

Elevated rates of molecular evolution genome-wide in mutualist legumes and rhizobia

Harrison L. T^{1,2}, Stinchcombe J. R¹*, Frederickson M. E¹*

*authors contributed equally

¹Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2 Canada

²Department of Biology, Queen's University, Kingston, Ontario, K7L 3N6, Canada

Corresponding author email: tia.harrison@queensu.ca

Key words: *legume, rhizobia, mutualism, symbiosis, molecular evolution*

1 Abstract

2 Rates of molecular evolution vary greatly among even closely related species. Although theory
3 predicts that antagonistic interactions between species increase rates of molecular evolution,
4 predictions for how mutualism affects evolutionary rates are mixed. Here, we compared rates of
5 molecular evolution between 1) mutualistic and non-mutualistic legumes, 2) an independent set
6 of symbiotic rhizobia and their non-symbiotic close relatives, and 3) symbiotic and non-
7 symbiotic clades within *Ensifer*, a diverse genus of bacteria with various lifestyles. We
8 assembled transcriptomes *de novo* for 12 legume species and then calculated dN/dS ratios at
9 orthologous genes in all species to determine if genes in mutualistic plants evolve faster or
10 slower than in their non-mutualistic relatives. We also calculated dN/dS ratios in symbiosis
11 genes known to be important for nodulation with rhizobia. We found that mutualists have higher
12 rates of molecular evolution genome-wide compared to non-mutualist legumes. We next
13 calculated dN/dS ratios in 14 bacteria species across the proteobacteria phylogeny that differ in
14 whether they associate mutualistically with plants, using previously published data. We found
15 that in most pairs, symbiotic rhizobia show higher dN/dS values compared to their non-symbiotic
16 relatives. Finally, within a bacterial genus with many well-characterized mutualist species
17 (*Ensifer*), we calculated dN/dS ratios in symbiotic and non-symbiotic clades and found that
18 symbiotic lineages have higher rates of molecular evolution genome-wide, but not at genes on
19 the symbiotic plasmid pSymB. Our results suggest that although mutualism between legumes
20 and rhizobia is associated with elevated rates of molecular evolution genome-wide, symbiosis
21 genes may be evolutionarily stagnant.

22

23

24 **Introduction**

25 A fundamental question in evolutionary biology is how species interactions contribute to
26 variation in rates of molecular evolution (Woolfit and Bromham 2003; Bromham 2009).
27 According to the Red Queen hypothesis, species interacting antagonistically will have higher
28 rates of molecular evolution because they are under constant pressure to evolve new defenses
29 against their enemies, or new counter-adaptations that overcome their victims' defenses (Stahl et
30 al. 1999; Brockhurst et al. 2014; Delaye et al. 2018). It is less clear how mutualism might impact
31 molecular evolution. On the one hand, mutualists might have higher rates of molecular evolution
32 than non-mutualistic species because they have to adapt to both a changing environment and a
33 changing partner (Lutzoni and Pagel 1997; Rubin and Moreau 2016). On the other hand, some
34 theory suggests that the more slowly evolving partner in a mutualism reaps the greatest rewards
35 (the so-called Red King hypothesis, Bergstrom and Lachmann 2003). Slower rates of evolution
36 are also expected if mutualist partners reach evolutionary stasis (Hembry et al. 2014; Barker et
37 al. 2017), when selection maintains interacting species near trait-matched fitness optima with
38 little further phenotypic change (Nuismer et al. 2013). In this scenario, stabilizing selection on
39 both hosts and rhizobia would result in fewer nucleotide substitutions in the genome, particularly
40 at symbiosis genes (Epstein et al. 2022). In addition, if most genetic variation in mutualist quality
41 is due to mutation-selection balance, a signature of purifying selection would be expected, at
42 least at symbiosis genes (Heath and Stinchcombe 2014). Although population genetic methods
43 can identify neutral and selective pressures on traits (Tiffin and Ross-Ibarra 2014; O'Brien et al.
44 2021), it is challenging to distinguish between stabilizing and purifying selection with population
45 genetic data (Charlesworth 2013). Here, we compare rates of molecular evolution between 1)
46 mutualistic and non-mutualistic legumes, 2) taxonomically diverse symbiotic and non-symbiotic

47 rhizobia, and 3) symbiotic and non-symbiotic clades within a single well-studied rhizobia genus
48 (*Ensifer*) to determine whether the legume-rhizobium symbiosis involves rapid or slow DNA
49 sequence evolution.

