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Abstract

Background: Long terminal repeats (LTRs) represent important parts of LTR retrotransposons and retroviruses
found in high copy numbers in a majority of eukaryotic genomes. LTRs contain regulatory sequences essential for the
life cycle of the retrotransposon. Previous experimental and sequence studies have provided only limited information
about LTR structure and composition, mostly from model systems. To enhance our understanding of these key
compounds, we focused on the contrasts between LTRs of various retrotransposon families and other genomic regions.
Furthermore, this approach can be utilized for the classification and prediction of LTRs.

Results: We used machine learning methods suitable for DNA sequence classification and applied them to a large
dataset of plant LTR retrotransposon sequences. We trained three machine learning models using (i) traditional
model ensembles (Gradient Boosting - GBC), (ii) hybrid CNN-LSTM models, and (iii) a pre-trained
transformer-based model (DNABERT) using k-mer sequence representation. All three approaches were successful in
classifying and isolating LTRs in this data, as well as providing valuable insights into LTR sequence composition.
The best classification (expressed as F1 score) achieved for LTR detection was 0.85 using the CNN-LSTM hybrid
network model. The most accurate classification task was superfamily classification (F1=0.89) while the least
accurate was family classification (F1=0.74). The trained models were subjected to explainability analysis. SHAP
positional analysis identified a mixture of interesting features, many of which had a preferred absolute position within
the LTR and/or were biologically relevant, such as a centrally positioned TATA-box, and TG..CA patterns around
both LTR edges.

Conclusions: Our results show that the models used here recognized biologically relevant motifs, such as core
promoter elements in the LTR detection task, and a development and stress-related subclass of transcription factor
binding sites in the family classification task. Explainability analysis also highlighted the importance of 5’- and 3’-
edges in LTR identity and revealed need to analyze more than just dinucleotides at these ends. Our work shows the
applicability of machine learning models to regulatory sequence analysis and classification, and demonstrates the
important role of the identified motifs in LTR detection.

Keywords: eukaryote, repeat, transposable elements, deep learning, CNN-LSTM, DNABERT, sequence analysis,
regulatory mechanisms, transcription factor binding sites, TFBS

1 Background

Long terminal repeats (LTRs) are essential regulatory sequences of retrotransposons and retroviruses, often found in
high copy numbers in many eukaryotic genomes (Baucom et al.[2009, |Klaver and Berkhout||1994). LTR
retrotransposons are the main repeat type in most plant genomes (Jedlicka et al.||2020, [Luo et al.|[2022). While
retrotransposons propagate through transcription and subsequent insertion, experimental methods for studying
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transposable elements are limited due to the inactivation of a majority of the genomic copies in most of the life cycle
except for reproductive cells and in response to stress (Bennetzen and Wang)[2014] |Grandbastien et al.||2005, |Sigman
and RK./2016)). In addition, experiments are typically only carried out on a small number of model sequences and
organisms.

Genomic sequence analysis can thus provide important additional information about the composition,
classification, and function of LTRs in LTR retrotransposons and even in their evolutionarily contrasting element
subtypes (superfamilies and families, see [Wicker et al.| (2007)). This approach has shown some success when applied
to full-length LTR retrotransposon sequences in plants (Arango-Lopez et al.|2017)), including machine learning
approaches (Orozco-Arias et al.||2022), but has not been applied specifically to LTRs whose structure is more loosely
defined than the structure of internal coding regions of the retrotransposons. This imprecise characterization
complicates the analysis of plant LTR sequences with traditional methods.

In a way, LTRs are “the closest cousins” of regulatory sequences such as promoters and enhancers. First, LTRs
themselves function as promoters in transcription of their own LTR retrotransposon copy (Casacuberta and Santiago
2003)), not unlike what happens in human LTR retroviruses, such as HIV (Dutilleul et al.|[2020). They can drive the
transcription of neighboring genes (Cui and Cao|[2014). Second, there is ample evolutionary evidence that LTR-TEs
contribute to the makeup of older regulatory sequences either by inserting into them, nearby, or providing the initial
building material for subsequent regulation (Thompson et al.|[2016]). Both LTRs and gene regulatory sequences
(promoters, enhancers), have an increased ability to bind transcription factors (Hermant and Torres-Padillal/2021]).

In LTR retrotransposons, it is relatively easy to delineate the LTRs since they occur in two copies, one at each end
of the transposable element (TE), and in the case of bona-fide insertions also carry tandem site duplications (TSDs)
at their outer boundaries (Turcotte et al.[2001). However, their internal composition is often difficult to unravel.
Functional LTRs must always contain three regions important for the life cycle of the entire TE. These are known as
U3, R and U5, and can be determined experimentally (Arkhipova et al.|[1986). U3 is known to bind regulatory
proteins important for transcription and its components are capable of serving both as enhancers and promoters. U5

may contain additional regulatory signals and it borders on or partially overlaps the primer binding site (Zhang et al.

2014). The R region is delineated by the transcription start and termination sites. Region identification by in-silico
sequence analysis is problematic. Sequences of plant LTRs are variable not only in sequence composition but also in
their length, ranging from around a hundred bps to several thousands (Du et al.[|2010)). We are looking for ways in
which sequence analysis can shed light on to the internal structure of LTRs and identify regulatory regions, such as
transcription factor binding sites (TFBS) and their type and absence/presence in different TE families.

Deep learning (Sapoval et al.|[2022]) and transformer-based models (Vaswani et al.|2017)) have the potential to
address these challenges, having been successfully applied in recent genomic data analyses (Ji et al.[2021, |Jumper
et al.|2021)), including the classification of full length LTR retrotransposons (Chen et al|2024). While this approach
demonstrated high classification accuracy, the learning process reflecting the biological features of LTR
retrotransposon sequences has not yet been fully examined. Here we have employed these models for LTR sequence
identification and classification, focusing on model interpretability as a tool to extract both existing and new
biological knowledge about these regulatory sequences.

Due to the highly variable length and sequence composition of LTR sequences, LTR identification using common
bioinformatics solutions poses a complicated problem. Machine learning (ML) methods can provide insight into
complex relationships within the data with minimal prior assumptions due to the process of learning on input
features. This allows us to uncover previously unrecognized properties, from the successful interpretation of the
learned internal structure of such models. Here, we will focus on the state-of-the-art ML and deep learning (DL)
mehodologies that have already proven useful in similar scenarios.

