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Abstract

Introduction: White matter hyperintensities (WMH) in Alzheimer's disease (AD) have traditionally been
associated with cerebrovascular diseases. Amyloid [ (AB) deposition reportedly contributes to WMHS;
however, this relationship remains unclear in dementia-free subjects with cognitive complaints (CC). Here,
we explored the relationship between WMHs and cardiometabolic and Af blood biomarkers in a
community-based cohort of Latin American CC participants.

Methods: We recruited 112 individuals with CC (69 — 92 YO, 90 females) with available plasma A
biomarkers and cardiometabolic markers (systolic — diastolic blood pressure and glycaemia). WMHs were
guantified using a lesion segmentation tool based on SPM12 and segmented using the John Hopkins
University (JHU) Atlas and ALVIN segmentation for periventricular and subcortical white matter. Linear
multiple regression models were fitted to assess total WMH lesions and the segmented tract, using

demographics, cardiometabolic, and A blood biomarker measures as independent variables.

Results: After multiple comparison corrections, diastolic blood pressure was associated with WMHS,
specifically in the right anterior thalamic radiation, left cingulum, minor forceps, and subcortical ALVIN
segmentation. Glycaemia was associated with WMH volume in forceps major, forceps minor, and right
fronto-occipital fasciculi. Conversely, A blood biomarkers and systolic blood pressure showed no
association with WMH overall or in specific tracts.

Conclusion: Our findings suggest that, in dementia-free CC individuals, WMH volume was more related to
cardiometabolic factors, whereas AP blood biomarkers might be of less relevance. Dementia prevention
strategies in individuals might be a useful focus for managing high peripheral vessel resistance and
endothelia damage due to hypertension and hyperglycaemia.

Keywords: white matter hyperintensities; dementia-free cognitive complaint individuas; AB blood

biomarkers; cardiometabolic factors
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Introduction

Dementia is highly prevalent in the aging population, with Alzheimer's disease (AD) being the most
common form [1]. AD progresses along a continuum, from cognitive complaints (CC) to dementia. There
is now substantial evidence to indicate that earlier detection of AD provides an opportunity to slow disease
progression through the administration of medication and implementation of lifestyle changes. However,
there is currently no cure for AD, and most therapies are focused on providing only modest relief for
symptomatic stages of the disease. Consequently, there is a significant motivation to identify the disease in
its preclinica stages [2] as studying prevention and therapy at these stages may provide better

opportunities for therapeutic success.

Currently, the distinction between normal aging and CC and its progression to AD is subtle [3]. There is
ongoing work on dementia biomarkers to detect the earliest changes associated with AD before clinical
symptoms can be detected via clinical evaluation and neuropsychological tests to establish whether these
symptoms represent prodromic stages of the disease, particularly if CC non-demented individuals are in
the early stages of AD dementia. Individuals without dementia with CC can be broadly classified as having
subjective cognitive decline (SCD) or mild cognitive impairment (MCI), based on neuropsychological
tests or informant-based surveys [4], [5], [6]. The rationale for SCD is that, in the absence of aobjective
neuropsychological deficits, individuals can perceive a change in their memory and/or other cognitive
abilities relative to their previous level of performance [7], [8], while MCI is characterised by a CC
associated with an objective cognitive impairment. Nevertheless, the natural history and disease
mechanisms of AD and related disorders remain poorly understood. Scarce resources are available to
scrutinise patients as early as needed and the use of integrative approaches combining standardised,

repeated clinical investigations and cutting-edge biomarker measurementsis limited [9].

There are currently several ongoing investigations into how neuroimaging biomarker signatures may

corroborate CC as part of the AD continuum [4]. This research has identified useful biomarkers for
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identifying structural brain changes related to CC. White matter hyperintensities (WMHSs) are particularly
important in this context given their high prevalence in the aging population, as well as their potential role
as early indicators of dementia pathophysiology, although their pathogenesisis not well understood.

