

Interactions between high-intensity light and unrestricted vision in the drive for hyperopia

Sayantan Biswas^{1,2}, Joanna Marie Fianza Busoy¹, Veluchamy A. Barathi^{1,3,4}, Arumugam R. Muralidharan^{1,3}, Leopold Schmetterer^{1,6}, Biten K. Kathrani⁷, Noel A. Brennan⁷, Raymond P. Najjar^{1,3,8,9 *}

1. Singapore Eye Research Institute, Singapore
2. School of Optometry, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
3. Ophthalmology and Visual Science Academic Clinical Program, Duke-NUS Medical School, Singapore
4. Yong Loo Lin School of Medicine, National University of Singapore, Singapore
5. Singapore National Eye Centre, Singapore
6. Nanyang Technological University, Singapore, Singapore, Singapore
7. Johnson and Johnson Vision Care, Jacksonville, United States of America
8. Eye N' Brain Research Group, Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
9. Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore

* Corresponding Author

Corresponding Author:

Raymond P. Najjar, PhD
Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, Singapore 169856. Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore
Email: rpnajjar@nus.edu.sg

Abstract Word Count = 245 Main Text Word Count = 4977 Tables = 1 Figures = 4

Supplementary Table = 1 Supplementary Figures = 3

1 **Abstract**

2 PURPOSE: To evaluate the impact of optical versus illuminance factors and their duration-
3 dependency on lens-induced hyperopia (LIH) in chick eyes.

4 METHODS: Hyperopia was induced in one eye in chicks (10 groups, n=126) from day 1
5 (D1) post-hatching until D8 using +10 D lenses with fellow eyes as controls. One group
6 (LIH) served as the control without any interventions. Remaining groups were exposed to 2,
7 4 or 6 hours of unrestricted vision (UnV), high intensity light (HL), or both (HL +UnV).
8 Ocular axial length (AL), refractive error, and choroidal thickness were measured on days 1,
9 4, and 8. Inter-ocular difference (IOD = experimental - contralateral eye) \pm SEM was used to
10 express outcome measures.

11 RESULTS: By D8, LIH decreased AL (-0.42 ± 0.03 mm) and produced hyperopic refraction
12 ($+3.48 \pm 0.32$ D) and choroidal thickening ($+85.81 \pm 35.23$ μ m) in the LIH group (all,
13 $P < 0.001$). Exposure to UnV reduced LIH (i.e., hyperopic refraction, axial shortening, and
14 choroidal thickening) in a duration-dependent manner, whereas HL potentiated the
15 development of LIH in a duration-dependent manner. When combined, UnV overpowered
16 HL, with resultant impact on refraction and AL being close to UnV alone, except after 6
17 hours, when HL+UnV induced shorter AL compared to UnV alone ($P = 0.03$).

18 CONCLUSION: Daily exposure to HL, UnV, and HL+UnV altered LIH in a duration-
19 dependent manner with UnV and LIH producing competing signals. The signal generated by
20 UnV was generally stronger than HL in combined exposure, yet longer durations of HL
21 affected the drive for emmetropization in eyes with UnV.

22 **Keywords:** hyperopia, myopia, animal model, defocus, light, axial length, choroid.

23

24 **Introduction**

25 Emmetropization is a visually guided phenomenon, aiming to optimally focus the
26 image on the retina throughout the development of the eye.¹ Experimental myopic or hyperopic
27 defocus using positive or negative lenses in front of the eye respectively, degrades the quality
28 of the retinal image, disrupts normal emmetropization, leads to abnormal ocular axial growth,^{3,4}
29 and the development of refractive error.^{2, 3}

30 The most common refractive error is myopia or near-sightedness. Myopia is a global
31 epidemic with an exponential growth in its prevalence among children, adolescents, and young
32 adults, especially in South and East Asia.⁴ In 2020, myopia affected nearly 30% of the world's
33 population and this burden is expected to rise to 50% by 2050.⁵ Poor vision associated with
34 myopia poses a global public health issue as it not only impacts the quality of early life but also
35 imposes socio-economic consequences and increases the risk of sight threatening conditions if
36 left uncontrolled.⁵

37 Hyperopia is another type of refractive error characterized by hyperopic refraction and
38 shorter axial length (AL) of the eye.⁶ It often starts at an early age and remains relatively stable
39 throughout visual maturation.⁷ Both myopia and hyperopia can be induced in experimental
40 animal models using negative or positive defocusing lenses.^{8, 9} The lenses degrade the quality
41 of the retinal image, and lead to aberrant ocular axial growth change,^{3,4} and the development
42 of refractive error.^{2, 3} Myopic defocusing lenses (i.e., positive powered lens) fitted in front of
43 the eye in animal models result in lens-induced hyperopia (LIH) associated with decreased
44 ocular elongation, hyperopic refraction, and thicker choroid.⁸ Besides inducing hyperopia as a
45 condition, positive lenses convey a “STOP” signal to the eye.⁹ Study of this phenomenon may
46 thus be useful in understanding and developing methods for controlling ocular growth, which
47 may have application in the maintenance of hyperopic reserve, myopia prevention or slowing
48 of myopic progression.¹⁰

49 Compared to the extensive research focusing on myopia development and progression,
50 only a few studies have examined the development of hyperopia. In children, a transient
51 thickening of the choroid is observed following 2 hours of myopic defocus (+3 D),¹¹ while
52 transient reduction in AL and associated choroidal thickening were observed in young adults
53 with +3 D defocus within 15–60 minutes.^{12, 13} Hence, incorporation of lens-induced myopic
54 defocus as an optical correction can potentially control ocular growth and retard myopia
55 progression in children. Results of long-term myopic defocus in the form of under-correction
56 of myopia, bifocals and progressive addition spectacles are not clinically promising.
57 Nonetheless, contact lenses with plus power in the lens periphery, orthokeratology—which
58 induces peripheral plus corneal power—and spectacles with positively powered lenslets all
59 have been shown to slow myopic progression.¹⁴

60 Besides the optical “STOP” signal, there is a growing body of evidence showing a
61 protective effect of increased light intensity on the development of myopia, axial elongation
62 and choroidal thinning in animal^{15–19} and clinical studies alike.^{20, 21} Ashby et al¹⁶ assessed the
63 influence of high-intensity light (HL) on LIH on young chicks and found HL to accelerate
64 positive lens (+7 D) compensation, but the end point was the same as in the control light group
65 (500 lux). Using dual powered lens (+10 D/-10 D), Zheng et al²² showed myopic defocus and
66 HL to be additive against the myopiogenic hyperopic defocus.

