

1 Prevalent chromosome fusion in *Vibrio cholerae* O1

2 Aline Cuénod^{1*}, Denise Chac², Ashraful I. Khan³, Fahima Chowdhury³, Randy W. Hyppa⁴
3 Susan M. Markiewicz², Stephen B. Calderwood^{5,6}, Edward T. Ryan^{5,6,7}, Jason B. Harris^{6,8,9},
4 Regina C. LaRocque^{5,6}, Taufiqur R. Bhuiyan³, Gerald R. Smith⁴, Firdausi Qadri³, Patrick
5 Lypaczewski^{1*}, Ana A. Weil^{10*}, B. Jesse Shapiro^{1,11,12*}

6

7 ¹Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada;

8 ²Department of Medicine, University of Washington, Seattle, Washington, United States;

9 ³International Centre for Diarrhoeal Disease Research, Bangladesh, (icddr,b), Dhaka,
10 Bangladesh;

11 ⁴Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, United
12 States;

13 ⁵Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts,
14 USA;

15 ⁶Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA;

16 ⁷Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public
17 Health, Boston, Massachusetts, USA;

18 ⁸Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA;

19 ⁹Division of Global Health, Massachusetts General Hospital for Children, Boston,
20 Massachusetts, USA;

21 ¹⁰Department of Global Health, University of Washington, Seattle, Washington, United States

22 ¹¹McGill Genome Centre, McGill University, Montréal, Québec, Canada;

23 ¹²McGill Centre for Microbiome Research, McGill University, Montréal, Québec, Canada

