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Abstract11

Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) is critical for our under-12

standing of the adaptive immune system’s dynamics in health and disease. Reliable analysis13

of AIRR-seq data depends on accurate Immunoglobulin (Ig) sequence alignment. Various Ig14

sequence aligners exist, but there is no unified benchmarking standard representing the com-15

plexities of AIRR-seq data, obscuring objective comparisons of aligners across tasks. Here, we16

introduce GenAIRR, an efficient simulation framework for generating Ig sequences alongside17

their ground truths. GenAIRR realistically simulates the intricacies of V(D)J recombination,18

somatic hypermutation, and an array of sequence corruptions. We comprehensively assessed19

prominent Ig sequence aligners across various metrics, unveiling unique performance char-20

acteristics for each aligner. The GenAIRR-produced datasets, combined with the proposed21

rigorous evaluation criteria, establish a solid basis for unbiased benchmarking of immuno-22

genetics computational tools. It sets up the ground for further improving the crucial task of23

Ig sequence alignment, ultimately enhancing our understanding of adaptive immunity.24

1 Introduction25

The adaptive immune system functionality relies upon a diverse and dynamic set of cell recep-26

tors. In lymphocytes, this diversity originates from the V(D)J recombination process [26], with B27

cells undergoing further diversification through affinity maturation; a process that includes clonal28

expansion [17], somatic hypermutation (SHM) [27], and affinity-dependent selection [45]. Ad-29

vances in sequencing technologies, particularly adaptive immune receptor repertoire sequencing30
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(AIRR-seq)[22], have profoundly enhanced our understanding of this repertoire, providing de-31

tailed insights into its dynamics and diversity in response to a wide spectrum of immunological32

challenges [42, 41, 19, 9, 2, 15, 37].33

Analyzing AIRR-seq data requires an accurate alignment of immunoglobulin (Ig) sequences34

to their germline ancestors. This task poses significant computational challenges due to factors35

such as the vast array of known germline sequences [5], the stochastic nature of gene trimming36

during V(D)J recombination [39], alterations introduced by SHM [46], and ambiguities resulting37

from sequencing errors [44].38

To address these challenges, two primary approaches are utilized for aligning Ig sequences:39

string distance metrics-based and Hidden Markov Models (HMM)-based. Distance-based meth-40

ods [4, 48, 3], while computationally efficient, may encounter difficulties with complex sequence41

variations such as insertions, deletions, and mutations. In contrast, HMM-based methods [12, 25,42

35] leverage probabilistic models to capture some of the stochastic nature of V(D)J recombina-43

tion and sequence evolution. This approach provides a more detailed representation of the real44

diversity of Ig sequences and somatic evolutionary patterns. However, these methods can require45

more computational resources and rely on parameters inferred from empirical, potentially noisy,46

datasets.47

All tools for Ig sequence alignment require a germline reference set that encompasses the known48

alleles expected to be included in AIRR-seq data. This germline reference set is used to estab-49

lish the metrics necessary for the alignment. Current germline reference sets, such as those from50

IMGT [21] and OGRDB [20], suffer from either noise or incompleteness, further complicating51

alignment tasks. Thus, an adaptable germline reference set is essential for several reasons. First,52

numerous more recent studies have identified novel Ig alleles that are not present in standard refer-53

ence databases (e.g., [14, 23, 36, 24, 13, 28]). These newly identified alleles significantly contribute54

to immune repertoire diversity and play a crucial role in accurate alignment and analysis in per-55

sonalized genomics [11, 10, 7, 35]. The importance of personalized genomics cannot be overstated,56

as individuals may have unique variations in their Ig genes, affecting immune responses and dis-57

ease susceptibilities [6, 30, 8, 34, 47, 1, 18]. Furthermore, the ability to modify the reference to58

accommodate personalized genotypes ensures precise alignment and interpretation of Ig sequences.59

