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Abstract  21 

For the last six million years, the arid Australian Eremaean Zone (EZ) has been as dry as 22 

today. An accepted hypothesis, applied to arid regions worldwide, suggests that flora and 23 

fauna were more broadly distributed before aridification began. In Australia, this aridification 24 

process started around 20 million years ago (Mya), leading to gradual speciation processes 25 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 14, 2024. ; https://doi.org/10.1101/2024.06.12.598428doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.12.598428
http://creativecommons.org/licenses/by-nc/4.0/


2 
 

via vicariance as the climate became increasingly arid. Here, we use genomic data to 26 

investigate the biogeography and timing of divergence of native allotetraploid tobaccos, 27 

Nicotiana section Suaveolentes (Solanaceae), which putatively entered the EZ 5 Mya. The 28 

original allotetraploid migrants from South America were adapted to mesic areas of Australia 29 

and putatively radiated recently in the EZ, including sandy dune fields (only 1.2 My old), 30 

after developing drought adaptations. Based on coalescent and maximum likelihood analyses 31 

designed to corroborate timing of the Australian radiation independently, arrival of Nicotiana 32 

section Suaveolentes on the continent occurred approximately 6 Mya, and ancestors of the 33 

Pilbara (Western Australian) lineages radiated there at the onset of extreme aridity 5 Mya by 34 

locally adapting to these various ancient, highly stable habitats. The Pilbara thus served as 35 

both a mesic refugium and cradle for adaptations to harsher conditions. This dual role is due 36 

to its high topographical diversity, providing microhabitats with varying moisture levels, and 37 

its proximity to the ocean, which buffers against extreme aridity. Consequently, species like 38 

Nicotiana have been able to survive in mesic refugia during arid periods and subsequently 39 

adapt to more arid conditions. These results demonstrate that initially poorly adapted plant 40 

groups can develop novel adaptations in situ, permitting extensive and rapid wide dispersal 41 

despite the highly variable and unpredictable extremes of heat and drought in the EZ. 42 

 43 

Key words: Nicotiana section Suaveolentes; phylogenomics; biogeography; drought 44 

adaptation; dispersal; diversification. 45 

 46 

Introduction  47 

The evolution of plant groups in the Eremaean Zone of Australia has been explained through 48 

three primary models: vicariance, pre-adapted immigration, and in situ adaptation. However, 49 

these models are not mutually exclusive and may operate concurrently or sequentially within 50 
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different taxa. Vicariance, for instance, involves the gradual isolation and divergence of 51 

widespread taxa due to increasing aridity, as seen in Eucalyptus (Mytaceae)  and Acacia 52 

(Fabaceae) (Martin, 2006; Byrne et al., 2008). In contrast, pre-adapted immigration, 53 

potentially (African or Asian) immigrant clades, supported by studies on Triodia, Ptilotus  54 

and other Amaranthaceae (Toon et al., 2015; Shepherd et al., 2004; Kadereit & Freitag, 2011; 55 

Hammer et al., 2021), suggests that some species arrived already equipped for arid 56 

conditions. Lastly, in situ adaptation, although less documented, involves the evolution of 57 

arid specialization within the Eremaean Zone itself. Australia has several of the oldest known 58 

pieces of the Earth’s crust (e.g., the Pilbara Craton, 3.8–2.7 Ga), but thanks to extensive 59 

erosion over such long timescales, these have a generally low-relief topography and few 60 

major physical barriers to dispersal, so it is possible that there is a third model: a group of 61 

organisms lacking xeric specializations could adapt in one region and then disperse over 62 

much of the Australian continent. These processes collectively contribute to the region's 63 

complex biogeography and high levels of endemism. 64 

 Dispersal events, such as those facilitated by dry tornadoes (in Australia called 65 

willy-willies), have potentially played a crucial role in the diversification of Nicotiana in 66 

Australia. These events could enable the initial migration and subsequent wide distribution of 67 

Nicotiana species across the continent, contributing to the genetic isolation and 68 

diversification observed in the genus today. Unlike vicariance, which primarily isolates 69 

populations gradually, these dispersal events can rapidly introduce species to novel 70 

environments, creating new opportunities for speciation. However, the evolutionary history 71 

of Nicotiana section Suaveolentes has been the subject of different hypotheses. One 72 

hypothesis suggests that the origin of N. section Suaveolentes dates back to the early Miocene 73 

(ca. 20 Mya), with speciation occurring through a vicariant model of arid-adapted biota. This 74 

model, as described by Cracraft (1991) and Ladiges et al. (2011), proposes that species were 75 
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progressively isolated as aridification moved from north to south, forming organized "tracks" 76 

of species distributions. Following these primary vicariance-driven distributions, dispersal 77 

events produced a few widespread species. The alternative hypothesis points that Nicotiana 78 

only reached Australia around 4–6 Mya, as suggested by Mummenhoff and Franzke (2007) 79 

and Schiavinato et al. (2020), with a more recent radiation occurring in the Eremaean Zone 80 

(Clarkson et al., 2017; Dodsworth et al., 2021). In this scenario, dispersal to the arid interior 81 

would have been the predominant mechanism of diversification, with vicariance playing a 82 

more secondary localized role. 83 

 The Australian distribution of Nicotiana section Suaveolentes spans the continent, 84 

except for Tasmania, which putatively makes them ideal for revealing general factors 85 

contributing to arid zone speciation. Furthermore, elucidation of the phylogeographic history 86 

for such widespread groups can be instrumental to understand the major drivers of individual 87 

species distributions. The Australian species are primarily found in the tropics, subtropics and 88 

warm temperate regions and largely absent from cool temperate regions (Ladiges et al., 89 

2011). There was putatively rapid initial speciation producing a few species in more mesic 90 

areas in northern and eastern Australia, followed by multiple radiations in the EZ (Ladiges et 91 

al., 2011, Chase et al., 2018, 2022a). The current understanding of the biogeography, 92 

phylogenetics and chromosome numbers/genome sizes of N. section Suaveolentes (Table 1; 93 

Chase et al., 2002b) are consistent with the ancestral distribution of the genus in Australia 94 

being confined to these northern and eastern parts, where all species with higher chromosome 95 

numbers (n = 22–24) and mostly larger genomes now occur (Fig. 1). As new species 96 

appeared and chromosome numbers and generally genome sizes decreased (Chase et al., 97 

