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Abstract

Motivation: Biomarker detection plays a pivotal role in biomedical research. Integrating omics
studies from multiple cohorts can enhance statistical power, accuracy and robustness of the detection
results. However, existing methods for horizontally combining omics studies are mostly designed for
two-class scenarios (e.g., cases versus controls) and are not directly applicable for studies with multi-
class design (e.g., samples from multiple disease subtypes, treatments, tissues, or cell types).
Results: We propose a statistical framework, namely Mutual Information Concordance Analysis
(MICA), to detect biomarkers with concordant multi-class expression pattern across multiple omics
studies from an information theoretic perspective. Our approach first detects biomarkers with con-
cordant multi-class patterns across partial or all of the omics studies using a global test by mutual
information. A post hoc analysis is then performed for each detected biomarkers and identify studies
with concordant pattern. Extensive simulations demonstrate improved accuracy and successful false
discovery rate control of MICA compared to an existing MCC method. The method is then applied
to two practical scenarios: four tissues of mouse metabolism-related transcriptomic studies, and three
sources of estrogen treatment expression profiles. Detected biomarkers by MICA show intriguing
biological insights and functional annotations. Additionally, we implemented MICA for single-cell
RNA-Seq data for tumor progression biomarkers, highlighting critical roles of ribosomal function in
the tumor microenvironment of triple-negative breast cancer and underscoring the potential of MICA
for detecting novel therapeutic targets.

Availability: https://github.com/jianzou75/MICA
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1. Introduction

Biomarker detection provides information for early disease diagnosis and is a critical element in biomedical
research |[Liu et al., 2020|. Integration of data from multiple cohorts is a common approach to improve
reliability and statistical power of biomarker detection. If a biomarker demonstrate a similar pattern across
multiple studies, it provides robustness and high likelihood of success in subsequent translation and clinical
applications. In transcriptomic analysis, differential expression (DE) analysis stands as the predominant
method for identifying biomarker expression pattern within individual studies [Costa-Silva et al., 2017,
Conesa et al., 2016, McDermaid et al., 2019]. However, the majority of DE techniques are tailored for
two-class scenarios (e.g., case versus control), faltering in multi-class scenarios. Popular methods such as
limma [Ritchie et al., 2015], although capable of handling multiple classes, primarily offer statistical tests
for aggregated differential information in a global sense rather than considering the expression patterns.
This limitation highlights a paucity of methods adept at delineating multi-class expression patterns.

To address the integration of omics analysis results from multiple cohorts, two popular approaches
emerge in the literature: combining p-values and combing effect sizes. The former has been widely dis-
cussed. For example, Fisher’s method sums up the log-transformed p-values, and each p-value is assumed
to follow standard uniform distribution under the null hypothesis. In addition to Fisher’s method, Stouffer
[Stouffer et al., 1949], minimum p-value [Tippett et al., 1931], higher criticism [Donoho and Jin, 2004], and
adaptive Fisher method |Li and Tseng, 2011| have been developed under this category and are widely used
in the omics study integration, such as GWAS [Begum et al., 2012|, transcriptomics [Tseng et al., 2012],
and methylation [Smith et al., 2018|. Random effects models [DerSimonian and Kacker, 2007], an example
of the latter approach, decompose each study’s observed treatment effects into the actual effect size and
the study-specific noise. These methods, however, have limitations to combine multi-class differential in-
formation. P-value combination methods focus on significance without considering multi-class patterns,
while effect size combination is restricted to two-class scenarios. To our knowledge, the min-MCC method
[Lu et al., 2010] is the only established approach for detecting concordant multi-class biomarkers across
multiple studies, The method, however, has two major drawbacks on overlooking the situation when only
partial studies share the multi-class pattern and not distinguishing between cases where all pairs of studies
have a uniformly low concordance and cases where only one pair has a very low concordance.

