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Summary

● In widespread species, parasites can locally adapt to host populations, or hosts can

locally adapt to resist parasites. Parasites with rapid life cycles locally adapt more

quickly, but host diversity, selective pressure, and climatic factors impact coevolution.

● To better understand local adaptation in co-evolved host-parasite systems, we examined

switchgrass (Panicum virgatum), and its leaf rust pathogen (Puccinia novopanici) across

a latitudinal range in North America. We grew diverse switchgrass genotypes in ten

replicated common gardens spanning 16.78o latitude for three years, measuring rust

severity from natural infection. We conducted genome wide association mapping to

identify genetic loci associated with rust severity.

● Genetically differentiated rust populations were locally adapted to northern and southern

switchgrass, despite host local adaptation in the same regions. Rust resistance was

highly polygenic, and distinct loci were associated with rust severity in the north and

south. We narrowed a previously identified large-effect QTL for rust severity to a

candidate YSL3-like gene, and linked numerous other loci to immunity-related genes.

● Both hosts and parasites can be locally adapted when parasites have a lower impact on

fitness than other local selection pressures. In switchgrass, our results suggest variation

in fungal resistance mechanisms between locally adapted regions.

Introduction

Local adaptation, the process by which populations within a species adapt to narrow ranges of

environmental conditions, is an important force maintaining intraspecific genetic and phenotypic diversity

(Kawecki and Ebert 2004). Numerous cases of local adaptation have been described, and researchers have

begun to uncover the genetic changes that underlie fitness trade-offs associated with local adaptation (Des

Marais, Hernandez, and Juenger 2013; Lowry and Willis 2010; Hall, Lowry, and Willis 2010; Wadgymar

et al. 2022; Anderson, Willis, and Mitchell-Olds 2011). However, the majority of local adaptation

research has focused on the role of abiotic factors directly on the adapting species, with comparatively

fewer studies addressing the role of biotic factors in producing local adaptation (Hargreaves et al. 2020).

In host-parasite dynamics in particular, both species may co-evolve local adaptation in an arms-race

dynamic, yielding complex evolutionary patterns (Kaltz and Shykoff 1998;Week and Bradburd 2023).

Studying the genetic makeup of the co-evolving host and parasite can reveal mechanisms allowing stable

coexistence of locally adapted populations within a species.
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The balance between host and parasite coevolution is driven by differences in each species’ population

and quantitative genetic characteristics. Each may evolve local adaptation to the other, yielding lower

infection rates in co-evolved populations if hosts are locally adapted, or higher infection rates in

co-evolved populations if parasites are locally adapted (Gandon and Michalakis 2002; Buckling and

Rainey 2002; Gandon 2002; Kawecki and Ebert 2004; Greischar and Koskella 2007; Gandon and

Michalakis 2002). Parasites are expected to adapt more rapidly, given typically shorter generation times

(Gandon and Michalakis 2002). However, migration rates, clonality, and strength of selection play an

essential role in determining whether the host or parasite is more likely to be successfully adapted

(Greischar and Koskella 2007). Moderate migration in a parasite population can introduce new alleles and

speed local adaptation (Gandon 2002), although very high migration rates decrease population barriers

and lessen local differentiation (Kawecki and Ebert 2004). Clonal reproduction in parasite populations

reduces the effective population size, and may therefore slow the pace of local adaptation (Gandon and

Michalakis 2002). Finally, the relative strength of selection plays an essential role. Parasites that prevent

host reproduction, such as anther smuts in Silene, impose very strong selection for host resistance, so

parasite maladaptation can occur (Kaltz et al. 1999). Accurately characterizing host and parasite local

adaptation requires a highly-replicated and diverse quantitative genetic experimental design, as well as

detailed knowledge of host and parasite ecology.

The traditional standard for diagnosing local adaptation is a reciprocal transplant experiment, preferably

with more than two locations (Kawecki and Ebert 2004; Hereford 2009; VanWallendael, Lowry, and

Hamilton 2022; Wadgymar et al. 2022). In this experiment, individuals from each environment are

transplanted to common gardens both in their local environment and other foreign environments.

Metapopulations, sets of populations connected by the movement of individuals, are considered locally

adapted when the fitness of populations transplanted to a local environment is higher than foreign

populations transplanted to that environment (local-foreign comparison; Kawecki and Ebert 2004). When

testing for local adaptation in parasites, researchers typically transplant parasites to different host

populations in controlled settings. An alternate method may be used to test for local adaptation in

parasites, for which we propose the term “host reciprocal transplant.” Transplanting host genotypes into

regions with endemic parasite populations, rather than transplanting parasites between host populations,

allows for local adaptation testing that avoids many pitfalls of parasite transplantation (Laine 2007), such

as ethical and legal barriers to moving parasites to new regions. Though this method has received less

attention in local adaptation theory, it has been used as a strategy in multiple experiments (Davelos et al.

1996; Busby et al. 2014; Cassetta et al. 2023; Laine et al. 2007). However, there are challenges to this
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method as well. Parasite populations must be both genetically differentiated and consistently present in

the transplant locations to detect local adaptation, and the statistical design must account for potential bias

from abiotic effects on both the host and parasite (further details in Methods).

Local adaptation studies in parasites often use plant fungal pathogens, owing to their typically narrow

host range and economic importance. Fungal pathogens are among the strongest biotic selective forces in

wild plant populations, and pose one of the greatest challenges in industrialized agriculture (Fisher et al.

2020). Rust fungi (Pucciniaceae) in particular hold an important place in the history of plant breeding,

since introducing genes for stem rust (Puccinia striiformis) resistance to commercial wheat was one of the

crucial advances of the Green Revolution (Borlaug 1950). The population growth of rusts can depend on

both their biotic and abiotic interactions before even reaching the host. Fungi in the Pucciniaceae family

often have macrocyclic life cycles, with multiple hosts and five spore-producing forms (Kolmer et al.

2009). For example, the alternate host for wheat stem rust, Berberis vulgaris, was brought to North

America by colonists before the link to wheat disease was established. It has since been mostly eradicated

in the non-native range, aiding stem rust control in wheat (Peterson 2018). The contribution of abiotic

conditions to the success of rust infections varies somewhat between species, but generally freezing

temperatures, low turbulence, and dry conditions are less conducive to spread and infection (Helfer 2014;

Prank et al. 2019). Since all of these conditions are expected to shift with climate change, rust disease

may pose greater challenges in the future (Dudney et al. 2021).

Disease resistance is heterogeneously expressed across plant populations, due to historical evolutionary

dynamics of hosts and pathogens, as well as interactions with the environment (Thrall and Burdon 2002;

Kniskern and Rausher 2006; Chappell and Rausher 2016; Colhoun 2003; Atkinson and Urwin 2012; Huot

et al. 2017; VanWallendael et al. 2020). The high fitness cost of fungal disease means that if resistance

loci are present, they can sweep rapidly to fixation in plant populations (Bergelson, Dwyer, and Emerson

2001). However, pathogens themselves face a high cost imposed by plant resistance, so mutations that

increase infectivity also spread rapidly (McDonald and Linde 2002), contributing to arms-race dynamics.

