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Abstract

Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) is critical for our under-
standing of the adaptive immune system’s dynamics in health and disease. Reliable analysis
of AIRR-seq data depends on accurate Immunoglobulin (Ig) sequence alignment. Various Ig
sequence aligners exist, but there is no unified benchmarking standard representing the com-
plexities of AIRR-seq data, obscuring objective comparisons of aligners across tasks. Here, we
introduce GenAIRR, an efficient simulation framework for generating Ig sequences alongside
their ground truths. GenAIRR realistically simulates the intricacies of V(D)J recombination,
somatic hypermutation, and an array of sequence corruptions. We comprehensively assessed
prominent Ig sequence aligners across various metrics, unveiling unique performance char-
acteristics for each aligner. The GenAIRR-produced datasets, combined with the proposed
rigorous evaluation criteria, establish a solid basis for unbiased benchmarking of immuno-
genetics computational tools. It sets up the ground for further improving the crucial task of
Ig sequence alignment, ultimately enhancing our understanding of adaptive immunity.

1 Introduction

The adaptive immune system functionality relies upon a diverse and dynamic set of cell recep-
tors. In lymphocytes, this diversity originates from the V(D)J recombination process [26], with B
cells undergoing further diversification through affinity maturation; a process that includes clonal
expansion [17], somatic hypermutation (SHM) [27], and affinity-dependent selection [45]. Ad-
vances in sequencing technologies, particularly adaptive immune receptor repertoire sequencing
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(AIRR-seq)[22], have profoundly enhanced our understanding of this repertoire, providing de-
tailed insights into its dynamics and diversity in response to a wide spectrum of immunological
challenges [42, 41, 19, 9, 2, 15, 37].

Analyzing AIRR-seq data requires an accurate alignment of immunoglobulin (Ig) sequences
to their germline ancestors. This task poses significant computational challenges due to factors
such as the vast array of known germline sequences [5], the stochastic nature of gene trimming
during V(D)J recombination [39], alterations introduced by SHM [46], and ambiguities resulting
from sequencing errors [44].

To address these challenges, two primary approaches are utilized for aligning Ig sequences:
string distance metrics-based and Hidden Markov Models (HMM)-based. Distance-based meth-
ods [4, 48, 3], while computationally efficient, may encounter difficulties with complex sequence
variations such as insertions, deletions, and mutations. In contrast, HMM-based methods [12, 25,
35] leverage probabilistic models to capture some of the stochastic nature of V(D)J recombina-
tion and sequence evolution. This approach provides a more detailed representation of the real
diversity of Ig sequences and somatic evolutionary patterns. However, these methods can require
more computational resources and rely on parameters inferred from empirical, potentially noisy,
datasets.

All tools for Ig sequence alignment require a germline reference set that encompasses the known
alleles expected to be included in AIRR-seq data. This germline reference set is used to estab-
lish the metrics necessary for the alignment. Current germline reference sets, such as those from
IMGT [21] and OGRDB [20], suffer from either noise or incompleteness, further complicating
alignment tasks. Thus, an adaptable germline reference set is essential for several reasons. First,
numerous more recent studies have identified novel Ig alleles that are not present in standard refer-
ence databases (e.g., [14, 23, 36, 24, 13, 28]). These newly identified alleles significantly contribute
to immune repertoire diversity and play a crucial role in accurate alignment and analysis in per-
sonalized genomics [11, 10, 7, 35]. The importance of personalized genomics cannot be overstated,
as individuals may have unique variations in their Ig genes, affecting immune responses and dis-
ease susceptibilities [6, 30, 8, 34, 47, 1, 18]. Furthermore, the ability to modify the reference to
accommodate personalized genotypes ensures precise alignment and interpretation of Ig sequences.
This adaptability also assists in identifying rare and low-frequency variants that may be critical to
immune function but are often disregarded in standard reference-based alignments during immune
repertoire analysis [32].

