comprised mainly of two
260 clusters; a West African cluster (grey) (~60%), and a East Asian cluster (~40%). However, from $K = 11$,
261 the Malagasy populations get their own cluster (royal blue), with some minor West African and East Asian
262 contributions. This genetic cluster can also be observed in the various SAC populations, at low percentages.
263 The average percentage of this component across all the studied SAC locations is 5.8%. Positive values for
264 f4-statistics in the form f_4 (Chimp, SAC, Malagasy, South Asian) (Supplementary Figure 10) for all SAC
265 groups imply they possess greater genetic affinity with South Asians relative to Malagasy people.

266 As the ADMIXTURE at $K = 6$ captures best the diversity in ancestries in the SAC, the average AD-
267 MIXTURE derived ancestral fractions for $K = 6$ were plotted on a map of the southern part of South Africa,
268 to investigate spatial patterns of the different major ancestries (Figure 2). Khoе-San ancestry is larger to-
269wards the inland regions and towards the east, while Bantu-speaker ancestry proportions are higher in the
270 most eastern localities. The combined East and South Asian ancestry is highest close to Cape Town and
271 decreases with increasing distance. East African ancestry is smaller than the other ancestries (0.1-2.9%), but
272 geographical differences can be observed with higher East African ancestries along coastal regions and along
273 the Gariep river valley (northern-most point). The European-related ancestry is highest along the coast,
274 with the exception of the Northern Cape site.

275 Admixture dating

276 SAC individuals trace their ancestry to major ancestral groups that might have admixed during different
277 time periods. We employed a local ancestry estimation method to discern the mosaic composition of the
278 genomes of SAC individuals, delineating which segments most likely originated from each parental popu-
279lation. We employed a 5-way admixture model in MOSAIC allowing for all reference populations as parental
280 populations, meaning that MOSAIC uses the reference populations to construct five ancestries that best
281 describe the haplotypes observed in the target. Each constructed ancestry is compared to the source popu-
282lations through F_{st} . The constructed ancestries typically reflect the major continental ancestries that we get
283 from ADMIXTURE, see the 1- F_{st} plots in Supplementary Figures 14 to 57. However, in some cases several
284 ancestries belong to the same continental ancestry. One such case is Oudtshoorn, where the fourth and fifth
285 ancestries are closest to the Khoе-San and Karretjie respectively, both southern Khoе-San groups.

286 Subsequently, using this information, we retrieved the admixture dates of these parental populations
287 from the co-ancestry curves as generated by MOSAIC (Figure 3). Most of the dates fall within less than ten
288 generations, overlapping with the time period since European colonisation (1650 onward). Nine SAC popu-
289lations display admixture dates that are above 50 generations ago (corresponding to 1450 years, assuming a
290 generation time of 29 years [52]). Seven of these older admixture dates are associated with Khoе-San and
291 East-African ancestry, two of them with European and South Asian ancestry.

292 Patterns of sex-biased admixture

293 Previous studies have shown that the admixture events that shaped the SAC population were sex-biased
294 [25, 11], indicating that the extent of male and female genetic contribution from different admixing popula-
295 tions may have varied. Here, we investigate the sex-biased nature of the admixture events shaping the SAC
296 populations further by performing supervised ADMIXTURE for the autosomes and X-chromosome (Sup-
297 plementary Figure 11) and looking at the Δ Admix ratios of East-African, European, Khoi-San, Asian and
298 West-African ancestry (Figure 4A). Negative X-to-autosomal Δ Admix ratios are indicative of male-biased
299 admixture for that ancestry, positive Δ Admix ratios are indicative of a female-biased admixture for that
300 ancestry. We observe negative Δ Admix ratio values with 95% confidence intervals not overlapping zero for
301 East-African and European ancestries (-0.0177 and -0.0259 respectively), indicating male-biased admixture
302 from East-Africans and Europeans. We observe a positive Δ Admix ratio with 95% confidence intervals not
303 overlapping zero for Khoi-San ancestry (0.0365), indicating female-biased ancestry from Khoi-San people.
304 For both Asian and West African ancestries, 95% confidence intervals overlap zero and are therefore not
305 significantly differing from zero, thus indicating non-significant sex-biased admixture from these ancestries.
306 The same analysis was also performed per site (Supplementary Figure 12), and although all Δ Admix ratios
307 associated with European ancestry are negative and all those associated with Khoi-San ancestry are positive,
308 the 95% confidence intervals often overlap zero, due to smaller sample sizes.

309 These signals of sex-biased admixture are further supported with data from the uni-parental markers
310 of these individuals. The mitochondrial genome and the Y-chromosome allow for the study of maternal
311 and paternal lineages separately in a population. We generated novel mitochondrial DNA sequences for 72
312 SAC individuals and determined the Y-chromosome haplogroups for 67 newly genotyped SAC individuals
313 using SNAPPY [50]. We combined these data with the individuals from the reference datasets. Our results
314 show that mitochondrial haplogroups associated with Khoi-San ancestry are more frequent in the SAC
315 populations than the Y chromosome haplogroups associated to Khoi-San ancestry (Figure 4B). The opposite
316 pattern is observed for West-African and European associated mitochondrial and Y chromosome haplogroups.
317 Haplogroups associated with East-African ancestry become less frequent as we move from mitochondrial
318 genomes to Y chromosomes, but fractions are low (less than 0.031). For both Asian ancestries, no clear
319 pattern can be observed. Supplementary Figure 13 shows the associations of the mitochondrial genomes,
320 autosomes and Y chromosomes to the six different ancestries for each of the separate sites. Large differences
321 in continental distributions can be observed between sites such as Genadendal, Graaff-Reinet and Askham
322 (numbers of individuals used for each analysis can be found in Supplementary Table 8). Genadendal,
323 located in the west, generally shows more European ancestry in autosomes, and more mitochondrial and
324 Y chromosomal haplogroups associated with Europeans. This contrasts with the locations of Graaff-Reinet
325 and Askham, situated more to the east and north, respectively. Elevated Khoi-San ancestry can be observed
326 at Askham for all three genetic markers (MT, autosomes and Y), whereas elevated Bantu-speaker ancestry
327 is evident for all markers in Graaff-Reinet.

328 Discussion

329 In this study, we have analyzed genome-wide data from 125 SAC individuals, coming from seven different
330 locations in South Africa. Combining this information with previously published population genetic data,
331 our investigation encompasses a thorough examination of ancestral genetic components within the SAC,
332 spanning a wide geographic distribution. We have investigated the complexities of admixture events that
333 shaped the SAC population and explored potential geographic variations in ancestral contributions. We find
334 evidence of geographical stratification of genetic ancestries in agreement with historical information.

335 Ancestry proportions in the South African Coloured population

336 Our analysis of the general genetic background of the SAC population through PCA and ADMIXTURE (Figure
337 1) supports the previously identified ancestral components: Khoe-San, West African and Bantu-speaker,
338 European, East African, South and East Asian [24, 25, 26, 11]. We identified heterogeneity within the
339 SAC, ancestry proportions differing substantially across individuals (Figure 1B and C). Average continental
340 ancestry is generally comparable across sites, albeit with some regional variation.