To address these challenges, we introduced Mutual Information Concordance Analysis (MICA), a novel
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two-stage framework for multi-class biomarker detection combining multiple studies from the perspective of
information theory. The first stage employs the generalized mutual information with one-sided correction
(gM 1) to overcome the aforementioned drawbacks. The second stage involves a post-hoc pairwise analysis
to identify studies sharing the concordant expression pattern. In 2024, where sequencing studies are
ubiquitous, having a method like MICA can be a powerful tool for integrating datasets and enhancing the
detection of robust biomarkers. We focus on bulk and single-cell transcriptomic applications in this paper
but the method are readily applicable to other omics data types.

As a visual demonstration, Fig 1A shows three example genes Amacr, Pole4 and Mcrip2 detected
by MICA to have concordant multi-class (WT: wild type mice; LCAD: LCAD mutated mice; VLCAD:
VLCAD mutated mice) pattern across all or partial studies (tissues) (enclosed by red rectangles) while
Mrpl51 is not detected due to heterogeneous patterns in all four tissues. Post-hoc pairwise analysis in the
second stage then determines the studies (enclosed by yellow and blue triangles) that contribute to such
concordance for the genes identified in the first step. Specifically, all four tissues share the same multi-class
expression pattern in Amacr. Only brown fat, heart and liver tissues but not skeletal tissue share the
same multi-class expression pattern in Poled. Interestingly, in Mcrip2 gene, brown fat and liver share one
concordant pattern, while Heart and Skeletal share a different concordant pattern.

The paper is structured as follows. In Section 2, we firstly review the existing method multi-class
correlation (MCC) and min-MCC [Lu et al., 2010], followed by a reappraisal from an information theoretic
perspective, where we demonstrate improved properties of the MICA framework. A simulation study and
three real-world bulk and single-cell transcriptomic applications (Section 3) are conducted to compare

min-MCC and MICA. Conclusions and discussions of MICA are included in Section 4.

2. Methods

We assume input data to contain K classess (K > 2) for detecting multi-class patterns in S transcriptomic
studies for integration. For simplicity, we skip subscript of genes and denote x,; as the gene expression
for one gene in study s (1 < s <5), class k (1 <k < K), and sample i (1 < i < ng,). For clarity, when
discussing the two-study scenario (i.e., S = 2), we employ xy; to represent the gene expression in study

X, and similarly y; for study Y.
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Figure 1: Depiction of the MICA Framework. The MICA framework was illustrated using the mouse
metabolism dataset. (A) The application of the MICA framework to different gene types. Genes Amacr,
Pole4, and Mcrip2 that exhibited consistent patterns across studies were initially identified by a global
test using gM I, (highlighted by the red triangle). Subsequent post-hoc tests using M1, (highlighted by
yellow and blue triangles) detected the studies sharing this consistency for each gene. (B) The scenario
without replicates for each class within each study, displaying the median expression of the Amacr gene
within each class and tissue. (C) The scenario with multiple replicates for each class within each study,
displaying the expression of all samples for the Amacr gene.

2.1 Multi-class correlation (MCC) %

We start from the case of two studies (S = 2) with expression vectors X and Y. We first consider the
simplest case wherein ng, = 1 for all the studies s (1 < s < 5) and the classes k (1 < k < K) (Fig 1B).
Under this circumstance, the intuitive strategy for calculating the concordance (correlation) between study

X and Y utilizing Pearson correlation is as follows:

S (1 — 2) (Y — 3)

V@ — 22 T (g — 9

COT’(X,Y) = PXy) =

where z and gy respectively denote the means of xp; and y;; forall 1 <k < K. 97
When there are replicates within each class from each study (ng > 1, Fig 1C), Pearson correlation
is no longer viable. For study X, the observed gene expression xj; is assumed to be obtained from

Xy ~ N(px,,0%,), where X, Il Xp (¥ k # K'). Therefore, study X can be naturally defined as a mixture
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distribution of X} (k= 1: K), where each class is assumed to be equally weighted.

K

Frlo) =3 % Fo )

k=1

K
1
E(X) =px = EZNX;C
k=1

K
1
Var(X) = oy = % > (0% +1k,) — 1y
k=1

Study Y is similarly defined, and Y}, is independent with Xj. The above-mentioned parameters can all

be directly estimated from the data.