67 Recently we have investigated the interactions between optical re-focus and HL in a
68 lens-induced myopia model. Our findings suggest that HL (15,000 lux) and unrestricted vision
69 (UnV) have an additive, duration-dependent effect, particularly when administered for 6 hours,
70 on reducing the development of lens-induced myopia (LIM) in chickens.¹⁷ UnV for 2–6 hours
71 was reported to reduce 37%–96% of LIM caused by hyperopic defocus.^{17, 23} In contrast, myopic
72 defocus is less sensitive to UnV with only 9% reduction after 3 hours of UnV in chickens.²³
73 Equally, 9 hours of UnV following 3 hours of myopic defocus resulted in significant hyperopic

74 refraction.²³ Even wearing a positive lens for 12 minutes per day and UnV for the remainder
75 of time developed hyperopia and reduced ocular elongation in chickens.²⁴ In summary,
76 although the temporal relationship of refractive change, i.e., lens compensation to positive lens,
77 is considered to be duration-dependent, it is non-linear.²⁵ Findings from clinical studies suggest
78 myopic defocus to be more enduring than hyperopic defocus, producing stronger compensatory
79 signal and greater persistence of the effects of myopic defocus even after its cessation.²⁶

80 To date, the duration-dependent and synergetic effect of HL and UnV is yet to be
81 studied in an LIH animal model. In this study we explore the duration-dependent effect of (1)
82 myopic defocus, (2) HL, (3) UnV and (4) their combinations on hyperopia development (i.e.,
83 the STOP signal for ocular growth).

84 **Methods**

85 **Animals and experimental setup**

86 The animals used in this study were treated in accordance with the Association for
87 Research in Vision and Ophthalmology (ARVO) statement for the Use of Animals in
88 Ophthalmic and Vision Research. The study protocol (IACUC 2019/SHS/1479) was approved
89 by the Association for Assessment and Accreditation of Laboratory Animal Care International
90 accredited Singapore Experimental Medicine Centre (SEMC) Institutional Animal Care and
91 Use Committee.

92 A total of 126, one-day-old chicks (mixed Golden Comet/White Leghorn strain) were
93 obtained from the National Large Animal Research facility and were randomly divided into 10
94 groups, with each group consisting of 11 to 13 animals. The chicks were raised for 9 days in a
95 custom-built enclosure of 75-cm (length) × 55-cm (width) × 43-cm (height) designed to hold
96 two high-intensity light-emitting diode (LED) light fixtures. Light-dark cycle of 12/12-hour
97 from 7 am to 7 pm and the temperature (maintained between 28°C to 32°C) within the

98 enclosure with food and water ad libitum. A HOBO Pendant data logger (UA-022-64; ONSET,
99 Bourne, MA, USA) was used to monitor the light and temperature patterns. Square wave
100 gratings of a repeated sequence of light and dark bars were fitted on the enclosure wall as
101 accommodative cues. Depending on the location of the animal within the enclosure, the spatial
102 frequency of the gratings ranged between 0.01 to 0.42 cycles/degree. To ensure that
103 emmetropization in chicks is not affected by variations in accommodative responses,²⁷ all
104 experimental groups were exposed to an identical visual environment. On the final day 9 of the
105 experiment, the chicks were administered a sedative mixture of 0.2 mL/kg ketamine and 0.1
106 mL/kg xylazine. Subsequently, they were euthanized by administering an overdose of sodium
107 pentobarbitone directly to the heart.

108 **Background and Experimental light setup**

109 Throughout the 12/12-hour light-dark cycle, all chicks were raised under background
110 lighting conditions of 150 lux. To achieve this, six strips of ultra-bright LEDs (4000K, 2NFLS-
111 NW LED; Super Bright LED, Inc, St. Louis, MO, USA) were securely positioned above the
112 enclosure. For the HL group, four LED panels, each consisting of 64 LEDs, were used,
113 providing an average of 15,000 lux when measured at chicken eye level for various gaze angles
114 (up, down, left, right, front, back) within the enclosure. The lighting system was controlled by
115 a programmable Helvar DIGIDIM 910 router (Helvar, Dartford Kent, UK). To ensure
116 accuracy, light levels and spectra were assessed using a calibrated radiometer and
117 spectroradiometer (ILT5000 and ILT950; International Light Technologies, Peabody, MA,
118 USA).

119 **Hyperopia induction**

120 Hyperopia was induced monocularly in all chicks from day 1 (D1) post-hatching until
121 day 8 (D8). This was achieved by utilizing a customized convex defocusing lenses (La SER

122 Eye Jewelry, Port St. Lucie, FL, USA) with a power of $+10 \pm 0.5$ diopters (D). The lenses had
123 a total diameter of 12.5 mm and an optic zone diameter of 10 mm, with a base curve of 6.68
124 mm. A three-dimensional printed lens holder, custom-designed for this purpose, was used to
125 randomly fit the lens to one eye of each chick. To secure the positioning of the lenses on the
126 chick's eyes and facilitate removal during cleaning and light exposure (in some groups), the
127 lens holders were attached to a separate base piece that was glued to the down surrounding the
128 eye. Taking into consideration the 10 mm diameter of the optic zone, an estimated vertex
129 distance of 3 mm (from the defocusing lens to the corneal apex), and a calculated distance of
130 4.49 mm from the posterior nodal point to the defocusing lens on D1 in chicks, the approximate
131 open viewing visual angle was estimated to be around 76.5 degrees. However, it should be
132 noted that the open viewing visual angle might have been underestimated as these calculations
133 did not account for changes in pupil size.²⁸ The lenses were worn for a duration of 8 days and
134 were thoroughly cleaned three times per day to maintain their optical clarity. The fellow eye
135 remained uncovered and served as a control within each individual animal.

136 **Experimental Groups**

137 Monocular LIH was applied to all the 10 groups of chicks. Out of these, nine groups
138 underwent various interventions, such as HL (15,000 Lux), UnV, or a combination of HL and
139 UnV, each lasting for different durations (0, 2, 4, or 6 hours) centered at 12:00 pm. Further
140 information regarding the experimental interventions can be found below and in the
141 accompanying table 1.

142

143

144

145

146 **Table 1:** Details on experimental groups and interventions

Experimental group	Duration of intervention (Hours)	N	Experimental eye	Control eye	Experimental interventions	
					High intensity light status (15,000 lux)	Lens status
LIH	0	13	+10D	No lens	Off	Not removed
	2	13	+10D	No lens	On	Not removed
	4	13	+10D	No lens	On	Not removed
	6	13	+10D	No lens	On	Not removed
HL	2	13	+10D	No lens	Off	Removed
	4	13	+10D	No lens	Off	Removed
	6	12	+10D	No lens	Off	Removed
UnV	2	11	+10D	No lens	On	Removed
	4	12	+10D	No lens	On	Removed
	6	13	+10D	No lens	On	Removed
HL + UnV	2	11	+10D	No lens	On	Removed
	4	12	+10D	No lens	On	Removed
	6	13	+10D	No lens	On	Removed

147 Abbreviations: LIH = lens-induced hyperopia, HL = high-intensity light, UnV = unrestricted

148 vision.