Fitness costs can also come from the mechanism of either resistance in the host or infectivity in the

pathogen (Simms and Triplett 1994; Laine and Tellier 2008), though the strength of these costs has been

challenging to predict since they may only manifest under certain environmental conditions. Thus, disease

response evolution in natural systems is a patchwork of resistance and susceptibility, often dependent on

abiotic environmental conditions.
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Since the Green Revolution, wheat stem and leaf rusts have been widely researched, offering a view of

patterns in resistance loci (McIntosh, Wellings, and Park 1995; Feuillet et al. 1995; Lillemo et al. 2008;

Yu et al. 2014). Host plant resistance to fungal pathogens can take multiple forms ranging from resistance

from a few immunological resistance loci (Salcedo et al. 2017; Asnaghi et al. 2001) or polygenic

resistance that includes structural or life-history traits (Yu et al. 2019). While some wheat stem rust

resistance mechanisms such as LR13 and LR34 have been effective under diverse growing conditions and

against many strains, emergence of novel rust strains has threatened breeding gains (Singh et al. 2011).

Researchers have found that resistance loci vary greatly in their mechanisms of plant protection.

Resistance often varies between host life stages, or may be specific to certain rust strains (Kolmer and Liu

2000). While wheat varieties vary in their constitutive resistance to rust, breeders have focused on

uncovering single-gene resistance (R-gene resistance) that can be introgressed into susceptible varieties.

Mechanistically studied genes include Sr35, a wheat gene from Einkorn (Triticum monococcum) that

confers resistance to the Ug99 stem rust strain (Salcedo et al. 2017) by binding pathogen effectors to

trigger activation of the ZAR1 resistosome (Förderer et al. 2022). Despite rapid advances in understanding

mechanisms of rust resistance, knowledge of the degree to which these conclusions are transferable to

other rust-infected plants is lacking.

Switchgrass (Panicum virgatum L.) is a locally adapted perennial plant conducive to pathogen local

adaptation study, since it is consistently infected with several fungal pathogens including rust (Puccinia

novopanici Demers), leaf pathogens in the Bipolaris and Colletotricum genera, and the panicle smut

Tilletia maclaganii (Kenaley et al. 2019). Switchgrass genetic diversity is divided into three major genetic

populations that mostly correspond with locally adapted ecotypes. The Midwest population is common in

the north-central region, the Atlantic population along the east coast, and the Gulf population in Texas and

along the Gulf of Mexico (Lovell et al. 2021). These populations differ greatly in phenotypic traits and in

abiotic stress response, potentially owing to adaptive fitness trade-offs. Fitness trade-offs that underlie

local adaptation can be caused by genomic effects such as linkage or pleiotropy (Wadgymar et al. 2017).

For instance, if a gene that enhances freezing tolerance is linked to a gene that results in disease

susceptibility, the genotype would perform well in the cold, but suffer in regions where pathogen pressure

is higher, as is often the case for genotypes in the Midwest population. The Gulf and Atlantic populations

typically have higher overall resistance to leaf fungi, but this can vary between years (VanWallendael et

al. 2020). Previous research in a different common garden system revealed that rust resistance patterns

differ greatly between the northern and southern US, though there was no difference in rust species

composition across space (VanWallendael et al. 2020). We found large-effect Quantitative Trait Loci
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(QTL) for rust resistance on chromosomes 3N and 9N, but the outbred mapping population did not have

sufficient resolution to narrow these to specific genes.

In this study, we sought to understand regional differences in resistance, and to more closely pinpoint

genetic loci associated with rust infection severity using a genome-wide association study (GWAS).

Given our understanding of rust abiotic habitat preferences as well as host ecotypes, we expected to find

pathogen population differentiation between northern and southern regions. Further, we expected that the

shorter generation time of rust than switchgrass will result in it being locally adapted to its switchgrass

host, rather than switchgrass to rust. We aimed to recapitulate previous results showing regional

differences in rust resistance loci, and identify candidate genes involved in rust resistance. We predicted

that resistance would involve large-effect immune genes, similar to those found in wheat. Since resistance

is so clearly differentiated across locally adapted switchgrass ecotypes, we expected that it is genetically

linked to other traits that differentiate populations, such as biomass production or climatic niche.

Materials and Methods

Experimental Design

This study used an experimental design described in Lovell et al. 2021. Briefly, 1347 switchgrass

rhizomes were collected from numerous locations in the United States (Figure 1). These rhizomes were

grown, then clonally propagated at a central facility in Austin, Texas, then transplanted to field conditions

in 2018. Three sites: Austin, TX (PKLE), Columbia, MO (CLMB), and Kellogg Biological Station, MI

(KBSM) were planted with all surviving 1218 genotypes, and an additional six sites were planted with a

core subset of 630 tetraploid genotypes. The remaining octoploid and hexaploid genotypes were measured

for rust and other traits, but not used in the mapping population (Napier et al. 2022). At each site,

switchgrass rhizomes were planted in a honeycomb grid with 1.6m spacing between plants. They were

watered to promote establishment, and periodically weeded each season, but otherwise received no

treatments. We planted a border of short-statured lowland switchgrass (Blackwell cultivar) around the

exterior of the plot, and dead plants were replaced with Blackwell “placeholders” to reduce edge effects.

The genetic makeup of the core group was assessed using whole-genome resequencing, which yielded

over 11 million polymorphic single nucleotide polymorphisms (SNPs) with minor allele frequency > 0.05.
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Figure 1: Collection locations (circles), and planting sites (green squares) for the replicated diversity

panel. Coloring for circles indicates population membership based on shared SNPs. From north to south,

the sites are BRKG (Brookings, SD), KBSM (Kellogg Biological Station, MI), FRMI (Fermilab, IL), LINC

(Lincoln, NE), CLMB (Columbia, MO), STIL (Stillwater, OK), OVTN (Overton, TX), TMPL (Temple, TX),

PKLE (J.J. Pickle Research Campus, TX), and KING (Kingsville, TX). We were not able to obtain rust

ratings from STIL, nor rust population samples from OVTN.

Rust Population Genetics

In 2019, we collected rust-infected leaves from nine of our site locations to assess pathogen population

structure. For most sites, these samples were taken from adjacent(< 500m) switchgrass experimental plots

used for a previous mapping study (VanWallendael et al. 2020) which were further-developed at the time,

and therefore yielded more rust-infected leaf tissue. At the Fermilab site (FRMI), we sampled from the

GWAS diversity panel, since we did not have a previous experimental plot. We haphazardly collected 20

samples showing clear sori from each site. The samples were dried on silica gel and stored at room

temperature before processing at Cornell University. We scraped spores from sori on each leaf, then

extracted genomic DNA from each sample using a DNeasy Plant Mini Kit (Qiagen, Valencia, CA),

following the manufacturer’s protocol with some modifications as described in Kenaley et al. (2016). The

samples were then flash frozen in liquid nitrogen and ground separately to a fine powder using a

mini-pestle. Next, 500 µL AP1 lysis buffer and 10 µL proteinase K (10 mg mL-1; Qiagen) were added to

each tube, and the samples were incubated overnight (55 oC at 1100 rpm) in a thermomixer (model 5350;

Eppendorf, Hauppauge, NY). After incubation, the tubes of lysed tissue were placed in boiling water for 5
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min, then centrifuged briefly (3000 rpm for 5s), and 150 µL of the neutralization buffer (P3 buffer) was

added immediately to each tube. The tubes were then centrifuged (13000 rpm, 1 min) and placed at -20 oC

for 10m to pelletize cell debris and ease transfer of the supernatant (~ 660 mL) to a QIAshredder Mini

spin column, tubes were again centrifuged for 5 min at 13,000 rpm. The remaining procedure was

identical to that provided in the DNeasyPlant Mini protocol (steps 9-19, Qiagen). After DNA quality and

quantity filtering, 88 samples remained with at least 5 samples from each site. We shipped samples to the

Texas A&M Genomics and Bioinformatics Service for library preparation and sequencing on an Illumina

NovaSeq 6000 with an S4 flowcell. We sequenced the 99.9 Mb genome to ~50x coverage per sample.