The Gradient Boosting classifier (GBC) is an ensemble-based method which iteratively trains multiple weaker
learners on the pseudo-residuals of learners from previous iterations, with the goal of improving upon their prediction
errors. The accuracy of the model is dependent on its hyperparameters, such as the number of sub-estimators used,
as well as the specific hyperparameters of the sub-estimators. This can be improved by techniques that identify an
optimal combination of these parameters for a given dataset. In general, the ensemble model tends to be relatively
robust to overfitting and achieves good results in fairly complex biological tasks (Kotov et al.||2023, [Messad et al.
2019).

The combination of convolutional neural networks (CNN) and LSTM nodes has proven efficient both in natural
language processing tasks and in the biological domain (Gunasekaran et al.|2021, |Liang et al.|[2020). The effectiveness
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of this combination stems from the ability of convolutional filters to capture local patterns, including, but not limited
to, those of TFBS and the ability of the LSTM to recognize remote dependencies and the co-existence of these
patterns. LSTM nodes are able to selectively filter out information about the input sequence through the use of a
gating mechanism. This enables the LSTM network to retain relevant information, discard irrelevant details, and
carry over crucial context from previous elements in the sequence (Hochreiter and Schmidhuber{/1997).

The BERT family of models (Devlin et al.|2018) is a relatively recent tool that has seen many successful
applications, mainly in natural language processing but also recently in the challenge of transposable element
classification (Chen et al.[2024]). The BERT model is a transformer-based neural network model that utilizes the
mechanism of attention to recognize the context of words and embed sentences into a fixed-size vector. Such
embeddings have a number of key properties, which make them useful for further downstream tasks. One example is
that semantically similar sentences tend to have embeddings whose cosine distance is small. An important feature of
popular BERT-based models is their pre-trained nature, meaning that fine-tuning to custom data requires much
smaller datasets, making it also much faster than training from scratch. One such model pre-trained on DNA
sequences is DNABERT. Analogical to natural language, the function of DNA is also based on its internal structure
and the order of its sub-features, making the DNABERT model an attractive candidate when dealing with variable
length sequences with unknown structure.

Machine learning and deep learning have seen many advancements in the area of model interpretability techniques,
promoting better comprehension beyond the black-box approach that particularly deep learning models have been
known for. Appreciation of how a model makes decisions will give us a better understanding of our data and the
ability to detect class-specific features. Such applications provide a way to pinpoint key structural properties of data
such as DNA sequences, where the order of elementary features defines a certain biological function. The techniques
used in this work range from the direct analysis of the model structure such as the analysis of convolutional layer
filters, to more complex algorithmic tools such as SHAP (Lundberg and Lee [2017)).

As machine learning and deep learning have already been successfully used to delineate promoters and TF binding
sites |An et al.| (2022)) and IncRNAs (Danilevicz et al.[2023)) in genomic sequences, we set out to investigate here their
ability to improve our understanding of LTR structure, modularity and genomic sequence composition. We also
wanted to know whether models based on different algorithmic principles would show any shortcomings or advantages
in regulatory sequence analysis.

2 Results

As mentioned above, our aim was to specifically analyze plant LTR sequences that are more variable and dynamic,
and therefore more difficult to study than coding regions of LTR retrotransposons. Due to their inherent modularity
as promoters and higher variability in overall length, comparing and clustering them via sequence alignment is more
complicated. An alternative approach appears to be motif identification. Dedicated software, such as MEME (Bailey
and Elkan|[1994) has often been successful in extracting motifs from promoters. However, the absence of expression
data makes the location of common motifs much more difficult.

Therefore, we tested a simple model using k-mers of annotated LTRs (data from [Zhou et al.| (2021]) further
described and used throughout the paper), where we compared k-mers (k = 6) using the Jaccard Similarity Index
(JSI) between the TE super-families - Ty1l/Copia and Ty3/Gypsy (Supplementary Figure 1A). These superfamilies
share 37 % of unique k-mers. Furthermore, the dendrogram of individual LTRs created from their JSI values did not
reliably distinguish representatives of the two superfamilies (Supplementary Figure 1B). Additionally, we compared
the occurrence of k-mers in LTRs with the length of corresponding non-LTR sequences from the genomes of relevant
plants as controls (Supplementary Figure 1C). The results indicate that in more than 80 % of plant species (56 out of
69), the JSI value of k-mers present in LTR and non-LTR, sequences was higher than 75 %. Clearly, neither sequence
alignment, nor simple k-mer counting are powerful enough to meaningfully cluster LTR sequences from different
families or species, or to isolate the subsequences responsible for their specific function.

In response to these shortcomings of the above-mentioned classical approaches, we decided to employ forms of
machine learning that allow flexibility both in terms of the motifs being sought (we may not necessarily know them in
advance) and their relative or absolute positions within the LTR.

The main focus of our work was to discover features of plant LTRs that contribute the most to the ability of a
machine learning model to detect or classify LTR nucleotide sequence of plant LTR retrotransposons. Figure [I] shows
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the overall data flow and tools used here, which consisted of the input data collection and filtering, its preparation
and encoding for subsequent use in ML models, model construction and learning, the final interpretation of the
results, and identification of the most influential features.

Three main tasks of this study were: (i) LTR detection - learning to distinguish LTR and LTR-negative sequences;
(ii) Superfamily classification - learning to distinguish Ty3/Gypsy and Tyl/Copia LTRs; and (iii) Family
classification - classification into any of the 15 families selected for the input data.

Three types of machine learning models were employed for the above DNA sequence classification tasks (see
section 3.3 of Methods for more details). First, a conventional ML model that uses TFBS counts as input, specifically
a Gradient Boost classifier (GBC). Second, a hybrid CNN-LSTM network trained on one-hot encoded sequences and
finally, a pre-trained, transformer-based DNABERT model (Ji et al.[2021) further trained on k-mer-tokenized
sequences.

Recently several large-scale studies of plant LTR retrotransposons have been carried out. To provide us with a
sufficiently high number of complete annotations we chose a study by [Zhou et al.| (2021) that produced “a
comprehensive annotation dataset of intact LTR retrotransposons of 300 plant genomes”. Altogether, 2,593,685 LTR
retrotransposons are available in this dataset, however after applying additional criteria for quality and redundancy,
we ended up with 176,917 LTR retrotransposons (and their corresponding LTR pairs) from 75 plant species (see
section 3.1.3 in Methods). To facilitate machine learning, an LTR-negative sequence dataset was prepared as
described in section 3.1.2 in Methods.

