

1 **Large-scale genotyping and meta-analysis of *PIEZ01* short tandem repeat alleles suggest**
2 **a modest association with malaria susceptibility**

3
4 Ellen M. Leffler^{1,2,3*}, Gavin Band^{1,2}, Anna E. Jeffreys¹, Kate Rowlands¹, Christina Hubbart¹,
5 Kalifa A. Bojang⁴, David J. Conway⁵, Muminatou Jallow⁶, Fatoumatta Sisay-Joof⁴, Umberto
6 D'Alessandro⁴, Carolyne M. Ndila⁷, Alexander W. Macharia⁷, Kevin Marsh^{7,8}, Thomas N.
7 Williams^{7,9}, David Kachala¹⁰, Malcolm Molyneux^{10,11}[∞], Vysaul Nyirongo¹⁰, Terrie E.
8 Taylor^{10,12}, Kirk A. Rockett^{1,2}, Dominic P. Kwiatkowski^{1,2,13}[∞]

9
10 ¹Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3
11 7BN, UK.

12 ²Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK.

13 ³Department of Human Genetics, University of Utah, 15N 2030E, Salt Lake City, UT, USA.

14 ⁴MRC Unit, The Gambia at LSHTM, Atlantic Boulevard, Fajara, Post Office Box 273, The
15 Gambia.

16 ⁵Department of Pathogen Molecular Biology, London School of Hygiene and Tropical
17 Medicine, Keppel Street, London WC1E 7HT, UK.

18 ⁶Royal Victoria Teaching Hospital, Independence Drive, Post Office Box 1515, Banjul, The
19 Gambia.

20 ⁷Kenyan Medical Research Institute (KEMRI)–Wellcome Trust Research Programme, Post
21 Office Box 230-80108, Kilifi, Kenya.

22 ⁸Nuffield Department of Medicine, NDM Research Building, Roosevelt Drive, Headington,
23 Oxford OX3 7FZ, UK.

24 ⁹Faculty of Medicine, Department of Medicine, Imperial College, Exhibition Road, London
25 SW7 2AZ, UK.

26 ¹⁰Malawi-Liverpool–Wellcome Trust Clinical Research Programme, Queen Elizabeth Central
27 Hospital, College of Medicine, Post Office Box 30096, Chichiri, Blantyre 3, Malawi.

28 ¹¹Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.

29 ¹²College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA.

30 ¹³Big Data Institute, University of Oxford, Oxford OX3 7LF, UK.

31 *Corresponding author. Email: leffler@genetics.utah.edu

32 [∞]Deceased

33 **Abstract**

34 PIEZO1 forms a mechanosensitive ion channel involved in regulating calcium levels
35 in red blood cells. E756del, a deletion allele within a short tandem repeat (STR) in *PIEZO1*, is
36 common in many African populations and has been proposed to be associated with protection
37 from malarial disease, but epidemiological evidence has been inconsistent. Here, we use
38 Illumina sequencing of amplicons covering the *PIEZO1* STR to genotype 5,558 severe malaria
39 cases and 8,174 population controls from The Gambia, Kenya, and Malawi. We estimate a
40 modest effect for E756del and meta-analysis with two published studies, for a total of 8,224
41 cases and 10,103 controls, reveals a consistent protective effect (OR=0.93, 95% CI 0.88-0.99).
42 By comprehensively genotyping the STR, we identify additional, less common alleles, with
43 two (Q745del and E756ins) showing consistent, but also modest, risk effects across studies.
44 Although allele frequency differentiation between African and non-African populations could
45 be consistent with a selective effect, we show that it is not exceptional compared with STR
46 variants genome wide. Thus, our results support a protective effect of E756del against risk of
47 malaria but with a much smaller effect size than initially reported.

48

49 **Introduction**

50 During the symptomatic blood stage of malaria, *Plasmodium* parasites invade and then
51 replicate inside red blood cells (RBCs), ultimately rupturing them to release new merozoites to
52 infect new RBCs¹. Consequently, genetic variants affecting RBC structure or function have
53 been proposed to influence susceptibility to malaria in populations that have been historically
54 exposed to malaria selection, sometimes despite detrimental effects on hematological traits^{2,3}.
55 While variants in a subset of genes important for RBC function including *HBB*, *G6PD*, and
56 *ABO* now have well-established connections with malarial disease, many other candidates have
57 not been consistently found to be associated with malaria protection and do not show strong
58 evidence for association in the large association studies that have been carried out⁴⁻⁷.

59 Recently, a genetic variant (E756del) in the gene *PIEZO1* was suggested to be a
60 candidate for malaria protection, showing a strong association with RBC dehydration and
61 reduced parasitemia upon *in vitro* infection with *Plasmodium falciparum* in heterozygous
62 carriers⁸. The *PIEZO1* protein forms trimers that function as a mechanosensitive cation channel
63 active in many cell types including RBCs^{9,10}. Rare gain-of-function and loss-of-function
64 mutations in *PIEZO1* are known to cause human diseases with strong RBC phenotypes
65 (hereditary xerocytosis and congenital lymphatic dysplasia, respectively)¹¹. The E756del allele
66 is characterized as gain-of-function, as it has been linked with slower channel inactivation

67 allowing more calcium influx⁸. Although E756del is not associated with disease, subsequent
68 effects on hydration status and RBC volume¹⁰ may be important in the susceptibility of RBCs
69 to parasite invasion and growth^{12,13}. The mechanosensitivity of PIEZO1 is further consistent
70 with a potential role during parasite invasion, which involves contact between the two cells
71 and membrane deformation^{14,15}. E756del also shows frequency differentiation with higher
72 incidence in African than European populations, which has been interpreted to indicate an
73 effect of selection due to malaria⁸.

74 Set against this evidence, however, is a lack of any association signal in genome-wide
75 association studies (GWAS) for severe *P. falciparum* malaria^{4,5,7}. An important caveat is that
76 the E756del mutation was not directly typed on the genotyping chips used in these studies,
77 meaning that any association evidence would have had to come from imputed E756del
78 genotypes or at nearby variants in linkage disequilibrium. Besides these limitations inherent to
79 GWAS methodology, E756del lies in a short tandem repeat (STR), where additional length
80 variation has been reported¹⁶⁻¹⁸. The complex nature of this variant and higher mutation rate of
81 STRs make accurate imputation more challenging. To address this, two recent studies have
82 directly typed E756del in malaria cases and controls, but with opposing results. A small study
83 of 253 severe malaria cases and 193 mild malaria controls in Gabon reported a strong protective
84 effect against severe disease, but only in heterozygotes¹⁷. However, a second larger study
85 considered 2,413 severe malaria cases and 1,736 unaffected controls in Ghana and found no
86 evidence of a protective effect¹⁹. Thus, a key possibility remains that no association between
87 E756del and malaria susceptibility exists, that is, that the reduced parasitemia observed in lab
88 settings does not correspond to a genuine protective effect in populations experiencing malaria.

89 Here, we resolve this by testing for association between E756del and malaria
90 susceptibility in an even larger dataset, by directly sequencing the *PIEZO1* STR in over 5,000
91 severe malaria cases and 8,000 population controls from three study populations in The
92 Gambia, Malawi, and Kenya. To generate the largest study possible, we then meta-analyse
93 these data with both previous studies, for a total sample size of 18,327. Across the combined
94 dataset we find weak evidence for a protective effect (P=0.021 for an additive model), but a
95 much more modest effect size than originally reported (OR=0.93, 95% CI 0.88-0.99). We also
96 find some evidence that two less common STR alleles (Q749del and E756ins) may be
97 associated with increased risk of severe malaria. We then revisit the question of natural
98 selection and find that although the E756del allele frequency is higher and the Q749del allele
99 frequency is lower in African than European populations, these are not especially extreme in
100 the context of genome-wide variation, indicating no strong evidence for positive selection. This

101 analysis unifies previous reports and supports a much smaller effect than originally suggested,
102 highlighting the need to assess associations in the context of large samples.

103
104

105 **Results**

106

107 **E756del is located in a compound STR with multiple variant alleles**

108 To identify and genotype variation at the *PIEZ01* STR, we implemented an amplicon
109 sequencing assay targeting 158 bp centered on the STR locus (Tables S1-S4). The E756del
110 allele corresponds to a 3 bp deletion in a tri-nucleotide repeat encoding a series of seven
111 glutamic acid (E) residues within exon 17 of *PIEZ01* (Figure 1A). It is directly preceded by
112 another tri-nucleotide repeat encoding five glutamine (Q) residues. As both STR motifs are 3
113 bp in length, changes in the number of repeat units result in in-frame mutations that increase
114 or decrease the number of E or Q amino acids.