2002b), they expanded to the dry interior of central and southern Australia, where they are 98 

now highly diverse. Although several EZ species are specialists of more mesic niches, 99 

growing in the shade of trees or rock outcrops, many others inhabit exposed, extremely arid 100 
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sites (Fig. 1), unexpected for such thin-leaved plants with no obvious adaptations for these 101 

extreme habitats. However, their rapid lifecycle completion following rainfall could 102 

sometimes allow them to avoid the harshest conditions. 103 

Here, we have used multispecies coalescent methods on genome-wide single nuclear 104 

polymorphisms (SNPs) combined with biogeographical and novel molecular clock analyses 105 

to evaluate these two competing hypotheses that the radiation of N. sect Suaveolentes in the 106 

EZ started either as early as 20 Mya or as late as 6 Mya. The former would coincide with the 107 

early stages of aridification in Australia, supporting the vicariance model where species 108 

gradually became isolated and diversified as the climate changed (Ladiges et al., 2011), 109 

whereas if the latter is true then dispersal was the preponderant mechanism and 110 

diversification took place long after the EZ became dry. Inadequate, fine-scale sampling in 111 

such remote areas across the whole continent has limited previous phylogeographic studies, 112 

and existing phylogenetic analyses typically have not sampled species thoroughly either 113 

through lack of sufficient collections or due to the existence of many undescribed “cryptic” 114 

species. After ten years of fieldwork, we have assembled an unprecedented collection of 115 

accessions and nearly trebled the number of species known in this group (Chase et al., 2021, 116 

2022, 2023). We have also extended our taxonomic coverage by recovering additional 117 

taxa/accessions from viable seeds on herbarium specimens up to 25 years old. We first 118 

constructed a species tree for N. sect Suaveolentes and implemented dating of the speciation 119 

events to corroborate previous molecule-based age estimates (Clarkson et al., 2017; 120 

Schiavinato et al., 2020; Dodsworth et al., 2021). We then carried out biogeographical 121 

inference to test the relative contribution of dispersal and vicariance to the overall distribution 122 

of the species. Our primary goal is to identify where and when the initial lineages confined to 123 

the wetter parts of the Australian continent became adapted to xeric conditions, providing 124 
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insights to how they diversified into the myriad, relatively unoccupied niches hypothesized to 125 

be typical of arid zones. 126 

 127 

Material and Methods 128 

Plant material 129 

Sampling of 273 accessions from 58 species of N. section Suaveolentes (Table S1), extended 130 

the recent studies of Cauz et al. (2022), which focused on N. benthamiana, and Chase et al. 131 

(2022), which examined genome size and chromosome number evolution in this section of 132 

the genus. Most samples were collected by Chase and Christenhusz in the wild and are 133 

vouchered in major Australian Herbaria (AD, BRIS, CANB, CNS, DNA, NSW, NT and 134 

PERTH, the standard acronyms for these collections). Other accessions were added by 135 

germinating viable seeds removed from herbarium specimens. From more than 600 136 

accessions, including roughly 100 from herbarium-stored seeds, we selected the above subset 137 

of 278 samples that it comprised all putative species, including several that are undescribed 138 

and designated here as sp. nov. with a location where we collected these taxa (e.g., N. sp. nov. 139 

Coondiner). The maps were generated in QGIS v. 3.20.3 (QGIS Development Team, 2021); 140 

the map layer with the vectors from the drainage and rivers divisions were obtained from the 141 

Australian Government Bureau of Meteorology (http://www.bom.gov.au/water/geofabric/). 142 

The provenance data (latitude, longitude) of the accessions were obtained from the 143 

Australasian virtual herbarium (https://avh.chah.org.au) and our personal data gathered 144 

during the field collections in Australia. 145 

 146 

Collecting and import permits 147 

The following collecting permits, which cover these accessions, were issued to MWC and 148 

MJMC: Western Australia SW017148, CE006044, Northern Territory 58658, and 149 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 14, 2024. ; https://doi.org/10.1101/2024.06.12.598428doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.12.598428
http://creativecommons.org/licenses/by-nc/4.0/


7 
 

Queensland PTU-18001061. Removal of seeds from herbarium specimens was approved by 150 

the curators/collections managers of the following herbaria: AD, BRI, CANB, NSW, NT and 151 

PERTH. All seeds imported into the UK followed published guidelines; plants were grown at 152 

the Royal Botanic Gardens, Kew, under DEFRA PHL2149/194627/5NIRU CERT:106-2019; 153 

HMRC TARIFF CODE: 0601209090. No material collected by us or in our possession will 154 

be exploited for commercial purposes without involvement of the Australian and Aboriginal 155 

authorities, as required by the collecting/export permits. 156 

 157 

DNA isolation, library preparation and sequencing 158 

From ca. 20 mg of silica-dried leaf tissue, we extracted DNA with the 159 

cetyltrimethylammonium bromide (CTAB) procedure (Doyle, 1990), following a 20 min ice-160 

cold sorbitol buffer treatment (100 mM tris-HCl, 5mM EDTA, 0.35 M sorbitol, pH 8.0). 161 

Then, we used 2.5 μl of RNase A (Thermo Fischer, USA) for 30 min at 37 °C and purified 162 

the extracted DNA using the NucleoSpin gDNA clean-up Kit (Machery-Nagel, Germany), 163 

according to the manufacturer's instructions.  164 

DNA samples were first single digested with the PstI restriction enzyme in advance of 165 

library preparations. Although PstI activity is not affected by CG methylation, it is sensitive 166 

to that at CHG sites (H stands for any nucleotide apart from G), a type of methylation 167 

frequently found around plant transposable elements (e.g., Domb et al., 2020), which are 168 

known to have paralogy issues and low phylogenetic signal. The effects of any methylation 169 

variation have been mitigated by filtering for missing data. Libraries were prepared following 170 

Paun et al. (2016), as modified by Cauz et al. (2022) and Chase et al. (2022). Processing in 171 

batches was carried out using index barcodes distinct from one another by at least three bases. 172 