149 **LIH group**

150 A total of 13 chicks in this group were raised in background laboratory light conditions
151 (150 lux), and they were not exposed to HL or UnV.

152 **High-Intensity Light Groups (LIH + HL)**

153 All the 3 groups had 13 chicks each and were exposed to 2, 4, or 6 hours of HL (15,000
154 lux) every day without removal of the defocusing lenses and background light for the remainder
155 of the light cycle.

156 **Unrestricted Vision Groups (LIH + UnV)**

157 Defocusing lenses were removed for 2, 4, or 6 hours/day for the 3 groups (n = 13, 13,
158 and 12). Only background light was used to raise during the light cycle throughout the
159 experiment.

160 **High-Intensity Light and Unrestricted Vision Groups (LIH + HL + UnV)**

161 The 3 groups (n = 11, 12, and 13) were exposed to 2, 4, or 6 hours of HL (15,000 lux)
162 every day along without removal of the defocusing lenses. The groups were exposed to
163 background light for the remainder of the light cycle.

164 **Ocular Measurements In Vivo**

165 All ocular measurements were carried out in a dimly lit room (<5 lux) between 12PM
166 and 5PM and the animals were randomly evaluated to reduce the impact of circadian rhythm
167 on the outcome measures. The body weight, ocular AL, refractive error, choroidal thickness
168 (CT), central corneal thickness (CCT), and anterior chamber depth (ACD) were measured in
169 all animals on D1, day 4 (D4) and D8 following the protocol described elsewhere.^{17, 29} A few
170 chicks (2–3 animals on D1) who would not keep the eyelid open needed lid retractor. The
171 examiner carefully inserted the lid retractor without touching the cornea or obstructing the
172 examination procedure.

173 **Axial length**

174 VuMAX HD (Sonomed Escalon, New Hyde Park, NY, USA) A-scan ultrasonography
175 was used to measure the AL as described by Najjar et al.²⁹ In summary, AL was defined as the
176 distance between the echo spike originating from the anterior surface of the cornea and most
177 anterior spike originating from the retina at a probe frequency of 10 MHz. A median of 7–10
178 scans were recorded as an individual reading.

179 **Refraction**

180 A calibrated automated infrared photo-retinoscope was used as previously described,³⁰
181 to measure ocular refraction. The chicks were gently held on an adjustable platform placed
182 about one meter away from the infrared photo-refractor. The positioning of the chick's head
183 was done with great care to ensure optimal focus on its eye and to detect the first Purkinje
184 image. Pupil size was adjusted for each eye and the median of the most hyperopic refraction

185 readings (i.e., resting refraction) without any accommodative changes was calculated from the
186 continuous refraction trace comprising at least 300 readings over time in each eye.^{17,29}

187 **Choroidal Thickness and Anterior Segment**

188 Posterior segment spectral-domain optical coherence tomography (SD-OCT;
189 Spectralis; Heidelberg Engineering, Inc., Heidelberg, Germany) was used to measure CT,
190 whereas anterior segment OCT (RTVue; Optovue, Inc., Fremont, CA, USA) was used to image
191 the anterior segment (ACD and CCT) as per the protocols described in Najjar et al.²⁹ For both
192 the procedures, the OCT operator gently held the alert chick's head and positioned it in
193 alignment with the OCT camera lens, allowing the infrared laser beam to enter the eye precisely
194 through the center of the pupil. The centration of the pupil was further refined the alignment of
195 the pupil, with multiple OCT scans obtained. The centration was within $\pm 100 \mu\text{m}$ from the
196 horizontal line for posterior segment OCT measurements. CT was defined as the distance
197 between the inner border of the sclera and the outer border of the retinal pigment epithelium.
198 The distance between the central most posterior layer of the cornea and the central most anterior
199 layer of the lens was defined as the ACD, whereas CCT was defined as the average of three
200 thickness measurements of the central cornea. The first author (SB), who was kept blind to the
201 eye (LIH or control) and the study group conditions (HL, UnV, HL + UnV) throughout the
202 measurement sessions, performed all the measurements manually.

203 **Analyses and Statistics**

204 The data are presented as the mean \pm SEM of the interocular difference (IOD) between
205 the experimental (LIH) and the control eye (uncovered); calculated as the LIH eye – control
206 eye. This approach accounts for the inter-animal variations in outcome measures due to the
207 mixed breed and large number of animals ($n = 126$ chicks) included in this study. For
208 comparing IODs in refraction, AL, CT, ACD, and CCT, a two-way repeated-measures

209 ANOVA was employed. The factors considered were day, group, and the interaction between
210 group and day. In case where the omnibus test indicated a significant interaction effect between
211 group and day, pairwise multiple comparisons were conducted using the Holm-Sidak method.
212 A two-way ANOVA was performed to assess the interaction between the type of intervention
213 (HL, UnV, HL + UnV) and its duration (0, 2, 4, and 6 hours) on the refraction, AL, and CT. If
214 the omnibus test yielded statistical significance, pairwise multiple comparisons were conducted
215 using the Holm-Sidak method. For all statistical tests, the significance level was set at $\alpha = 0.05$,
216 and Sidak correction was applied for post hoc pairwise comparisons.

217 **Results**

218 **Ocular Changes Associated with LIH**

219 The LIH eyes developed hyperopic shift in refractive error (refraction: $+5.12 \pm 0.24$ D
220 and $+7.39 \pm 0.36$ D by D4 and D8, respectively), primarily within the initial 4 days of $+10$ D
221 lens wear (IOD: $+1.31 \pm 0.29$ D and $+3.48 \pm 0.32$ D by D4 and D8, respectively), in comparison
222 to the uncovered contralateral control eyes (refraction: $+3.81 \pm 0.29$ D and $+3.91 \pm 0.13$ D by
223 D4 and D8, respectively). Simultaneously, there was a reduced axial elongation in the LIH eyes
224 (IOD: -0.28 ± 0.04 mm and -0.42 ± 0.03 mm by D4 and D8, respectively) and an increase in
225 CT (IOD: 84.85 ± 19.05 μ m and 85.81 ± 35.23 μ m by D4 and D8, respectively) compared to
226 the control eyes (all $P < 0.001$) (Figure 1, 2 and 3, Supplementary Table S1). There was no
227 difference in the CCT and ACD between LIH and control eyes (Supplementary Figures 1, 2).

