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Abstract 20

Motivation: Biomarker detection plays a pivotal role in biomedical research. Integrating omics 21

studies from multiple cohorts can enhance statistical power, accuracy and robustness of the detection 22

results. However, existing methods for horizontally combining omics studies are mostly designed for 23

two-class scenarios (e.g., cases versus controls) and are not directly applicable for studies with multi- 24

class design (e.g., samples from multiple disease subtypes, treatments, tissues, or cell types). 25

Results: We propose a statistical framework, namely Mutual Information Concordance Analysis 26

(MICA), to detect biomarkers with concordant multi-class expression pattern across multiple omics 27

studies from an information theoretic perspective. Our approach first detects biomarkers with con- 28

cordant multi-class patterns across partial or all of the omics studies using a global test by mutual 29

information. A post hoc analysis is then performed for each detected biomarkers and identify studies 30

with concordant pattern. Extensive simulations demonstrate improved accuracy and successful false 31

discovery rate control of MICA compared to an existing MCC method. The method is then applied 32

to two practical scenarios: four tissues of mouse metabolism-related transcriptomic studies, and three 33

sources of estrogen treatment expression profiles. Detected biomarkers by MICA show intriguing 34

biological insights and functional annotations. Additionally, we implemented MICA for single-cell 35

RNA-Seq data for tumor progression biomarkers, highlighting critical roles of ribosomal function in 36

the tumor microenvironment of triple-negative breast cancer and underscoring the potential of MICA 37

for detecting novel therapeutic targets. 38

Availability: https://github.com/jianzou75/MICA 39
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1. Introduction 40

Biomarker detection provides information for early disease diagnosis and is a critical element in biomedical 41

research [Liu et al., 2020]. Integration of data from multiple cohorts is a common approach to improve 42

reliability and statistical power of biomarker detection. If a biomarker demonstrate a similar pattern across 43

multiple studies, it provides robustness and high likelihood of success in subsequent translation and clinical 44

applications. In transcriptomic analysis, differential expression (DE) analysis stands as the predominant 45

method for identifying biomarker expression pattern within individual studies [Costa-Silva et al., 2017, 46

Conesa et al., 2016, McDermaid et al., 2019]. However, the majority of DE techniques are tailored for 47

two-class scenarios (e.g., case versus control), faltering in multi-class scenarios. Popular methods such as 48

limma [Ritchie et al., 2015], although capable of handling multiple classes, primarily offer statistical tests 49

for aggregated differential information in a global sense rather than considering the expression patterns. 50

This limitation highlights a paucity of methods adept at delineating multi-class expression patterns. 51

To address the integration of omics analysis results from multiple cohorts, two popular approaches 52

emerge in the literature: combining p-values and combing effect sizes. The former has been widely dis- 53

cussed. For example, Fisher’s method sums up the log-transformed p-values, and each p-value is assumed 54

to follow standard uniform distribution under the null hypothesis. In addition to Fisher’s method, Stouffer 55

[Stouffer et al., 1949], minimum p-value [Tippett et al., 1931], higher criticism [Donoho and Jin, 2004], and 56

adaptive Fisher method [Li and Tseng, 2011] have been developed under this category and are widely used 57

in the omics study integration, such as GWAS [Begum et al., 2012], transcriptomics [Tseng et al., 2012], 58

and methylation [Smith et al., 2018]. Random effects models [DerSimonian and Kacker, 2007], an example 59

of the latter approach, decompose each study’s observed treatment effects into the actual effect size and 60

the study-specific noise. These methods, however, have limitations to combine multi-class differential in- 61

formation. P-value combination methods focus on significance without considering multi-class patterns, 62

while effect size combination is restricted to two-class scenarios. To our knowledge, the min-MCC method 63

[Lu et al., 2010] is the only established approach for detecting concordant multi-class biomarkers across 64

multiple studies, The method, however, has two major drawbacks on overlooking the situation when only 65

partial studies share the multi-class pattern and not distinguishing between cases where all pairs of studies 66

have a uniformly low concordance and cases where only one pair has a very low concordance. 67

To address these challenges, we introduced Mutual Information Concordance Analysis (MICA), a novel 68
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two-stage framework for multi-class biomarker detection combining multiple studies from the perspective of 69

information theory. The first stage employs the generalized mutual information with one-sided correction 70

