

3

4

5

5 Dylan E. Ramage¹, Drew W. Grant¹, Richard T. Timms^{1*}

6

⁷ ¹Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of
⁸ Medicine, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK

9

10 *Correspondence: rtt20@cam.ac.uk

11

12

13

14

15

16

17

18

19

30

21

22

22

24

8

26 **ABSTRACT**

27 The 26S proteasome is a multi-catalytic protease that serves as the endpoint for protein
28 degradation via the ubiquitin-proteasome system. Proteasome function requires the concerted
29 activity of 33 distinct gene products, but how the expression of proteasome subunits is
30 regulated in mammalian cells remains poorly understood. Leveraging coessentiality data from
31 the DepMap project, here we characterize an essential role for the dystonia gene *THAP1* in
32 maintaining the basal expression of *PSMB5*. *PSMB5* insufficiency resulting from loss of
33 *THAP1* leads to defects in proteasome assembly, impaired proteostasis and cell death.
34 Exploiting the fact that the toxicity associated with loss of *THAP1* can be rescued upon
35 exogenous expression of *PSMB5*, we define the transcriptional targets of *THAP1* through
36 RNA-seq analysis and perform a deep mutational scan to systematically assess the function of
37 thousands of single amino acid *THAP1* variants. Altogether, these data identify *THAP1* as a
38 critical regulator of proteasome function and suggest that aberrant proteostasis may contribute
39 to the pathogenesis of *THAP1* dystonia.

40

41

42

43

44

45

46

47

48

49

50

51 INTRODUCTION

52 Regulated protein degradation is essential for cellular homeostasis. As the primary
53 route through which the cell achieves selective protein degradation, the ubiquitin-proteasome
54 system (UPS) plays an important role in essentially all critical cellular processes¹. Proteins
55 destined for degradation are typically identified by E3 ubiquitin ligases, which, following
56 activation of ubiquitin by an E1 activating enzyme and its transfer to an E2 ubiquitin
57 conjugating enzyme, catalyze the attachment of ubiquitin onto substrate proteins². Addition of
58 further ubiquitin moieties generates polyubiquitin chains, which can serve as a potent
59 recognition signal for the 26S proteasome, a multi-catalytic protease. The importance of this
60 pathway is underscored by the fact that dysregulation of the UPS is a hallmark of diseases such
61 as cancer, autoimmunity and neurodegeneration³.

62

63 The 26S proteasome is a large, multi-subunit complex comprising the 20S core particle
64 and two 19S regulatory particles⁴. The regulatory subunits are responsible for the recognition
65 and unfolding of ubiquitinated proteins, which are then threaded into the active site in the core
66 particle formed by two rings of β -subunits⁵. The complex comprises three catalytic subunits:
67 PSMB5 (also known as β 5), PSMB6 (β 1) and PSMB7 (β 2). These exhibit trypsin-like,
68 chymotrypsin-like and caspase-like activities respectively, resulting in the proteolysis of the
69 polypeptide chain into short peptides fragments⁶. Each catalytic subunit harbors a catalytic
70 threonine residue at its N-terminus⁶, which is activated following autocatalytic processing of
71 an N-terminal propeptide at a late stage in core particle assembly⁷.

72

73 By performing genome-wide pooled CRISPR/Cas9 loss-of-function genetic screens
74 across hundreds of cancer cell lines, the Broad Institute's Cancer Dependency Map (DepMap)
75 project aims to systematically catalogue the essentiality of all protein-coding human genes⁸. A

76 key insight from these data is that whilst the dependency of different cell lines on any one
77 particular gene may vary, genes which function in concert in a biological pathway often exhibit
78 globally similar essentiality patterns⁹. Thus, by measuring gene dependency across hundreds
79 of cell lines, genes exhibiting ‘co-essential’ relationships can be clustered into modules which
80 may have the power to predict novel functions for genes. Indeed, multiple studies have
81 exploited this dataset to provide new insights into gene function across a range of biological
82 processes⁹⁻¹⁴.

83

84 Here we leveraged insight from co-essentiality data to characterize an essential role for
85 THAP1 in proteasome function. THAP1 is a ubiquitously expressed transcription factor which
86 achieves sequence-specific DNA binding via an atypical THAP-type zinc finger domain
87 located at its N-terminus¹⁵. Its target genes remain poorly defined, but THAP1 is thought to
88 play an important role in DNA repair¹⁶, cell cycle progression¹⁷ and oligodendrocyte
89 myelination^{18,19}. Homozygous deletion of THAP1 leads to embryonic lethality^{20,21}. Notably, a
90 wide variety of autosomal dominant mutations located throughout the THAP1 coding sequence
91 cause an early-onset form of the neurological disorder dystonia (DYT-THAP1, previously
92 known as DYT-6), where progressive loss of motor function leads to sustained involuntary
93 muscle contractions and abnormal posturing^{22,23}. However, as the critical targets of THAP1 are
94 poorly characterized, it remains unclear how the THAP1 mutations observed in dystonia
95 patients result in disease.

96

97 Here, by interrogating the co-essential relationship between *THAP1* and *PSMB5*, we
98 characterize an essential role for THAP1 in proteasome function. Exploiting a fluorescent
99 reporter knocked into the endogenous *PSMB5* locus, we demonstrate that the co-essential
100 relationship between THAP1 and PSMB5 is explained by an essential role for THAP1 in

101 activating *PSMB5* expression. THAP1 binds to cognate sites within the *PSMB5* promoter and
102 is required for its basal expression, and hence loss of THAP1 results in insufficient PSMB5
103 expression, proteasome dysfunction and cell death. Finally, we leveraged our functional
104 reporter assay to perform a deep mutational scan of THAP1, quantifying the activity of
105 thousands of single amino acid variants to define the landscape of THAP1 mutations in
106 dystonia.

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126 **RESULTS**

127 **The dystonia gene THAP1 exhibits a co-essential relationship with the proteasome**
128 **subunits PSMB5 and PSMB6**

129 Leveraging co-essentially data from the DepMap project⁸, we set out to characterize
130 novel roles for genes involved in the UPS. Focusing on a manually curated set of ~1000 genes
131 implicated in UPS function, we examined co-essential gene relationships derived from
132 genome-wide CRISPR-Cas9 screens across ~1100 different cancer cell lines. Supporting the
133 utility of this approach to identify genetic relationships that are functionally relevant, many of
134 the most significant positive co-essential relationships clustered genes whose products are
135 known to act in multi-protein complexes to facilitate protein degradation (**Fig. S1A**). For
136 instance, the RNF126 E3 ubiquitin ligase cooperates with BAG6 to target hydrophobic
137 sequences mislocalised to the cytosol for proteasomal degradation²⁴ (**Fig. 1A**); Cul2,
138 ElonginB/C and the von Hippel-Lindau (VHL) substrate adaptor comprise a Cullin-RING E3
139 ubiquitin ligase complex responsible for the degradation of hypoxia-inducible factor (HIF)-1 α
140 in normoxia (**Fig. 1B**)²⁵, and the CTLH complex is a multi-subunit E3 ligase orthologous to the
141 yeast GID complex which degrades gluconeogenic enzymes²⁶ (**Fig. 1C**). Furthermore, several
142 of the most significant negative co-essential relationships define E3 ligase-substrate pairs: for
143 example, MDM2 mediates the degradation of p53²⁷ (**Fig. S1B**) and the Cul4 substrate adaptor
144 AMBRA1 targets cyclin D²⁸⁻³⁰ (**Fig. S1C**).

145

146 Our follow-up work focused on the most statistically significant uncharacterized co-
147 essential relationship in the dataset: *THAP1* exhibits a highly significant positive association
148 with both *PSMB5* and *PSMB6* (**Fig. 1D-F**). *THAP1* is a transcription factor which binds DNA
149 in a sequence-specific manner using a THAP-type zinc-finger domain, while *PSMB5* and
150 *PSMB6* encode catalytic subunits of the proteasome core particle. Thus, we set out to test the

151 hypothesis that the co-essential relationship between *THAP1* and *PSMB5/6* could be explained
152 by an essential role for THAP1 in regulating the expression of catalytic proteasome subunits.

153

154 **Loss of THAP1 abrogates *PSMB5* transcription**

155 Lentiviral expression of Cas9 and CRISPR sgRNAs targeting *THAP1* in HEK-293T
156 cells was extremely toxic (**Fig. 1G-H**), consistent with DepMap data which demonstrates that
157 knockout of THAP1 is broadly deleterious across cancer cell lines⁸. However, at day 5 post-
158 transduction, before the onset of significant cell death, we found substantially reduced levels
159 of *PSMB5* transcripts by quantitative reverse transcription PCR (qRT-PCR) (**Fig. 1I**). In
160 contrast, we observed no reduction in the expression of either *PSMB6* or *PSMB7*, the other
161 catalytic subunits of the proteasome (**Fig. 1I**). Concordantly, we also observed reduced
162 abundance of *PSMB5* protein as assessed by immunoblot (**Fig. 1J**). Thus, these data suggest
163 that THAP1 is required to maintain basal levels of *PSMB5* transcription.

164

165 **Lethality resulting from loss of THAP1 can be rescued by exogenous PSMB5**

166 Next, we sought to test the hypothesis that the essentiality of THAP1 is due to its role
167 in activating *PSMB5* expression. Should this be the case, we reasoned that, irrespective of any
168 reduction in the expression of endogenous *PSMB5*, an exogenous source of *PSMB5* should
169 rescue cell viability upon *THAP1* ablation. Strikingly, unlike their wild-type counterparts,
170 HEK-239T cells transduced with a lentiviral vector expressing *PSMB5* did not display any
171 significant growth defect following CRISPR/Cas9-mediated targeting of *THAP1* (**Fig. 2A and**
172 **Fig. S2A**). Exogenous expression of *PSMB6*, however, was incapable of rescuing viability
173 following *THAP1* ablation (**Fig. 2A and Fig. S2B**). Thus, the toxicity that results from loss of
174 THAP1 is due to insufficient *PSMB5* expression, explaining the molecular basis for their co-
175 essential relationship. In contrast, we found no evidence to support a direct relationship

176 between *THAP1* and *PSMB6*, suggesting that their co-essential relationship arises indirectly
177 through their shared relationship with *PSMB5*.

178

179 DepMap data demonstrates that disruption of *THAP1* is broadly lethal across cancer
180 cell lines (**Fig. 2B**). Thus, to generalize our finding that the essential requirement for *THAP1*
181 is to facilitate *PSMB5* expression, we ablated *THAP1* in three additional human cell lines:
182 HeLa, A549 and THP-1. Mirroring our findings in HEK-293T cells, in A549 and HeLa we
183 found that the toxicity observed upon loss of *THAP1* could be ameliorated upon exogenous
184 expression of *PSMB5* (**Fig. 2C-D**). THP-1 cells, however, did not exhibit reduced viability
185 following *THAP1* disruption (**Fig. 2E**). This prompted us to examine in more detail the nature
186 of the cell lines in which *THAP1* is not essential, which were strikingly enriched ($P < 1 \times 10^{-9}$)
187 for immune cells ('myeloid' or 'lymphoid' as defined by DepMap). Considering that the
188 immunoproteasome is constitutively expressed by many immune cells^{31,32}, we reasoned that
189 expression of *PSMB8*, the analogous counterpart of *PSMB5* in the immunoproteasome, might
190 relieve the essential requirement for *THAP1*. Indeed, there is a strong correlation between the
191 essentiality of *THAP1* and *PSMB8* expression levels as measured by RNA-seq, wherein the
192 cell lines in which *THAP1* knockout has little or no impact on viability express the highest
193 levels of *PSMB8* (**Fig. 2F**). Indeed, we found that THP-1 cells expressed high levels of *PSMB8*
194 by qRT-PCR (**Fig. 2G**). We further validated these conclusions in HEK-293T cells, where, like
195 *PSMB5*, exogenous expression of *PSMB8* maintained the viability of *THAP1* knockout cells
196 (**Fig. 2H and Fig. S2C**). Thus, sustained expression of either *PSMB5* or its immunoproteasome
197 counterpart *PSMB8* can rescue the toxicity associated with loss of *THAP1*.

198

199 **A fluorescent reporter at the endogenous *PSMB5* locus monitors *THAP1* activity in live**
200 **cells**

201 We extended these findings by knocking-in a fluorescent reporter to the endogenous
202 *PSMB5* locus, enabling us to monitor *PSMB5* expression in live cells. Following transfection
203 of HEK-293T cells with Cas9, an sgRNA targeting the transcriptional start site of *PSMB5* and
204 a homology donor vector encoding the green fluorescent protein (GFP) variant mClover3³³
205 followed by a 2A peptide (**Fig. 3A**), we were readily able to establish a population of cells
206 (~10%) which were stably GFP-positive (**Fig. 3B**). Single cell clones isolated from the GFP-
207 positive population (**Fig. 3C**) harbored GFP at the intended site as validated by PCR from
208 genomic DNA (**Fig. S2D**). Furthermore, lentiviral expression of shRNAs targeting *PSMB5*
209 resulted in a reduction in GFP expression (**Fig. S2E**), validating that the reporter clones could
210 be used to quantitatively assess *PSMB5* expression.

211
212 We exploited our findings above to generate viable *THAP1* knockout (KO) reporter
213 cells. Following CRISPR/Cas9-mediated disruption of *THAP1* in P_{PSMB5}-GFP reporter cells
214 (sustained by exogenous expression of *PSMB5*) (**Fig. 3D**), we isolated single cell clones from
215 the GFP^{dim} population by fluorescence-activated cell sorting (FACS) (**Fig. 3E**). Disruption of
216 the *THAP1* locus was confirmed by PCR from genomic DNA followed by Sanger sequencing
217 (**Fig. S2F**). Using primers specific to the 3' untranslated region of *PSMB5* to allow for selective
218 detection of the endogenous transcript, we confirmed a substantial reduction in *PSMB5*
219 expression in two *THAP1* KO clones by qRT-PCR (**Fig. 3F**). However, our attempts to validate
220 efficient knockout of *THAP1* by immunoblot were hampered by the paucity of effective
221 commercial antibodies. In particular, we found that the Proteintech antibody (12584-1-AP)
222 used in multiple previous studies detected a prominent band running around the expected
223 molecular weight (~25 kDa), but whose abundance was not affected upon CRISPR/Cas9
224 targeting of *THAP1* (**Fig. 3G**). However, this antibody could readily detect exogenous *THAP1*

225 as a separate band that migrated just slightly slower, and, upon prolonged exposure, was able
226 to detect endogenous THAP1 in control cells but not in the THAP1 knockout clones (**Fig. 3G**).
227

228 **THAP1 acts through cognate binding sites located within the *PSMB5* promoter**

229 Next, we sought to determine how THAP1 might regulate *PSMB5* expression. In
230 support of a direct effect, chromatin immunoprecipitation followed by sequencing (ChIP-seq)
231 data from the ENCODE project³⁴ revealed THAP1 occupancy immediately upstream of the
232 *PSMB5* transcription start site (TSS) (**Fig. 4A**). Despite THAP1 binding to thousands of gene
233 promoters (**Table S1**), this property is not shared among the genes encoding proteasome
234 subunits: *PSMD8* is the only other gene to exhibit THAP1 occupancy (**Fig. 4A**). THAP1
235 contains a THAP-type zinc finger domain which mediates sequence-specific DNA binding,
236 and competitive EMSA experiments³⁵ have defined the consensus binding sequence
237 (“THABS” motif) as TNNNGGCA (where N represents any nucleotide) (**Fig. 4B**). Strikingly,
238 examination of the *PSMB5* proximal promoter region revealed two perfect matches within 200
239 bp of the TSS, and a third near-perfect match a further ~500 bp upstream (**Fig. 4C**). Together,
240 these data suggest that THAP1 binds cognate motifs in the *PSMB5* promoter to activate its
241 transcription.

242

243 We examined this hypothesis by engineering a lentiviral reporter system in which ~1
244 kb of the *PSMB5* proximal promoter was placed upstream of GFP (**Fig. 4D**). Single copy
245 expression of this reporter construct in HEK-293T cells resulted in robust GFP expression (**Fig.**
246 **S3A**). This appeared to be due in part to the activity of THAP1, as combined deletion of all
247 three THABS motifs from the *PSMB5* promoter (“ΔTHABS”) resulted in decreased GFP
248 expression (**Fig. 4E**). Importantly, CRISPR-mediated ablation of *THAP1* (performed following
249 the introduction of exogenous *PSMB5* to maintain cell viability) reduced GFP expression from

250 the reporter construct driven by the wild-type PSMB5 promoter, but did not further reduce
251 expression from the PSMB5 promoter lacking all THABS sites (**Fig. 4F**).

252

253 To investigate the relative importance of the three THABS motifs, we created an
254 additional panel of mutant constructs in which each THABS motif was individually deleted.
255 These data pointed to a critical role for site 2, as only the Δ THABS2 construct exhibited
256 decreased GFP expression relative to the level of the Δ THABS construct (**Fig. S3B**). Moreover,
257 the Δ THABS2 construct was the only one unaffected following ablation of THAP1, whereas a
258 marked reduction in GFP expression was observed in cells expressing Δ THABS1 and
259 Δ THABS3 (**Fig. S3C**). Thus, THAP1 binding to a cognate motif (THABS2) immediately
260 upstream of the PSMB5 TSS appears critical for PSMB5 expression.

261

262 **Loss of THAP1 impairs proteasome function**

263 As *PSMB5* encodes one of the three catalytic subunits of the constitutive 20S
264 proteasome core particle, we set out to test the hypothesis that the toxicity associated with loss
265 of THAP1 was due to proteasome dysfunction. First, we examined whether the catalytic
266 activity of PSMB5 was required to sustain cell viability upon *THAP1* ablation. Whereas HEK-
267 293T cells expressing wild-type PSMB5 did not exhibit any appreciable growth defect upon
268 disruption of *THAP1*, cells expressing a catalytically-inactive PSMB5 mutant were not viable
269 under these conditions (**Fig. 5A**). Second, as PSMB5 is critical to facilitate the integration of
270 the other catalytic β subunits into the 20S core particle during proteasome assembly³⁶⁻³⁸, we
271 assessed whether loss of THAP1 resulted in defects in proteasome assembly. As a result of
272 impaired autocatalytic cleavage of their N-terminal propeptide, an inability of the catalytic
273 subunits to incorporate into the 20S core particle causes an accumulation of the immature
274 proteins which can be detected by immunoblot³⁸. Supporting the idea of defective proteasome

275 assembly in the absence of THAP1, we found decreased abundance of the mature forms of
276 PSMB6 and PSMB7, concomitant with the accumulation of immature (uncleaved) species
277 (indicated by asterisks) which were absent from control cells (**Fig. 5B**). Finally, we reasoned
278 that proteasome dysfunction upon THAP1 loss should result in the stabilization of short-lived
279 proteins. Exploiting the Global Protein Stability (GPS) two-color lentiviral reporter system³⁹
280 (**Fig. 5C**), we found that CRISPR-mediated ablation of THAP1 stabilized two exogenous GFP-
281 degron fusion proteins to a similar degree as shRNA-mediated knockdown of PSMB5 (**Fig.**
282 **5D**). Similarly, *THAP1* disruption also resulted in increased abundance of endogenous HIF-1 α ,
283 which is constitutively degraded by the proteasome in normoxia^{25,40} (**Fig. 5E**). Altogether,
284 these data support a model whereby the death of cells lacking THAP1 is caused by defective
285 proteasome function resulting from inadequate expression of PSMB5.