341 Results from the ADMIXTURE analysis, Figure 1B & C, align with previous studies [26, 11, 1] indicating
342 that the primary genetic ancestry found among the SAC people is Khoe-San. ADMIXTURE at $K = 8$
343 (Supplementary Figure 5) splits the northern Khoe-San from the southern Khoe-San populations, thereby
344 revealing for the first time that the Khoe-San ancestry in the SAC is mostly southern Khoe-San-related
345 (Nama, Karretjie, and Khomani). ADMIXTURE at $K = 9$ separates the West African ancestral component
346 into a component maximised in West African non-Bantu Niger-Congo speakers (dark brown) and another
347 in Bantu-speaking populations (light grey) (Supplementary Figure 5). The analysis at $K = 10$ reveals
348 low contribution (0.4-3.3%) of the West African ancestry in the SAC. Slaves were brought to the Cape
349 colony from the West African kingdom of Dahomey and from Angola in 1658, and they were a part of the
350 founding population of the SAC [20]. Thus it is interesting to see that the ADMIXTURE analysis only
351 reports low West African ancestry contributions among the SAC populations, and around 22.5% (minimum
352 7.6, maximum 39.5) of the Bantu-speaker-associated ancestry. According to the ADMIXTURE analysis,
353 these initial enslaved individuals seem to have contributed a small but consistent amount of ancestry to
354 the SAC communities. However, the f_4 -statistics in the form $f_4(\text{Chimp}, \text{SAC}, \text{YRI}_\text{AFR}, \text{Zulu})$ indicate a
355 greater genetic influence from the West-African Yoruba (Supplementary Figure 8). This mismatch with the
356 ADMIXTURE results has been observed in other studies as well, and is called "neighbour repulsion" [53],
357 where the neighbouring populations (Zulu in this case) received independent gene flow from an external
358 source after their split from the West-Africans. In Afrikaners, the West African non-Bantu Niger-Congo
359 speaker associated component contributes more than the Bantu-speaker associated component [19]. This
360 difference in ancestry contributions based on ADMIXTURE likely reflects different patterns of historical
361 admixture for the SAC and Afrikaner populations. West African admixture into Afrikaners likely occurred
362 during the early phases of founding of the colony, with slaves of West African origin, while most of the
363 West African component in the SAC groups was most likely contributed through continued admixture with
364 Bantu-speakers in the contact zone towards the east.

365 District Six and Wellington have relatively high South Asian ancestry contributions (Supplementary
366 Table 2), likely due to the specific social dynamics at these sites. The District Six community was formed
367 by formerly enslaved people, merchants, and immigrants. Cape Malays, brought as part of the slave trade,
368 composed an essential portion of the founding community, along with the Xhosa people. Afrikaners composed
369 only a small part of the residents of District Six until apartheid laws declared it a "whites-only" area in
370 1966, causing many people to be forcibly relocated [54]. Today, more than 90% of its inhabitants are SAC
371 [55]. Similarly to District Six, Wellington was founded in 1699 as an agricultural town. Until the first part
372 of the 20th century, it was mainly composed of SAC residents, many of whom were Muslims and of Asian
373 descent [56].

374 Our ADMIXTURE analysis at $K = 6$ also highlights the genetic contributions of Asian populations to
375 the SAC population. With the average South Asian contribution at 12.1%, it is roughly twice as large as the
376 contribution from East Asians. F_4 -values in the form $f_4(\text{Chimp}, \text{SAC}, \text{CHB}_\text{EAS}, \text{GIH}_\text{SAS})$ are positive
377 for most SAC groups, supporting more admixture from South Asians (Supplementary Figure 9). Thus, we
378 conclude that most of the Asian slaves were brought from South Asia, and to a lesser extent from East Asia.
379 This corresponds to the historical record stating that the Dutch East India Company imported slaves from
380 Indonesia to South Africa [57].

381 Through ADMIXTURE and subsequent f_4 -statistics, we also elucidate for the first time the contribution

382 of Malagasy populations to the SAC population. At $K = 11$, the Malagasy populations get their own cluster
383 (royal blue), with some minor West-African and East-Asian contributions (Supplementary Figure 5). This
384 Malagasy population genetic cluster can also be observed in the various SAC populations, with an average
385 percentage of across all the studied SAC locations of 5.8%. We computed f_4 -statistics in the form $f_4(\text{Chimp},$
386 $\text{SAC, Vezo, GIH_SAS})$ (Supplementary Figure 10) and show that there is less genetic affinity of the SAC to
387 the Malagasy, when compared to the South Asian population. This is not to say that no admixture occurred
388 with Malagasy people, just that South Asians have made a larger contribution compared to the Malagasy
389 contribution. The Malagasy ancestry found in the SAC population is also consistent with the historical
390 record that the Dutch East India Company imported slaves from Madagascar to South Africa [57].

391 **Regional differences in observed ancestry proportions**

392 We collected data from seven new locations to further identify regional variations in SAC ancestries. The
393 ancestry proportions at $K = 6$ on a map of South Africa (Figure 2) reveal various interesting trends. The
394 Bantu-speaker ancestry shows higher contributions in the East, and lower contributions in the West. This
395 can largely be attributed to the dominant presence of Bantu-speaking groups in the eastern regions of South
396 Africa, which marks the historical limit of the Bantu expansion [20]. The high prevalence of Khoe-San
397 ancestry in the SAC in the inland regions and toward the east reflects the influence of the Cape colony and
398 the increased admixture from Europeans and enslaved people from Asia and Madagascar in the areas closer
399 to the coast and to Cape Town. In the Northern Cape region, Khoe-San ancestry is high (33.4-69.0%),
400 and Bantu-speaker and West African ancestry is low (9.4-11.6%). The SAC of the Northern Cape can be
401 traced back to the Nama herder groups who resided in Namaqualand (South Africa) and Namibia, local
402 San hunter-gatherer groups, and to European settlers who moved into these interior areas. Thus, the Nama
403 people likely contributed to the high Khoe-San genetic ancestry in the SAC individuals in the Northern Cape.
404 This is supported by MOSAIC analyses, which find low F_{st} values for the Nama as a source population for
405 the SAC at Askham and Northern Cape (Supplementary Figures 14 and 22). The low Bantu-speaker (and
406 West African ancestry) component in Askham and the Northern Cape site points to limited admixture with
407 Bantu-speakers. The distribution pattern for combined Asian ancestries and, to a large extent, European
408 ancestry exhibits an interesting contrast. In the Cape region, high contributions from Asian and European
409 ancestries can be observed, gradually decreasing as one moves eastwards. This phenomenon finds its roots
410 in the historical influx of European settlers into the Cape Colony, with its centre and entry point at the
411 Cape of Good Hope (current-day Cape Town), accompanied by enslaved people from Asia and other parts
412 of Africa. Although East African ancestry proportions are very low in comparison to the other ancestries, it
413 is higher along coastal regions and along the Gariep river valley (northern-most point) correlating with the
414 past distribution of Khoekhoe herder groups (vs. San hunter-gatherer groups) [8, 58].

415 **Dating admixture events in the SAC population**

416 Since the SAC individuals trace their ancestries to various continental and sub-continental sources, we set
417 out to investigate when these populations admixed. We identify that most of the admixture dates fall
418 within less than ten generations, aligning with the anticipated timeframe for the formation of the Cape
419 Colony. The admixture dating using MOSAIC (Figure 3) also identified several admixture events that can
420 be correlated with the formation of the Khoekhoe with the arrival of East African pastoralists in southern
421 Africa [59, 60, 61, 11]. This can be seen in a few dates that are very old (longer than 50 generations
422 ago). These exact dates should, however, be viewed with caution as they are based on small fractions of
423 ancestry, have deep time estimates and have parental source groups that might be distant from actual source
424 groups. This uncertainty is reflected in the co-ancestry graphs that the dates are inferred from, in which the
425 Khoe-San vs. East African admixture estimates are the least robust of the analyses, Supplementary Figures
426 14 to 57. The East African ancestry contribution is the smallest according to the ADMIXTURE results
427 (Supplementary Table 2) and minor ancestries are problematic for the proper fitting of co-ancestry curves.
428 Two of the admixture dates older than 50 generations ago can be attributed to European and South Asian
429 ancestries. This reflects admixture events happening outside the African continent before these ancestries
430 were introduced during colonial times, possibly related to Eurasian trade routes such as the Silk Road (200
431 BCE - 1450 AD).