Understanding whether an Ig sequence is productive, or expressed, is vital for various aspects
of immunological research. Since many factors contribute to the ability to express an Ig, only
experimental validation can confirm the productivity status of a sequence. Nevertheless, several
necessary conditions must be met for a sequence to be considered productive, which were identified
originally by the International ImMunoGeneTics Information System (IMGT). The standardized
framework to computationally infer the productivity of Ig sequences [33] includes ensuring a correct
open reading frame; the absence of aberrations in the start codon, splicing sites, and regulatory
elements; the absence of internal stop codons; and an in-frame junction region where the V, D, and
J gene segments align properly. Despite these standardized criteria, variations in the assessment
of sequence productivity can arise due to differences in algorithms and methodologies used by the
different sequence aligners. Factors such as the handling of ambiguous gene segment boundaries,
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treatment of sequencing errors, and interpretation of junction regions can lead to discrepancies in
sequence productivity classifications among aligners.

To address these challenges and accurately evaluate alignment tools, past benchmarks often
used datasets derived from or simulated based on direct sequencing efforts [48, 40, 35]. These
datasets inherently carry biases, like unequal allele representation and batch-effects prevalent in
many cohorts. In addition, these benchmarks often overlooked critical aspects such as the ability
of aligners to handle insertion or deletions (indels), accurately define the start and end positions of
segments, and stratify performance across different levels of SHM. Further, the IGH/IGK/IGL ge-
nomic loci display high variability among individuals, posing challenges in creating representative
reference sets. Such challenges underscore the need for a more comprehensive and unbiased bench-
marking approach. The benefits of using objectively simulated data in such tasks is of paramount
importance [38].

Building upon these insights, we propose a two-fold approach to address the challenges in
benchmarking alignment tools effectively. First, we present a benchmarking setup that encom-
passes three critical metrics for evaluating sequence alignment tools: 1) Assessment of the tools’
accuracy in correctly identifying sequence allele calls. This precision is fundamental, as it forms
the basis for understanding the alleles and genes at play, with significant downstream impacts
on analyses such as genotype determination [29, 7], haplotype inference [31], cloning [44, 16],
and SHM calls. 2) Segmentation: aiming to precisely identify the start and end of alleles within
the sequence. Precision in this task is crucial because incorrect segmentation, such as prema-
ture or late trimming of the 3’ end of the V allele can lead to missed SHM events, influence the
productivity assessment, or erroneous identification of non-real SHM events. 3) Productivity as-
sessment of sequences. Downstream analysis pipelines commonly filter out what they consider
to be non-productive sequences, hence correct assessment by the aligners has a high impact. Al-
though evaluating productivity may seem straightforward, differences between aligners arise from
variations in their algorithms and implementations. Second, we introduce GenAIRR, a robust
simulation framework designed to generate Ig sequence datasets with established ground truths
that enable accurate and comprehensive comparisons among aligners. GenAIRR incorporates re-
alistic sequence corruptions and noise, filling gaps in existing simulation frameworks and providing
a solid foundation for a robust benchmarking setup. See Supplementary Table 1 for an overview
of existing simulation frameworks.

This manuscript aims not only to elevate the standards of aligner comparison, but also to estab-
lish a comprehensive framework for the ongoing evaluation of both existing and newly developed
alignment methodologies. By doing so, it seeks to significantly improve the precision and reliability
of AIRR-seq analysis. Such advancements will deepen our understanding of the adaptive immune
system’s responses to pathogens and enhance our ability to leverage this knowledge in health and
disease contexts.
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Figure 1: GenAIRR modular architecture to simulate Ig sequences. The first column
(steps 1-2) describes simulation of a naive Ig sequence using the provided configuration file (Data-
Config). The second column (steps 3-5) illustrates the introduction of alterations to the simulated
sequence, such as SHM and indels. The third column (steps 6-7) illustrates the introduction of
further experimental noise to the simulated sequence, including 5’ corruptions and N nucleotides.
Finally, the fourth column illustrates that GenAIRR allows for repeating the sequence simulation
to form a repertoire and generating a report summarizing its statistical properties.