286

287 **Defining the transcriptional targets of THAP1**

288 The key transcriptional targets of THAP1 remain poorly defined, hampering our ability
289 to understand the functional consequences of THAP1 mutations in disease. Armed with the
290 knowledge that exogenous PSMB5 expression ameliorates the toxicity associated with THAP1
291 loss, we reasoned that we could leverage our findings to assess the impact of THAP1 deletion
292 on the transcriptome. To avoid potential artefacts resulting from the analysis of single cell
293 clones, we purified a population of THAP1 knockout cells. Following the CRISPR-mediated
294 ablation of *THAP1* in PSMB5-GFP knock-in reporter cells (overexpressing PSMB5 to ensure
295 viability), we isolated GFP^{dim} cells by FACS and performed RNA-seq analysis (**Fig. 6A**). After
296 discounting genes exhibiting differential expression between untransduced cells and cells
297 expressing control sgRNAs, we identified 277 genes (220 downregulated, 57 upregulated)
298 whose expression was significantly altered (FDR < 0.001, fold-change > 2) upon THAP1
299 knockout (**Fig. 6B and Table S2**). Supporting the veracity of the dataset, the most significantly

300 downregulated gene was Shieldin complex subunit 1 (*SHLD1*, previously known as
301 *C20orf196*), consistent with recent findings describing a role for THAP1 in DNA double strand
302 break repair choice¹⁶. Furthermore, although the requirement for exogenous expression of
303 *PSMB5* precluded its identification as a differentially expressed gene, the abundance of
304 intronic reads mapping to the endogenous *PSMB5* locus was greatly reduced in the THAP1
305 knockout cells (**Fig. S4A-B**).

306

307 To identify direct transcriptional targets of THAP1, we cross-referenced the
308 differentially expressed genes identified through RNA-seq with THAP1 binding sites as
309 defined by ChIP-seq. Among the differentially expressed genes, 42 exhibited THAP1
310 occupancy in their proximal promoter (**Fig. 6C**); of these 42 direct targets, 19 were
311 downregulated upon loss of THAP1 while 23 were upregulated, suggesting that THAP1 has
312 the potential to act as either a repressor or activator of transcription depending on the genomic
313 context. However, the primary role of THAP1 appeared to be as an activator, with several of
314 its direct targets exhibiting marked downregulation in its absence (**Fig. 6B-C**). We found no
315 significant functional enrichment among the differentially expressed genes through GO term
316 analysis, but their promoter sequences were enriched for transcription factor binding motifs for
317 both THAP1 and YY1, a known THAP1 co-factor^{16,41,42} (**Fig. 6D and Fig. S4C**). None of these
318 genes are currently associated with dystonia, but they include *ECH1*, an enzyme involved in
319 fatty acid metabolism that has been previously identified as a THAP1 target⁴², and *METTL3*,
320 the N⁶-methyladenosine methyltransferase, which is an attractive therapeutic target in cancer⁴³.
321 Across five of the THAP1 target genes that exhibited the greatest degree of downregulation
322 upon loss of THAP1, we further validated these findings by qRT-PCR (**Fig. 6E-I**). Altogether,
323 these data define the genes directly targeted by the transcription factor activity of THAP1.

324

325 **A deep mutagenic scan defines the landscape of THAP1 mutations in Dystonia**

326 A wide range of autosomal dominant mutations distributed throughout the THAP1
327 coding sequence give rise to DYT-THAP1 dystonia⁴⁴⁻⁵⁰, an early-onset neurological disorder
328 characterized by involuntary muscle contractions and movements causing abnormal and
329 painful posturing. Thus, we sought to exploit our P_{PSMB5}-GFP knock-in reporter clone to assess
330 the functional impact of DYT-THAP1 mutations. Genetic complementation of THAP1 KO
331 cells with wild-type THAP1 did result in a restoration in P_{PSMB5}-GFP expression, although this
332 effect was partial and did not restore GFP fluorescence to the levels observed in the parental
333 cells (**Fig. S5A**). However, this assay was sufficiently sensitive to report on THAP1 activity,
334 as expression of an inactive THAP1 mutant unable to bind DNA (C5A, which abrogates zinc
335 chelation by the zinc finger motif¹⁵) did not restore P_{PSMB5}-GFP expression (**Fig. S5A**).
336

337 With the goal of globally defining how mutations in THAP1 affect its function, we
338 leveraged our phenotypic assay in P_{PSMB5}-GFP knock-in reporter cells to carry out a deep
339 mutational scan. Through microarray oligonucleotide synthesis, we generated a library of
340 mutant constructs in which each residue of THAP1 (with the exception of the initiator
341 methionine, 212 amino acids total) was systematically replaced with all of the other 20 possible
342 amino acids (**Fig. 7A-B**). The resulting site-saturation mutagenesis library was packaged into
343 lentiviral particles and introduced into THAP1 KO P_{PSMB5}-GFP reporter cells at low
344 multiplicity of infection, ensuring single-copy expression. We then used FACS to partition the
345 population into GFP^{dim} cells, in which no restoration of P_{PSMB5}-GFP expression was observed,
346 and GFP^{bright} cells, in which P_{PSMB5}-GFP expression was restored, and quantified the THAP1
347 variants present in each population by Illumina sequencing (**Fig. 7B**).
348

349 After an initial filtering step to remove variants with low read counts, we recovered
350 data for 4002 of the 4240 possible single amino acid variants (94.3%). Overall, we observed
351 high concordance between mutant performance across two replicate experiments (**Fig. S5B**);
352 however, we discarded 179 mutants which exhibited discordant behavior between the two
353 replicate experiments, leaving a total of 3823 (90.2%) variants for analysis (**Table S3**). The
354 results are summarized as a heatmap in **Fig. 7C**, with the data normalized such that the mean
355 performance of all the control (wild-type) constructs is centered at 1; thus, the darker the red
356 color the more deleterious the impact of the mutation on THAP1 function, whereas blue cells
357 indicate mutations which may enhance the THAP1-mediated activation of P_{PSMB5}-GFP
358 expression.

359

360 We evaluated the quality of the dataset in several ways. First, we considered residues
361 essential for zinc chelation and hence folding of the zinc finger motif¹⁵: C5, C10, C54 and H57.
362 These critical residues were uniformly essential for THAP1 activity, as mutation to any other
363 residue prevented activation of the P_{PSMB5}-GFP reporter (**Fig. 8A**). Moreover, mutations across
364 all residues previously determined to be important for DNA binding through biochemical
365 assays¹⁵ were extremely deleterious (**Fig. 8B**). Second, the global landscape of THAP1 activity
366 correlated well with the predicted structure of THAP1 (**Fig. 8C-D**). In particular, mutation of
367 most residues in the two structured regions, the THAP-type zinc finger (residues 2-81) and the
368 predicted coiled-coil domain (residues 139-191) abrogated transcriptional activity, whereas
369 most mutations targeting the unstructured central linker (residues 82-138) and C-terminus
370 (residues 192-213) did not impair transcriptional activity (**Fig. 7C and Fig. 8E**). A notable
371 exception, however, was the DHNY motif (residues 134-137) lying at the end of the central
372 unstructured linker, which was absolutely critical for THAP1 function (**Fig. 7C**). Interestingly,
373 this motif has been identified as the binding site for HCFC1⁵¹, an essential cofactor for the

374 THAP1-mediated activation of *SHLD*¹⁶. Thus, the interaction with HCFC1 is also likely to be
375 critical for the THAP1-mediated activation of *PSMB5*. Indeed, we confirmed that deletion of
376 the DHNY motif and the coiled-coil domain, but not the disordered C-terminus, abolished the
377 ability of THAP1 to activate the P_{PSMB5}-GFP reporter (**Fig. 8F**).

378

379 Many of the THAP1 mutations identified in dystonia patients remain of uncertain
380 significance⁵⁰. Thus, we examined the utility of this dataset in classifying the functional effects
381 of THAP1 variants identified clinically (**Fig. 8G**). The majority of these mutations strongly
382 impaired the ability of THAP1 to activate expression of the P_{PSMB5}-GFP reporter, consistent
383 with the prevailing view that disease-causing mutations represent loss-of-function alleles^{19,41,50}.
384 However, some mutants exhibited activity at or approaching the level of the wild-type protein,
385 suggesting that they might represent benign variants. To verify that the screen results could be
386 faithfully recapitulated in individual experiments, we selected eight patient mutations predicted
387 to abolish THAP1 activity (A7D, R13H, K24E, P26R, H57N, L72R, F81L and N136S) and
388 compared their performance to five mutants predicted not to affect THAP1 activity (I80V,
389 C83R, M143V, A166T and D192N). Validating the screen results, the eight inactive mutants
390 exhibited little or no ability to activate P_{PSMB5}-GFP reporter expression (**Fig. 8H and Fig. S5C-E**),
391 whereas the five active mutants exhibited similar performance to wild-type THAP1 (**Fig. 8H**). Altogether,
392 these data illustrate structure-function relationships for THAP1 at high
393 resolution, enabling the functional classification of clinical THAP1 mutations.

394

395

396

397

398

399 **DISCUSSION**

400 Co-essential relationships identified through the DepMap project⁸ represent a rich
401 resource to characterize gene function. Here we explain the co-essential relationship between
402 THAP1 and PSMB5 by demonstrating that THAP1 is essential for the basal expression of
403 PSMB5. Insufficient PSMB5 expression resulting from loss of THAP1 results in proteasome
404 dysfunction and cell death, which can be rescued through exogenous expression of PSMB5.
405 We exploit this finding to generate viable THAP1 knockout cells and hence identify
406 transcriptional targets of THAP1 by RNA-seq. Finally, leveraging a phenotypic assay to
407 systematically assess the activity of THAP1 mutants at the endogenous *PSMB5* locus, we
408 define the transcriptional activity of THAP1 mutants found in dystonia patients. Overall, these
409 data identify THAP1 as a novel regulator of proteasome function and suggest that aberrant
410 proteostasis could be a factor underlying the pathogenesis of THAP1 dystonias.

411

412 Two major players are known to regulate the expression of proteasome subunits. In
413 yeast the transcription factor Rpn4 is responsible for both the basal expression of proteasome
414 subunits, and, under conditions of proteasome insufficiency, feedback induction of proteasome
415 subunit expression⁵². Rpn4 functions as part of a negative feedback loop that monitors
416 proteasome activity: in unstressed cells Rpn4 is constitutively degraded, but it is rapidly
417 stabilized upon proteasome dysfunction⁵³. In mammalian cells Nrf1 acts in a similar manner to
418 induce the expression of proteasome subunits under conditions of proteasome
419 insufficiency^{54,55}, but appears not to have a major role in their basal expression⁵⁴. Several other
420 transcription factors have been implicated in proteasome gene expression⁵⁶⁻⁵⁸, including NF-
421 Y which regulates a set of proteasome genes which carry a CCAAT box motif in their
422 promoters⁵⁸, but the factors which maintain the basal expression of proteasome subunits in
423 human cells remain largely unknown.

424

425 Here we characterize THAP1 as an additional regulator of proteasome gene expression.

426 In contrast to the master regulators Rpn4 and Nrf1, THAP1 appears to regulate only PSMB5.

427 Why might THAP1 have evolved to exclusively regulate the expression of one single

428 proteasome subunit? We speculate that perhaps there is a physiological circumstance wherein

429 the downregulation of PSMB5 expression is beneficial, which could be achieved through the

430 conditional inactivation of THAP1 activity. For example, it is plausible that transcriptional

431 downregulation of *PSMB5* concomitant with upregulation of *PSMB8* might be beneficial upon

432 viral infection, when immunoproteasomes are favored to increase the production of antigenic

433 peptides^{59,60}, or during thymic development when PSMB11 (β5t) is incorporated in preference

434 to PSMB5 and PSMB8 into the thymoproteasome⁶¹. Another interesting question for future

435 studies will be to examine whether the expression of other individual proteasome subunits

436 (such as PSMB6 and PSMB7) is also subject to specific regulatory mechanisms.

437

438 The mechanisms through which THAP1 mediates its effects on gene expression remain

439 unclear. THAP1 does not possess an obvious activator or repressor domain, and so it is likely

440 that it acts through the recruitment of co-factors to target genes. A complex of THAP1 with

441 YY1 and HCFC1 has previously been shown to mediate activation at the *SHLD* promoter¹⁶,

442 and the F81L dystonia mutation is thought to disrupt YY1 binding and hence impair THAP1-

443 mediated transcriptional activation⁴². Our data offer support to this notion: YY1 binding motifs

444 were strongly enriched amongst the direct targets of THAP1 identified by RNA-seq, and an

445 intact HCFC1-binding motif was critical for THAP1-mediated activation of the P_{PSMB5}-GFP

446 reporter. However, ChIP-seq reveals thousands of THAP1 binding sites in promoters across

447 the genome, many of which colocalize with HCFC1 and YY1¹⁶, and yet we observed relatively

448 few transcriptional changes by RNA-seq. Thus, we speculate that other factors must be

449 involved in determining whether THAP1 binding alters transcriptional activity. Our P_{PSMB5} -
450 GFP knock-in reporter cells may therefore serve as a useful resource for further genetic
451 interrogation of this pathway; for example, genome-wide CRISPR screens may identify
452 additional genes required for the THAP1-mediated activation of *PSMB5*.

453

454 We leveraged our genetic reporter to characterize the impact of single amino acid
455 variants on the ability of THAP1 to activate the expression of *PSMB5*. This dataset, covering
456 over 90% of all possible single amino acid variants, represents a rich resource for functional
457 classification of THAP1 mutations. Specifically, these data strongly support the notion that
458 disease-causing mutations in THAP1 generate loss-of-function alleles which are unable to
459 regulate target gene expression: 84% of the missense mutations in THAP1 identified in
460 dystonia patients exhibited performance at <50% of the wild-type protein. Thus, we propose
461 that the mutations which do not impair THAP1 activity are likely to represent benign variants.
462 Indeed, the clinical evidence supporting a pathogenic role for some THAP1 mutations remains
463 equivocal⁵⁰; for example, a previous study concluded that the I80V mutation was very likely
464 to be benign, supported by the conservative nature of the substitution and the lack of any
465 functional defect in a reporter assay⁵⁰.

466

467 How does loss of THAP1 function result in Dystonia? As the most plausible
468 explanation is that dysregulated expression of one or more of its target genes leads to disease⁶²,
469 our data advance progress towards answering this question in two ways. First, the identification
470 of THAP1 as a critical activator of *PSMB5* expression suggests that proteasome dysfunction
471 could underlie the pathogenesis of DYT-THAP1. Second, by exploiting exogenous *PSMB5*
472 expression to generate viable THAP1 knockout cells, we were able to rigorously identify
473 additional direct transcriptional targets of THAP1. However, as none of these genes are

474 currently associated with dystonia and aberrant proteostasis is a feature of many neurological
475 disorders^{63,64}, these data highlight proteasome dysfunction as a candidate pathogenic
476 mechanism underlying THAP1 dystonias.

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499 **ACKNOWLEDGEMENTS**

500 We are grateful to Gabriela Grondys-Kotarba and Reiner Schulte at the Cambridge
501 Institute for Medical Research Flow Cytometry Core Facility and to the NIHR Cambridge BRC
502 Cell Phenotyping Hub. This work was supported by an Academy of Medical Sciences
503 Springboard Grant (SBF007\100019) and an Isaac Newton Trust/Wellcome Trust
504 ISSF/University of Cambridge Joint Research Grant to R.T.T. R.T.T. is a Pemberton-Trinity
505 Fellow.

506

507

508 **AUTHOR CONTRIBUTIONS**

509 D.E.R. and R.T.T. conceived the study, and, along with D.W.G., performed the
510 experiments and analyzed the data. D.E.R. and R.T.T. wrote the manuscript.

511

512 **DATA AVAILABILITY**

513 THAP1 RNA-seq data has been deposited at GEO (GSE264536) and Illumina
514 sequencing data from the THAP1 deep mutagenic scan are available at SRA (PRJNA1102672).
515 THAP1 ChIP-seq data was obtained from GEO (GSM803408). DepMap datasets are publicly
516 available at <https://depmap.org/portal/download/all/>. Additional data and/or reagents that
517 support the findings of this study are available from the corresponding author upon reasonable
518 request.