This adaptability also assists in identifying rare and low-frequency variants that may be critical to60

immune function but are often disregarded in standard reference-based alignments during immune61

repertoire analysis [32].62

Understanding whether an Ig sequence is productive, or expressed, is vital for various aspects63

of immunological research. Since many factors contribute to the ability to express an Ig, only64

experimental validation can confirm the productivity status of a sequence. Nevertheless, several65

necessary conditions must be met for a sequence to be considered productive, which were identified66

originally by the International ImMunoGeneTics Information System (IMGT). The standardized67

framework to computationally infer the productivity of Ig sequences [33] includes ensuring a correct68

open reading frame; the absence of aberrations in the start codon, splicing sites, and regulatory69

elements; the absence of internal stop codons; and an in-frame junction region where the V, D, and70

J gene segments align properly. Despite these standardized criteria, variations in the assessment71

of sequence productivity can arise due to differences in algorithms and methodologies used by the72

different sequence aligners. Factors such as the handling of ambiguous gene segment boundaries,73
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treatment of sequencing errors, and interpretation of junction regions can lead to discrepancies in74

sequence productivity classifications among aligners.75

To address these challenges and accurately evaluate alignment tools, past benchmarks often76

used datasets derived from or simulated based on direct sequencing efforts [48, 40, 35]. These77

datasets inherently carry biases, like unequal allele representation and batch-effects prevalent in78

many cohorts. In addition, these benchmarks often overlooked critical aspects such as the ability79

of aligners to handle insertion or deletions (indels), accurately define the start and end positions of80

segments, and stratify performance across different levels of SHM. Further, the IGH/IGK/IGL ge-81

nomic loci display high variability among individuals, posing challenges in creating representative82

reference sets. Such challenges underscore the need for a more comprehensive and unbiased bench-83

marking approach. The benefits of using objectively simulated data in such tasks is of paramount84

importance [38].85

Building upon these insights, we propose a two-fold approach to address the challenges in86

benchmarking alignment tools effectively. First, we present a benchmarking setup that encom-87

passes three critical metrics for evaluating sequence alignment tools: 1) Assessment of the tools’88

accuracy in correctly identifying sequence allele calls. This precision is fundamental, as it forms89

the basis for understanding the alleles and genes at play, with significant downstream impacts90

on analyses such as genotype determination [29, 7], haplotype inference [31], cloning [44, 16],91

and SHM calls. 2) Segmentation: aiming to precisely identify the start and end of alleles within92

the sequence. Precision in this task is crucial because incorrect segmentation, such as prema-93

ture or late trimming of the 3’ end of the V allele can lead to missed SHM events, influence the94

productivity assessment, or erroneous identification of non-real SHM events. 3) Productivity as-95

sessment of sequences. Downstream analysis pipelines commonly filter out what they consider96

to be non-productive sequences, hence correct assessment by the aligners has a high impact. Al-97

though evaluating productivity may seem straightforward, differences between aligners arise from98

variations in their algorithms and implementations. Second, we introduce GenAIRR, a robust99

simulation framework designed to generate Ig sequence datasets with established ground truths100

that enable accurate and comprehensive comparisons among aligners. GenAIRR incorporates re-101

alistic sequence corruptions and noise, filling gaps in existing simulation frameworks and providing102

a solid foundation for a robust benchmarking setup. See Supplementary Table 1 for an overview103

of existing simulation frameworks.104

This manuscript aims not only to elevate the standards of aligner comparison, but also to estab-105

lish a comprehensive framework for the ongoing evaluation of both existing and newly developed106

alignment methodologies. By doing so, it seeks to significantly improve the precision and reliability107

of AIRR-seq analysis. Such advancements will deepen our understanding of the adaptive immune108

system’s responses to pathogens and enhance our ability to leverage this knowledge in health and109

disease contexts.110
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Figure 1: GenAIRR modular architecture to simulate Ig sequences. The first column
(steps 1-2) describes simulation of a naive Ig sequence using the provided configuration file (Data-
Config). The second column (steps 3-5) illustrates the introduction of alterations to the simulated
sequence, such as SHM and indels. The third column (steps 6-7) illustrates the introduction of
further experimental noise to the simulated sequence, including 5’ corruptions and N nucleotides.
Finally, the fourth column illustrates that GenAIRR allows for repeating the sequence simulation
to form a repertoire and generating a report summarizing its statistical properties.