KX, = § :xk’j/nXk
=1

TLXk

6%, = Y (= fixy ) [nx,

j=1
Multi-class correlation (MCC) is therefore defined as

E(XY) - EX - EY

VVar(X)-Var(Y)

(% - Sy x, fhy, — fix - fiy)
ox 0Oy

MCC(X,Y) = PXyY) =

For multiple S studies (S > 2), min-MCC [Lu et al., 2010] is then defined as the minimum value of

MCC statistics across all the pair-wise study combinations:

min-MCC = minyzy (MCCyy)

The hypothesis test HS4 for min-MCC to detect concordant expression pattern across all S studies is 98
Hy: 3 pi; <0 vs. Hy: V pi; > 0, where p;; represents the measurement of concordance in the multi-class 99
pattern between study ¢ and j. In addition to computational burden when S is large, min-MCC has two 100
drawbacks. First, it neglects the situation when the concordant multi-class pattern only exists in partial 101
studies due to its stringent requirement for consistency across all studies. Second, it cannot differentiate 102
between scenarios where all study pairs have uniformly low concordance and scenarios where only one pair 103

has very low concordance, which can lead to misinterpretations. 104
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2.2 Mutual information concordance analysis (MICA)

To overcome the issues above, we revisit this problem from the aspect of information theory. We assumed

X and Y to be jointly bivariate normal and denote Z and Z- as the bivariate random variables when X

and Y are correlated (p # 0) or no correlation respectively.

7N Hx o§< pPOXxOy
My POXOy Oy
P N B
Hy 0 oy

Therefore, we can define the mutual information between Z and Z*- as

MIxyy = Dxr(Z)|Z")

1, .
= 5 (0250 52) + (pze = p2) S50 (pze — piz)

>
"“‘IOg(HzZZL))

1 . % 0 (7%( pPOXOy
=— | tr
2 0 % poxoy 0%
2 2 2
oxoy — (poxoy)
—2 —log < P ))
X0y

1
= =5 log(1—p?)

Dy means the Kullback-Leibler divergence, and p is exactly the MCC between X and Y. To be

consistent with MCC and limits to the positive correlation, we define the one-sided corrected mutual

information (M1, ) as

1
MIixyy+ = ~5 log(1 = (p4)?)

where p; = p-1,50.
In the two-study scenario, we can find that M1, is equivalent to MCC, but it is more straightforward

to generalize to more than two studies. For S studies, we have Z ~ N(u,X), ZT ~ N(u,X"), and

105
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Therefore, we can define the concordance measurement for multiple studies, which is the generalized

mutual information (¢gM1T), also known as total correlation [Watanabe, 1960).

1 py
9MI(x, xa.xs) = Dicr(Z1127) = =5 log (|£JL|)

S
1 2
=-3 log | %] — g log o7

s=1

Similarly, to only consider the positive concordance, we define the generalized one-sided corrected

mutual information (gM1, ) as

gMI(x, x,,..x5)+ = D (Z7]|Z)

S
1
=-3 log || — Zlogag

s=1

2.3 Procedure of concordant biomarker detection 107

Based on the generalized mutual information above, the mutual information concordance analysis (MICA) 108

is developed in two steps. 109
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2.3.1 Global test for concordant biomarker detection

In the first step, we first deploy the generalized one-sided corrected mutual information (gM I, ) to ascertain
if a gene exhibits concordant multi-class pattern across multiple studies. This determination hinges on the
hypothesis test, namely HSp, Hy: V p;; <0 vs. Hya: 3 p;; > 0. The permutation test (see Section 2.3.3)

is employed for assessing p-values and g-values of this global test for each gene.

2.3.2 Post-hoc test to detect subset of studies with concordant multi-class pattern

If the null hypothesis in the global test is rejected, we proceed to identify the subest of studies with
concordant multi-class pattern. Specifically, we select the largest subset of studies where every pair of
studies in it shows a significant p-value, indicating concordance. For this purpose, we employ the one-
sided corrected mutual information (MI,) to examine all feasible pairs of studies (i, 7). This analysis is
conducted under the hypothesis setting HS¢ for the study pair ¢ and j by Hy: p;; < 0 vs. Hy: pij > 0,

with p-values inferred by permutation test (see Section 2.3.3).