519

520

521

522

523 **REFERENCES**

- 524 1. Rape, M. Ubiquitylation at the crossroads of development and disease. *Nature Reviews Molecular Cell Biology* 2017 **19**:1 **19**, 59–70 (2017).
- 525 2. Kwon, Y. T. & Ciechanover, A. The Ubiquitin Code in the Ubiquitin-Proteasome System and Autophagy. *Trends Biochem Sci* **42**, 873–886 (2017).
- 526 3. Popovic, D., Vucic, D. & Dikic, I. Ubiquitination in disease pathogenesis and treatment. *Nat Med* **20**, 1242–1253 (2014).
- 527 4. Murata, S., Yashiroda, H. & Tanaka, K. Molecular mechanisms of proteasome assembly. *Nature Reviews Molecular Cell Biology* 2009 **10**:2 **10**, 104–115 (2009).
- 528 5. Collins, G. A. & Goldberg, A. L. The Logic of the 26S Proteasome. *Cell* **169**, 792–806 (2017).
- 529 6. Tanaka, K. The proteasome: Overview of structure and functions. *Proc Jpn Acad Ser B Phys Biol Sci* **85**, 12 (2009).
- 530 7. Chen, P. & Hochstrasser, M. Autocatalytic subunit processing couples active site formation in the 20S proteasome to completion of assembly. *Cell* **86**, 961–972 (1996).
- 531 8. Tsherniak, A. *et al.* Defining a Cancer Dependency Map. *Cell* **170**, 564-576.e16 (2017).
- 532 9. Wainberg, M. *et al.* A genome-wide atlas of co-essential modules assigns function to uncharacterized genes. *Nature Genetics* 2021 **53**:5 **53**, 638–649 (2021).
- 533 10. McDonald, E. R. *et al.* Project DRIVE: A Compendium of Cancer Dependencies and Synthetic Lethal Relationships Uncovered by Large-Scale, Deep RNAi Screening. *Cell* **170**, 577-592.e10 (2017).
- 534 11. Wang, T. *et al.* Gene Essentiality Profiling Reveals Gene Networks and Synthetic Lethal Interactions with Oncogenic Ras. *Cell* **168**, 890-903.e15 (2017).
- 535 12. Pan, J. *et al.* Interrogation of Mammalian Protein Complex Structure, Function, and Membership Using Genome-Scale Fitness Screens. *Cell Syst* **6**, 555-568.e7 (2018).
- 536 13. Rauscher, B. *et al.* Toward an integrated map of genetic interactions in cancer cells. *Mol Syst Biol* **14**, (2018).
- 537 14. Kim, E. *et al.* A network of human functional gene interactions from knockout fitness screens in cancer cells. *Life Sci Alliance* **2**, (2019).
- 538 15. Bessière, D. *et al.* Structure-Function Analysis of the THAP Zinc Finger of THAP1, a Large C2CH DNA-binding Module Linked to Rb/E2F Pathways. *Journal of Biological Chemistry* **283**, 4352–4363 (2008).
- 539 16. Shinoda, K. *et al.* The dystonia gene THAP1 controls DNA double-strand break repair choice. *Mol Cell* **81**, 2611–2624.e10 (2021).
- 540 17. Cayrol, C. *et al.* The THAP-zinc finger protein THAP1 regulates endothelial cell proliferation through modulation of pRB/E2F cell-cycle target genes. *Blood* **109**, 584–594 (2007).
- 541 18. Yellajoshyula, D. *et al.* The DYT6 Dystonia Protein THAP1 Regulates Myelination Within The Oligodendrocyte Lineage. *Dev Cell* **42**, 52 (2017).
- 542 19. Aguiló, F. *et al.* THAP1: Role in Mouse Embryonic Stem Cell Survival and Differentiation. *Stem Cell Reports* **9**, 92 (2017).
- 543 20. Ortiz-Virumbrales, M. *et al.* Dystonia type 6 gene product Thap1: identification of a 50 kDa DNA-binding species in neuronal nuclear fractions. *Acta Neuropathol Commun* **2**, (2014).
- 544 21. Ruiz, M. *et al.* Abnormalities of motor function, transcription and cerebellar structure in mouse models of THAP1 dystonia. *Hum Mol Genet* **24**, 7159–7170 (2015).
- 545 22. Almásy, L. *et al.* Idiopathic torsion dystonia linked to chromosome 8 in two Mennonite families. *Ann Neurol* **42**, 670–673 (1997).

572 23. Lange, L. M. *et al.* Genotype–Phenotype Relations for Isolated Dystonia Genes:
573 MDSGene Systematic Review. *Movement Disorders* **36**, 1086–1103 (2021).

574 24. Rodrigo-Brenni, M. C., Gutierrez, E. & Hegde, R. S. Cytosolic Quality Control of
575 Mislocalized Proteins Requires RNF126 Recruitment to Bag6. *Mol Cell* **55**, 227
576 (2014).

577 25. Maxwell, P. H. *et al.* The tumour suppressor protein VHL targets hypoxia-inducible
578 factors for oxygen-dependent proteolysis. *Nature* **399**, 271–275 (1999).

579 26. Häammerle, M. *et al.* Proteins of Newly Isolated Mutants and the Amino-terminal
580 Proline Are Essential for Ubiquitin-Proteasome-catalyzed Catabolite Degradation of
581 Fructose-1,6-bisphosphatase of *Saccharomyces cerevisiae*. *Journal of Biological
582 Chemistry* **273**, 25000–25005 (1998).

583 27. Momand, J., Zambetti, G. P., Olson, D. C., George, D. & Levine, A. J. The mdm-2
584 oncogene product forms a complex with the p53 protein and inhibits p53-mediated
585 transactivation. *Cell* **69**, 1237–1245 (1992).

586 28. Chaikovsky, A. C. *et al.* The AMBRA1 E3 ligase adaptor regulates the stability of
587 cyclin D. *Nature* **592**, 794–798 (2021).

588 29. Maiani, E. *et al.* AMBRA1 regulates cyclin D to guard S-phase entry and genomic
589 integrity. *Nature* **2021** 592:7856 **592**, 799–803 (2021).

590 30. Simoneschi, D. *et al.* CRL4AMBRA1 is a master regulator of D-type cyclins. *Nature*
591 **592**, 789 (2021).

592 31. Eleuteri, A. M., Kohanski, R. A., Cardozo, C. & Orlowski, M. Bovine Spleen
593 Multicatalytic Proteinase Complex (Proteasome): REPLACEMENT OF X, Y, AND Z
594 SUBUNITS BY LMP7, LMP2, AND MECL1 AND CHANGES IN PROPERTIES
595 AND SPECIFICITY. *Journal of Biological Chemistry* **272**, 11824–11831 (1997).

596 32. Noda, C., Tanahashi, N., Shimbara, N., Hendil, K. B. & Tanaka, K. Tissue
597 Distribution of Constitutive Proteasomes, Immunoproteasomes, and PA28 in Rats.
598 *Biochem Biophys Res Commun* **277**, 348–354 (2000).

599 33. Bajar, B. T. *et al.* Improving brightness and photostability of green and red fluorescent
600 proteins for live cell imaging and FRET reporting. *Scientific Reports* **2016** 6:1 **6**, 1–12
601 (2016).

602 34. Dunham, I. *et al.* An Integrated Encyclopedia of DNA Elements in the Human
603 Genome. *Nature* **489**, 57 (2012).

604 35. Marzo, M., Liu, D., Ruiz, A. & Chalmers, R. Identification of multiple binding sites
605 for the THAP domain of the Galileo transposase in the long terminal inverted-repeats.
606 *Gene* **525**, 84-89 (2013).

607 36. Li, X., Li, Y., Arendt, C. S. & Hochstrasser, M. Distinct Elements in the Proteasomal 5
608 Subunit Propeptide Required for Autocatalytic Processing and Proteasome Assembly
609 *. *Journal of Biological Chemistry* **291**, 1991-2003 (2016).

610 37. Budenholzer, L., Cheng, C. L., Li, Y. & Hochstrasser, M. Proteasome Structure and
611 Assembly. *J Mol Biol* **429**, 3500 (2017).

612 38. Shi, C. X. *et al.* Proteasome subunits differentially control Myeloma cell viability and
613 proteasome inhibitor sensitivity. *Mol Cancer Res* **18**, 1453 (2020).

614 39. Yen, H. C. S., Xu, Q., Chou, D. M., Zhao, Z. & Elledge, S. J. Global protein stability
615 profiling in mammalian cells. *Science* (1979) **322**, 918–923 (2008).

616 40. Salceda, S. & Caro, J. Hypoxia-inducible Factor 1 α (HIF-1 α) Protein Is Rapidly
617 Degraded by the Ubiquitin-Proteasome System under Normoxic Conditions: ITS
618 STABILIZATION BY HYPOXIA DEPENDS ON REDOX-INDUCED CHANGES.
619 *Journal of Biological Chemistry* **272**, 22642–22647 (1997).

620 41. Domingo, A. *et al.* Dystonia-specific mutations in THAP1 alter transcription of genes
621 associated with neurodevelopment and myelin. *The American Journal of Human*
622 *Genetics* **108**, 2145–2158 (2021).

623 42. Yellajoshyula, D. *et al.* A pathogenic DYT-THAP1 dystonia mutation causes
624 hypomyelination and loss of YY1 binding. *Hum Mol Genet* **31**, 1096–1104 (2022).

625 43. Zeng, C., Huang, W., Li, Y. & Weng, H. Roles of METTL3 in cancer: Mechanisms
626 and therapeutic targeting. *J Hematol Oncol* **13**, 1–15 (2020).

627 44. Bressman, S. B. *et al.* Mutations in THAP1 (DYT6) in early-onset dystonia: a genetic
628 screening study. *Lancet Neurol* **8**, 441–446 (2009).

629 45. Fuchs, T. *et al.* Mutations in the THAP1 gene are responsible for DYT6 primary
630 torsion dystonia. *Nature Genetics* **2009** *41*:3 **41**, 286–288 (2009).

631 46. Houlden, H. *et al.* THAP1 mutations (DYT6) are an additional cause of early-onset
632 dystonia. *Neurology* **74**, 846 (2010).

633 47. Söhn, A. S. *et al.* Prevalence of THAP1 sequence variants in German patients with
634 primary dystonia. *Movement Disorders* **25**, 1982–1986 (2010).

635 48. Xiao, J. *et al.* Novel THAP1 sequence variants in primary dystonia. *Neurology* **74**,
636 229–238 (2010).

637 49. LeDoux, M. S. *et al.* Genotype–phenotype correlations in THAP1 dystonia: Molecular
638 foundations and description of new cases. *Parkinsonism Relat Disord* **18**, 414–425
639 (2012).

640 50. Lohmann, K. *et al.* Identification and functional analysis of novel THAP1 mutations.
641 *European Journal of Human Genetics* **2012** *20*:2 **20**, 171–175 (2011).

642 51. Mazars, R. *et al.* The THAP-Zinc Finger Protein THAP1 Associates with Coactivator
643 HCF-1 and O-GlcNAc Transferase: A LINK BETWEEN DYT6 AND DYT3
644 DYSTONIAS*. *J Biol Chem* **285**, 13364 (2010).

645 52. Dohmen, R. J., Willers, I. & Marques, A. J. Biting the hand that feeds: Rpn4-
646 dependent feedback regulation of proteasome function. *Biochim Biophys Acta* **1773**,
647 1599–1604 (2007).

648 53. Xie, Y. & Varshavsky, A. RPN4 is a ligand, substrate, and transcriptional regulator of
649 the 26S proteasome: a negative feedback circuit. *Proc Natl Acad Sci U S A* **98**, 3056–
650 3061 (2001).

651 54. Radhakrishnan, S. K. *et al.* Transcription factor Nrf1 mediates the proteasome
652 recovery pathway after proteasome inhibition in mammalian cells. *Mol Cell* **38**, 17–28
653 (2010).

654 55. Steffen, J., Seeger, M., Koch, A. & Krüger, E. Proteasomal degradation is
655 transcriptionally controlled by TCF11 via an ERAD-dependent feedback loop. *Mol*
656 *Cell* **40**, 147–158 (2010).

657 56. Vilchez, D. *et al.* FOXO4 is necessary for neural differentiation of human embryonic
658 stem cells. *Aging Cell* **12**, 518 (2013).

659 57. Vangala, J. R., Dudem, S., Jain, N. & Kalivendi, S. V. Regulation of PSMB5 Protein
660 and β Subunits of Mammalian Proteasome by Constitutively Activated Signal
661 Transducer and Activator of Transcription 3 (STAT3): POTENTIAL ROLE IN
662 BORTEZOMIB-MEDIATED ANTICANCER THERAPY *. *Journal of Biological*
663 *Chemistry* **289**, 12612–12622 (2014).

664 58. Xu, H. *et al.* The CCAAT box-binding transcription factor NF-Y regulates basal
665 expression of human proteasome genes. *Biochimica et Biophysica Acta (BBA) -*
666 *Molecular Cell Research* **1823**, 818–825 (2012).

667 59. Chapiro, J. *et al.* Destructive cleavage of antigenic peptides either by the
668 immunoproteasome or by the standard proteasome results in differential antigen
669 presentation. *J Immunol* **176**, 1053–1061 (2006).

670 60. Kincaid, E. Z. *et al.* Mice completely lacking immunoproteasomes show major
671 changes in antigen presentation. *Nature Immunology* 2011 13:2 **13**, 129–135 (2011).

672 61. Murata, S., Takahama, Y., Kasahara, M. & Tanaka, K. The immunoproteasome and
673 thymoproteasome: functions, evolution and human disease. *Nature Immunology* 2018
674 19:9 **19**, 923–931 (2018).

675 62. Cheng, F. *et al.* DYT6 mutated THAP1 is a cell type dependent regulator of the SP1
676 family. *Brain* **145**, 3968–3984 (2022).

677 63. Wilson, D. M. *et al.* Hallmarks of neurodegenerative diseases. *Cell* **186**, 693–714
678 (2023).

679 64. Tseng, C. S., Chao, Y. W., Liu, Y. H., Huang, Y. S. & Chao, H. W. Dysregulated
680 proteostasis network in neuronal diseases. *Front Cell Dev Biol* **11**, (2023).

681 65. Sanson, K. R. *et al.* Optimized libraries for CRISPR-Cas9 genetic screens with
682 multiple modalities. *Nature Communications* 2018 9:1 **9**, 1–15 (2018).

683 66. Clouaire, T. *et al.* The THAP domain of THAP1 is a large C2CH module with zinc-
684 dependent sequence-specific DNA-binding activity. *Proc Natl Acad Sci U S A* **102**,
685 6907–6912 (2005).

686 67. Timms, R. T. *et al.* A glycine-specific N-degron pathway mediates the quality control
687 of protein N-myristoylation. *Science* **365**, (2019).

688 68. Koren, I. *et al.* The Eukaryotic Proteome Is Shaped by E3 Ubiquitin Ligases Targeting
689 C-Terminal Degrons. *Cell* **173**, 1622–1635.e14 (2018).

690 69. Raudvere, U. *et al.* g:Profiler: a web server for functional enrichment analysis and
691 conversions of gene lists (2019 update). *Nucleic Acids Res* **47**, W191–W198 (2019).

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706 **MATERIALS & METHODS**

707 **Cell culture.** HEK-293T, HeLa and A549 cells were grown in Dulbecco's Modified
708 Eagle's Medium (DMEM, Merck #D6429); Jurkat and THP-1 cells were grown in Roswell
709 Park Memorial Institute Medium (RPMI, Merck #R8758). Both were supplemented with 10%
710 fetal bovine serum (ThermoFisher Scientific, #A5256701) plus penicillin and streptomycin
711 (ThermoFisher Scientific, #15140122) and incubated at 37°C plus 5% CO₂. All cells were
712 routinely checked for mycoplasma contamination.

713

714 **Antibodies.** Primary antibodies used in this study were: rabbit anti-THAP1
715 (Proteintech, #12584-1-AP), mouse anti-V5 tag (Abcam, #AB27671), rabbit anti-PSMB5
716 (Enzo Life Sciences, #BML-PW8895), mouse anti-PSMB6 (Enzo Life Sciences, #BML-
717 PW8140), mouse anti-PSMB7 (Enzo Life Sciences, #BML-PW8145), mouse anti-HIF-1 α
718 (BD, #610959), mouse anti-Vinculin (Sigma, #V9131) and mouse anti- β -actin (Sigma,
719 #A2228). HRP-conjugated donkey anti-mouse IgG and donkey anti-rabbit IgG secondary
720 antibodies were obtained from Jackson ImmunoResearch.

721

722 **Plasmids.** Proteasome 20S core particle β -subunits were exogenously expressed from
723 the pHRSIN-PsFFV-GFP-WPRE-P_{PGK}-Blast^R/Hygro^R lentiviral vectors (a gift from Paul
724 Lehner), with constructs cloned in place of GFP via the Gibson assembly method using the
725 NEBuilder HiFi Cloning Kit (NEB, #E5520S). GPS lentiviral vectors encoding the N-terminus
726 of PTGS1 and the C-terminus of TNNC2 fused to GFP were gifts from Stephen Elledge.
727 CRISPR sgRNA sequences were selected from the Brunello genome-wide library⁶⁵ and
728 synthesized as top and bottom strand oligonucleotides (IDT). Oligos were phosphorylated (T4
729 PNK; NEB #M0201), annealed by heating to 95°C followed by slow cooling to room
730 temperature, and then inserted (T4 ligase; NEB #M0202) into lentiCRISPRv2 (Addgene

731 #52961). shRNAs were cloned in an analogous manner into the pHR-SIREN-P_{U6}-shRNA-
732 WPRE-P_{PGK}-Puro lentiviral vector (a gift from Paul Lehner) using the BamHI and EcoRI sites.
733 Top strand oligonucleotide sequences used were:

734 sg1-Control (targets FOXP1 intron): caccgTGGGAACAGGATGAGGAAGG
735 sg2-Control (targets ATP1A1 intron): caccGATGGCAAGAAGGAAGCAG
736 sg1-THAP1: caccgCTGCAAGAACCGCTACGACA
737 sg2-THAP1: caccGAAAATGAGAGATTAAACAG
738 sg3-THAP1: caccgCTGTGACCACAACTATACTG
739 shControl:gattcGTTATAGGCTCGCAAAAGGTTCAAGAGACCTTTGCGAGCC
740 TATAACTTTTg
741 shPSMB5:gattcCAATGTCGAATCTATGAGCTTCTCGAGAAGCTCATAGATT
742 GACATTGTTTTg
743

744 **Lentivirus production.** Lentiviral stocks were generated through the transfection of
745 HEK-293T cells with the specific lentiviral vector plus a mix of packaging plasmids encoding
746 Gag-Pol, Rev, Tat and VSV-G. HEK-293T cells seeded at 70-90% confluence were transfected
747 using PolyJet *In Vitro* DNA Transfection Reagent (SigmaGen Laboratories, #SL100688)
748 according to the manufacturer protocol. The media was replaced 24 hours post-transfection and
749 the viral supernatant was collected at 48 hours post-transfection, centrifuged at 800 x g for 5
750 minutes to remove cellular debris, and either applied immediately to target cells or stored at -
751 80°C in single-use aliquots.

752
753 **CRISPR/Cas9-mediated gene knock-in.** A four-fragment Gibson assembly reaction
754 was used to generate the homology donor vector. 5' and 3' homology arms (~1 kb) were
755 amplified from genomic DNA, and were assembled together with a fragment encoding

756 mClover3 followed by a 2A peptide and a pUC plasmid digested with PciI (NEB, #R0655) and
757 SbfI (NEB, #R3642). The resulting plasmid was transfected into HEK-239T cells along with a
758 PX459 (Addgene #48139, kindly deposited by Feng Zhang) plasmid encoding Cas9 and an
759 sgRNA (CTTTCTGCCACACTAGACA) targeting the start of the PSMB5 coding sequence.
760 Transfected cells were selected with puromycin for 48 h commencing 24 h post-transfection.
761 Two weeks later, cells that remained GFP⁺ were single cell cloned by FACS.