Sequencing was performed at the VBCF NGS Unit (www.vbcf.ac.at/ngs) on an Illumina 173 

HiSeq 2500 with 125 bp paired-end reads. 174 
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 175 

SNP calling and phylogenomic analysis 176 

The BamIndexDecoder v.1.03 (included in Picard Illumina2Bam package, available from 177 

http://gq1.github.io/illumina2bam/) was used first to process the RADseq data and 178 

demultiplex via the index barcodes in sublibraries. Subsequently, demultiplexing of 179 

individuals via their inline barcodes was conducted in process_radtags from Stacks v.1.47 180 

(Catchen et al., 2013), together with removal of reads containing uncalled bases or with low 181 

quality-scores.  182 

The reference genome of N. benthamiana v.2.6.1 (Bombarely et al., 2012, available 183 

from https://solgenomics.net/organism/Nicotiana_benthamiana/genome), a member of N. 184 

section Suaveolentes, was used on individual read mappings in BWA MEM v. 0.7.17 (Li and 185 

Durbin, 2009) using and applying the –M option to flag shorter splits hit as secondary. We 186 

also checked for biases potentially driven by phylogenetic relatedness to the reference 187 

individual. After alignment, the sam file was sorted by reference coordinates, and read groups 188 

were added using Picard Toolkit v.2.27 (available from http://broadinstitute.github.io/picard/). 189 

We used the Genome Analysis Toolkit (GATK) v.3.8 (McKenna et al., 2010) to improve 190 

alignment quality around indels, thinning the data to a maximum of 100,000 reads per 191 

interval.  192 

GATK was used to call variants following the best-practice DNAseq 193 

recommendations. First, we inferred genotypes via HaplotypeCaller and GVCF mode for 194 

individual samples and subsequently processed all individual intermediate GVCF in a joint 195 

genotyping analysis in the GenotypeGVCFs module. The raw vcf file was first processed in 196 

VCFtools v.0.1.15 (Danecek et al., 2011) and retained only variants presents in at least 50% 197 

of individuals. We then used the VariantFiltration GATK module with the following criteria: 198 

(1) depth of coverage (DP) < 500; (2) variant confidence (QUAL) < 30.00; (3) variant 199 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 14, 2024. ; https://doi.org/10.1101/2024.06.12.598428doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.12.598428
http://creativecommons.org/licenses/by-nc/4.0/


9 
 

confidence divided by the unfiltered depth (QD) < 2; (4) Phred-scaled P-value for the 200 

Fisher’s exact test to detect strand bias (FS) > 60; (5) a root mean square of mapping quality 201 

across all samples (MQ) < 40; (6) u-based z-approximation from the rank sum test for 202 

mapping qualities (ReadPosRankSum) < -8.0; and (7) u-based z-approximation from the rank 203 

sum test for the distance from the end of the reads with the alternate allele (MQRankSum) < -204 

12.5. 205 

The variant calling and initial filtering steps in GATK produced 7,606,626 variable 206 

sites, but we retained only SNPs with a minor allele frequency ≥ 0.008 (i.e., present in at least 207 

four haplotypes), an average depth above 20 and 20% maximum missing data. We also 208 

filtered the data using the populations pipeline in Stacks to retain only variable positions with 209 

a maximum observed heterozygosity of 0.65, thus avoiding the use of pooled paralogs in 210 

further analyses.  211 

To investigate phylogenetic relationships among the species of N. section 212 

Suaveolentes, we first converted the final filtered vcf to a PHYLIP file using PGDspider 213 

v.2.1.1.0 (Lischer & Excoffier, 2012). We removed invariant sites with the script ascbias.py 214 

(https://github.com/btmartin721/raxml_ascbias). A RAxML v.8.2.12 (Stamatakis, 2014) used 215 

the remaining 170,552 SNPs with the recommended ascertainment bias correction (Lewis, 216 

2001). The phylogenetic tree was inferred under the GTRCAT model of nucleotide 217 

substitution with a search for the best-scoring ML tree and 1,000 rapid bootstrap replicates. 218 

We assigned N. africana as the outgroup because it was well-supported sister to the rest of N. 219 

section Suaveolentes in all previous studies (Chase et al., 2003; Clarkson et al., 2004, 2010, 220 

2017; Marks et al., 2011; Kelly et al., 2013). All species of N. section Suaveolentes are 221 

allotetraploids, including N. africana and N. benthamiana, so our analyses do not mix diploid 222 

and polyploid taxa. Finally, we visualized and annotated the best tree in R, using ape v.5.3 223 
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(Paradis & Schliep, 2018), biostrings (Pagès et al., 2020), ggplot2 (Wickham, 2016), ggtree 224 

(Yu et al., 2017) and treeio (Wang et al., 2020).  225 

 226 

Coalescent-based species tree and divergence time estimation 227 

To construct a species tree for a reduced and representative matrix of N. section Suaveolentes, 228 

we first inferred the relatedness between accessions looking for evidence of introgression, 229 

which would interfere with species-tree inference.  This exercise was conducted on a reduced 230 

matrix of 22 species representing the major clades in N. section Suaveolentes. After 231 

calculating genotype likelihoods in ANGSD v.0.930 (Korneliussen et al., 2014) and retaining 232 

only variants with a minor allele shared by at least two individuals, we applied a minimum 233 

base mapping quality of 20, SNP calling confidence of p<1e-6, and presence in at least 70% 234 

of individuals. The major and minor allele frequencies were estimated using the GATK-based 235 

genotype likelihood model, and our final dataset resulted in 3,201,820 variable positions. For 236 

the inference of coancestry, we used our estimated genotype likelihoods to obtain a 237 

covariance matrix using PCangsd (Meisner & Albrechtsen, 2018), and plotted our data using 238 

the heatmaps.2 function from GPLOTS v.3.0.1.1 (Warnes et al., 2020).  239 

To construct the coalescent species tree, we first used the filtered vcf file to prepare a 240 

smaller dataset in VCFtools v.0.1.15 selecting only unlinked biallelic SNPs (> 10,000 bp 241 

apart on a contig) and removing missing data at each locus. This procedure produced a matrix 242 

of 2,400 unlinked single nucleotide polymorphisms (SNPs) for 36 accessions, representing 18 243 

species (two per species) that broadly cover the phylogenetic diversity of N. section 244 