Since P. novopanici does not grow in culture, we could not sequence single-spore isolates. Samples from

an individual plant were therefore assumed to contain a pool of potentially multiple genotypes of the

fungus. We aligned samples to the draft P. novopanici genome (Gill et al. 2019) using BWA and

deduplicated alignments with sambamba (Li and Durbin 2010; Tarasov et al. 2015). Since the draft

genome is highly fragmented (11,088 contigs, N50=13,091bp), we performed a cleanup step by aligning

contigs to a better-quality Puccinia triticina reference genome (Wu et al. 2021). We used relaxed

alignment parameters in BLAST (-evalue 1e-5), then discarded 1254 contigs that failed to map to the P.

triticina genome. Though a full revision of the P. novopanici genome is beyond the scope of this study,

we used approximate contig positions in the P. triticina genome for visualizations, and include estimated

contig scaffolding in the supplemental material. We used two pipelines to call SNPs and estimate regional

diversity. For SNP-calling, we used BCFtools to generate an invariant-sites VCF, then filtered to biallelic

sites with a minimum minor allele frequency of 0.05 that were genotyped in all of our 88 samples using

Plink2 (Chang et al. 2015; Li et al. 2009). We used popoolation (Kofler et al. 2011) to assess diversity

between regional pools. To group reads, we used SAMtools mpileup (H. Li et al. 2009). We then used

Variance-sliding.pl in popoolation to assess allelic diversity (π) using a sliding-window approach. We

used 1000bp windows with a 100bp step size. We filtered out reads with less than 4x or greater than 70x

coverage depth or an average Phred quality score less than 20. We tested for differences in pi between

regions using the studentized bootstrap method suggested by Efron and Tibshirani (Efron and Tibshirani

1994). We calculated the mean π values across windows for each contig to compare between regions. We

counted the number of contigs with π > 0.05 to assess the number of distinct outlier loci in each pool. We

estimated FST between regions using the grenedalf package (Czech, Spence, and Expósito-Alonso 2023).

Here we used identical filtering steps, but used individual contigs as windows to improve accuracy, then

computed the mean FST per window adjusted by the number of SNPs on each contig. We performed

principal component analysis using singular value decomposition through the big_SVD function in the R

package bigsnpr (Privé et al. 2018).
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Rust phenotyping and distribution

For rust severity, we followed a similar phenotyping protocol to that previously described in

(VanWallendael et al. 2020). Briefly, plants at each site were checked daily for rust presence following

spring green-up. After the first instance of rust was detected, plants were scored every two weeks for at

least four rating periods (8 weeks), which was typically sufficient to capture the exponential growth phase

of rust infection increase. Rust was scored on a 0-10 scale, with each point corresponding to

approximately 10% of the total plant leaf area covered in rust sori. We calculated the area under the

disease progression curve (AUDPC) for each plant for the 8-week period centered on the inflection point

of rust increase at each site. Using AUDPC rather than max or mean rust scores corrects for some of the

differences in scoring rust between sites, and encompasses more temporal variation in scores. Additional

phenotypic measurements were taken for switchgrass plants as described in (Lovell et al. 2021), including

height, tiller number, flowering time, and biomass. We measured height as distance in cm from the base of

the plant to the height of the flag leaf. We assessed flowering time as the day of year (Julian day) at which

50% of tillers were flowering. Finally, we estimated dry biomass by measuring the wet biomass of each

whole plant in the field, then multiplying by moisture percent of each sample as assessed by drying a

representative subsample of each plant.

Rust distribution and local adaptation

We assessed rust distribution across genotype, space, and time using linear mixed models in the R

package sommer (Covarrubias-Pazaran 2016). Since a model including all sites failed to converge, we

split sites into northern (BRKG, KBSM, FRMI, LINC) and southern (CLMB, OVTN, TMPL, PKLE,

KING) regions. We used the mmer function to solve the following model with a compound symmetry

variance-covariance matrix, splitting northern and southern sites. Our full model included terms for site,

year, genotype, and a genotype-by-environment interaction. We tested the importance of model

components by sequentially dropping each term and testing for fit differences using a likelihood ratio test

via the anova function in sommer.

AUDPC ~ 1 + 1|site + 1|year + 1|genotype + 1|genotype:environment

We examined relationships between rust severity and other switchgrass phenotypes using principal

components analysis (PCA). We examined three focal sites, (KBSM, CLMB, and PKLE) that had the

greatest number of shared genotypes (n = 1070). We used the mean value of each trait for each genotype
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across sites and years in the PCA. We removed 94 genotypes with missing data, then computed the PCA

using the centered and scaled values in the prcomp function in R.

The host reciprocal transplant

We used a modified version of the classic local adaptation test to assess parasite local adaptation, which

we have termed a host reciprocal transplant (Figure 2). There are several advantages in both practicality

and experimental robustness to this method, though some drawbacks exist. As mentioned before, fewer

regulatory and ethical issues surround transplant of hosts than their parasites, and unculturable parasites

may be particularly challenging. A host reciprocal transplant overcomes some of the challenges of

translating controlled common garden experiments to the field. Namely, growth chambers typically

remove much of the environmental context of the host-parasite interaction, and both susceptibility and

infectivity can be context-dependent. Similarly, controlled experiments select for, and are biased by

genotypes that are simply better-adapted to lab or greenhouse conditions (Kawecki & Ebert 2004).

However, abiotic context is quite different between parasite and host reciprocal transplants. Is local

abiotic context more important for the parasite infectivity or the host susceptibility? If we make a general

assumption that both host and parasite are well-adapted to their native abiotic environment, transplanting

each outside their adapted range should tend to weaken populations, making hosts more susceptible and

parasites less infective. Therefore, in a host transplant experiment, we would tend to underestimate the

strength of local adaptation, since foreign parasite populations infect hosts with lowered susceptibility. In

contrast, parasite transplants may overestimate local adaptation, since foreign parasites may have reduced

infectivity in novel environments. A reversed pattern may be possible in systems where organisms are

maladapted to their abiotic environment, or if interactions with other organisms such as hyperparasites

make foreign transplant advantageous.
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Figure 2: Comparing two methods for testing parasite local adaptation, a parasite reciprocal transplant

(AC) and a host reciprocal transplant (BD). In this example scenario, two host populations (field mustard

plant icons) and two parasite populations (cabbage white butterfly icons) are differentiated between two

sites, North and South. A traditional parasite reciprocal would introduce northern and southern butterflies

into mustard populations at each site. B. A host reciprocal transplant would introduce northern and

southern mustards in a common garden to butterfly populations at each site. C. Proof of local adaptation
via the local-foreign comparison would require greater fitness for north butterflies over south butterflies on

north mustards, and greater fitness for south butterflies over north butterflies on south mustards. This is

indicated by more eggs produced by the north parasite (blue points) in the north site, but more eggs

produced by the south parasite at the south site (red points). D. Proof of local adaptation would require

the same fitness advantage as in a parasite transplant: north butterflies over south butterflies on north

mustards, and greater fitness for south butterflies over north butterflies on south mustards. However, this

test would be between sites rather than within sites. In the plot, the x-axis indicates host population, while

the color of points indicates parasite population at each site.