762

763 **Flow cytometry and FACS.** Analysis of cells by flow cytometry was performed using
764 either an LSR-II or Fortessa instrument (BD Biosciences), collecting a minimum of 10,000
765 cells per sample. All flow cytometry data were collected through FACSDiva software and
766 subsequently analyzed using FlowJo. Cell sorting was carried out using an Influx instrument
767 (BD Biosciences).

768

769 **Immunoblotting.** Cells were lysed in 1% SDS plus 1:200 Benzonase (Merck, #E1014)
770 for 20 minutes at room temperature. Following the addition of Laemmli buffer (Bio-Rad, #161-
771 0747), lysates were heated to 70°C for 10 minutes. Proteins were separated by SDS-PAGE
772 using 4-12% Bis-Tris gels (Merck, #MP41G12) and transferred onto an activated PVDF
773 membrane (Merck, #IPFL00010). Membranes were blocked for a minimum of 30 min in 5%
774 Skim Milk Powder (Merck, #70166) in PBS + 0.1% Tween-20 (PBS-T) (Merck, #P1379).
775 Membranes were incubated with primary antibodies overnight at 4°C, washed at least three
776 times in PBS-T, and then incubated with HRP-conjugated secondary antibodies for 40 minutes
777 at room temperature. Following a further five washes in PBS-T, reactive bands were visualized
778 using SuperSignal West Detection Reagents (ThermoFisher Scientific, #32106, #34580 and
779 #34076) and images collected on a ChemiDoc Imaging System (Bio-Rad). Raw images were
780 processed using GNU Image Manipulation Platform (GIMP) version 2.10.34.

781

782 **Imaging.** HEK-293T cells were imaged on a Zeiss Primovert Inverted Phase Contrast
783 Microscope Ph1/0.3 at 10x magnification using the NexYZ 3-axis Universal Smartphone
784 Adapter (Celestron).

785

786 **qRT-PCR.** Total RNA was extracted from ~1 million cells using the RNeasy Mini Kit
787 (Qiagen, #74104) with QIAshredder Mini Spin Columns (Qiagen, #79656) as per the
788 manufacturer's protocol, including on-column DNaseI digestion using the RNase-Free DNase
789 Set (Qiagen, #79254). Reverse transcription was performed with 1 µg of RNA using one-step
790 reaction using LunaScript RT SuperMix Kit (NEB, #E3010) as indicated by the manufacturer.
791 For subsequent analysis by qPCR, 1 µl of cDNA template, 0.5 µl of each primer (10 µM) and
792 12.5 µl Luna Universal Probe qPCR Master Mix (NEB, M3004) were mixed in a final volume
793 of 25 µl; thermocycling was performed on a QuantStudio 7 Flex Real-Time PCR system
794 (ThermoFisher Scientific). Relative expression was quantified using the $\Delta\Delta Ct$ method relative
795 to RPS18; data are expressed as mean \pm standard deviation and *P* values calculated using a
796 one-tailed unpaired t-test. All qPCR amplicons were verified using agarose gel electrophoresis.
797 Primer sequences are listed in **Table S4**.

798

799 **RNA-seq.** RNA extracted as above was sent to Azenta for strand-specific polyA⁺
800 Illumina library preparation and sequencing. Raw sequence reads were trimmed of adaptor
801 sequence using Cutadapt (version 4.1), aligned using HISAT2 (version 2.2.1) to the human
802 genome (GRCh38 genome_tran index), and further analyzed using SeqMonk (version 1.48.1).

803

804 **Deep mutational scan.** The THAP1 coding sequence was divided into six segments
805 for mutagenesis (encompassing residues 2-37, 38-73, 74-109, 110-145, 146-181 and 182-213).

806 Using pKLV2-P_{EF1α}-THAP1-P_{PGK}-Puro-2A-BFP-WPRE as the starting point, six vectors were
807 generated in which ‘stuffer’ regions flanked by BbsI restriction sites replaced the sequence
808 encoding each segment. An oligonucleotide pool encoding the mutant alleles was synthesized
809 by Twist Bioscience: for each segment, each amino acid was systematically exchanged to all
810 20 possible amino acids. Each of the six mutant segments were amplified from the
811 oligonucleotide pool by PCR (Q5, NEB #M0491L), gel purified (QIAEX II Gel Extraction Kit,
812 Qiagen #20021), and then cloned into their respective ‘stuffer’ vector cut with BbsI (NEB,
813 #R3539S) using the Gibson assembly method (NEB, #E5520S). The reaction products were
814 electroporated into DH10 β cells (ThermoFisher Scientific, #18290015) and grown on LB
815 plates with ampicillin overnight at 30°C; the next morning, plasmid DNA was extracted
816 (GenElute HP Plasmid Midiprep Kit, Merck #NA0200-1KT) from all of the *E. coli* and verified
817 by Sanger sequencing (Azenata).

818

819 The six mutant pools were combined into three for screening (1-2, 3-4 and 5-6). These
820 were packaged into lentiviral particles and, in duplicate, introduced into GFP^{dim} THAP1 KO
821 P_{PSMB5}-GFP reporter cells at a multiplicity of infection of ~0.3 (~30% BFP⁺ cells). Five days
822 post-transduction, the BFP⁺ cells were partitioned into GFP^{dim} (THAP1 inactive) and GFP^{bright}
823 (THAP1 active) populations by FACS. Genomic DNA was extracted from the sorted cells
824 (Genta Puregene Cell Kit, Qiagen #158767) and the exogenous THAP1 sequences in each
825 sample amplified by PCR (Q5, NEB #M0493L), using primers annealing to invariant regions
826 flanking each mutagenized segment. PCR products were purified using a spin column
827 (QIAquick PCR Purification Kit, Qiagen #28104), and then used as a template for a second
828 PCR reaction using primers to add the Illumina adaptors and indexes. Products were purified
829 using a spin column, quantified using a Nanodrop spectrophotometer, and mixed evenly; the
830 final pool was purified from a 2% agarose gel (QIAEX II Gel Extraction Kit, Qiagen #20021).

831 All steps were performed at sufficient scale so as to maintain at least 200-fold representation
832 of the library. Sequencing was performed on an Illumina NovaSeq 6000 instrument using 150
833 bp paired-end reads. Count tables quantifying the abundance of each mutant in each sorting bin
834 were generated by trimming the raw sequence reads of constant flanking sequence using
835 Cutadapt (version 4.1) and aligning them to a reference index using Bowtie 2 (version 2.4.5).

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856 **FIGURE LEGENDS**

857

858 **Figure 1 | Transcriptional regulation of PSMB5 by THAP1 explains their co-essential**
859 **relationship.**

860 **(A-C)** Co-essential relationships involving UPS genes predict biological relationships, as
861 exemplified by three E3 ligase complexes: the BAG6 complex (A), Cul2^{VHL} (B) and the CTLH
862 complex (C). Network diagrams were produced using NetworkX; numbers annotating the
863 edges indicate pairwise correlation coefficients as calculated in⁹.

864 **(D-F)** *THAP1* exhibits a strong positive co-essential relationship with both *PSMB5* and *PSMB6*
865 across DepMap data.

866 **(G-H)** *THAP1* disruption is toxic in HEK-293T cells. Cells were transduced with a lentiviral
867 vector expressing Cas9 and the indicated sgRNAs, followed by puromycin selection to
868 eliminate untransduced cells commencing 48 hours later. A further 48 hours later, cells were
869 counted, plated in equal numbers, and their viability assessed by counting (G) and brightfield
870 microscopy (H). (Scale bar = 100 μ m)

871 **(I-J)** Ablation of *THAP1* decreases PSMB5 expression. HEK-293T expressing Cas9 and the
872 indicated sgRNAs were analyzed by qRT-PCR (I) and immunoblot (J). (*P < 0.05, t-test; ns,
873 not significant)

874

875

876

877

878

879

880 **Figure 2 | Lethality resulting from THAP1 loss can be rescued by exogenous expression**
881 **of PSMB5.**

882 **(A)** Exogenous expression of PSMB5 rescues cell viability upon *THAP1* ablation. HEK-293T
883 cells were first transduced with lentiviral vectors expressing either PSMB5 or PSMB6; then,
884 following transduction with Cas9 and the indicated sgRNAs, cell numbers were monitored over
885 time.

886 **(B)** Loss of THAP1 is broadly toxic across cell types. CRISPR/Cas9-mediated ablation of
887 *THAP1* adversely affects the viability of 946/1100 cancer cell lines (blue dots, representing
888 effect scores < -0.25) examined by DepMap.

889 **(C-D)** The toxicity associated with *THAP1* ablation is rescued by exogenous PSMB5
890 expression in HeLa cells (C) and A549 cells (D).

891 **(E-H)** Like PSMB5, expression of PSMB8 also protects against the toxic effects of THAP1
892 loss. THP-1 cells do not exhibit any substantial growth defect following *THAP1* ablation (E).
893 High levels of PSMB8 expression are observed in the cell lines whose growth is not
894 significantly affected by *THAP1* loss (orange dots, representing effect scores >-0.25) in
895 DepMap data (F), and THP-1 cells strongly express PSMB8 as assessed by qRT-PCR (G).
896 Exogenous expression of PSMB8 can rescue the viability of HEK-293T cells following *THAP1*
897 disruption (H).

898

899

900

901

902

903

904

905 **Figure 3 | A fluorescent reporter measures endogenous PSMB5 expression in live cells.**

906 **(A-C)** CRISPR/Cas9-mediated knock-in of GFP into the endogenous PSMB5 locus. A
907 schematic representation of the procedure is shown in (A). Transfection of HEK-293T cells
908 with Cas9, an sgRNA targeting PSMB5 and a donor template resulted in ~10% GFP-positive
909 cells (B), which were purified by FACS and single cell cloned (C).

910 **(D-G)** THAP1 ablation reduces PSMB5 expression. CRISPR/Cas9-mediated disruption of
911 *THAP1* in a P_{PSMB5}-GFP reporter clone (expressing exogenous PSMB5 to ensure viability)
912 reduced P_{PSMB5}-GFP expression (D), permitting the derivation of GFP^{dim} THAP1 KO clones
913 (E). These THAP1 KO clones exhibited greatly reduced expression of PSMB5 by qRT-PCR
914 (using primers annealing to the 3'UTR to ensure selective amplification of the endogenous
915 transcripts) (F), and an absence of THAP1 protein by immunoblot (a non-specific band is
916 indicated by an asterisk) (G). (**P < 0.001, t-test; ns, not significant)

917

918

919

920

921

922

923

924

925

926

927

928

929 **Figure 4 | THAP1 binds cognate motifs within the *PSMB5* promoter to regulate its**
930 **expression.**

931 (A) THAP1 binds the *PSMB5* promoter. THAP1 ChIP-seq data in K562 cells³⁴ reveals an
932 intense peak representing THAP1 occupancy at the *PSMB5* transcription start site (TSS) (top).
933 PSMD8 is the only other proteasome subunit at which concordant binding of THAP1 is
934 observed (bottom).

935 (B) Consensus THAP1 binding site (THABS) motif (adapted from⁶⁶).

936 (C) Schematic representation of the three consensus THABS motifs located near the *PSMB5*
937 TSS.

938 (D-F) THAP1 targets cognate sites in the *PSMB5* promoter to activate gene expression. (D)
939 Schematic representation of a lentiviral reporter system in which ~1 kb of the *PSMB5* promoter
940 drives the expression of GFP. Removal of the three THABS motifs (“ΔTHABS”) reduced GFP
941 expression (E); this effect was mediated through THAP1, as *THAP1* ablation decreased GFP
942 expression driven by the wild-type promoter but not the ΔTHABS promoter (F).

943

944

945

946

947

948

949

950

951

952

953

954 **Figure 5 | PSMB5 insufficiency resulting from THAP1 loss impairs proteasome function.**

955 **(A)** The catalytic activity of PSMB5 is required to rescue viability upon THAP1 loss.

956 Exogenous expression of wild-type PSMB5, but not a catalytically-inactive mutant, restored

957 the viability of HEK-293T cells following *THAP1* ablation.

958 **(B)** Loss of THAP1 impairs proteasome assembly. *THAP1* ablation decreases the abundance

959 of mature, processed PSMB6 and PSMB7 as assessed by immunoblot, but leads to the

960 accumulation of the uncleaved proproteins (indicated with asterisks).

961 **(C-E)** THAP1 impairs the proteasomal degradation of short-lived proteins. **(C)** Schematic

962 representation of the lentiviral Global Protein Stability (GPS) two-color fluorescent reporter

963 system to monitor protein stability. **(D)** Stabilization of two model GFP-degron fusion proteins

964 upon ablation of *THAP1*, as assessed by flow cytometry; the N-terminal peptide derived from

965 PTGS1 harbors an N-terminal degron targeted by UBR-family E3 ligases⁶⁷, while the C-

966 terminal peptide derived from TNNC2 harbors a C-terminal degron targeted by Cul4^{DCAF12}⁶⁸.

967 **(E)** Increased abundance of endogenous HIF-1 α upon THAP1 disruption, as assayed by

968 immunoblot.

969

970

971

972

973

974

975

976

977

978

979 **Figure 6 | Defining the transcriptional targets of THAP1.**

980 **(A)** Schematic representation of the RNA-seq experiment.

981 **(B-C)** Identifying the transcriptional targets of THAP1. A summary of the RNA-seq dataset is
982 shown in (B): genes exhibiting differential expression between sgControl and sgTHAP1 cells
983 (n = 277) are highlighted in yellow, with the subset of those genes that display THAP1
984 occupancy as assessed by ChIP-seq (n = 42) colored red. Expression changes amongst all
985 differentially expressed genes are summarized in (C), with circles representing genes bound by
986 THAP1.

987 **(D)** Consensus binding sites for YY1 (purple) and THAP1 (red) are enriched amongst the
988 promoters of the 42 direct THAP1 target genes. Bubble size is proportional to the number of
989 the gene promoters containing the binding site. See also Fig. S4C.

990 **(E-I)** Validation of THAP1 target genes. Five target genes directly activated by THAP1
991 binding are shown: ChIP-seq data indicating THAP1 occupancy is shown on the left; the RNA-
992 seq expression data is summarized in the center, and qRT-PCR validation is shown on the right.
993 (**P < 0.001, t-test)

994

995

996

997

998

999

1000

1001

1002

1003

1004 **Figure 7 | A deep mutational scan defines the functional landscape of THAP1 mutations.**

1005 **(A)** Schematic representation of the domain architecture of the THAP1 protein.

1006 **(B)** Schematic representation of the deep mutational scan, designed to interrogate the ability of
1007 all possible single amino acid variants of THAP1 to activate expression of the endogenous
1008 P_{PSMB5}-GFP knock-in allele.

1009 **(C)** Site-saturation mutagenesis reveals critical residues for THAP1 function. Each cell
1010 represents the performance of a single THAP1 mutant: the mean performance of all the wild-
1011 type proteins is centered at 1 (light gray), with red colors indicating mutants which abrogate
1012 activation of the P_{PSMB5}-GFP reporter and blue colors indicating mutants which may enhance
1013 the activation of the P_{PSMB5}-GFP reporter. Dark gray cells indicate mutants for which
1014 insufficient data was available for analysis.

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028 **Figure 8 | Determining the functional effects of THAP1 mutations found in Dystonia**
1029 **patients.**

1030 **(A-B)** The deep mutational scan successfully identifies THAP1 residues critical for DNA
1031 binding. **(A)** Performance of all THAP1 variants targeting zinc-chelating residues of the zinc
1032 finger domain. Bars indicate the mean of two replicate experiments. Constructs which encode
1033 the wild-type protein are indicated in bold; the mean activity exhibited across all the wild-type
1034 THAP1 constructs is set at 1 (dotted line). **(B)** Distribution of activity scores across all the
1035 THAP1 variants targeting residues previously determined¹⁵ to be important for DNA binding
1036 by THAP1.

1037 **(C-F)** Defining structure-function relationships for THAP1. Mean activity scores from the
1038 genetic screen were mapped onto the predicted structure of THAP1 (C) or the experimental
1039 structure of the THAP1 zinc finger domain¹⁵ (D). Overall, residues predicted to lie in ordered
1040 regions of the protein (AlphaFold pLDDT > 60) were much less tolerant of mutations than
1041 residues predicted to lie in disordered regions (E). Individual validation of the screen results
1042 was performed using flow cytometry: deletion of the coiled-coil and HCFC1-binding motif
1043 abrogated THAP1 function, whereas deletion of the disordered C-terminus did not (F).

1044 **(G-H)** Profiling the activity of THAP1 mutations found in Dystonia patients. **(G)** Performance
1045 of all missense variants identified in Dystonia patients, displayed as in (A). **(H)** Individual
1046 validation experiments measuring the activity of THAP1 mutants predicted to be inactive (top
1047 row) and THAP1 mutants predicted to be active (bottom row) by flow cytometry. See also Fig.
1048 S5C-E.

1049
1050
1051
1052

1053 **SUPPLEMENTARY FIGURE LEGENDS**

1054

1055 **Supplementary Figure 1 | Co-essentiality analysis defines functional relationships**
1056 **amongst UPS genes.**

1057 (A) Co-essential relationships involving UPS genes reflect functional relationships. The table
1058 illustrates the strongest pairwise relationships involving at least one gene known to function as
1059 part of the UPS, based on previous analysis of DepMap data⁹. The co-essential relationship
1060 between PSMB5 and THAP1 (highlighted in green) represents the most significant
1061 unexplained relationship across this dataset.

1062 (B-C) Negative co-essential relationships highlight known E3 ligase-substrate pairs, including
1063 p53 which is targeted by MDM2²⁷ (B) and cyclin D which is degraded by Cul4^{AMBRA1} 28-30 (C).

1064

1065 **Supplementary Figure 2 | Validation of HEK-293T cell lines.**

1066 (A-C) Validation of exogenous expression of proteasome subunits. Lentiviral expression of
1067 PSMB5 (A), PSMB6 (B) and PSMB8 (C) was validated by qRT-PCR.

1068 (D) Validation of P_{PSMB5}-GFP reporter clones by PCR from genomic DNA.