228 **Impact of 2 hours of HL, UnV, and HL + UnV**

229 For 2-hour interventions, IOD in refraction ($F(2,46) = 82.53, P < 0.001$) (Figure 1A),
230 AL ($F(2,46) = 221.31, P < 0.001$) (Figure 1B) and CT ($F(2,46) = 25.67, P < 0.001$) (Figure 1C)
231 were only significantly different between the days of the intervention. Detailed results are
232 available in Supplementary Table S1.

233 **Impact of 4 hours of HL, UnV, and HL + UnV**

234 Four-hour interventions showed significant interactions between experimental group
235 and day for IOD in refraction ($F(6,92) = 2.38, P = 0.035$). By D8, both 4 hours of UnV and
236 HL+ UnV significantly reduced hyperopic refraction compared to the LIH group (both $P <$
237 0.05). UnV and HL+ UnV were equally effective ($P >0.05$) in reducing hyperopia. HL on the
238 other hand significantly increased hyperopic refraction compared to both UnV and HL + UnV
239 (both $P <0.001$) (Figure 2A). The group \times day interaction was significant also for IOD in AL
240 ($F(6,94) = 4.59, P <0.001$). Alike refraction, by D8, 4 hours of UnV and HL+ UnV significantly
241 reduced axial elongation compared to the LIH group (both $P <0.05$). Equally HL was
242 significantly effective in reducing axial elongation compared to both UnV and HL + UnV (both
243 $P <0.001$) (Figure 2B). IOD in CT was only dependent on the day of the intervention ($F(2,94)$
244 $= 21.34, P <0.001$, Figure 2C). Detailed results are available in Supplementary Table S1.

245 **Impact of 6 hours of HL, UnV, and HL + UnV**

246 For 6-hour interventions, there was a significant group \times day interaction for IOD in
247 refraction ($F(6,94) = 9.64, P <0.001$). By D8, 6 hours of UnV ($P <0.001$) and HL + UnV ($P =$
248 0.011) significantly reduced hyperopic refraction, whereas HL alone increased hyperopic
249 refraction compared to the LIH group ($P <0.001$). HL significantly increased hyperopic
250 refraction compared to UnV on D4 and D8 (both $P <0.01$) and compared to HL + UnV on D8
251 ($P <0.001$) (Figure 3A). IOD in AL showed a significant group \times day interaction ($F(6,94) =$
252 $17.40, P <0.001$), with UnV and HL + UnV showing increased axial elongation compared to
253 the LIH eyes on D4 and D8 (LIH versus UnV: $P <0.001$ and LIH versus HL + UnV: $P <0.05$).
254 On D8, HL produced significantly more reduction in AL compared to LIH ($P <0.001$). On both
255 D4 and D8, HL exposed eyes had greater AL reduction than both UnV and HL + UnV (all P
256 <0.001) (Figure 3B). IOD in CT was dependent on the group ($F(3,94) = 4.04, P = 0.012$) and

257 day ($F(2,94) = 17.61, P <0.001$) individually, but their interactions did not reach statistical
258 significance. CT in eyes exposed to HL were significantly higher than those with UnV ($P =$
259 0.024) or HL + UnV ($P = 0.042$) (Figure 3C). Detailed results are available in Supplementary
260 Table S1.

261 **Impact of Experimental Interventions on ACD and CCT**

262 IODs in ACD showed a significant effect of day for 2-hour ($F(2,92) = 21.75, P <0.001$),
263 4-hour ($F(2,94) = 13.99, P <0.001$), and 6-hour ($F(2,94) = 20.34, P <0.001$) interventions. IODs
264 in CCT showed a significant effect of day only for 4-hour ($F(2,94) = 4.12, P = 0.019$), and 6-
265 hour ($F(2,94) = 7.39, P = 0.001$) interventions (Supplementary Figures 1 and 2). For detailed
266 results see supplementary table S1.

267 **Duration Response Curves on D4 and D8 of the Interventions**

268 On D4, the impact of intervention on IODs in refraction ($F(2,104) = 6.02, P = 0.003$)
269 was not duration dependent. For refraction, groups exposed to HL had significantly higher
270 hyperopic refraction compared to those with UnV and HL + UnV (HL versus UnV: $P = 0.008$,
271 HL versus HL + UnV: $P = 0.009$) (**Supplementary Figure 3A**). The impact of the intervention
272 on IODs of AL ($F(2,104) = 14.15, P <0.001$) was duration dependent. The interaction between
273 the group and duration for IOD in AL was significant ($F(4,104) = 2.98, P = 0.023$), where 6
274 hours of HL was more effective in reducing ocular elongation than UnV ($P <0.001$) and HL +
275 UnV ($P = 0.001$) (**Supplementary Figure 3B**). IODs in CT were different between the
276 intervention groups ($F(2,104) = 9.36, P <0.001$), with eyes exposed to HL having significantly
277 thicker choroid than eyes exposed to UnV and HL + UnV (HL versus UnV: $P <0.001$, HL
278 versus HL + UnV: $P = 0.002$) (**Supplementary Figure 3C**).

279 On D8 of the protocol, there was a significant interaction between the duration and type
280 of intervention on IODs of refraction ($F(4,104) = 7.07, P <0.001$). Both 4-hour and 6-hours of

281 HL, but not 2-hours of HL, significantly increased hyperopic refraction induced by LIH
282 compared to UnV (both 4 and 6-hour: $P < 0.001$) and HL + UnV (4-hour: $P = 0.003$ and 6-hour:
283 $P < 0.001$) which decreased hyperopic refraction compared to LIH (4-hour: both UnV and HL
284 + UnV: $P < 0.05$; 6-hour: UnV: $P < 0.001$ and HL + UnV: $P = 0.011$) (Figure 4A). Likewise,
285 the interaction between the duration and type of intervention was significant for AL ($F(4,104)$
286 $= 9.87$, $P < 0.001$) where both 4-hour and 6-hours of HL, but not 2-hours of HL, further reduced
287 AL compared to UnV (both 4 and 6-hour: $P < 0.001$) and HL + UnV (both 4 and 6-hour: P
288 < 0.001) which increased AL compared to the LIH group (prevented AL shortening) (4-hour:
289 both UnV and HL + UnV: $P < 0.05$; 6-hour: both UnV and HL + UnV: $P < 0.001$). For the 6-
290 hour group, experimental eyes exposed to HL + UnV had shorter AL compared to eyes exposed
291 to UnV ($P = 0.028$) (Figure 4B). IODs in CT ($F(2,104) = 9.75$, $P < 0.001$) was different between
292 groups across the different durations of the interventions, with HL inducing further choroidal
293 thickening compared to LIH and compared to UnV ($P < 0.001$) and HL + UnV ($P = 0.003$)
294 (Figure 4C).