(gMI+) to overcome the aforementioned drawbacks. The second stage involves a post-hoc pairwise analysis 71

to identify studies sharing the concordant expression pattern. In 2024, where sequencing studies are 72

ubiquitous, having a method like MICA can be a powerful tool for integrating datasets and enhancing the 73

detection of robust biomarkers. We focus on bulk and single-cell transcriptomic applications in this paper 74

but the method are readily applicable to other omics data types. 75

As a visual demonstration, Fig 1A shows three example genes Amacr, Pole4 and Mcrip2 detected 76

by MICA to have concordant multi-class (WT: wild type mice; LCAD: LCAD mutated mice; VLCAD: 77

VLCAD mutated mice) pattern across all or partial studies (tissues) (enclosed by red rectangles) while 78

Mrpl51 is not detected due to heterogeneous patterns in all four tissues. Post-hoc pairwise analysis in the 79

second stage then determines the studies (enclosed by yellow and blue triangles) that contribute to such 80

concordance for the genes identified in the first step. Specifically, all four tissues share the same multi-class 81

expression pattern in Amacr. Only brown fat, heart and liver tissues but not skeletal tissue share the 82

same multi-class expression pattern in Pole4. Interestingly, in Mcrip2 gene, brown fat and liver share one 83

concordant pattern, while Heart and Skeletal share a different concordant pattern. 84

The paper is structured as follows. In Section 2, we firstly review the existing method multi-class 85

correlation (MCC) and min-MCC [Lu et al., 2010], followed by a reappraisal from an information theoretic 86

perspective, where we demonstrate improved properties of the MICA framework. A simulation study and 87

three real-world bulk and single-cell transcriptomic applications (Section 3) are conducted to compare 88

min-MCC and MICA. Conclusions and discussions of MICA are included in Section 4. 89

2. Methods 90

We assume input data to contain K classess (K ≥ 2) for detecting multi-class patterns in S transcriptomic 91

studies for integration. For simplicity, we skip subscript of genes and denote xski as the gene expression 92

for one gene in study s (1 ≤ s ≤ S), class k (1 ≤ k ≤ K), and sample i (1 ≤ i ≤ nsk). For clarity, when 93

discussing the two-study scenario (i.e., S = 2), we employ xki to represent the gene expression in study 94

X, and similarly yki for study Y . 95
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Figure 1: Depiction of the MICA Framework. The MICA framework was illustrated using the mouse
metabolism dataset. (A) The application of the MICA framework to different gene types. Genes Amacr,
Pole4, and Mcrip2 that exhibited consistent patterns across studies were initially identified by a global
test using gMI+ (highlighted by the red triangle). Subsequent post-hoc tests using MI+ (highlighted by
yellow and blue triangles) detected the studies sharing this consistency for each gene. (B) The scenario
without replicates for each class within each study, displaying the median expression of the Amacr gene
within each class and tissue. (C) The scenario with multiple replicates for each class within each study,
displaying the expression of all samples for the Amacr gene.

2.1 Multi-class correlation (MCC) 96

We start from the case of two studies (S = 2) with expression vectors X and Y . We first consider the

simplest case wherein nsk = 1 for all the studies s (1 ≤ s ≤ S) and the classes k (1 ≤ k ≤ K) (Fig 1B).

Under this circumstance, the intuitive strategy for calculating the concordance (correlation) between study

X and Y utilizing Pearson correlation is as follows:

Cor(X,Y ) = ρ(X,Y ) =

∑K
k=1(xk1 − x̄)(yk1 − ȳ)√∑K

k=1(xk1 − x̄)2
∑K

k=1(yk1 − ȳ)2

where x̄ and ȳ respectively denote the means of xk1 and yk1 for all 1 ≤ k ≤ K. 97

When there are replicates within each class from each study (nsk > 1, Fig 1C), Pearson correlation

is no longer viable. For study X, the observed gene expression xki is assumed to be obtained from

Xk ∼ N(µXk
, σ2

Xk
), where Xk ⊥⊥ Xk′ (∀ k ̸= k′). Therefore, study X can be naturally defined as a mixture
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distribution of Xk (k = 1 : K), where each class is assumed to be equally weighted.

fX(x) =
K∑
k=1

1

K
· fXk

(x)

E(X) = µX =
1

K

K∑
k=1

µXk

V ar(X) = σ2
X =

1

K

K∑
k=1

(σ2
Xk

+ µ2
Xk

)− µ2
X

Study Y is similarly defined, and Yk is independent with Xk. The above-mentioned parameters can all

be directly estimated from the data.