1069 (E) P_{PSMB5}-GFP reporter cells faithfully monitor PSMB5 expression. A P_{PSMB5}-GFP knock-in
1070 clone was transduced with two shRNAs targeting PSMB5 and P_{PSMB5}-GFP expression was
1071 measured by flow cytometry.

1072 (F) Genomic characterization of THAP1 KO clone #1. PCR amplification of the sgRNA target
1073 site from genomic DNA followed by TOPO cloning and Sanger sequencing revealed three
1074 mutated THAP1 alleles.

1075

1076

1077

1078 **Supplementary Figure 3 | THAP1 acts through a cognate site in the PSMB5 promoter.**

1079 **(A)** Schematic depiction of the gating process to assess GFP expression from the reporter
1080 vector. Following transduction with the P_{PSMB5}-GFP lentiviral reporter vector at single copy,
1081 GFP⁺ cells were gated for downstream analysis.

1082 **(B-C)** THAP1 activates the PSMB5 promoter through binding to THABS site 2. Deletion of
1083 THABS2, but not THABS1 or THABS3, reduced expression from P_{PSMB5}-GFP lentiviral
1084 reporter (B); furthermore, THAP1 disruption decreased expression from the ΔTHABS1 and
1085 ΔTHABS3 vectors, but did not further decrease expression from the ΔTHABS2 vector (C).

1086

1087 **Supplementary Figure 4 | Analysis of THAP1 target genes identified by RNA-seq
1088 analysis.**

1089 **(A-B)** Transcriptional downregulation of PSMB5 upon loss of THAP1. Owing to the necessity
1090 to overexpress PSMB5 to maintain the viability of THAP1 knockout cells, PSMB5 was not
1091 identified as a differentially expressed gene by RNA-seq analysis; however, reads mapping to
1092 intronic sequences (which are not present in the exogenous PSMB5 expression construct) show
1093 that endogenous PSMB5 expression was markedly reduced in THAP1 knockout cells. Raw
1094 sequence reads are shown in (A) and quantified in (B).

1095 **(C)** Transcription factor binding sites enriched in the promoters of THAP1 target genes.
1096 Analysis using g:Profiler⁶⁹ identified significant enrichment for the indicated motifs; the
1097 presence of the motif in the promoter of the direct THAP1 targets genes is indicated by the
1098 green cells.

1099

1100

1101

1102

1103 **Supplementary Figure 5 | A deep mutagenic scan defines the functional impact of THAP1**
1104 **mutations found in Dystonia patients.**

1105 (A) Genetic complementation of THAP1 knockout cells. A THAP1 knockout P_{PSMB5}-GFP
1106 reporter clone was transduced with a lentiviral vector expressing either wild-type or mutant
1107 (C5A, which disrupts zinc coordination by the THAP-type zinc finger) THAP1, and restoration
1108 of PSMB5 reporter expression assayed by flow cytometry.

1109 (B) Assessing concordance between replicate experiments. The THAP1 scan was performed
1110 in duplicate: scatterplots compare the activity of each individual THAP1 mutant construct (blue
1111 dots) between the two replicates.

1112 (C) Validation of the scan results. Individual validation by flow cytometry for three additional
1113 THAP1 mutants is shown, all of which the screen suggests should be inactive.

1114 (D-E) Validation of the expression of a panel of inactive mutants. For seven inactive mutants,
1115 we generated constructs appending a C-terminal V5 epitope tag to allow detection by
1116 immunoblot. Following single-copy transduction of HEK-293T cells (~10% BFP⁺) in each
1117 case (D), protein abundance was assessed by immunoblot (E). With the exception of the C5A
1118 and P26R mutants, all were expressed at approximately the same level as the wild-type protein.

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128 **SUPPLEMENTARY TABLE LEGENDS**

1129

1130 **Supplementary Table 1 | THAP1 ChIP-seq peaks.** THAP1 ChIP-seq data from the
1131 ENCODE project was obtained from GSM803408. Peaks were identified using the
1132 implementation of the MACS peak caller in SeqMonk, using a P-value cutoff of 10^{-16} and a
1133 fragment size of 150 bp.

1134

1135 **Supplementary Table 2 | Effect of THAP1 loss on the transcriptome as assessed by RNA-
1136 seq.**

1137

1138 **Supplementary Table 3 | A deep mutational scan of THAP1.**

1139

1140 **Supplementary Table 4 | Primer sequences.**

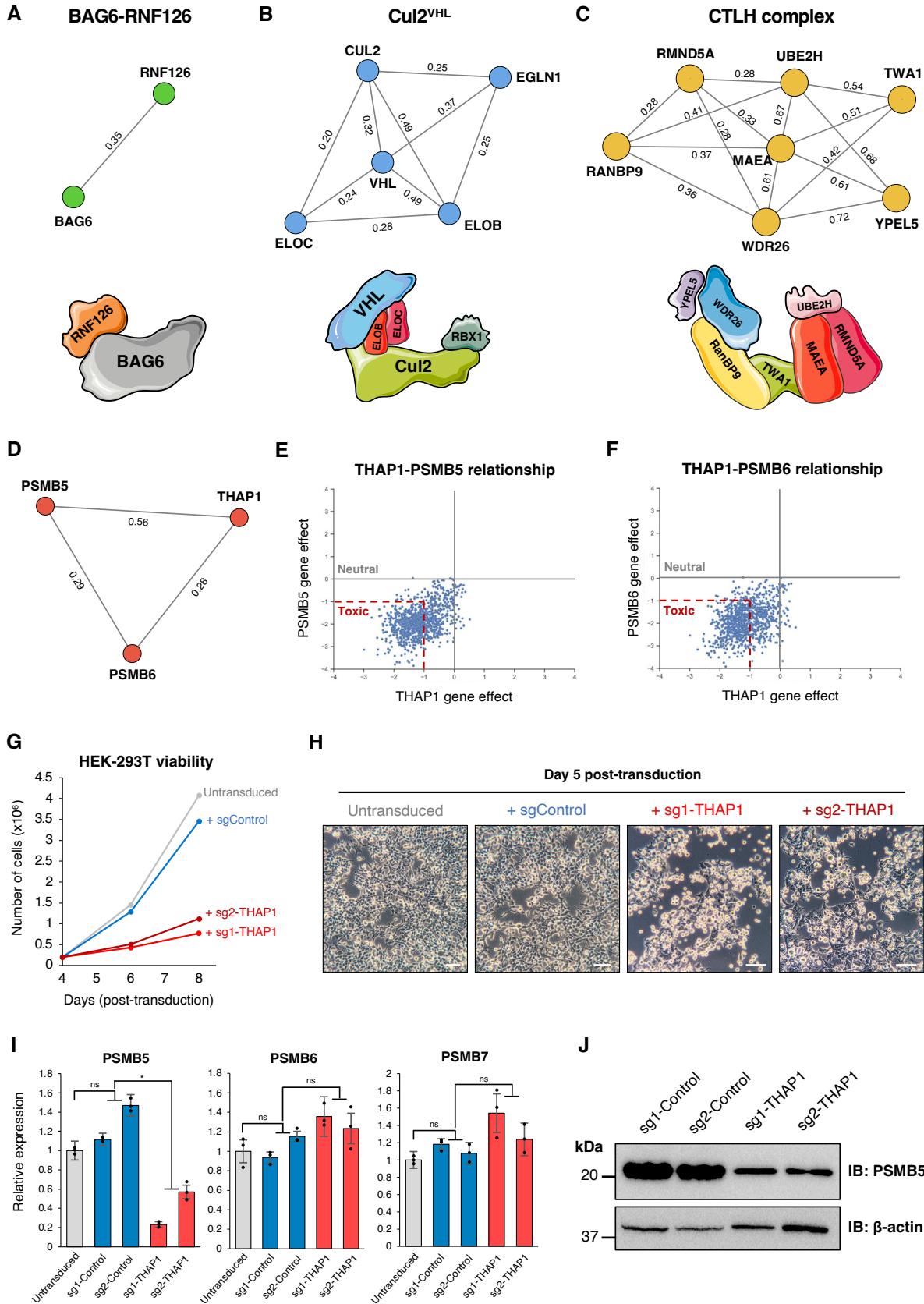
1141

1142

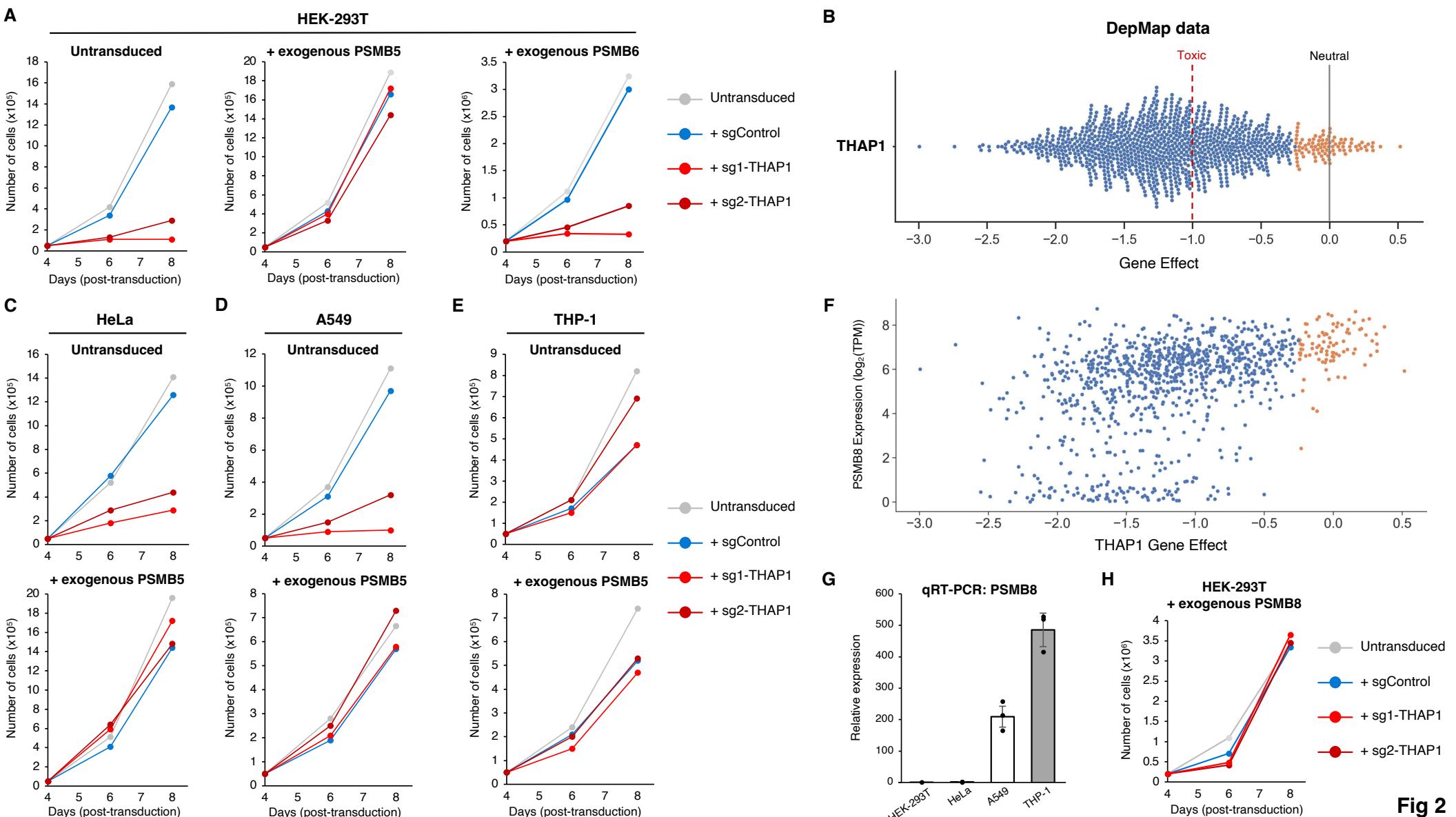
1143

1144

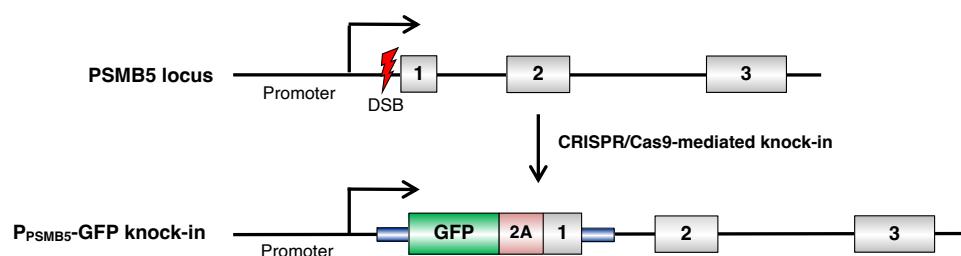
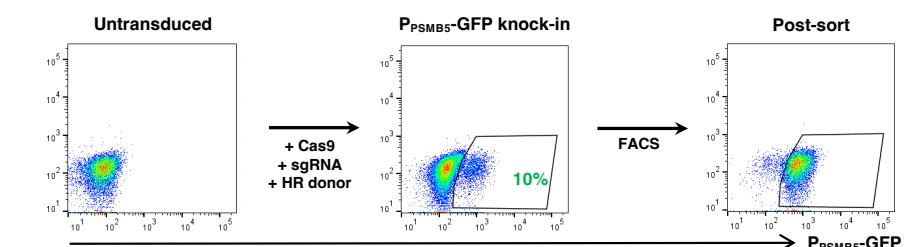
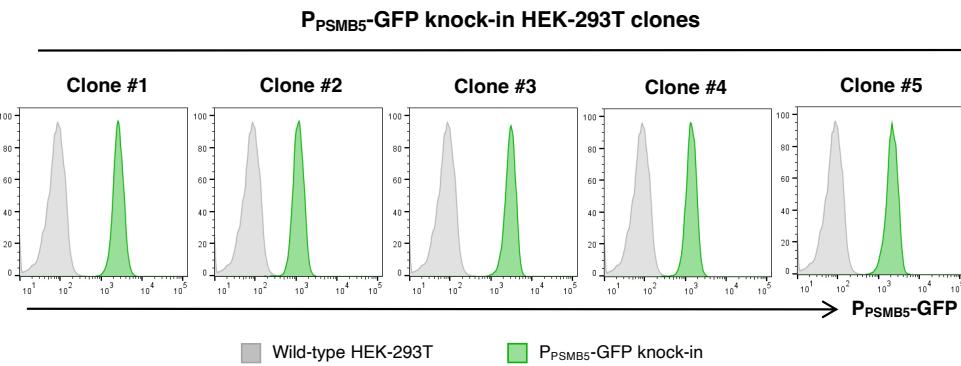
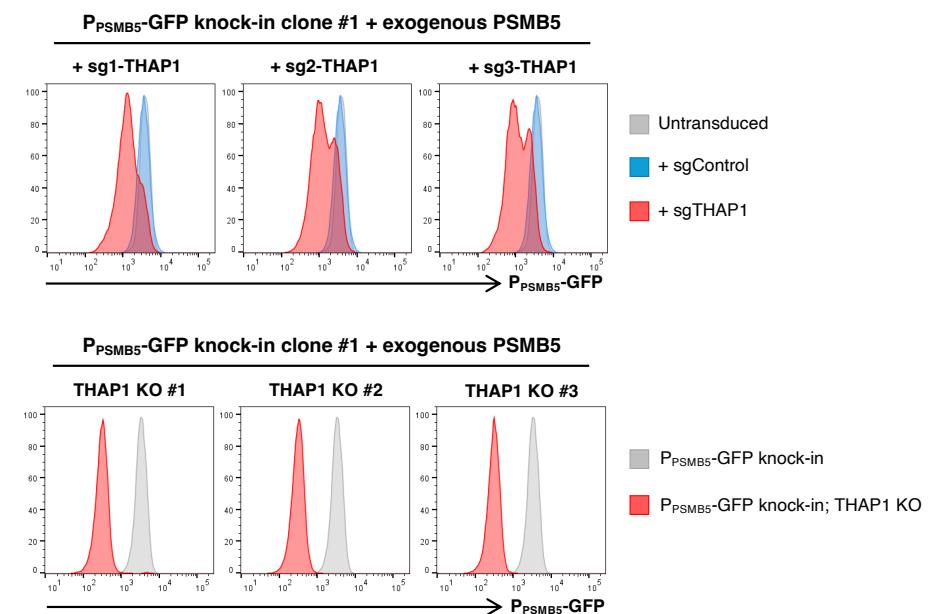
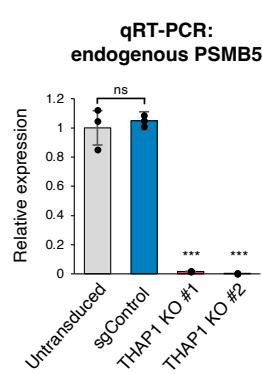
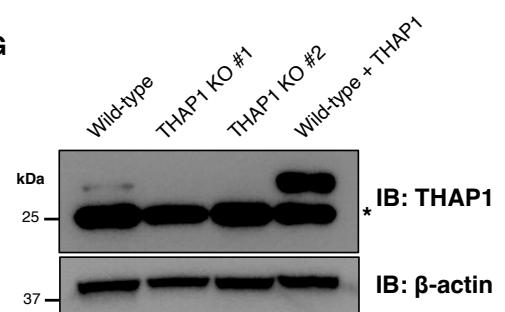
1145