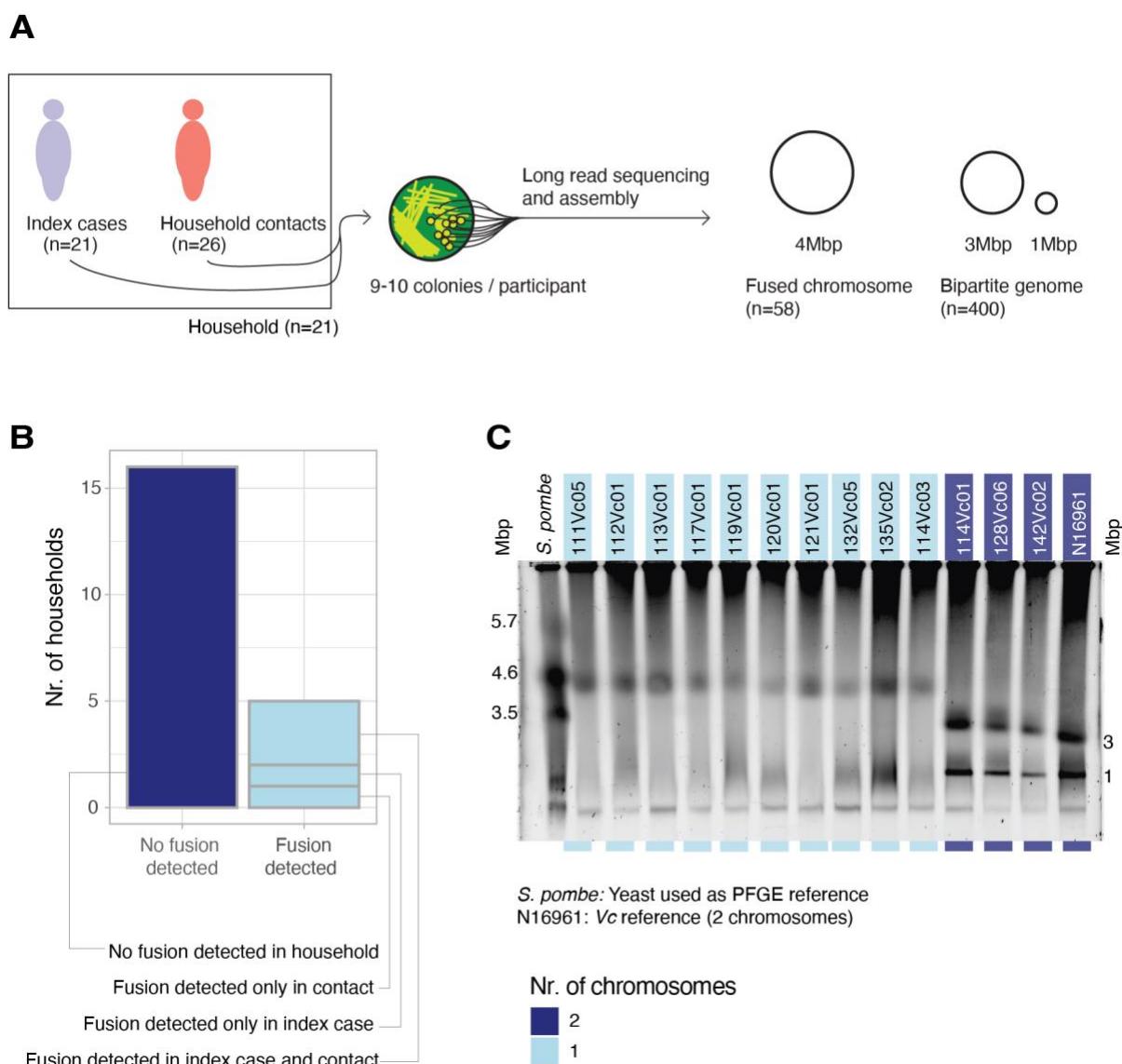
24

25 *Correspondence: aline.cuenod@mcgill.ca, patrick.lypaczewski@mcgill.ca,

26 anawei@uw.edu, jesse.shapiro@mcgill.ca

27 Abstract:

28 Two circular chromosomes are a defining feature of the family *Vibrionaceae*, including the
29 pathogen *Vibrio cholerae*, with rare reports of isolates with a single, fused chromosome. Here
30 we report chromosome fusions in clinical *V. cholerae* O1 isolates, including several
31 independent fusion events stable enough to be transmitted between patients within a
32 household. Fusion occurs in a 12 kilobase-pair homologous sequence shared between the
33 two chromosomes, which may lead to reversible chromosomal fusion.