Suaveolentes. We converted the vcf file containing unlinked SNPs to PHYLIP and then 245 

NEXUS format using PGDSpider v.2.1.1.0, and finally we created the input XML files in 246 

BEAUti v.2.4.8 (Bouckaert et al., 2014). 247 
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We constructed the coalescent species tree using SNAPP v.1.2.5 with a chain length 248 

of 10 million and saving a tree every 1,000th generation. We monitored the convergence of 249 

the run based on the ESS values from the log-file with Tracer v.1.6 (Rambaut et al., 2018).  250 

We removed the initial 10% of trees as burn in, visualized the SNAPP trees as a cloudogram 251 

using Densitree v.2.2.6 (Bouckaert & Heled, 2018) and produced the posterior probabilities 252 

for each clade with Treeannotator v.1.8.3 (Drummond et al., 2012). To calibrate the species 253 

tree, we used 5e-09 as the rate of substitution per site per generation (Schiavinato et al., 2020) 254 

and one year as generation time (i.e., these plants only rarely live more than one season in 255 

nature). We estimated divergence times by rescaling the results using the total length of 256 

investigated sites for the loci included and total number of polymorphic sites across their 257 

length.  258 

 259 

Ancestral range estimation 260 

For biogeographic inference, we calibrated a RAxML tree using TreePL (Smith & O’Meara, 261 

2012), which produces a dated tree using a penalized likelihood approach, and minimum and 262 

maximum ages to constrain the tree. The minimum and maximum ages used for TreePL 263 

dating were based on the divergence times estimated in our SNAPP species tree. The dated 264 

tree with node ages was visualized using FigTree v1.3.1 (http://tree.bio.ed.ac.uk). We 265 

obtained the confidence intervals for the node ages and the maximum clade credibility 266 

(MCC) tree summarizing the RAxML bootstrap replicates with Treeannotator v.1.8.3 267 

(Drummond et al., 2012) (Fig. S1). 268 

We explored the biogeographic history of N. section Suaveolentes first by comparing 269 

models in BioGeoBEARS, including DEC, BAYAREALIKE and DIVA plus using the 270 

additional free parameter “j” in each model, which accounts for jump dispersal/founder-event 271 
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speciation. According to the Akaike information criterion (AIC), the best-fit model was 272 

DIVA+J (Table S2). We then performed the ancestral range estimation using BioGeoBEARS 273 

testing two models of distribution. The first one considered drainage divisions of Australia as 274 

operational areas: A, Africa; B, Pacific, C, Carpentaria Coast; D, Tanami-Timor Sea Coast; 275 

E, north-western Plateau; F, Pilbara-Gascoyne; G, Southwest Coast; H, Southwest Plateau; I, 276 

Lake Eyre Basin; J,�Murray-Darling Basin; K, Northeast Coast (Queensland); L,�Southeast 277 

Coast (NSW); M,�Southeast Coast (Victoria; N, South Australian Gulf. We chose this model 278 

because we had noticed in a previous study (Cauz-Santos et al., 2022) that species 279 

distributions seemed to conform to river drainage basins. Rather than acting as barriers to 280 

gene flow, it is more likely that the drainages serve as conduits, facilitating gene flow through 281 

the dry tornadoes that typically travel across relatively flat landscapes and dissipate upon 282 

encountering uneven terrain. Consequently, dispersal mostly occurring within a drainage 283 

system might make sense in this setting, an aspect that we are planning to investigate further. 284 

The second model split N. section Suaveolentes into the operational areas from 285 

Ladiges et al. (2011): A, Africa, Namibia; B, Pacific; C, eastern Australia; D, south-eastern 286 

Australia; E, south-eastern Interzone; F, north-eastern Interzone 3; G, Adelaide/Eyre; H, 287 

south-western Interzone; I, Pilbara; J, north-western Australia; K, western Desert; L, northern 288 

Desert; M, eastern Desert; N, Nullarbor; O, central Australia. These geographical areas were 289 

defined by Ladiges et al. (2011) based on the distribution of narrow-range endemic species, 290 

Australian bioregions recognized by other authors (Burbidge, 1960; Cracraft, 1991; Crisp et 291 

al., 1995) and the Interim Biogeographic Regionalisation of Australia (IBRA) v.6.1 292 

(http://www.environment.gov.au). The BioGeoBEARS model testing for this distribution also 293 

resulted in the DIVA+J as best fit AIC model (Table S3). In both models, the species 294 

distributions (presence/absence) included a maximum of three areas per species except for 295 

one widespread species, N. velutina, although we now believe that this species is much more 296 
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restricted than previously thought due to discovery that this species concept as previously 297 

defined includes two previously unrecognized species, considerably reducing its distribution. 298 

However, all three form an exclusively related species complex, so in terms of these analyses, 299 

this is an acceptable assumption. The accessions included in our analyses are from only one 300 

of the revised concepts in the N. velutina complex (Cauz-Santos, Metschina & Chase, 301 

unpubl.). 302 

 303 

Results 304 

Phylogenetic analysis of Nicotiana section Suaveolentes 305 

We obtained an average of 3,053,843 paired-end reads for the 273 accessions used in this 306 

study. The filtered reads mapped onto the N. benthamiana reference genome at a high rate (an 307 

average of 95.75%), with a final average coverage across samples of 9.4. The mapped reads 308 

were then used for variant calling, which after filtering resulted in a total of 240,871 SNPs for 309 

a minimum of 80% of individuals. The results shown here expanded the matrix published in 310 

Chase et al. (2022) to include many more of the new species. These results were also used to 311 

illustrate the positions of species being described as new (Chase et al., 2023, in press), but the 312 

methods and results of this analysis are here published for the first time. Phylogenetic trees of 313 

N. section Suaveolentes (Fig. 2) provide a framework for the other studies conducted for this 314 

paper, but they are not a primary focus here and have not been used previously for these 315 

purposes. 316 

The RAxML maximum likelihood (ML) tree was in general highly supported (most 317 

nodes with bootstrap percentage, BP, >90; Fig. 2). For several species, we included multiple 318 

accessions that formed unique and well-supported groups. In total, the tree comprised 18 319 

major clades (numbered as Roman numerals I–XVIII), with N. africana (I) outgroup to the 320 

rest of N. section Suaveolentes (Clarkson et al., 2011). The basal node comprises N. 321 
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fatuhivensis (II) sister to N. gibbosa+N. forsteri (III), but with low support (BP 76; the only 322 