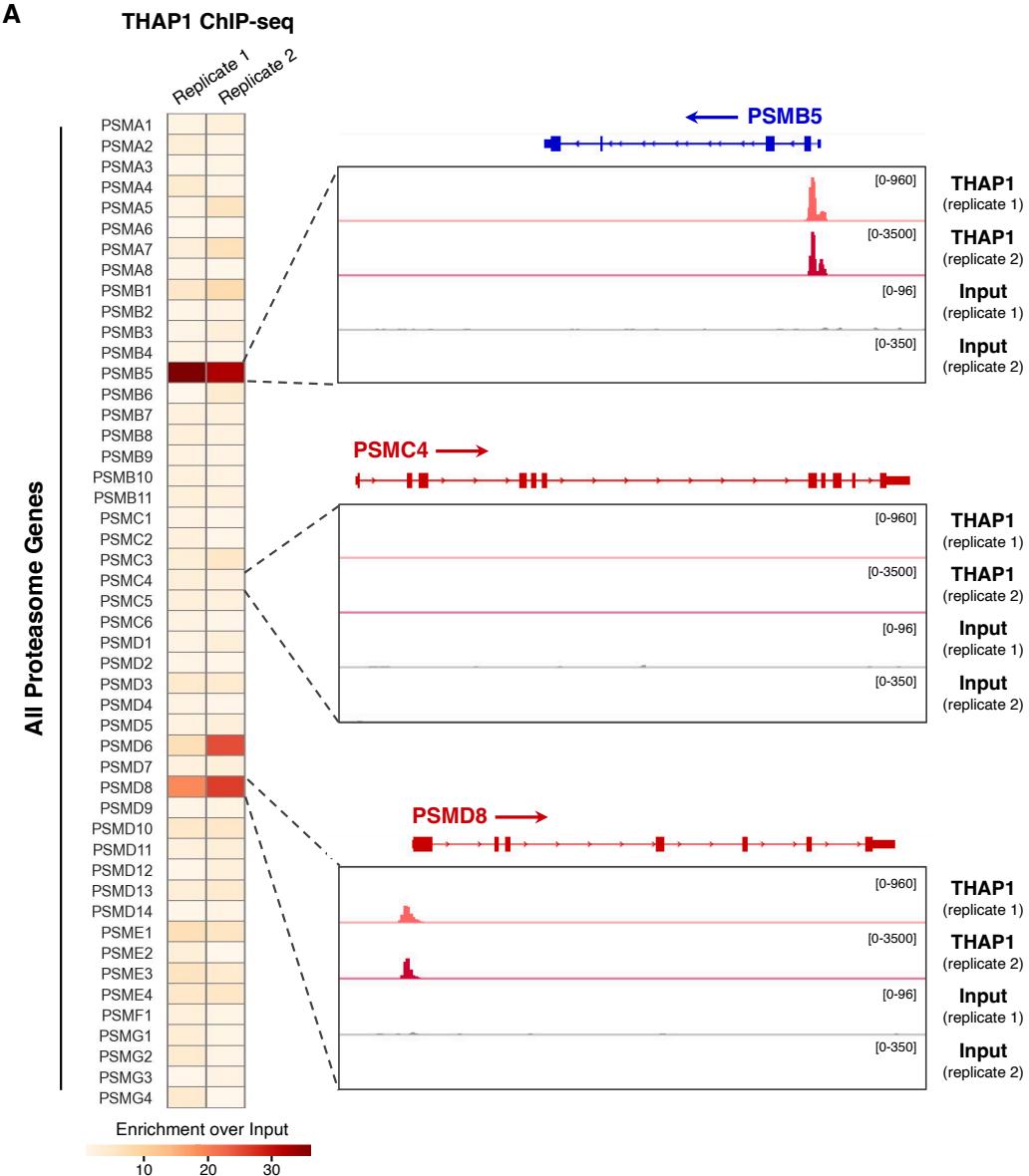
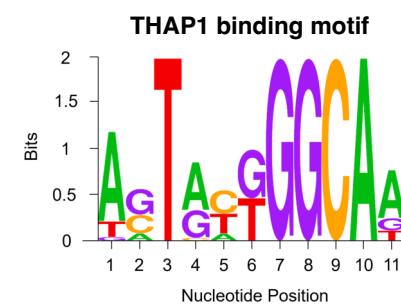
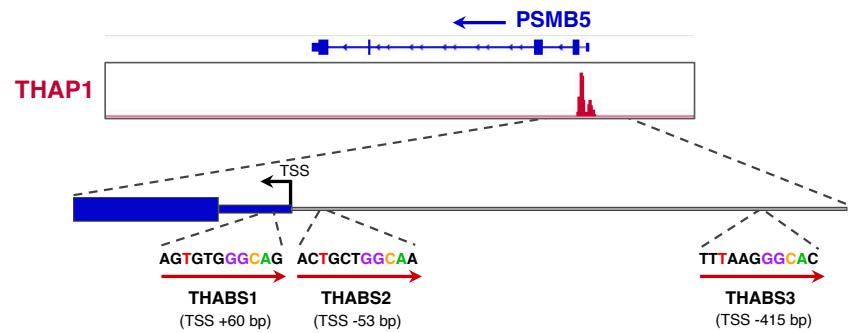
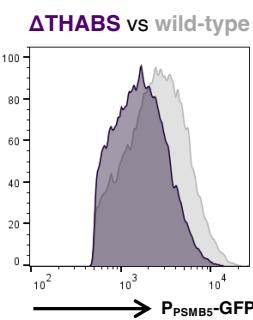
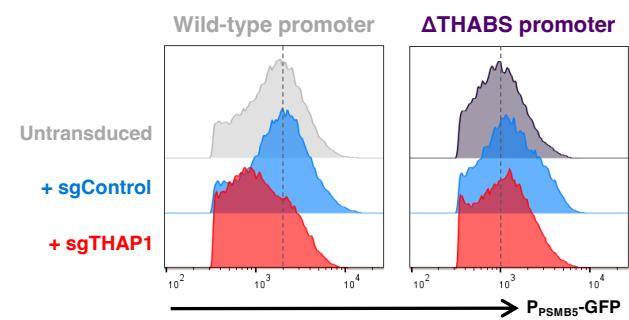

1146

1147


1148

1149







1150

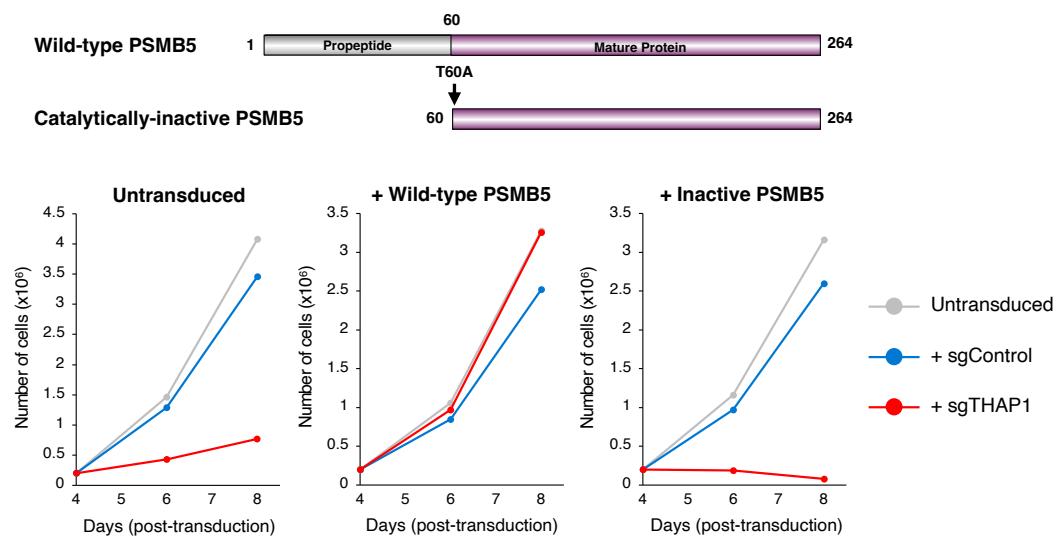
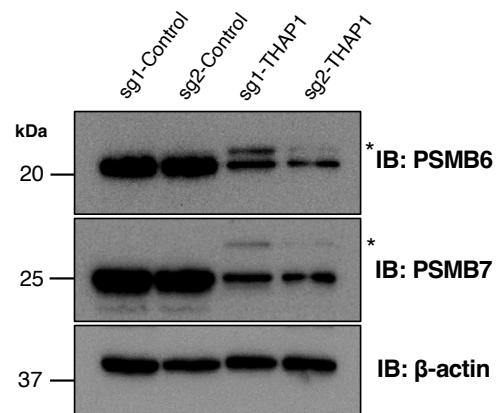
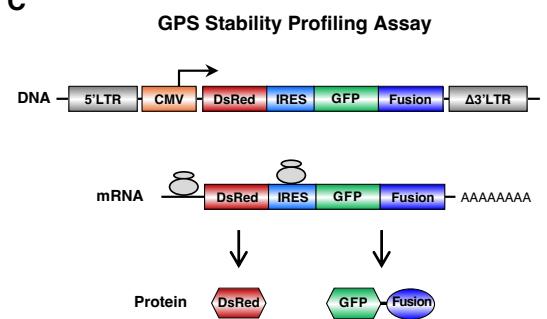
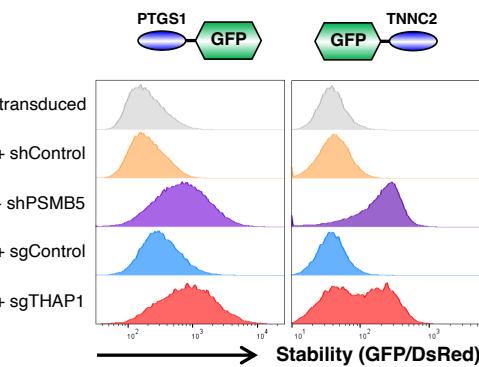
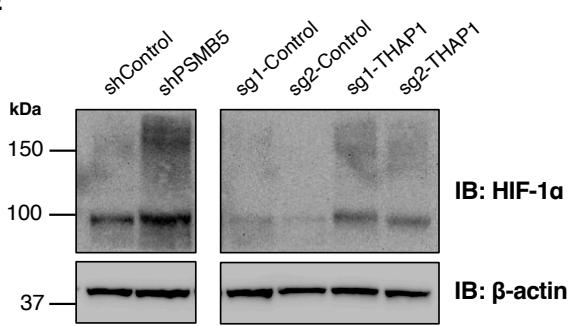





Fig 1

Fig 2

A**B****C****D****F****G****Fig 3**

A**B****C****D****E****F****Fig 4**

A**B****C****D****E****Fig 5**

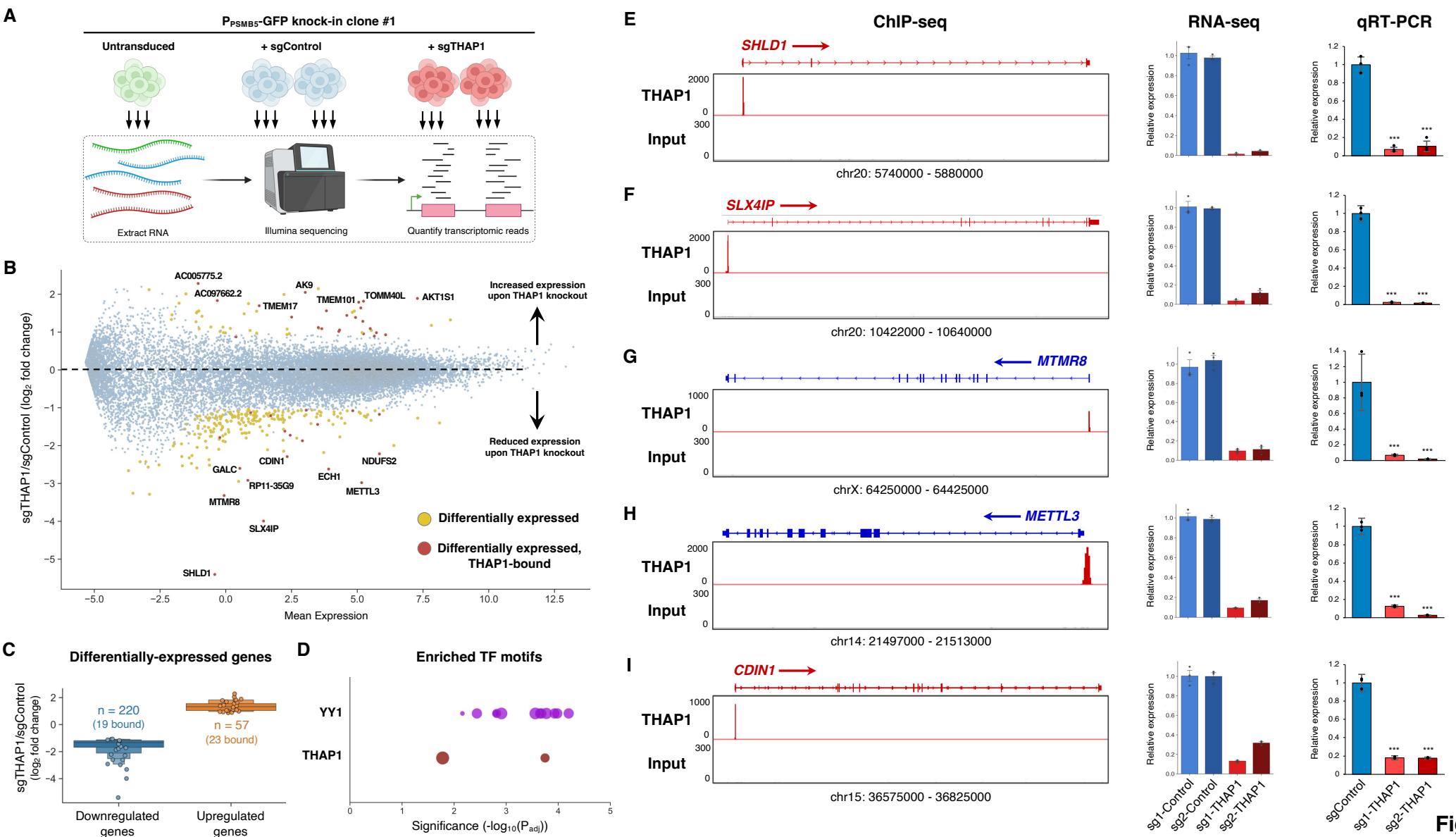
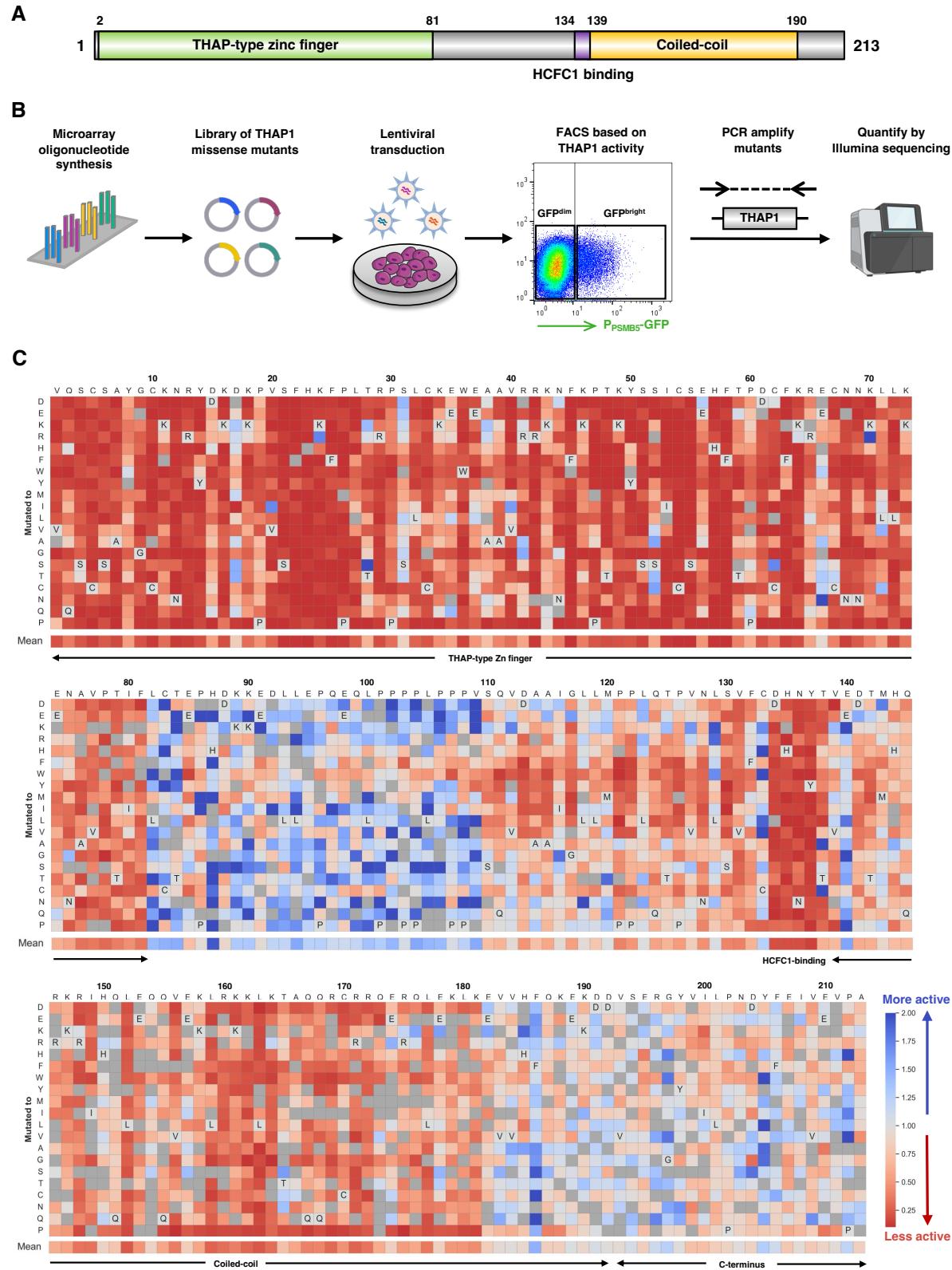
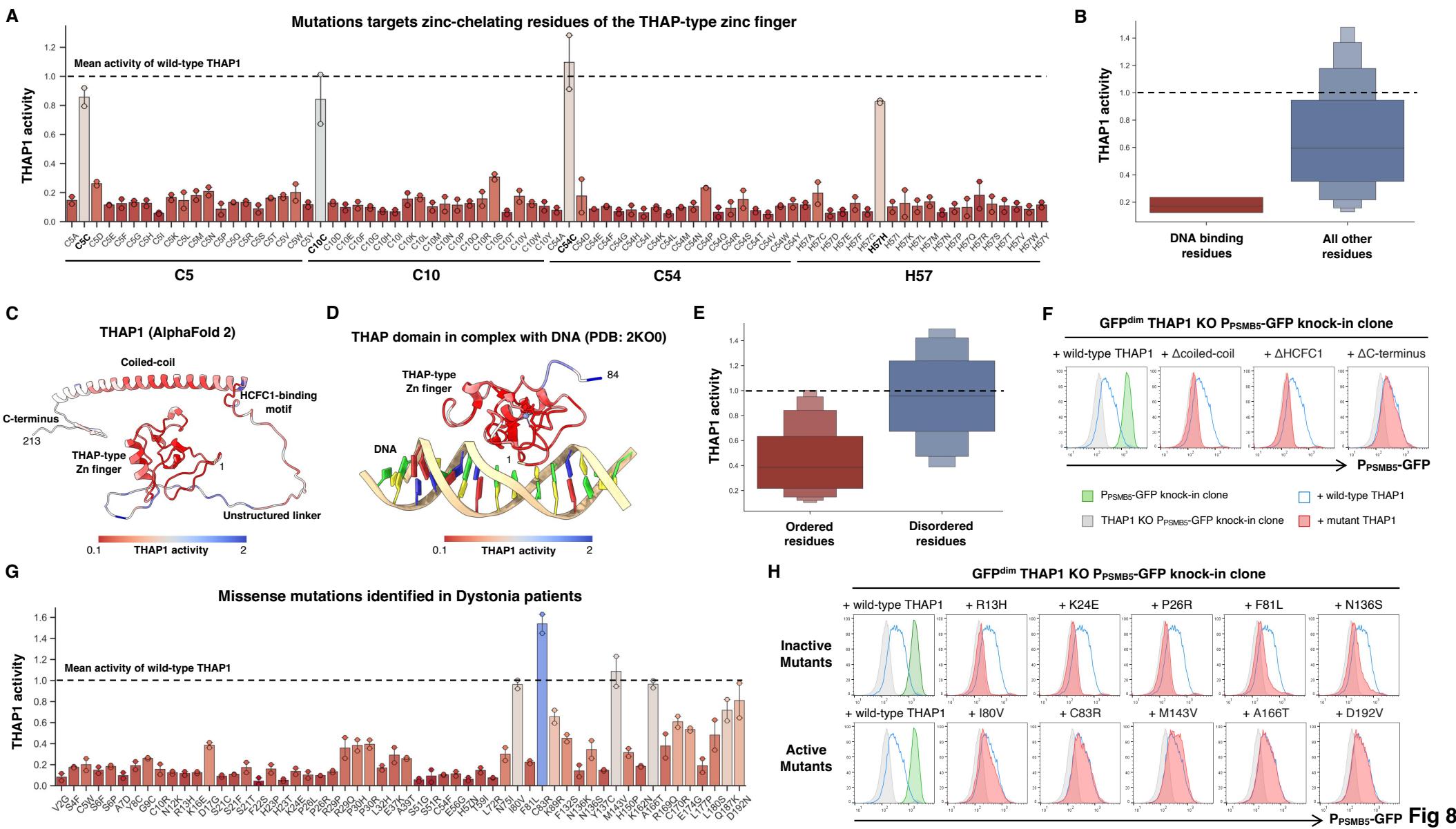