µ̂Xk
=

nXk∑
j=1

xkj/nXk

σ̂2
Xk

=

nXk∑
j=1

(xkj − µ̂Xk
)2/nXk

Multi-class correlation (MCC) is therefore defined as

MCC(X,Y ) = ρ(X,Y ) =
E(XY )− EX · EY√
V ar(X) · V ar(Y )

=
( 1
K
·
∑K

k=1 µXk
µYk

− µX · µY )

σX · σY

For multiple S studies (S > 2), min-MCC [Lu et al., 2010] is then defined as the minimum value of

MCC statistics across all the pair-wise study combinations:

min-MCC = minU ̸=V (MCC(U,V ))

The hypothesis test HSA for min-MCC to detect concordant expression pattern across all S studies is 98

H0: ∃ ρij ≤ 0 vs. HA: ∀ ρij > 0, where ρij represents the measurement of concordance in the multi-class 99

pattern between study i and j. In addition to computational burden when S is large, min-MCC has two 100

drawbacks. First, it neglects the situation when the concordant multi-class pattern only exists in partial 101

studies due to its stringent requirement for consistency across all studies. Second, it cannot differentiate 102

between scenarios where all study pairs have uniformly low concordance and scenarios where only one pair 103

has very low concordance, which can lead to misinterpretations. 104
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2.2 Mutual information concordance analysis (MICA) 105

To overcome the issues above, we revisit this problem from the aspect of information theory. We assumed

X and Y to be jointly bivariate normal and denote Z and Z⊥⊥ as the bivariate random variables when X

and Y are correlated (ρ ̸= 0) or no correlation respectively.

Z ∼ N


µX

µY

 ,

 σ2
X ρσXσY

ρσXσY σ2
Y




Z⊥⊥ ∼ N


µX

µY

 ,

σ2
X 0

0 σ2
Y




Therefore, we can define the mutual information between Z and Z⊥⊥ as

MI(X,Y ) = DKL(Z||Z⊥⊥)

=
1

2

(
tr(Σ−1

Z⊥⊥ΣZ) + (µZ⊥⊥ − µZ)
TΣ−1

Z⊥⊥(µZ⊥⊥ − µZ)

−k − log

(
|ΣZ |
|ΣZ⊥⊥|

))

=
1

2

tr


 1

σ2
X

0

0 1
σ2
Y


 σ2

X ρσXσY

ρσXσY σ2
Y




−2− log

(
σ2
Xσ

2
Y − (ρσXσY )

2

σ2
Xσ

2
Y

))
= −1

2
log(1− ρ2)

DKL means the Kullback-Leibler divergence, and ρ is exactly the MCC between X and Y . To be

consistent with MCC and limits to the positive correlation, we define the one-sided corrected mutual

information (MI+) as

MI(X,Y )+ = −1

2
log(1− (ρ+)

2)

where ρ+ = ρ · 1ρ>0. 106

In the two-study scenario, we can find that MI+ is equivalent to MCC, but it is more straightforward

to generalize to more than two studies. For S studies, we have Z ∼ N(µ,Σ), Z+ ∼ N(µ,Σ+), and
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Z⊥⊥ ∼ N(µ,Σ⊥⊥), where

µ = (µ1, µ2, ..., µS)
T

Σ =


σ2
1 · · · ρ1,Sσ1σS

... . . . ...

ρ1,Sσ1σS · · · σ2
S



Σ+ =


σ2
1 · · · ρ1,S+σ1σS

... . . . ...

ρ1,S+σ1σS · · · σ2
S



Σ⊥⊥ =


σ2
1 · · · 0

... . . . ...

0 · · · σ2
S


Therefore, we can define the concordance measurement for multiple studies, which is the generalized

mutual information (gMI), also known as total correlation [Watanabe, 1960].

gMI(X1,X2,...,XS) = DKL(Z||Z⊥⊥) = −1

2
log

(
|Σ|
|Σ⊥⊥|

)
= −1

2

(
log |Σ| −

S∑
s=1

log σ2
s

)

Similarly, to only consider the positive concordance, we define the generalized one-sided corrected

mutual information (gMI+) as

gMI(X1,X2,...,XS)+ = DKL(Z
+||Z⊥⊥)

= −1

2

(
log |Σ+| −

S∑
s=1

log σ2
s

)

2.3 Procedure of concordant biomarker detection 107

Based on the generalized mutual information above, the mutual information concordance analysis (MICA) 108

is developed in two steps. 109

8

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 13, 2024. ; https://doi.org/10.1101/2024.06.11.598484doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.11.598484
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.3.1 Global test for concordant biomarker detection 110