115 We sequenced amplicons covering the entire compound STR for 15,644 individuals,
116 multiplexing across a total of 11 lanes of an Illumina MiSeq. The majority were severe malaria
117 cases and population controls from the discovery or replication phases of our previously
118 published GWAS⁴. After quality control and filtering, 13,732 individuals were successfully
119 genotyped using HipSTR²⁰, with median 6,262x coverage of the *PIEZ01* STR (Table 1). In
120 total, 11 alleles were identified and showed length variation in both of the trinucleotide repeats
121 (Figure 1A and Table S5). Five of the 11 alleles had >0.5% frequency in at least one of the
122 populations studied (Figure 1B). As expected, the most common allele was E756del, which
123 corresponds to deletion of a single glutamic acid residue.

124 Because short-read based genotyping of STRs is challenging both in terms of molecular
125 assay design and bioinformatic analyses, we genotyped a subset of samples using Sanger
126 sequencing (Figure S1 and Table S6) and examined concordance between another subset of
127 samples that were sequenced more than once. Both comparisons showed high concordance
128 (97% and 99%, respectively; Table S7).

129

130 ***PIEZ01* STR alleles are not strongly associated with severe malaria**

131 We tested for association between the four most common STR alleles and severe
132 malaria in the 5,558 cases and 8,174 population controls from The Gambia, Kenya, and Malawi
133 passing QC in our dataset, using a logistic regression model in which all four alleles were
134 included as predictors and ethnicity as a covariate. This model therefore expresses effect

135 parameters relative to the baseline of samples that do not carry any of these four STR alleles.
136 In a meta-analysis across all three populations, we estimated a protective effect of E756del
137 (meta-analysis OR=0.95, 95% CI 0.88-1.02), but this was not statistically significant (p=0.15;
138 Figure 2 and Table S8). Interestingly, two other alleles showed limited evidence for a risk effect
139 across all three populations (Q749del meta-analysis OR=1.14, 95% CI 1.00-1.30, p=0.046;
140 E756ins meta-analysis OR=1.18, 95% CI 0.98-1.43, p=0.076).

141 To check that population structure was not driving the trend, we also tested for
142 association in the subset of 3,794 cases and 4,209 controls that had genome-wide genotype
143 data available⁴. Including the first 10 principal components in each population as covariates
144 did not substantially alter the direction or size of effects (Figure S2). Because severe malaria
145 is a heterogeneous phenotype based on multiple clinical indicators, we also tested for an effect
146 against the two main subphenotypes of severe malaria using a multinomial logistic regression
147 approach. We observed a stronger association of Q749del with risk of severe malarial anemia,
148 primarily supported in The Gambia and Malawi, but otherwise similar effects across
149 subphenotypes (Figure 2).

150 These results are therefore consistent with, but do not by themselves provide strong
151 evidence for, a protective effect of the E756del allele against malaria susceptibility. Notably
152 however, the previous estimates from two studies of different populations – Thye *et al*¹⁹ in
153 which E756del was genotyped in ~4,000 Ghanaian children, as well as Nguetse *et al.*¹⁷ in which
154 E756del was genotyped in ~450 mild and severe malaria cases in Gabon – are both consistent
155 with this study’s direction of effect. Indeed, a fixed-effect meta-analysis of our data with data
156 from these two studies under an additive model is statistically significant (p=0.021; Figure 3).
157 The point estimate of the overall relative risk is 0.93 (OR=0.93, 95% CI 0.88-0.99), that is, the
158 allele might confer a ~7% protective effect. This is substantially weaker than the estimated
159 effect of previously identified common protective alleles at *HBB*, *ABO*, *ATP2B4* or the
160 glycophorin locus⁴, but may still be important at a population level given that the allele has
161 ~15-20% frequency across African populations. Although the number of homozygotes is small,
162 results appear consistent with either an additive or dominant model; an effect limited to
163 heterozygotes as reported in Nguetse *et al.*¹⁷ is not replicated in either of the larger studies
164 (Figure S3, Tables S9 and S10).

165 Finally, we compared effect size and direction for additional STR alleles, although
166 comprehensive STR genotyping was not available from the other studies. The E756ins allele
167 shows a similar protective effect in both our study and Thye *et al.*¹⁹, but this does not reach
168 statistical significance (Figure 3B and Table S8). The Q749del also had an estimated protective

169 direction of effect in both our study and Nguetse *et al.*¹⁷ (as noted in the published study,
170 genotype data not provided).

171

172 **Assessing evidence for interaction with malaria-associated variation at *ATP2B4* or *HBB***

173 Given the involvement of *PIEZ01* in erythrocyte calcium levels¹⁰, a natural question is
174 how the E756del association relates to the previously identified association in *ATP2B4*^{5,7},
175 which is also involved in calcium regulation. Specifically, *ATP2B4* encodes a calcium pump
176 (PMCA4) that localizes to the red cell membrane where it acts to remove calcium ions from
177 the cell^{21,22}. A common haplotype in *ATP2B4* is associated with protection against severe
178 malaria^{4,5}, and has been linked to reduced expression levels and thus, like E756del, to increased
179 calcium levels in RBCs²¹. To test for an interaction with E756del, we repeated the association
180 test including rs1541254 genotype (which was directly typed in our samples previously⁷ and
181 tags the *ATP2B4* association) as an additional predictor, along with interaction terms for each
182 of the four most common *PIEZ01* STR alleles. We found that while there are some differences
183 in the estimated effect of *PIEZ01* alleles in individuals with a risk vs. protective genotype at
184 *ATP2B4* (Figure S4), the addition of interaction terms does not significantly improve the model
185 (likelihood ratio test p=0.055). We similarly tested for an epistatic interaction with the sickle
186 cell allele (rs334) in *HBB*, but none was observed (likelihood ratio test p=1).

187

188 **Frequency differentiation of *PIEZ01* alleles is not an outlier in genome-wide context**

189 Given the estimate of a weaker protective effect for E756del, we also re-assessed
190 evidence for natural selection evidenced by population differentiation at this variant. Ma *et al.*⁸
191 originally focused on the E756del allele from among *PIEZ01* missense and inframe indels
192 because it showed higher frequency in African populations (~15-20%) than in populations
193 outside Africa (e.g., 0% in European populations), as would be expected if malaria exposure
194 causes positive selection for the allele (Figure 1C). Intriguingly, Q749del, which we find may
195 have a risk effect on malaria, shows the converse pattern where it is at higher frequency in
196 European populations (10.9%) compared with African populations (5.4%) (Figure 1D).
197 However, this degree of differentiation may also result from genetic drift leading to stochastic
198 changes in allele frequency. To assess whether the alleles are unusually differentiated, we
199 analyzed the joint frequency spectrum of all STR variants genome-wide, using genotypes
200 previously generated for the 1000 Genomes populations by Saini *et al.*¹⁸. We found that the
201 frequency differences observed at E756del and Q749del were somewhat unusual but not
202 extreme when considering the genome-wide distribution of all STRs (n=327,888; empirical

203 $p=0.06$ and $p=0.15$ for the two alleles, Figure 4), or restricting to STRs with the same number
204 of alternative alleles ($n=24,892$; empirical $p=0.077$ and $p=0.16$; Figure S5A-B) or only inframe
205 alleles in coding regions ($n=144$; empirical $p=0.14$ and $p=0.5$; Figure S5C-D).

206 These results are therefore consistent with, but do not in themselves provide strong
207 evidence for malaria-driven selection at this locus and emphasize the need to take demographic
208 context into account (captured in genome-wide variation) when analyzing this type of
209 differentiation signal.

210

211 **Discussion**

212 Here, we aimed to evaluate the epidemiological association between severe malaria and
213 E756del, a variant in the *PIEZ01* mechanosensitive ion channel, which had previously been
214 shown to influence RBC hydration and to affect parasite growth in human RBCs⁸. Using
215 E756del genotypes assessed by directly sequencing the STR locus, we estimate the effect size
216 for this allele in a large sample from The Gambia, Malawi and Kenya, and combine this with
217 data from two earlier studies through meta-analysis. Our results are consistent with a possible
218 protective effect against severe malaria, but with an effect size much less than at established
219 malaria-associated loci including *ATP2B4*. The statistical evidence is such that this effect
220 would not be remarkable in a genome-wide context. Our interpretation is that there may indeed
221 be an effect of the *PIEZ01* STR against severe malaria in human populations, but if so it is
222 substantially weaker than the described *in vitro* effects⁸ and the previous estimates reported in
223 Nguetse *et al.*¹⁷.