2 Results111

2.1 Creating a benchmarking setup using GenAIRR112

To establish a robust benchmarking setup, a bias-free dataset is required. For this, we created113

GenAIRR, an AIRR-seq data simulator that simulates the full spectrum of V(D)J recombination114

events and introduces realistic sequence corruptions such as 5’ nucleotide trimming or addition,115

masking nucleotides with Ns, and introduction of indels. GenAIRR mitigates biases by enabling116

simulations without relying on empirical data distribution, opting instead for a uniform distribution117

to generate sequences (refer to Supplementary Table 1 for comparisons with other simulation118

tools). In addition, GenAIRR’s modular architecture allows users to tailor simulations to reflect119

specific experimental conditions. GenAIRR provides comprehensive ground truth data for each120

simulated sequence, including allele calls, segmentation positions, and productivity assessments,121

formatted in the AIRR community schema for annotated AIRR-seq data [43]. This facilitates122

straightforward comparisons with the output of commonly used alignment tools. GenAIRR is123

illustrated in Figure 1.124

Using GenAIRR, we created three datasets, each containing 6 million sequences, with a uniform125

distribution of alleles. The first dataset (DS1) consisted solely of productive sequences, devoid of126
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corruptions, N masks, or indels, but did include varying mutation rates to mimic real AIRR-seq127

data. The second dataset (DS2) included mainly nonproductive sequences, resulting from the128

rearrangement process, introduction of mutations, or corruption events such as 5’ trimming or129

addition, N insertions, and indels (refer to Supplementary Table 3 for simulation details).130

We used the GenAIRR report feature to check how alleles are distributed in these datasets.131

Although we aimed for an even distribution, we noticed a small difference in the usage of certain132

V and J alleles in DS1 (Fig. 2A and C) compared to DS2 (Supplementary Fig. 3A and C). This133

difference stems from constraints inherent in the generation process of productive sequences.134

In simulating D alleles, the protocol involved trimming both the 5’ and 3’ ends, sometimes135

resulting in very short sequences that pose alignment challenges due to their potential to match136

multiple alleles (see method section 4.2). In actual AIRR-seq data, it is impossible to ascertain the137

origin of these short D sequences. Hence, GenAIRR incorporates a feature that identifies sequences138

of five or fewer nucleotides as ”Short-D” and conceals their origin. In both DS1 (Fig. 2B) and139

DS2 (Supplementary Fig. 3B), the allele usage across other D alleles was generally uniform. The140

simulated datasets exhibited a distribution of CDR3 lengths that resembled empirical data (Fig.141

2D, Supplementary Fig. 3D).142

2.2 Benchmarking immunoglobulin sequence aligners143

In the presented benchmark evaluation, we first surveyed the existing alignment tools, and selected144

four widely used aligners, IgBLAST [48], MiXCR [3], HighV-QUEST [4], and Partis [35], based145

on their popularity, compatibility with the AIRR community schema for annotated AIRR-seq146

data [43], consistent support, and active development within the immunogenetics community (see147

Supplementary Table 2 for a summary). Importantly, these aligners were also chosen for their148

diverse alignment methodologies. IgBLAST employs BLAST for alignment, HighV-QUEST and149

MiXCR utilize multiple sequence alignment techniques, and Partis adopts an HMM approach.150

Here, we utilized the newly published reference set by the AIRR community [5], which requires151

the aligners to enable the use of a custom reference set. HighV-QUEST is the only aligner of the152

four that is unable to accept a custom reference set, and thus in cases where the resulting allele153

assignment HighV-QUEST produced was not included in the AIRR-C reference set, we matched it154

with the closest allele in the set. Not all aligners return results for every sequence in the datasets.155

In DS1, IgBLAST, Partis, and HighV-QUEST provided assignments for all 6 million sequences at156

the V allele level, while MiXCR had a retrieval rate of approximately 89% (Fig. 2E). Furthermore,157

Partis consistently had a retrieval rate of 100% for both the D and the J alleles, closely followed by158

HighV-QUEST with ∼ 99%. The retrieval rate of IgBLAST for J alleles is roughly 99% and 96%159

for the D alleles. MiXCR showed a lower retrieval rate at 89% for J alleles and 87% for D alleles160

(Fig. 2F-G). The trend remained the same for the nonproductive sequences, with Partis returning161

the highest retrieval rate, trailed by IgBLAST, then IMGT, and lastly MiXCR (Supplementary162