In the first step, we first deploy the generalized one-sided corrected mutual information (gMI+) to ascertain 111

if a gene exhibits concordant multi-class pattern across multiple studies. This determination hinges on the 112

hypothesis test, namely HSB, H0: ∀ ρij ≤ 0 vs. HA: ∃ ρij > 0. The permutation test (see Section 2.3.3) 113

is employed for assessing p-values and q-values of this global test for each gene. 114

2.3.2 Post-hoc test to detect subset of studies with concordant multi-class pattern 115

If the null hypothesis in the global test is rejected, we proceed to identify the subest of studies with 116

concordant multi-class pattern. Specifically, we select the largest subset of studies where every pair of 117

studies in it shows a significant p-value, indicating concordance. For this purpose, we employ the one- 118

sided corrected mutual information (MI+) to examine all feasible pairs of studies (i, j). This analysis is 119

conducted under the hypothesis setting HSC for the study pair i and j by H0: ρij ≤ 0 vs. HA: ρij > 0, 120

with p-values inferred by permutation test (see Section 2.3.3). 121

2.3.3 Permutation test for the four statistics 122

Permutation test is designed to obtain the significance levels for MI+ and gMI+ since an analytical solution 123

is not achievable. We use θ to denote them for using permutation test to evaluate p-values and q-values. 124

To compare with existing methods, we use the same permutation analysis for MCC and min-MCC. 125

1. Compute statistics θg for gene g. 126

2. Permutate the group label B times and calculate the permutated statistics θ
(b)
g , where 1 ≤ b ≤ B. 127

3. Calculate the p-value of θg,

p(θg) =
1 +

∑B
b=1

∑G
g′=1 I(θ

(b)
g′ ≥ θg)

1 +G ·B

4. (If multiple genes are screened simultaneously) Obtain the p-values p(θg) for each gene where 1 ≤

g ≤ G, and estimate q-values for gene i using Benjamini-Hochberg procedure. (p(j) is ordered j-th

p-value)

qi = min{minj≥i{
G · p(j)

j
}, 1}
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3. Results 128

In this section, we first applied MICA for simulations to evaluate the type I error and power of multi- 129

class biomarker detection. The method is then applied to two bulk transcriptome applications: mouse 130

metabolism-related studies [Lu et al., 2010], and estrogen treatment expression profiles [Li et al., 2023]. 131

In the third application, we investigate the capability of MICA in single cell RNA-Seq data for tumor 132

progression biomarkers detection. [Tokura et al., 2022, Wu et al., 2021a, Xu et al., 2021]. 133

3.1 Simulation 134

We devised simulations involving five distinct types of genes from four studies (details in Supplement Table 135

S1). Gene Type I represents perfect concordance with all four studies. In Gene Type II, studies 1, 2 and 3 136

show concordant expression. Gene Type III highlights pairwise concordance, showing agreement between 137

studies 1 and 2 and a separate concordance between studies 3 and 4. Finally, Gene Type IV contains 138

noises across all four studies, without any discernible pattern. There are 10 biological replicates within 139

each class from each study, and the simulation is repeated for 500 times for evaluation. We then compare 140

the performance of min-MCC and MICA in terms of type I error control and power. 141

MICA outperformed min-MCC in terms of signal detection power. For Gene Type I, where all studies 142

were concordant, MICA achieved a detection rate of 0.836 against 0.638 for min-MCC at the p-value 143

threshold of 0.05. In the more complex scenarios of Gene Types II and III, where only part of the 144

studies were concordant, MICA maintained performance (0.748 in Gene Type II, 0.936 in Gene Type III), 145

while min-MCC faltered (0.184 in Gene Type II, 0.174 in Gene Type III). Figure 2A-C provide a direct 146

comparison of the respective powers of MICA and min-MCC at varying p-value thresholds across the three 147

gene types. For the negative control, Gene Type IV, MICA exhibited an error rate of 0.058, slightly higher 148

than the 0.048 error rate observed in min-MCC. 149

Following the assessment of individual genes, we expanded the simulation to encompass gene expression 150

matrices for a genome-wide power comparison. We prepared 2000 genes expression for each dataset, 151

distributed evenly across four gene types with 500 genes each. A total of 200 datasets was simulated 152

for this analysis. After preparing the receiver operating characteristic (ROC) curves for each simulated 153

dataset, the averaged area under the curve (AUC) of MICA was 0.97 (sd = 0.004), in contrast to 0.59 154

(sd = 0.02) for min-MCC. Figure 2D shows an ROC curve of the data aggregated across 200 simulated 155
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minMCC MICA