BP less than 90 along the spine of the ML tree) relative to the position of N. 323 

monoschizocarpa (IV). Nicotiana heterantha (V) and N. umbratica (VI) are then successively 324 

sister to the rest, which split into six geographically widespread clades (VII, VIII–XI, X/XI, 325 

XII/XIII, XIV, XV–XVIII).  326 

 327 

Species tree and divergence times 328 

The coancestry heatmap (Fig. 3) shows the clear relatedness among accessions of N. 329 

monoschizocarpa, which is one of the species at the basal node of the N. section 330 

Suaveolentes, but this pattern is not evident in the other two species near the basal nodes, N. 331 

africana and N. forsteri. Nicotiana africana grouped within the N. forsteri accessions with 332 

high coancestry, and additionally, one of the N. africana accessions exhibited high coancestry 333 

with the species of the N. benthamiana complex. Considering these patterns of introgression 334 

and as only two accessions of N. africana have been available to us (a minimum of two 335 

accessions per species is required to produce the species tree), we decided to remove N. 336 

forsteri and species of the N. benthamiana complex from the species tree inference. The 337 

highest coancestry is exhibited by the most recent species groups, N. gossei/N. velutina, N. 338 

truncata/N. excelsior and N. maritima/N. suaveolens. Introgression is not a general 339 

phenomenon in N. section Suaveolentes, but it does seem to be a factor for a few species 340 

pairs.  341 

The coalescent species tree for a reduced dataset comprised representative species 342 

from all major clades in N. section Suaveolentes. We obtained one topology in the SNAPP 343 

analysis with strong support representing 99% of the posterior density distribution (Fig. 4). 344 

The ESS values were used to monitor the convergence of the analysis, from which we 345 

obtained values higher than 200 in each parameter. The species tree places N. africana as 346 
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sister to the rest, consistent with its outgroup position in the ML results (above) followed by 347 

N. monoschizocarpa. Subsequently we observed three clades, one comprising (N. 348 

occidentalis+N. murchisonica)+N. hesperis (clade XII/XIII in the ML tree), a second with (N. 349 

gascoynica+N. simulans)+N. stenocarpa (clade VII–XI in the ML tree) and a major clade (N. 350 

rotundifolia to N. gossei) comprising species from the two remaining major clades in the ML 351 

tree (XIV, XIV–XVIII). 352 

In the divergence time estimation, N. africana diverged from the remainder of the 353 

section around 6.5 Mya, in the late Miocene. Among the Australian species, the first split, N. 354 

monoschizocarpa from the rest, was estimated at 6 Mya, followed by clades XI/XII and VI–355 

XI clades, at 5 and 4 Mya, respectively. Finally, the largest clade, XIV–XVIII, diversified in 356 

the last 1 My. 357 

 358 

Biogeographic history of Nicotiana section Suaveolentes 359 

For the biogeographic analysis, we first evaluated the best model for our dataset including the 360 

possibility of founder-event speciation or jump dispersal (adding the j parameter in 361 

BioGeoBEARS). According to AIC values, the DIVALIKE+J model was best, accounting for 362 

79% of the predictive power found in all tested models. This model allows for the possibility 363 

of anagenetic (dispersal and extinction) and cladogenetic events (vicariance), and the J 364 

parameter added to the model the possibility of founder events. Considering our favored 365 

distribution model (Australian river drainages) and the fact that most species do not occur in 366 

more than one drainage basin, selection of DIVALIKE+J has biogeographical support. 367 

 The ancestral area reconstruction (DIVALIKE+J and Australian river drainages as 368 

divisions for the distribution species in N. section Suaveolentes) resulted in a total of 63 369 

biogeographic events (Table 1, Fig. 5). The results show a combination of anagenetic and 370 

cladogenetic events playing a role in the distribution of this group, with founder events 371 
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(60.6%) being the main source of speciation, followed by within-area speciation events 372 

(36.4%) and a small proportion of vicariance (3.6%). In the biogeographic tree, the arrival of 373 

the ancestor of the N. section Suaveolentes in Australia occurred around 5.2 Mya. Even if the 374 

ancestral range of the species at the basal nodes is unclear (N. monoschizocarpa, N. gibbosa 375 

and N. forsteri), the common ancestor of the rest expanded its distribution around 5 Mya to 376 

the Pilbara region (F), in which several within-area speciation events occurred, resulting in 377 

this region becoming a Nicotiana biodiversity hotspot. The Pilbara region (F) as referred in 378 

this study encompasses the Pilbara Craton and adjacent basins of the Gascoyne, Wooramel, 379 

and Murchison Rivers in north-western Western Australia (north of latitude 25°00′ S and 380 

west of longitude 121°30′ E; Pepper et al., 2013) (Fig. 5). This area is larger than the Pilbara 381 

Bioregion of the IBRA classification, which only covers a portion of region (F), and is 382 

characterized by its unique geological formations, including the ancient Pilbara Craton, and 383 

features a variety of landscapes such as mountain ranges, coastal plains, and arid desert areas. 384 

From the Pilbara, a series of dispersals to the other parts of the EZ occurred, the last of which 385 

was to central and southern Australia. The second model using the areas as defined in 386 

Ladiges et al. (2011) also resulted in the Pilbara (region I) being colonized by the species of 387 

N. section Suaveolentes around 5 Mya, with a series of dispersal events from there, leading to 388 

the current distribution of this section in central and southern Australia (Table S4, Fig. S2). 389 

 390 

Discussion 391 

Timing of diversification in the Pilbara region and dispersal to the rest of the Eremaean 392 