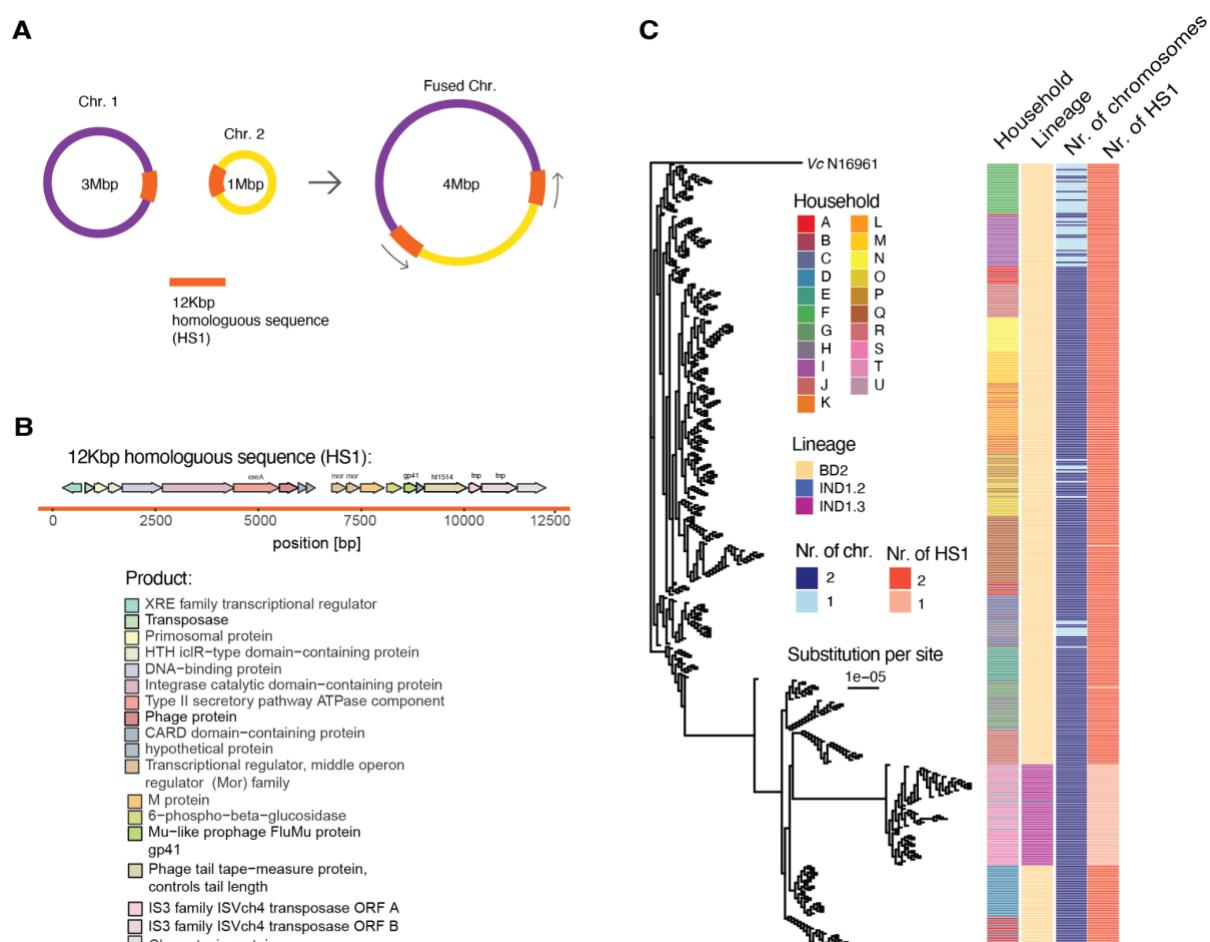

34 Main:

35 Cholera is a waterborne infectious disease affecting millions of people yearly and causing
36 outbreaks where sanitary infrastructure is inadequate¹. The ongoing seventh cholera
37 pandemic is caused by a pathogenic lineage (7PET) of *Vibrio cholerae* O1 (Vc) carrying four
38 virulence-associated genomic islands: VPI-1, VPI-2, VSP-I and VSP-II²⁻⁴. In Bangladesh,
39 where cholera is endemic, the 7PET sublineage BD2 was dominant between 2009 and 2018,
40 followed by BD1.2, which was responsible for a large outbreak in Dhaka in 2022⁵. Vc typically
41 carries two chromosomes: the larger ~3 megabase-pair (Mbp) chromosome 1 and the smaller
42 ~1 Mbp chromosome 2. When replication of chromosome 2 is impaired under laboratory
43 conditions, the two chromosomes can fuse to restore cell replication⁶. Out of thousands of
44 sequenced genomes, only three Vc with fused chromosomes have been reported to date from

45 natural environments⁶⁻⁸. These have typically been considered rare exceptions to the bipartite
46 genome structure. However, due in part to limitations of short-read sequencing, the prevalence
47 of chromosome fusion in *Vc* remains unknown.

48
49 Here, we aimed to detect chromosome fusion in clinical *Vc* isolates and identify potential fusion
50 mechanisms. To do so, we used long-read nanopore sequencing of 467 *Vc* isolates, collected
51 between 2015 and 2018 from 47 patients (21 index cases and 26 household contacts) from
52 21 households in Dhaka, Bangladesh (Fig 1A, Table S1, Fig S1). All isolates were identified
53 as serotype O1. Of these, 400 genomes assembled into two circular chromosomes (3 and 1
54 Mbp each), 58 into a single 4 Mbp chromosome, and nine were incompletely assembled. All
55 58 single-chromosome genomes resulted from an apparent fusion of chromosomes 1 and 2.
56 These fused chromosomes were identified in ten different cholera patients from five different
57 households. In three households, fused chromosomes were assembled from both the index
58 cases and household contacts sampled 0-5 days later, suggesting that fused genomes are
59 stable enough to be transmitted (Fig 1B). In the other two households, fusions were detected
60 in only one patient per household.

61
62 As independent verification of chromosome fusion, we subjected a subset of isolates to
63 pulsed-field gel electrophoresis (PFGE). We included one putative fused-chromosome isolate
64 per patient for which at least one fused chromosome was assembled (n=10) and three putative
65 non-fused-chromosome isolates for comparison. As expected, we detected one band at 4 Mbp
66 for all putative fused-chromosome isolates and two bands at 3 and 1 Mbp for the non-fused
67 isolates, corresponding to the known sizes of chromosomes 1 and 2, respectively (Fig 1C).
68 Some of the fused isolates have a weak band at 1 Mbp in addition to the band at 4 Mbp, but
69 the lack of a band at 3 Mbp in these isolates indicates that fusion did occur. Chromosome
70 fusion therefore does not appear to be an artefact of sequencing or assembly.