2.3.3 Permutation test for the four statistics

Permutation test is designed to obtain the significance levels for M1, and gM I, since an analytical solution
is not achievable. We use 6 to denote them for using permutation test to evaluate p-values and g¢-values.

To compare with existing methods, we use the same permutation analysis for MCC and min-MCC.
1. Compute statistics 6, for gene g.
2. Permutate the group label B times and calculate the permutated statistics e_E,b), where 1 < b < B.

3. Calculate the p-value of 0,

s YL 160 20,
1+G-B

p(fy)

4. (If multiple genes are screened simultaneously) Obtain the p-values p(6,) for each gene where 1 <
g < G, and estimate g-values for gene 7 using Benjamini-Hochberg procedure. (p(;) is ordered j-th
p-value)

G -y
g = min{min;> {~——9}, 1}
B J
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3. Results

In this section, we first applied MICA for simulations to evaluate the type I error and power of multi-
class biomarker detection. The method is then applied to two bulk transcriptome applications: mouse
metabolism-related studies [Lu et al., 2010], and estrogen treatment expression profiles |Li et al., 2023].
In the third application, we investigate the capability of MICA in single cell RNA-Seq data for tumor

progression biomarkers detection. [Tokura et al., 2022, Wu et al., 2021a, Xu et al., 2021].

3.1 Simulation

We devised simulations involving five distinct types of genes from four studies (details in Supplement Table
S1). Gene Type I represents perfect concordance with all four studies. In Gene Type II, studies 1, 2 and 3
show concordant expression. Gene Type III highlights pairwise concordance, showing agreement between
studies 1 and 2 and a separate concordance between studies 3 and 4. Finally, Gene Type IV contains
noises across all four studies, without any discernible pattern. There are 10 biological replicates within
each class from each study, and the simulation is repeated for 500 times for evaluation. We then compare
the performance of min-MCC and MICA in terms of type I error control and power.

MICA outperformed min-MCC in terms of signal detection power. For Gene Type I, where all studies
were concordant, MICA achieved a detection rate of 0.836 against 0.638 for min-MCC at the p-value
threshold of 0.05. In the more complex scenarios of Gene Types II and III, where only part of the
studies were concordant, MICA maintained performance (0.748 in Gene Type II, 0.936 in Gene Type III),
while min-MCC faltered (0.184 in Gene Type II, 0.174 in Gene Type III). Figure 2A-C provide a direct
comparison of the respective powers of MICA and min-MCC at varying p-value thresholds across the three
gene types. For the negative control, Gene Type IV, MICA exhibited an error rate of 0.058, slightly higher
than the 0.048 error rate observed in min-MCC.

Following the assessment of individual genes, we expanded the simulation to encompass gene expression
matrices for a genome-wide power comparison. We prepared 2000 genes expression for each dataset,
distributed evenly across four gene types with 500 genes each. A total of 200 datasets was simulated
for this analysis. After preparing the receiver operating characteristic (ROC) curves for each simulated
dataset, the averaged area under the curve (AUC) of MICA was 0.97 (sd = 0.004), in contrast to 0.59

(sd = 0.02) for min-MCC. Figure 2D shows an ROC curve of the data aggregated across 200 simulated
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Figure 2: Comparative performance assessment of MICA and min-MCC via simulation. MICA
consistently outperforms min-MCC in signal detection across Gene Types I-III. Genome-wide analysis
further corroborates superior efficacy of MICA in biomarker identification. (A) Statistical power analysis
in Gene Type I. (B) Statistical power analysis in Gene Type II. (C) Statistical power analysis in Gene
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datasets, substantiating the superior performance of MICA. Employing a g-value threshold of 0.05, MICA 156

achieved the sensitivity of 0.79 and the specificity of 0.97, whereas min-MCC has sensitivity and specificity 157

at 0.23 and 0.99, respectively.
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3.2 Application 1: mouse metabolism bulk transcriptomic studies

In this section, we applied MICA to the study analyzed in the min-MCC paper |[Lu et al., 2010]. Bulk
expression profiles are measured in mice with three genotypes (wild-type, LCAD knock-out, and VLCAD
knock-out). LCAD deficiency is associated with impaired fatty acid oxidation, and VLCAD deficiency
is associated with energy metabolism disorders in children. Microarray experiments were conducted on
tissues from 12 mice (four mice per genotype) including brown fat, liver, heart, and skeletal. The expression
changes across genotypes were studied, and genes with little information content were filtered out to have
4,288 genes remained for downstream analysis. Four samples were identified with quality defects and were
excluded from further analysis.