432 The admixture events with Bantu-speakers (unlabeled in Figure 3) mostly occurred during and after colo-
433 nial times. This indicates that most of the admixture between Khoe-San and Bantu-speakers also occurred
434 after colonial times, due to the disruptions and population mobility that the colonial times instigated. Even

435 the admixture events between Asian and West-African/Bantu-speaker ancestries are all between 3.9 and
436 11.7 generations ago, also corresponding to the colonial period. Malagasy populations are known to be the
437 result of an admixture event between Austronesian and Bantu sources around 20 to 32 generations ago [35].
438 These sources are supported by the ADMIXTURE analysis in this study (Figure 1B&C). However, we do not
439 observe the same generation time-frame for the admixture event between Asian and West-African/Bantu-
440 speaker ancestries in the SAC individuals, possibly indicating that most of these ancestries came from Asian,
441 West-Africans, and Bantu-speakers directly, and not from Malagasy populations. This observation fits with
442 the small Malagasy contributions observed at K = 11 (Supplementary Figure 5) and is in line with what has
443 been observed in other SAC populations [11].

444 **Sex-biased nature of admixture events in the Coloured**

445 From historical records, we know that there were disproportionately few women among the European set-
446 tlers, especially in the period before 1688 [20]. A previous genetic study concluded that Khoekhoe women
447 constituted the majority of the maternal contribution for the SAC groups [25]. Moreover, additional in-
448 vestigations into the sex-biased nature of the admixture events shaping the SAC using X-chromosome and
449 autosomes inferred a male-biased influence from East Africans, Asians, and Europeans, and a female-bias
450 from Kho-San and West-African individuals [11]. In the current study, we also observe a male-biased admix-
451 ture from East Africans and Europeans, and a female-biased admixture from Kho-San. The Asian ancestry
452 shows a very small female bias and the West-African ancestry a male bias. However, both of these trends
453 are not statistically significant. The investigation of sex-biased patterns at individual sites (Supplementary
454 Figure 12) highlights the heterogeneous nature of the SAC population. Although non-significant, West-
455 African sex-biased admixture ratios are female-biased in some sites (Genadendal, Greyton, Oudtshoorn, and
456 Kranshoek), while being male-biased in other, more northeastern sites (Graaff-Reinet, Nieu-Bethesda and
457 Prince Albert). The sex-biased admixture in the SAC is supported by the findings from the uni-parental
458 markers; mitochondrial genomes and Y chromosomes. Mitochondrial haplogroups associated with Kho-San
459 ancestry are more frequent in the SAC populations than the Y chromosome haplogroups associated to Kho-
460 San ancestry (Figure 4B). The opposite pattern can be observed for West-African and European associated
461 mitochondrial and Y chromosome haplogroups. Since the mitochondrial genome is inherited through the
462 female line and Y chromosomes completely through the male line, we observe them as the extremes when it
463 comes to differences between the contribution of the two sexes, whereas the autosomal ancestries are observed
464 somewhere in the middle of these two. We also note the regional variation between the male and female
465 contributions from different populations across the sites (Supplementary Figure 13), again highlighting the
466 genetic heterogeneity of the SAC population.

467 Conclusions

468 In this study, we analyzed new genotype array data for 125 South African Coloured individuals and built
469 upon research to describe the genetics of one the most admixed populations in the world, the SAC. The
470 Khoë-San people, especially the southern Khoë-San, played a major role in the foundation of the SAC,
471 with their ancestry contribution ranging from 12.0-69.0% across all investigated sites. We also identified a
472 considerable variation in ancestry contributions between different individuals. By adding genetic data from
473 seven new geographically dispersed sites, we were able to better investigate geographical differentiation in
474 ancestry proportions and we identified higher Khoë-San contribution in inland regions and toward the east,
475 and higher Bantu-speaker contributions in eastern regions, whereas the Asian ancestry is higher in western
476 regions. Near Cape Town and in the Western Cape province, the non-African ancestry is especially high,
477 reflecting the historically greater density of European colonists and slaves in those locations. We infer that
478 the admixture events shaping the SAC were in many ways sex-biased; mainly female-biased from Khoë-
479 San people and male-biased from both East Africans and Europeans. Altogether, this study highlights the
480 intricate admixture history and diverse ancestry of the SAC population.

481 Availability of data and materials

482 All data generated or analyzed during this study are included in this published article, its supplementary
483 information files and publicly available repositories. The generated genotype data is available for academic re-
484 search use through the European Genome-Phenome Archive with accession number EGAD50000000513 (152
485 individuals) and Data Access Committee EGAC50000000240. Scripts are available at <https://github.com/imkelankheet/Sou>
486 African-Coloured-project.

487 Acknowledgements

488 We are grateful to all subjects who participated in this research. We also would like to thank Gustav and Lili
489 Radlov, Chris and Marie Heese, Andrew and Anneke Fraser-Jones, Harry and Belinda Gordon, Dr. Morley,
490 Monica Thomson, Michelle Moodie, Poem Mooney, Dr Judy Maguire, Maria Johnson and the family Sim-
491 mers for help during field collection. We thank Michael Salter-Townshend for support with MOSAIC-related
492 discussions. We are grateful for Cesar Fortes-lima for his help with the EGA data upload. The genotyping
493 was performed by the SNP&SEQ Technology Platform (Uppsala, Sweden). The facility is part of the Na-
494 tional Genomics Infrastructure supported by the Swedish Research Council for Infrastructure and Science
495 for Life Laboratory (NGI-SciLifeLab), Sweden. The SNP&SEQ Technology Platform is also supported by
496 the Knut and Alice Wallenberg Foundation. The computation and data handling were enabled by resources
497 provided by the Swedish National Infrastructure for Computing (SNIC) at Uppmax partially funded by the
498 Swedish Research Council through grant agreement no. 2018-05973. This project was supported by fund-
499 ing to CS from the European Research Council (ERC) under the European Union's Horizon 2020 research
500 and innovation programme (grant agreement No. 759933), the Knut and Alice Wallenberg foundation, the
501 Leakey foundation and the Erik Philip Sorensson foundation. An authorized NIH Data Access Committee
502 (DAC) granted data access to Carina Schlebusch for the controlled-access genetic data analyzed in this study
503 that were previously deposited by Scheinfeldt et al. (2019) in the NIH dbGAP repository (dbGaP accession
504 code: phs001780.v1.p1; project approval date: 2019-05-17), as well data previously deposited by Martin et al.
505 (2017) in the NIH dbGAP repository (dbGaP accession code: phs001753; project approval date: 2019-10-25).