Fig. 3E-G).163
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Figure 2: Overview of the simulated productive dataset.(A-C) Distribution of the V, D,
and J allele usage in the productive dataset. Each column represents a different allele, and the
y-axis indicates their relative usage percentage in the dataset. (D) CDR3 length distribution. The
x-axis shows the CDR3 lengths, and the y-axis indicates their frequency. (E-G) Aligners allele
assignment retrieval rate. Each column represents a different aligner, and the y-axis shows the
percentage of sequences for which the aligner returned an allele assignment. The colors correspond
to the different aligners: blue for IgBLAST, red for MiXCR, orange for Partis, and purple for
HighV-QUEST. 6
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2.3 Precision of Aligners Varies with Segment Mutation Rates and164

Lengths165

We evaluated the aligners’ ability to accurately assign V, D, and J allele calls for each sequence.166

We observed variations in performance across different mutation rates and sequence lengths (Fig.167

3). IgBLAST demonstrated the highest overall accuracy in assigning V alleles. However, MiXCR168

excelled in sequences with a mutation rate of up to 10%, but rapidly declined at higher rates. No-169

tably, HighV-QUEST exhibited underperformance at lower mutation rates but showed a relatively170

steady, good accuracy in highly mutated sequences (Fig. 3A).171

Assigning the J allele was a relatively easier task due to the reduced variability among alleles.172

Partis consistently outperformed all aligners across various mutation rates, with IgBLAST closely173

following but showing a decline in sequences with over a 17% mutation rate. MiXCR maintained174

good accuracy up to a mutation rate of 11%, but, as with V alleles, its performance declined at175

higher mutation rates compared to other aligners (Fig. 3 B).176

The evaluation of D assignment performance is shown as a function of D segment length rather177

than mutation rate. This is because mutation rates can vary significantly due to the short segment178

lengths, potentially masking the influence of both factors (Fig. 3C). For longer D sequences, Partis179

and IgBLAST exhibited slightly superior performance, with MiXCR lagging behind. For shorter180

D segments, IgBLAST remained the top performer, while HighV-QUEST exhibited the lowest181

agreement with ground truth. These findings underscore the nuanced performance dynamics of182

aligners depending on mutation rates and sequence lengths. To further assess the impact of segment183

length on accuracy, we isolated sequences that did not encounter any mutations within the IGHD184

segment (Fig. 3D). The accuracy of all aligners spiked across all segment lengths, with IgBLAST185

demonstrating accuracy above 90% for sequences longer than 9 nucleotides. However, as observed186

in Fig. 3C, accuracy declines in short D segments, emphasizing the influence of segment length on187

the ability to correctly assign the D allele.188
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Figure 3: Aligners predictive performance of allele calls. (A+B) Agreement with ground
truth for IGHV (A) and IGHJ (B) segment calls across varying mutation rates. The x-axis repre-
sents the mutation rates ranging from 0.01 to 0.25, and the y-axis shows the agreement percentage
with the true allele call. The colors correspond to the aligners as indicated in the figure. (C)
Agreement with ground truth for IGHD segment calls across varying segment lengths. The x-
axis represents the varying D segment lengths from 38 to 6, and the y-axis shows the agreement
percentage with the true allele call. (D) Same as C) for sequences with 0 mutations in their D
segments.
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2.4 Segmentation position accuracy differs among aligners189

Besides accurately identifying alleles in AIRR-seq alignment, another crucial task is segmenting190

the sequence into distinct allele regions, which facilitates the correct attribution of SHM events.191

To evaluate the accuracy of segmentation by the aligners, we utilized both DS1 and DS2. We192

computed the Root Mean Square Error (RMSE) for each segment’s 5’ and 3’ positions across all193

aligners. To minimize bias, we only considered perfect matches between allele calls and the ground194

truth, prioritizing the first matching call in cases of multiple allele calls and excluding V 5’ and J195

3’ segmentations for this analysis.196

In DS1, the RMSE results for the V 3’ position were generally similar across the aligners,197

except MiXCR, which exhibited a higher value (Fig. 4A). The accuracy in segmenting the D198