Ultimately the utility of parasite or host reciprocal transplants depend on the specifics of the study system.

Several potential pitfalls are possible when using this method. If parasite populations are panmictic, or
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ranges change rapidly across years, they are unlikely to be locally adapted, and will be harder to assess.

Transplanting a host that contains potential parasite propagules will confound the results of the

experiment, (though post-hoc testing of diseased tissue to assess parasite source can alleviate this).

Therefore, extra care must be taken to remove vertically transmitted parasites from transplanted hosts.

This study used a systemic fungicide before transplantation. Finally, site distance should be adjusted

according to parasite dispersal capacity. If the same parasite source population infects multiple sites,

results may be biased. While long-distance dispersal is possible in rusts, most infection occurs from

locally dispersed spores (Farber, Medlock, and Mundt 2017).

To specifically test the hypothesis that rust is locally adapted to switchgrass, we assessed whether rust

BLUPs were higher in genotypes facing coevolved pathogens. Since BLUPs were not normally

distributed (Shapiro-Wilk test p < 0.0001), we used a nonparametric Dunn’s test to assess differences in

means between groups, with a Bonferroni correction for multiple testing. We performed an additional

simple test for switchgrass local adaptation to rust by regressing distance between planting sites with

collection locations (Figure 1) with rust severity AUDPC using a linear model. This test is not diagnostic

of local adaptation, but is an indicator of the degree to which the match between native environmental

conditions matters for rust infections.

GWAS data analysis

In our analyses we used a set of SNPs first generated by Lovell et al. (Lovell et al. 2021). This set

comprised 10.8 million SNPs after quality filters and a minor allele frequency cutoff of 0.05. We

performed a PCA using the big_SVD command in the R package bigstatsr (Privé et al. 2018). We

computed GWAS using the pvdiv_gwas function in the switchgrassGWAS R package (Lovell et al. 2021).

This function runs linear regression on filebacked big matrices using the big_univLinReg function in

bigstatsr, with ten principal components as covariates to correct for population structure.

A major challenge in this study lay in correcting for heterogeneity across time and space. Since rust

pathogen pressure can be variable across years and different technicians rated rust across sites using a

relatively subjective metric, finding the true genetic basis of rust resistance required minimizing other

sources of variation. When combining data across environments, genetic mapping studies often calculate

best linear unbiased predictors (BLUPs) for each genotype, then use these as a phenotype for GWAS or

QTL (quantitative trait locus) mapping (Wallace et al. 2016; Cui et al. 2021; Kumar et al. 2018). BLUPs

estimate the random effect of genotype in multi-environment linear mixed models, with the goal of

distinguishing genetic from environmental effects. We used the above described LMM to calculate
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BLUPs for northern and southern regions. BLUPs correlate well with the mean of centered and scaled

AUDPC genotype scores for both northern and southern sites (r = 0.87 and r = 0.94, respectively). Using

a kinship matrix instead of genotype identity in the model produced highly similar BLUPs (r = 0.99 for

North and South), so we only used genotype identity.

We considered genes <10Kb from an outlier SNP as linked to the SNP, since this is the typical distance of

linkage decay in the switchgrass genome. We investigated gene function and homology using JGI

JBrowse (Skinner et al. 2009), NCBI BLAST, and NCBI Genbank. We assessed which gene functions

were overrepresented in our dataset using a bootstrapping method focused on the 20 gene functional

annotations with the greatest difference in frequency between the sample and total dataset. We randomly

permuted genes from the total genome-wide list for 100000 iterations, then assessed whether each

function was more common than the permuted set <5% of the time.

To provide independent lines of evidence towards candidate genes, we used data from a previously

described RNA-sequencing experiment (VanWallendael et al. 2022). In short, this experiment used

transcript abundance from the uppermost fully expanded leaves from a single tiller of each genotype at

phenologically similar dates at each site: PKLE: 8-June 2016; CLMB: 21-July 2016; KBSM: 18-Aug

2016. RNA was assayed from leaf tissue that was (1) excised at the ligule, (2) 2 cm of the proximal

portion of the excised leaf were separated from the midrib, (3) placed in a 2 mL Eppendorf tube loaded

with three stainless steel beads, (4) immediately frozen in liquid nitrogen and (5) transported on dry ice to

the laboratory. Tissue was homogenized with a Geno/Grinder 2000. RNA was extracted with the standard

Trizol protocol and treated with DNase I to remove contaminating genomic DNA. We compared leaf

RNA expression in four genotypes at three of our study sites, KBSM, CLMB, and PKLE. These four

genotypes contained two that are typically rust-susceptible (DAC6 and VS16) from the upland ecotype,

and two that are more resistant (AP13 and WBC3) from the lowland ecotype. We assessed differential

expression at focal genes using the DeSeq2 package in R (Love, Anders, and Huber 2014). We filtered out

genes that had counts lower than 10 for three or more samples, according to best practices (Love, Anders,

and Huber 2014).

Finally, we compared our results to outlier regions for other traits identified in Lovell et al. (2021). This

study used Bayesian tests to combine data across multiple environmental phenotypes. We checked for

concordance between outliers by checking the proportion of hits within overlapping 10Kb windows using

custom scripts. Since many of these SNPs are clustered, we first collapsed 5504 outliers into multi-SNP

loci. In 100000 permutations, we randomized the genomic position of each locus, then counted the
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number of overlapping loci with non-rust traits. In addition, we assessed the genetic correlation of rust to

other switchgrass phenotypes using mixed models in R. We fit three models for biomass, flowering time,

and tiller count that included environment (site-year combination) and a kinship matrix with the formula:

(AUDPC, trait2) ~ 1 + 1|site_year + 1|kinship

Biomass and tiller count were taken at the end of the season, and represent the dry mass of aboveground

leaf tissue, and the number of tillers (stems) respectively (Lovell et al. 2021). Flowering time was

assessed as the day of year when half the crown had flowered.

Results

Rust population genetics

We examined rust populations on leaves in multiple locations with the goal of determining how these

differ genetically using whole-genome resequencing. To assess population structure, we called SNPs in 88

samples across nine sites by aligning reads to the P. novopanici genome (Gill et al. 2019). This resulted in

a set of 2.4 million SNPs with a minimum MAF (minor allele frequency) of 0.05 that were called in all

samples. Since rust isolated from a single plant may include multiple genotypes, individual isolates are

treated as pooled samples. We performed PCA using single vector decomposition, and found that within

shared SNPs, samples from northern and southern sites were mostly distinct (Figure S1) and that PC1 was

correlated with latitude of collection (Figure 3A).