506

507 **Figures**

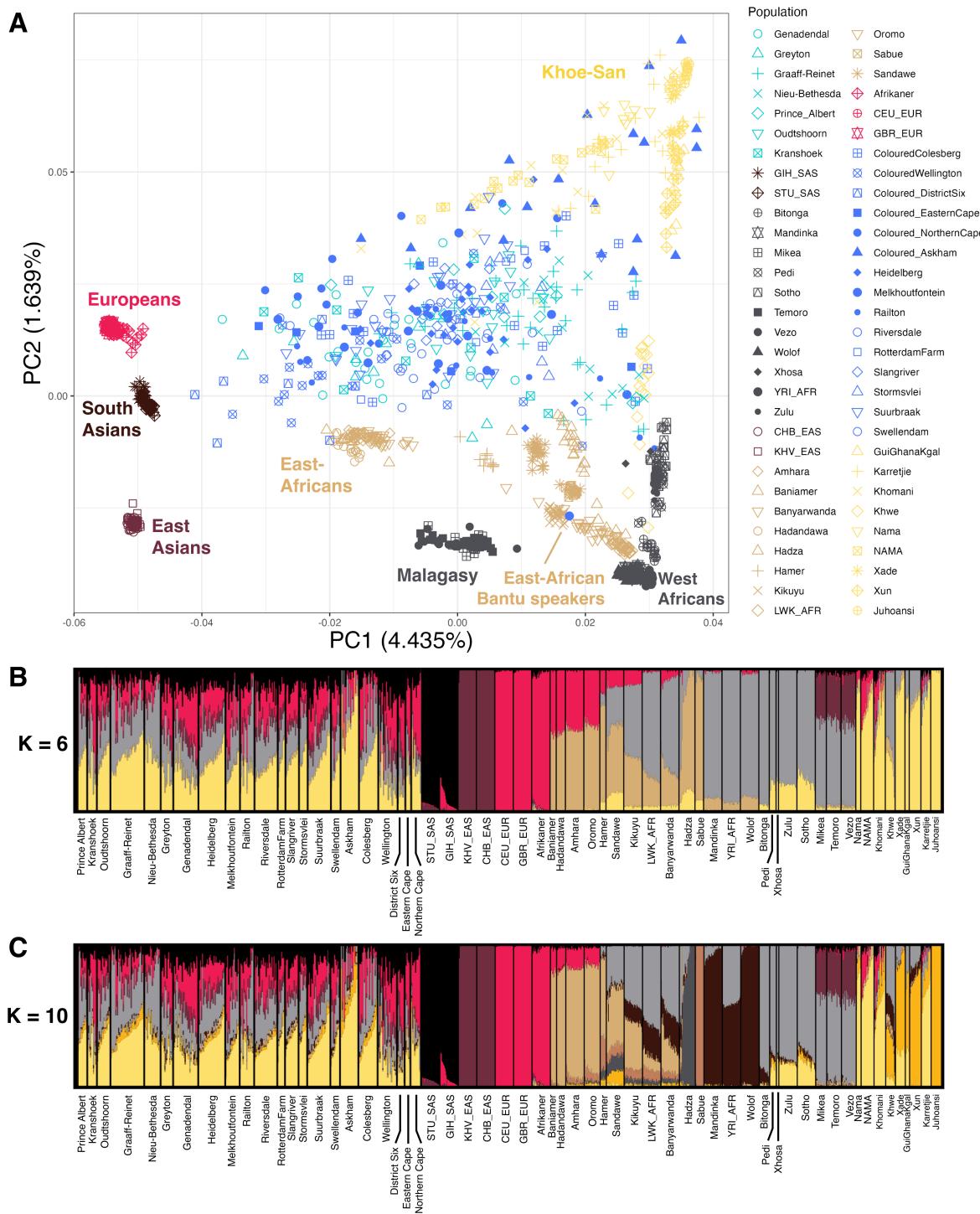


Figure 1: Population structure and genetic affinities of South African Coloured population. Principal component analysis (PCA) and ADMIXTURE results for the populations in our dataset, including 356 SAC individuals. In A, principal component analysis (PCA) results are shown, where PC1 and PC2, are plotted against each other. Labels according to continental groups were added *a posteriori* to help with legibility. The new SAC samples are shown in light blue, the previously published ones in dark blue. For geographical origins of populations, see Supplementary Figure 1. Other PCA projections can be found in Supplementary Figure 2. B and C show ADMIXTURE results, visualized using PONG for K = 6 and K = 10 respectively. ADMIXTURE results for K=2 to K=12 can be found in Supplementary Figure 5. GIH_SAS are the Gujarati Indians, STU_SAS are the Sri Lankan Tamil, YRI_AFR are the Yoruba from Nigeria, CHB_EAS are the Han from China, KHV_EAS are the Kinh from Vietnam, LWK_AFR are the Luhya from Kenya, CEU_EUR are Utah residents with Northern and Western European ancestry, and the GBR_EUR are the British in England and Scotland.

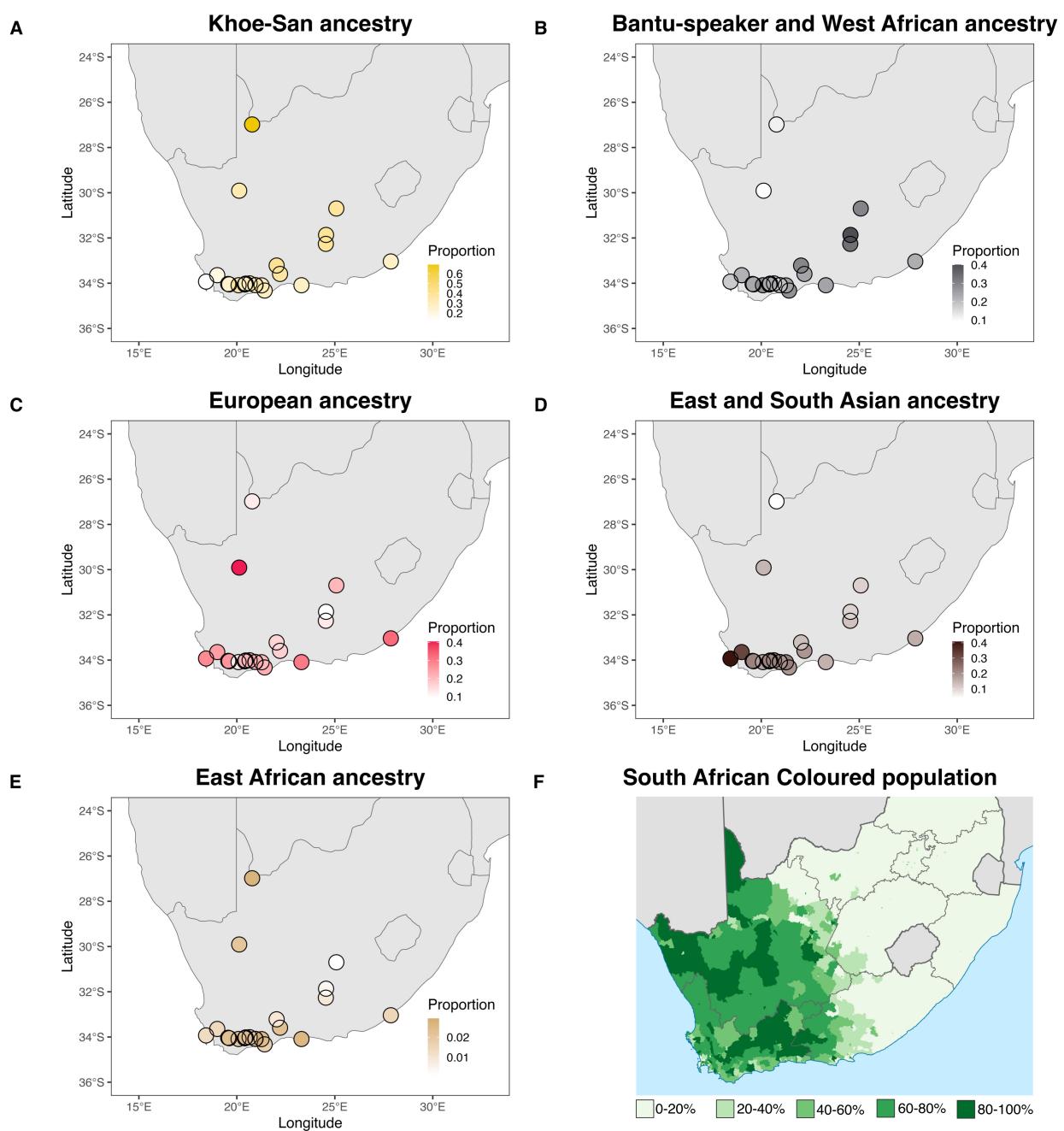


Figure 2: Visualisation of averaged ADMIXTURE derived ancestry proportions from $K = 6$ plotted by sampling locations. The colour scale is relative to the maximum value of each fraction of admixture. A depicts the component associated to Khoe-San ancestry, the corresponding is shown for B, West African and Bantu-speaker ancestry, C European ancestry, D South Asian and East Asian ancestry combined, and E East African ancestry. In F, the proportion of SAC people among the inhabitants is shown per region in South Africa. Based on the 2011 census. Adapted from https://commons.wikimedia.org/wiki/File:South_Africa_2011_Coloured_population_proportion_map.svg, Public Domain.