A B

C D

Figure 2: Comparative performance assessment of MICA and min-MCC via simulation. MICA
consistently outperforms min-MCC in signal detection across Gene Types I-III. Genome-wide analysis
further corroborates superior efficacy of MICA in biomarker identification. (A) Statistical power analysis
in Gene Type I. (B) Statistical power analysis in Gene Type II. (C) Statistical power analysis in Gene
Type III. (D) Aggregated ROC curves from 200 simulated datasets.

datasets, substantiating the superior performance of MICA. Employing a q-value threshold of 0.05, MICA 156

achieved the sensitivity of 0.79 and the specificity of 0.97, whereas min-MCC has sensitivity and specificity 157

at 0.23 and 0.99, respectively. 158
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3.2 Application 1: mouse metabolism bulk transcriptomic studies 159

In this section, we applied MICA to the study analyzed in the min-MCC paper [Lu et al., 2010]. Bulk 160

expression profiles are measured in mice with three genotypes (wild-type, LCAD knock-out, and VLCAD 161

knock-out). LCAD deficiency is associated with impaired fatty acid oxidation, and VLCAD deficiency 162

is associated with energy metabolism disorders in children. Microarray experiments were conducted on 163

tissues from 12 mice (four mice per genotype) including brown fat, liver, heart, and skeletal. The expression 164

changes across genotypes were studied, and genes with little information content were filtered out to have 165

4,288 genes remained for downstream analysis. Four samples were identified with quality defects and were 166

excluded from further analysis. 167

A total of 730 concordant genes were identified through MICA analysis, while min-MCC only detected 168

245 concordant genes (q-value < 0.01), suggesting tissue heterogeneity. To evaluate the necessity of MICA, 169

we classified the detected genes into three subsets: genes identified by min-MCC only (V), genes detected 170

by min-MCC and MICA simultaneously (M1), and genes identified only by MICA (M2-M11). In the third 171

subset, we classified genes into 10 modules based on post-hoc MICA results and clustered genes within 172

the same module using K-means. The number of clusters was determined using the NbClust R package 173

[Charrad et al., 2014]. 174

Figure 3 and Supplement Figure S1 display the expression patterns for each gene module. Genes 175

in Module V exhibited ambiguous expression patterns. Meanwhile, genes in Module M1, which were 176

partitioned into two clusters, exhibited high concordance across all four tissues. We performed a QIAGEN 177

Ingenuity Pathway Analysis (IPA) [Krämer et al., 2014] on genes in M1. Apart from the pathways 178

known to be associated with LCAD and VLCAD [Nsiah-Sefaa and McKenzie, 2016], such as oxidative 179

phosphorylation and acyl-CoA hydrolysis, metabolism and mitochondria-related pathways like arsenate 180

detoxification, tetrapyrrole synthesis, and heme biosynthesis were also detected (Supplement Table S2). 181

Additionally, genes in M1 showed more similar expression patterns in wild-type and VLCAD knock-out 182

mice compared to LCAD knock-out mice, supporting previous findings that LCAD knock-out mice exhibit 183

a more severe phenotype than VLCAD knock-out mice [Maher et al., 2010]. 184

Modules M2-M11 demonstrated concordance pattern in a subset of tissues that were not detected by 185

the min-MCC method. Among modules concordant in three tissues (M2-M5), Module M4 contained the 186

largest number of genes (107 genes), showing impacts of LCAD and VLCAD knockouts in all tissues except 187

for liver. Blvrb in Module M4 displayed the highest MICA statistic (MICA = 2.31, p-value = 0), although 188
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it was not identified by the min-MCC method (min-MCC = -0.71, p-value = 1) (Supplement Figure S2). 189

Blvrb demonstrated lower expression in LCAD knockout samples in brown fat, heart, and skeletal tissues, 190

but its expression was higher in the liver. Though Blvrb has no reported direct relation with LCAD and 191

VLCAD, it is involved in metabolism, converting biliverdin to bilirubin in the liver [Consortium et al., 192

2017]. According to the Human Protein Atlas (proteinatlas.org) and the GTEx database [Lonsdale et al., 193