71 **Fig. 1. *V. cholerae* with a fused chromosome identified in multiple patients and households. A:**
72 Schematic representation of the study design; **B:** Occurrence of chromosome fusion by nanopore
73 sequencing in the sampled households; **C:** PFGE results for the putatively fused (light blue) and non-
74 fused (dark blue) chromosomes identified by sequencing. *Schizosaccharomyces pombe* is used as a
75 DNA size marker and Vc strain N16961 as a well-characterized isolate with two chromosomes.
76

77 To understand the mechanism of fusion, we scanned the flanking regions on either side of the
78 fusion site. We found that in fused chromosomes, the chromosome 2 sequence is flanked by
79 a 12 kilobase-pair (Kbp) homologous sequence (HS1) oriented in the same direction on either
80 side of the integrated chromosome 1 sequence. In many non-fused strains, HS1 appears
81 twice: once on chromosome 1 and once on chromosome 2 (Fig 2A). This suggests
82 homologous recombination at HS1 as a potential fusion mechanism. On chromosome 1, HS1
83 is located within VPI-2 and encodes multiple proteins linked to horizontal gene transfer (Fig
84 2B). To further support the observation of fusion in the assemblies, we screened the raw
85 sequence data for reads spanning HS1 and its flanking regions, which were highly concordant
86 with the results of the assemblies (Fig S2).
87

88

90 To investigate the dynamics of chromosome fusion in our samples, we examined the
91 phylogenetic distribution of fused and non-fused states and reconstructed the likely ancestral
92 states along the phylogeny. The phylogenetic clustering of patients within a household is
93 consistent with previous studies^{9,10}, suggesting *V. cholerae* transmission within households
94 (Fig 2C), including instances of fused chromosome transmission (Fig 1B). All fused
95 chromosomes were part of the 7PET sublineage BD2 (Fig 2C). All BD2 genomes in our
96 dataset contained two copies of HS1 (one on each chromosome), likely explaining their
97 propensity for fusion. By contrast, other sublineages – notably IND1.3 – contained only one
98 HS1 copy (Fig 2C), preventing chromosome fusion through the same mechanism.
99 Reconstructing the ancestral chromosome states showed that fusion events (n=10) were less
100 common than fission (n=17) (Fig S3A). Independent fusion events were inferred at five nodes
101 in the phylogeny within BD2 (Fig S3B). The closest subsequent fission events were detected
102 at distances of 1-1.9x10⁻⁵ substitutions/site, corresponding to 41-79 single nucleotide variants
103 (SNVs). Assuming a molecular clock of 3.5 SNVs/year¹¹, this suggests that fused
104 chromosomes can remain stable for ~12-22 years. Yet, we detected closely-related fused and
105 non-fused isolates collected from the same household and patient, suggesting rapid
106 fusion/fission events can occur within patients.
107

108
109 **Fig. 2. Chromosome fusion events occur in *V. cholerae* sublineages with a shared homologous**
110 **sequence on each chromosome. A:** Schematic representation of the chromosome fusion; **B:**
111 **Annotation of genes within the homologous sequence (HS1) at the fusion site; C:** Phylogenetic tree
112 **based on 198 high-quality SNVs, along with household membership, the 7PET sublineage designation,**
113 **the number of chromosomes identified by sequencing, and the number of times HS1 was detected in**

114 the genome. Note that branches of length zero are illustrated with a small minimum branch length for
115 clarity.

116
117 We further investigated the frequency of chromosome fusion more broadly across the order
118 *Vibrionales*, in which a bipartite genome is considered a defining feature. We downloaded
119 publicly available long-read sequences (n=302, 251 of which passed our quality controls),
120 73.7% (185/251) of which were Vc (Fig S4A). Of the fully circular assemblies (n=203), four
121 assembled to one fused chromosome. One of these was a *V. natriegens* genome, whose
122 chromosomes were lab-engineered to be fused¹². The remaining three were clinical Vc
123 isolates^{13,14}. Two of these, from the IND1.1 sublineage, contained two directly-oriented copies
124 of HS1, as in our isolates. The third isolate, which was related to IND2, also contained two
125 copies of HS1 but in the opposite orientation, suggesting a local inversion of one HS1 copy.
126 These results suggest that fusion, while rare, can occur in different *Vibrio* species and Vc
127 sublineages.

128
129 We next asked if HS1 is unique, or if other potential fusion sites exist in the genome. For each
130 circular, non-fused public genome (n=199), we compared chromosome 2 against
131 chromosome 1 for regions of homology. We identified two such regions longer than 10 Kbp in
132 Vc, one of which corresponded to HS1 and the other to VSP-I² (Fig S4, Fig S5). Although
133 VSP-I might serve as a potential fusion site, we currently lack evidence for this as none of the
134 fused-chromosome genomes carries more than one VSP-I copy.

135
136 Several genes are known to be involved in Vc chromosome replication, and these all appear
137 to be present and intact in fused chromosomes. Both Vc chromosomes encode two
138 partitioning (*par*) genes involved in separating chromosomes to daughter cells¹⁵. We detect all
139 four *par* genes in the fused chromosomes sequenced here (n=58), with no mutations
140 compared to *par* genes on non-fused chromosomes. Fused chromosomes also contain origins
141 of replication from both chromosomes (ori1 and ori2) and *crtS* (Chr2 replication triggering Site).
142 *crtS* is located closer to ori1 than ori2 is to ori1 in all fused chromosomes. This arrangement
143 of loci has previously been associated with ori2 being active in a naturally fused Vc
144 chromosomes¹⁶. Finally, Vc can be engineered to support fusion of chromosomes through
145 deletion of the DNA adenine methylase *Dam*⁶. The *dam* gene was present in all our genomes
146 with no non-synonymous mutations detected; therefore loss of *dam* function is unlikely to
147 explain the observed fusions. Further experiments will be needed to understand how fused
148 chromosomes replicate, and whether fusion affects bacterial growth or other phenotypes.

149
150 Together, our results show that chromosome fusion via homologous recombination is more
151 prevalent and potentially more stable than previously thought. The clinical or phenotypic
152 consequences of fusion, if any, remain to be explored. This study reveals chromosome fusion
153 in clinical *V. cholerae* O1 strains at an unprecedented scale and highlights the power of long-
154 read sequencing to identify structural variation in bacterial genomes.

155 References:

156 1. Cholera. *Lancet* **399**, 1429–1440 (2022).
157 2. Dziejman, M. et al. *Proc. Natl. Acad. Sci. U. S. A.* **99**, 1556–1561 (2002).

158 3. Karaolis, D. K. *et al.* *Proc. Natl. Acad. Sci. U. S. A.* **95**, 3134–3139 (1998).

159 4. Jermyn, W. S. & Boyd, E. F. *Microbiology* **148**, 3681–3693 (2002).

160 5. Monir, M. M. *et al.* *Nat. Commun.* **14**, 1154 (2023).

161 6. Val, M. E. *et al.* *Mol. Microbiol.* **91**, (2014).

162 7. Johnson, S. L. *et al.* *Genome Announc.* **3**, (2015).

163 8. Yamamoto, S. *et al.* *Genome Announc.* **6**, (2018).

164 9. Domman, D. *et al.* *Nat. Genet.* **50**, 951–955 (2018).

165 10. Levade, I. *et al.* *Microbial Genomics* **3**, e000142 (2017).

166 11. Mutreja, A. *et al.* *Nature* **477**, 462–465 (2011).

167 12. Ramming, L. *et al.* *Communications Biology* **7**, 1–10 (2024).

168 13. Fuesslin, V. *et al.* *Front. Microbiol.* **13**, 909692 (2022).

169 14. Gladkikh, A. S. *Infect. Genet. Evol.* **78**, 104096 (2020).

170 15. Yamaichi, Y., *et al.* *Proc. Natl. Acad. Sci. U. S. A.* **104**, 630–635 (2007).

171 16. Bruhn, M. *et al.* *et al.* *Front. Microbiol.* **9**, 427674 (2018).