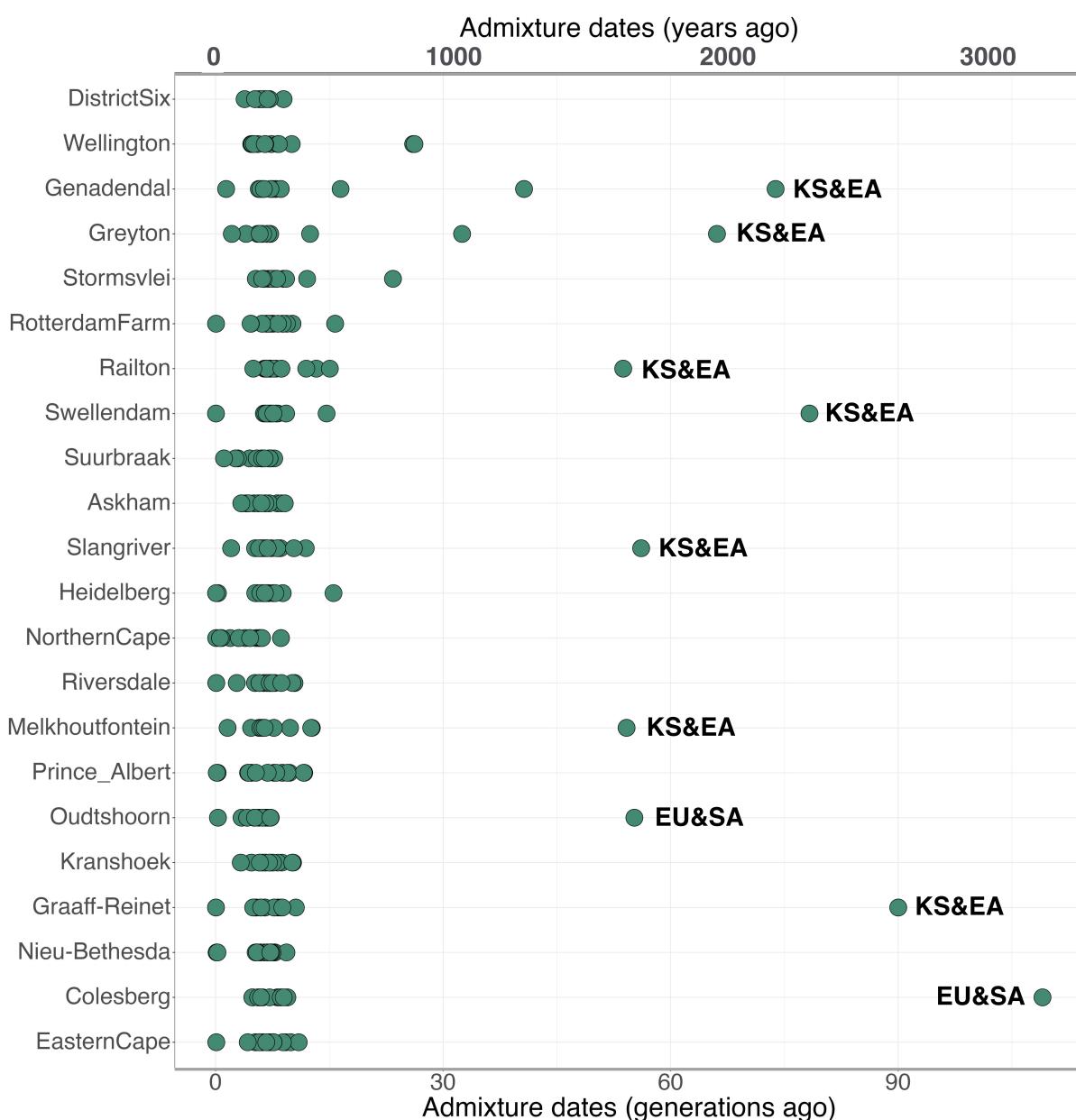


Figure 3: Inferred admixture dates for the 5-way admixture scenario for the 22 SAC populations using all reference populations as putative sources. Dots labeled with "EA & KS" indicate admixture events between Khoi-San and East African constructed ancestries, as determined by F_{st} . Dots labeled with "EU & SA" indicate admixture events between European and South Asian constructed ancestries. Sites are shown from West (high) to East (low) on the y-axis. X-axis on top shows the time in years, x-axis at the bottom shows time in generations ago.

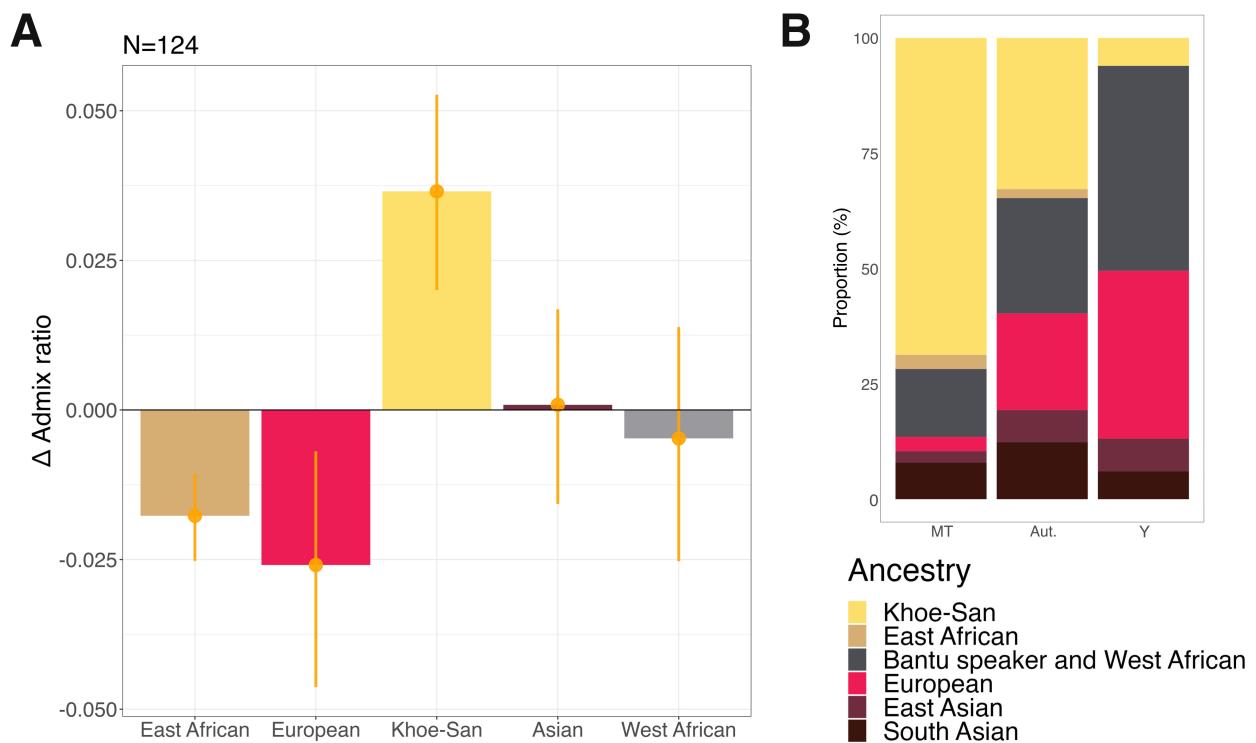


Figure 4: Average sex-biased admixture among the SAC people. In A, Δ Admix ratios for each of the five ancestries, averaged over the seven investigated sites are shown. X and autosomal proportions were bootstrapped (10 000 times) and average X-to-autosomal difference ratios were calculated for each of the five ancestries, as well as standard deviations. The error bars indicate the 95% confidence interval. Negative X-to-autosomal difference ratios are indicative of male-biased admixture for that ancestry, positive X-to-autosomal difference ratios are indicative of a female-biased admixture for that ancestry. Results from sex-biased admixture analyses per site can be found in Supplementary Figure 12. In B) ancestries associated with the mitochondrial and Y genomes, as well as the autosomal proportions are shown for all studied SAC individuals.