2 Results

2.1 Creating a benchmarking setup using GenAIRR

To establish a robust benchmarking setup, a bias-free dataset is required. For this, we created
GenAIRR, an AIRR-seq data simulator that simulates the full spectrum of V(D)J recombination
events and introduces realistic sequence corruptions such as 5" nucleotide trimming or addition,
masking nucleotides with Ns, and introduction of indels. GenAIRR mitigates biases by enabling
simulations without relying on empirical data distribution, opting instead for a uniform distribution
to generate sequences (refer to Supplementary Table 1 for comparisons with other simulation
tools). In addition, GenAIRR’s modular architecture allows users to tailor simulations to reflect
specific experimental conditions. GenAIRR provides comprehensive ground truth data for each
simulated sequence, including allele calls, segmentation positions, and productivity assessments,
formatted in the AIRR community schema for annotated AIRR-seq data [43]. This facilitates
straightforward comparisons with the output of commonly used alignment tools. GenAIRR is
illustrated in Figure 1.

Using GenAIRR, we created three datasets, each containing 6 million sequences, with a uniform
distribution of alleles. The first dataset (DS1) consisted solely of productive sequences, devoid of
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corruptions, N masks, or indels, but did include varying mutation rates to mimic real AIRR-seq
data. The second dataset (DS2) included mainly nonproductive sequences, resulting from the
rearrangement process, introduction of mutations, or corruption events such as 5 trimming or
addition, N insertions, and indels (refer to Supplementary Table 3 for simulation details).

We used the GenAIRR report feature to check how alleles are distributed in these datasets.
Although we aimed for an even distribution, we noticed a small difference in the usage of certain
V and J alleles in DS1 (Fig. 2A and C) compared to DS2 (Supplementary Fig. 3A and C). This
difference stems from constraints inherent in the generation process of productive sequences.

In simulating D alleles, the protocol involved trimming both the 5 and 3’ ends, sometimes
resulting in very short sequences that pose alignment challenges due to their potential to match
multiple alleles (see method section 4.2). In actual AIRR-seq data, it is impossible to ascertain the
origin of these short D sequences. Hence, GenAIRR incorporates a feature that identifies sequences
of five or fewer nucleotides as ”Short-D” and conceals their origin. In both DS1 (Fig. 2B) and
DS2 (Supplementary Fig. 3B), the allele usage across other D alleles was generally uniform. The
simulated datasets exhibited a distribution of CDR3 lengths that resembled empirical data (Fig.
2D, Supplementary Fig. 3D).

2.2 Benchmarking immunoglobulin sequence aligners

In the presented benchmark evaluation, we first surveyed the existing alignment tools, and selected
four widely used aligners, IgBLAST [48], MiXCR [3], HighV-QUEST [4], and Partis [35], based
on their popularity, compatibility with the AIRR community schema for annotated AIRR-seq
data [43], consistent support, and active development within the immunogenetics community (see
Supplementary Table 2 for a summary). Importantly, these aligners were also chosen for their
diverse alignment methodologies. IgBLAST employs BLAST for alignment, HighV-QUEST and
MiXCR utilize multiple sequence alignment techniques, and Partis adopts an HMM approach.

Here, we utilized the newly published reference set by the AIRR community [5], which requires
the aligners to enable the use of a custom reference set. HighV-QUEST is the only aligner of the
four that is unable to accept a custom reference set, and thus in cases where the resulting allele
assignment HighV-QUEST produced was not included in the AIRR-C reference set, we matched it
with the closest allele in the set. Not all aligners return results for every sequence in the datasets.
In DS1, IgBLAST, Partis, and HighV-QUEST provided assignments for all 6 million sequences at
the V allele level, while MiXCR had a retrieval rate of approximately 89% (Fig. 2E). Furthermore,
Partis consistently had a retrieval rate of 100% for both the D and the J alleles, closely followed by
HighV-QUEST with ~ 99%. The retrieval rate of IgBLAST for J alleles is roughly 99% and 96%
for the D alleles. MiXCR showed a lower retrieval rate at 89% for J alleles and 87% for D alleles
(Fig. 2F-G). The trend remained the same for the nonproductive sequences, with Partis returning
the highest retrieval rate, trailed by IgBLAST, then IMGT, and lastly MiXCR (Supplementary
Fig. 3E-G).
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2.3 Precision of Aligners Varies with Segment Mutation Rates and
Lengths