WMH are commonly detected using Fluid-Attenuated Inversion Recovery (FLAIR) magnetic resonance
imaging (MRI). In FLAIR images, areas of higher signa intensity indicate prolonged relaxation times
owing to an increase in bound water within the tissue [10]. WMH have further been associated with an
increased risk of general dementia and AD in the general population [11], [12], athough their exact
contribution to the pathophysiology of dementia is still being explored (Murray et a., 2012). WMH are
considered a hallmark feature of subclinical cerebrovascular disease [13], that may eventually lead to long-
term neurological deficits or cognitive decline [14]. In this context, traditional risk factors for
cardiovascular diseases (hypertension, diabetes, and others), including lifestyle behaviours such as
smoking, diet, and physical activity, have been linked to the emergence of WMHSs [14], [15]. For example,
hypertense individuals often have significantly worse cognitive function, which is associated with WMH
load (Garcia |Alberca et a., 2020). Similarly, diabetes mellitus has been associated with a greater overall
WMH burden [16]. Hypertension, diabetes, and other lifestyle factors are known to damage cerebral
vessels through multiple mechanisms (mostly affecting blood-brain  barrier integrity and
neuroinflammatory processes), ultimately resulting in the emergence of WMHSs, aong with other
cerebrovascular pathologies (e.g. lacunes, microbleeds, and enlarged perivascular space)[16], [17].
However, cardiometabolic factors may not be the only contributors to the development of WMH. There
have aso been suggestions that A and tau accumulation in preclinical AD may also contribute to the
occurrence of WMHs [18]. Indeed, recent findings have suggested that the primary origin of WMHSs is due
to AP and tau pathology and should be considered as main contributors to WMHs [19], [20]. Specifically,
WMHSs are more commonly associated with A PET deposition than with tau PET burden (Graff-Radford
et al., 2019). Indeed, some reports have indicated a positive association between Ap PET deposition and

WMH in the middle temporal and fusiform regiong 21].
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Furthermore, there is evidence to suggest that while WM HSs are primarily associated with cardiometabolic
risk and neurodegeneration, AD-specific pathways may contribute to their formation in a regionaly
specific manner. For example, phosphorylated CSF tau (p-tau) has been linked with temporal lobe WMHS,
while CSF AP (AP 42/Ap 40 ratio) has been associated with parietal lobe WMHS[22]. These findings raise
the question of whether the observed WMHSs are due to cardiometabolic risk factors, AD pathophysiology,

or amixture of both in preclinical AD, such as CC.

The current study aims to address this shortcoming by investigating the relationship between WMHs and:
i) AD blood biomarkers (Ap), as well as ii) cardiometabolic risk factors (arterial blood pressure and
glycaemia) in a community-dwelling cohort with non-demented CC. We further hypothesised that
cardiometabolic factors would largely determine the WMH load in SCD with AD blood biomarkers, with

only asmall additiona effect on the WMH load.

Material and methods

Participants

We included 112 individuals (90 females) selected from a Chilean CC non-demented community-based
cohort (GERO Chile)[23]. The inclusion criteria for this cohort were adults > 70 years old, not diagnosed
with dementia, with self-declared cognitive complaints or those declared by an informant, and home-
dwelling (not living within a care facility). Participants were identified through a household census, and
the evaluation protocol was based on a multidimensional approach, including sociodemographic,
biomedical, psychosocial, neuropsychological, neuropsychiatric, and motor assessments. Neuroimaging,
blood, and stool samples were also obtained (see [23] for an exhaustive description of the protocoal). All
participants underwent neurological evaluation to verify that they fulfilled the inclusion criteria.

The neuropsychological evaluation in this cohort included the Montreal Cognitive Assessment (MoCA)
test, validated for the Chilean population, for which the optimal cut-off point for MCl was < 20, with
sensitivity and specificity rates of 75% and 82% for aMCl and 90% and 86% for mild dementia,

respectively [24]. In addition, all of these individuals had the following available data: total WMH lesions
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in FLAIR MRI images, as well as the following systemic biomarkers available in the database: systolic
blood pressure, diastolic blood pressure, glycaemia, and the blood biomarkers AB42 and AB40. Based on
AP indexes, we cal culated the A42/40 ratio, which was used for the final analysis.

The GEROCHhile project was approved by the Scientific Ethics Committee of the Eastern Metropolitan
Health Service of Santiago de Chile. Informed consent was obtained from all the participants, as approved

by the same committee.