224 Subsequent to our analysis, an additional association study on E756del in Senegal was
225 published (total $n = 260$)²³. Although the cases include both mild and severe malaria and
226 numbers are small, this study also estimated a protective direction of effect and additionally
227 indicated a possible epistatic effect with *ATP2B4*. Studies in larger samples and/or advances in
228 understanding the causal mechanisms may be needed to resolve this. While E756del protection
229 could be conferred simply by changes to calcium levels, other factors including RBC shape
230 have been proposed²⁴, and effects in other cell types could also be important²³. In addition, a
231 potential interaction of E756del with the sickle cell allele has been investigated both in the
232 context of malaria and severity of sickle cell disease, with mixed but overall little evidence in
233 support^{17,25,26}. Here, we also do not find evidence for an interaction between E756del and the
234 sickle cell allele.

235 The amplicon sequencing approach allowed us to discover and genotype other STR
236 alleles. Like many other STR loci, we find that the *PIEZ01* STR is multi-allelic, with several

237 common alleles segregating in global populations. We identified three additional alleles with
238 appreciable frequency across populations, all of which were indels of size multiples of 3 bp.
239 The second most common allele, Q749del, has the same total length as E756del but deletes a
240 glutamic acid residue instead of a glutamine. This allele shows some evidence of a risk effect
241 against severe malaria, the same direction of effect also noted in Nguetse *et al.*¹⁷, but Thye *et*
242 *al.*¹⁹ did not genotype this allele. Similarly, E756ins shows some evidence of a risk effect in
243 both our study and Thye *et al.*¹⁹ Future experimental studies looking at channel function in
244 these genotypes could add support to the hypothesis that the changes might have opposing
245 consequences.

246 E756del was first highlighted because of the observed differences in frequency between
247 Africa and Europe⁸. However, we found that E756del and Q749del are not markedly more
248 differentiated between Africa and Europe than other variants genome wide. Although this
249 analysis does not find strong evidence for malaria-driven positive selection at this locus, it is
250 worth noting that other alleles known to be under selection due to malaria, including sickle
251 haemoglobin, also do not appear extreme in this type of comparison^{4,27}, so that this finding
252 does not rule out positive selection either.

253 In summary, *PIEZ01* clearly plays an important role in RBCs and the meta-analysis
254 here provides evidence that the STR has a small effect on variation in susceptibility between
255 individuals. Ultimately, our study reinforces the importance of acquiring large sample sizes to
256 assess association when effects may *a priori* be small, as is often the case for genetic variants
257 even when there is functional evidence implicating a relevant gene. Given that substantial
258 heritability of malaria susceptibility is unexplained by the currently identified risk loci⁴,
259 *PIEZ01* may be one of many additional loci of smaller effect that remain to be discovered.

260

261

262 **Methods**

263

264 **Amplicon sequencing of the *PIEZ01* STR.**

265 To identify and genotype variation at the *PIEZ01* STR, we implemented an amplicon
266 sequencing assay with primers surrounding the STR in exon 17 (Table S1). In short, amplicons
267 were generated covering 158 bp across the entire STR (chr16:88,800,325-88,800,482; hg19)
268 for 15,644 samples, comprising 6,312 severe malaria cases and 9,332 population controls from
269 The Gambia, Kenya and Malawi (Table 1). Samples were amplified in 96-well plates with two
270 rounds of PCR, adding a well-level and then plate-level bar code as well as Illumina adapter
271 sequences (Tables S1-S4). The double barcode by plate and by well allowed for high-level
272 multiplexed sequencing, and samples were sequenced across 11 Illumina MiSeq lanes with
273 paired 150 bp reads. Besides a first lane with lower multiplexing (~150 samples/lane), samples
274 were multiplexed to ~1500 samples/lane.

275 Reads from each lane were de-multiplexed to the sample level by barcode, allowing no
276 mismatches, using *sabre* (<https://github.com/najoshi/sabre>), which also strips the barcode
277 sequences from the reads. Primer sequences were additionally removed using the *trimmer*
278 script from the *fastx* toolkit (http://hannonlab.cshl.edu/fastx_toolkit/). Paired reads were then
279 mapped to the human reference genome (hg19) using *bwa mem*²⁸.

280

281 **Genotyping the *PIEZ01* STR**

282 Genotypes were called using *hipSTR* v0.6.2²⁰, a haplotype-based STR genotype caller
283 that models locus-specific PCR stutter and performs realignment of reads to candidate STR
284 haplotypes discovered from the data. The *PIEZ01* STR coordinates were extracted from the
285 provided *bed* file of human STRs (chr16:88800373-88800424; b37). The flag *no-rmdup* was
286 set to accommodate the fixed-position amplicon sequences and the limit for max-reads was
287 increased to allow for the high coverage of the locus. Samples from the same lane were
288 analyzed together and genotypes were then filtered using the *HipSTR* provided script
289 *filter_vcf.py* with min-call-qual 0.9, max-call-flank-indel 0.15, max-call-stutter 0.15 and min-
290 call-allele-depth 250. We also excluded samples where <10% of reads mapped to *PIEZ01*,
291 indicating low-quality data, and heterozygous genotypes showing high allele bias (-
292 log10(p)>60).

293 In the experimental design, some samples were included more than once for amplicon
294 sequencing. A total of 171 samples were successfully genotyped twice and two samples were
295 successfully genotyped three times, on either the same or different sequencing lanes. In all but

296 one case the genotype calls were identical, giving a 99.4% concordance rate. The individual
297 with discordant genotypes was excluded from further analyses.

298 To validate the amplicon sequencing approach, we also sequenced a subset of Gambian
299 cases and controls using Sanger sequencing. PCR primers were designed using the
300 MassARRAY® Assay Design 3.1.2.5 software to flank the *PIEZ01* STR, spanning GRCh38
301 chr16:88733897-88734094. We included the MassARRAY® TAG10 10-base 5' sequence in
302 the primers as we found it improved success (Table S4 and Table S6). STR genotypes were
303 called by inspection of forward and reverse reads (see Figure S1 for examples). Of 305 samples
304 successfully genotyped by both Sanger and amplicon sequencing, genotypes differed for nine,
305 giving a 97% concordance rate. In three cases, Sanger sequencing identified an E756del allele
306 where amplicon sequencing did not; in four cases amplicon sequencing identified an E765del
307 allele where Sanger sequencing did not, and in two cases, Sanger called a Q749del allele
308 whereas amplicon sequencing called an E756del allele (Table S7). The nine individuals with
309 discordant genotypes were excluded from the post-QC dataset used for all analysis.
310 The resulting dataset included STR genotypes for 13,732 unique individuals (88% genotyping
311 success) with a median coverage of 6,262 reads covering the STR per sample. The QC'ed
312 dataset includes 5,558 severe malaria cases and 8,174 population controls from The Gambia,
313 Kenya and Malawi, about 60% of which were included in the discovery panel for a published
314 GWAS for severe malaria and also had genome-wide genotyping data available⁴.

315

316 **Association testing**

317 We tested for association with severe malaria in each population using mixed logistic
318 regression implemented in R with the package *lme4* under an additive or genotypic model. The
319 four most common alleles were encoded as biallelic variants in a single model and alleles other
320 than these four were considered as reference. To control for population structure, we included
321 reported ethnicity as a random effect. A subset of 367 individuals had no recorded ethnicity
322 information; we included these together with individuals with ethnicity recorded as “OTHER”
323 as a single category (total n=513). We tested for association with subphenotypes (cerebral
324 malaria (CM), severe malarial anemia (SMA), both CM and SMA, or other) using multinomial
325 logistic regression implemented in R with the *nnet* package. To more fully control for
326 population structure, we additionally tested for association in the subset of individuals (3,794
327 cases and 4,209 controls) that had genome-wide genotyping data from inclusion in published
328 GWAS studies and included 10 population-specific principal components as covariates instead

329 of reported ethnicity. For each test, we then performed a frequentist fixed-effect meta-analysis
330 across the three populations.