Zone 393 

The evolutionary processes shaping arid-adapted biota are complex and multifactorial, in-394 

volving in many cases processes as vicariance, isolating populations due to climatic or geo-395 

logical changes, long-distance dispersal, enabling colonization of new habitats, and in situ 396 
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speciation, driven by microhabitat differentiation and local environmental pressures. These 397 

mechanisms interact dynamically, creating genetic diversity and endemism. This complexity, 398 

influenced by the harsh and fluctuating conditions of arid environments, results in unique 399 

evolutionary trajectories. Other studies on arid-adapted biota have already demonstrated the 400 

complexity of evolutionary models in these environments (Cracraft, 1991; Byrne et al., 2008; 401 

Ladiges et al., 2011). 402 

 Our study contributes to this understanding by showing that N. section Suaveolentes 403 

first occupied mesic regions of Australia around 6 Mya. Subsequently, these species adapted 404 

to the arid conditions of the Pilbara region around 5 Mya, leading to their widespread 405 

distribution across the Eremaean Zone. This pattern of adaptation and dispersal is significant 406 

within the context of the Australian flora, and while highlights a specific example within N. 407 

section Suaveolentes, it is important to recognize that similar processes may have occurred in 408 

other plant groups, and further studies may reveal additional examples of such evolutionary 409 

dynamics. Molecular clock methods using multiple calibrations based on species pairs on 410 

oceanic islands/mainland (Clarkson et al., 2005), secondary ages from other analyses 411 

(Clarkson et al., 2017), and various methods of estimating rates of molecular divergence 412 

(Mummenhoff & Frankze 2007; Schiavinato et al., 2021; this paper) produce relatively 413 

consistent age estimates for formation of N. section Suaveolentes, ca. 5–7 Mya. Ladiges et al. 414 

(2011) disparaged the estimate of Mummenhoff & Frankze (2007) by citing other molecular 415 

clock studies (more generally on Australian angiosperms) that have provided highly 416 

divergent timings, but those for Nicotiana using these several approaches thus far have been 417 

relatively consistent for N. section Suaveolentes.  418 

We found dispersal to be the predominant mode of evolution for N. section 419 

Suaveolentes throughout the EZ with some local examples of in situ speciation and vicariance 420 

being secondary features. Diversification in each major clade appears to be recent and 421 
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ongoing, including adaptation to sandy dune fields (e. g., N. pila, N. inglba, N. latzii, N. 422 

velutina), which only appeared c. 1.2 Mya (Fujioka et al., 2009), concurrent with lower 423 

frequency/higher amplitude glacial cycles worldwide c. 0.8–1.2 Mya (Clark et al., 1999). The 424 

recentness of speciation accounts for the cryptic nature of many recently described Nicotiana 425 

species (Chase et al., 2023). 426 

However, diversification has not been limited to recent times, and our phylogeny 427 

(Figure 5) reveals significant speciation events that occurred over a prolonged period and 428 

across multiple regions (for example in areas D and H). This pattern highlights a complex 429 

evolutionary history where both recent diversification (approximately 1 Mya) and older 430 

events have played crucial roles in shaping the current diversity of N. section Suaveolentes. 431 

The presence of these older diversification events reinforces the importance of considering 432 

the entire temporal framework of evolution within this group, as it reveals the contributions 433 

of different historical processes to their adaptation and speciation in the Eremaean Zone. 434 

 435 

The Pilbara as a biodiversity hotspot and cradle of novel adaptations 436 

Our results clearly demonstrate that N. section Suaveolentes first occupied the more mesic 437 

portions of the Australian continent 6–5 Mya and then diversified (Fig. 5) in the Pilbara re-438 

gion. Aridity increases from the forested areas of the south-western and eastern coasts (mean 439 

annual rainfall of 1000–2500+ mm) to the hummock grasslands in the desert inland regions 440 

of the continent (< 200 mm; Groves, 1999). Mountains in the Pilbara are located near the 441 

ocean, providing a thermal buffer that maintains relatively stable temperatures. This proximi-442 

ty to the ocean and varied topography contributes to the region's unique biodiversity and eco-443 

logical stability. The plants and animals there are exceptionally diverse for an arid region 444 

(Booth et al., 2022), undoubtedly due to the complexity of the landscape with diverse soil 445 

types and topography, long-term geological stability, and presence of abundant refugia (e.g., 446 
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multiple gorges with permanent water) providing mesic havens during even the most arid 447 

years (e.g., El Niño years). The high mountains of the Archaean Pilbara Craton (Hammersley 448 

Ranges at 1,500 m) differ from those of the Proterozoic Gascoyne Complex to the south, 449 

which are lower and the product of the collision of the Pilbara and Proterozoic Yilgarn 450 

Cratons (Myers, 1993), and the overall effect of this geological history on the Pilbara region 451 

has been the production of a mosaic of arid and mesic habitats in close proximity, making 452 

them unique on a planetary scale and a laboratory for diversification and evolutionary novel-453 

ty. 454 

The once tropical, forested center of Australia was long ago replaced by extensive arid 455 

lands beginning in the Miocene (23.03–5.33 Mya) reaching into the Pliocene (5.33 to 2.58 456 

Mya) and Pleistocene (2.58 mya to 11,700 kya; Flower & Kennett, 1994). The arid center of 457 

the Australian continent has received much less attention (Byrne et al., 2008) than other 458 

regions, and most detailed studies of evolutionary diversity in Australia have focused 459 

primarily on the tropical rainforests (Bell et al., 2010) and temperate forests (Chapple et al., 460 

2011; Kay & Keogh, 2012).  461 

Some plant phylogeographic studies have focused on genetic diversity in the Pilbara 462 

bioregion, but most have examined single or pairs of species endemic to the Pilbara (Levy et 463 

al., 2016; Nistelberger et al., 2020; Millar et al., 2022), in which they found high levels of 464 

variation that was not geographically structured due to gene flow across the region. The 465 

Pilbara bioregion has often been found to harbor high levels of diversity also at the species 466 

level, making it a biodiversity hotspot for both plants (Anderson et al., 2016) and animals 467 

(see below), but how much this species diversity has influenced broader biotic patterns in the 468 

EZ has been understudied. Comprehensive environmental surveys in advance of mining 469 

projects, 2002–2007 (McKenzie et al., 2009), resulted in the discovery of hundreds of new 470 

plant and animal species. For beetles and scorpions, 68% and 83%, respectively, could not be 471 
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assigned to described species (Guthrie et al., 2010; Volschenk et al., 2010). Fine-scale genetic 472 

studies have suggested substantial cryptic diversity and complex genetic patterns across the 473 