MRI acquisition and processing

MRI T1IW and FLAIR MR images were obtained with the following acquisition parameters:
TIWMPRAGE: TR: 1710 ms, TE: 2.25, FoV: 224 mm, voxel size: 1.0 x 1.0 x 1.0, slice thickness: 1.0 mm,
flip angle: 8°, and FLAIR: TR: 8000 ms, TE: 90 ms, Tl: 2500 ms, FoV: 220 mm, voxel size: 0,7 x 0,7 x 4,0
mm, slice thickness: 4,0 mm, flip angle: 150°. Images were acquired using a Skyra 3T scanner (Siemens)
at the Neurosurgery Institute of Dr. Alfonso Asenjo (Santiago, Chile).

The images were preprocessed for movement correction and field inhomogeneities and registered in the
subject’s space using structural Tlw images. WMH segmentation was performed using the lesion
prediction agorithm (LPA) (http://www.applied-statistics.de/lst.html) implemented in the LST toolbox
version 2.0.15, for SPM12 (https://www.fil.ion.ucl.ac.uk/spm). To obtain better segmentation results,
individual FLAIR images were used as the only input to obtain lesion probability maps[25]. These maps
were visually inspected per subject to check for possible artefacts and were discarded when artefacts were
found. The probability maps were thresholded using a default value of 0.1 and normalized. The total WMH
volume (mm®) was extracted from the subject-level WMH maps. Subsequently, WMH were segmented
based on two white matter fibre bundle atlases: the John Hopkins University white matter tractography
atlas [26], [27], [28], for which 20 tracts were identified probabilistically by averaging the results of
running deterministic tractography on 28 normal subjects; and the ALVIN (Automatic Lateral Ventricle
Atlas DellneatioN) atlas, a fully automated algorithm which works within the SPM to segment latera
ventricles from structura MRI images, and has been validated in infants, adults, and patients with
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Alzheimer's disease (ICC > 0.95). ALVIN is insensitive to different scanner sequences (ICC > 0.99, 8
different sequences 1.5T and 3T), but sensitive to changes in ventricular volume [29]. This segmentation
identified periventricular and subcortical white matter regions. Finally, all measurements were normalised
to the total intracranial volume (T1V) for comparison. This procedure was performed automatically using
the VBM8 Toolbox of SPM 12, which segments the voxels of T1-weighted images into grey matter, white
matter, and cerebrospinal fluid. The sum of these values represents the TIV. As an outcome of this process,
we obtained the total lesion load of the WMH, as well as the lesion load of the WMH per segmented tract

(in mm3), based on the atlases described and normalised by the total intracranial volume.

Blood samples and cardiovascular measurements

Systolic and diastolic blood pressure were measured during the cardiovascular cohort evaluation. These
indices were obtained at rest from one measurement on the left arm without crossing the legs, with the feet
completely supported on the floor. Both arms were supported by a closed surface. Measurements were
performed using a digital blood pressure monitor model UA-611A (A&D Instruments Limited, UK).
Glycaemia samples while fasting were obtained in the subject’s home through a vacuum system with
venous access of 21 G or 23 G, depending on the subject’s venous calibre. These samples were processed
at the Central Laboratory of the Hospital del Salvador, Santiago, Chile.

For neurodegenerative biomarker assessment, blood was collected in a separate session, one week after
glycaemia acquisition and after an overnight fast. Samples were divided into aliquots and frozen at -80°C.
These samples were the sent to Pittsburgh, Pennsylvania, to conserve the cold chain and under permanent
temperature monitoring until processing. Plasma biomarkers were quantified using a Neurology 4-Plex E

(#103670) commercial assay kit (Quanterix, Billerica, MA, USA).

Satistical analysis
Demographic and clinical descriptive statistics were used to estimate the mean, standard deviation (SD),
min, and max. The variables included sex, age (years), education (years), available biomarkers, and WMH
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lesion load. To establish the relationship between WMH lesion load and selected biomarkers, we used a
linear multiple regression model to fit the total lesion load WMH per segmented tract. Post-hoc Holm—
Bonferroni test was performed for multiple comparison correction. For a better representation of the
model, the lesion load of the WMH was transformed from mm® to ].ng and then, to a natural logarithmic
scale. The variables used to fit the model were age (years), sex, years of formal education, Ap42/40 ratio,
systalic and diastolic blood pressure, and glycaemia.