50 The facultative legume-rhizobium mutualism, in which leguminous plants exchange
51 carbon for fixed nitrogen provided by rhizobial partners, is an excellent system to test how
52 mutualism influences rates of molecular evolution. Rhizobia occupy specialized root structures
53 on legumes called nodules (van Rhijn and Vanderleyden 1995), and this symbiosis is generally
54 mutualistic (Friesen 2012) especially in low-nitrogen environments. The legume family
55 (Fabaceae/Leguminosae) is large, including around 19500 species (Azani et al. 2017), but not all
56 these species form nodules with rhizobia. Although some work suggests that nodulation in plants
57 has evolved multiple times after a single predisposition event (Doyle 2011; Werner et al. 2014),
58 recent phylogenomic analyses support the hypothesis that nodulation has a single evolutionary
59 origin, followed by multiple losses of the trait across the clade (Griesmann et al. 2018,
60 Parshuram et al. 2023).

61 There is also high variation in nodulation capabilities among bacteria. Rhizobia are
62 horizontally transmitted symbionts that are taken up from the soil by new legume hosts each
63 generation, meaning rhizobial lineages alternate between being plant-associated and free-living
64 in soil. Bacterial strains that have nodulation genes (*nod* genes) produce Nod factors that are
65 important for initiating nodule formation on plant roots. However, not all rhizobia with *nod*
66 genes can form nodules on all legume species; legumes have Nod factor receptors that must
67 recognize compatible Nod factors for a successful symbiosis to occur (Wang et al. 2018). The
68 development of nodules and nitrogen fixation are complex processes, requiring many genes (*nif*,
69 *fix*, etc.) that are often found together on a mobile genetic element such as a plasmid (Batstone

70 2022). Rhizobia can exchange these symbiosis genes or plasmids, and thus symbiotic ability,
71 through horizontal gene transfer (Epstein and Tiffin 2021; Rahimlou et al. 2021).

72 Many genetic changes that accompany transitions to mutualism have been identified in
73 endosymbiotic bacteria. For example, extremely tiny genomes are a common feature of
74 obligately endosymbiotic bacteria that are vertically transferred to new hosts (McCutcheon and
75 Moran 2012). These bacteria rely on their host for many functions and thus many genes are lost
76 in their own genome (Werneck 2002). Endosymbiotic bacteria also experience bottlenecks
77 each time they are passed down to a new host (Woolfit and Bromham 2003). The reduction in
78 population size leads to a decrease in genetic variation in the new population and a greater
79 chance that variants are fixed or lost due to this random sampling, leading to higher rates of
80 nucleotide substitution. Although rhizobia are also endosymbiotic within plant cells, they have a
81 free-living stage, are horizontally transmitted, and may gain nodulation abilities through
82 horizontal gene transfer, making it less clear how mutualism will impact genome and molecular
83 evolution. Associating with diverse plant species and spending some time in the soil without a
84 host might weaken host selection on the rhizobia genome (Sachs et al. 2011). Many of the
85 genomic signatures of coevolution might be observed only in symbiosis genes, if these genes are
86 commonly horizontally transferred into the genomes of non-symbiotic lineages (Epstein et al.
87 2022).

88 In plants, we might expect that many adaptive mutations would be necessary for the
89 evolution of nodulation, resulting in signals of positive selection in mutualist lineages. If
90 nodulation evolved only once near the base of the legume tree (Griesmann et al. 2018), strong
91 positive selection may have occurred in response to mutualists in the past, but may no longer be
92 detectable with population genetic methods. Previous work has shown that the evolution of