508 References

509 [1] Schlebusch CM, Skoglund P, Sjödin P, Gattepaille LM, Hernandez D, Jay F, et al. Genomic variation
510 in seven Khoi-San groups reveals adaptation and complex African history. *Science* (New York, NY).
511 2012 Oct;338(6105):374-9. doi:10.1126/science.1227721.

512 [2] Schlebusch CM, Malmström H, Günther T, Sjödin P, Coutinho A, Edlund H, et al. Southern African
513 ancient genomes estimate modern human divergence to 350,000 to 260,000 years ago. *Science* (New
514 York, NY). 2017 Nov;358(6363):652-5. doi:10.1126/science.aa06266.

515 [3] Schlebusch CM, Sjödin P, Breton G, Günther T, Naidoo T, Hollfelder N, et al. Khoi-San Genomes
516 Reveal Unique Variation and Confirm the Deepest Population Divergence in *Homo sapiens*. *Molecular
517 Biology and Evolution*. 2020 Oct;37(10):2944-54. doi:10.1093/molbev/msaa140.

518 [4] Naidoo T, Schlebusch CM, Makkan H, Patel P, Mahabeer R, Erasmus JC, et al. Development of a
519 single base extension method to resolve Y chromosome haplogroups in sub-Saharan African populations.
520 *Investigative Genetics*. 2010 Dec;1(1):1-11. doi:10.1186/2041-2223-1-6.

521 [5] Naidoo T, Xu J, Vicente M, Malmström H, Soodyall H, Jakobsson M, et al. Y-Chromosome Variation
522 in Southern African Khoi-San Populations Based on Whole-Genome Sequences. *Genome Biology and
523 Evolution*. 2020 07;12(7):1031-9. doi:10.1093/gbe/evaa098.

524 [6] Barbieri C, Güldemann T, Naumann C, Gerlach L, Berthold F, Nakagawa H, et al. Unraveling the
525 complex maternal history of Southern African Khoisan populations. *American Journal of Physical
526 Anthropology*. 2014 Mar;153(3):435-48. doi:10.1002/ajpa.22441.

527 [7] Schlebusch CM, Lombard M, Soodyall H. MtDNA control region variation affirms diversity and deep
528 sub-structure in populations from southern Africa. *BMC evolutionary biology*. 2013 Dec;13(1):1-21.
529 doi:10.1186/1471-2148-13-56.

530 [8] Barnard A. Hunters and Herders of Southern Africa. Cambridge University Press; 1992.
531 doi:10.1017/CBO9781139166508.

532 [9] Schlebusch CM, Jakobsson M. Tales of Human Migration, Admixture, and Selection in Africa. *Annual
533 Review of Genomics and Human Genetics*. 2018;19(1):405-28. doi:10.1146/annurev-genom-083117-
534 021759.

535 [10] Skoglund P, Thompson JC, Prendergast ME, Mitnik A, Sirak K, Hajdinjak M, et al. Reconstructing
536 Prehistoric African Population Structure. *Cell*. 2017 Sep;171(1):59-71.e21.
537 doi:10.1016/j.cell.2017.08.049.

538 [11] Vicente M, Lankheet I, Russell T, Hollfelder N, Coetzee V, Soodyall H, et al. Male-biased migration
539 from East Africa introduced pastoralism into southern Africa. *BMC biology*. 2021 Dec;19(1):259-16.
540 doi:10.1186/s12915-021-01193-z.

541 [12] Wynberg R, Schroeder D, Chennells R. Indigenous Peoples, Consent and Benefit Sharing— Learning
542 Lessons from the San-Hoodia Case. Springer Dordrecht; 2009. doi:10.1007/978-90-481-3123-5.

543 [13] Schlebusch C. Issues raised by use of ethnic-group names in genome study. *Nature*. 2010;464(7288):487-7.
544 doi:10.1038/464487a.

545 [14] De Filippo C, Bostoen K, Stoneking M, Pakendorf B. Bringing together linguistic and genetic ev-
546 idence to test the Bantu expansion. *Proceedings Biological sciences*. 2012 Aug;279(1741):3256-63.
547 doi:10.1098/rspb.2012.0318.

548 [15] Li S, Schlebusch C, Jakobsson M. Genetic variation reveals large-scale population expansion and
549 migration during the expansion of Bantu-speaking peoples. *Proceedings Biological sciences*. 2014
550 Oct;281(1793):20141448. doi:10.1098/rspb.2014.1448.

551 [16] Patin E, Lopez M, Grollemund R, Verdu P, Harmant C, Quach H, et al. Dispersals and genetic
552 adaptation of Bantu-speaking populations in Africa and North America. *Science* (New York, NY).
553 2017 May;356(6337):543-6. doi:10.1126/science.aa1988.

554 [17] Fortes-Lima CA, Burgarella C, Hammarén R, Eriksson A, Vicente M, Jolly C, et al. The genetic legacy
555 of the expansion of Bantu-speaking peoples in Africa. *Nature*. 2024;625(7995):540-7. doi:10.1038/s41586-
556 023-06770-6.

557 [18] Bostoen K. The Bantu expansion. In: *Oxford research encyclopedia of African history*. Oxford University
558 Press; 2018. p. 28. doi:10.1093/acrefore/9780190277734.013.191.

559 [19] Hollfelder N, Erasmus JC, Hammaren R, Vicente M, Jakobsson M, Greeff JM, et al. Patterns of African
560 and Asian admixture in the Afrikaner population of South Africa. *BMC biology*. 2020 Feb;18(1):16-3.
561 doi:10.1186/s12915-020-0746-1.

562 [20] Giliomee H. *The Afrikaners: Biography of a people*. 2nd ed. Charlottesville: University of Virginia
563 Press; 2009. doi:10.3366/afr.2004.74.2.296.

564 [21] Nurse GT, Weiner JS, Jenkins T. Weiner JS, Jenkins T, editors. *The peoples of southern Africa and*
565 *their affinities..* Oxford University Press; 1985. doi:10.1017/S0021853700030632.

566 [22] Adhikari M. Contending Approaches to Coloured Identity and the History of the Coloured People of
567 South Africa. *History Compass*. 2005 Jan;3(1):****. doi:10.1111/j.1478-0542.2005.00177.x.

568 [23] Isaacs S, Geduld-Ullah T, Benjeddou M. Reconstruction of major maternal and paternal lin-
569 eages of the Cape Muslim population. *Genet Mol Biol*. 2013 Jul;36(2):167-76. doi:10.1590/S1415-
570 47572013005000019.

571 [24] de Wit E, Delport W, Rugamika CE, Meintjes A, Möller M, van Helden PD, et al. Genome-wide analysis
572 of the structure of the South African Coloured Population in the Western Cape. *Human Genetics*. 2010
573 Aug;128(2):145-53. doi:10.1007/s00439-010-0836-1.

574 [25] Quintana-Murci L, Harmant C, Quach H, Balanovsky O, Zaporozhchenko V, Bormans C, et al. Strong
575 maternal Khoisan contribution to the South African coloured population: a case of gender-biased ad-
576 mixture. *American journal of human genetics*. 2010 Apr;86(4):611-20. doi:10.1016/j.ajhg.2010.02.014.

577 [26] Petersen DC, Libiger O, Tindall EA, Hardie RA, Hannick LI, Glashoff RH, et al. Complex patterns of genomic admixture within southern Africa. *PLoS Genetics*. 2013;9(3):e1003309.
578 doi:10.1371/journal.pgen.1003309.

580 [27] Patterson N, Petersen DC, van der Ross RE, Sudoyo H, Glashoff RH, Marzuki S, et al. Genetic structure
581 of a unique admixed population: implications for medical research. *Human molecular genetics*. 2010
582 Feb;19(3):411-9. doi:10.1093/hmg/ddp505.