We evaluated the aligners’ ability to accurately assign V, D, and J allele calls for each sequence.
We observed variations in performance across different mutation rates and sequence lengths (Fig.
3). IgBLAST demonstrated the highest overall accuracy in assigning V alleles. However, MiXCR
excelled in sequences with a mutation rate of up to 10%, but rapidly declined at higher rates. No-
tably, HighV-QUEST exhibited underperformance at lower mutation rates but showed a relatively
steady, good accuracy in highly mutated sequences (Fig. 3A).

Assigning the J allele was a relatively easier task due to the reduced variability among alleles.
Partis consistently outperformed all aligners across various mutation rates, with [gBLAST closely
following but showing a decline in sequences with over a 17% mutation rate. MiXCR maintained
good accuracy up to a mutation rate of 11%, but, as with V alleles, its performance declined at
higher mutation rates compared to other aligners (Fig. 3 B).

The evaluation of D assignment performance is shown as a function of D segment length rather
than mutation rate. This is because mutation rates can vary significantly due to the short segment
lengths, potentially masking the influence of both factors (Fig. 3C). For longer D sequences, Partis
and [gBLAST exhibited slightly superior performance, with MiXCR lagging behind. For shorter
D segments, [gBLAST remained the top performer, while HighV-QUEST exhibited the lowest
agreement with ground truth. These findings underscore the nuanced performance dynamics of
aligners depending on mutation rates and sequence lengths. To further assess the impact of segment
length on accuracy, we isolated sequences that did not encounter any mutations within the IGHD
segment (Fig. 3D). The accuracy of all aligners spiked across all segment lengths, with [gBLAST
demonstrating accuracy above 90% for sequences longer than 9 nucleotides. However, as observed
in Fig. 3C, accuracy declines in short D segments, emphasizing the influence of segment length on
the ability to correctly assign the D allele.
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Figure 3: Aligners predictive performance of allele calls. (A+B) Agreement with ground
truth for IGHV (A) and IGHJ (B) segment calls across varying mutation rates. The x-axis repre-
sents the mutation rates ranging from 0.01 to 0.25, and the y-axis shows the agreement percentage
with the true allele call. The colors correspond to the aligners as indicated in the figure. (C)
Agreement with ground truth for IGHD segment calls across varying segment lengths. The x-
axis represents the varying D segment lengths from 38 to 6, and the y-axis shows the agreement
percentage with the true allele call. (D) Same as C) for sequences with 0 mutations in their D
segments.
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2.4 Segmentation position accuracy differs among aligners

Besides accurately identifying alleles in AIRR-seq alignment, another crucial task is segmenting
the sequence into distinct allele regions, which facilitates the correct attribution of SHM events.
To evaluate the accuracy of segmentation by the aligners, we utilized both DS1 and DS2. We
computed the Root Mean Square Error (RMSE) for each segment’s 5 and 3’ positions across all
aligners. To minimize bias, we only considered perfect matches between allele calls and the ground
truth, prioritizing the first matching call in cases of multiple allele calls and excluding V 5" and J
3’ segmentations for this analysis.

In DS1, the RMSE results for the V 3’ position were generally similar across the aligners,
except MiXCR, which exhibited a higher value (Fig. 4A). The accuracy in segmenting the D
5’ position was consistent across all aligners. However, for the D 3’ position, Partis showed a
slightly higher RMSE value compared to the others. Regarding the J 5’ position, HighV-QUEST
recorded the highest RMSE, while Partis demonstrated the lowest value. In DS2, the aligners
maintained relatively similar RMSE and ranking values, as observed in DS1 (Fig. 4B). These
findings underscore the significant disparities in segmentation accuracy across aligners and their
performance across different dataset contexts.