295

296 **Discussion**

297 In this study, we investigated the duration-dependent, differential, and combined effects
298 of HL and UnV on the ocular growth STOP signal induced by LIH in a chicken model. The
299 effect of HL, UnV, and HL + UnV in altering hyperopic refraction, AL elongation and CT were
300 duration dependent by D8 of the intervention. Unlike in LIM, HL and UnV did not yield a
301 similar effect in an LIH model. As previously reported,¹⁷ HL exacerbated the effects of LIH
302 (i.e., increased hyperopic refraction, axial shortening and choroidal thickening) in a dose
303 dependent manner, with the highest impact observed after 6 hours of exposure, followed by 4
304 and 2 hours. Conversely, UnV countered the effects of LIH (i.e., reduced hyperopic refraction,
305 axial shortening and choroidal thickening) in a dose dependent manner with the highest being
306 after 6 hours of exposure, followed by 4 and 2 hours. Interestingly, the impact of UnV
307 overpowered HL with the combined effects of HL + UnV showing close similarity to UnV,
308 except for AL after 6 hours of HL + UnV, where eyes exposed to LIH + HL + UnV had shorter
309 ALs compared to eyes exposed to LIH + UnV alone. Consistent with previous findings, there
310 was no significant change in ACD or CCT among the groups.¹⁶

311 The effect of UnV in reducing LIH in a duration-dependent manner has previously been
312 reported by Schmid et al,²³ where hyperopic refraction decreased by 8.4%, 27.7% and 42.2%
313 on exposure to 3, 6 and 9 hours of UnV by D5, respectively. Correspondingly, exposure to
314 UnV for 3, 6 and 9 hours per day increased AL elongation by 11.1%, 22.2% and 44.4%,
315 respectively.²³ In comparison, by D8 we observed 34.8%, 42.5%, 62.6% decrease in hyperopic
316 refraction and 4.8%, 31%, 81% increase in AL elongation on exposure to 2, 4, and 6 hours of
317 UnV, respectively. The increased impact of UnV observed in our study could potentially be
318 attributed to disparities in the experimental protocol such as the age (visual maturation), strain
319 of chickens, duration of the experimental protocol, as well as background lighting, visuo-spatial
320 surroundings during UnV and the timing of UnV (centered around noon for this study and

321 spilling into the afternoon). In fact, 2 hours of myopic defocus (+10 D) during noon or evening
322 reduces ocular growth effectively as opposed to wearing +10 D lens continuously, whereas
323 morning defocus induces less LIH. Similarly, 2 hours of positive lens removal in noon and
324 evening caused increase in ocular growth more than morning removal.³¹ When it comes to the
325 temporal dynamics of hyperopia induction, it has been proposed that temporal changes induced
326 by compensation to positive lenses, although duration-dependent, is non-linear, as the rise and
327 fall of the internal emmetropization signal is not directly proportional to the duration of lens
328 wear, rather on the frequency of wear with short durations.²⁵ In addition, earlier studies
329 investigating the impact of UnV on LIH reported that interrupted hyperopia (UnV = 2 hours of
330 relief from +4 D) resulted in a myopic shift in refractive state compared to the constant
331 hyperopic group in tree shrews.³² These findings, along with ours, suggest that UnV pushes
332 towards emmetropization based on the updated (i.e., the temporary hyperopic defocus created
333 during UnV) state of image defocus. Conversely, using +5 D lens wear, Zhu and colleagues
334 showed that even 30 minutes of UnV twice a day can result in a 43% increase in hyperopia in
335 marmosets.³³ These findings, although contradictory to ours, suggest that the inherent
336 emmetropization signal to low myopic defocus (+5 D) does not decay when the treatment
337 period is long (4 weeks) accompanied by multiple visual stimulation (UnV/ LIH × twice a day).

338 Exposing LIH eyes (+7 D) to HL (15,000 lux) for 5 hours per day, Ashby et al¹⁶ showed
339 no change in refraction by D5 but a 46.2% reduction in axial elongation compared to LIH eyes
340 without HL. In contrast, we recorded -3.7%, 20.4%, 77.3% increase in hyperopic refraction
341 and 9.5%, 21.4%, 33.3% reduction in AL elongation relative to the contralateral control eye by
342 D8 on exposure to 2, 4, and 6 hours of HL, respectively. In addition to the difference in
343 experimental protocol, the experimental lights used by Ashby et al¹⁶ mimicked daylight (range
344 300-1000 nm, peak 700 nm), while our experimental lights had typical LED spectrum with two

345 peaks around 449 nm and 583 nm. Recently a study on form deprivation myopia has shown
346 the fullness of light spectrum may affect the refractive development in chicks.³⁴

347 Nevertheless, our study agrees with Ashby et al's¹⁶ findings at D4 on the concept that
348 HL potentiates LIH and axial shortening, while UnV promotes emmetropization based on the
349 updated ocular defocus status (i.e., the hyperopic eye without the positive lens), thus slowing
350 LIH. Whether HL would still promote AL shortening had emmetropization been achieved (+10
351 D) is unclear. Yet, 6 hours of HL when combined with UnV triggered AL shortening compared
352 to UnV alone (Figure 3B) thus suggesting that HL always promotes AL shortening rather than
353 ocular compensation to defocus. These findings may explain a role of HL outdoors in
354 protecting against myopia, through a potential build-up and maintenance of “hyperopic
355 reserve” in growing eyes.

356 The choroid plays a role in the regulation of ocular growth and emmetropization.
357 Choroidal thickening occurs in response to myopic defocus (positive lens).^{35, 36} Although
358 studies on the effect of HL on CT under LIH are lacking, HL without LIH is expected to induce
359 an increase in CT.^{17, 34, 37} Yet, we did not observe any increase in the CT of control eyes exposed
360 to HL (i.e., HL, HL+UnV) compared to control eyes not exposure to HL (i.e., UnV).
361 Conversely, HL in addition to positive lens, led to significantly thicker choroid compared to
362 HL + UnV and UnV. This change in CT, is thought to be largely due to change in choroidal
363 blood flow, permeability and vasodilation of choroidal vessels associated with the rise in
364 intraocular temperature and neurotransmitter release.^{38, 39} By D8, LIH eyes exposed to 2, 4 and
365 6 hours of HL had choroidal thickening by 33%, 34.2% and 46.2% respectively, while eyes
366 exposed to 2, 4 and 6 hours of HL + UnV and UnV had choroidal thinning by 23.4%, 28.1%,
367 50.3% and 39%, 55.5%, 65.8% respectively. Even though both HL + UnV and UnV resulted
368 in decreased CT, HL + UnV, had slightly thicker choroid than UnV alone (P >0.05) (Figures

369 1-3C). Contrary to our finding, choroidal thickening by 16% was observed on removal of the
370 myopic defocus (+5 D) for 30 minutes twice a day in marmoset eyes.³³