Pilbara (Pepper et al., 2008, 2011a; Shoo et al., 2008; Doughty et al., 2010, 2011b; Catullo et 474 

al., 2011; Anderson et al., 2016). In contrast to our results, Ladiges et al. (2011) found 475 

species diversity in N. section Suaveolentes to be greatest in central Australia, where several 476 

of their “tracks” overlap, but our findings with highly revised species circumscriptions 477 

identify the Pilbara region as the most diverse in both species numbers and lineages.  478 

The only other studies comparable in terms of nearly complete species-level sampling 479 

to ours are those of Ptilotus (Amaranthaceae; Hammer et al., 2021) and Triodia (Toon et al., 480 

2015; Anderson et al. 2016), which both found that the detected high levels of species 481 

diversity in the Pilbara could act as a source of pre-adapted xeric diversity for the rest of the 482 

EZ. However, it is important to note that the species-level sampling in Triodia was under-483 

estimated and included many incorrect identifications, making some interpretations 484 

problematic. Unlike Ptilotus and Triodia, which both arrived from Africa and Asia pre-485 

adapted to aridity, the species of N. section Suaveolentes developed novel adaptation(s) to 486 

aridity de novo in the Pilbara before dispersing throughout the EZ. We suspect that a “key” 487 

adaptation for N. section Suaveolentes is strict inhibition of germination until the precise 488 

conditions for growth and seed production occur. They exhibit no succulence or other 489 

obvious physical attributes typically associated with aridity, and they disappear into the soil 490 

seed bank before the annual onset of summer drought and extreme heat, a key adaptation to 491 

surviving aridity. The species of N. section Suaveolentes thus experience the arid zone when 492 

it is neither too dry nor too hot, indicating that their distinct ancestral habitats (like those of 493 

tomato and potato), while different from current arid conditions, did not hinder their ability to 494 

find suitable environments for survival and subsequent conquest of the EZ. 495 
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Because of our improved species circumscriptions (not the different geographical 496 

areas underpinning their analysis), the main distinction between our conclusions and those of 497 

Ladiges et al. (2011) is that dispersal rather than vicariance is more explanatory in the 498 

evolution of N. section Suaveolentes. In Ladiges et al. (2011), dispersal only came into the 499 

picture as the explanation for species with broad distributions, which occurred after 500 

vicariance laid down the general patterns, whereas we envisage lineage diversification to 501 

have taken place in the Pilbara region, after which dispersal took place twice to other parts of 502 

the tropical/subtropical zones (i.e., the N. benthamiana and N. occidentalis clades; the former 503 

inhabiting only mesic sites), followed by the central and southern districts (the N. simulans 504 

clade) and finally the southern central and far southern areas (the N. suaveolens clade). In 505 

each of these clades, further diversification outside the Pilbara Region produced species 506 

inhabiting both mesic and xeric habitats, and to adequately address in which direction 507 

preferences changed more study of species limits/phylogenetics is needed. Most widespread 508 

species, e. g., the N. benthamiana complex (Cauz-Santos et al., 2022; Chase et al., 2022), 509 

appear to be species complexes, and we are adding more accessions to our analyses to try to 510 

address this issue. Dispersal-mediated founder events and genetic drift could have limited 511 

their evolutionary potential as the individual clades left the Pilbara, reducing their 512 

evolutionary potential and constraining further change, much as these new species were 513 

perhaps spatially constrained by their specializations. The data produced for this study cannot 514 

address these issues, but we have collected additional data for more accessions that will 515 

permit these topics to be investigated in future studies. 516 

The importance of evaluating species delimitation 517 

For robust understanding of evolutionary history, species limits must be well understood. If 518 

species limits have not been assessed properly, then the distributions of such taxa are 519 

meaningless biologically. The previous phylogeographic analysis of N. section Suaveolentes 520 
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(Ladiges et al., 2011) relied on the species as delimited by Horton (1981), which was the 521 

basis for the treatment in the Flora of Australia (Purdie et al., 1982), plus four others 522 

described after the Flora treatment. Here, we updated the analyses using a set of species with 523 

highly modified circumscriptions, including many newly recognized species (Chase et al., 524 

2018, 2021, 2023). For example, in the wider Pilbara region (north-western Western 525 

Australia), only three of 15 species were recognized by Horton (1981); the remaining ten 526 

species have been described in the last five years, mostly discovered during recent fieldwork 527 

(Chase et al., 2021, 2023).  528 

 529 

Implications for conservation planning  530 

Our results highlight the evolutionary significance of the Pilbara region, providing a 531 

foundation for prioritizing areas for conservation and developing management plans. The 532 

phylogenetic and biogeographical results presented in this study can inform conservation 533 

strategies by pointing areas with high species diversity and endemism, suggesting these as 534 

high-priority zones for conservation efforts. Protecting these areas can help preserve the 535 

evolutionary potential and ecological functions of the Pilbara's unique flora.  536 

Here, we show that the Pilbara region represents a major cradle of diversification in 537 

Nicotiana, which is echoed in other plant (Anderson et al., 2016) and animal groups (Ashman 538 

et al., 2018). It is an extensive, geologically complex, culturally important region for which 539 

only 6% sits in formally protected reserves (Government of Western Australia, 2017). 540 

However, the explosion of mining activity throughout the region in the past 40 years, with 541 

major mine expansions underway and planned, combined with an emerging knowledge of the 542 

biodiversity of the region highlight the risks of continued development in the absence of 543 

robust, detailed biological surveys by specialists in each group.  544 
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An alarming discovery from our study concerns the number of evolutionarily distinct 545 

Nicotiana species that appear to have extremely restricted distributions, particularly in the 546 

Hamersley Basin, the region comprising the unique iron-rich rocks at the core of the 547 

Australian mining industry. Extensive biotic surveys prior to mining notwithstanding 548 

(McKenzie et al., 2009), none of the new species of Nicotiana section Suaveolentes in the 549 

Pilbara region was identified, highlighting the need for detailed genetic and taxonomic 550 

studies as part of specialist treatments. This parallels the findings in Anderson et al. (2016) in 551 