In order to uncover differences in genetic diversity between rust populations, we scanned the genome for

regions of increased genetic diversity using pooled sequence analyses. In this analysis, individual and site

differences are combined to highlight larger-scale differentiation across the genome. Since rust dispersal

within a season occurs mostly through asexual urediniospores, we expected to find mostly low-diversity

clones. However, high-diversity windows may indicate emergence of clones with novel mutations in

fitness-related genes. We examined northern and southern regional pools (Figure 3C) for loci with

increased diversity that may indicate selection. Since the P. novopanici genome is highly fragmented, we

anchored contigs to the haplotype-resolved dikaryotic Puccinia triticina genome for organization. One

large outlier locus with π > 0.75 on Chromosome 9B was linked to the Internal Transcribed Spacer (ITS)

region. Since ITS regions often exist as large tandem repeats, the very high diversity at this locus is likely

14

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 13, 2024. ; https://doi.org/10.1101/2024.06.11.595169doi: bioRxiv preprint 

https://paperpile.com/c/oQ3nbK/uMOk
https://paperpile.com/c/oQ3nbK/ahnr8
https://doi.org/10.1101/2024.06.11.595169
http://creativecommons.org/licenses/by/4.0/


spurious, so we excluded this region from further analysis. Overall genome-wide π was 4.7% higher in

the North (northern π = 7.97 x 10-4, southern π = 7.61 x 10-4, bootstrap p = 0.0006). Additionally,

northern populations contained 15 unique outlier loci (π > 0.05; Figure 3C), whereas the southern

populations contained just three outliers. Genome-wide average FST between regions was moderately high

at 0.155 (range: Chr 4B = 0.131 - Chr 8A = 0.165). While gene annotation exists for some Puccinia spp.,

functional annotation is limited to a few well-conserved genes. Therefore, we were not able to confidently

link outliers to known rust genes.

Figure 3: Puccinia novopanici leaf rust population genetics across nine sites. A. The y-axis indicates

latitude of the collection site, and the x-axis is the first principal component of a PCA of 2.4 million SNPs.

Site codes correspond to: B-Brookings, SD; M-Kellogg Biological Station, MI; F-Fermilab, IL; L-Lincoln,

NE; C-Columbia, MO; S-Stillwater, OK; T-Temple, TX; P-J.J. Pickle Research Campus, TX; and

K-Kingsville, TX. B. P. novopanici sori under field conditions in Kingsville, TX. Photo by Acer

VanWallendael. C. Mean nucleotide diversity (π) across 10kb windows in the P. novopanici genome.

Positions are shown by mapping location in the P. triticina genome.

Variation in Rust Susceptibility

The GWAS panel in this study represents one of the most extensive multiple common garden studies of a

perennial plant created to date. We used the diverse source material planted at multiple locations to

measure both variation in the genotypic component (source genotype), and environmental component
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(year and planting site) of the expression of rust susceptibility. In order to isolate genetic contributions to

rust susceptibility, we aimed first to estimate variation in the environmental component of rust severity.

Since a global linear mixed model (LMM) for all sites and years failed to converge, we conducted most

analyses with northern and southern sites separated. To compare the relative amounts of variation

attributable to genotype, site, year, and Genotype x Environment interaction (GxE) we fit an LMM for

AUDPC across sites and years. For both regions, the highest variance components were genotype

(northern = 0.244, southern = 0.297; Table 1), followed by GxE (northern = 0.264, southern = 0.109).

Overall, the model explains 63.2% of the variation in AUDPC in northern sites (AIC = 3788), and 55.5%

of variation in southern sites (AIC = 2550). Dropping each of the terms from models resulted in

significantly poorer model fit (Likelihood Ratio Test; Table 1).

Table 1: Variance proportions for LMMs in northern and southern regions for rust severity. LRT columns

show the results of a Likelihood Ratio Test that compares a full model and a model without each term.

The GxE term represents a genotype-by-environment interaction, with each site-year combination as a

separate environment.
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Different technicians rated rust severity at each site, so the variance explained by site may be partially

attributable to subjective rating differences (Figure 4A). Some sites had consistently high rust ratings,

such as CLMB (Columbia, MO), and others varied between years like in BRKG (Brookings, SD), which

had no rust in 2020 or 2021. To reduce this bias when summarizing across genotypes, we centered and

scaled rust severity scores before comparing populations (Figure 4B). Rust varied greatly between genetic

subpopulations (Figure 4B), and covaried with several other traits, particularly time of plant green-up and

biomass (Figure 4C). The Atlantic population had the lowest overall rust severity and the Midwest had the

highest. The Gulf population was split between genotypes originating from the Gulf coast and those from

more inland, mostly in Texas, so these subgroups are separated in most analyses. Octoploid genotypes,

which can be found across the switchgrass range, had the greatest overall variation. In a trait PCA (Figure

4C), biomass clearly was negatively correlated with rust scores, with higher biomass present in the central

Texas population, and higher rust scores in the Midwest. Greenup date was more closely correlated with

rust score, and traded off with tiller count.
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Figure 4: Rust score variation across populations, space, and time. A. Site & year variation in rust

infection. Points shown indicate the area under the disease progression score across 8 weeks for each

plant in each year. Sites on the x-axis are shown from southmost (KING: Kingsville, TX) to northmost

(BRKG: Brookings, SD). 2019-20 data could not be collected at OVTN (Overton, TX) and rust was not

found in BRKG in 2020-21. B. Genetic populations vary in rust severity. Points indicate mean scaled rust

severity (AUDPC) across sites and years. The Gulf genetic population has a subdivision between

genotypes originating inland and those by the coast. C. Phenotypic PCA biplot for major traits across all

sites and years. Points are colored by subpopulation.

To test the specific hypothesis that rust pathogens are locally adapted to switchgrass genotypes, we

examined differences in rust severity for genotypes across locations. To separate environmental from

genetic effects on rust severity, we calculated Best Linear Unbiased Predictors (BLUPs) from the

genotype term of the previously mentioned linear mixed-effect models. BLUPs predict genotypic

contribution to rust severity, with higher values indicating genotypes with greater susceptibility to rust

across sites and years. Individuals from the Midwest population were commonly susceptible to rust

present in northern sites (positive BLUP; Figure 5A), whereas those in the Gulf inland subpopulation

were more susceptible when transplanted to southern sites (Figure 5B). Gulf and Midwest populations

therefore conformed to expectations of local adaptation, with higher rust severity in southern and northern

planting sites, respectively (Figure 5C; Dunn’s test: Bonferroni-adjusted p < 0.0001 for both populations).

In contrast, rust severity was not differentiated in Atlantic genotypes across regions (Figure 5C; Dunn’s

test: Bonferroni-adjusted p > 0.999).
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Figure 5. Switchgrass genomic principal component analysis showing susceptibility to endemic rust in

northern (A) and southern (B) sites. Rust severity BLUP was measured across northern and southern

sites. Negative scores indicating genotype resistance are shown as black, positive scores indicating

genotype susceptibility are colored. C. Rust BLUPs (susceptibility) by host group and region. Blue boxes

indicate samples planted in northern common gardens, red boxes indicate samples planted in the

southern gardens. Asterisks indicate regional differences; p < 0.0001 for both.