5’ position was consistent across all aligners. However, for the D 3’ position, Partis showed a199

slightly higher RMSE value compared to the others. Regarding the J 5’ position, HighV-QUEST200

recorded the highest RMSE, while Partis demonstrated the lowest value. In DS2, the aligners201

maintained relatively similar RMSE and ranking values, as observed in DS1 (Fig. 4B). These202

findings underscore the significant disparities in segmentation accuracy across aligners and their203

performance across different dataset contexts.204

2.5 Aligners Accuracy in Determining Sequence Productivity205

Sequence productivity is important for immune repertoire analysis tools, affecting their precision206

in tasks such as genotype, haplotype, clonality, and diversity assessments. To assess the accuracy207

of the aligners in evaluating sequence productivity, we initially established the ground truth using208

GenAIRR. GenAIRR determines sequence productivity based on the following criteria: absence of209

a stop codon, presence of conserved AA at the start and end of the junction, and alignment that210

is in-frame (Supplementary Figure 2). To assess aligner accuracy in determining productivity, we211

used dataset DS3, which contains four million randomly sampled productive sequence from DS1,212

and a matching number of randomly sampled nonproductive sequence from DS2.213

For productive sequences, Partis demonstrated perfect accuracy, whereas IgBLAST showed a214

low error rate with a slightly higher rate of missing sequences, marginally outperforming HighV-215

QUEST, which had a higher error rate but no missing sequences. Lastly, MiXCR exhibited a216

higher error rate and the most substantial rate of missing sequences (Fig. 4C, left column). The217

pattern was comparable for nonproductive sequences. Partis showed the highest accuracy, with a218

small proportion of sequences missing. IgBLAST performed slightly better than HighV-QUEST219

in terms of error rates. MiXCR exhibited a high error rate and the largest proportion of missing220

sequences (Fig. 4C right column).221
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Figure 4: Aligners segmentation and productivity assessment. (A+B) Radar charts il-
lustration of the RMSE (Root Mean Square Error) values for segmentation accuracy across gene
segment start and end positions (V3, D3, D5, J3) in productive (A) and non-productive (B) se-
quences. (C) The confusion matrices provide an accuracy comparison of productive assessments.
In each matrix, columns represent the 4M sequence subset of the simulated dataset, while rows
represent the aligners’ productive assessment categorized as Productive, Non Productive, or NA
(indicating no assessment for the sequence). The value in each cell indicates the percentage of
agreement with the ground truth. The color scale reflects the level of accuracy.

3 Discussion222

The current study represents an unbiased evaluation of Ig sequence aligners, facilitated by the223

GenAIRR simulation framework. This comprehensive assessment across multiple metrics has out-224

lined distinct strengths and weaknesses inherent in the widely used aligners IgBLAST, MiXCR,225

HighV-QUEST, and Partis. The datasets generated by GenAIRR provide a robust, unbiased226

platform for benchmarking these aligners in a spectrum of challenging immunogenetic variables,227

mimicking real-world complexities. This benchmarking analysis explores how noise levels, such as228

mutation rates and corruption events, affect aligner agreement with the ground truth. The align-229

ers’ comparisons (Table 1) revealed varying performances. MiXCR emerged as the most efficient230
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aligner in terms of runtime and was the top performer for V assignment accuracy at low mutation231

rates (<10%), but decreased dramatically at higher mutation rates. Moreover, it showed lower232

accuracy for D assignment across all segment lengths. IgBLAST, although >10 times slower than233

MiXCR, outperformed the other aligners in almost all allele assignment accuracies. One excep-234

tion is Partis, which demonstrated excellent performance in J assignment accuracy across both235

low and high mutation rates. The accuracy metric used here for allele assignment is relatively236

lenient, requiring a single assignment per sequence to match the ground truth. This leniency can237

disadvantage aligners that, by default, return only one assignment, such as Partis, as they have238

a lower probability of matching the ground truth. Note that erroneous assignments can in many239

cases be rectified by inferring a personal genotype.240

Properly segmenting a sequence can influence factors such as attributing SHM events to the241

correct segments and assessing sequence productivity. Partis showed the lowest RMSE for position242

predictions in most categories, and the highest accuracy in the productivity assessment. Error243

rates in productivity can be attributed not only to segmentation errors, which can lead to missed244

stop codons, but also to misclassifying sequences that lack conserved residues in the junction as245

productive.246

Criteria
IgBLAST MiXCR HighV-QUEST partis
Prod. Non Prod. Non Prod. Non Prod. Non