Data Acquisition Data Preprocessing Model Training Model interpretation
non-LTR DB
Genomic extracts —> One-Hot encoding EEE— CNN-LSTM model EE— CNN filter analysis
Solo-LTR removal
Randomly generated
Markov Generated — TFBS identification
/ —> SHAP
v ) 4L
4 S— TF-IDF transform ~~ ————— GBC, RFC, MLP —
N \
LTR DB
: o —> K-mer tokenization I m— DNABERT model —
LTRs extracted from Sequence verification | — Attention analysis
sequence and filtering S .

Figure 1. Data processing and computational workflow diagram. Input DNA sequences (positive and
negative LTR sets) were pre-processed for the three alternative modeling approaches (to obtain TF binding site
presence, one-hot encoding, and k-mers). The last two columns show the software tools used in individual branches of
the analysis.

2.1 Model training

The three types of models were trained on the input data as described in section 3.4 of Methods. The accuracy of the
trained models as evidenced by computed F1 characteristics was in the range 0.68-0.89 (Table . Binary

classifications of LTRs and their superfamily membership were easier to learn, while the hybrid CNN-LSTM model
was the best overall. Tt is evident that learning just on JASPAR TFBS (in GBC) leads to lower accuracy, especially
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in LTR detection (F1=0.73 v. 0.85; difference of 0.12), while the differences in family and superfamily classification
tasks are much lower (difference of 0.06-0.07). The lower differences in accuracy between models at the family level
could reflect the biological fact that all LTR retrotransposons share the common elements important for their life

cycle (and also for their detection and classification at higher levels), while less information is available from features

recruited by individual families. More detailed results of the learning step are available in Supplementary Figures 2-5.

Table 1. Precision, recall and F1 measure of three types of models in the three tasks. GBS - Gradient
Boosting classifier; CNN-LSTM - a hybrid network model; DNABERT - pre-trained BERT. The best F1 values
for a given task are shown in bold.

Task Model Precision Recall F1 measure
GBC 0.74 0.74 0.73
LTR detection CNN-LSTM 0.85 0.85 0.85
DNABERT 0.83 0.83 0.83
GBC 0.82 0.82 0.82
Superfamily classification CNN-LSTM 0.89 0.89 0.89
DNABERT 0.85 0.85 0.85
GBC 0.71 0.69 0.68
Family classification CNN-LSTM 0.77 0.73 0.74
DNABERT 0.73 0.73 0.73

The superiority of the CNN+LSTM hybrid network model can be clearly seen in the family classification task
(Figure . Despite having generally lower recall in the three most numerous families (Ale, CRM, Tekay), this
network had however maintained higher precision than the other models (see also Supplementary Figures 6 and 7).

GBC CNN-LSTM DNABERT

1
‘ ‘ ‘ ‘ |
Lum 002 001 ooz 003 000 0oL 000 000 0ol 0oz 0ol 0ol 00D -Retand
"

\\\\\\

|enjoy

Pt H H
Predicted Predicted Predicted

Figure 2. Cross-accuracy of the three model types in the family classification task. GBS - Gradient
Boosting classifier; CNN-LSTM - a hybrid network model; DNABERT - pre-trained BERT.

2.2 Model interpretation

While the models trained to detect and classify LTRs can be useful in themselves, they largely represent black box
models that provide little understanding of how these classifications actually materialized. This is a well-known and
universal problem of machine-learning, and particularly deep-learning methods. Current deep learning approaches try
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to address this problem by specialized post-training analysis of the model and its inputs and outputs. We adapted
two such approaches to the LTR classification problem presented here, some of which can only be used on specific
model types. Derivation of Shapley additive explanations (SHAP) is by principle a model-agnostic method and can

be applied to all models. Convolutional filter analysis was used for neural network models. The methods for
interpretable machine learning used here are described in more detail in the Methods section 3.5.
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Figure 3. Main results of explainability analysis carried out on trained LTR detection models. A -
Top twenty transcription factor binding sites (TFBS) with the highest mean SHAP value contribution (as input
features) to the GBC model performance in LTR classification. Accross all LTRs the presence or absence of these
TFBS was most important for classification of sequences as LTRs by the model (compared to other TFBS). B -
Beeswarm plot showing the extent to which input features influenced model output. Color codes for the TF-IDF
transformed occurrences of that particular TFBS as described in Methods section 3.2.1, horizontal axis shows SHAP
values, indicating whether the effect of a TFBS presence in the analyzed sequence was positive, or negative. C -
TomTom hits of first-layer CNN filters on JASPAR Core 2022 database. The X axis represents the number of CNN
filters that were mapped to the specific TFBS as described in Methods, Section 3.5.2. D - Top contributions of
individual k-mers to DNABERT classification as determined by SHAP analysis. Positively valued k-mers influence
the classification towards the LTR class, while negative values influence the classification towards the non-LTR class.

2.2.1 LTR

SHAP explanations were used in two modes on the GBC model to gauge the effect of TFBS in the analyzed DNA
sequences. Jaspar TFBS were also used to visualize the trained filters in CNN models. The filters from the model
were compared to Jaspar matrices using TomTom (Gupta et al|[2007)). Finally, the DeepExplainer and Explainer
modules of the SHAP package (Lundberg and Lee|[2017) were used to calculate SHAP values along the analyzed LTR
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sequences in CNN and DNABERT models respectively, with the ambition of uncovering regions of LTRs most
contributing to successful learning.

SHAP TreeExplainer (GBC)

First we analyzed models trained to recognize LTRs (as opposed to other random, or genomic sequences)(Figure [3}l4)).
SHAP analysis of the GBC model shows the top 20 most impactful transcription factor binding sites (TFBS) present
in LTR sequences and contributing most towards their classification (Figure ) To get an indication about which
TFBS, or what kind of regulation might be specific to LTR retrotransposons in plants, we ran this set through
gProfiler GOSt functional analysis (Kolberg et al.|2023)). Apart from many hits to general TF-related terms (such as
nucleus, DNA-binding, transcriptional regulation, etc.), the biological process results have also shown interesting
subsets, namely: (i) response to stimulus, (ii) anatomical and multicellular development, and (iii) reproductive
process (Supplementary Figure 8-10).