A total of 730 concordant genes were identified through MICA analysis, while min-MCC only detected
245 concordant genes (g-value < 0.01), suggesting tissue heterogeneity. To evaluate the necessity of MICA,
we classified the detected genes into three subsets: genes identified by min-MCC only (V), genes detected
by min-MCC and MICA simultaneously (M1), and genes identified only by MICA (M2-M11). In the third
subset, we classified genes into 10 modules based on post-hoc MICA results and clustered genes within
the same module using K-means. The number of clusters was determined using the NbClust R package
[Charrad et al., 2014].

Figure 3 and Supplement Figure S1 display the expression patterns for each gene module. Genes
in Module V exhibited ambiguous expression patterns. Meanwhile, genes in Module M1, which were
partitioned into two clusters, exhibited high concordance across all four tissues. We performed a QTAGEN
Ingenuity Pathway Analysis (IPA) [Kriamer et al., 2014] on genes in M1. Apart from the pathways
known to be associated with LCAD and VLCAD [Nsiah-Sefaa and McKenzie, 2016, such as oxidative
phosphorylation and acyl-CoA hydrolysis, metabolism and mitochondria-related pathways like arsenate
detoxification, tetrapyrrole synthesis, and heme biosynthesis were also detected (Supplement Table S2).
Additionally, genes in M1 showed more similar expression patterns in wild-type and VLCAD knock-out
mice compared to LCAD knock-out mice, supporting previous findings that LCAD knock-out mice exhibit
a more severe phenotype than VLCAD knock-out mice [Maher et al., 2010].

Modules M2-M11 demonstrated concordance pattern in a subset of tissues that were not detected by
the min-MCC method. Among modules concordant in three tissues (M2-M5), Module M4 contained the
largest number of genes (107 genes), showing impacts of LCAD and VLCAD knockouts in all tissues except
for liver. Blurb in Module M4 displayed the highest MICA statistic (MICA = 2.31, p-value = 0), although
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it was not identified by the min-MCC method (min-MCC = -0.71, p-value = 1) (Supplement Figure S2).
Blvrb demonstrated lower expression in LCAD knockout samples in brown fat, heart, and skeletal tissues,
but its expression was higher in the liver. Though Blvrb has no reported direct relation with LCAD and
VLCAD, it is involved in metabolism, converting biliverdin to bilirubin in the liver [Consortium et al.,
2017]. According to the Human Protein Atlas (proteinatlas.org) and the GTEx database [Lonsdale et al.,
2013, Uhlén et al., 2015], Blurb showed the highest gene expression in the liver among multiple tissues,
indicating liver-specific functions not seen in the other three tissues.

The IPA analysis on genes in M4 (Supplement Table S2) emphasizes the distinct role of liver and the
necessity to identify concordant pattern genes in a subset of tissues/studies. Specifically, 9 of the top 15
pathways, such as superpathway of methionine degradation and guanosine nucleotides degradation III,
identified are related to metabolism, highlighting the role of liver.

In summary, MICA significantly outperforms min-MCC by identifying more concordant genes and
uncovering tissue-specific gene expression patterns that min-MCC misses. This underscores the necessity

of MICA for capturing the complexity of the partially concordant gene expression.