To test the impact of environmental differences in common garden locations on switchgrass susceptibility

to rust, we examined the relationship between distance from location of origin (source population for each

genotype) and rust infection at each growing site. To minimize the large confounding effects of

subpopulation, we conducted separate tests within each population, then used a multiple-testing

correction. The Midwest and Octoploid populations showed a locally maladaptive pattern, with a

significant negative relationship between distance from location of origin and rust infection (Table 2). For

the Midwest population, this relationship resulted in an average of 1.90% lower rust severity for every

100 kilometers from the origin. The Atlantic population, conversely, showed a positive relationship
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between distance from location of origin and rust severity, while the Gulf population showed no

relationship. For all populations, however, this relationship explained relatively little (< 6%) of the

variation in rust severity.

Table 2: Testing for switchgrass local adaptation to rust populations.

Linear model for the relationship between distance from

location of origin and growing location and rust severity.

GWAS

We conducted GWAS separately for the northern and southern regions, using rust severity BLUPs as

predicted traits in a linear GWAS model. We found numerous loci associated with rust severity, indicating

a largely polygenic response (Figure 6). In both northern and southern regions, p-values showed signs of

inflation, despite a conservative correction with 10 PCs (North lambda = 1.042, South lambda =1.092;

Figure S2). For all significant SNPs shared between regions, there was only a weak positive correlation

between -log10 p-values (r = 0.354, p < 0.0001), indicating few shared mechanisms. However, the

correlation disappears when examining only the top SNPs in each region. Curiously, the average effect

sign (which indicates whether the major or minor allele had a higher trait value) of top SNPs was also

different between regions (Figure S3). While top SNPs at northern sites tended to have lower BLUPs with

the minor allele, top SNPs at southern sites had lower BLUP values with the major allele. This may

indicate that when genotypes are grown in the south, alleles that are relatively common in the diversity

panel contribute the most to resistance, whereas in the north resistance comes from rarer alleles.
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Figure 6. GWAS of mean scaled AUDPC in northern (A) and southern (B) regions. Vertical lines indicate
the positions of candidate loci found in previous experiments (VanWallendael et al. 2020; VanWallendael

et al. 2022). The green line on chromosome 2N indicates a microbiome structure - associated GWAS

outlier, and blue lines indicate rust resistance QTL Prr1 (Chr03N) and Prr2 (Chr09N). Red horizontal lines

indicate a Bonferroni cutoff.

We examined genes linked to the top 100 outlier SNPs in the northern and southern sites. There were no

overlaps between top SNPs or the genes linked to them. We used enrichment analysis to determine which

gene annotations were overrepresented in genes linked to top SNPs. While most of the enriched

annotations did not have a clear link to disease resistance, there were some exceptions. In the north, four

gene annotations were overrepresented in our top SNPs (Figure S4). Terpenoid cyclases, which allow

formation of specialized metabolite defenses such as antifungal leaf saponins, were common (p < 0.001).

In the south, the most notable of the five overrepresented annotations were EF-TU receptors, Leucine-rich

repeat receptors (LRRs) that typically recognize bacterial pathogens (Schoonbeek et al. 2015). However,

LRR proteins have highly variable structures and may act as receptors for a wide range of PAMPs

(pathogen-associated molecular patterns), so these may be fungal rather than bacterial receptors. A

surprising result was the overall difference in frequency of LRRs across regions. Though these genes are
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common across the genome, few were linked to top SNPs in the north, while several were linked in the

south. Outliers on chromosomes 2N (North), 3K (South), 4K (South), and 6K (South) were closely linked

to LRRs. A MATE (multidrug and toxin extrusion) transporter is linked to an outlier on chromosome 1K

in the south. These genes can function in pathogen responses by moving hormones such as salicylic acid

in response to infection (Serrano et al. 2013).

Previous research identified several loci associated with leaf fungi (Milano et al. 2016; VanWallendael et

al. 2020; VanWallendael et al. 2022). The strongest candidate gene we identified within the chromosome

3N Prr1 QTL region was Pavir.3NG168388 (Figure S5). This gene is an oligopeptide transporter similar

to YELLOW STRIPE-LIKE (YSL3), which functions in metal ion distribution in plants (Sheng et al.

2021), but has a notable role in plant-pathogen interactions (Chen et al. 2014). The Prr2 QTL region on

9N contained relatively weaker GWAS hits, but one of these was linked to the highly conserved

CCR4-NOT complex (Pavir.9NG474500), which acts as a multifunctional gene expression regulator

(Collart and Panasenko 2017). A large outlier on chromosome 2N is near a previously-discovered cluster

of cysteine-rich receptor-like kinases associated with variation in the leaf microbiome (VanWallendael et

al. 2022). This outlier is linked more closely, however, to four genes with predicted functions in drug- and

disease-resistance (Pavir.2NG514900.1, 515000.1, 515100.1, and 515300.1; Figure S5). Homeologs of

three of the four genes are also found on chromosome 2K, though there is no associated outlier SNP on

this chromosome.

The large outlier region on chromosome 2K in the south encompasses nearly the entire pericentromeric

region of this chromosome, which has a highly suppressed rate of meiotic recombination (Lovell et al.

2021). The pericentromeric region is also gene-poor, but contains some potentially relevant genes. In

particular, one gene encodes a NOI4-like protein, which is within the cascade of immune responses to

effectors in Arabidopsis (Redditt et al. 2019). This locus also contains an FCA (flowering time control)

ortholog, as well as several genes involved in DNA replication and repair such as DNA helicase and

gyrase, as well as SMG7, an essential gene in meiosis (Riehs et al. 2008).

We collected RNA-seq data from switchgrass leaves in three of our sites, KBS, Hickory Corners, MI;

Columbia, MO; and JJ Pickle Research Station, Austin, TX. To better explore causal loci, we analyzed

transcript abundance of genes underlying GWAS peaks across four genotypes, two upland cultivars, and

two that are lowlands. Of the 107 genes closely linked to top GWAS hits in the North, 82 were

differentially expressed between resistant and susceptible varieties (top 20 in Table S1). A gene with

unknown function (Pavir.7NG105945) was most clearly differentiated, followed by a gene on 1N in the
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RING/U-box superfamily. The oligopeptide transporter underlying the Prr1 QTL had very low expression

in the leaf for the four genotypes in this study, but the gene cluster on chromosome 2N was differentially

expressed. Three terpenoid cyclases on chromosome 1K were minimally expressed in southern lowland

genotypes, particularly when grown in the northernmost site (Figure 7). For southern outliers, 96 of 130

genes linked to top GWAS hits were differentially expressed. The strongest differentiation was seen in a

small ribonucleoprotein F gene on chromosome 5N (Table S1), but a Leucine-rich repeat kinase detected

on chromosome 3K (Pavir.3KG551700) was clearly differentiated as well.

Figure 7: Expression differences for three terpenoid cyclase-encoding genes linked to large GWAS

outliers on chromosome 1K. Leaf tissues from four genotypes were tested at three sites in 2016. AP13 &

WBC are southern genotypes in the Gulf population; DAC & VS16 are northern genotypes in the Midwest

population.