Accepts Custom Reference ✓ ✓ ✗ ✓

6M Seqs Runtime (Minutes) 2200 200 – 5400
V Accuracy (MR < 10%) 97.79 97.57 98.99 97.78 94.21 94.61 95.31 93.43
V Accuracy (MR > 10%) 90.78 89.99 75.09 66.92 88.45 88.18 81.77 80.79
J Accuracy (MR < 10%) 99.74 99.61 99.69 99.34 96.83 95.14 99.62 99.24
J Accuracy (MR > 10%) 93.69 92.49 70.86 68.85 88.48 86.58 97.0 96.86
D Accuracy (Length < 10) 51.14 49.42 45.63 42.44 29.53 26.73 43.57 42.47
D Accuracy (Length > 10) 85.3 84.16 79.26 74.75 80.36 75.52 84.69 83.81
V 3’ RMSE 1.31 1.72 3.08 4.23 1.51 2.24 1.24 1.29
D 5’ RMSE 2.17 2.29 2.11 2.26 2.15 2.31 2.03 2.2
D 3’ RMSE 2.14 2.22 2.12 2.28 2.11 2.27 3.4 3.2
J 5’ RMSE 3.06 3.81 2.2 2.68 4.96 6.16 1.64 1.76
Productivity Accuracy 99 97.3 87.5 72.1 99.6 96.8 100 99.6

Table 1: Comparison of different IG sequence aligners focusing on criteria such as custom reference
acceptance, operational efficiency, and accuracy across mutation rates (MR). Accuracy metrics
are presented for productive (left) and non-productive (right) sequences, with the best results
highlighted in bold. RMSE (Root Mean Square Error) quantifies the precision of segment start
and end position predictions; lower values indicate higher precision.

GenAIRR’s modularity is a standout feature, allowing the simulation to start from a naive247

sequence and progressively introduce noise (Table 2). This modular design facilitates easy adap-248

tation of the code to different noise models and addition of optional stages, such as simulating249

epigenetic modifications, incorporating complex recombination patterns, or adding sophisticated250
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SHM models. GenAIRR is released as an open source code, to allow community contributions251

to the simulation framework that may enhance its versatility and utility beyond the application252

presented here. Here, we used GenAIRR to simulate human Ig sequences, but other species can253

present different challenges. For example, macaque monkeys have many more known V(D)J alle-254

les [49] compared to human, and as such can affect aligner performances in a non-trivial manner.255

In conclusion, our study not only presents a robust benchmarking setup for refining existing256

alignment tools and encouraging the development of new ones, but also underscores the immense257

potential of GenAIRR’s modular and adaptable framework. By integrating advanced functionali-258

ties and addressing key challenges in simulating Ig sequences, we pave the way for more accurate259

and reliable bioinformatics tools in immunogenetics. This collaborative effort, coupled with stan-260

dardized benchmarking criteria using simulated sequences with known ground truth, propels the261

field towards optimized algorithms and deeper insights into immune system analysis, ultimately262

benefiting healthcare and disease research.263

4 Methods (online)264

4.1 Simulation Workflow of GenAIRR265

The GenAIRR simulation framework consists of a series of customizable modular events designed266

to generate Ig sequences that reflect the complexity and variability found in natural immune267

responses. Each event is controlled by a set of adjustable parameters, providing a high degree of268

flexibility and coverage.269

The simulation begins with a stochastic selection of variable (V), diversity (D), and joining270

(J) alleles from a representative pool. In the context of the current manuscript, the aim was to271

generate datasets with a uniform representation of all alleles. Once selected, the allele sequences272

undergo specific trimming processes to enhance their structural complexity. Additionally, the273

nontemplated, palindromic (NP) regions are integrated using Markov chains derived from empir-274

ical data, which model the probabilistic arrangement of nucleotides (see Supplementary Section275