3.3 Application 2: bulk transcriptomic data in the EstroGene project

The EstroGene project |Li et al., 2023] focuses on improving the understanding of the estrogen receptor
and its role in the development of breast cancer. It aims to document and integrate the publicly available
estrogen-related datasets, including RNA-Seq, microarray, ChIP-Seq, ATAC-Seq, DNase-Seq, ChIA-PET,
Hi-C, GRO-Seq and others, to establish a comprehensive database that allows for customized data search
and visualization. Specifically, in this case, MICA can help identify genes that are consistently regulated
by estradiol (E2) over different time points across multiple studies, which is critical for understanding the
dynamics of estrogen receptor signaling in breast cancer.

In this subsection, we only considered studies that included gene expression data (microarray and
RNA-Seq) and limited our analysis to the samples with estrogen receptor positive (ER-+) treated with
estradiol (E2) doses greater than 1nM for varying duration. We first combined the samples by cell line and
sequencing technology. To further analyze the data, we then classified the treatment duration into three
categories: short (< 6 hours), medium (> 6 hours and < 24 hours), and long (> 24 hours). Finally, we
normalized the data for the newly pooled studies using trimmed mean of M values (TMM) [Bullard et al.,

2010] followed by ComBat [Johnson et al., 2007] with the study indication as a batch covariate. These
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Figure 3: The heatmap of the gene expression patterns of different gene modules across four
tissues in mouse metabolism data analysis. The rows represent the genes, and the columns represent
the samples. V includes genes detected by min-MCC only, while M1 includes genes detected by min-MCC
and MICA at the same time. The genes in M2-M11 were identified by MICA alone and categorized by
the contributing studies using MICA post-hoc analysis. Studies that contribut-ed to the concordance are
shown in red panel, while those that did not are shown in gray.

steps resulted in three pooled studies: MCFEF7 microarray (25 samples in short treatment, 34 in medium 218
treatment, and 7 in long treatment), MCF7 RNA-Seq (49 in short treatment, 62 in medium treatment, 219
and 10 in long treatment), and T47D RNA-Seq (3 in short treatment, 22 in medium treatment, and 11 in 220
long treatment). 1,983 genes were intersected across multiple platforms for downstream analysis. 221

We first validated the two well-established benchmark genes, GREB1 and IL1R1, which have been 222
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widely reported as E2 activated and repressed genes [Cheng et al., 2018, Rae et al., 2005, Schaefer et al.,
2005, Lavigne et al., 2008]. Figure 4 revealed the up- and down-regulation of GREB1 and IL1R1 in
MCF7 microarray and RNA-Seq studies. However, these trends were not observed in the T47D RNA-Seq
study. Specifically, while T47D cells exhibited a decreasing trend in /L1R1 gene regulation from short to
the combined medium and long durations (p < 0.05 from t-test), the trend reversed, showing an increase
between medium and long durations (p < 0.05 from t-test), and no trend was observed in GREB1 gene (p
= 0.85 from ANOVA test). This inconsistency is likely due to the inherent heterogeneity of breast cancer.
Despite the inconsistency across all three studies, MICA evaluated the partial trend as concordant. As a
result, MICA identified both genes as concordant with g-values of 0.01 and 0, while the min-MCC detected
them with larger g-values of 0.03 and 0.06, respectively.

In addition to validating known markers, we are also able to detect novel biomarkers. For example,
MECOM was the only gene identified by MICA and min-MCC with g-values = 0 simultaneously (Fig-
ure 4). Prior to our study, M ECOM was not recognized as a biomarker for E2 treatment although it is
known as a transcriptional regulator and oncogene. Indeed, when we analyzed 1,459 ER+ breast cancer
patients in the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) database
[Curtis et al., 2012]|, we observed that higher M ECOM gene expression was associated with worse hazard
ratio (HR) in terms of overall survival (HR = 2.27, p-value = 0.048) and relapse-free survival (HR = 3.34,
p-value = 0.015).

To determine if this association is specific to HR+ tumors, we also performed survival analysis in other
subtypes, including triple-negative breast cancer (TNBC) and HER2+ cohorts. In the TNBC cohort (n
= 299), we did not observe a significant association (p-value = 0.18 for OS and p-value = 0.49 for RFS).
Similarly, in the HER2+ cohort (n = 236), there was no significant association (p-value = 0.44 for OS and
p-value = 0.90 for RFS). These findings suggest that the association of M ECOM with survival outcomes
is specific to HR+ tumors, which could strengthen the link between M ECOM and endocrine response.