We applied traditional threshold levels of p < 0.05 for the total model and per specific biomarker. All
statistical procedures were performed using the STATA/SE 17.0, software package (StataCorp LLC,

https://www.stata.com).

Results

Demographics, lifestyle factors and AD biomarkers

The average age of the participants was 76.32 years (SD = 5.18), with an average years of formal
education of 9.28 years (SD = 4.72). The average MoCA test score was 21.64 (SD = 4.47). The cutoff
score for the Chilean adaptation of this neuropsychological assessment for SCD to be considered was > 21.
These findings confirm that our cohort predominantly aligns with the cognitive complaint spectrum,
including SCD and MCI, in individual s without dementia.

Regarding blood pressure and blood glucose levels, our samples exhibited, on average, level 1 systolic
hypertension (139.61 mmHg) and normal diastolic blood pressure (73.45 mmHg), according to the

American Heart Association Council (https:.//heart.org/bplevels). The fasting glycemia average was 96.29

mg/dL, which is considered normal, considering that the threshold to determine hyperglycaemia according
to the CDC guidelines is 100 mg/dL (https://www.cdc.gov/diabetes/basi cs/getting-tested.html).

Amyloid - beta biomarkers

The average blood concentration of AB42 was 6.643 pg/mL (SD = 1.808), while that for A340 was 109.39
(SD = 21.476). Even though reference intervals for plasma biomarkers of AD have not yet been
established, some evidence has established that the reference intervals for AB42 and Ap40 are between
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2.72-11.09 pg/mL and 61.4-303.9 pg/mL, respectively. The average for Ap42/40 was 0.059 (SD = 0.012),
and the reported reference interval for this index was 0.022—0.064[30]. Based on this evidence, our group
presented normal levels of these biomarkers.

The demographic, cardiometabolic and A biomarkers summary statistics are presented in Table 1.

White Matter Hyperintensities

The volume of WMHSs was highly variable across all tracts, with the thalamic radiations (left: mean =
1287324 um®, SD = 908302; right: mean = 868533 um®, SD = 555540) and corpus callosum (forceps
major: mean = 1055505 pm?®, SD = 780131; forceps minor: mean = 532523 um?®, SD = 416197) having the
highest WMH lesion volumes, while left cingulum hippocampal (mean = 8938.3 um®, SD = 18185) and
right temporal superior longitudinal fasciculus (mean = 7883 um®, SD = 23588) showed the lowest mean
WMH lesion load.

For the ALVIN segmentation, the periventricular region showed a higher WMH lesion volume (mean =
5898777 um3, SD = 5278707) compared to the subcortical regions (mean = 3901206 pm?, SD = 5074165).

Descriptive statistics for al segmented tracts in both atlases are presented in Tables 2 and 3.

Table 1: Demographics and clinical characteristics of the study participants (n = 112).

Variable Mean SD Min M ax
Age (years) 76.321 5.180 69 92
Education (years) 9.285 4.725 0 24
ABetad? (pg/mL) 6.463 1.808 1.376 11.810
ABetad0 (pg/mL) 109.390 21.476 58.749 | 196.607
ABetad2/40 ratio 0.059 0.012 0.015 0.092
NfL (pg/mL) 30,324 14,061 11,317 96,606
GFAP (pg/mL) 141,101 71,016 36,982 | 503,728
p-tau217 (pg/mL) 0.251 0.219 0.025 1,728
Systolic blood pressure (mmHg) 139.616 20.948 90 192
Diastolic blood pressure (mmHg) 73.455 11.042 47 103
Glycemia (mg/dL) 96.294 25.432 66 258
Total MoCA Score 21.642 4.475 11 29
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Table 2: Descriptive statistics for al tracts based on John Hopkins University (JHU) white matter

segmentation.