583 [28] Vicente M, Jakobsson M, Ebbesen P, Schlebusch CM. Genetic Affinities among Southern Africa Hunter-
584 Gatherers and the Impact of Admixing Farmer and Herder Populations. *Molecular Biology and Evolution*.
585 2019 07;36(9):1849-61. doi:10.1093/molbev/msz089.

586 [29] Prendergast ME, Lipson M, Sawchuk EA, Olalde I, Ogola CA, Rohland N, et al. Ancient DNA re-
587 veals a multistep spread of the first herders into sub-Saharan Africa. *Science (New York, NY)*. 2019
588 Jul;365(6448):eaaw6275. doi:10.1126/science.aaw6275.

589 [30] Semo A, Gayà-Vidal M, Fortes-Lima C, Alard B, Oliveira S, Almeida J, et al. Along the Indian Ocean
590 Coast: Genomic Variation in Mozambique Provides New Insights into the Bantu Expansion. *Mol Biol
591 Evol*. 2020 Feb;37(2):406-16. doi:10.1093/molbev/msz224.

592 [31] The 1000 Genomes Project Consortium. A global reference for human genetic variation. *Nature*.
593 2015;526:68 EP. doi:10.1038/nature15393.

594 [32] Gurdasani D, Carstensen T, Tekola-Ayele F, Pagani L, Tachmazidou I, Hatzikotoulas K, et al. The
595 African Genome Variation Project shapes medical genetics in Africa. *Nature*. 2015 Jan;517(7534):327-32.
596 doi:10.1038/nature13997.

597 [33] Martin AR, Lin M, Granka JM, Myrick JW, Liu X, Sockell A, et al. An Unexpectedly Complex Archi-
598 tecture for Skin Pigmentation in Africans. *Cell*. 2017 Nov;171(6):1340-53. doi:10.1016/j.cell.2017.11.015.

599 [34] Scheinfeldt LB, Soi S, Lambert C, Ko WY, Coulibaly A, Ranciaro A, et al. Genomic evidence for shared
600 common ancestry of East African hunting-gathering populations and insights into local adaptation. Proceedings of the National Academy of Sciences of the United States of America. 2019 Mar;116(10):4166-75.
602 doi:10.1073/pnas.1817678116.

603 [35] Pierron D, Razafindrazaka H, Pagani L, Ricaut FX, Antao T, Capredon M, et al. Genome-wide evidence
604 of Austronesian-Bantu admixture and cultural reversion in a hunter-gatherer group of Madagascar. Proc
605 Natl Acad Sci U S A. 2014 Jan;111(3):936-41. doi:10.1073/pnas.1321860111.

606 [36] Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: A Tool Set for
607 Whole-Genome Association and Population-Based Linkage Analyses. The American Journal of Human
608 Genetics. 2007 Sep;81(3):559-75. doi:10.1086/519795.

609 [37] Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen WM. Robust relationship inference
610 in genome-wide association studies. Bioinformatics (Oxford, England). 2010 Nov;26(22):2867-73.
611 doi:10.1093/bioinformatics/btq559.

612 [38] Alexander DH, Lange K. Enhancements to the ADMIXTURE algorithm for individual ancestry esti-
613 mation. BMC bioinformatics. 2011 Jun;12(1):246-6. doi:10.1186/1471-2105-12-246.

614 [39] Behr AA, Liu KZ, Liu-Fang G, Nakka P, Ramachandran S. pong: fast analysis and visualization of
615 latent clusters in population genetic data. Bioinformatics (Oxford, England). 2016 Sep;32(18):2817-23.
616 doi:10.1093/bioinformatics/btw327.

617 [40] Patterson N, Price AL, Reich D. Population Structure and Eigenanalysis. PLOS Genetics. 2006
618 12;2(12):1-20. doi:10.1371/journal.pgen.0020190.

619 [41] Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components
620 analysis corrects for stratification in genome-wide association studies. Nature Genetics. 2006;38(8):904-
621 9. doi:10.1038/ng1847.

622 [42] O'Connell J, Gurdasani D, Delaneau O, Pirastu N, Uliivi S, Cocca M, et al. A general approach for
623 haplotype phasing across the full spectrum of relatedness. PLoS Genetics. 2014 Apr;10(4):e1004234.
624 doi:10.1371/journal.pgen.1004234.

625 [43] Salter-Townshend M, Myers S. Fine-Scale Inference of Ancestry Segments Without Prior Knowledge of
626 Admixing Groups. Genetics. 2019 Jul;212(3):869-89. doi:10.1534/genetics.119.302139.

627 [44] Reich D, Thangaraj K, Patterson N, Price AL, Singh L. Reconstructing Indian population history.
628 Nature. 2009 Sep;461(7263):489-94. doi:10.1038/nature08365.

629 [45] Skoglund P, Mallick S, Bortolini MC, Chennagiri N, Hünemeier T, Petzl-Erler ML, et al. Ge-
630 netic evidence for two founding populations of the Americas. Nature. 2015;525(7567):104-8.
631 doi:10.1038/nature14895.

632 [46] Goldberg A, Rosenberg NA. Beyond 2/3 and 1/3: The Complex Signatures of Sex-Biased Admixture
633 on the X Chromosome. Genetics. 2015 07;201(1):263-79. doi:10.1534/genetics.115.178509.

634 [47] Rishishwar L, Conley A, Wigington C, Wang L, Valderrama A, Jordan K. Ancestry, admixture and
635 fitness in Colombian genomes. Scientific Reports. 2015 07;5. doi:10.1038/srep12376.

636 [48] Details omitted for double-blind reviewing.

637 [49] Schönherr S, Weissensteiner H, Kronenberg F, Forer L. Haplogrep 3 - an interactive hap-
638 logroup classification and analysis platform. Nucleic Acids Research. 2023 04;51(W1):W263-8.
639 doi:10.1093/nar/gkad284.

640 [50] Severson AL, Shortt JA, Mendez FL, Wojcik GL, Bustamante CD, Gignoux CR. SNAPPY: Sin-
641 gle Nucleotide Assignment of Phylogenetic Parameters on the Y chromosome. bioRxiv. 2018.
642 doi:10.1101/454736.

643 [51] McInnes L, Healy J, Saul N, Großberger L. UMAP: Uniform Manifold Approximation and Projection.
644 Journal of Open Source Software. 2018;3(29):861. doi:10.21105/joss.00861.

645 [52] Fenner JN. Cross-cultural estimation of the human generation interval for use in genetics-based
646 population divergence studies. *American Journal of Physical Anthropology*. 2005 Oct;128(2):415-23.
647 doi:10.1002/ajpa.20188.

648 [53] Ataḡ G, Somel M. An explanation for the neighbour repulsion phenomenon in Patterson's f-statistics.
649 bioRxiv. 2024. doi:10.1101/2024.02.17.580509.

650 [54] Layne V. The District Six Museum: An Ordinary People's Place. *Public Historian*. 2008 02;30:53-62.
651 doi:10.1525/tph.2008.30.1.53.

652 [55] Dewar N. Seeking closure: conflict resolution, land resolution, and inner city redevelopments in 'DISTRICT SIX' CAPE TOWN. *South African Geographical Journal*. 2001.
653 doi:10.1080/03736245.2001.9713718.

654 [56] Cleophas FJ. Writing and contextualising local history. A historical narrative of the Wellington Horticultural Society (Coloured). *Yesterday and Today*. 2014;21-53.

655 [57] Byrnes RM. South Africa : a country study /;. "Research completed May 1996.". Available from:
656 <http://lawcat.berkeley.edu/record/185025>.

657 [58] Vicente M, Priehodová E, Diallo I, Podgorná E, Poloni ES, Černý V, et al. Population history and
658 genetic adaptation of the Fulani nomads: inferences from genome-wide data and the lactase persistence
659 trait. *BMC genomics*. 2019 Dec;20(1):915-2. doi:10.1186/s12864-019-6296-7.