The potential mechanism of the clinical prognosis could partially be explained by the regulation of
estrogen receptor, as we observed several consistent ER binding sites at transcription start sites (TSS)
proximity from ChIP-seq data in the EstroGene website. The mechanistic link of M ECOM to estrogen
receptor and E2 treatment, however, needs further investigation.

In total, MICA identified 403 concordant genes (q-value < 0.05). To gain a deeper understanding of

the upstream transcription factors associated with these genes, we applied LISA, an algorithm that uses
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chromatin profile and H3K27ac ChIP-seq data to determine the transcription factors (TF) and chromatin
regulators related to a given gene set [Qin et al., 2020]. Among the top-ranked TFs (Supplement Table S3),
ESR1 and FOX A1 are the TFs that have previously been reported to be associated with E2 [Chaudhary
et al., 2017, Theodorou et al., 2013]. In addition, SMC1A and CTCF, the first two candidates, suggests
a potential role of topologically associating domain (TAD) in the regulation of these gene [Rinzema et al.,
2022, DeMare et al., 2013]. These findings revealed that the E2 response may involve gene regulation

through chromatin looping mechanisms. Further experimental studies are needed to fully elucidate the

underlying mechanisms.
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256

257

258
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260

3.4 Application 3: tumor progression biomarker detection in scRINA-seq breast s

cancer studies

In this subsection, we apply MICA to a scRNA-Seq dataset to compare three stages (K = 3) of triple-
negative breast cancer (TNBC) progression using treatment-naive tissues: ductal carcinoma in situ (DCIS)
(N = 5), primary tumor (N = 5), and lymph node metastasis (N = 2). Understanding the progression
from DCIS, a precursor of invasive breast cancer, to primary tumors and eventually to metastatic disease
is crucial for identifying biomarkers of tumor progression. The application of MICA in this case provides
valuable insights into the molecular changes driving cancer metastasis, which is essential for developing
targeted therapies and improving patient outcomes.

Data were obtained from three publications [Tokura et al., 2022, Wu et al., 2021a, Xu et al., 2021].
We implemented the scATOMIC [Nofech-Mozes et al., 2023| to annotate single cells to five cell types (B
cell, CD4 T cell, CD8 T cell, macrophage and tumor cells) for downstream analysis. The distribution
of cell types can be found in Supplement Table S4. Within each study, total count normalization was
applied [Hao et al., 2023]. We treat the five cell types as independent studies (S = 5) and apply MICA to
6,644 genes after preprocessing. 2,703 genes exhibited concordant expression patterns across two or more
cell types (g-value < 0.001). Notably, of the 86 genes associated with ribosomal functions, 82 exhibited
concordance, which underscores the substantial role of protein synthesis in tumor progression.

In a further analysis, we aimed to identify the immune-tumor discordant genes, which exhibit concord-
ant expression patterns across the first four tumor microenvironment cell types yet discordant patterns in
tumor cells, as they progress from ductal carcinoma in situ (DCIS) to primary and subsequently to meta-

static stages. To achieve this goal, we select from the 2,703 genes using criteria of any post-hoc pairwise
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Figure 4: The expression patterns of GREB1, IL1R1, and MECOM across three data sources.
GREB1 and I L1R1 are widely reported as E2 activated and repressed genes and were detected by MICA

while failed to be identified by min-MCC. M ECOM was the only gene detected by MICA and min-MCC
simultaneously. The averaged expression is shown as a blue circle.