2.5 Aligners Accuracy in Determining Sequence Productivity

Sequence productivity is important for immune repertoire analysis tools, affecting their precision
in tasks such as genotype, haplotype, clonality, and diversity assessments. To assess the accuracy
of the aligners in evaluating sequence productivity, we initially established the ground truth using
GenAIRR. GenAIRR determines sequence productivity based on the following criteria: absence of
a stop codon, presence of conserved AA at the start and end of the junction, and alignment that
is in-frame (Supplementary Figure 2). To assess aligner accuracy in determining productivity, we
used dataset DS3, which contains four million randomly sampled productive sequence from DS1,
and a matching number of randomly sampled nonproductive sequence from DS2.

For productive sequences, Partis demonstrated perfect accuracy, whereas I[gBLAST showed a
low error rate with a slightly higher rate of missing sequences, marginally outperforming HighV-
QUEST, which had a higher error rate but no missing sequences. Lastly, MiXCR exhibited a
higher error rate and the most substantial rate of missing sequences (Fig. 4C, left column). The
pattern was comparable for nonproductive sequences. Partis showed the highest accuracy, with a
small proportion of sequences missing. [gBLAST performed slightly better than HighV-QUEST
in terms of error rates. MiXCR exhibited a high error rate and the largest proportion of missing
sequences (Fig. 4C right column).
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Figure 4: Aligners segmentation and productivity assessment. (A+B) Radar charts il-
lustration of the RMSE (Root Mean Square Error) values for segmentation accuracy across gene
segment start and end positions (V3, D3, D5, J3) in productive (A) and non-productive (B) se-
quences. (C) The confusion matrices provide an accuracy comparison of productive assessments.
In each matrix, columns represent the 4M sequence subset of the simulated dataset, while rows
represent the aligners’ productive assessment categorized as Productive, Non Productive, or NA
(indicating no assessment for the sequence). The value in each cell indicates the percentage of
agreement with the ground truth. The color scale reflects the level of accuracy.

3 Discussion

The current study represents an unbiased evaluation of Ig sequence aligners, facilitated by the
GenAIRR simulation framework. This comprehensive assessment across multiple metrics has out-
lined distinct strengths and weaknesses inherent in the widely used aligners IgBLAST, MiXCR,
HighV-QUEST, and Partis. The datasets generated by GenAIRR provide a robust, unbiased
platform for benchmarking these aligners in a spectrum of challenging immunogenetic variables,
mimicking real-world complexities. This benchmarking analysis explores how noise levels, such as
mutation rates and corruption events, affect aligner agreement with the ground truth. The align-
ers’ comparisons (Table 1) revealed varying performances. MiXCR emerged as the most efficient
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aligner in terms of runtime and was the top performer for V assignment accuracy at low mutation
rates (<10%), but decreased dramatically at higher mutation rates. Moreover, it showed lower
accuracy for D assignment across all segment lengths. IgBLAST, although >10 times slower than
MiXCR, outperformed the other aligners in almost all allele assignment accuracies. One excep-
tion is Partis, which demonstrated excellent performance in J assignment accuracy across both
low and high mutation rates. The accuracy metric used here for allele assignment is relatively
lenient, requiring a single assignment per sequence to match the ground truth. This leniency can
disadvantage aligners that, by default, return only one assignment, such as Partis, as they have
a lower probability of matching the ground truth. Note that erroneous assignments can in many
cases be rectified by inferring a personal genotype.

Properly segmenting a sequence can influence factors such as attributing SHM events to the
correct segments and assessing sequence productivity. Partis showed the lowest RMSE for position
predictions in most categories, and the highest accuracy in the productivity assessment. Error
rates in productivity can be attributed not only to segmentation errors, which can lead to missed
stop codons, but also to misclassifying sequences that lack conserved residues in the junction as
productive.