Fig 6

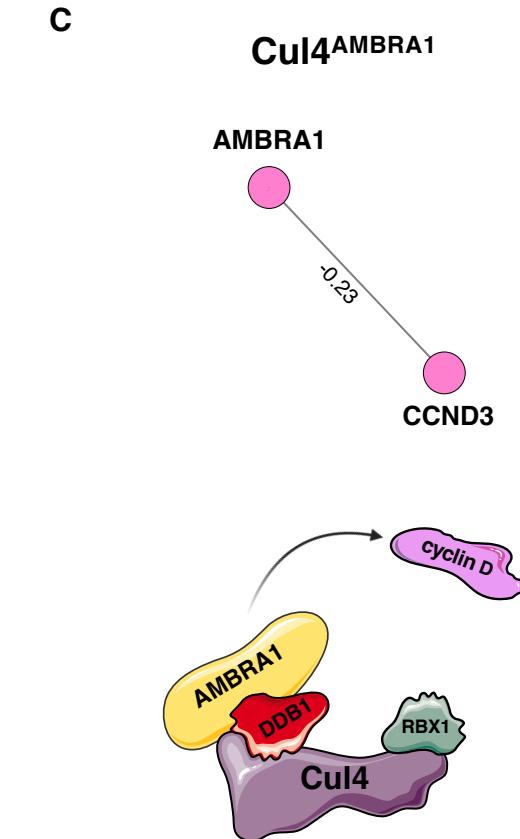
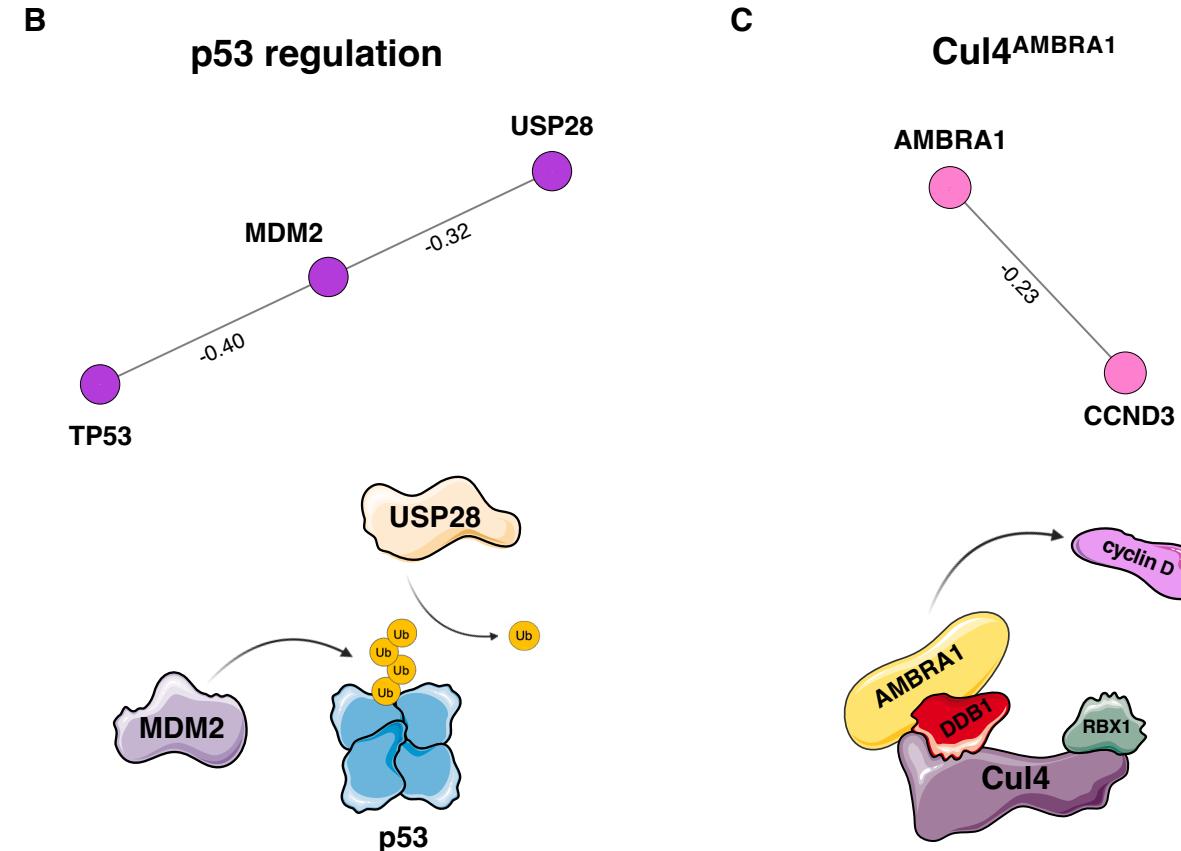
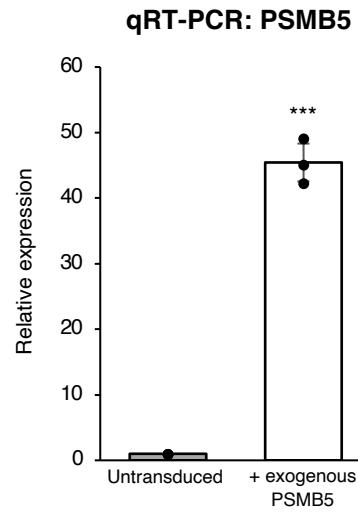
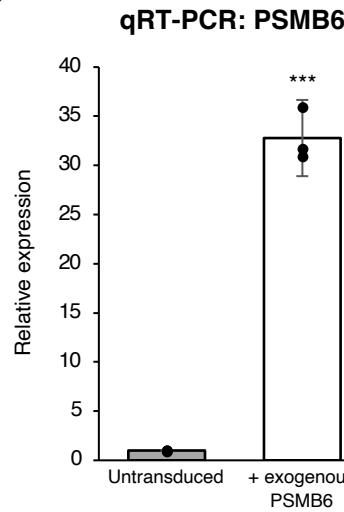
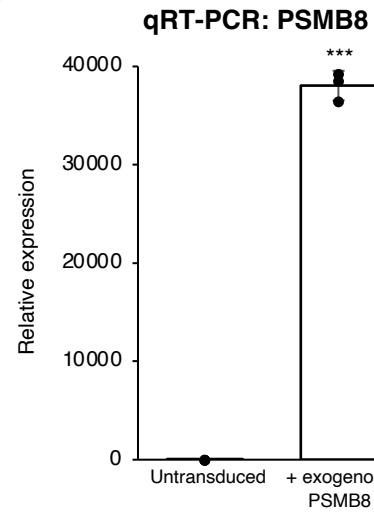
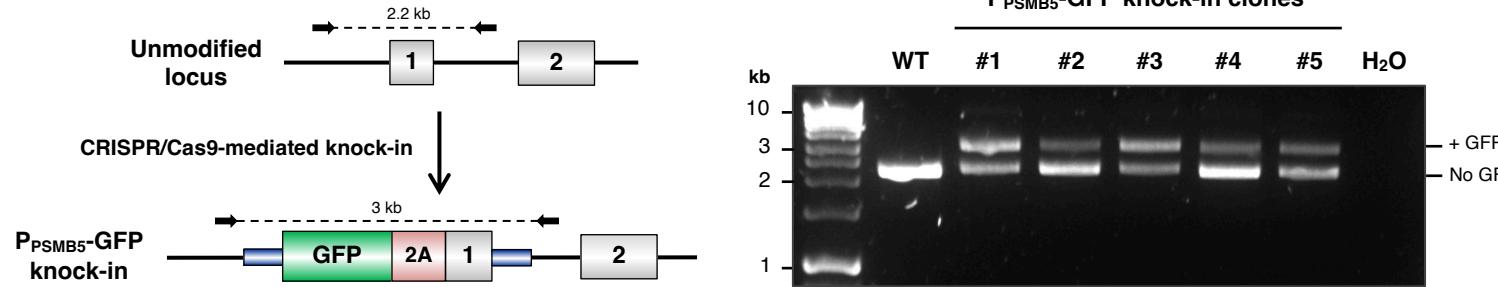
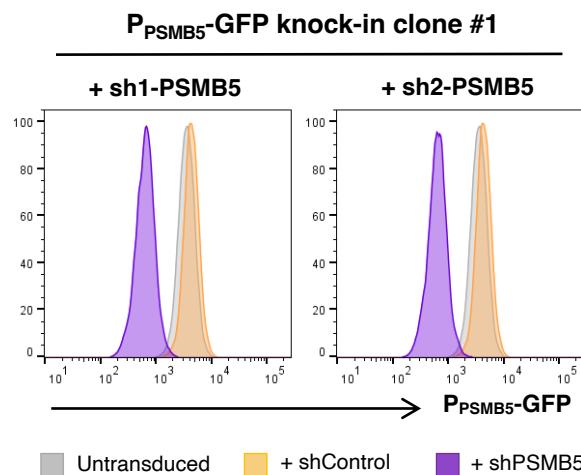
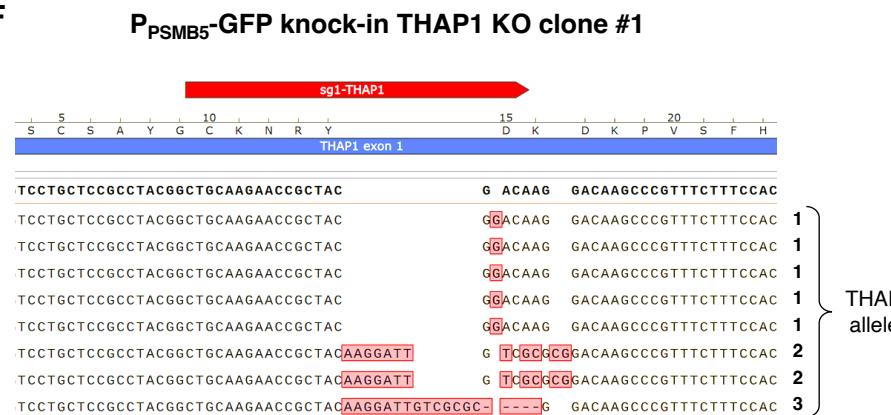
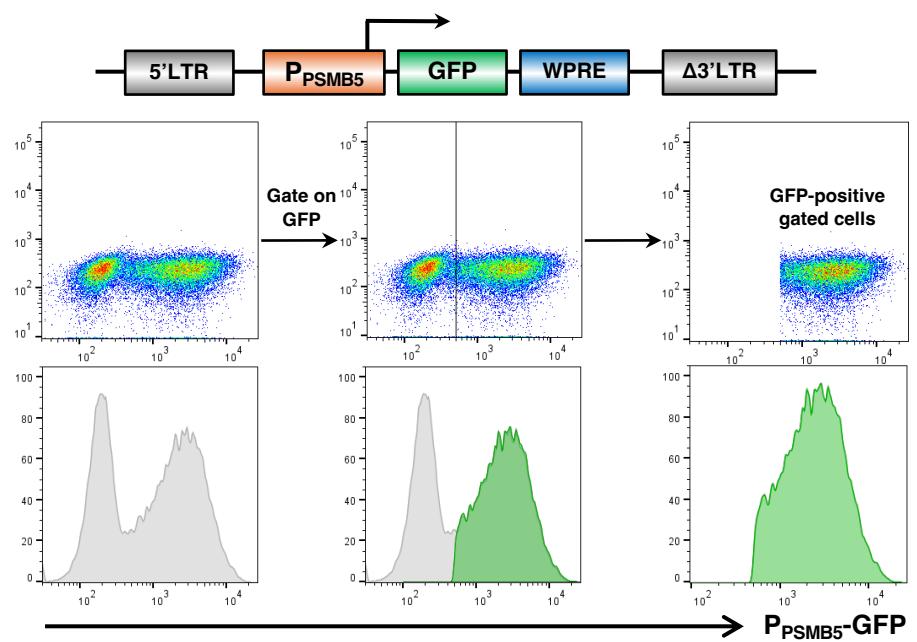
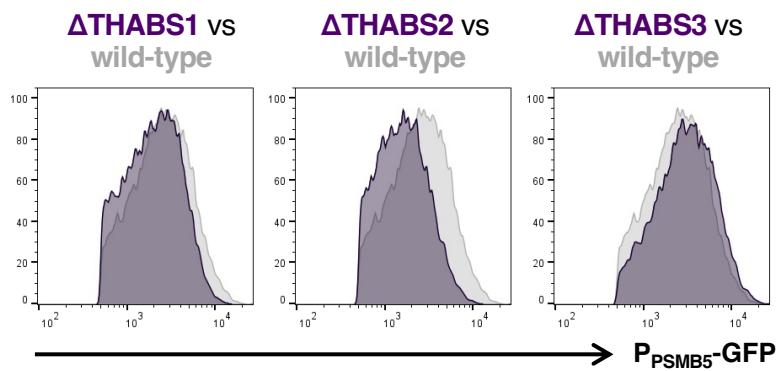
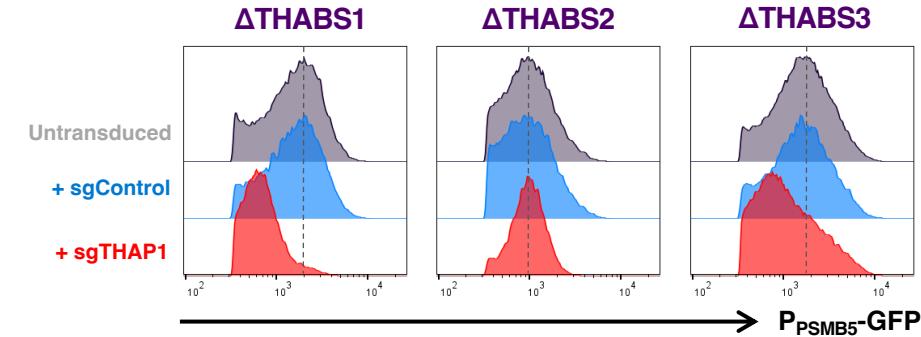