93 polyploidy in legumes likely pre-dated symbiosis and may have facilitated the evolution of
94 nodulation (Parshuram et al. 2023), suggesting that nodulation is not easily gained in multiple
95 lineages. Nonetheless, around 9% of legumes do not form nodules (Simonsen et al. 2017), with a
96 phylogenetic distribution that suggests multiple losses of this trait. When nodulation is lost, we
97 might expect relaxed selection on genes that were formerly important for symbiosis with
98 rhizobia and thus higher rates of molecular evolution at symbiosis genes in non-mutualistic
99 lineages. In addition, mutualism is expected to increase population sizes by allowing organisms
100 to thrive despite enemies, abiotic stress, or nutrient limitation (Afkhami et al. 2014; Weber and
101 Agrawal 2014). Consequently, purifying selection and positive selection (and therefore
102 adaptation) may be more effective in mutualists than non-mutualists because of their larger
103 population sizes.

104 We took advantage of the presence and absence of nodulation across legumes and
105 rhizobia to test whether mutualistic species evolve more quickly or more slowly than their non-
106 mutualistic relatives. We assessed molecular evolution in 1) six closely related pairs of
107 mutualistic and non-mutualistic plants (i.e., those that do and do not form nodules with rhizobia)
108 across the legume phylogeny , 2) seven pairs of symbiotic and non-symbiotic bacteria species
109 (strains that have *nod* genes and those that lack *nod* genes), and 3) a widespread genus (*Ensifer*)
110 that includes clades of legume symbionts and non-symbiotic bacteria with other lifestyles. We
111 generated *de novo* transcriptomes of 12 non-model legume species to calculate ratios of non-
112 synonymous to synonymous substitutions (dN/dS) at orthologous genes. We also calculated
113 dN/dS values from 14 bacteria species with sequence data deposited in NCBI and from a total of
114 104 strains in the *Ensifer* phylogeny. We compared dN/dS ratios between mutualistic and non-
115 mutualistic species genome-wide and at symbiotic genes involved in nodulation.

116 Methods

117 *Plant materials and RNA sequencing*

118 We searched several legume phylogenies and clades from the literature (including Zanne et al.
119 2014 and Azani et al. 2017) and used available nodulation data (Werner et al. 2014) to identify
120 six species pairs of mutualistic legumes and non-mutualistic close relatives. We categorized
121 three of the species pairs as a loss of nodulation because, within these pairs, the non-mutualistic
122 species occurred in a phylogenetic group where at least 90% of the tips were mutualist species. It
123 is unclear whether nodulation has been gained or lost in the other three pairs of species in our
124 analysis. Mutualist species in these pairs are found within a phylogenetic group where 56% of
125 the tips represent non-mutualistic legumes, although this group also includes many tips where the
126 mutualist status is unknown. These pairs could represent nodulation reversals (i.e. a loss
127 followed by a regain), but without more nodulation data, it remains unclear. The six legume
128 species pairs in our analysis are: *Senna italica* and *Senna didymobotrya* (Azani et al. 2017),
129 *Peltophorum africanum* and *Peltophorum dubium* (Haston et al. 2005), *Senna barclayana* and
130 *Senna occidentalis* (LPWG et al. 2013; Azani et al. 2017), *Dalea mollissima* and *Dalea mollis*
131 (McMahon and Hufford 2004; Zanne et al. 2014), *Calliandra eriophylla* and *C. humilis* (Souza
132 et al. 2013), and *Mimosa aculeaticarpa* and *Mimosa grahamii* (Simon et al. 2011) (Fig. 1, Table
133 1). Due to their shared evolutionary history, comparing closely related species reduces
134 differences between species except for their participation in mutualism. We searched the
135 literature for other traits in the focal species that might influence molecular evolution, including
136 geographic distribution, ploidy, and life history (annual or perennial) (Simonsen et al. 2017;
137 Parshuram et al. 2023), and found that species within pairs generally shared those traits (Table
138 1). All plants in our dataset likely form indeterminate nodules based on their placement in the

139 legume phylogeny and previous records of indeterminate nodules in the Caesalpinoideae,
140 Mimosoideae, and Papilioideae legume subfamilies (Andrews and Andrews 2017). We
141 obtained seed for these species from either the USDA-ARS Germplasm Resources Information
142 Network or the Kew Royal Botanical Gardens Millennial Seed Bank.