Criteria IgBLAST MiXCR |HighV-QUEST partis
Prod. Non |Prod. Non |Prod. Non Prod. Non
Accepts Custom Reference v v X v
6M Seqs Runtime (Minutes) 2200 200 - 5400
V Accuracy (MR < 10%) 97.79 97.57 [98.99 97.78|94.21 94.61 95.31 93.43
V Accuracy (MR > 10%) 90.78 89.99| 75.09 66.92 | 88.45 88.18 81.77 80.79
J Accuracy (MR < 10%) 99.74 99.61 99.69 99.34 | 96.83 95.14 99.62 99.24
J Accuracy (MR > 10%) 93.69 92.49 | 70.86 68.85 | 88.48 86.58 97.0 96.86
D Accuracy (Length < 10) 51.14 49.42| 45.63 42.44 | 29.53 26.73 43.57 42.47
D Accuracy (Length > 10) | 85.3 84.16| 79.26 74.75 |80.36  75.52 |84.69 83.81
V 3 RMSE 1.31  1.72 | 3.08 4.23 | 1.51 2.24 1.24 1.29
D 5° RMSE 217 229 | 211 226 | 2.15 2.31 2.03 2.2
D 3° RMSE 2.14 2.22 | 2.12 228 | 2.11 2.27 3.4 3.2
J 5> RMSE 3.06 3.81 2.2 2.68 | 4.96 6.16 1.64 1.76
Productivity Accuracy 99 97.3 | 87.5 72.1 | 99.6 96.8 100 99.6

Table 1: Comparison of different IG sequence aligners focusing on criteria such as custom reference
acceptance, operational efficiency, and accuracy across mutation rates (MR). Accuracy metrics
are presented for productive (left) and non-productive (right) sequences, with the best results
highlighted in bold. RMSE (Root Mean Square Error) quantifies the precision of segment start
and end position predictions; lower values indicate higher precision.

GenAIRR’s modularity is a standout feature, allowing the simulation to start from a naive
sequence and progressively introduce noise (Table 2). This modular design facilitates easy adap-
tation of the code to different noise models and addition of optional stages, such as simulating
epigenetic modifications, incorporating complex recombination patterns, or adding sophisticated
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SHM models. GenAIRR is released as an open source code, to allow community contributions
to the simulation framework that may enhance its versatility and utility beyond the application
presented here. Here, we used GenAIRR to simulate human Ig sequences, but other species can
present different challenges. For example, macaque monkeys have many more known V(D)J alle-
les [49] compared to human, and as such can affect aligner performances in a non-trivial manner.

In conclusion, our study not only presents a robust benchmarking setup for refining existing
alignment tools and encouraging the development of new ones, but also underscores the immense
potential of GenAIRR’s modular and adaptable framework. By integrating advanced functionali-
ties and addressing key challenges in simulating Ig sequences, we pave the way for more accurate
and reliable bioinformatics tools in immunogenetics. This collaborative effort, coupled with stan-
dardized benchmarking criteria using simulated sequences with known ground truth, propels the
field towards optimized algorithms and deeper insights into immune system analysis, ultimately
benefiting healthcare and disease research.

4 Methods (online)

4.1 Simulation Workflow of GenAIRR

The GenAIRR simulation framework consists of a series of customizable modular events designed
to generate Ig sequences that reflect the complexity and variability found in natural immune
responses. Each event is controlled by a set of adjustable parameters, providing a high degree of
flexibility and coverage.