1). Next, the simulation incorporates controlled mutation rates, models of SHM, and indels to276

enrich sequence diversity. GenAIRR also provides the option to introduce ambiguous ’N’ bases277

deliberately, to test the robustness of sequence alignment algorithms. Additionally, sequencing278

artifacts are simulated, particularly at the 5’ ends of V alleles to mimic shorter sequences and279

5’ untranslated region residuals. These features are introduced through tunable parameters that280

control the type, probability, and extent of errors. A detailed overview of the simulation steps is281

provided in Table 2, and an example of the tunable parameters used in this manuscript is provided282

in Supplementary Table 3.283
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Step Process Optional
Productivity

Test
1-2 Generate Naive Sequence ✗ ✓
1-2 Adjust Segment Positions Post-Recombination ✗ ✗

1-2 Include Indistinguishable V, J alleles from trimming ✗ ✗

1-2 Include Indistinguishable D alleles from 5’ and 3’ trimming ✗ ✗

1-2 Flag Sequence with Short D Alleles ✗ ✗

3-4 Simulate SHM ✓ ✓
5 Introduce Insertions/Deletions ✓ ✓
6-7 Apply Corruption to 5’ End of V Allele ✓ ✓
8 Introduce Ambiguous ’N’ Bases ✓ ✗

8 Calculate Finalized Sequence Mutation Rate ✗ ✗

Table 2: Illustration of the main GenAIRR sequence simulation workflow. Each numbered step
corresponds to a stage in Figure 1. Steps marked as ’Optional’ can be adjusted or omitted based
on specific simulation needs, and steps marked under ’Productivity Test’ indicate whether a pro-
ductivity assessment is performed at this step.

4.2 Ground Truths Produced by GenAIRR284

GenAIRR generates detailed ground truth data for each Ig sequence, which is essential for evalu-285

ating the accuracy of sequence alignment tools. These data include information on the V, D, and286

J allele calls, and their respective segment start and end positions. In addition, the ground truth287

includes documentation of the mutations, trimmings, indels, productivity, and corruption events288

(see Supplementary Table 4 for ground truth example).289

During the simulation of Ig sequences, GenAIRR incorporates several strategies to address290

challenges such as the potential ambiguities arising from trimming or corruption at the allele ends.291

One significant challenge is the short length of D alleles, caused by their substantial trimming at292

both the 5’ and 3’ ends during recombination. This often results in sequences retaining only a293

minimal number of bases, making it impossible to distinguish these short sequences from multiple294

D alleles. GenAIRR manages this by employing a hyperparameter threshold to determine the295

minimal length for a D allele to be considered distinguishable post-recombination. Alleles shorter296

than this threshold are labeled as ”Short-D”. The chosen threshold of five bases reflects a balance297

between computational efficiency and biological realism, covering approximately 85% of D alleles,298

as seen in Supplementary Figure 1. A map object post-trimming identifies which alleles become299

indistinguishable under specific scenarios, and adjustments to the ground truth are made. This300

includes corrections to the start and end positions of each allele following recombination and the301

simulated insertion of NP regions to verify that the trimmed section was not partially reconstructed302

by the NP regions. Such careful adjustments maintain the integrity of the ground truth, enabling303

more precise and reliable simulation outcomes (see Supplementary Section 2.1).304

In addition to addressing these challenges, GenAIRR assesses the productivity of the simulated305

sequence. The criteria for a productive sequence are the absence of stop codons, the sequence to306

be in the correct open reading frame, and the presence of two conserved amino acids (AA) before307
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and after the Complementary Determining Region 3 (CDR3). The region encompassing these308

conserved AAs and CDR3 is termed the junction. Sequence productivity is assessed four times309

during the GenAIRR sequence simulation (refer to Table 2, and Supplementary Fig. 2).310

4.3 Benchmarking setup311

For creating our benchmarking setup, we have generated three datasets, created four comparison312

matrices, and selected suitable alignment tools for comparison.313

4.3.1 Data Preparation314

Using GenAIRR, two datasets, each containing 6 million sequences, were simulated for this study.315

These datasets were generated using the AIRR-C reference set [5] and clustered using the Allele316

Similarity Cluster method [32] to remove identical sequences. Within this reference set, there are317