Beeswarm plots of the same analysis (Figure ) differentiate between the positive and negative contribution of
the individual TFBS to classification. Specifically, ERF069 and DREB1D show a particularly sharp boundary of
high/low SHAP values and positive/negative classification, although in opposite directions. ERF069 is an ethylene
responsive element mostly absent from LTRs, while DREB1D on the other hand, is a dehydration responsive element
that is associated with LTRs. A complete list of evaluated TFBS and their performance in the LTR classification task
using the GBC model is provided as Supplementary File 1.

Filter analysis (CINN)

Another opportunity to look at TFBS as instrumental in LTR classification was via filter analysis of the CNN model.
Figure Bk shows the top 20 results from the comparison of first-layer convolutional filters to JASPAR database TFBS,
sorted based on the number of motif hits. gProfiler GOSt functional analysis shows results similar to the above
paragraph, however in this case, only response to stimulus was present as a subset of TF-specific terms, embodied by
the only common hit with the above analysis in DREBD1B. Filter analysis brought up several E2F and ERF family
members’ binding sites. While the former are cell-cycle progression regulators, the latter are ethylene responsive
factors that may have been used by the model as a negative indicator of LTR sequences (analogically to SHAP
results in GBC above). A complete list of evaluated filters/TFBS and their presence as filters in the CNN model is
provided as Supplementary File 2.

DeepExplainer (CNN)

The DeepExplainer module was implemented to visualize the location of sequence positions with the highest SHAP
values in the CNN-LSTM model (Figure ) To visualize the alignment of possible signals between different
sequences, the sequences were aligned by their first base (start), predicted TATA box, predicted transcription start
site (T'SS), and their last base (end) and shown as line graphs and heatmaps. In both the averaged line graph values
and the heatmaps, three signals pop up as locations instrumental in LTR classification. They are the first few and
the last few bases of the LTRs, as well as the TATA box predicted with TSSPlant |Shahmuradov et al.| (2017)). It is
also apparent in the CNN model, that the 5’ ends of the LTRs have a higher density of informative k-mers than their
3’ ends, possibly reflecting a typical TFBS position upstream of the TSS.

Explainer (k-mers, DNABERT)

Similarly to the SHAP analysis on TFBS and sequence positions, the analysis can be carried out on kmer-based
models to identify k-mers present in LTR sequences that, in a given instance contribute more significantly to the
classification of the sequence as an LTR or a non-LTR. The top 20 k-mers for the LTR classification task via the
DNABERT model are shown in Figure [Jd. We have identified overlaps among the k-mers that indicated their origin
from a wider sequence motif (Supplementary File 3) and found the following putative consensus motifs to be present:
(i) TATA[AT]A (positive SHAP values, a likely TATA box), (ii) [CT][CT]AACA (positive SHAP value, likely 3’ end
of LTR), and (iii) CAACAT[GT]G (negative SHAP value, unknown origin). A complete list of evaluated k-mers in
the DNABERT model and their SHAP values is provided as Supplementary File 4. Visualization of signal alignment

154

155

156

1

o
g

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198


https://doi.org/10.1101/2024.06.11.598549
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.11.598549; this version posted June 14, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

was conducted in the same way as previously described in section 2.2.1.3 to show the sequence regions containing
significant k-mers (Figure [4p).

2.2.2 Superfamily

Models trained to recognize superfamilies were analyzed analogically to those detecting LTRs (subsection 2.2.1.1) and
the respective visualizations can be seen in Supplementary Figure 11,12. Interestingly, gProfiler analysis of top 20
TFBS instrumental in superfamily classification by the GBC model did not show any biological process outside
general transcriptional regulation as overrepresented in the set. The top 20 list shared 6 TFBS with a similar list
from the LTR classification task, namely AHL20, DOF5.3, DOF5.7, ARF 16, ERF069, AT3G46070. Unlike the LTR,
classification task above, DeepExplainer visualization has not demonstrated the importance of TATA box sequences
for superfamily classification, although a few sequences did show some higher SHAP values in the vicinity of the
TATA box, some of which could be other core promoter elements preceding TATA. The extreme ends of the LTR
sequences remained informative (Supplementary Figure 12), suggesting that these sequences may exist in superfamily
variants, or at least are more conserved in one superfamily compared to the other (further analyzed in the following
subsection and Table .

LTR 5’ and 3’ edge analysis

The extremes of LTR sequences (at both the 5’ and 3’ ends) repeatedly surfaced in our explainability analysis results
as informative. To get a more detailed picture of sequences present at these locations in various LTR subsets, we also
counted the 5’ and 3’ k-mers in the input data. Table [2 shows the assignment of the top five tetramer pairs of Gypsy

and Copia superfamily LTR ends to one of the two most frequent pairs, 5-TGTT..AACA-3’" and 5-TGAT..ATCA-3’.

The assignments were based on the observation that in some LTR annotations, tetramers were apparently shifted by
1 base, presumably because of annotation imprecisions in the sourced files (based on this logic, as an example,
GTTA..AACA was assumed to be shifted by 1 base at the 5’-end and therefore assigned to TGTT..AACA). The
assumption of a shift in Table [2| was made in all cases where shifting the tetramer by 1bp improved the
complementarity of the 5" and 3’ tetramers and led to the presence of the canonical TG..CA pair. Interestingly, 16 %
of Copia edges had only 3bp complementarity, compared to the rest of the five most occuring tetramer pairs in each
superfamily shown in the table.

Table 2. The most represented k-mers at the 5’ and 3’ ends of LTRs. Left - Copia superfamily, the
most frequent tetramers are 5-TGTT..AACA-3’; Right - Gypsy superfamily, the most frequent tetramers are
5-TGAT..ATCA-3".