331 To test for genetic interactions between with malaria-associated variation in *ATP2B4*
332 and *HBB*, we included genotypes at rs1541254 and rs334, respectively, which had previously
333 been genotyped in these samples using Agena MassArray assays^{4,6}. Separately, we included an
334 interaction term in the logistic regression between E756del and each of these variants. For the
335 Gambia where the model did not converge, we limited ethnicity information to groups with at
336 least 20 individuals, combining smaller groups with the “OTHER” designation, and included
337 ethnicity as a fixed effect covariate. We also compared the log likelihood of the model with or
338 without the interaction terms.

339 To perform meta-analysis across studies, case/control status, genotype and ethnic group
340 for 4,149 individuals from Ghana in the Thye *et al.*¹⁹ study were downloaded from
341 <https://zenodo.org/record/4925969>. E756del genotypes and severe or mild malaria status for
342 446 individuals from Gabon in study were obtained from Table 2 in Nguetse *et al.*¹⁷. We tested
343 for association in each study separately as described above under either an additive or
344 genotypic model, including ethnicity as a covariate for in Ghana where this information was
345 provided. We then performed frequentist fixed-effect meta-analysis in R across our study and
346 the two published studies.

347

348 Frequency differentiation

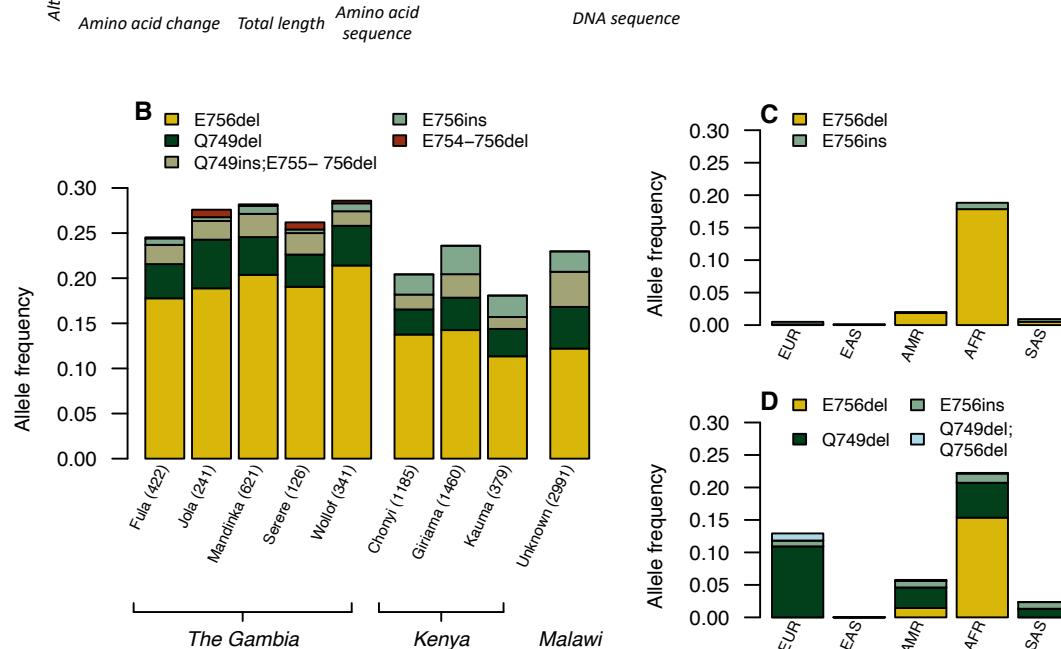
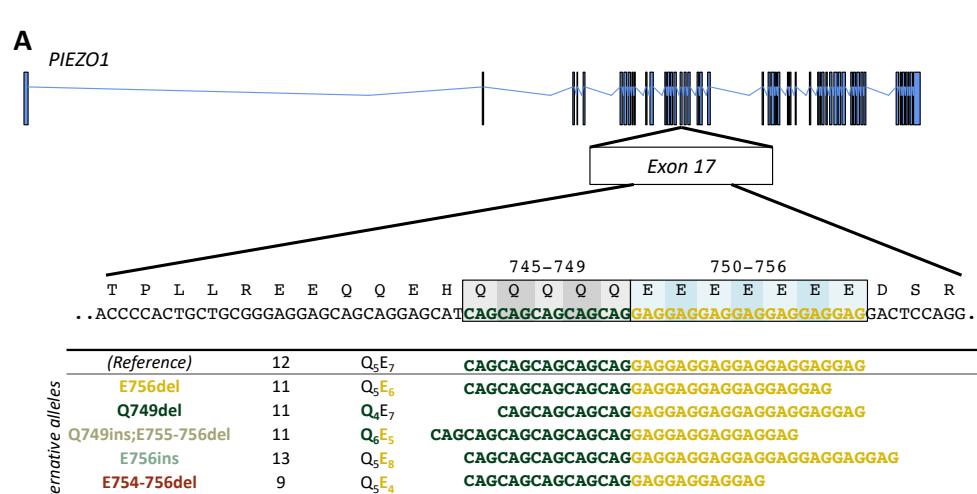
349 VCF files containing integrated STR and SNPs for 1000 Genomes Phase 3 from Saini
350 *et al.*¹⁸ were downloaded from http://gymreklab.com/2018/03/05/snpstr_imputation.html. We
351 extracted only the STRs and calculated their frequencies using *vcftools*²⁹ (n= 446,456 variants;
352 n=3,797,404 alternative alleles) and excluded alleles with zero frequency in both Europe and
353 Africa (n=327,888 variants; n=2,723,265 alternative alleles). For comparison with exonic, in-
354 frame alleles, we annotated all STR variants in this dataset using *SnpEff*³⁰ with canonical
355 transcripts only, and extracted variants annotated as either "inframe_deletion" or
356 "inframe_insertion" (n=144 variants; n=1,209 alternative alleles). We calculated empirical p-
357 values as the proportion of alleles with a frequency difference as or more extreme than that
358 observed for E756del or Q749del.

359

360

361 **Tables**

362



363 **Table 1. Number of samples genotyped, pre- and post-QC.**

Population	Cases		Controls	
	Total	After QC	Total	After QC
The Gambia	2872	2628	2157	1947
Malawi	1561	1321	3285	2991
Kenya	1879	1609	3890	3236
Total	6312	5558	9332	8174