JHU Tract lesion volume (um3) Mean SD Min M ax

Total WMH 7909513 | 7126363 | 630436.9 | 4.26E+07
Left thalamic radiation 1287324 | 908302.3 | 97799.31 | 5.16E+06
Right thalamic radiation 868533 | 555540 | 99636.33 | 2.95E+06
Left corticospinal 441534 | 524114.8 0 | 2.83E+06
Right corticospinal 329599.2 | 404809.5 0 | 1.96E+06
Left cingulum 144166.8 | 256810.5 0 | 1.82E+06
Right cingulum 54571.34 | 136810 0 | 1.02E+06
Left cingulum hippocampal 8938.3 | 181855 0 | 1.08E+05
Right cingulum hippocampal 16306.33 | 33948.66 0 | 2.06E+05
Corpus callosum forceps major 1055505 | 780131.2 | 70949.38 | 3.68E+06
Corpus callosum forceps minor 532523.2 | 416197 | 64958.2 | 2.30E+06
Left inferior fronto occipital 585685.6 | 496653.6 0 | 2.55E+06
Right inferior fronto occipital 747015.7 | 747902.2 0 | 4.25E+06
Left inferior longitudinal 272862.8 | 352782.9 0| 1.97E+06
Right inferior longitudinal 85426.13 | 184484.7 0| 1.21E+06
Left superior longitudinal 805270.2 | 1498981 0 | 9.41E+06
Right superior longitudinal 546264.4 | 1107940 0 | 8.39E+06
Left uncinate 61768.67 | 91520.29 0 | 6.85E+05
Right uncinate 58744.72 | 57752.86 0 | 2.95E+05
Left temporal superior longitudinal 5883272 | 3179.11 0| 2.37E+04
Right temporal superior longitudinal 7883.78 | 23588.38 0 | 1.74E+05

This segmentation includes 20 tracts that were identified probabilistically by averaging the results of
running deterministic tractography on 28 normal subjects. All measurements are shown in cubic
micrometre (u3). After, measurements were transformed in a natural logarithmic scale to run multiple

regression models.

Table 3: Descriptive statistics for all tracts based on the Automatic Lateral Ventricle Atlas DellneatioN

(ALVIN) atlas, a fully automated algorithm which works within SPM to segment the lateral ventricles

from structural MRI images.
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ALVIN segmentation volume

(um3) Mean SD Min M ax
Periventricular 5898777 | 5278707 | 116813.1 | 3.70E+07
Subcortical 3901206 | 5074165 0 | 3.49E+07

All measurements are shown in cubic micrometres (um3). Subsequently, measurements were transformed

in anatural logarithmic scale to run multiple regression models.

Relationship of WMH to age, cardiometabolic and amyloid blood biomarkers

We fitted multiple linear regression models to estimate the association of age, cardiometabolic and Ap
blood biomarkers on WMH lesion loads. After Holm-Bonferroni’s multiple comparison correction, age
remained the most important factor in explaining overal WMH. We aso found that Diastolic blood
pressure had a significant association with WMH in right anterior thalamic radiation ($=0.305, p=0.008),
right corticospina tract (f=0.285, p=0.027), left cingulum ($=0.364, p=0.013), corpus callosum forceps
minor (f=0.287, p=0.013), and subcortical regions ($=0.328, p=0.007).

Further, glycaemia was found to have a significant association with WMHSs in the corpus callosum forceps
major (3=0.287, p=0.018), forceps minor (f=0.253, p=0.028), and right inferior fronto occipital fasciculus
(p=0.286, p=0.024). However, because most participants were not hyperglycaemic, we conducted a post-
hoc analysis only on participants with glycaemia levels of > 100 mg/dL. A total of 35 subjects were
included in the post-hoc analysis. In this smaller group, the association did not survive multiple
comparisons, likely due to the small sample size. However, there was still a statistical trend for two of the
three tracts included in this analysis, even after excluding people without hyperglycaemia, specifically the
forceps major (p=0.082) and the inferior fronto-occipital fasciculus (p=0.079).

Notably, neither systolic pressure nor the AB42/40 ratio was significantly associated with any WMHs. The
regression indices for each fitted model and their adjusted p-values after the post-hoc test are presented in

Online Resources 1 and 2. Graphical representations of the results are shown in Figures 1 and 2.
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Discussion
Our study investigated the relationships between WMHSs, AD blood biomarkers, and cardiometabolic
factors in dementia-free individuals with CC. Our findings suggest that, in addition to age, diastolic blood

pressure and glycaemia are associated with WMH lesion load in several white matter fibre tracts.
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Importantly, plasma A levels were not associated with WMH loads in any tracts. These findings suggest
that the WMH load is predominantly driven by cardiometabolic risk factors, and not by incipient amyloid
pathophysiology in non-demented subjects with CC.