Copia Gypsy

5..3" ends count | assigned 5’..3" ends count | assigned

TGTT..AACA | 768 TGTT..AACA | 248 | TGTT..AACA
TGTT..AACA total: 248 (24%)
total: 1870 (84%)

GTTA..AACA 558 TGAT..ATCA 292

GTTG.AACA | 544 GATG..ATCA | 202 ;FofﬁzTégT(Cﬁé% )

TGTA..AACA 183 | TGTA..AACA GATA. ATCA 158

GTAA.. AACA 181 | total: 364 (16%) TGTC..GACA | 139 | TGTC..GACA

total: 139 (13%)

2.2.3 Family

Models trained to recognize families were analyzed analogically to those detecting LTRs (subsection 2.2.1) and the
respective visualizations can be viewed in Supplementary Figure 13. Significant signals typical for specific positions
within the LTR all but disappeared in visualization of SHAP values from CNN and DNABERT models for individual
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Figure 4. SHAP analysis of trained LTR detection models. k-mer based SHAP values were calculated along
individual LTR sequences. To visualize their alignment between different sequences, sequences were aligned (from left
to right) by their first base (start), predicted TATA box (TATA), predicted transcription start site (TSS), and their
last base (end). Averaged SHAP values are shown as a line graph above, individual sequence values are color-coded.
A - CNN model. B - DNABERT model
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families (Supplementary File 5). Top TFBS from GBS SHAP analysis had no overlap with the corresponding LTR
and superfamily sets. However, when subjected to overrepresentation analysis with gProfiler (Supplementary Figure
10), six of the top 20 TF involved belonged to a functional group responding to plant hormones, specifically auxin

and abscisic acid. Related overrepresented biological functions in eight TFBS included cell communication, meristem
localization and phyllotaxis (PHY3, AIL6, AIL7, WRKY62, FUS3, ABF2, ABF3, BHLH112 ).

3 Methods

3.1 Sequence data
3.1.1 LTR input data

Annotated full-length transposable elements were obtained from |Zhou et al.| (2021)). Available annotations were
searched for LTR pairs (a pair of 5’- and 3’-LTRs belonging to the same full-length TE). Element insertion time was
estimated based on LTR pair divergence as previously described (Jedlicka et al.|2020)). A corresponding FASTA file
containing all the sequences further used here is provided as Supplementary File 6.

A separate set of “LTR-negative” sequences was prepared for model training (Supplementary File 7). In
supervised learning (used here) a set of DNA sequences that do not contain LTRs is necessary to allow the models to
identify classification features that are typical of one set, or the other. Selecting a reasonable negative set was an
important and considered step. Apart from generating random sequences, we also strove to include naturally
occurring sequences, and sequences with more intricate internal structure. For this, sequences were extracted from
the same species as those used for LTR extraction, however this time the annotations were used to avoid regions
marked as LTRs. To further the complexity of the training dataset and reduce the influence of easily distinguishable
features, a set of sequences generated using Markov chains trained on clusters of LTR sequences was added. First,
LTR sequences were clustered using the program CD-HIT (Li and Godzik|2006) with a relatively low similarity
threshold of 70 % in order to create larger clusters of less similar sequences. On each cluster, a Markov chain model
of order 2 was trained and used to generate artificial sequences (Youens-Clark|2021). These contained 3-mers often
found in LTRs, but lacked the spatial and organizational properties of LTR sequences. Counts of these different types
of non-LTR sequences are given in Supplementary File 8.

Although training on sequences with more complex differences than those between LTRs and random sequences is
a more challenging task, the resulting data provides a more informative trained model, avoiding fitting on trivial or
non-biological features, such as sequence composition or features that are typical of any plant genomic sequence.

3.1.2 Cleaning and filtering of input data

Due to annotations and their corresponding reference genomes not always being reliably identified from the published
data, only annotations that produced a single-mode distribution of ages were used. We required an LTR sequence
alignment identity of 0.7-1.0 which provided 513663 LTR pairs from 79 plant species.

In order to filter the database of LTR sequences and remove redundant, highly identical training examples, a
clustering technique based on sequence similarity was applied using the program CD-HIT (Li and Godzik|2006). This
approach was tested for sequence similarity >95 % and >85 % (these numbers were chosen to provide sequence sets
of two sizes, while even the smaller set would still contain multiple members of individual TE families, which must
have less than 80 % divergence along more than 80 % length by definition (Wicker et al[2007))). The identity
percentage represents the lower boundary of similarity, above which, sequences have been clustered together. One
representative was selected from each cluster to be used for training. Applying the 85 % boundary results in a
relatively smaller, more strict training database, which should contribute to training more robust models. The
resulting LTR database consisted of 176917 sequences and the LTR-negative database of 543310 sequences from 75
species. Supplementary File 9 provides a list of species and the respective LTR counts.

As the original annotated set contained only full-length transposable elements and their corresponding LTR
sequences, we wanted to verify that no solo-LTRs from the annotated organisms’ DNA had ended up in the negative
training set during the extraction process. Solo-LTR sequences are LTR, sequences orphaned through a process of
unequal homologous recombination between LTRs of the same full-length element (Vitte and Panaud|[2003)). The
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negative training database was therefore aligned to our LTR database in order to filter out any potential solo-LTR
candidates.

3.1.3 LTR sequences comparison - classical approaches

Using a custom python script the Jaccard similarity index was counted for k-mers (k = 6) of all the LTRs and/or
non-LTRs sequences of the corresponding plant species in order to compare (i) k-mers between Tyl/Copia and
Ty3/Gypsy (Supplementary Figure 1a,b); and (ii) LTR and non-LTR sequences originated from the same plan
genome (Supplementary Figure 1c). Dendrograms and barplots were generated in R (version 4.3.3) using the default
"helust’ function with ’ape’ package and ggplot2 package, respectively.

3.2 Input sequence data preprocessing

Three sequence preprocessing strategies have been implemented, each corresponding to a particular model type and
the type of input features that it can handle. These include the identification of transcription factor binding sites,
one-hot encodings and k-mer tokenization.

3.2.1 TF binding site identification

To transform the sequences into a fixed-dimension feature space that can be utilized with most conventional models,
the sequences were parsed with position weight matrices (PWM) of common plant transcription factor binding sites
obtained from the JASPAR database (Castro-Mondragon et al.[2022) (Supplementary File 10). Sequences were
searched for TFBS motifs using the Motifs module provided by the biopython package (Cock et al.|[2009) and a
feature vector of size 656 containing the number of occurrences of each motif was obtained for every input sequence.
The vector was then transformed using the term frequency-inverse document frequency (TF-IDF) measure (Manning
et al.|2008) to reduce the impact of less specific and common TF binding sites during classification . The advantage
of using the TFBS identification approach for training models is the fixed size of the input vector, the easy
interpretability and ability to use with most conventional machine learning models. The downside is that we make
preemptive assumptions about the data and may omit other important properties, which are hidden within the
sequences.