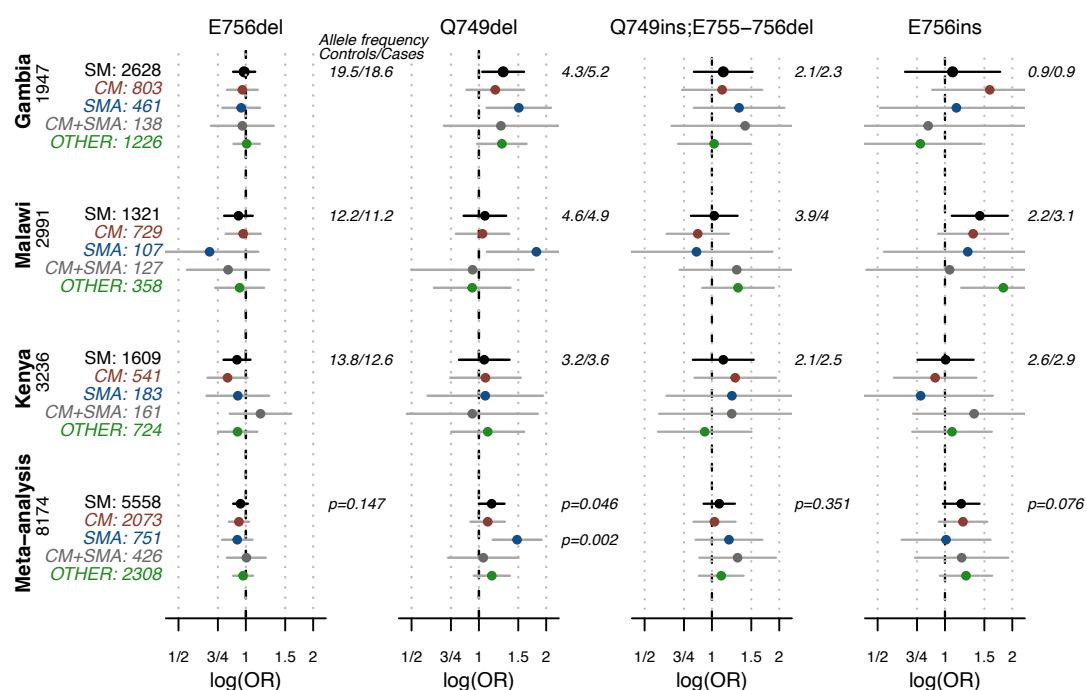
364

365 **Figures**

366 **Figure 1.** (A) Location of the compound STR in exon 17 of *PIEZ01*. The GRCh37 reference
 367 sequence, with lengths of CAG₅ and GAG₇ encoding Q₅E₇, is shown first followed by the most
 368 common variant alleles identified. (B) Allele frequencies in controls for the five STR variant
 369 alleles with >0.5% frequency in any population. For The Gambia and Kenya, frequencies are
 370 shown for ethnic groups with a sample size >100 in controls. In Malawi, no ethnic group
 371 information was recorded. (C) Allele frequencies in the 1000 Genomes superpopulations from
 372 the Phase 3 release, where only the E756del (Q₅E₆) and E756ins (Q₅E₈) alleles were called.
 373 (D) Allele frequencies in the 1000 Genomes superpopulations from Saini *et al.*¹⁸, where
 374 genotypes were imputed from a reference panel called using *HipSTR* and informed by trio
 375 relationships. Alleles Q749ins;E755-756del (Q₆E₅) and E754-756del (Q₅E₄) were not called in
 376 this dataset, and an additional allele, Q749del;E756del (Q₄E₆), with allele frequency >1% in
 377 European populations, was identified. EUR: European, EAS: East Asian, AMR: Ad Mixed
 378 American, AFR: African, SAS: South Asian
 379

380

381

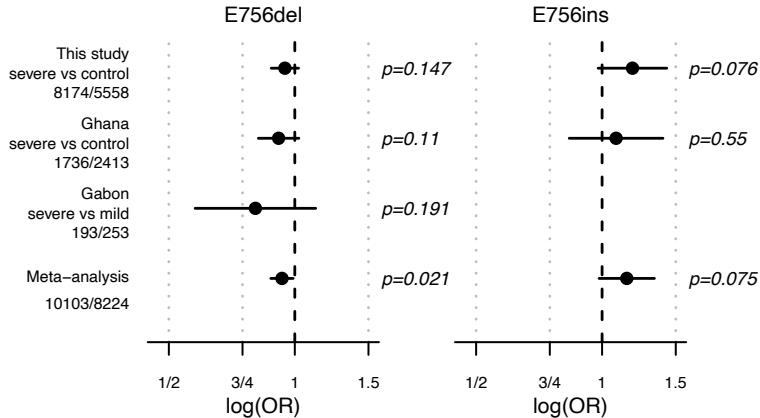

382

383 **Figure 2. Evidence for association between STR alleles and severe malaria.** The odds ratio
384 and 95% confidence interval are shown for all severe malaria (SM) cases vs. controls followed
385 by subphenotype effects as labeled to the left (CM=cerebral malaria; SMA=severe malarial
386 anemia). The number of samples with each phenotype are indicated and the number of controls
387 is given by the population name. To the right of each plot the allele frequency in each
388 population are shown for cases followed by controls, with the meta-analysis p-value for SM
389 vs. controls at the bottom. The meta-analysis p-value for association of Q749del with SMA is
390 also shown. See Table S8 for SM estimates.

391

392

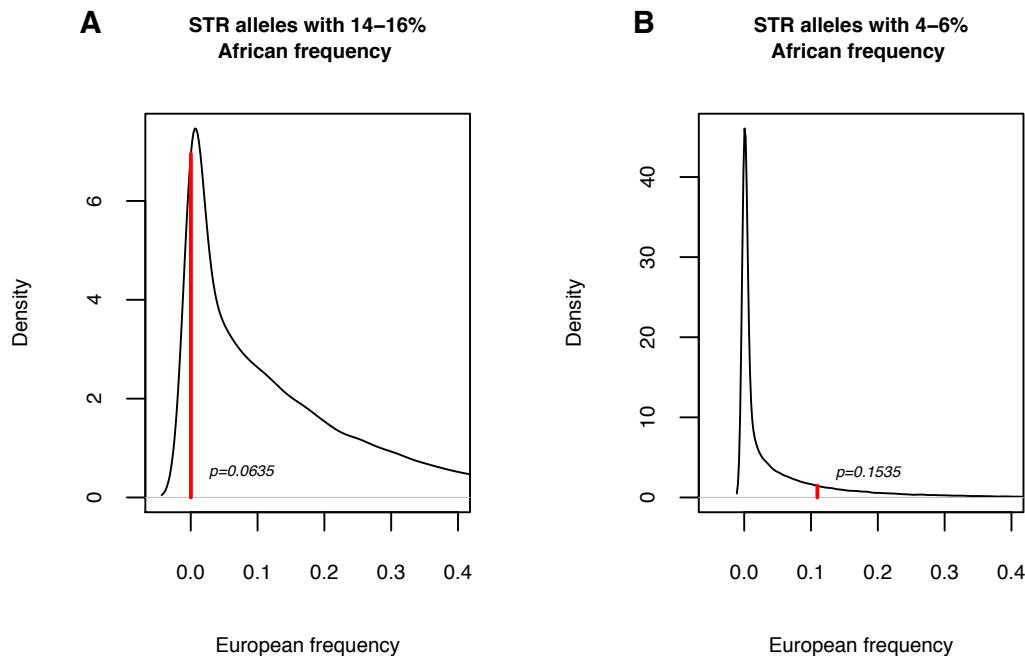
393



394

395

396


397 **Figure 3. Evidence for association between STR alleles and severe malaria across studies.**
398 The odds ratio and 95% confidence interval are shown for all severe malaria (SM) cases vs.
399 controls. The numbers of cases / controls is given under each country analyzed, including The
400 Gambia, Malawi, and Kenya from this study, Ghana from Thye *et al.*¹⁹ and Gabon from
401 Nguetse *et al.*¹⁷. To the right of each plot the allele frequency in each population is shown for
402 cases followed by controls, with the meta-analysis p-value at the bottom.
403

404
405
406

407 **Figure 4. E756del and Q749del are not extreme outliers of frequency differentiation**
408 **between European and African populations**, compared with other STR alleles at the same
409 frequency. Plots show the frequency distribution in Europe of STR alleles with a frequency 14-
410 16% (A) or 4-6% (B) in African populations. This represents alleles genome-wide at similar
411 frequency in Africa as E756del (average frequency in Africa 15%) and Q749del (average
412 frequency in Africa of 5%). The observed frequency of the corresponding *PIEZ01* STR allele
413 in European populations is marked with a red line and an empirical p-value based on the
414 number of alleles genome-wide at the same or more extreme frequency is shown.

415
416

417
418

419 **Supplementary Tables**

420

421 **Table S1. Sequences and structure for amplicon sequencing primers.**

422 Primers comprised a 3' target-specific sequence to which a Nextera 8-base index sequence
423 was added at the 5' end (N7 series for FWD primers and S5 series for REV primers using
424 different indexes for the first and second-round primers). Standard Illumina adapter
425 sequences were added 5' to the index sequence to allow for either a second-round of
426 amplification or specificity for the MiSeq platform³¹.

427

1st-round	Adapter	Index	Region-specific
Forward	GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG	[N701–N715]	CAACCCACCTTCAGGCAC
Reverse	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG	[S501–S508]	GGAACCCAGTTGGGAGATG
2nd-round	MiSeq Adapter	Index	1st-round specific
Forward	CAAGCAGAAGACGGCATACGAGAT	[N716–N729]	GTCTCGTGGGCTCGG
Reverse	AATGATAACGGCGACCACCGAGATCTACAC	[S513–S522]	TCGTCGGCAGCGTC

428

429

430 **Table S2: First-round PCR mixture for amplicon barcoding.** Details are for a single
431 reaction using a specific pair of primers. The 96-well plate was prepared by first adding the
432 primers: a uniquely indexed forward primer in each column and a uniquely indexed reverse
433 primer in each row. DNA was added next followed by the corresponding amount of a master
434 mix of the remaining components.

435

Reagent	Conc.	Volume (μ L per reaction)	Master mix (μ L per 96-well plate)
gDNA Template	5ng/ μ l	1	-
1st-round_Foreward [*]	2 μ M	2	-
1st-round_Reverse [*]	2 μ M	2	-
MgCl ₂ [†]	50mM	0.8	96
dNTPs [†]	8mM	2	240
10x Biotaq Buffer [§]	x10	2	240
BioTaq [§]	5U/ μ l	0.1	12
MilliQ H ₂ O [†]	-	10.1	1212
Total		20	1800

^{*} IDT: Integrated DNA Technologies, Leuven, Belgium

[†] Sigma-Aldrich Company Ltd, Dorset, UK

[§] Bioline Reagents Limited, London, UK

436

437

438 **Table S3: Second-round PCR mixture for amplicon barcoding.** Details are given for a
439 single reaction. To run a 96-well plate, diluted 1st round PCR products were plated first
440 followed by the master mix with a pair of unique index primers for each plate and the
441 remaining components.