371 HL and UnV probably trigger different mechanisms of action. UnV, being a
372 visual/optical feedback guided phenomenon,^{8, 40} stops emmetropizing the eye at null IODs. In
373 contrast, HL appears to work via a different pathway involving photoreceptor stimulation and
374 releasing of retinal neurotransmitters.^{15, 16, 41} HL induced increase in retinal dopamine (DA)
375 level is associated with lower LIM.⁴² However, the role of DA in positive lens compensation
376 is unclear with mixed reports of both enhancement⁴³ and no effect⁴⁴ on LIH with injection of
377 DA agonist such as apomorphine and 6-hydroxy DA, respectively. Studying the possible
378 dopaminergic and cholinergic mechanisms of LIH development resulted in contradictory
379 findings of increase,⁴⁵ decrease or no change^{46, 47} in retinal DA levels in eyes with LIH.
380 Gamma-Aminobutyric acid (GABA) is another neurotransmitter related to the light exposure,
381 is co-released alongside DA from the dopaminergic amacrine cells.⁴⁸ Baclofen, a GABAB
382 receptor agonist administration reduces LIH and CT, which further inhibits DA release and
383 DOPAC content compared to LIH eyes without baclofen.⁴⁷

384 Our study has a few limitations. First, it's difficult to generalize our findings in chicks
385 to humans given the differences between chicken and humans in their ocular anatomy and
386 optics.⁴⁹ The chicks were housed in a visual environment devoid of fine spatial details, color,
387 and other regular features which promotes emmetropization.⁵⁰ While the findings are in
388 harmony with the literature suggesting that removing myopic defocus reduces hyperopia
389 development, the finding is limited to animal models as humans are not subjected to myopic
390 defocus in daily life. The other finding is that exposure to HL can potentiate hyperopia
391 development in a duration-dependent manner regardless of the optical status of the eye.
392 However, exposure to such high intensity (15,000 lux) of light for 16%, 33% or 50% (2, 4 or
393 6 hours) of the daytime is often not implementable in real life.

394 **Conclusion**

395 In conclusion, our study showed that daily exposure to 2, 4, or 6 hours of UnV slows
396 LIH by promoting emmetropization in a duration-dependent manner. The combination of UnV
397 and HL of 2-4 hours does not potentiate the impact of UnV. Conversely, our findings suggest
398 that HL potentiates the drive for hyperopia (slowing ocular growth) independent of the optical
399 status of the eye. From a translational perspective, our findings also indirectly highlight the
400 capability of long periods of exposure to HL to secure a hyperopic reserve in developing eyes,
401 which may explain the protective effect of time outdoors against myopia onset.

402

403 **Acknowledgements**

404 The authors thank Mr. Noel Sng for helping with the design of the chicken enclosure.
405 Supported by research grant from Singapore Government (IAF), Industry Collaboration Project
406 Grant (I1901E0038), and Johnson & Johnson to R.P. Najjar. The funding organization has no
407 role in the design, conduct, and interpretation of the research.
408 Disclosure: **S. Biswas**, None; **J.M.F. Busoy**, None; **V.A. Barathi**, None; **A.R. Muralidharan**,
409 None; **L. Schmetterer**, None; **B.K. Kathrani**, Johnson and Johnson (E); and **N.A. Brennan**,
410 Johnson and Johnson (E); **R.P. Najjar**, None.

411

412

413 References

- 414 1. Hess RF, Schmid KL, Dumoulin SO, Field DJ, Brinkworth DR. What image properties regulate
415 eye growth? *Current biology : CB* 2006;16:687-691.
- 416 2. Charman WN. Keeping the world in focus: how might this be achieved? *Optometry and*
417 *vision science : official publication of the American Academy of Optometry* 2011;88:373-376.
- 418 3. Flitcroft DI. Emmetropisation and the aetiology of refractive errors. *Eye (London, England)*
419 2014;28:169-179.
- 420 4. Biswas S, El Kareh A, Qureshi M, et al. The influence of the environment and lifestyle on
421 myopia. *Journal of physiological anthropology* 2024;43:7.
- 422 5. Sankaridurg P, Tahhan N, Kandel H, et al. IMI Impact of Myopia. *Investigative ophthalmology*
423 & visual science 2021;62:2.
- 424 6. Llorente L, Barbero S, Cano D, Dorronsoro C, Marcos S. Myopic versus hyperopic eyes: axial
425 length, corneal shape and optical aberrations. *Journal of vision* 2004;4:288-298.
- 426 7. Strang NC, Schmid KL, Carney LG. Hyperopia is predominantly axial in nature. *Current eye*
427 *research* 1998;17:380-383.
- 428 8. Carr BJ, Stell WK. The Science Behind Myopia. In: Kolb H, Fernandez E, Nelson R (eds),
429 *Webvision: The Organization of the Retina and Visual System*. Salt Lake City (UT): University of Utah
430 Health Sciences Center
- 431 Copyright: © 2023 Webvision . 2017.
- 432 9. Schaeffel F, Swiatczak B. Mechanisms of emmetropization and what might go wrong in
433 myopia. *Vision research* 2024;220:108402.
- 434 10. Han X, Xiong R, Jin L, et al. Role of lens in early refractive development: evidence from a
435 large cohort of Chinese children. *The British journal of ophthalmology* 2024.
- 436 11. Wang D, Chun RK, Liu M, et al. Optical Defocus Rapidly Changes Choroidal Thickness in
437 Schoolchildren. *PLoS One* 2016;11:e0161535.
- 438 12. Delshad S, Collins MJ, Read SA, Vincent SJ. The human axial length and choroidal thickness
439 responses to continuous and alternating episodes of myopic and hyperopic blur. *PLoS One*
440 2020;15:e0243076.
- 441 13. Delshad S, Collins MJ, Read SA, Vincent SJ. Effects of brief periods of clear vision on the
442 defocus-mediated changes in axial length and choroidal thickness of human eyes. *Ophthalmic*
443 *Physiol Opt* 2021;41:932-940.
- 444 14. Sarkar S, Khuu S, Kang P. A systematic review and meta-analysis of the efficacy of different
445 optical interventions on the control of myopia in children. *Acta ophthalmologica* 2024;102:e229-
446 e244.
- 447 15. Ashby R, Ohlendorf A, Schaeffel F. The effect of ambient illuminance on the development of
448 deprivation myopia in chicks. *Investigative ophthalmology & visual science* 2009;50:5348-5354.
- 449 16. Ashby RS, Schaeffel F. The effect of bright light on lens compensation in chicks. *Investigative*
450 *ophthalmology & visual science* 2010;51:5247-5253.
- 451 17. Biswas S, Muralidharan AR, Betzler BK, et al. A Duration-Dependent Interaction Between
452 High-Intensity Light and Unrestricted Vision in the Drive for Myopia Control. *Investigative*
453 *ophthalmology & visual science* 2023;64:31.
- 454 18. Smith EL, 3rd, Hung LF, Huang J. Protective effects of high ambient lighting on the
455 development of form-deprivation myopia in rhesus monkeys. *Investigative ophthalmology & visual*
456 *science* 2012;53:421-428.
- 457 19. Zhang L, Qu X. The Effects of High Lighting on the Development of Form-Deprivation Myopia
458 in Guinea Pigs. *Investigative ophthalmology & visual science* 2019;60:4319-4327.
- 459 20. Chakraborty R, Baranton K, Spiegel D, et al. Effects of mild- and moderate-intensity
460 illumination on short-term axial length and choroidal thickness changes in young adults. *Ophthalmic*
461 *Physiol Opt* 2022;42:762-772.