143 Because there are no available genomes for our focal legume species, we sequenced RNA
144 from the 12 legume species in our dataset. We grew one plant of each species in a growth
145 chamber with daytime temperature set to 28°C, nighttime temperature set to 19°C, and a light
146 period of 15 hours. We prepared all seeds for germination by nicking the seed coat with a razor
147 blade and incubating the scarified seed at 30°C overnight on wet filter paper in a petri dish.

148 *Senna occidentalis* and *S. barclayana* seeds were placed in boiling water for 10 minutes prior to
149 scarification. *Peltophorum*, *S. didymobotrya*, and *S. italica* seeds were treated with sulfuric acid
150 for 10 minutes (Alves et al. 2011) and rinsed with distilled water before scarification. All plants
151 were grown in sterile sand in Magenta boxes. Once a week, the bottom compartment of each box
152 was filled with a high-nitrogen fertilizer diluted to one-quarter strength (recipe in Zhang et al.
153 2020). We did not inoculate plants with rhizobia so that we could collect and compare RNA
154 from roots without nodules from both the mutualistic and non-mutualistic plant species. Previous
155 work has shown that association with rhizobia causes differential expression of many genes with
156 diverse functions, but symbiosis genes are still generally expressed in legumes even in the non-
157 symbiotic state (Afkhami & Stinchcombe 2016). Therefore, symbiosis genes are still captured in
158 transcriptomes from legumes without rhizobia (see Results, below). Plants were harvested for
159 root tissue after five weeks of growth or when the plant had 10 true leaves. Roots were rinsed
160 with water and a small amount of fresh root tissue was cut and stored in Eppendorf tubes. We
161 collected an average of 86 mg of tissue for all species except for the *Peltophorum* species for

162 which we collected 30 mg each. Tubes were flash frozen in liquid nitrogen and stored in a -80°C
163 freezer. We followed the Sigma Aldrich Plant Total RNA Kit instructions to isolate RNA and
164 obtained between 44.1 and 333 ng/ul of RNA per sample. Samples were submitted to Genome
165 Quebec for sequencing on the NovaSeq 6000 Sequencing System (PE100). We received
166 67,812,540 - 98,924,616 paired end reads per sample with an average quality of 36.

167

168 *De novo transcriptome assembly*

169 We checked the quality of the sequences with FastQC v0.11.9 (Andrews 2010). We cut adapters,
170 removed leading and trailing low-quality bases (below quality 3), and trimmed sequences to a
171 minimum length of 30 using Trimmomatic v0.39 (Bolger et al. 2014). We assembled *de novo*
172 transcriptomes for each species from the cleaned reads using RNAspades v3.15.2 (Bushmanova
173 et al. 2019) and Trinity v2.8.1 (Haas et al. 2013) with default parameters. We ran CD-HIT v4.8.1
174 (Fu et al. 2012) to remove redundant transcripts from the assemblies and checked assembly
175 quality with rnaQUEST v2.2.1 (Bushmanova et al. 2019). Transcriptomes produced from
176 RNAspades had fewer but longer contigs, therefore the rest of the analysis was performed on the
177 RNAspades assemblies (Supp. Table 1). We predicted coding regions using TransDecoder
178 v5.5.0 and we removed any contigs with no predicted peptide.

179

180 *Rhizobia genome collection*

181 We identified 14 bacteria genomes for analysis by searching rhizobia phylogenies for strains
182 with *nod* genes and close relatives lacking *nod* genes (Rahimlou et al. 2021). We chose seven
183 pairs of nodulating and non-nodulating bacteria species that spanned across both Alpha- and
184 Beta-Proteobacteria. We note that nodulating bacterial species, and their non-nodulating closest

185 relatives, are not the rhizobia partners of the plant species used above. We then downloaded the
186 annotated genomes from NCBI for use in our analysis (Fig. 2a, Table 2). We also downloaded
187 genomes for 65 symbiotic members of the *Ensifer* genus (Fig. 2b, Supp. Table 2) containing *nod*
188 genes and 39 non-symbiotic members without *nod* genes (Fagorzi et al. 2020) for separate
189 analysis comparing symbiotic and non-symbiotic clades.