442

Reagent	Conc.	Volume (μ L per reaction)	Master mix (μ L per 96-well plate)
First Round PCR	1:10	1	-
2nd-round_Foreward*	100 μ M	0.04	4
2nd-round_Reverse*	100 μ M	0.04	4
MgCl ₂ [†]	50mM	0.8	80
dNTPs [†]	8mM	2	200
10x Biotaq Buffer [§]	x10	2	200
BioTaq [§]	5U/ μ l	0.1	10
MilliQ H ₂ O [†]	-	14.02	1402
Total		20	1900

* IDT: Integrated DNA Technologies, Leuven, Belgium

[†] Sigma-Aldrich Company Ltd, Dorset, UK

[§] Bioline Reagents Limited, London, UK

443

444

445

446 **Table S4. PCR cycling conditions for all PCR reactions.**

447

Cycle step	Temperature	Time
1	96°C	60 secs
2	94°C	45 secs
2	56°C	45 secs
4	72°C	30 secs
5	GOTO step 2	5 times
6	94°C	45 secs
7	65°C	45 secs
8	72°C	30 secs
9	GOTO step 6	29 times
10	72°C	10 minutes
11	15°C	5 minutes

448

Table S5. STR allele sequences and counts.

Allele	Allele count	Allele name	Core AA sequence	AA sequence	DNA sequence
Ref	20820	Reference	Q5E7	EEQQEHQQQQQQEEEEEEED	GGAGGAGCAGCAGGAGCATCAGCAGCAGCAGCAGGAGGAGGAGGAGGACTCCAG
A1	4067	E756del	Q5E6	EEQQEHQQQQQQEEEEEEED	GGAGGAGCAGCAGGAGCATCAGCAGCAGCAGCAGGAGGAGGAGGAGGAGGACTCCAG
A2	1169	Q749del	Q4E7	EEQQEHQQQQQQEEEEEEED	GGAGGAGCAGCAGGAGCATCAGCAGCAGCAGCAGGAGGAGGAGGAGGAGGACTCCAG
A3	759	Q749ins;E755-E756del	Q6E5	EEQQEHQQQQQQEEEEEEED	GGAGGAGCAGCAGGAGCATCAGCAGCAGCAGCAGGAGGAGGAGGAGGAGGACTCCAG
A4	569	E756ins	Q5E8	EEQQEHQQQQQQEEEEEEED	GGAGGAGCAGCAGGAGCATCAGCAGCAGCAGCAGGAGGAGGAGGAGGAGGAGGACTCCAG
A5	32	E754-E756del	Q5E4	EEQQEHQQQQQQEEEEEED	GGAGGAGCAGCAGGAGCATCAGCAGCAGCAGCAGGAGGAGGAGGAGGAGGACTCCAG
A6	8	Q745E	E1Q4E7	EEQQEHQQQQQQEEEEEEED	GGAGGAGCAGCAGGAGCATGAGCAGCAGCAGCAGGAGGAGGAGGAGGAGGAGGACTCCAG
A7	19	E739Q	Q5E7	QEQQEHQQQQQQEEEEEEED	GCAGGAGCAGCAGGAGCATCAGCAGCAGCAGCAGGAGGAGGAGGAGGAGGAGGACTCCAG
A8	1	Q749ins	Q6E7	EEQQEQQQQQQQEEEEEEED	GGAGGAGCAGCAGGAGCAGCAGCAGCAGCAGGAGGAGGAGGAGGAGGAGGAGGACTCCAG
A9	1	E756ins;D757del	Q5E8	EEQQEHQQQQQQEEEEEEEEE	GGAGGAGCAGCAGGAGCATCAGCAGCAGCAGCAGGAGGAGGAGGAGGAGGAGGAGGAGTCCAG
A10	18	E755-E756del	Q5E5	EEQQEHQQQQQQEEEEEED	GGAGGAGCAGCAGGAGCATCAGCAGCAGCAGCAGGAGGAGGAGGAGGAGGAGGACTCCAG
A11	1	E753E	Q5E7	EEQQEHQQQQQQEEEEEEED	GGAGGAGCAGCAGGAGCATCAGCAGCAGCAGCAGGAGGAGGAGGAGGAGGAGGAGGACTCCAG

Table S6. PCR mixture for generating a product across the *PIEZ01* STR for Sanger sequencing.

Reagent	Sequence	Conc.	Volume (μL)
gDNA Template		5ng/μl	2
PIEZ01_MS_FWD*	5'- ACGTTGGATGCAACCCACCTCAGGCACC-3'	100μM	0.1
PIEZ01_MS_REV*	5'- ACGTTGGATGGAACCCAGTTGGGAGATGAC-3'	100μM	0.1
MgCl ₂ †		50mM	2
dNTPs†		8mM	5
10x Biotaq Buffer§		x10	5
BioTaq§		5U/ul	0.25
MilliQ H ₂ O*		-	35.55
Total			50

* IDT: Integrated DNA Technologies, Leuven, Belgium
† Sigma-Aldrich Company Ltd, Dorset, UK
§ Bioline Reagents Limited, London, UK

Table S7. Genotype mismatches between Sanger and amplicon sequencing.

Amplicon genotype	Sanger genotype	# samples
Ref/E756del	Ref/Ref	4
Ref/E756del	Ref/Q749del	1
E756del/E756del	E756del/Q749del	1
Ref/Ref	Ref/E756del	1
Ref/Ref	E756del/E756del	1
Ref/E756del	E756del/E756del	1

Table S8. Odds ratio, confidence interval and p-value for each allele under an additive model of association. “This study” shows results for a meta-analysis across the three populations included here. “Across studies” shows a meta-analysis across this study, Thye *et al.*¹⁹ and Nguetse *et al.*¹⁷ for E756del and across this study and Thye et al.¹⁹ for E756ins.

Variant	This study			Across studies		
	OR	95% CI	Meta-analysis p-value	OR	95% CI	Meta-analysis p-value
E756del	0.947	0.878-1.021	0.147	0.932	0.876-0.991	0.021
Q749del	1.141	1.000-1.301	0.046			
Q749ins; E755-756del	1.078	0.917-1.267	0.35			
E756ins	1.182	0.979-1.428	0.076	1.146	0.984-1.334	0.075

Table S9. Number of cases and controls by E756del genotype in each population. Odds ratio and confidence interval are given for heterozygous and homozygous genotypes under a genotypic model of association.

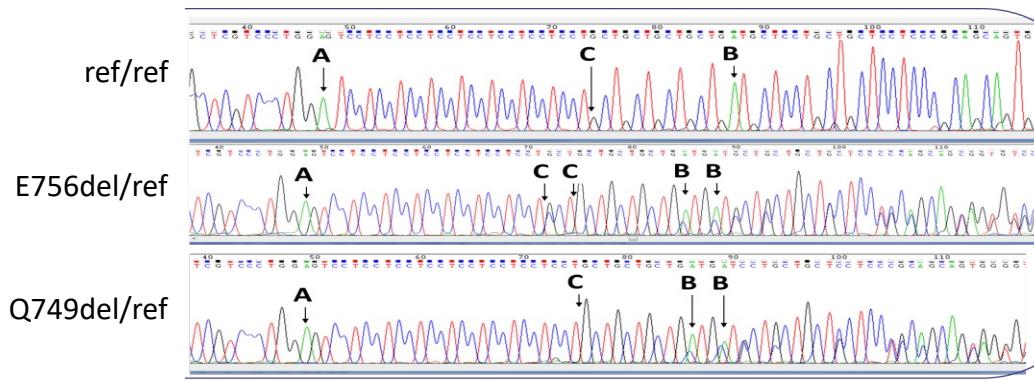
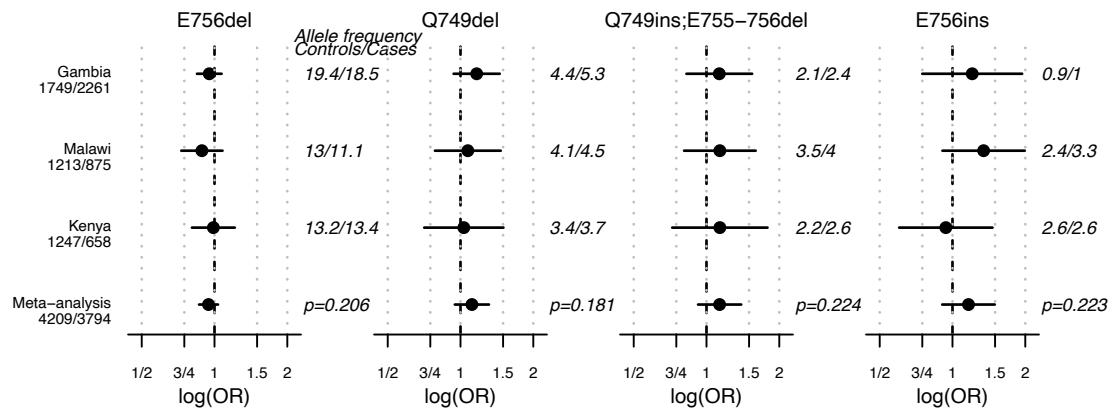