2013, Uhlén et al., 2015], Blvrb showed the highest gene expression in the liver among multiple tissues, 194

indicating liver-specific functions not seen in the other three tissues. 195

The IPA analysis on genes in M4 (Supplement Table S2) emphasizes the distinct role of liver and the 196

necessity to identify concordant pattern genes in a subset of tissues/studies. Specifically, 9 of the top 15 197

pathways, such as superpathway of methionine degradation and guanosine nucleotides degradation III, 198

identified are related to metabolism, highlighting the role of liver. 199

In summary, MICA significantly outperforms min-MCC by identifying more concordant genes and 200

uncovering tissue-specific gene expression patterns that min-MCC misses. This underscores the necessity 201

of MICA for capturing the complexity of the partially concordant gene expression. 202

3.3 Application 2: bulk transcriptomic data in the EstroGene project 203

The EstroGene project [Li et al., 2023] focuses on improving the understanding of the estrogen receptor 204

and its role in the development of breast cancer. It aims to document and integrate the publicly available 205

estrogen-related datasets, including RNA-Seq, microarray, ChIP-Seq, ATAC-Seq, DNase-Seq, ChIA-PET, 206

Hi-C, GRO-Seq and others, to establish a comprehensive database that allows for customized data search 207

and visualization. Specifically, in this case, MICA can help identify genes that are consistently regulated 208

by estradiol (E2) over different time points across multiple studies, which is critical for understanding the 209

dynamics of estrogen receptor signaling in breast cancer. 210

In this subsection, we only considered studies that included gene expression data (microarray and 211

RNA-Seq) and limited our analysis to the samples with estrogen receptor positive (ER+) treated with 212

estradiol (E2) doses greater than 1nM for varying duration. We first combined the samples by cell line and 213

sequencing technology. To further analyze the data, we then classified the treatment duration into three 214

categories: short (< 6 hours), medium (≥ 6 hours and ≤ 24 hours), and long (> 24 hours). Finally, we 215

normalized the data for the newly pooled studies using trimmed mean of M values (TMM) [Bullard et al., 216

2010] followed by ComBat [Johnson et al., 2007] with the study indication as a batch covariate. These 217
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Figure 3: The heatmap of the gene expression patterns of different gene modules across four
tissues in mouse metabolism data analysis. The rows represent the genes, and the columns represent
the samples. V includes genes detected by min-MCC only, while M1 includes genes detected by min-MCC
and MICA at the same time. The genes in M2-M11 were identified by MICA alone and categorized by
the contributing studies using MICA post-hoc analysis. Studies that contribut-ed to the concordance are
shown in red panel, while those that did not are shown in gray.

steps resulted in three pooled studies: MCF7 microarray (25 samples in short treatment, 34 in medium 218

treatment, and 7 in long treatment), MCF7 RNA-Seq (49 in short treatment, 62 in medium treatment, 219

and 10 in long treatment), and T47D RNA-Seq (3 in short treatment, 22 in medium treatment, and 11 in 220

long treatment). 1,983 genes were intersected across multiple platforms for downstream analysis. 221

We first validated the two well-established benchmark genes, GREB1 and IL1R1, which have been 222
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widely reported as E2 activated and repressed genes [Cheng et al., 2018, Rae et al., 2005, Schaefer et al., 223

2005, Lavigne et al., 2008]. Figure 4 revealed the up- and down-regulation of GREB1 and IL1R1 in 224

MCF7 microarray and RNA-Seq studies. However, these trends were not observed in the T47D RNA-Seq 225

study. Specifically, while T47D cells exhibited a decreasing trend in IL1R1 gene regulation from short to 226

the combined medium and long durations (p < 0.05 from t-test), the trend reversed, showing an increase 227

between medium and long durations (p < 0.05 from t-test), and no trend was observed in GREB1 gene (p 228

= 0.85 from ANOVA test). This inconsistency is likely due to the inherent heterogeneity of breast cancer. 229

Despite the inconsistency across all three studies, MICA evaluated the partial trend as concordant. As a 230

result, MICA identified both genes as concordant with q-values of 0.01 and 0, while the min-MCC detected 231

them with larger q-values of 0.03 and 0.06, respectively. 232

In addition to validating known markers, we are also able to detect novel biomarkers. For example, 233

MECOM was the only gene identified by MICA and min-MCC with q-values = 0 simultaneously (Fig- 234

ure 4). Prior to our study, MECOM was not recognized as a biomarker for E2 treatment although it is 235

known as a transcriptional regulator and oncogene. Indeed, when we analyzed 1,459 ER+ breast cancer 236

patients in the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) database 237