The simulation begins with a stochastic selection of variable (V), diversity (D), and joining
(J) alleles from a representative pool. In the context of the current manuscript, the aim was to
generate datasets with a uniform representation of all alleles. Once selected, the allele sequences
undergo specific trimming processes to enhance their structural complexity. Additionally, the
nontemplated, palindromic (NP) regions are integrated using Markov chains derived from empir-
ical data, which model the probabilistic arrangement of nucleotides (see Supplementary Section
1). Next, the simulation incorporates controlled mutation rates, models of SHM, and indels to
enrich sequence diversity. GenAIRR also provides the option to introduce ambiguous N’ bases
deliberately, to test the robustness of sequence alignment algorithms. Additionally, sequencing
artifacts are simulated, particularly at the 5 ends of V alleles to mimic shorter sequences and
5" untranslated region residuals. These features are introduced through tunable parameters that
control the type, probability, and extent of errors. A detailed overview of the simulation steps is
provided in Table 2, and an example of the tunable parameters used in this manuscript is provided
in Supplementary Table 3.
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. Productivity
Step Process Optional Test
1-2 Generate Naive Sequence X v
1-2 Adjust Segment Positions Post-Recombination X X
1-2 Include Indistinguishable V, J alleles from trimming X X
1-2 | Include Indistinguishable D alleles from 5’ and 3’ trimming X X
1-2 Flag Sequence with Short D Alleles X X
3-4 Simulate SHM v v
5 Introduce Insertions/Deletions v v
6-7 Apply Corruption to 5" End of V Allele v v
8 Introduce Ambiguous "N’ Bases v X
8 Calculate Finalized Sequence Mutation Rate X X

Table 2: Illustration of the main GenAIRR sequence simulation workflow. Each numbered step
corresponds to a stage in Figure 1. Steps marked as 'Optional’ can be adjusted or omitted based
on specific simulation needs, and steps marked under 'Productivity Test’ indicate whether a pro-
ductivity assessment is performed at this step.

4.2 Ground Truths Produced by GenAIRR

GenAIRR generates detailed ground truth data for each Ig sequence, which is essential for evalu-
ating the accuracy of sequence alignment tools. These data include information on the V, D, and
J allele calls, and their respective segment start and end positions. In addition, the ground truth
includes documentation of the mutations, trimmings, indels, productivity, and corruption events
(see Supplementary Table 4 for ground truth example).

During the simulation of Ig sequences, GenAIRR incorporates several strategies to address
challenges such as the potential ambiguities arising from trimming or corruption at the allele ends.
One significant challenge is the short length of D alleles, caused by their substantial trimming at
both the 5" and 3’ ends during recombination. This often results in sequences retaining only a
minimal number of bases, making it impossible to distinguish these short sequences from multiple
D alleles. GenAIRR manages this by employing a hyperparameter threshold to determine the
minimal length for a D allele to be considered distinguishable post-recombination. Alleles shorter
than this threshold are labeled as ”Short-D”. The chosen threshold of five bases reflects a balance
between computational efficiency and biological realism, covering approximately 85% of D alleles,
as seen in Supplementary Figure 1. A map object post-trimming identifies which alleles become
indistinguishable under specific scenarios, and adjustments to the ground truth are made. This
includes corrections to the start and end positions of each allele following recombination and the
simulated insertion of NP regions to verify that the trimmed section was not partially reconstructed
by the NP regions. Such careful adjustments maintain the integrity of the ground truth, enabling
more precise and reliable simulation outcomes (see Supplementary Section 2.1).

In addition to addressing these challenges, GenAIRR assesses the productivity of the simulated
sequence. The criteria for a productive sequence are the absence of stop codons, the sequence to
be in the correct open reading frame, and the presence of two conserved amino acids (AA) before
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and after the Complementary Determining Region 3 (CDR3). The region encompassing these
conserved AAs and CDR3 is termed the junction. Sequence productivity is assessed four times
during the GenAIRR sequence simulation (refer to Table 2, and Supplementary Fig. 2).

4.3 Benchmarking setup

For creating our benchmarking setup, we have generated three datasets, created four comparison
matrices, and selected suitable alignment tools for comparison.

4.3.1 Data Preparation

Using GenAIRR, two datasets, each containing 6 million sequences, were simulated for this study.
These datasets were generated using the AIRR-C reference set [5] and clustered using the Allele
Similarity Cluster method [32] to remove identical sequences. Within this reference set, there are
192 V alleles, 33 D alleles, and 7 J alleles. The selection of alleles for the simulated sequences
followed a uniform distribution. This approach aimed to achieve an equal representation of all
alleles in the reference and to eliminate any potential biases.