190

191 *Ortholog identification*

192 We identified a total of 308 single-copy orthologous genes shared in the proteomes of all 12
193 legume species using OrthoFinder v2.4 (Emms and Kelly 2019). We expanded this set to also
194 include orthologous genes found in at least four species, resulting in a total of 3548 genes for
195 analysis. We found 438 single-copy orthologous genes in all 14 rhizobia species using default
196 settings in OrthoFinder v2.4 (Emms and Kelly 2019). When we included orthologs present in at
197 least four species, we identified 2812 genes shared among the bacteria strains in our dataset. We
198 identified 456 single copy orthologous genes shared among all 104 *Ensifer* genomes.

199

200 *Estimating rates of molecular evolution*

201 To calculate a ratio of nonsynonymous to synonymous substitutions (dN/dS) in each species for
202 each of the 3548 plant orthologous genes and 2812 bacteria genes, we first compiled orthologous
203 nucleotide sequences (cds files) into single fasta files. For each gene, we executed alignments in
204 PRANK v.170427 with the “-codon” option (Markova-Raina and Petrov 2011). We constructed
205 maximum-likelihood gene trees for each orthologous gene using default settings in RAxML with
206 the substitution model set to GTRCATX (Stamatakis 2014). Gene trees and sequence alignments

207 were used as input for dN/dS analysis in PAML v.4.9j (Yang 2007). We implemented a “free-
208 ratios” model in PAML to calculate a separate dN/dS value for each branch in the gene tree.
209 Including six closely related pairs of legumes in the gene trees allows for the pairs to serve as out
210 groups for the different ingroup tests. We extracted dN/dS ratios for each tip of the tree to obtain
211 a unique dN/dS value for each species and performed the remaining analyses in R (R Core Team
212 2024). We removed all dN/dS ratios greater than 10 as values this high are likely a result of
213 either an error in assembly or overparameterization in the PAML model for complicated gene
214 trees. After filtering abnormally high dN/dS ratios, our sample size included 210 orthologs
215 shared among all 12 plant species and 227 orthologs shared among all 14 bacteria species in our
216 paired analysis. To compare dN/dS ratios between mutualists and non-mutualistic taxa genome-
217 wide, we performed paired Wilcoxon signed-rank tests on dN/dS values for all orthologous
218 genes between mutualist species and their non-mutualistic relative in R (R Core Team 2024;
219 Danneels et al. 2021).

220 Within species pairs, the plants in our dataset shared similar life history traits. However,
221 across pairs, species differed greatly in their invasion history. We categorized legumes that had
222 been introduced to at least one novel range as invasive and legumes that occur only in their
223 native range as non-invasive. Because invasions may be associated with altered rates of
224 molecular evolution (Whitney & Gabler 2008), we ran a two-rate model in PAML where we
225 allowed all invasive legume species to evolve at one rate and all non-invasive species to evolve
226 at a separate rate. We compared model fit between the two-rate model and a model where all
227 species were constrained to evolve at the same rate. We identified 277 genes out of 308 that
228 showed significant differences in dN/dS ratios between invasive and non-invasive species. We

229 performed paired Wilcoxon signed-rank tests on the significant genes to identify if the invasive
230 genomes are evolving faster than the non-invasive genomes overall.

231 We also subset our dataset to the three species pairs that represent a loss of mutualism.

232 The species in these pairs are also non-invasive, found in the same habitat (desert habitat in
233 southern USA), and do not play a large role in human agriculture, medicine or industry (genera
234 *Dalea*, *Mimosa*, and *Calliandra*). For these plant genomes, we implemented a two-ratio model in
235 PAML, where we labeled all species in the gene trees as a mutualist (test) or non-mutualist
236 (reference) and allowed PAML to model separate dN/dS ratios for test and reference branches.
237 We identified the number of genes that showed significantly different dN/dS values in mutualists
238 and non-mutualistic relatives and repeated the paired Wilcoxon signed-rank tests on dN/dS
239 values calculated at these significant genes.

240 To evaluate rates of molecular in the *Ensifer* genus, we performed a two-ratio model in
241 PAML where we labeled symbiotic species (largely the *Sinorhizobium* clade within the *Ensifer*
242 phylogeny) as the test branches and non-symbiotic species as reference branches. