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Abstract

Functional magnetic resonance imaging (fMRI) is a valuable neuroimaging tool for studying brain function and
functional connectivity between brain regions. However, the blood oxygen level dependent (BOLD) signal used to
generate the fMRI images can be influenced by various physiological factors, such as cardiac and respiratory activity.
These physiological effects, in turn, influence the resulting functional connectivity patterns, making physiological noise
correction a crucial step in the preprocessing of fMRI data. When concurrent physiological recordings are available,
researchers often generate nuisance regressors to account for the effect of heart rate and respiratory variations by
convolving physiological response functions (PRF) with the corresponding physiological signals. However, it has been
suggested that the PRF characteristics may vary across subjects and different regions of the brain, as well as across scans
of the same subject. To investigate the dependence of PRFs on these factors, we examine the performance of several
different PRF models, in terms of BOLD variance explained, using resting-state fMRI data from the Human Connectome
Project (N=100). We examined both one-input (heart rate or respiration) and two-input (heart rate and respiration) PRF
models and show that allowing PRF curves to vary across subjects and brain regions generally improves PRF model
performance. For one-input models, the improvement in model performance gained by allowing spatial variability was
most prominent for respiration, particularly for a subset of the subjects (about a third) examined. Allowing for subject-
specific or regional variability in the cardiac response function resulted in a significant model performance improvement
only when using a two-input PRF model. Overall, our results highlight the importance of considering spatial and subject-
specific variability in PRFs when analyzing fMRI data, particularly regarding respiratory-related fluctuations.
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1. Introduction

Functional magnetic resonance imaging (fMRI) has emerged as a valuable tool for studying brain function and
understanding neurological diseases. This imaging technique relies on metabolic changes triggered by changes in neural
activity within the brain. When a brain area is activated, it requires more energy for neural signaling, increasing local
cerebral metabolism. In turn, this triggers a series of events for the delivery of additional energy to the activated brain
regions. Specifically, the amount of oxygen being delivered to these regions is increased via an increase in cerebral blood
flow (CBF), which also increases the concentration of oxyhemoglobin in the blood. Oxyhemoglobin and
deoxyhemoglobin have different magnetic properties and their relative concentrations determine the contrast in fMRI
images (Glover, 2011; Ogawa et al., 1990). Due to this, the blood oxygen level dependent (BOLD) contrast mechanism
is typically used in fMRI as an indirect measure of neural activity.

Many researchers have focused on using resting-state fMRI scans to identify and study resting-state networks (RSNs) in
the brain. These functional networks include regions of the brain that exhibit similar low frequency oscillations (<0.15Hz)
(Biswal et al., 1995; Fox & Raichle, 2007; Smith et al., 2009). RSNs can provide insight into the functional connectivity
of the brain but they need to be interpreted carefully, as the BOLD signal can be affected by physiological variables such
as heart rate and respiration, which may cause spurious results in the analysis of functional connectivity (Birn et al.,
2006; Murphy et al., 2013; Shmueli et al., 2007; Tong et al., 2019; Xifra-Porxas et al., 2021). Heart rate fluctuates due
to the action of the autonomic nervous system causing changes in CBF are, in turn, reflected on the fMRI signal (Murphy
et al., 2013; Tong et al., 2019). The movement of the chest during respiration can cause changes in the magnetic field
within the scanner which can shift the brain image (Raj et al., 2001). Furthermore, changes in breathing rate (BR) and
depth can affect the concentration of arterial CO,, a potent vasodilator and, thus, affect CBF (Birn et al., 2006; Wise et
al., 2004). It has also been shown that spontaneous arterial CO, variations cause low frequency fluctuations in the BOLD
signal that can be misinterpreted as neural activity (Prokopiou et al., 2019; Stickland et al., 2021; Wise et al., 2004).
Finally, arterial blood pressure also fluctuates over time and these variations influence fMRI timeseries through their
effects on CBF (Whittaker et al., 2019). Thus, being able to remove these physiological artefacts is important for
accurately quantifying the fMRI signatures of the underlying neural activity.

Many models have been proposed to effectively remove physiological noise; however, a conclusion has yet to be made
on the best practice to achieve this. A balance must be reached whereby most of the physiological artefacts are adequately
removed without removing a significant fraction of the neural signal of interest. An additional challenge is that there is
often a temporal coupling of physiological fluctuations and neural activity that is hard to disentangle.

To mitigate the effects of physiological confounds, peripheral recordings obtained simultaneously with fMRI scans have
been shown to be very useful. Birn et al. (2008) and Chang et al. (2009) first proposed the use of linear convolution
models to create nuisance regressors, which can be incorporated in the general linear model (GLM) framework typically
used in fMRI studies to correct for physiological confounds. According to these models, the trace of heart rate (HR) is
convolved with a cardiac response function (CRF) to generate cardiac-related nuisance regressors. Similarly, respiration
volume per time (RV), which is a measure of respiration depth and rate, is convolved with the respiratory response
function (RRF) to create a regressor that accounts for changes in the BOLD signal caused by variations in respiratory
patterns. These physiological regressors can then be removed from the BOLD signal through linear regression. These
models have been widely used for preprocessing of fMRI data, but they are limited in their ability to account for
variability in physiological responses across subjects and brain regions.

Recent work has examined whether using only one invariant physiological response function (PRF) curve for noise

removal is appropriate due to the spatial and subject variability in the brain's response to physiological fluctuations (Chen

et al., 2020; Falahpour et al., 2013; Kassinopoulos & Mitsis, 2019). The brain vasculature is heterogeneous across brain

regions, as well as across subjects (Bernier et al., 2018), and this is likely to affect the dynamics of region-specific

responses to changes in HR and breathing rate (BR). Kassinopoulos and Mitsis (2019) reported that the best model
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performance, in terms of BOLD signal variance explained, was achieved when subject variability was accounted for in
the PRF curves, whereas no additional improvement was observed when allowing for regional variability. However, the
findings by Chen et al. (2020) provided evidence in favor of accounting for spatial variability in the RRF curves. This
discrepancy may be related to the fact that these two studies employed models with a different number of basis functions,
and thus flexibility. Given this, the aim of the present study was to rigorously assess the benefit of accounting for subject
and regional variability in the context of PRF estimation, using both one-input (heart rate or respiration) and two-input
(heart rate and respiration) PRF models. To this end, we tested seven linear convolution models with varying degrees of
flexibility at three different spatial resolutions (voxel, parcel and whole-brain level). Our findings suggest that allowing
subject-specific variability for the RRF curves is beneficial for noise removal at all levels of spatial resolution. Moreover,
in approximately a third of subjects, regionally variable RRF curves were found to explain additional variance in both
voxel- and parcel-wise analysis. When considering only cardiac models, we did not observe a significant improvement
when allowing for subject or regional variability in the CRF curves. However, when considering two-input models,
allowing for subject and regional variability was found to yield the best performance.

2. Methodology
2.1. Human Connectome Project (HCP) Dataset

The resting-state fMRI data used in this study are from the S1200 release of the 3T HCP dataset which consists of young,
healthy individuals (age range: 22-35 years) (Glasser et al., 2016; Smith et al., 2013; Van Essen et al., 2013; Van Essen
et al., 2012). The data was acquired on two different days. On each day two 15 min scans were collected with the left-
to-right (LR) and right-to-left (RL) phase encoding direction. During each fMRI scan, 1200 frames were acquired using
a gradient-echo echo-planar imaging (EPI) sequence with a multiband factor of 8, spatial resolution of 2 mm isotropic
voxels and a TR of 0.72 s (Glasser et al., 2016). Further details of the data acquisition parameters can be found in previous
publications (Smith et al., 2013; Van Essen et al., 2012).

Cardiac and respiratory signals were measured simultaneously with the fMRI scans. This was done using a standard
Siemens pulse oximeter placed on the fingertip and a breathing belt placed around the chest with a 400 Hz sampling rate.
We only considered subjects with available data from all four scans, and excluded subjects based on the quality of the
physiological recordings. Pulse oximeter and breathing belt signals from ~1000 subjects were first visually inspected to
determine their quality, since their traces are often not of sufficient quality for reliable peak detection (Power, 2019). The
selection process resulted in a final dataset from 392 subjects, of which 100 were used in the present study (ID numbers
provided in Supp. Material). Briefly, the minimal initial preprocessing pipeline included removal of spatial distortion,
motion correction via volume realignment, registration to the structural image, bias-field correction, 4D image intensity
normalization by a global mean, brain masking, and non-linear registration to MNI space.

2.2.  Preprocessing

The HR and preprocessed respiratory signals extracted in Xifra-Porxas et al. (2021) were used in the present study. The
pulse wave from the oximeter was processed to automatically detect beat-to-beat intervals (RR). The HR signal was
computed as the inverse of the time difference between pairs of adjacent peaks and converted to units of beats-per-minute
(bpm). HR signals were visually checked to ensure that no abnormalities and outliers were present. If spurious changes
in HR were present due to sporadic noisy cardiac measurements, an outlier replacement filter was used to eliminate them.

The signal from the breathing belt was linearly detrended, visually inspected and corrected for outliers using a
replacement filter. It was subsequently low-pass filtered at 5 Hz and z-scored to set the mean to zero and the variance to
one. Respiratory variation (RV), defined as the standard deviation of the movement of the respiration bellows in a 6 sec
sliding window, was extracted from the breathing belt signal. Both the HR and RV data were temporally filtered with a
high-pass filter at a cut off frequency of 0.008 Hz and z-scored. The signals were then re-sampled at 10 Hz.
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The raw fMRI volumes were spatially smoothed with a Gaussian filter of 5 mm full width half maximum (FWHM). The
data were linearly detrended, temporally filtered with a high-pass filter at a cut off frequency of 0.008 Hz and normalized.
Nuisance regressors were then removed through linear regression. The regressors included the six demeaned and
detrended motion parameters and their derivatives, as well as 6™ order RETROICOR regressors for cardiac artefacts and
the 3 order RETROICOR regressors for respiratory artefacts using the physiological recordings at a sampling rate of
400 Hz (Glover et al., 2000).

For the analysis at the parcel level, the Gordon Atlas was used to parcellate the brain into 333 distinct regions (Gordon
et al., 2016). The BOLD signals from all voxels within a parcel were averaged to get parcel-specific BOLD timeseries.
The global signal (GS) was calculated by taking the mean signal from all the voxels. All the data were high-pass filtered
at a cut off frequency of 0.008 Hz and z-scored. The first 40 volumes of each timeseries at the voxel, parcel and whole-
brain level were removed, while the corresponding physiological signals were retained to account for the duration of the
effects of HR and respiratory variations.

2.3.  Physiological response functions

This study examined seven linear convolution models outlined in Table 1. The standard PRF curves and the employed
basis functions are shown in Figure 1. Each model contained a cardiac response function (CRF) convolved with HR to
model the cardiac related effects on the BOLD signal and a respiratory response function (RRF) convolved with RV to
model the respiratory related effects on the BOLD signal. These convolutions generated physiological regressors
associated with cardiac- and respiratory-related fluctuations, i.e.:

Xur(t) = HR(t) * CRF (1) [1]
Xy (t) = RV(t) * RRF(¢) [2]

The regressors Xyr and Xp, were then downsampled to the fMRI sampling rate and high-pass filtered at a cut off
frequency of 0.008 Hz. The examined models had varying degrees of flexibility and were applied to the voxel, parcel
and whole-brain (GS) fMRI timeseries.
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Table 1. Overview of the 7 PRF models. The subscript p denotes a PRF estimated from a population in a previous study (Birn et al., 2008;
Chang et al., 2009; Kassinopoulos & Mitsis, 2019), r denotes a regionally variable model, and s denotes a subject-specific model. Models
denoted by A are based on the PRFs of Birn et al. (2008) and Chang et al. (2009), while models denoted by B are based on the PRFs of
Kassinopoulos and Mitsis (2019).

Models Physiological response functions/basis functions Region  Subject | Degrees of freedom
per input (HR, RV)
4, Canonical PRFs (Birn et al., 2008; Chang et al., 2009) — — 1
Basis set: Canonical PRFs from model A with their
A temporal and dispersive derivatives estimated for each N N 5
region and subject (Chen et al., 2020)
B HCP-derived canonical PRFs (Kassinopoulos & Mitsis, |
b 2019)
B,, Basis set: HCP-derived gamma functions estimated for Y Y )

each region and subject (Kassinopoulos & Mitsis, 2019)

B Basis set: HCP-derived gamma functions estimated for Y )
§ each subject using the GS (Kassinopoulos & Mitsis, 2019)

A, B,, Regionally specific PRFs averaged across subjects from
(Am,g, Ba,,g) models A, ; and B, ; (4, Bs)

Certain models required the estimation of the PRFs on a regional and subject level. In these cases, the basis expansion
technique was used to estimate the PRF curves using a suitable basis set {b] (t)}, { bj (t)}, where the final PRF curve
was obtained as a weighted sum of the selected L basis functions (superscripts r and ¢ correspond to cardiac and
respiratory basis sets and weights respectively):

EL: [3]
CRF(t) = ) aibi(t)
< j j
L
RRF(¢) = 2 &bl () -
=1

The expansion coefficients, aj, a;, were determined through ordinary least squares fitting-based regression between the
HR and RV signals convolved with the basis functions and the BOLD signal as follows:

ac=(V{vo'Vly [5]

a’ = (Vv vly [6]
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where y corresponds to the BOLD time series and the regressor matrices V, V;. contain the convolution values between
the HR and RV signals with the basis functions b;(t) at different time points.

“SModel Ap: Canonical CRF from Chang et al.
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Figure 1. (first row) Model A, employs one invariant curve for the CRF and RRF based on the work of Chang et al. (2009) and Birn et al. (2008),
respectively. (second row) The basis set of model 4,. 5 is from the work of Chen et al. (2020). The canonical curves are shown in blue. The temporal
derivatives are indicated with a dashed orange line and the dispersive derivatives are shown with a solid orange line. (third row) The canonical
curves for model B, are based on the work of Kassinopoulos and Mitsis (2019). (fourth row) The basis for model B, is derived by taking the

individual gamma functions from the PRFs of model B),.

2.3.1.

Model Ap — Standard canonical PRFs

Model A, employed the invariant CRF and RRF curves proposed by Chang et al. (2009) and Birn et al. (2008),
respectively. The RRF was a weighted sum of two gamma functions while the CRF was a weighted sum of a gamma and
a Gaussian function. The PRFs are expressed as follows:

. t 16 (t—12)2
CRF, t) =0.6t“"e 16 — e 18
stand( ) \/m

t t
RRFggna (t) = 0.6t%1e™16 — 0.0023t35%e 225

2.3.2.

Model A, ; — Standard canonical PRFs with their temporal and dispersive derivatives

[7]

[8]
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Based on the work of Chen et al. (2020), model A, 5 used the standard PRFs from model A, as well as their temporal

and dispersive derivatives to generate a basis set of five functions for both the CRF and RRF. The basis functions are
given by the following relations:

CRF basis:
¢(0) g7 —t 16 (t-12)?
b5(t) = 0.6t"e 1.6 — e 18
! V279
t t
bS(t) = 1.94tY7e 16 — 0.45t%7¢ 16 (9]
(t—12)2

b5(t) = 0.55(t —12)e” 18

t
bs(t) = 0.056t37e 16
(t—12)2

bE(t) = 0.15(t — 12)%e~ 18
5

RREF basis:
t t
bI(t) = 0.6t>'e 16 — 0.0023t35*e 225
t t
by (t) = —0.79t*'e 16 + 2.66t'1e 16
L t [10]
1(t) = —0.069t%5%¢ %25 + 0.0046t35%e 225

L

bi(t) = 0.16t>'e 16
t
bL(t) = —0.000014t*5*e 225

Each basis function was convolved with the appropriate physiological signal to generate a set of five cardiac and five
respiratory regressors. These regressors were then fitted to the BOLD signal using linear regression as described above
(Eq 5,6). The PRF curves were generated by taking the weighted sum of the five basis functions using the expansion
coefficients estimated through the linear regression as the weighting coefficients (Eq 3,4).

2.3.3. Model B, — HCP-derived PRFs

Model B, used the population-specific PRFs, CRE,,;, and RRE,,,,

were estimated from a subset of subjects (N=41) from the HCP dataset using a novel algorithm based on basis expansions
with double-gamma functions. The HCP-derived PRFs can be expressed as follows:

reported in Kassinopoulos and Mitsis (2019). These

N — VEg __ ¢t
CRE,,,(t) = t25e 2531 —1,1t09 e 09V56 [11]
pop
Vvio __ ¢t Vizs __t
RRFpop(t) = t209e 2919 — 26t 05 e 05V125 [12]

2.3.4. Model B, ; — HCP-derived gamma functions

To allow subject and spatial variability, model B, ; used the individual gamma functions of model B, without their
weighting coefficients as basis functions, expressed by the following relations:
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CRF basis:
b{(t) = t\/Z;e 2.5t3.1 (131
bS(t) = t09 e 0956
RRF basis:
vie __ t
bi(t) = t29e 2.9v/1.9 [14]
vizs ___ ¢t

b;(t) = t 05 g 05V125

Each basis function was convolved with the corresponding physiological signal to generate either cardiac or respiratory
regressors. These regressors were then fitted to the BOLD signal using linear regression as described above (Eq 5,6).
The PRF curves were generated by taking the weighted sum of the five basis functions using the expansion coefficients
estimated through the linear regression as the weighting coefficients (Eq 3,4).

2.3.5. Model A;/B; — subject specific PRFs

To obtain PRFs that were subject- but not region-specific, the GS was used to estimate them using the basis functions
considered in models A, ¢ and B, ;. Specifically, a single CRF and RRF curve was generated for each subject by using
the expansion coefficients estimated through linear regression (Eq 5,6) when fitting the HR and RV signals convolved
with the basis functions to the GS.

2.3.6. Model 4,/B, (Agyy/Bayg)

The regional-specific PRF curves in models A4, and B, were generated by averaging the regionally specific curves
obtained with A, ¢ and B, ; across all subjects. Similarly, at the whole-brain level, the models Ayyg and By, were

generated by averaging the curves from models A and Bg across all subjects.

2.4. Model evaluation

Model performance was evaluated using the Pearson correlation coefficient between the BOLD timeseries and the model
output. Cross validation was implemented for the models that required PRF estimation (i.e. A5, Bys, As, Bs).
Specifically, the PRFs were estimated with the basis expansion technique described above using the first scan of a session
from each subject and the model performance was evaluated on the second scan of that session. For models that did not
require PRF estimation (i.e. Ay, By, Ay, By), the performance was evaluated directly on the second scan. The correlation
was determined for the cardiac and respiratory regressors for each input (HR and RV) separately and for both inputs
combined. A pairwise t-test was used to compare the performance across the different models.

At the voxel level, the evaluation of model performance was restricted to voxels for which the correlation values for the
two-input model were in the top 5%, so that only regions strongly affected by variations in heart rate and respiratory
patterns were considered for model comparison. At the parcel level, all parcels were considered for model comparison,
as the averaging of voxel timeseries within a parcel tends to suppress random noise and enhance the effects of
physiological processes.

2.5. Assessment of regional and subject variability

Based on the results of model comparisons (Section 3.1), further analysis was done to identify the subjects for which
using region-specific RRFs significantly improved performance. All four scans from 100 subjects from the HCP dataset
were used. First, the improvement of model B, as compared to model B, was assessed by computing the parcel-wise
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differences in the correlation values between the respiratory-related model output and BOLD signal obtained by the two
models. K-means clustering was subsequently performed to segregate the scans into two groups using the parcel-wise
differences. This step categorized the scans into a group that exhibited improvement when regional variability was
allowed and a group that did not (designated the ‘improvement’ group and the ‘no improvement’ group).

To quantify whether certain subjects benefitted more from allowing PRF regional variability, a subject specificity score
was used. Specifically, each subject was assigned a value based on the number of scans that were categorized in the same
group. Subjects who had all scans in the same group were assigned a value of 1, subjects with one scan in one group and
three scans in the other were assigned a value of 0.5, and subjects with two scans in one group and two in another were
assigned a value of 0. The value assignment was the same regardless of which groups the scans belonged to. This metric
indicates the degree to which the subjects had all their scans in one group. For example, for a subject with all four scans
in the same group the overall score would be 1, indicating a strong degree of subject specificity in the clustering.
Conversely, for subjects with two scans in each group the score would be zero indicating a lack of subject specificity in
the clustering.

To compute an overall score, the subject-specific score values were averaged across all subjects. Subsequently, the
significance of the subject specificity score was assessed by comparing its distribution to a null distribution generated by
permutating the data and computing the subject specificity score 10,000 times. Each permutation was generated by
randomly assigning the 400 scans into groups of four and determining the corresponding subject specificity score.

The subjects that had all four scans in either the ‘improvement’ or ‘no improvement’ group were further examined to
determine the regional variability, or lack thereof, in the RRF curves. The RRFs of model B, ¢ were averaged across all
the subjects within the ‘improvement’ and ‘no improvement’ group separately. A second k-means clustering was
performed on the estimated RRF curves at the voxel and parcel level to categorize the voxel and parcel-wise RRFs into
groups with distinct dynamics. At the voxel level, only the gray matter was considered, and three clusters were used.
Two clusters were used at the parcel level as this analysis did not include subcortical regions.

2.6.  Association of PRF curves with vessel density, respiratory patterns and behavioral measurements

The relationship of the PRF curve features with arterial and venous densities obtained using the probabilistic maps of
Bernier et al. (2018) was examined at the voxel and parcel level. At the parcel level, the vessel densities were averaged
within each parcel. Furthermore, a weighted average was used to compute the mean PRF curve features across all
subjects. The correlation between the two-input model and the parcel timeseries was used as a weighting coefficient to
assign more weight to parcels of subjects that are more strongly influenced by physiological processes and, thus, were
more reliable for extracting PRF curve features.

The parcel-wise differences between models B, and B, calculated above, from all four scans for the 100 subjects were
correlated with several respiratory measures from each scan. These included the standard deviation of the BR and RV
signals, and the mean BR. Moreover, the differences between models B, and B, were averaged across the four scans of
each subject and correlated across individuals with the age, weight, height, systolic blood pressure, diastolic blood
pressure, body mass index (BMI) and hematocrit of each subject.

The arterial and venous densities were correlated with the following PRF curve features: FWHM, time-to-peak for the
first and second peaks, as well as peak to height ratio. For the peak to height ratio, if the magnitude of the first peak was
greater than the second peak, its value was assigned a positive value and if the magnitude of the second peak was greater
it was assigned a negative value. In the cases where only one peak was observed, its value was set to 100 and made either
positive or negative depending on the sign of the peak.

3. Results
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3.1. Model evaluation

Figure 2 shows the performance of the examined models with respect to the BOLD variance explained at the voxel,
parcel and whole-brain level. With regards to the one-input models, for the CRF we observe different results across
spatial scales. At the voxel, parcel and whole brain levels, models A,, B, and B; yielded the best performance
respectively. The RRF model exhibited a more consistent behavior across spatial scales, whereby the more flexible
models using two gamma functions (Bs and B, 5) yielded the best performance. Specifically, at the voxel and parcel
levels, the best performance was yielded by model B, 5, while model By performed best at the whole brain level. The
same trend was observed in the behavior of the two-input model, i.e., model B, ¢ performed best at the voxel and parcel
level and model Bg performed best at the whole brain level. Overall, models using the basis set B performed better than
models using the basis set 4, despite the fewer degrees of freedom (2 vs 5 free parameters per input — HR and RV).

The seven models examined here yielded similar spatial maps of variance explained, with the highest correlation values
observed in the gray matter. In addition, the top 5% of the voxels of each model corresponded mostly to voxels in the
gray matter, as seen in Figure 3C, which shows a thresholded map averaged across all 100 subjects for model B, ;.
Moreover, as evident from the correlation maps of the cardiac and respiratory models averaged across all 100 subjects
(Figure 3A-B), variations in HR and RV affected similar regions, mainly in the visual and somatosensory cortex. The
effects of respiration were generally found to be more pronounced as compared to HR.
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Figure 2. Comparison of model performance at different spatial scales (voxel, parcel and whole-brain level) for the cardiac component (A),
respiratory component (B) and two-input model (C). Models A, B, and B; yielded the best performance for the CRF at the voxel, parcel and
whole brain level, respectively. Regarding the RRF, the best performance was yielded by the most flexible model using the basis set B (B, ¢ at the
voxel and parcel level and model B at the whole brain level). The same trend was observed for the two-input model as seen in the RRF where the
best performance was yielded by the most flexible model using basis set B (B,.s at the voxel and parcel level and model B at the whole brain

level).
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A) RRF

B) CRF

0.10 0.15
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C) Top 5% Full Model

Figure 3. BOLD variance explained using model B, g, averaged across all subjects (N = 100). A) Statistical map of the correlation between fMRI
voxel time-series and RRF prediction. B) Statistical map of the correlation between fMRI voxel timeseries and CRF prediction. C) Mask with the
voxels corresponding to the top 5% of correlation values obtained with the two-input model.
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3.2. Assessment of regional and subject variability

Further analysis was carried out on the one-input RRF models using the basis set B. Specifically, the difference between
the parcel-wise correlations of the RRF models B, and B, were further analyzed to investigate the advantage of allowing

regional RRF variability. K-means clustering was performed to categorize the 400 scans from 100 subjects into two
groups; a group that exhibited improvement when regional variability was allowed (‘improvement’ group) and a group
that did not (‘no improvement’ group). Figure 4A shows the distribution of the differences in correlation values for each
group across all 4 scans of the 100 subjects (4 scans x 100 subjects = 400 correlation values). The mean difference for
the ‘improvement’ and ‘no improvement’ group were 0.042 and -0.006 respectively. Among the 400 scans, 37% fell into
the ‘improvement’ group and 63% fell into ‘no improvement’ group. Figure 4B shows how the four scans of the 100
subjects were divided into the two groups. Among the 100 subjects, 38% had all four scans in the ‘no improvement’
group while 10% had all four scans in the ‘improvement’ group. Therefore, 48% of the subjects exhibited the same
behavior across all four scans, which indicates a degree of subject specificity related to whether the use of a region-
specific RRF improved performance. Of the remaining subjects, 15% had three out of four scans in the ‘no improvement’
group and 18% had three out of four scans in the ‘improvement’ group. This still indicates some degree of subject
specificity related to whether the use of a region-specific RRF improved performance, as the majority of scans fell into
the same group. Only 19% of subjects had the same number of scans in each group. To quantify this behavior, a subject
specificity score was developed as described in Section 2.5, whereby subjects who had all scans in the same group were
assigned a value of 1, subjects with one scan in one group and three scans in the other were assigned a value of 0.5, and
subjects with two scans in one group and two in another were assigned a value of 0. The average subject specificity score
across all subjects was found to be 0.65 with a standard deviation of 0.38. To validate the significance of this value, the
score was calculated for 10,000 random permutations of the 400 scans. None of the permutation tests yielded a score
equal or larger than 0.65, indicating strong evidence against the null hypothesis (p < 10%).

A) Distribution of RRF difference for clusters B) Distribution of scans within subjects based on RRF
80 : : : T T T : : T 10%
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Figure 4. K-means clustering performed on the difference in correlation values obtained with the RRF models B, and B,.. All four scans of each of
the 100 subjects were considered. A) Histogram of the differences in correlation between the two models for all 400 scans, with the ‘improvement’
and ‘no improvement’ group indicated with orange and blue color respectively. B) Pie chart illustrating the distribution of scans across subjects
according to the behavior with respect to using region-specific RRFs.

The RRFs of the two groups of subjects with either all scans in the ‘improvement’ group (10% of scans) or all scans in
the ‘no improvement’ group (38% of scans) were further examined. The spatiotemporal RRF dynamics of these two
groups averaged across all subjects within a group is shown at the parcel level in Figure 5 (the voxel-wise dynamics can
be found in the Supp. Material, while videos of the dynamics can be found at

https://doi.org/10.6084/m9.figshare.20715925.v2). The RRFs corresponding to these two groups exhibited different
13
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temporal dynamics for several brain regions. Specifically, the ‘improvement’ group yielded two spatially distinct
clusters. Most regions yielded RRFs with negative peaks only, while the RRFs of the remaining regions exhibited a
positive initial peak followed by a negative peak. In the ‘no improvement’ group, the dynamics were found to be more
homogeneous spatially. Across all parcels, the RRFs exhibited a positive peak followed by a negative peak, with the
amplitude of these peaks exhibiting some variability.

A)  Parcel-wise RRF dynamics: ‘improvement’ group

B)  Parcel-wise RRF dynamics: ‘no improvement’ group
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Figure 5. Spatiotemporal dynamics of the parcel-wise RRFs for the (A) ‘improvement’ group and the (B) ‘no improvement’ group. The former yielded
a cluster of parcels with an initial positive peak and a cluster with an initial negative peak. Both clusters exhibited a secondary negative peak. The
group with no improvement yielded a more spatially homogeneous response with a strong initial positive peak followed by a negative peak. Time
corresponds to the time lag of the RRF in seconds.

The voxel and parcel-wise RRFs of B, ; from each group were averaged across all the subjects within each group and k-
means clustering was performed on the curves to determine distinct groups of curve dynamics across brain regions. Two
clusters were considered at the parcel level and three clusters at the voxel level, whereby the analysis in the latter case
was restricted to voxels in the grey matter. Preliminary analysis evaluated the performance when using different numbers
of clusters at the parcel level; however, using a higher number of clusters did not provide additional insight into the
differences in regional RRF dynamics. An additional cluster was used at the voxel-level to account for the inclusion of
sub-cortical regions. With regards to the voxel level analysis, for the ‘no improvement’ group the three clusters exhibited
similar RRF curves with a positive peak followed by a stronger negative peak (Figure 6A). In contrast, for the
‘improvement’ group, the relative amplitude and polarity of the first peak exhibited distinct differences across the three
clusters. Specifically, one cluster consisting mainly of cerebellum and brainstem regions (blue color) exhibited a large
positive peak followed by a negative peak, while another cluster consisting of sensory-motor regions (red color) yielded
two strong negative peaks, and a third cluster consisting of the remaining regions in the cortex (green color) exhibited a
weak initial positive peak followed by a stronger negative peak. Similar trends were observed at the parcel level for the
two identified clusters (Figure 6B). For instance, the cluster consisting of sensory-motor regions was characterized by
two negative peaks for the ‘improvement’ group, while a positive peak followed by a negative peak was found in the ‘no
improvement’ group.

The spatial maps of the RRF of the parcels and the spatial maps of the voxels placed in each cluster for the ‘no
improvement’ and ‘improvement’ groups exhibited similar patterns (Figure 6). The regions with an increased amplitude
of the first peak were similar between the ‘improvement’ and ‘no improvement’ group. This trend was observed at both
the parcel and voxel levels.
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A) RREF clusters: voxel-wise results
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B) RREF clusters: parcel-wise results
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Figure 6. K-means clustering of RRF curve dynamics for the ‘improvement’ (left) and ‘no improvement’ (right) groups obtained at the (A) voxel
and (B) parcel level (see Section 2.5). At the voxel level, three clusters were used and applied only to grey matter. The ‘no improvement’ group
yielded clusters with variation only in their positive peak amplitude. The ‘improvement’ group yielded more variation in terms of RRF dynamics,
with the blue cluster having a clear bimodal shape, the green cluster a very weak first peak followed by a negative peak and the red cluster two
negative peaks. At the parcel level, the ‘no improvement’ group yielded two clusters with similar dynamics, albeit with small differences in the
value of their positive peaks. The ‘improvement’ group yielded two distinct clusters of curve dynamics. Regions shown in blue color exhibited a
weak initial peak followed by a negative peak, while regions shown in red color exhibited two negative peaks.
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3.3.  Association of PRF curves with vessel density, respiratory patterns and behavioral measurements