Hypertension and WMHs are associated with cognitive impairment [31]. WMHs are related to
cerebrovascular disorders (Balestrieri et a., 2021), because risk conditions such as hypertension can
compromise the cerebral microcirculation via microvascular injury, increased vascular stiffness, increased
myogenic tone, microbleeds, blood-brain barrier disruption with neuroinflammation, and glymphatic
system impairment [32]. This damage to the microvasculature structure has been associated with cognitive
performance and WMH in older hypertensive individuals [33], and is further known to be related to
cognitive impairment [34], [35], [36], [37]. Interestingly, in our study, only diastolic blood pressure was
associated with WMH lesion volume. The reason for this might be that, although systolic blood pressure
linearly increases with age, diastolic blood pressure usually decreases after the age of 55 years, with a shift
from mixed or diastolic hypertension to an increased frequency of isolated systolic hypertension in older
age [38]. This might explain our results, as persistently high diastolic blood pressure in late life may be
more predictive of WMHs than a decrease in systolic blood pressure. However, the exact factors that might
explain this dissociation remain unclear and require further investigation.

Our glycaemia findings are also intriguing in this context. It has been well established that hyperglycaemia
and type 2 diabetes are associated with white matter lesions (WMLS)[39], increasing WMHSs loads [40],
[41], [42] and overal white matter microintegrity [40], [43], [44]. The most likely explanation for these
hyperglycaemic changes in WMH volume is that they are related to diabetic microangiopathy in small
cerebral vessels [45]. Indeed, the pathology of diabetic complications has high similarity with vascular
changes, resulting in endothelial dysfunction and atherosclerosis. Diabetes is also arisk factor for vascular
diseases and various comorbidities, resulting in the diagnosis of “panvascular disease”[46]. Therefore, our

findings regarding glycaemic indices and WMHSs are likely due to microvascular compromise, ultimately

15


https://doi.org/10.1101/2024.06.10.598296
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.10.598296; this version posted June 11, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

sharing mechanisms with the effects of diastolic blood pressure on the cerebral microvasculature and
vascular peripheral resistance.

In contrast, the results from plasma Ap biomarkers in WMH remain inconclusive, and the main evidence
that links AP deposition and WMHSs is based on PET, not plasma. One systematic review suggested that
PET Ap accumulation and WM Hs are independent, but additive processes [47], whereas other studies have
found associations between WMH burden and A biomarkers in cognitively unimpaired adults, MCI, and
AD subjects, with A burden in FDG-PET in temporal lobe regions [48], [49]. Most of the evidence
related to A plasma biomarkers was based on oligomerized amyloid-f (OAR) levels and their relationship
with WMHs lesion load. WMHs was shown to increase with age in that study, while OAp levels did not.
Further, log-WMHSs volume was positively correlated with OAB (r = 0.24, p = 0.02), and this association
was significant in the periventricular area [50].

To our knowledge, our cohort is the first to investigate whether WMHs in CC non-demented people are
related to plasma AB42/40 biomarkers. According to our results, AD blood biomarkers (represented in this
study by the AB42/40 ratio) are not associated with WMH volume in CC non-demented individuals. This
result is interesting, considering that we analysed data from a South American cohort of CC subjects with
sociodemographic features distinct from those of other previously reported cohorts. Instead, we propose
that microvascular damage generated by hyperglycaemia and hypertension likely contributes to the
emergence of WMHS, such as CC, in the early stages of dementia. We speculate that, based on previous
molecular imaging evidence, the effects of this microvascular damage in the brain, such as BBB
breakdown, oxidative stress, neuroinflammation, and glymphatic system impairment, could trigger Ap
accumulation and, consequently, tau aggregation in the brain parenchyma, due to the occurrence of
microvascular damage when the disease further develops. This hypothesis would be supported by evidence
that associates plasma AB42 with the presence of cerebral small vessel disease and more advanced
cognitive impairments (Qu et al., 2023), although it needs to be further investigated.