Links to other traits

To determine the extent to which variation in rust severity is linked to other switchgrass phenotypes, we

assessed genetic correlations with biomass, flowering time, and tiller count using LMMs. As was

suggested in a trait PCA, all three traits had negative genetic correlations with rust severity. Flowering

time had the strongest correlation (-0.410) followed by tiller count (-0.342), and biomass (-0.254). To
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understand the physical relationship between traits, we examined overlap between 11834 GWAS outliers

for rust severity with 12231 GWAS loci for other traits identified in Lovell et al. (Lovell et al. 2021),

including biomass, survival, and climate-associations. We merged GWAS outliers into 3236 rust-related

loci and 8643 biomass, survival, and climate loci using 20kb windows around each SNP to define linkage,

since that is the typical inflection point at which linkage disequilibrium decay flattens (Lovell et al. 2021).

In both northern and southern GWAS, about half of rust loci (North = 1486/2961, South = 141/275)

overlapped with climate, biomass, and survival loci.

To test if this number of overlaps could be attributable to chance we used bootstrapping to permute the

locations of rust-related loci throughout the genome. In 100,000 permutations, we did not observe any

cases where the number of overlapping loci was greater than the observed numbers in northern GWAS (p

< 0.00001), and just two cases in southern GWAS loci (p = 0.00002), so we can infer that there was

significant concordance between rust GWAS outlier regions and those for other switchgrass traits (Figure

S6). Overlapping loci were not strongly enriched for either fitness measured by end of season biomass- or

climate-related traits in the North (1.649% fitness related traits in the overlapping set versus 1.473% in

the original set). However in the South, only one rust locus overlapped with a biomass-related locus

(0.709%). The loci with the highest scores for both rust severity (-log(p) > 10) and other traits (bf > 10)

were on chromosomes 1N, 2K, 3K, and 3N. These are linked to genes involved in cellular signaling

pathways, including a MYB gene on chromosome 1N and SEC14-like genes on both chromosomes 2K

and 3N (Table S2).

Discussion

Predicting whether a host or parasite will be more successful in a coevolutionary arms race is a challenge

that requires understanding the genetic makeup of both organisms, as well as the environmental context.

Theory holds that parasites with short generation times will locally adapt across the geographic range of

the host more quickly than the host can evolve defenses (Gandon and Michalakis 2002). However, few

systems have been studied under natural conditions, and little is known about how host genetic

associations can differ between locally adapted parasite populations. In this study we followed natural rust

infection cycles in switchgrass planted at multiple locations over three years to understand the genetic and

geographic structure of the pathosystem. We confirmed our predictions that rust would be genetically

differentiated across northern and southern regions, and found that it was broadly locally adapted to

switchgrass genotypes sourced from those regions using a version of a reciprocal transplant experiment.
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Further, we found that earlier results using QTL mapping were recapitulated with GWAS, showing

different patterns of genetic association in northern and southern sites, and confirming the importance of a

QTL on chromosome 3N. The top candidate for this QTL is Pavir.3NG168388, a YSL3 metal ion

transporter ortholog. The higher resolution of GWAS allowed us to show that genes linked to top outlier

SNPs were enriched for different cellular functions across regions, although there is no clear pattern in

enriched functions in northern or southern field sites. Further, we found that the switchgrass genes

associated to rust variation are often linked to climate-related loci, indicating that adaptation to this rust

species must be studied with its regional abiotic context.

Rust is locally adapted in northern and southern switchgrass populations.

Studying local adaptation in microbes poses a unique challenge, since the scale of what constitutes “local”

can vary by orders of magnitude depending on the species (Kraemer and Boynton 2017). Host-parasite

systems are useful in this respect, since the scale of local adaptation is constrained to the host range. As

such, a number of studies have uncovered local adaptation in host-associated microbes (reviewed in

(Kraemer and Boynton 2017), including a number in rust-plant pathosystems (ex. Thrall and Burdon

2002; Laine et al. 2014; Cassetta et al. 2023). However, it is rarer to uncover a host-pathogen system

wherein the host has been shown to be locally adapted to abiotic environmental conditions at a similar

scale as its locally adapted pathogen. In most models of parasite local adaptation, parasites are treated as

the dominant selective force on hosts, so pathogen local adaptation necessarily implies host maladaptation

(Lemoine, Doligez, and Richner 2012). However, in natural systems, plants experience a mosaic of

selection from both biotic and abiotic factors that may result in intermediate cases. In Holcus lanatus, for

instance, researchers found that local plants showed greater infection from a rust fungus, but overall

greater fitness than foreign transplants, probably since rust infections occurred later in the plant life cycle

and therefore had a smaller relative fitness effect (Crémieux et al. 2008). In switchgrass, rust infection

causes clear damage to plants, and is negatively correlated with biomass, a proxy for fitness

(VanWallendael et al. 2020). However, even stronger abiotic selective events appear to play an essential

role in switchgrass local adaptation. Freezing events prevent southern switchgrass genotypes from

invading northern regions, causing substantial mortality in some years (Lovell et al. 2021). Since the rust

impact on fitness is proportionally lower, lower rust disease load of southern switchgrass genotypes

grown in the north has negligible fitness benefit compared to the strong negative selection imposed by

freezing. This finding is consistent with predictions that parasites often evolve to more moderate levels of

damage to hosts over time (Lenski and May 1994), and suggests that a common portrayal of host-parasite

local adaptation as a zero-sum arms race is oversimplified.
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Measuring rust local adaptation depends on our capacity to show that rust populations are different across

the regions of interest. Historical models such as the “everything is everywhere, but the environment

selects” adage assume very limited barriers to dispersal in microbial species, with local environmental

conditions the main determinant of success of particular species or populations (Baas-Becking 1934).

Improved methods of detection have helped to delineate the actual dispersal ranges of many species

(Golan and Pringle 2017). In rust species, spore dispersal can sometimes occur over intercontinental

distances (Hovmøller, Thach, and Justesen 2023), but long-distance dispersal is less likely to explain

consistent seasonal variation. Environmental selection after dispersal may occur directly through rusts’

freezing susceptibility, or indirectly through range limits of susceptible hosts. While many cereal rusts

have two hosts corresponding with different life stages (Ono 2002), the alternate host is not definitively

known for switchgrass rust (Demers et al. 2017). Our results show a difference in rust populations

corresponding approximately with 42o N latitude, or USDA Plant Hardiness Zone 6a (“2023 USDA Plant

Hardiness Zone Map”). While the exact position of the division may shift according to yearly climatic

variation, consistent results in common garden studies indicate that it is an important division for fungal

variation. Since we previously found evidence for a North-South division in the non-rust switchgrass

leaf-associated fungal microbiome (VanWallendael et al. 2022), it is more likely that rust population

differences are driven by direct environmental selection, rather than through differences in primary or

secondary hosts.