3.2.2 One-hot encoding

In order to maintain the structural information of input sequences, two further approaches to transforming the
sequences were undertaken. The first method was transforming the sequences to one-hot encoded vectors. In contrast
to other popular methods for encoding DNA sequences, such as k-mer frequency, one-hot encoding allows the CNN
filters to fit on specific sequence patterns, maintains sequence structure, and improves the interpretability of the
network where each filter can also be viewed as a PWM (Koo and Eddy|[2019).

3.2.3 k-mer tokenization

The method used in combination with DNABERT-based fine-tuning tasks was k-mer tokenization. In this case, three
different values of k (4, 5, 6) were tested for each classification task. The input sequence was split into k-mers and
encoded into numerical vectors using the assigned tokenizer of the pre-trained DNABERT (Ji et al.|[2021)) for further
training in the transformer model.

3.3 Models
3.3.1 Gradient Boosting Classifier

We implemented and executed a Gradient Boosting classifier (GBC) pipeline that consisted of three steps. First, we
identified TFBS occurrences in input sequences using the src/utils/run_jaspar_parser.py script. We then used these
TFBS occurrences as input for the pipeline containing a TF-IDF transformer and the GBC model, both from the
scikit-learn version 1.3.0 (Pedregosa et al.[2011). The corresponding pipelines containing trained models are provided
in Supplementary File 11.
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3.3.2 CNN-LSTM

We trained the CNN-LSTM model by first preprocessing the sequences using one-hot encoding. We removed
unknown bases from the input sequences (represented by “N”) and then encoded each of the 4 bases (A, C, G, T)
using a one-hot vector where 1 represents the presence of the particular base in the specified position and all other
positions are set to 0. The preprocessing utils are located in the src/utils/CNN_utils.py. We trained the model for
input sequences of size 4000bp, using the pad_sequences function from the keras.utils module version 2.14.0 (Chollet,
and et al.||2015]) to pad sequences shorter than 4000bp with a 0-vector and truncate sequences that are longer. We set
up the CNN-LSTM model with optimal parameters detected during the hyperparameter sweep (described in section
3.4.2). The trained models are are provided in Supplementary File 11. Supplementary Figure 14 shows top 20 TFBS
identified for each task, overall topology of the model is shown in Supplementary Figure 15.

3.3.3 DNABERT

For the pre-trained DNABERT model fine-tuning process, we loaded the model along with the assigned tokenizer at
zhihan1996/DNA bert_6 from the Hugging Face hub (huggingface.co) using the transformers module (Wolf et al.
2020)with the AutoTokenizer and AutoModelForMaskedLM functions provided. The fine-tuned models for the
specific classification tasks to draw predictions from pooled embeddings are available in Supplementary File 11 and
work out-of the box for sequences below 512bps. For sequences above this length, the pooling strategy (described in
3.4.3) needs to be implemented. The functionality for this is provided by the src/utils/seq_to_embedding.py script.
The overall topology of the model is shown in Supplementary Figure 16.

3.4 Model training

Training and predictions on CNN-LSTM and DNABERT models were run using a NVIDIA A100 80 GB PCle GPU.
The datasets were divided into training, validation, and testing with the ratio of 70 %, 10 %, and 20 %, respectively.

3.4.1 TFBS models

The TFBS models were subject to a 5-fold cross-validation grid search in order to detect the optimal model and its
hyper-parameters (Supplementary Table 1). During this grid search, Random forest classifier, Gradient Boosting
classifier and Multilayer Perceptron classifiers were tested for different combinations of parameters (Supplementary

File 12). The LTR and superfamily classification models were trained maximizing the binary cross entropy function.

The family classifiers were trained maximizing the categorical cross entropy function weighted by the proportion of
representatives per class (Supplementary Table 2).

3.4.2 CNN-LSTM

The CNN-LSTM contains an input layer of size 4000, followed by a 1D convolutional layer, a max pooling layer
followed by an LSTM layer into the output node. A zero-vector padding technique with masking was used for
sequences shorter than 4000bp. All classifiers were trained using the Adam optimizer for 15 epochs, with batches of
size 64, using the early stopping criterion with a 3 epoch patience on the validation set to prevent overfitting. The
LTR and Superfamily classifiers were trained to optimize the binary cross entropy loss function, whereas the family
classifier was trained optimizing the categorical cross entropy function. The models were connected to the Weights
and Biases interface (https://wandb.ai) to monitor training progress and a hyperparameter sweep was run to
detect the best network hyperparameters (Supplementary File 13).

3.4.3 DNABERT

For the training process of the DNABERT model, it was also connected to the W&B interface, and 3 k-mer sizes
were tested for the various classification tasks - 4, 5, 6. All models were trained using the AdamW optimizer for 5
epochs, utilizing the early stopping criterion with a 2 epoch patience on the validation set, to prevent overfitting. The
LTR and superfamily classifiers were trained optimizing the binary cross entropy loss function, whereas the family
classifier was trained optimizing the BCE with logits loss function (Paszke et al|2019). These models were trained on
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sequences under 510 bps in length, 512 being the standard maximum input sequence length of the BERT transformer
model. For sequences larger than 510 bps, a window pooling approach was taken, where a window of size 510
corresponding to the input size of the trained model was moved along the input sequence with a stride size of 170
(one third of the of the model’s input length). The classification head of the model was removed, and the produced
embedding vector of size 768 was average-pooled along the sequence, generating a final vector of size 768 containing
averaged embeddings along the sequence. A convolutional network model was then trained to classify sequences
based on the pooled embedding vector. This network uses 32 filters of size 3 pooled into a dense layer of size 32 and a
logistic sigmoid at the activation function in the output layer for the LTR and superfamily classification tasks and a
softmax layer of size 15 for the family classification task.

3.5 Trained model interpretation
3.5.1 SHAP

The SHAP (SHapley Additive exPlanations) algorithm has its roots in cooperative game theory. It is a
model-agnostic approach used for estimating the impact that input features have on the output of the model.
Shapley values exhibit desirable properties such as efficiency, symmetry, and additivity, making them an ideal
foundation for understanding the contribution of each feature to a given prediction. Due to the additive nature of
Shapley values, they may be used for local, instance-wise explanation, as well as global understanding of input
features across multiple instances when aggregated.

The algorithm works by training a model fg; with feature i present during the training and a model fg with
feature 1 not present. The outputs of these models are then compared and the SHAP value for feature i is computed
as the difference of outputs of the models fg; and fg scaled by the weighted average of all possible differences.

To produce the SHAP values used in this study, the python module SHAP (version 0.44.1) was used. The
gradient boosting classifier feature importance was interpreted using the TreeExplainer (Lundberg et al.|2020) class
provided by the package on the full testing dataset of LTRs and LTR-negatives in the case of LTR classification, and
the full set of only LTRs in the case of superfamily classification.

For interpreting the CNN-LSTM hybrid network model, the LTR test set was subsampled down to 2000 instances,
and was parsed using the DeepExplainer module of the SHAP package to explain feature importance of input
sequence positions.

For interpreting the k-mer based fine-tuned DNABERT model, the Explainer module with automatic selection of
estimator was used to interpret the importance of k-mers in sequences within 512 length, for the selected set of 2000
LTR sequences. In order to obtain the importance of particular k-mers, we aggregated the SHAP values for each
k-mer across the selected subsample. Their corresponding values were then scaled using Min-Max scaling separately
for k-mers with largest negative and largest positive contributions.

Additionally, we analyzed the importance of specific regions of LTRs (sequence start, TATA box, TSS, and
sequence end). First, we predicted the positions of TATA and TSS sites using TSSPlant (Shahmuradov et al.|[2017).
Next, we assessed the importance of each sequence position across 2000 subsampled LTR sequences by either
calculating the sum of squares of SHAP values in each position (CNN-LSTM model) or calculating the mean SHAP
value of all k-mers containing a given position (BERT). Median position importance, centered around specific regions,
was then visualized using the plotHeatmap function from deepTools (Ramirez et al.|[2016).

3.5.2 CNN filter analysis

To analyze the learned CNN filters, they were first extracted from the trained network, then normalized in the
following way: S = exp()\ﬁ(s)) where S represents the normalized filter, S the original filter and ) is a scaling
factor whose value was set to 3 as suggested in Koo and Eddy| (2019). These normalized filters were then converted
to the MEME format using the jaspar2meme tool from the meme suite version 5.5.5. (Bailey et al.|2015) and
compared to the JASPAR CORE 2022 (Castro-Mondragon et al|2022) plant database using the Tomtom motif
comparison tool (Bailey et al.|2015)) with a cutoff E-value of 0.1.
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4 Discussion

We used machine learning methods to predict long terminal repeats (LTR) of plant LTR retrotransposons and to
classify LTR sequences into retrotransposon families. Our results show that the models used here recognized
biologically relevant motifs, such as core promoter elements (TATA box), as well as development- and stress-related
subclasses of TF binding sites. Our analysis also reinforced the importance of 5’- and 3’- edges in LTR identity.

While our work is not the first to apply machine learning methods to LTR retrotransposon analysis, none of the
previous studies analyzed LTRs in isolation as we did here. One of the earliest ML approaches, based on full-length
TE sequences, was reported by [Schietgat et al. (2018)) who used Random Forest-based models to detect and classify
LTR retrotransposons into superfamilies, achieving average F1 values of 0.56. |Orozco-Arias et al.[(2021) trained a
multi-layer perceptron model based on k-mers to classify full-length LTR TEs. The F1 scores on their data reached
0.95. This is a better performance than our deep learning models here at or above the superfamily level (0.73-0.85;
Table 1), however it is also expected, since the internal parts of LTR TEs contain protein coding sequences that are
more amenable to sequence alignment, as such form the basis of TE classification systems, and are generally easier to
detect and cluster. Other previous works aimed at classifying LTR TEs as a class among other repeat classes used
neural networks and hierarchical repeat sequence clustering (Abrusan et al.|2009} |[Nakano et al.[2017)) to achieve
precision of LTR-TE classification 0.88 and 0.94. These variances can be ascribed to different motivation. While we
focused on model explainability and the associated detection of biological motifs in the analyzed LTR sequences, the
other studies were mostly motivated by increasing the speed and/or precision of the classification tasks compared to
possibly simpler but time-consuming procedures, such as sequence alignment. The use of isolated LTRs allowed us to
focus on specific sequences that typically make up regulatory DNA, not only in LTRs but also in promoters and
enhancers. Unlike the above approaches, we also carried out classification at the family level. While these models
were the most difficult to analyze for explainability, and the least informative compared to the two higher levels, they
still achieved a respectable F1 of 0.68-0.75.

Looking at previous attempts in this area, clearly models with a CNN component tend to be the most popular
and give the best results (da Cruz et al.[2021} [Yan et al.[|2020)); see also Table 1).

We tested three different techniques to achieve model explainability and identify features that the models
“learned”, which then contributed most to model accuracy. Interpretation of DNABERT attention heads (not shown)
was problematic. Among other things, we did not find an effective way to correlate the data with the other methods
(CNN filter analysis and SHAP) and therefore decided not to pursue this avenue of investigation. CNN filter analysis
has shown that many of the filters learned in the neural network had resemblance to known JASPAR TFBS motifs
and served to pinpoint the most prominent TFBS recognized by the models. Their biological underpinnings are
discussed below. It turned out that SHAP was the most effective method to analyze the trained models, which
allowed us to identify specific sequence motifs used by the models, such as the TATA-box motif and 5’- and 3’- ends
of LTRs, that contributed most to LTR identification and classification and are identical to motifs described in plant
TEs before (Rocheta et al.|[2012). Also, being a model-agnostic method, the use of SHAP allowed us to compare
influential features across models using the same metric.

The dependence of models on TFBSs in LTRs is consistent with the concept that LTRs are regulatory regions

capable of controlling the transcription of elements in a spatially and temporally specific manner (Wicker et al.|2007).

By searching biological roles of the most prominent TFBSs, we found them to be associated particularly with (i)
transcriptional activation of genes in stress conditions (DREB1, REF6, ERF7, ARR1), (ii) binding sites for
transcription factors (TFs) acting during flowering and germline development (RAMOSA1, CDF5, DOF5.3,
E2FA,C,D,E, MYB24, NID1,TB1, AT3G46070), (iii) binding sites for tissue-specific transcriptional repressors
(AHL20, CDF2, ARF2), and (iv) binding sites for chromatin remodelers involved in DNA demethylation (REF6).
This observation gained using LTRs from 75 plant species here should be interpreted with caution because TF's form
large gene families of neo-functionalized and sub-functionalized genes sharing identical or similar TFBSs. TF's
typically account for 5-10 % of genes in a species genome (Yuan et al.[2024), for example, Arabidopsis thaliana has
approximately 2300 TFs, which corresponds to 8.3 % of its total genes (Hong(|2016|). Some TF's also either require the
binding of homodimers to two TFBSs at some distance apart or interaction with other TFs bound to a given locus to
initiate transcription or other processes (Boer et al.[[2014, |Strader et al.[2022). Moreover, the roles of individual TFs
have only been studied in a few model species to date, and it is unclear to what extent their functions are conserved
in plants.