192 V alleles, 33 D alleles, and 7 J alleles. The selection of alleles for the simulated sequences318

followed a uniform distribution. This approach aimed to achieve an equal representation of all319

alleles in the reference and to eliminate any potential biases.320

The first dataset, DS1, comprised purely productive sequences, reflecting common AIRR-seq321

data, enabling us to evaluate alignment tools under typical conditions. Supplementary Table 3322

shows the parameters used to generate this dataset. The second dataset, DS2, primarily consisted323

of non-productive sequences resulting from recombination, SHM events, or noise introduction324

(Supplementary Table 3). This allowed us to test the alignment tools under extreme conditions325

and assess their performance. The third dataset, DS3, was used to assess productivity calls in a326

combination of data from DS1 and DS2. In summary:327

• DS1: Includes only productive sequences without introduced corruptions, representing op-328

timal alignment scenarios.329

• DS2: Contains sequences with intentional corruptions like ambiguous base maskings (’N’s),330

5’ corruption events (removal or addition of nucleotides), and indels. This dataset comprises331

mostly non-productive sequences, with a minor fraction of productive sequences.332

• DS3: A combined dataset comprising sampled sequences from both DS1 and DS2. Specif-333

ically, four million productive sequences were randomly sampled from DS1, along with four334

million non-productive sequences from DS2.335

4.4 Benchmarking Immunoglobulin Sequence Alignment tools336

In this study, we surveyed the existing alignment tools (Supplementary Table 2), and selected four337

popular tools for comparison. These tools were selected not only because of their popularity, but338

also because they are consistently maintained and developed in the immunogenetics community,339

and also comply with the AIRR community schema for annotated AIRR-seq data [43]. The leading340

aligners that were evaluated here are IgBLAST[48], MiXCR[3], HighV-QUEST[4] by IMGT, and341

Partis[35].342
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4.4.1 Benchmarking Criteria343

To benchmark the performance of the aligners, we have used four metrics:344

• Alignment Accuracy: The effectiveness with which each aligner identified V, D, and J345

alleles under varying conditions of mutation rates and sequence corruptions was evaluated.346

Accuracy was quantified using an ”Agreement” metric, defined for each sequence as 1 if the347

intersection of ground truth alleles (G) and alleles predicted by the aligner (P) is not empty348

G ∩ P ̸= ∅, and 0 otherwise. This metric directly measures the ability of an aligner to349

correctly identify alleles used to generate the sequence.350

• Segmentation Accuracy: We evaluated aligners’ precision in segmenting gene regions,351

focusing on the accuracy of segment start and end positions amidst mutations and sequence352

corruptions. This assessment is restricted to sequences for which there was a perfect match353

between the aligners’ allele calls for V, D, and J and the ground truth. In cases where the354

aligner made multiple assignments for any of V, D, or J alleles, the sequence was included in355

the comparison only if the first assignment matched the ground truth. This approach was356

adopted because aligners’ segmentation values are associated with the first assignment; hence,357

including sequences with erroneous values from subsequent assignments would skew the anal-358

ysis. An adjustment was made for Partis due to intentional N-padding at the beginning of359

sequences. The results were modified to align Partis’ segmentation positions accurately with360

the ground truth by subtracting the added N-padding. To quantify segmentation errors, we361

utilized the Root Mean Square Error (RMSE) metric, defined as:362

RMSE =

√√√√ 1

n

n∑
i=1

(Pi −Gi)2

where n is the number of sequences, Pi is the predicted segment position by an aligner, and363

Gi is the actual ground truth position.364

• Productive Sequence Detection Accuracy: This evaluation involved the calculation of365

the proportion of true positives and true negatives, which were then utilized to determine366

the overall classification accuracy. The results are presented using confusion matrices.367

• Runtime Efficiency and Resource Utilization: The time needed to process 6 million368

sequences was measured for each aligner to compare computational efficiency. This evaluation369

was conducted on our cluster with specifications including an Intel(R) Xeon(R) Gold 6130370

CPU @ 2.10GHz, 64 CPU cores, and 376 GB of RAM. The aligners were run on a single371

thread without parallelization, to align 60,000 sequences. The processing time for this subset372

was then multiplied by 100 to estimate the runtime for 6 million sequences.373
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