The first dataset, DS1, comprised purely productive sequences, reflecting common AIRR-seq
data, enabling us to evaluate alignment tools under typical conditions. Supplementary Table 3
shows the parameters used to generate this dataset. The second dataset, DS2, primarily consisted
of non-productive sequences resulting from recombination, SHM events, or noise introduction
(Supplementary Table 3). This allowed us to test the alignment tools under extreme conditions
and assess their performance. The third dataset, DS3, was used to assess productivity calls in a
combination of data from DS1 and DS2. In summary:

e DS1: Includes only productive sequences without introduced corruptions, representing op-
timal alignment scenarios.

e DS2: Contains sequences with intentional corruptions like ambiguous base maskings ('N’s),
5" corruption events (removal or addition of nucleotides), and indels. This dataset comprises
mostly non-productive sequences, with a minor fraction of productive sequences.

e DS3: A combined dataset comprising sampled sequences from both DS1 and DS2. Specif-
ically, four million productive sequences were randomly sampled from DS1, along with four
million non-productive sequences from DS2.

4.4 Benchmarking Immunoglobulin Sequence Alignment tools

In this study, we surveyed the existing alignment tools (Supplementary Table 2), and selected four
popular tools for comparison. These tools were selected not only because of their popularity, but
also because they are consistently maintained and developed in the immunogenetics community,
and also comply with the AIRR community schema for annotated AIRR-seq data [43]. The leading
aligners that were evaluated here are IgBLAST[48], MiXCR[3], HighV-QUEST[4] by IMGT, and
Partis[35].
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us 4.4.1 Benchmarking Criteria

sa To benchmark the performance of the aligners, we have used four metrics:

5 e Alignment Accuracy: The effectiveness with which each aligner identified V, D, and J

346 alleles under varying conditions of mutation rates and sequence corruptions was evaluated.
347 Accuracy was quantified using an ” Agreement” metric, defined for each sequence as 1 if the
348 intersection of ground truth alleles (G) and alleles predicted by the aligner (P) is not empty
349 GNP # (), and 0 otherwise. This metric directly measures the ability of an aligner to
350 correctly identify alleles used to generate the sequence.

351 e Segmentation Accuracy: We evaluated aligners’ precision in segmenting gene regions,
352 focusing on the accuracy of segment start and end positions amidst mutations and sequence
353 corruptions. This assessment is restricted to sequences for which there was a perfect match
354 between the aligners’ allele calls for V, D, and J and the ground truth. In cases where the
355 aligner made multiple assignments for any of V, D, or J alleles, the sequence was included in
356 the comparison only if the first assignment matched the ground truth. This approach was
357 adopted because aligners’ segmentation values are associated with the first assignment; hence,
358 including sequences with erroneous values from subsequent assignments would skew the anal-
359 ysis. An adjustment was made for Partis due to intentional N-padding at the beginning of
360 sequences. The results were modified to align Partis’ segmentation positions accurately with
361 the ground truth by subtracting the added N-padding. To quantify segmentation errors, we
362 utilized the Root Mean Square Error (RMSE) metric, defined as:

1 n
= — . — )2
RMSE nE (P, — G;)

=1

363 where n is the number of sequences, P; is the predicted segment position by an aligner, and
364 G, is the actual ground truth position.

365 e Productive Sequence Detection Accuracy: This evaluation involved the calculation of
366 the proportion of true positives and true negatives, which were then utilized to determine
367 the overall classification accuracy. The results are presented using confusion matrices.

368 e Runtime Efficiency and Resource Utilization: The time needed to process 6 million
369 sequences was measured for each aligner to compare computational efficiency. This evaluation
370 was conducted on our cluster with specifications including an Intel(R) Xeon(R) Gold 6130
371 CPU @ 2.10GHz, 64 CPU cores, and 376 GB of RAM. The aligners were run on a single
37 thread without parallelization, to align 60,000 sequences. The processing time for this subset
373 was then multiplied by 100 to estimate the runtime for 6 million sequences.
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