462 21. Read SA, Pieterse EC, Alonso-Caneiro D, et al. Daily morning light therapy is associated with
463 an increase in choroidal thickness in healthy young adults. *Scientific reports* 2018;8:8200.

464 22. Zheng H, Tse DY, Tang X, To C, Lam TC. The Interactions Between Bright Light and Competing
465 Defocus During Emmetropization in Chicks. *Investigative ophthalmology & visual science*
466 2018;59:2932-2943.

467 23. Schmid KL, Wildsoet CF. Effects on the compensatory responses to positive and negative
468 lenses of intermittent lens wear and ciliary nerve section in chicks. *Vision research* 1996;36:1023-
469 1036.

470 24. Zhu X, Winawer JA, Wallman J. Potency of myopic defocus in spectacle lens compensation.
471 *Investigative ophthalmology & visual science* 2003;44:2818-2827.

472 25. Zhu X. Temporal integration of visual signals in lens compensation (a review). *Experimental
473 eye research* 2013;114:69-76.

474 26. Delshad S, Collins MJ, Read SA, Vincent SJ. The time course of the onset and recovery of axial
475 length changes in response to imposed defocus. *Scientific reports* 2020;10:8322.

476 27. Schmid KL, Wildsoet CF. Contrast and spatial-frequency requirements for emmetropization
477 in chicks. *Vision research* 1997;37:2011-2021.

478 28. Schippert R, Schaeffel F. Peripheral defocus does not necessarily affect central refractive
479 development. *Vision research* 2006;46:3935-3940.

480 29. Najjar RP, Chao De La Barca JM, Barathi VA, et al. Ocular growth and metabolomics are
481 dependent upon the spectral content of ambient white light. *Scientific reports* 2021;11:7586.

482 30. Schaeffel F, Farkas L, Howland HC. Infrared photoretinoscope. *Applied optics* 1987;26:1505-
483 1509.

484 31. Nickla DL, Thai P, Zanzerkia Trahan R, Totonelly K. Myopic defocus in the evening is more
485 effective at inhibiting eye growth than defocus in the morning: Effects on rhythms in axial length and
486 choroid thickness in chicks. *Experimental eye research* 2017;154:104-115.

487 32. Siegwart JTJ, Norton TT. Response to Interrupted Hyperopia After Restraint of Axial
488 Elongation in Tree Shrews. 2013;90:131-139.

489 33. Zhu X, Kang P, Troilo D, Benavente-Perez A. Temporal properties of positive and negative
490 defocus on emmetropization. *Scientific reports* 2022;12:3582.

491 34. Muralidharan AR, Low SWY, Lee YC, et al. Recovery From Form-Deprivation Myopia in Chicks
492 Is Dependent Upon the Fullness and Correlated Color Temperature of the Light Spectrum.
493 *Investigative ophthalmology & visual science* 2022;63:16.

494 35. Wildsoet C, Wallman J. Choroidal and scleral mechanisms of compensation for spectacle
495 lenses in chicks. *Vision research* 1995;35:1175-1194.

496 36. Wallman J, Wildsoet C, Xu A, et al. Moving the retina: choroidal modulation of refractive
497 state. *Vision research* 1995;35:37-50.

498 37. Lan W, Feldkaemper M, Schaeffel F. Bright light induces choroidal thickening in chickens.
499 *Optometry and vision science : official publication of the American Academy of Optometry*
500 2013;90:1199-1206.

501 38. Shih YF, Fitzgerald ME, Cuthbertson SL, Reiner A. Influence of ophthalmic nerve fibers on
502 choroidal blood flow and myopic eye growth in chicks. *Experimental eye research* 1999;69:9-20.

503 39. Fitzgerald ME, Wildsoet CF, Reiner A. Temporal relationship of choroidal blood flow and
504 thickness changes during recovery from form deprivation myopia in chicks. *Experimental eye
505 research* 2002;74:561-570.

506 40. Diether S, Wildsoet CF. Stimulus requirements for the decoding of myopic and hyperopic
507 defocus under single and competing defocus conditions in the chicken. *Investigative ophthalmology
508 & visual science* 2005;46:2242-2252.

509 41. Muralidharan AR, Lança C, Biswas S, et al. Light and myopia: from epidemiological studies to
510 neurobiological mechanisms. *Therapeutic advances in ophthalmology* 2021;13:25158414211059246.

511 42. Cohen Y, Peleg E, Belkin M, Polat U, Solomon AS. Ambient illuminance, retinal dopamine
512 release and refractive development in chicks. *Experimental eye research* 2012;103:33-40.

513 43. Schmid KL, Wildsoet CF. Inhibitory effects of apomorphine and atropine and their
514 combination on myopia in chicks. *Optometry and vision science : official publication of the American*
515 *Academy of Optometry* 2004;81:137-147.

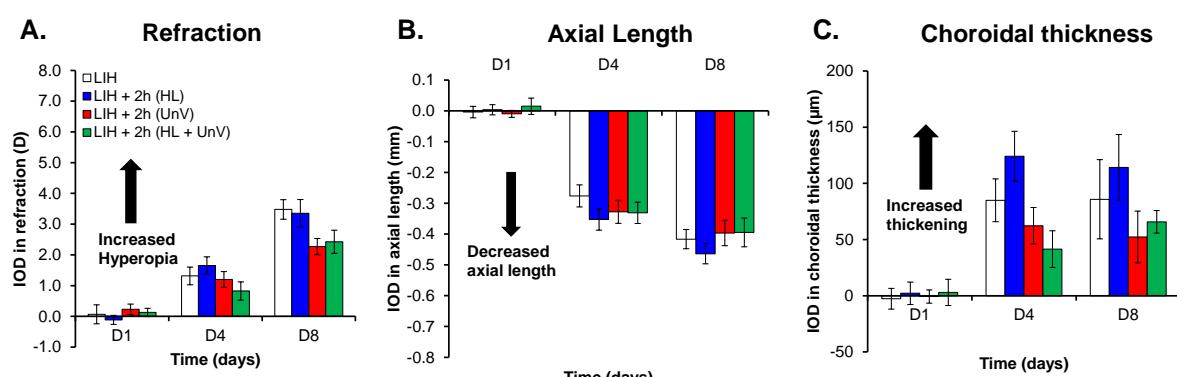
516 44. Schaeffel F, Hagel G, Bartmann M, Kohler K, Zrenner E. 6-Hydroxy dopamine does not affect
517 lens-induced refractive errors but suppresses deprivation myopia. *Vision research* 1994;34:143-149.