Fig 7




A

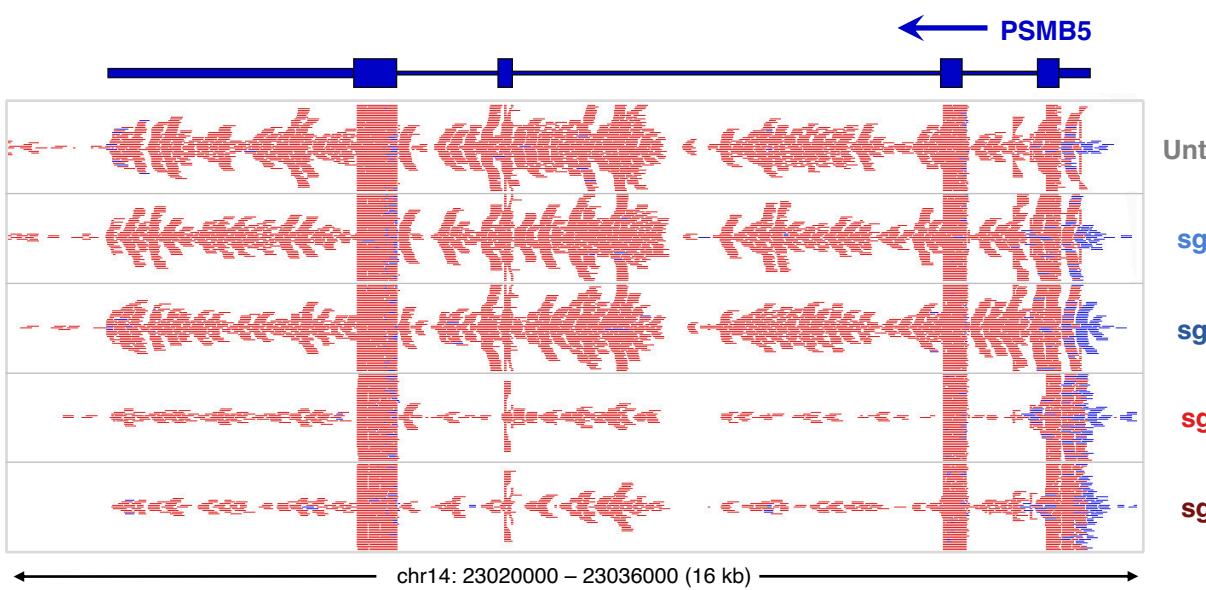
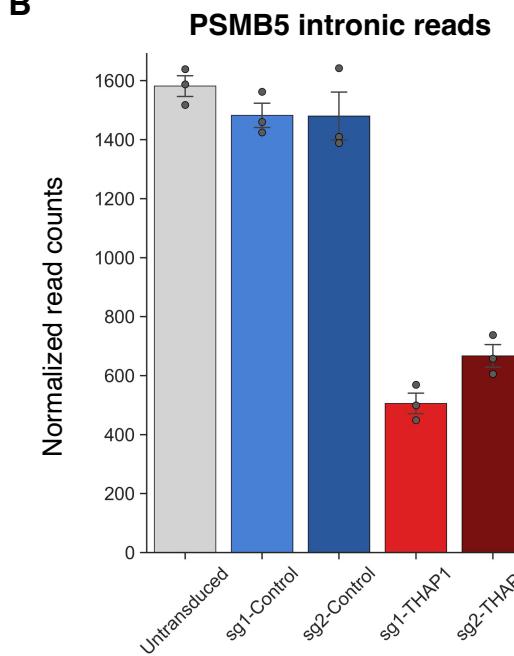
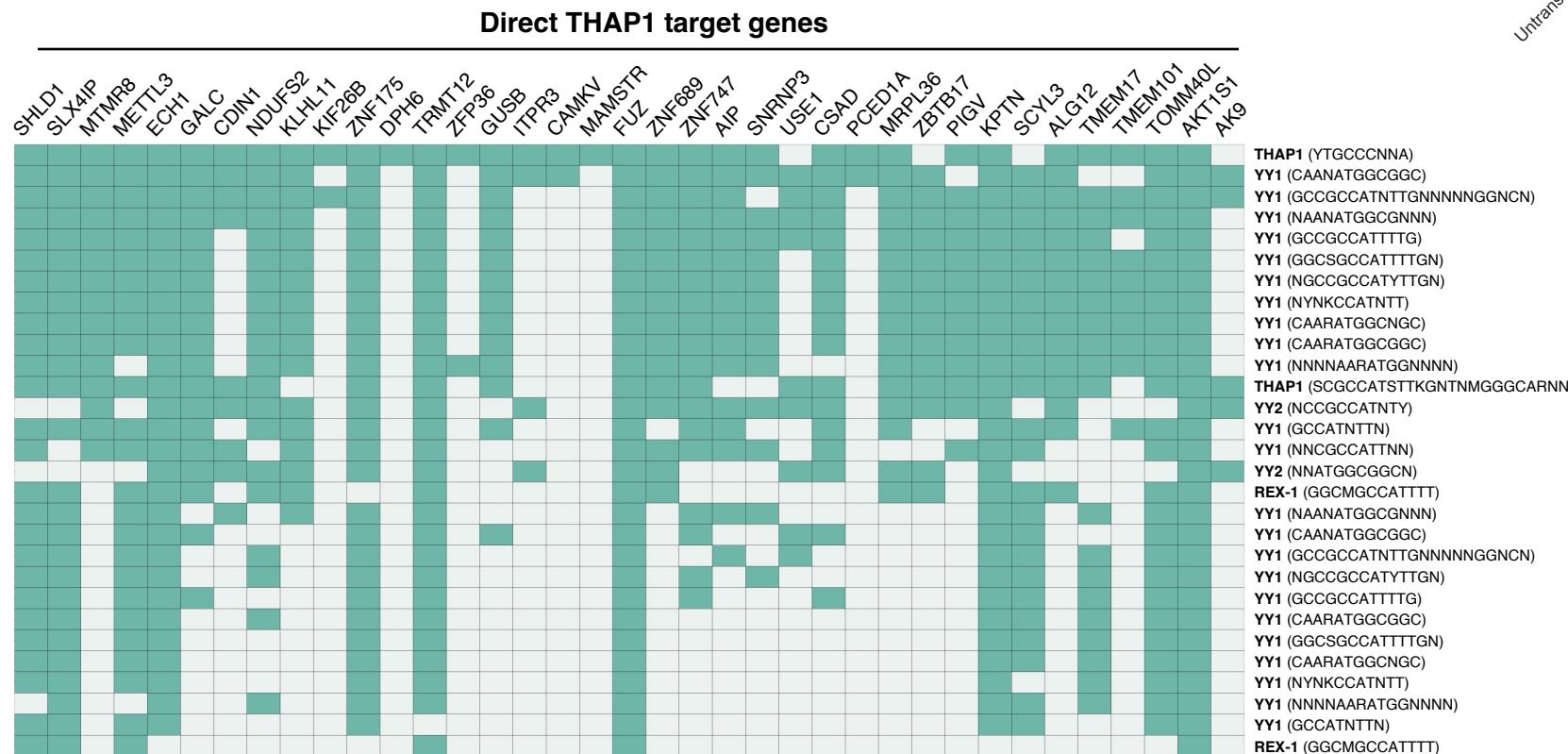
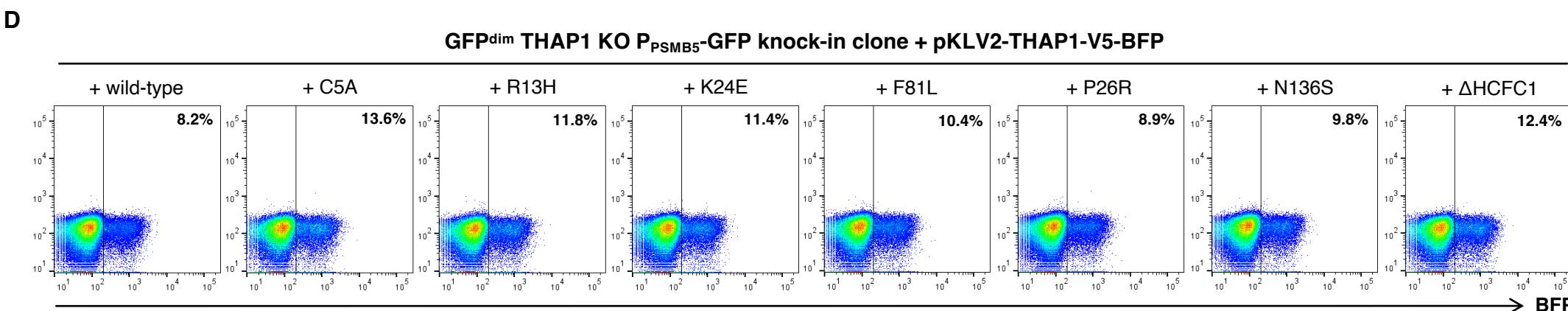
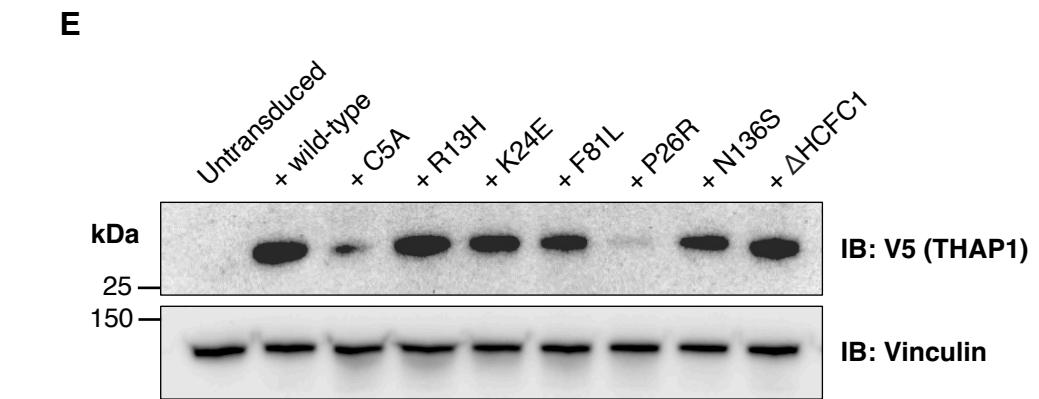
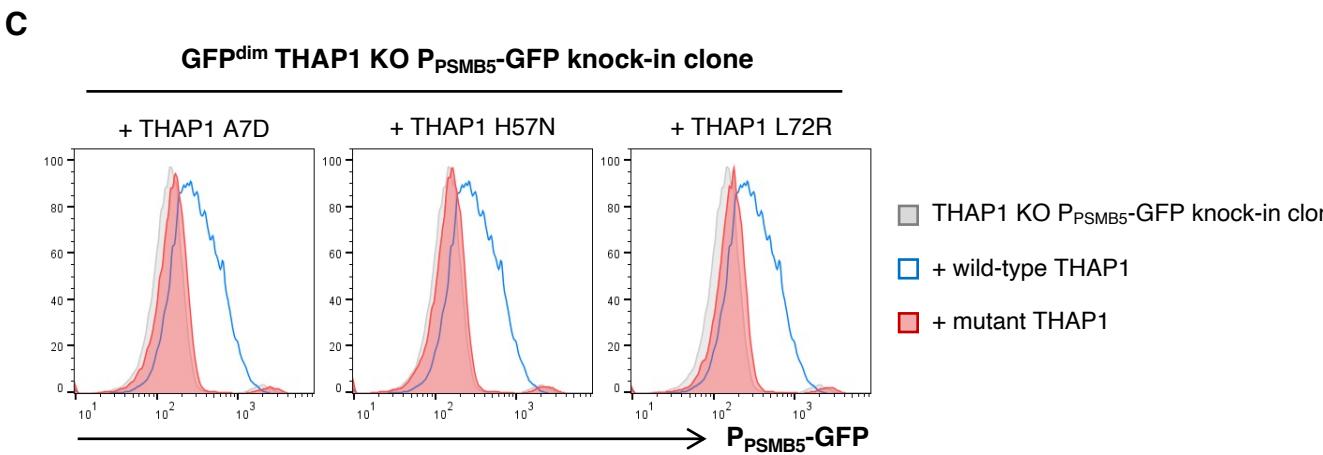
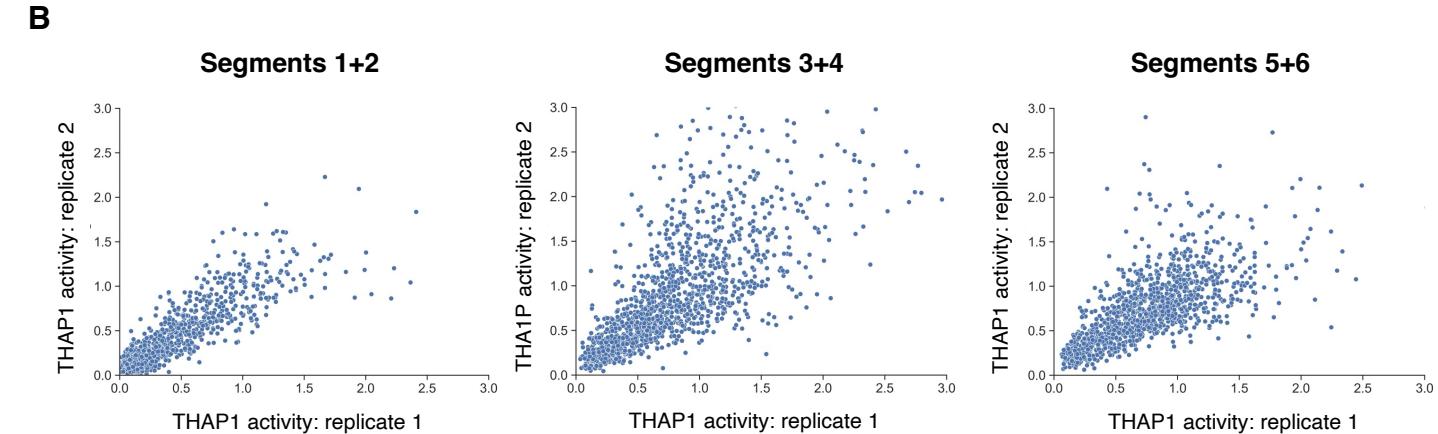
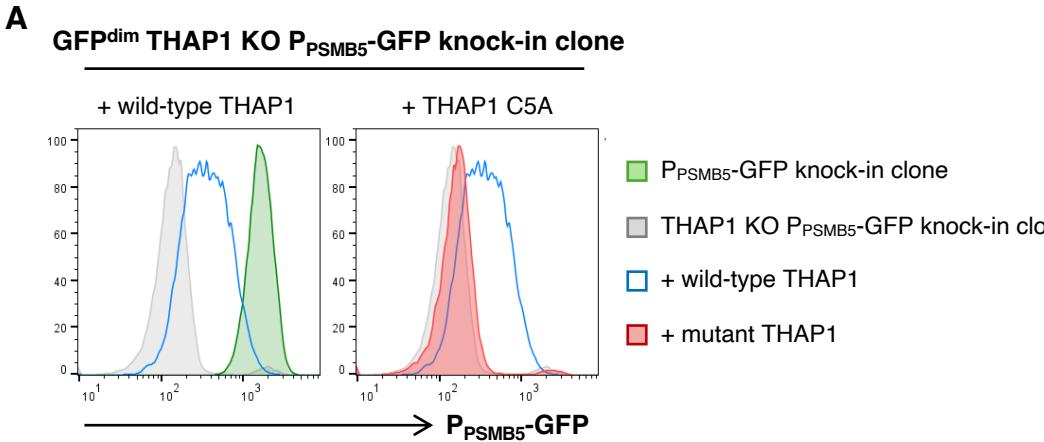



Rank	Gene1	Gene2	GLS_F	GLS_R	P-value	Direction	Annotation
#1	UBA5	UFM1	0.9157	0.6459	4.00E-95	+	UFMylation
#2	PSMG1	PSMG2	0.6580	0.8519	1.00E-87	+	Proteasome
#3	UFM1	UFL1	0.5439	0.9653	2.00E-79	+	UFMylation
#4	DET1	RFWD2	0.7773	0.6574	2.00E-76	+	COP1 E3 ligase complex
#5	FBXO42	CCDC6	0.5732	0.8861	8.00E-76	+	Cul1 complex
#6	UBA5	UFL1	0.6229	0.7796	4.00E-71	+	UFMylation
#7	UBR4	KCMF1	0.6678	0.7239	1.00E-70	+	SIFI E3 ligase complex
#8	WDR26	YPEL5	0.9263	0.5127	6.00E-69	+	CTLH E3 ligase complex
#9	UBE2H	YPEL5	0.8087	0.5596	1.00E-64	+	CTLH E3 ligase complex
#10	MAEA	UBE2H	0.7447	0.6044	3.00E-64	+	CTLH E3 ligase complex
#11	ARIH2	CUL5	0.5902	0.7623	4.00E-64	+	Cul5 complex
#12	DDI2	NGLY1	0.5733	0.7698	2.00E-62	+	Nrf1 pathway
#13	UFSP2	UBA5	0.7353	0.5992	2.00E-62	+	UFMylation
#14	WDR24	MIOS	0.6474	0.6778	4.00E-62	+	GATOR2 complex
#15	URM1	CTU2	0.7035	0.6156	6.00E-61	+	UFMylation
#16	FANCL	FANCG	0.7221	0.5848	5.00E-59	+	Fanconi anemia pathway
#17	UFM1	UFSP2	0.4916	0.8554	8.00E-59	+	UFMylation
#18	ARIH2	UBE2F	0.6943	0.5985	8.00E-58	+	Cul5 complex
#19	FANCL	FANCI	0.7055	0.5889	9.00E-58	+	Fanconi anemia ID2 complex
#20	ARNT	AHR	0.6797	0.6107	9.00E-58	+	Aryl hydrocarbon receptor complex
#21	UBE2H	WDR26	0.5684	0.7106	1.00E-55	+	CTLH E3 ligase complex
#22	UBE2F	CUL5	0.5186	0.7770	1.00E-55	+	Cul5 complex
#23	PEX12	PEX6	0.7792	0.5152	2.00E-55	+	Peroxisome biogenesis
#24	UFL1	UFSP2	0.6358	0.6233	2.00E-54	+	UFMylation
#25	UBA5	C1orf27	0.4456	0.8620	3.00E-52	+	UFMylation
#26	UBE2T	FANCI	0.6883	0.5468	5.00E-51	+	Fanconi anemia pathway
#27	WDR26	MAEA	0.6147	0.6058	2.00E-50	+	CTLH E3 ligase complex
#28	UFSP2	C1orf27	0.4852	0.7649	3.00E-50	+	UFMylation
#29	PEX2	PEX6	0.7560	0.4835	3.00E-49	+	Peroxisome biogenesis
#30	SKP2	CKS1B	0.4598	0.7892	8.00E-49	+	Cul1 complex
#31	VPS41	VPS39	0.5880	0.6061	7.00E-48	+	HOPS complex
#32	WDR48	USP1	0.4315	0.8176	3.00E-47	+	DUB complex
#33	WDR59	MIOS	0.8302	0.4191	2.00E-46	+	GATOR2 complex
#34	UFC1	UBA5	0.8057	0.4311	3.00E-46	+	UFMylation
#35	FANCL	FANCF	0.7247	0.4796	3.00E-46	+	Fanconi anemia pathway
#36	MAEA	YPEL5	0.7820	0.4392	1.00E-45	+	CTLH E3 ligase complex
#37	DDI2	NFE2L1	0.4513	0.7419	2.00E-44	+	Nrf1 pathway
#38	UFL1	C1orf27	0.4610	0.7124	3.00E-43	+	UFMylation
#39	PEX2	PEX5	0.5828	0.5590	6.00E-43	+	Peroxisome biogenesis
#40	PEX10	PEX6	0.7032	0.4621	7.00E-43	+	Peroxisome biogenesis
#41	BIRC6	UBA6	0.4346	0.7460	1.00E-42	+	Negative regulation of autophagy
#42	UFC1	UFM1	0.9245	0.3489	2.00E-42	+	UFMylation
#43	RNF31	MAP3K7	0.7035	0.4528	9.00E-42	+	LUBAC complex
#44	PSMB5	THAP1	0.5436	0.5845	1.00E-41	+	This paper

Fig S1






A**B****C****D****E****F****Fig S2**

A**B****C****Fig S3**

A**B****C**

**Enriched
Transcription Factor
Motifs**

Fig S4

Fig S5