However, some of the prominent TFBSs recognized by the models have already been found and functionally

14/p2

405

406

407

408

409

411

412

413

414

416

417

418

419

421

422

423

424

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

449

450

451

452

454

455

456


https://doi.org/10.1101/2024.06.11.598549
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.11.598549; this version posted June 14, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

promoter-like

regulatory

sequences

« open chromatin
« core promoter elements
unique repeats

LTRs

« absence of TG..CA border |
16| TAACA ] — TaTAWA
» downstream gene-specific 5 SIR 5.att TFBS TATA-bax Tss 3att 3SR

us [ J— us —
« lineage-specific core promoter elements
» border-delimiting sequences (TGTT.. AACA)

promoters

Eypsy copia

« border-delimiting sequences (T'GaT. AtCA) « superfamily-specific TFBS

TE «» lineage-specific TFBS
families

Figure 5. A hierarchy of promoter-like regulatory elements (including LTRs). black - subsets of regulatory
sequences that ML models are trained on; red - sequence motifs specific for respective subsets that the models can use
to classify the group correctly. Block diagram shows the structure of a typical LTR with sequence motifs assembled
from k-mers discovered by the DNABERT model trained here

validated in TEs. Therefore, we assume that our models have used TFBSs preferred in LTRs and related to general
rules for transcriptional regulation of LTR retrotransposons. Of particular importance are TFBSs for binding
stress-response TFs. Activation of TEs by abiotic and biotic stress is supported by a wealth of experimental data in
A. thaliana (e.g. (Duan et al.[2008, Matsunaga et al.[[2011]), rice (Jiao and Deng||2007)), sunflower (Mascagni et al.
and other species (Ito/2022). Although earlier studies linked the activation of TEs by stress to epigenetic
changes (euchromatinization of TEs), a number of TEs are now known to contain TFBSs identical to those of
stress-responsive genes. A textbook example is ONSEN, a heat-induced (high temperature induced) LTR
retrotransposon containing a heat shock element (HSE) for heat shock factor binding (Cavrak et al.|2014, Ito et al.|
. In maize most TEs (gypsy, copia, LINEs) activated by stress contain motifs for stress-responsive DREB/CBF
transcription factors (Makarevitch et al/[2015]), which have been recognized by our ML models. DREB/CBF and
REF6 TFBSs have been detected in Gypsy and Copia TEs activated by heat stress in Arabidopsis
@D REF6 is a plant-unique H3K27 demethylase that targets DNA motifs via its zinc-finger (ZnF) domain
@. Its presence in TEs suggests that TEs are able to actively resist the host methylation machinery and/or
control their epigenetic state in response to stress conditions. In addition, there is increasing evidence that TEs, by
transferring stress-response TFBSs to the vicinity of genes, rewire new transcriptional networks that enable the host
adaptation to stress (Deneweth et al]2022] [Hénaff et al|[2014] |Qiu and Kdhler|[2020) and changing environmental
conditions (Quadranal[2020).

Another frequent group of TFBSs is bound by TFs expressed in floral meristems and reproductive organs. TB1
(identified here by ML models) has been previously confirmed in the Hopscotch retrotransposon in maize, where it is
expressed in developing glumes (Dong et al.2019)). E2F TFBSs were found in several families of TEs in Brassica
species, and E2Fa binding to TEs has been functionally validated in vivo (Hénaff et al.|2014). E2F TFs regulate
various processes mostly in developing pistils and anthers, and frequently TE-harbored MYB24, NID1, CDF5, and
AT3G46070 TF's also show localized expression in stamens (based on https://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi,
Klepikova Atlas). These findings suggest that TEs prefer certain short-term and localized windows in their host’s life
cycle for transcription and transposition. Transposition in floral meristems or in reproductive cells allows TEs to
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minimize their spatiotemporal activity, thereby lowering the risk of reducing host fitness by deleterious insertions in
somatic cells, while increasing the probability of transmitting new TE copies to the next generation. Clues to this
behavior can be seen in dioecious plants with heteromorphic sex chromosomes. For example, in Silene latifolia and
Rumex acetosa, the accumulation/absence of most LTR retrotransposons on Y chromosomes can be explained by
transposition in either the male or female reproductive organs (Cermak et al.|2008; [Filatov et al.|2009, [Hobza et al.

2017, |Jesionek et al.[2021, Kubat et al.[|2014, Steflova et al|[2013). A very similar situation emerges in animals as well.

For example, many TEs harbor DNA binding sites for pluripotency factors and are transiently expressed during the
embryonic genome activation of primates (Pontis et al.|[2022).

Taken together, the ML tools opted for TFBSs, many of which have been independently described by other
methods. We consider them to be indicative of the biology of TEs and the TE/host interaction. We can speculate
that, in general, LTRs contain more often binding sites of TFs that ensure reproductive cell-specific activity or
activity triggered by biotic and abiotic stresses. This is advantageous for both TEs and the host because (i) host
viability is not threatened by deleterious TEs in somatic cells, (ii) transgenerational reproduction of TEs is ensured,
and (iii) the evolutionary plasticity of the host genome is increased by new regulatory networks (Gebrie/|2023). On
the other hand, no single TFBS defines a specific taxonomic group of TEs suggesting that TEs can co opt new TF's
from other TEs and genes, and adapt their strategy to changing conditions in the host genome.

Our machine learning approach could be advantageous not only for a better LTR retrotransposon and solo LTR
identification and annotation but could be useful also for the prediction of potential TF binding sites within LTR.
This way, our tool can also contribute to revealing the involvement of these mobile genetic elements in cellular
regulatory networks.

5 Conclusion

In this work we tested the ability of deep learning techniques to learn features specific for certain sets of plant LTR

sequences, and when combined with explainability analysis, to pinpoint regions of LTRs responsible for their accuracy.

We found three features used by the trained models: i) 5'- and 3’- edges, ii) TATA-box region, and iii) TFBS motifs
and discussed their biological relevance. Our work shows the applicability of the used models and the associated
explainability analysis to the study of regulatory sequences and their classification.
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