As described above, RRF features (e.g. FWHM of first peak) were extracted from the regionally specific PRFs obtained
from the one-input models B, and correlated with the corresponding regional vessel density. At the parcel level, a
weighted average was used to assign higher weight to parcels that exhibited better model performance, based on their
correlation between the BOLD signal and the model prediction. The significance of each correlation was corrected for
multiple comparisons (6 PRF curve features x 2 PRF curves x 2 vessel density maps = 24 tests). Once corrected for
multiple comparisons, no correlations were found to be significant (Suppl. Table 1).

Finally, to determine why certain subjects or scans benefitted from allowing regional variability in RRF curves (B, vs
B,,), a series of tests was done to examine potential association of improvement with physiological features (i.e. body
weight) as well as certain respiratory metrics (i.e. standard deviation of BR; see Section 2.6). However, no significant
correlations were found (Suppl. Table 2, 3).

4. Discussion

We rigorously evaluated the performance of seven physiological models with varying complexity in modeling the
dynamic effects of physiological processes (HR and RV) on BOLD fMRI signal fluctuations. All examined models
utilized physiological response functions which were convolved with HR and RV. Some models assumed subject and
spatial invariance for the PRF curves, eliminating the need for parameter fitting. On the other hand, for some models,
PRF curves for each subject and/or region were estimated using least squares linear regression, allowing us to assess the
extent to which using subject- and region-specific PRFs results in better prediction performance.

The mean PRF curves of the best performing model found in this study (B, ; Figure 6) were, to a large degree, consistent
with the dynamics reported in recent studies examining fMRI data from the HCP (Chen et al., 2020; Kassinopoulos &
Mitsis, 2019, 2021). Interestingly, as previously noted, these PRF curves exhibited faster dynamics than the PRF curves
reported in the early studies by Birn et al. (2008) and Chang et al. (2009).

As shown in Figure 2, when considering only the one-input CRF models, our results revealed no significant variation of
CREF curve between brain regions and subjects. Conversely, allowing subject and regional variability for the RRF resulted
in improved performance. Furthermore, results obtained using the two-input model suggested that allowing subject and
regional variability for both the CRF and RRF leads to enhanced performance, but this improvement may stem from the
significant improvement gained by allowing variability in the RRF, while being minimally affected by the variability in
the CRF. Finally, it was found that the regional variability in the RRF yielded better performance for a subset of subjects
(Figure 4).

4.1. Model evaluation

Our findings suggest that the RRF dynamics were more variable, regionally- and subject-wise, compared to the CRF
dynamics, and this can be partly attributed to the presence of respiration-related motion artifacts. There is significant
variability in respiration-related motion artefacts across subjects, as these artifacts depend on several factors such as the
air volume changes in the lungs, the subject's body type, their respiratory behavior and their position in the scanner
(Byrge & Kennedy, 2018; Power et al., 2019; Raj et al., 2001). Further, respiration-related motion artefacts vary within
a subject across voxels along the phase-encoding direction (Raj et al., 2001).

Despite having the highest number of degrees of freedom, model A, ; performed poorly compared to other models. This
model uses five basis functions for the CRF and five basis functions for the RRF to allow regional and subject variability.
It is possible that this flexibility caused overfitting of the model and the PRF curves estimated on the training dataset did
not generalize well when applied to the testing dataset. Our results indicate that models using the basis set B that consists

16


https://doi.org/10.1101/2024.06.13.596869
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.13.596869; this version posted June 16, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

of two basis functions per input (HR and RV), may provide a better balance between flexibility and constraining the
shapes of the curves, preventing overfitting.

4.2.  Assessment of regional variability

The extended analysis of model B, ; provided further insight into the benefits of allowing regional variability in the RRF.
The 400 examined scans were clustered into a group of scans which exhibited improvement when regional variability
was allowed in the one-input RRF model, and a group which did not exhibit improvement (Figure 4). Nearly 50% of the
subjects had all four of their scans clustered into the same group (i.e. ‘improvement’ and ‘no improvement’), while a
further 30% had three out of four scans in the same cluster. This behavior was also reflected in the subject specificity
score, which was found to be significantly higher than chance level. These results suggest that allowing regional
variability in RRF is beneficial only for specific subjects; however, we were not able to identify any specific factors that
could explain this behavior.

To examine the different behavior in RRF dynamics between the ‘improvement’ and ‘no improvement’ groups, the RRFs
of model B, ¢ were averaged within the two groups. The RRF curves obtained from all voxels were clustered within each
group to investigate the differences in PRF dynamics across the brain. The subject group with improvement exhibited
three distinct clusters of PRF curve dynamics (Figure 6); some regions exhibited the typical RRF curve with a positive
peak preceding a negative peak (e.g. visual cortex), while other regions only exhibited the second negative peak (e.g.
frontal cortex) or two distinct negative peaks (e.g. somatosensory regions). Conversely, the ‘no improvement’ group
yielded variation in the amplitude of the first peak only (videos of the aforementioned voxel-wise dynamics can be found
at https://doi.org/10.6084/m9.figshare.20715925.v2).