[Curtis et al., 2012], we observed that higher MECOM gene expression was associated with worse hazard 238

ratio (HR) in terms of overall survival (HR = 2.27, p-value = 0.048) and relapse-free survival (HR = 3.34, 239

p-value = 0.015). 240

To determine if this association is specific to HR+ tumors, we also performed survival analysis in other 241

subtypes, including triple-negative breast cancer (TNBC) and HER2+ cohorts. In the TNBC cohort (n 242

= 299), we did not observe a significant association (p-value = 0.18 for OS and p-value = 0.49 for RFS). 243

Similarly, in the HER2+ cohort (n = 236), there was no significant association (p-value = 0.44 for OS and 244

p-value = 0.90 for RFS). These findings suggest that the association of MECOM with survival outcomes 245

is specific to HR+ tumors, which could strengthen the link between MECOM and endocrine response. 246

The potential mechanism of the clinical prognosis could partially be explained by the regulation of 247

estrogen receptor, as we observed several consistent ER binding sites at transcription start sites (TSS) 248

proximity from ChIP-seq data in the EstroGene website. The mechanistic link of MECOM to estrogen 249

receptor and E2 treatment, however, needs further investigation. 250

In total, MICA identified 403 concordant genes (q-value < 0.05). To gain a deeper understanding of 251

the upstream transcription factors associated with these genes, we applied LISA, an algorithm that uses 252
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chromatin profile and H3K27ac ChIP-seq data to determine the transcription factors (TF) and chromatin 253

regulators related to a given gene set [Qin et al., 2020]. Among the top-ranked TFs (Supplement Table S3), 254

ESR1 and FOXA1 are the TFs that have previously been reported to be associated with E2 [Chaudhary 255

et al., 2017, Theodorou et al., 2013]. In addition, SMC1A and CTCF , the first two candidates, suggests 256

a potential role of topologically associating domain (TAD) in the regulation of these gene [Rinzema et al., 257

2022, DeMare et al., 2013]. These findings revealed that the E2 response may involve gene regulation 258

through chromatin looping mechanisms. Further experimental studies are needed to fully elucidate the 259

underlying mechanisms. 260

3.4 Application 3: tumor progression biomarker detection in scRNA-seq breast261

cancer studies 262

In this subsection, we apply MICA to a scRNA-Seq dataset to compare three stages (K = 3) of triple- 263

negative breast cancer (TNBC) progression using treatment-naive tissues: ductal carcinoma in situ (DCIS) 264

(N = 5), primary tumor (N = 5), and lymph node metastasis (N = 2). Understanding the progression 265

from DCIS, a precursor of invasive breast cancer, to primary tumors and eventually to metastatic disease 266

is crucial for identifying biomarkers of tumor progression. The application of MICA in this case provides 267

valuable insights into the molecular changes driving cancer metastasis, which is essential for developing 268

targeted therapies and improving patient outcomes. 269

Data were obtained from three publications [Tokura et al., 2022, Wu et al., 2021a, Xu et al., 2021]. 270

We implemented the scATOMIC [Nofech-Mozes et al., 2023] to annotate single cells to five cell types (B 271

cell, CD4 T cell, CD8 T cell, macrophage and tumor cells) for downstream analysis. The distribution 272

of cell types can be found in Supplement Table S4. Within each study, total count normalization was 273

applied [Hao et al., 2023]. We treat the five cell types as independent studies (S = 5) and apply MICA to 274

6,644 genes after preprocessing. 2,703 genes exhibited concordant expression patterns across two or more 275

cell types (q-value < 0.001). Notably, of the 86 genes associated with ribosomal functions, 82 exhibited 276

concordance, which underscores the substantial role of protein synthesis in tumor progression. 277

In a further analysis, we aimed to identify the immune-tumor discordant genes, which exhibit concord- 278

ant expression patterns across the first four tumor microenvironment cell types yet discordant patterns in 279

tumor cells, as they progress from ductal carcinoma in situ (DCIS) to primary and subsequently to meta- 280

static stages. To achieve this goal, we select from the 2,703 genes using criteria of any post-hoc pairwise 281
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Figure 4: The expression patterns of GREB1, IL1R1, and MECOM across three data sources.
GREB1 and IL1R1 are widely reported as E2 activated and repressed genes and were detected by MICA
while failed to be identified by min-MCC. MECOM was the only gene detected by MICA and min-MCC
simultaneously. The averaged expression is shown as a blue circle.