660 [59] Breton G, Schlebusch CM, Lombard M, Sjödin P, Soodyall H, Jakobsson M. Lactase Persistence Alleles
661 Reveal Partial East African Ancestry of Southern African Khoi Pastoralists. *Current Biology*. 2014
662 Apr;24(8):852-8. doi:10.1016/j.cub.2014.02.041.

663 [60] Pickrell JK, Patterson N, Loh PR, Lipson M, Berger B, Stoneking M, et al. Ancient west Eurasian
664 ancestry in southern and eastern Africa. *Proceedings of the National Academy of Sciences*. 2014
665 Feb;111(7):2632-7. doi:10.1073/pnas.1313787111.

666 [61] Lander F, Russell T. The archaeological evidence for the appearance of pastoralism and farming in
667 southern Africa. *PLOS ONE*. 2018 Jun;13(6):e0198941. doi:10.1371/journal.pone.0198941.

668 [62] Kutanan W, Kampuansai J, Srikuammol M, Kangwanpong D, Ghirotto S, Brunelli A, et al. Complete
669 mitochondrial genomes of Thai and Lao populations indicate an ancient origin of Austroasiatic groups
670 and demic diffusion in the spread of Tai–Kadai languages. *Human Genetics*. 2017 Jan;136(1):85-98.
671 doi:10.1007/s00439-016-1742-y.

672 [63] Hill C, Soares P, Mormina M, Macaulay V, Clarke D, Blumbach PB, et al. A mitochondrial stratigraphy
673 for island southeast Asia. *The American Journal of Human Genetics*. 2007 Jan;80(1):29-43.
674 doi:10.1086/510412.

675 [64] Pala M, Olivieri A, Achilli A, Accetturo M, Metspalu E, Reidla M, et al. Mitochondrial DNA signals
676 of late glacial recolonization of Europe from near eastern refugia. *American journal of human genetics*.
677 2012 May;90(5):915-24. doi:10.1016/j.ajhg.2012.04.003.

678 [65] Behar DM, Villemans R, Soodyall H, Blue-Smith J, Pereira L, Metspalu E, et al. The dawn
679 of human matrilineal diversity. *American journal of human genetics*. 2008 May;82(5):1130-40.
680 doi:10.1016/j.ajhg.2008.04.002.

681 [66] Barbieri C, Vicente M, Rocha J, Mpoloka SW, Stoneking M, Pakendorf B. Ancient substructure in
682 early mtDNA lineages of southern Africa. *American journal of human genetics*. 2013 Feb;92(2):285-92.
683 doi:10.1016/j.ajhg.2012.12.010.

684 [67] Rito T, Richards MB, Fernandes V, Alshamali F, Cerny V, Pereira L, et al. The first modern human
685 dispersals across Africa. *PLoS ONE*. 2013. doi:10.1371/journal.pone.0080031.

686 [68] Cerezo M, Achilli A, Olivieri A, Pergo UA, Gómez-Carballa A, Brisighelli F, et al. Reconstructing
687 ancient mitochondrial DNA links between Africa and Europe. *Genome research*. 2012 May;22(5):821-6.
688 doi:10.1101/gr.134452.111.

689

690

691 [69] Underhill PA, Kivisild T. Use of y chromosome and mitochondrial DNA popula-
692 tion structure in tracing human migrations. Annual review of genetics. 2007;41:539-64.
693 doi:10.1146/annurev.genet.41.110306.130407.

694 [70] Rosa A, Brehem A. African human mtDNA phylogeography at-a-glance. Journal of anthropological
695 sciences = Rivista di antropologia : JASS. 2011;89:25-58. doi:10.4436/jass.89006.

696 [71] Gomez F, Hirbo J, Tishkoff SA. Genetic variation and adaptation in Africa: implications for hu-
697 man evolution and disease. Cold Spring Harbor perspectives in biology. 2014 Jul;6(7):a008524.
698 doi:10.1101/csfperspect.a008524.

699 [72] González AM, Larruga J, Abu-Amero KK, Shi Y, Pestano J, Cabrera M. Mitochondrial lineage M1
700 traces an early human backflow to Africa. BMC Genomics. 2007 Jul;8:223. doi:10.1186/1471-2164-8-223.

701 [73] Maji S, Krithika S, Vasulu TS. Phylogeographic distribution of mitochondrial DNA macrohaplogroup
702 M in India. Journal of genetics. 2009 Apr;88(1):127-39. doi:10.1007/s12041-009-0020-3.

703 [74] Kumar S, Ravuri RR, Koneru P, Urade BP, Sarkar BN, Chandrasekar A, et al. Reconstructing Indian-
704 Australian phylogenetic link. BMC evolutionary biology. 2009 Jul;9(1):173-5. doi:10.1186/1471-2148-9-
705 173.

706 [75] Metspalu M, Kivisild T, Metspalu E, Parik J, Hudjashov G, Kaldma K, et al. Most of the extant mtDNA
707 boundaries in south and southwest Asia were likely shaped during the initial settlement of Eurasia by
708 anatomically modern humans. BMC genetics. 2004 Aug;5(1):26-5. doi:10.1186/1471-2156-5-26.

709 [76] Schlebusch CM. Genetic variation in Khoisan-speaking populations from southern Africa; 2010.

710 [77] Cruciani F, Trombetta B, Massaia A, Destro-Bisol G, Sellitto D, Scozzari R. A revised root for the
711 human Y chromosomal phylogenetic tree: the origin of patrilineal diversity in Africa. American journal
712 of human genetics. 2011 Jun;88(6):814-8. doi:10.1016/j.ajhg.2011.05.002.

713 [78] Batini C, Ferri G, Destro-Bisol G, Brisighelli F, Luiselli D, Sánchez-Diz P, et al. Signatures of the preagri-
714 cultural peopling processes in sub-Saharan Africa as revealed by the phylogeography of early Y chromo-
715 some lineages. Molecular Biology and Evolution. 2011 Sep;28(9):2603-13. doi:10.1093/molbev/msr089.

716 [79] Zhong H, Shi H, Qi XB, Xiao CJ, Jin L, Ma RZ, et al. Global distribution of Y-chromosome haplogroup
717 C reveals the prehistoric migration routes of African exodus and early settlement in East Asia. Journal
718 of Human Genetics. 2010 Jul;55(7):428-35. doi:10.1038/jhg.2010.40.

719 [80] Semino O, Magri C, Benuzzi G, Lin AA, Al-Zahery N, Battaglia V, et al. Origin, Diffusion, and
720 Differentiation of Y-Chromosome Haplogroups E and J: Inferences on the Neolithization of Europe
721 and Later Migratory Events in the Mediterranean Area. The American Journal of Human Genetics.
722 2004;74(5):1023-34. doi:10.1086/386295.

723 [81] Sengupta S, Zhivotovsky LA, King R, Mehdi SQ, Edmonds CA, Chow CET, et al. Polarity and tem-
724 porality of high-resolution y-chromosome distributions in India identify both indigenous and exogenous
725 expansions and reveal minor genetic influence of Central Asian pastoralists. The American Journal of
726 Human Genetics. 2006;78(2):202-21. doi:10.1086/499411.

727 [82] Shah AM, Tamang R, Moorjani P, Rani DS, Govindaraj P, Kulkarni G, et al. Indian Siddis: African
728 descendants with Indian admixture. American journal of human genetics. 2011 Jul;89(1):154-61.
729 doi:10.1016/j.ajhg.2011.05.030.

730 [83] Balaresque P, Bowden GR, Adams SM, Leung HY, King TE, Rosser ZH, et al. A Predom-
731 inantly Neolithic Origin for European Paternal Lineages. PLOS Biology. 2010;8(1):e1000285.
732 doi:10.1371/journal.pbio.1000285.

733 [84] Mendez FL, Karafet TM, Krahn T, Ostrer H, Soodyall H, Hammer MF. Increased Resolution of Y
734 Chromosome Haplogroup T Defines Relationships among Populations of the Near East, Europe, and
735 Africa. Human Biology. 2011;83(1):39-53. doi:10.3378/027.083.0103.