The benefits of allowing regional variability for the ‘improvement’ group are mainly due to that the RRF curves in
various regions, including the somatosensory regions, exhibited an atypical RRF curve with two distinct negative peaks.
A potential explanation for this atypical RRF curve could be that these subjects were more aware of their respiratory
patterns, perhaps due to anxiety caused by lying inside the MR scanner, leading to a condition known as respiratory
interoception. Respiratory interoception may involve regions beyond the ones implicated in previous studies (Harrison
et al. 2021), and the underlying hemodynamic response associated with this elevated interoception may somehow
interfere with the detection of the RRF curve. Further investigations are needed to examine the role of respiratory
interoception in the estimation of RRF curves.

4.3. Association of RRF curves with physiological factors

To better understand why region-specific RRF yielded improved performance only for some subjects, we examined
whether the extent of improvement achieved when allowing regional variability was associated to inter-individual
differences in physiological features (e.g. body weight) or respiratory metrics (e.g. variations in BR). However, none of
the tests yielded statistically significant results. In addition, we examined the relationship between vascular density and
RREF shape. More precisely, we tested whether regional differences in PRF shape across parcels correlated with regional
differences in vascular density. However, once again, none of the correlations was significant.

The low correlations found at the parcel level were not entirely unexpected (Suppl. Table 1), considering the significant
variability between subjects with respect to their vascular density profiles (Bernier et al., 2018). It has been suggested
that the inter-subject variability in vascular density profiles increases with decreasing vessel size (Bernier et al., 2018).
Moreover, as the effects of heart rate and respiratory variations are more pronounced in venules rather than large draining
veins, it is possible that subject-specific vessel density maps are necessary to detect any relationships between RRF
curves with vascular density profiles.

17


https://doi.org/10.6084/m9.figshare.20715925.v2
https://doi.org/10.1101/2024.06.13.596869
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.13.596869; this version posted June 16, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Chen et al. (2020) found a relationship between the variability of vascular density in different brain regions and RRF/CRF
amplitudes, although their analysis was strictly qualitative. Furthermore, it is plausible that the shape of the PRF curves
is also likely influenced by the path that blood takes throughout the brain. Future research incorporating improved
characterization of vascular anatomy at the subject level is needed to better understand the dependence of regional PRF
curves on vascular density.

4.4. Limitations

This study only investigated resting state scans only, and the results may not be directly applicable to task-based fMRI
studies. The tasks implemented in these studies typically require participants to maintain relatively stable levels of
vigilance. Consequently, arousal levels may not modulate cardiac and respiratory activity as strongly as observed in
resting-state fMRI. However, some tasks may change the mean value and variability of physiological signals (heart rate,
respirations), which would elicit changes in the BOLD fMRI timeseries, and overlap with the neural-related BOLD
activity associated to the task. In this context, conducting simultaneous EEG-fMRI studies could provide additional
insights into the interactions between physiologically- and neurally-driven BOLD responses during task-based
paradigms.

Furthermore, an additional limitation of the current and previous relevant studies is the assumption of stationarity in PRF
curves over time. The performance of the models that required estimation of PRF curves on a subject-specific basis, was
evaluated by training them using the first of two scans collected in a session and testing them using the second scan of
the session. This cross-validation scheme assumes that the PRF curves are stable within a subject within the span of an
hour. However, we acknowledge that the PRF curves may vary across scans of the same session (i.e. scans collected
briefly one after the other), and future research should examine this possibility.

5. Conclusions

We demonstrated that incorporating regional and subject variability in the PRF curves improves the ability of linear PRF
one-input and two-input dynamic models to explain BOLD variance induced by physiological fluctuations. This
improvement was particularly noticeable for respiration, and especially for a subset of subjects who exhibited a wider
range of PRF dynamics compared to other subjects. These insights pave the way for more effective removal of cardiac
and respiratory fluctuations from fMRI recordings, thereby facilitating the disentanglement of the underlying neural
activity from physiological confounds.
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Suppl. Figure 1. Spatiotemporal dynamics of the voxel-wise RRFs for the (A) group with improvement and the (B) group with no improvement. The
group with improvement has a cluster of voxels with an initial positive peak and another cluster of voxels with an initial negative peak. Both clusters
then have a secondary negative peak. The group with no improvement has a more spatially homogeneous response with a strong initial positive peak
followed by a negative peak.

Suppl. Table 1. Correlations of PRF features with vessel densities at the parcel level. * p < 0.05

PREF feature CREF + veins CREF + arteries RREF + veins RREF + arteries
Time to first peak -0.02 0.11* 0.05 -0.04
Time to second peak -0.09 -0.09 -0.13* -0.00
Peak height ratio 0.02 0.02 -0.11 -0.06
FWHM first peak -0.04 0.09 0.08 0.06
FWHM second peak -0.02 -0.01 -0.13* 0.02
Correlation -0.01 -0.05 0.00 -0.06
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Suppl. Table 2. Correlations between respiratory metrics and voxel-wise model performance difference between B, and B,. None of the correlations
was significant (p<0.05).

Respiratory Metric Correlation
RYV standard deviation 0.07
BR standard deviation -0.06

Mean BR 0.02

Suppl. Table 3. Correlations between physiological metrics and voxel-wise model performance difference between B, and B,,. None of the
correlations was significant (p<0.05).

Measurement Correlation

Age 0.14
Height 0.11
Weight 0.17
BMI -0.15

BP systolic -0.07
BP diastolic -0.11
Hematocrit -0.11
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