518 45. Guo SS, Sivak JG, Callender MG, Diehl-Jones B. Retinal dopamine and lens-induced refractive
519 errors in chicks. *Current eye research* 1995;14:385-389.

520 46. Ohngemach S, Hagel G, Schaeffel F. Concentrations of biogenic amines in fundal layers in
521 chickens with normal visual experience, deprivation, and after reserpine application. *Visual*
522 *neuroscience* 1997;14:493-505.

523 47. Liu H, Schaeffel F, Yang Z, Feldkaemper MP. GABA(B) Receptor Activation Affects Eye Growth
524 in Chickens with Visually Induced Refractive Errors. *Biomolecules* 2023;13.

525 48. Hirasawa H, Betensky RA, Raviola E. Corelease of dopamine and GABA by a retinal
526 dopaminergic neuron. *The Journal of neuroscience : the official journal of the Society for*
527 *Neuroscience* 2012;32:13281-13291.


528 49. Schaeffel F, Howland HC, Farkas L. Natural accommodation in the growing chicken. *Vision*
529 *research* 1986;26:1977-1993.

530 50. Flitcroft DI, Harb EN, Wildsoet CF. The Spatial Frequency Content of Urban and Indoor
531 Environments as a Potential Risk Factor for Myopia Development. *Investigative ophthalmology &*
532 *visual science* 2020;61:42.

533

534

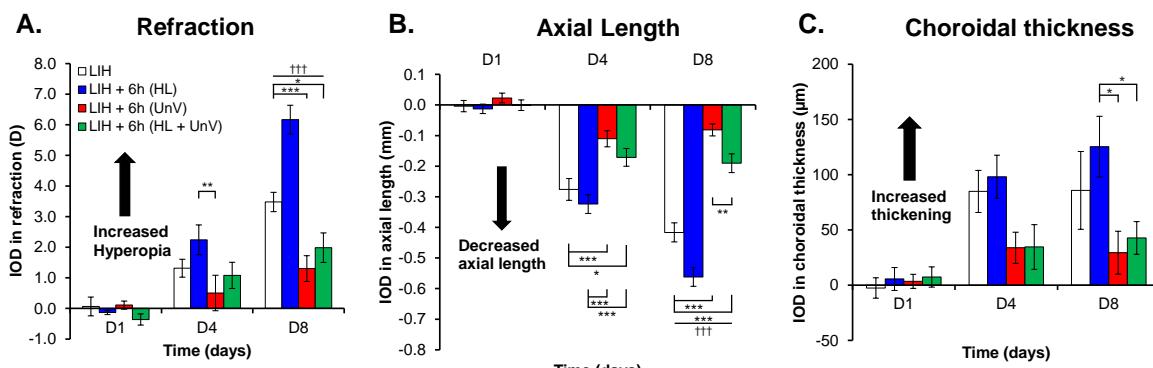
535 **Figures**



536

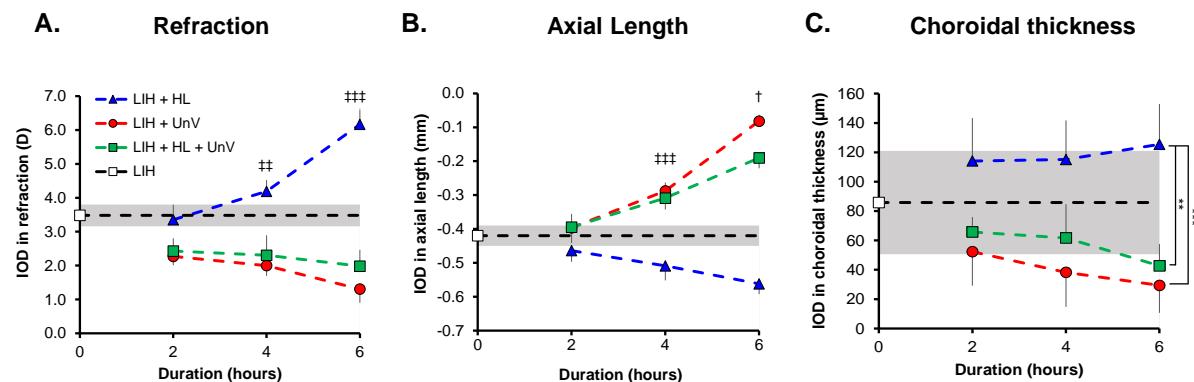
537 **Figure 1.** IOD in refraction, axial length, and choroidal thickness on days 1, 4, and 8 of the
538 experimental protocol in the group not exposed to any intervention (LIH) and groups exposed
539 to 2 hours of HL, UnV, or both (HL + UnV).

540


541

542

543 **Figure 2.** IOD in refraction, axial length, and choroidal thickness on days 1, 4, and 8 of the
544 experimental protocol in the group not exposed to any intervention (LIH) and groups exposed
545 to 4 hours of HL, UnV, or both (HL + UnV). For significant group effect: *P < 0.05, **P <
546 0.01, ***P < 0.001 (two-way repeated-measures ANOVA).


547

548

549 **Figure 3.** IOD in refraction, axial length, and choroidal thickness on days 1, 4, and 8 of the
550 experimental protocol in the group not exposed to any intervention (LIH) and groups exposed
551 to 6 hours of HL, UnV, or both (HL + UnV). All groups are significantly different from the
552 LIH + HL group: $†††P < 0.001$. For significant group effect: $*P < 0.05$, $**P < 0.01$, $***P <$
553 0.001 (two-way repeated-measures ANOVA).

554

555

556 **Figure 4.** Duration-response curve for the IOD in refraction (A), axial length (B), and choroidal
557 thickness (C) in the groups exposed to 2, 4, and 6 hours of HL, UnV, or both (HL + UnV) on
558 day 8 of the experimental protocol. The LIH group that was not exposed to any intervention is
559 represented by a *white square* and a *shaded area* for mean \pm 95% confidence interval. HL is
560 significantly different from the other two groups: $††P < 0.01$, $†††P < 0.001$. All the groups are
561 different from each other: $†P < 0.05$ (at least). HL group is significantly different from both
562 UnV and HL + UnV groups: $*P < 0.05$, $**P < 0.01$, $***P < 0.001$.