Triodia, in which multiple new species were identified in the Pilbara (Barrett & Trudgeon, 552 

2018; Barrett, 2019; Barrett et al.,  2023). One of our new, narrowly distributed, cryptic-553 

species discoveries from the Pilbara Craton is Nicotiana karijini (Chase & Christenhusz, 554 

2018; previously identified as the more widespread N. umbractica), for which six of seven 555 

known collections were made during mine-site surveys. The possible fate of such species is 556 

obvious and leads us to speculate that many new species have gone extinct before they were 557 

described. 558 

 559 

Conclusions 560 

Our results here have demonstrated that the large arid portions of Australia can act as a 561 

catalyst for rapid adaptation and diversification. While this phenomenon has been 562 

documented in some reptile groups, particularly arid-zone geckos (Pepper et al., 2011ab; 563 

Pepper et al., 2013; Ashman et al., 2018), our study contributes providing detailed insights 564 

into plant diversification. Without first examining species limits, our biogeographic 565 

conclusions could never have been reached, and thus the first period of our studies focused on 566 

their taxonomy. The Australian arid zone is a relatively geologically stable and still largely 567 

undisturbed set of environments (despite numerous mines in areas like the Pilbara), making it 568 

an ideal setting for studies of speciation and diversification. Topographical heterogeneity 569 
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combined with nearby marine influences have created localized regions within the Pilbara 570 

region with more buffered environments compared to the much larger and more 571 

homogeneous surrounding arid zone (Macphail & Stone, 2004; Byrne et al., 2008), 572 

permitting ancestrally mesic-adapted taxa like Nicotiana to experiment repeatedly with 573 

adaptations that have then allowed them to exploit available niches in the rest of the arid 574 

zone. Detailed molecular studies across the EZ are at present highly limited, and the high 575 

species diversity of the Pilbara Region, especially of cryptic, undescribed species attributable 576 

to its status as a mesic refuge, means that it should be an important focus of attention in the 577 

future. 578 

Plants and perhaps also terrestrial invertebrates typically have more direct ties to the 579 

physical environment than vertebrates because they are inherently less vagile and thus more 580 

likely to provide important models to investigate genetic patterns/barriers across the EZ. The 581 

Pilbara is an ancient, topographically complex landscape of plateaus, gorges, valleys, and 582 

ranges with meteorological extremes and seasonal monsoons/cyclones. We hypothesize that 583 

the ancestors of the Pilbara lineages in N. section Suaveolentes entered the mesic refuges of 584 

the Pilbara Craton from the more coastally focused monsoonal region roughly 5 Mya. They 585 

became locally adapted to these various ancient and highly stable terrain types and 586 

subsequently were exposed repeatedly and became adapted to the interdigitated arid micro-587 

habitats, which then permitted dispersals in several waves to other parts of the arid zone, 588 

including most recently (in the last million years) to sandy dune fields and the most 589 

homogenous, flat and extremely arid, southern parts of continent (e.g., the Nullarbor). The 590 

biotic history of this most ancient landscape, the Pilbara Craton, remains largely unknown 591 

and speculative. Our results should provide impetus to develop further an understanding of it 592 

and its contribution to the EZ flora and fauna. 593 

 594 
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 884 
Table 1. Biogeographic stochastic mapping (BSM) counts for N. section Suaveolentes using 885 
the Australian drainage regions as operational areas and the DIVALIKE+J model selected in 886 
BioGeoBEARS. Mean values (mean) and standard deviations (stdev) are event counts of 100 887 
BSMs. 888 
Mode Type mean stdev % 

Within area speciation Sympatry - narrow 22.98 1.59 36.47 

Dispersal Jump-dispersal 38.23 1.69 60.68 

Vicariance  1.79 0.46 2.84 

Total events  63   
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Figure captions 903 
Fig. 1. Habitat diversity, mesic and arid, among species of Nicotiana section Suaveolentes in 904 
the Australian Eremaean Zone. (a) Mesic site for N. cavicola near the entrance to a cave near 905 
Meekathara (Western Australia). (b) Mesic site for N. maritima on the sea cliffs near St. 906 
Vincent, York Peninsula (South Australia). (c) Arid site for N. simulans on the gibber plains 907 
south of Ooodnadatta (South Australia). (d) Mesic site for N. insecticida in a mulga woodland 908 
(Acacia aneura species complex) near Carbla (Western Australia). (e) Arid site for N. 909 
velutina in a fossilised sand dune near Coober Peddy (South Australia). (f) Mesic site for N. 910 
insecticida in the Anthwerrke Gap, East MacDonnell Ranges (Northern Territory). 911 
 912 
Fig. 2. RAxML phylogenetic tree from N. section Suaveolentes, subtrees (a) and (b), based on 913 
240,871 SNPs. The numbers are bootstrap percentages; branches without numbers received 914 
100. 915 
 916 
Fig. 3. Coancestry heatmap from the pairwise relatedness between accessions from N. section 917 
Suaveolentes. The darker colours indicate higher relatedness; the estimates of relationship of 918 
individuals to themselves are not shown. The blue lines specify the accessions of N. africana. 919 
High levels of coancestry among recently diverged species (e.g., N. goodspeedii/N. 920 
maritima/N. suaveolens) are to be expected. 921 
 922 
Fig. 4. Cloudogram from species trees generated for Nicotiana section Suaveolentes, scaled 923 
to divergence times. The species tree reveals three of the main radiations in the section, the N. 924 
occidentalis, N. gascoynica and N. suaveolens clades, the last being the most recent radiation 925 
(ca. 1 Mya) comprising the species occurring in central and southern Australia. 926 
 927 
Fig. 5. Biogeographic history of N. section Suaveolentes. Ancestral area reconstruction using 928 
the drainage areas as a model and showing greater Pilbara region (region F/light green) as the 929 
ancestral range for the species adapted to the Eremaean Zone (ca. 5 Mya). The map in the 930 
upper part of the figure represents the biogeography model used for distributions of the 931 
species in N. section Suaveolentes. The map shows the Australian drainages employed here to 932 
evaluate dispersal versus vicariance during diversification of N. section Suaveolentes. 933 
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