p-values among immune cell types being less than 0.001 (i.e., all four immune cell types have concordant
pattern to each other), and all pairwise p-values between a immune cell type and tumor exceeding 0.5 (i.e.
all four immune cell types have discordant pattern to tumor). This analysis detected 198 genes (Supple-

ment Table S5). Figure 5 illustrates the expression patterns of RPS15A and RPS25, the first two genes
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with the highest gM I, statistics. The numbers of cells for each tumor type and each cell type are shown
in the x-axis labels. Both genes are related to ribosomal functions, suggesting a hypothesis that protein
synthesis is downregulated in immune cells as the tumor progresses, while it is upregulated in tumor cells.
Gene set enrichment analysis [Wu et al., 2021b] of these immune-tumor discordant genes, conducted
using the Gene Ontology (GO) knowledge base [Aleksander et al., 2023|, revealed significant enrichment
in two functional groups: cell junction and ribosome-related pathways (Figure 6). The former is closely
associated with the tumor progression, such as altered cell adhesion and migration, while the latter confirms

our earlier findings and underscores the importance of protein synthesis in the tumor microenvironment

during the progression.

4. Discussion and conclusions

Horizontal integration of multiple transcriptomic studies to identify disease biomarkers is an effective tool
for accurate and reproducible detection [Cohn and Becker, 2003, Trikalinos et al., 2008]. To date, min-MCC
is the only available method to detect the biomarkers with concordant multi-study multi-class expression
patterns [Lu et al., 2010]. However, since min-MCC cannot identify the partially concordant biomarkers
and is insensitive to the pairwise high concordance, we revisited this problem from the aspect of informa-
tion theory and proposed a two-step framework MICA (Mutual Information Concordance Analysis). Both
the simulation and real application results demonstrate the superiority of the MICA framework in se-
lecting more informative biomarkers and elucidating underlying disease mechanisms towards translational
research.

The three real applications contain a variety of biological and clinical scenarios and demonstrate wide
applicability of MICA. In the mouse metabolism example, the biological objective is to detect biomarkers
changed in wild type, LCAD or VLCAD mutation (K = 3) across four tissues (S = 4). Since biomarker
pattern may different across different tissues, categorization of detected biomarkers in the heatmap of Fig-
ure 3 allows structured biological investigation. In the second EstroGene Project example, we investigate
biomarkers with differential expression changes in short, medium and long treatment duration (K = 3) in
three cell line-platform studies (S = 3). Ideally we expect similar expression pattern across studies but
we indeed observe different multi-class pattern in different cell lines (e.g., GREB1 and IL1R1 in Figure
4). The third TNBC scRNA-seq example demonstrates an intriguing finding of tumor progression marker

detection (DCIS, primary and metastatic tumor; K = 3) in five cell types of single cells (S = 5). The
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Figure 5: The expression pattern of RPS15A and RPS25. RPS15A and RPS25 are the top 2
immune-tumor discordant genes with largest gM I, statistics. In immune cells, a decreasing expression
trend is observed as the tumor progresses, whereas an opposing pattern is evident in tumor cells. The
averaged expression is shown as a blue circle. The numbers of cells for each tumor type and each cell type
are shown in the parentheses of x-axis labels

result identifies a set of biomarkers with concordant tumor progression pattern in the four immune-related
cell types (i.e., B cell, CD4 T cell, CD8 T cell and Macrophage) while almost opposite pattern in tumor
cells. We believe the wide range of applications not only demonstrate wide applicability of MICA but also
will inspire its novel applications by other researchers.

One advantage of MICA is its scalable computing when K, S and biological replicate sample sizes
increase. In the simulation of K = 3, S = 4 and 30 samples, the computing time for 2000 genes and 500

permutations takes 18.9 minutes using the high performance computing (HPC) with 50 threads parallel
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Figure 6: GO directed acyclic graph for enrichment analysis of immune-tumor discordant
genes. Solid arrows (“isa”) denote that the term at the arrowhead is a subtype of the term at the tail,
establishing a hierarchical relationship. Dashed arrows (“part of”) indicate that the term at the arrowhead
is an essential part of the term at the tail, signifying structural inclusion. Dot colors represent the
adjusted p-values from the enrichment analysis. Notably, cell junction and ribosome-related pathways are
significantly enriched among the immune-tumor discordant genes.

design. The current method performs analysis for each gene independently although the permutation
scheme keeps gene dependence structure by permuting class labels when generating the null distribution
for p-value assessment. An R package, namely MICA, and all programming code are available on GitHub

for reproducing figures and results in this paper.
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