In terms of clinical implications, our findings reinforce three main points: 1) Hypertension and glycaemia
are related to structural changes in the CC. Thus, the early diagnosis of cardiometabolic risk factors is
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important in CC, not in demented subjects, to potentialy alleviate and influence the progression to MClI, or
even dementia. Careful monitoring and management of blood pressure in the elderly and in patients with
CC are essentia to reduce the incidence and progression of cerebrovascular disease and its consequent
cognitive decline [52].

At the same time, management of hyperglycaemic statesin old age, as well as the main drivers of diabetes-
related cerebral microvascular dysfunction, such as obesity and insulin resistance, are important.
Observational studies have suggested that diabetes-related microvascular dysfunction is associated with
higher risks of stroke, cognitive dysfunction, and depression. Cerebral outcomes in diabetes might be
improved following treatments targeting the pathways through which diabetes damages the
microcirculation [53]. Indeed, recent evidence suggests that selective inhibitors of the cytoplasmic enzyme
phosphodiesterase-5 (PDES5i), such as sildenafil, vardenafil, and tadalafil, which are vasodilator
medications, improve cognitive outcomes before chronic use [54], [55], reinforcing the idea that an
increase in cerebral peripheral resistance in the context of microvascular damage could play arole in age-
related cognitive decline. Further, MRI FLAIR and susceptibility-weighted imaging (SWI) sequences are
useful for detecting changes in white matter hyperintensities in patients with prodromal dementia [56].
Using automated processing tools to quantify microbleeds and WMHs, measurement of Virchow-Robin
space, and/or including a standardised visual Fazekas scale for measuring WMHSs could ensure the utmost
benefit is achieved from this technique in the context of SCD, to allow for the mitigation of potential
progression to MCI (Furtner & Prayer, 2021). Further, there is a need for a more integral approach to
cardiometaboalic factors in preclinical forms of dementia. Elevated blood pressure and hyperglycaemia
frequently coexist and are components of metabolic syndrome [57], which, in turn, is related to excessive
cortisol secretion due to psychosocial stress-induced hypothalamic-pituitary-adrenal axis activation and
Cushing's syndrome [58], [59]. We propose that a deeper analysis of the effects of glucocorticoids on the
cerebral microvasculature and BBB integrity, neuroinflammation, and glymphatic function in both animal

and human models could facilitate a more integrated approach to this phenomenon.
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Limitations

Our study is not without limitations. Considering the combination of biomarkers, we used a reasonably
large sample for this study. However, it will be important to corroborate our findings using an independent
larger sample size. This validation could further improve the accuracy of the fitted models, particularly for
patients with higher glycaemic indices. Dysglycaemiawas only present in asmall subsample of our cohort;
therefore, it is unclear whether these results are reliable and reguire further corroboration. Another major
limitation is that our sample showed a sex imbalance, with an overrepresentation of women. This potential
recruitment bias may have influenced the results, and it is therefore important to consider how sex affects
the contribution of cardiometabolic and AD blood biomarker factors. Another possible limitation is that the
biomarkers for AB pathology used in this study were based on blood samples. Blood biomarkers appear to
be strongly associated with CSF biomarkers [60]; however, they still need to be completely validated in
community-based samples. Finally, we did not study other neuroimaging markers, such as atrophy, in a
manner complementary to WMHs volume. This approach has been studied previously, allowing for the

multimodal comprehension of these markers in the context of the dementia continuum [61].

Conclusions

Our findings show that WMH in CC dementia-free individuals is more likely to be associated with
diastolic blood pressure and changes in glycaemia than A levels. Our results suggest that in the early
stages of cognitive decline, microvascular damage, an increase in vascular peripheral resistance, and/or
leakage of the BBB arose because of hypertension and hyperglycaemia, which could underlie the origin of
WMHs at this step of the dementia continuum. Overall, we suggest adopting a more integrated approach to
this vascular phenomenon to achieve a better understanding of these processes. Clinical scenarios, such as
metabolic syndrome, or a deeper study of the effects of chronic exposure to glucocorticoids in the brain
could be good models for further analysis.
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