p-values among immune cell types being less than 0.001 (i.e., all four immune cell types have concordant 282

pattern to each other), and all pairwise p-values between a immune cell type and tumor exceeding 0.5 (i.e. 283

all four immune cell types have discordant pattern to tumor). This analysis detected 198 genes (Supple- 284

ment Table S5). Figure 5 illustrates the expression patterns of RPS15A and RPS25, the first two genes 285
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with the highest gMI+ statistics. The numbers of cells for each tumor type and each cell type are shown 286

in the x-axis labels. Both genes are related to ribosomal functions, suggesting a hypothesis that protein 287

synthesis is downregulated in immune cells as the tumor progresses, while it is upregulated in tumor cells. 288

Gene set enrichment analysis [Wu et al., 2021b] of these immune-tumor discordant genes, conducted 289

using the Gene Ontology (GO) knowledge base [Aleksander et al., 2023], revealed significant enrichment 290

in two functional groups: cell junction and ribosome-related pathways (Figure 6). The former is closely 291

associated with the tumor progression, such as altered cell adhesion and migration, while the latter confirms 292

our earlier findings and underscores the importance of protein synthesis in the tumor microenvironment 293

during the progression. 294

4. Discussion and conclusions 295

Horizontal integration of multiple transcriptomic studies to identify disease biomarkers is an effective tool 296

for accurate and reproducible detection [Cohn and Becker, 2003, Trikalinos et al., 2008]. To date, min-MCC 297

is the only available method to detect the biomarkers with concordant multi-study multi-class expression 298

patterns [Lu et al., 2010]. However, since min-MCC cannot identify the partially concordant biomarkers 299

and is insensitive to the pairwise high concordance, we revisited this problem from the aspect of informa- 300

tion theory and proposed a two-step framework MICA (Mutual Information Concordance Analysis). Both 301

the simulation and real application results demonstrate the superiority of the MICA framework in se- 302

lecting more informative biomarkers and elucidating underlying disease mechanisms towards translational 303

research. 304

The three real applications contain a variety of biological and clinical scenarios and demonstrate wide 305

applicability of MICA. In the mouse metabolism example, the biological objective is to detect biomarkers 306

changed in wild type, LCAD or VLCAD mutation (K = 3) across four tissues (S = 4). Since biomarker 307

pattern may different across different tissues, categorization of detected biomarkers in the heatmap of Fig- 308

ure 3 allows structured biological investigation. In the second EstroGene Project example, we investigate 309

biomarkers with differential expression changes in short, medium and long treatment duration (K = 3) in 310

three cell line-platform studies (S = 3). Ideally we expect similar expression pattern across studies but 311

we indeed observe different multi-class pattern in different cell lines (e.g., GREB1 and IL1R1 in Figure 312

4). The third TNBC scRNA-seq example demonstrates an intriguing finding of tumor progression marker 313

detection (DCIS, primary and metastatic tumor; K = 3) in five cell types of single cells (S = 5). The 314
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Figure 5: The expression pattern of RPS15A and RPS25. RPS15A and RPS25 are the top 2
immune-tumor discordant genes with largest gMI+ statistics. In immune cells, a decreasing expression
trend is observed as the tumor progresses, whereas an opposing pattern is evident in tumor cells. The
averaged expression is shown as a blue circle. The numbers of cells for each tumor type and each cell type
are shown in the parentheses of x-axis labels

result identifies a set of biomarkers with concordant tumor progression pattern in the four immune-related 315

cell types (i.e., B cell, CD4 T cell, CD8 T cell and Macrophage) while almost opposite pattern in tumor 316

cells. We believe the wide range of applications not only demonstrate wide applicability of MICA but also 317

will inspire its novel applications by other researchers. 318

One advantage of MICA is its scalable computing when K, S and biological replicate sample sizes 319

increase. In the simulation of K = 3, S = 4 and 30 samples, the computing time for 2000 genes and 500 320

permutations takes 18.9 minutes using the high performance computing (HPC) with 50 threads parallel 321
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Figure 6: GO directed acyclic graph for enrichment analysis of immune-tumor discordant
genes. Solid arrows (“isa”) denote that the term at the arrowhead is a subtype of the term at the tail,
establishing a hierarchical relationship. Dashed arrows (“part of”) indicate that the term at the arrowhead
is an essential part of the term at the tail, signifying structural inclusion. Dot colors represent the
adjusted p-values from the enrichment analysis. Notably, cell junction and ribosome-related pathways are
significantly enriched among the immune-tumor discordant genes.

design. The current method performs analysis for each gene independently although the permutation 322

scheme keeps gene dependence structure by permuting class labels when generating the null distribution 323

for p-value assessment. An R package, namely MICA, and all programming code are available on GitHub 324

for reproducing figures and results in this paper. 325
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