The genetic basis for resistance differs across regions

While many phenotypic traits have a complex genetic architecture, with potentially hundreds of

contributing alleles, disease resistance is notable since it is often attributable to one or a few large-effect

genetic loci. In qualitative resistance, variation in just one or two R-genes such as NB-LRRs can

completely prevent infection by a pathogen (Eitas and Dangl 2010). In this study, we saw that variation in

disease severity was associated with numerous genetic loci across the genome. This pattern is more

commonly associated with quantitative resistance, when numerous genes contribute to variation in

disease, often without a clear link to the plant hypersensitive immune response (González, Marcel, and

Niks 2012). While we saw that rust severity was associated with variation in several potential immune

receptors, we found many other genes with less clear links to disease resistance. Some of these genes may

be important candidates for improving quantitative resistance to switchgrass rust, but others may be

artifacts of strong population structure in switchgrass. Additionally, alternative mechanisms for avoiding

disease may result in a more complex trait architecture.
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In addition to the complexity of the underlying genetic architecture, our ability to identify causative loci

was impacted by the high level of population structure among major groups of switchgrass (Gulf,

Atlantic, Midwest). Population structure is a major challenge for GWAS (Berg and Coop 2014). When

traits show greater variation among than within populations, many neutral loci that differ in allele

frequencies among populations can be spuriously associated with unrelated traits. In an attempt to

mitigate this issue, we used a strong correction for population structure by including ten principal

components of genetic variation as covariates in our model. We also used a conservative

Bonferroni-adjusted cutoff to correct for multiple testing. In contrast to our current study, our previous

QTL mapping results (VanWallendael et al. 2020) do not suffer from population structure bias and thus,

provide a useful benchmark for comparison. Since we recovered the two large-effect loci Prr1 and Prr2

in the north, and found a similar north-south divergence in their association, we are confident that many

large-effect GWAS loci are likely true-positive associations. Using a kinship matrix as a covariate in a

mixed-effect model can also help correct for population structure, but we saw very similar results using

this method as using PCs.

The simplest genetic associations to disease traits involve plant pathogen resistance receptors. The

gene-for-gene model of plant disease resistance was originally developed in a flax-rust system, and

describes coevolution between plant resistance (R) genes that encode immunological resistance, and

pathogen avirulence (Avr) genes that encode virulence factors (Flor 1956). R genes that have been

successfully cloned often include nucleotide-binding leucine-rich repeat proteins (NB-LRRs; McHale et

al. 2006). Avr genes often encode pathogen effectors, proteins that can dismantle host defenses. Upon

binding a pathogen effector protein, or a host protein targeted by an effector, the NB-LRR receptor

undergoes a conformational shift to an ATP-bound state that triggers the initiation of the hypersensitive

response and apoptosis of infected cells (Shao et al. 2019). While our study found outlier loci linked to

several genes with LRR domains that may act as R-genes, most of the loci were linked to genes without

clear associations with R-gene resistance.

An alternative strategy for resisting fungal infection is the production of antifungal specialized

metabolites (Piasecka, Jedrzejczak-Rey, and Bednarek 2015). Specialized metabolites can be

constitutively produced, or produced in response to receptor-binding with a pathogen-produced molecule.

Production of antipathogenic compounds typically involves a greater number of genes controlling

different aspects of the production, movement, and storage of specialized metabolites (Corwin and

Kliebenstein 2017). More generalized pathogen resistance through metabolites could be especially

selectively favored when pathogen populations evolve rapidly, since single R-genes would be quickly
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defeated (Hulse et al. 2023). Our results suggest a polygenic basis of adaptation, and we found several

genes related to the production of specialized metabolites. Of particular note was an overrepresentation of

terpenoid cyclases in genes linked to outliers in the north. We found an enrichment of copalyl diphosphate

synthases, crucial intermediaries in biosynthesis pathways that produce cyclic and di- terpenoid

compounds, many of which have known antifungal properties in switchgrass (X. Li et al. 2023). In maize,

the gene An2 encodes a similar copalyl diphosphate synthase that is crucial for producing antifungal

phytoalexins (Vaughan et al. 2015; Ding et al. 2020). While further work will be needed to characterize

these genes in switchgrass, use of metabolite-mediated resistance may be an important component of

polygenic resistance in switchgrass.

One surprising result we found was that the average effect sign of GWAS associations differed for top loci

across regions. In SNP calling, the most common allele in a panel is referred to as the major allele, and all

other alleles as minor alleles. A trait that has a lower value in individuals with a homozygote major allele

and higher value with the heterozygote minor allele would have a positive effect sign, and vice versa.

Since deleterious alleles are selectively purged from populations, major alleles should be more typically

associated with lower disease, resulting in a positive effect sign. GWAS in human disease follows this

pattern, showing that minor alleles are more likely to contribute to higher disease risk (Kido et al. 2018).

Our finding that top outliers in the north tend to have lower disease with minor alleles may indicate that

alleles leading to resistance to northern rust populations have been prevented from sweeping to higher

levels in switchgrass populations, possibly because they are only associated with resistance in one region,

or because they are linked to other alleles that result in lower fitness.

Outlier loci are shared with fitness and climate associations

One expectation of local adaptation is that trade-offs that lead to fitness differences across environments

are produced by genes responding to multiple types of environmental stress (VanWallendael et al. 2019).

When stress-response genes are linked, or when genes have pleiotropic effects, a trade-off locus can cause

high fitness in a locally adapted environment, but low fitness in a foreign environment. Alternatively,

conditionally neutral loci, loci that contain genes with a benefit in one environment but no fitness effect in

the other, could combine to produce the pattern of local adaptation (Wadgymar et al. 2017). If trade-off

loci are prevalent, we would expect that QTL for multiple environmental stressors would co-locate in the

genome. We tested this assumption by uncovering overlaps between loci associated with rust resistance

and loci associated with other traits such as climatic niche, biomass, and survival. We found more

overlaps between outlier loci in both rust damage and other traits than would be expected if each were

independently distributed throughout the genome. While this pattern does not distinguish between
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gene-level linkage and pleiotropy, we find support for the hypothesis that locally adaptive trade-offs can

be traced to loci with responses to multiple types of stress. However, an alternate explanation is that loci

associated with climate, biomass, or survival are actually rust resistance loci, since variation in rust

covaries to some extent with each of these variables. Further manipulative experiments will be needed to

distinguish between these possibilities.

Loci that were most strongly associated with both variation in rust severity as well as climate associations

mostly contained genes involved in cellular signaling, including a MYB transcription factor and two

SEC14-like genes. Since many cellular signals are shared between stress response pathways, changes in

these genes can have cascading effects for numerous stress responses (VanWallendael et al. 2019). SEC14

proteins are lipid transfer proteins, involved in membrane trafficking through the Golgi body and

endosome (Huang, Ghosh, and Bankaitis 2016). MYB transcription factors are numerous, but many

function as crucial intermediates in responses to biotic and abiotic stress (Dubos et al. 2010). Elucidating

the function of these genes in switchgrass will be an important step in understanding the genetic basis of

local adaptation to biotic and abiotic stress in this species.

Conclusion

We show that locally adapted switchgrass ecotypes are infected by a pathogen that is itself locally

adapted. We predict that other systems wherein abiotic selection on the host is greater than that imposed

by the pathogen may show a similar pattern. Genetic associations in different geographic regions suggest

distinct physiological bases to the plant-pathogen relationship in line with local adaptation. Understanding

the evolutionary drivers of host-pathogen relationships will be essential to predict disease management

challenges, especially as climate change stresses plants and alters pathogen populations. For breeders

focused on improving crop resistance, our results uncover potentially useful fungal disease-associated

genes in switchgrass, and emphasize the challenge of relying solely on large-effect resistance genes in a

fluctuating world.
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