	Genotype	No. cases (freq)	No. controls (freq)	OR (95% CI)
Gambia	Ref/Ref	1762 (0.67)	1267 (0.65)	
	Ref/E756del	752 (0.29)	599 (0.31)	0.93 (0.81-1.07)
	E756del/E756del	114 (0.04)	81 (0.043)	1.07 (0.78-1.47)
Malawi	Ref/Ref	1038 (0.79)	2314 (0.77)	
	Ref/E756del	269 (0.20)	624 (0.21)	0.98 (0.83-1.15)
	E756del/E756del	14 (0.01)	53 (0.02)	0.61 (0.33-1.12)
Kenya	Ref/Ref	1237 (0.77)	2409 (0.74)	
	Ref/E756del	338 (0.21)	761 (0.24)	0.87 (0.74-1.02)
	E756del/E756del	34 (0.02)	66 (0.02)	1.04 (0.65-1.66)

Table S10. Odds ratio, confidence interval and p-value for E756del heterozygotes and homozygotes under a genotypic model of association. “This study” shows results for a meta-analysis across the three populations included here. “Across studies” shows a meta-analysis across this study, Thye *et al.*¹⁹ and Nguetse *et al.*¹⁷


Genotype	This study			Across studies		
	OR	95% CI	Meta-analysis p-value	OR	95% CI	Meta-analysis p-value
E756del heterozygotes	0.923	0.844-1.009	0.073	0.916	0.851-0.987	0.018
E756del homozygotes	0.973	0.764-1.238	0.819	0.906	0.751-1.093	0.29

Supplementary Figures

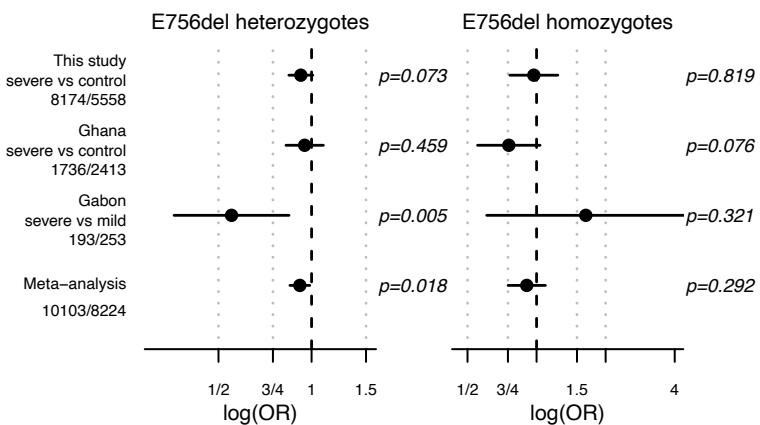

Figure S1. Examples of Sanger sequence traces for the *PIEZ01* STR for three sample inferred as homozygous reference (top), heterozygous for the E756del allele (middle) and heterozygous for the Q749del allele (bottom). The letters in each panel indicate: A a landmark A peak just before the E-encoding STR starts, C a switch to the Q-encoding STR, and B a landmark A peak just after the Q-encoding STR ends.

Figure S2. Evidence for association between STR alleles and severe malaria in cases and controls with genome-wide genotyping data, using the first 10 principal components as covariates instead of reported ethnicity. The odds ratio and 95% confidence interval are shown, with the number of cases followed by controls in each population given on the left. The allele frequency in cases followed by controls is shown on the right followed with the meta-analysis p-value at the bottom.

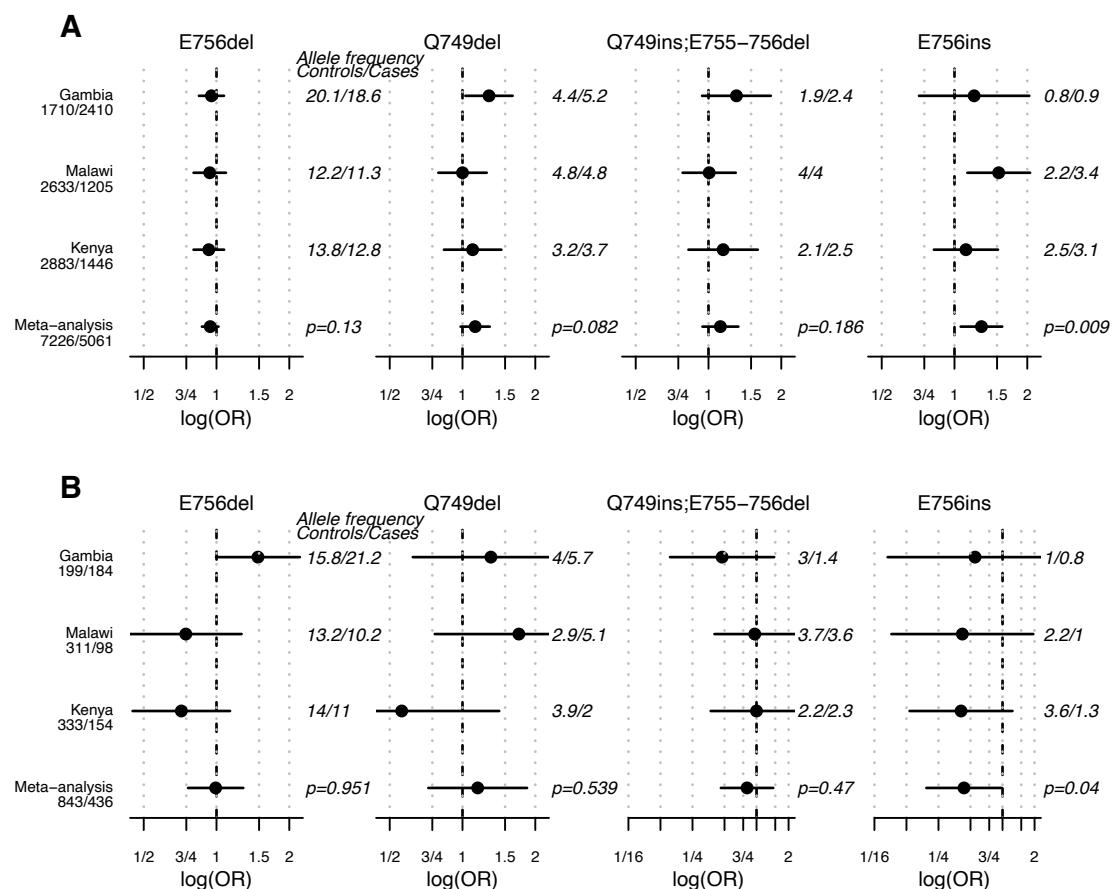


Figure S3. Evidence for association between E756del and severe malaria across studies under a genotypic model. The odds ratio and 95% confidence interval are shown for all severe malaria (SM) cases vs. controls separately for heterozygotes (left) and homozygotes (right). The numbers of cases / controls is given under each country analyzed, including Gambia, Malawi, and Kenya from this study, Ghana from Thye *et al.*¹⁹, and Gabon from Nguetse *et al.*¹⁷. The p-values are given to the right of each plot.

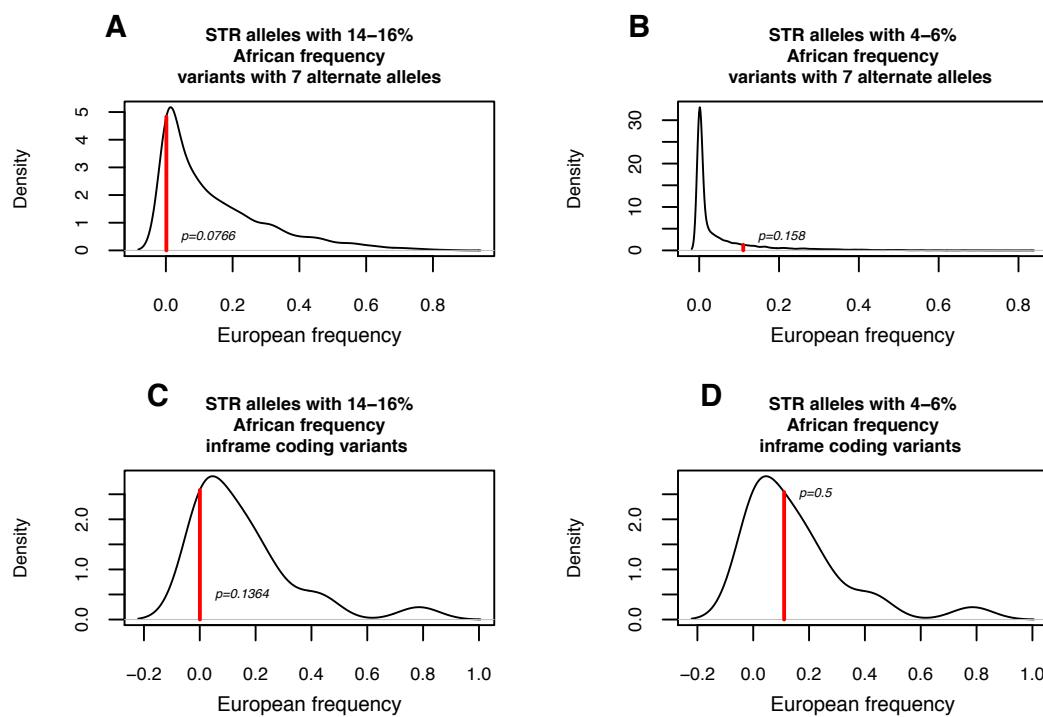


Figure S4. Evidence for association stratified by *ATP2B4* genotype.

(A) shows odds ratio and confidence interval estimates only among cases and controls carrying a risk genotype at rs1541254, while (B) shows estimates for individuals carrying a protective genotype.

Figure S5. The frequency distribution in Europe of STR alleles with a frequency in African populations within 1% of the E756del allele frequency (A and C) and Q749del allele (B and D). (A) and (B) include the subset of variants with seven alternate alleles, the same number as the *PIEZ01* STR, and (C) and (D) include the subset of variants that are in protein-coding genes where alleles are multiples of three (inframe), like the *PIEOZ1* STR. The observed frequency of *PIEZ01* STR alleles in European populations is marked with a red line and an empirical P-value based on the number of alleles genome-wide at the same or more extreme frequency is shown.

References

1. Miller, L.H., Good, M.F. & Milon, G. Malaria pathogenesis. *Science* **264**, 1878-83 (1994).
2. Weatherall, D.J. Genetic variation and susceptibility to infection: the red cell and malaria. *Br J Haematol* **141**, 276-86 (2008).
3. Kariuki, S.N. & Williams, T.N. Human genetics and malaria resistance. *Hum Genet* **139**, 801-811 (2020).
4. Malaria Genomic Epidemiology Network. Insights into malaria susceptibility using genome-wide data on 17,000 individuals from Africa, Asia and Oceania. *Nat Commun* **10**, 5732 (2019).
5. Timmann, C. *et al.* Genome-wide association study indicates two novel resistance loci for severe malaria. *Nature* **489**, 443-6 (2012).
6. Malaria Genomic Epidemiology, N. & Malaria Genomic Epidemiology, N. Reappraisal of known malaria resistance loci in a large multicenter study. *Nat Genet* **46**, 1197-204 (2014).
7. Malaria Genomic Epidemiology, N., Band, G., Rockett, K.A., Spencer, C.C. & Kwiatkowski, D.P. A novel locus of resistance to severe malaria in a region of ancient balancing selection. *Nature* **526**, 253-7 (2015).
8. Ma, S. *et al.* Common PIEZO1 Allele in African Populations Causes RBC Dehydration and Attenuates Plasmodium Infection. *Cell* **173**, 443-455 e12 (2018).
9. Coste, B. *et al.* Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. *Science* **330**, 55-60 (2010).
10. Cahalan, S.M. *et al.* Piezo1 links mechanical forces to red blood cell volume. *Elife* **4**(2015).
11. Badens, C. & Guizouarn, H. Advances in understanding the pathogenesis of the red cell volume disorders. *Br J Haematol* **174**, 674-85 (2016).
12. Tiffert, T. *et al.* The hydration state of human red blood cells and their susceptibility to invasion by Plasmodium falciparum. *Blood* **105**, 4853-60 (2005).
13. Lew, V.L. & Tiffert, T. Is invasion efficiency in malaria controlled by pre-invasion events? *Trends Parasitol* **23**, 481-4 (2007).
14. Cowman, A.F., Tonkin, C.J., Tham, W.H. & Duraisingh, M.T. The Molecular Basis of Erythrocyte Invasion by Malaria Parasites. *Cell Host Microbe* **22**, 232-245 (2017).
15. Koch, M. *et al.* Plasmodium falciparum erythrocyte-binding antigen 175 triggers a biophysical change in the red blood cell that facilitates invasion. *Proc Natl Acad Sci U S A* **114**, 4225-4230 (2017).
16. Genomes Project, C. *et al.* A global reference for human genetic variation. *Nature* **526**, 68-74 (2015).
17. Nguetse, C.N. *et al.* A common polymorphism in the mechanosensitive ion channel PIEZO1 is associated with protection from severe malaria in humans. *Proc Natl Acad Sci U S A* **117**, 9074-9081 (2020).
18. Saini, S., Mitra, I., Mousavi, N., Fotsing, S.F. & Gymrek, M. A reference haplotype panel for genome-wide imputation of short tandem repeats. *Nat Commun* **9**, 4397 (2018).
19. Thye, T. *et al.* Human genetic variant E756del in the ion channel PIEZO1 not associated with protection from severe malaria in a large Ghanaian study. *J Hum Genet* **67**, 65-67 (2022).
20. Willems, T. *et al.* Genome-wide profiling of heritable and de novo STR variations. *Nat Methods* **14**, 590-592 (2017).
21. Lessard, S. *et al.* An erythroid-specific ATP2B4 enhancer mediates red blood cell hydration and malaria susceptibility. *J Clin Invest* **127**, 3065-3074 (2017).

22. Zambo, B. *et al.* Decreased calcium pump expression in human erythrocytes is connected to a minor haplotype in the ATP2B4 gene. *Cell Calcium* **65**, 73-79 (2017).
23. Adjemout, M. *et al.* Concurrent PIEZO1 activation and ATP2B4 blockade effectively reduce the risk of cerebral malaria and inhibit in vitro Plasmodium falciparum multiplication in red blood cells. *Genes Dis* **10**, 2210-2214 (2023).
24. Lohia, R. *et al.* Pharmacological activation of PIEZO1 in human red blood cells prevents Plasmodium falciparum invasion. *Cell Mol Life Sci* **80**, 124 (2023).
25. Ilboudo, Y. *et al.* A common functional PIEZO1 deletion allele associates with red blood cell density in sickle cell disease patients. *Am J Hematol* **93**, E362-E365 (2018).
26. Rooks, H. *et al.* A gain of function variant in PIEZO1 (E756del) and sickle cell disease. *Haematologica* **104**, e91-e93 (2019).
27. Ebel, E.R., Uricchio, L.H., Petrov, D.A. & Egan, E.S. Revisiting the malaria hypothesis: accounting for polygenicity and pleiotropy. *Trends Parasitol* **38**, 290-301 (2022).
28. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. *arXiv* (2013).
29. Danecek, P. *et al.* The variant call format and VCFtools. *Bioinformatics* **27**, 2156-8 (2011).
30. Cingolani, P. *et al.* A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of *Drosophila melanogaster* strain w1118; iso-2; iso-3. *Fly (Austin)* **6**, 80-92 (2012).
31. Illumina Inc. Illumina Adapter Sequences. (2016).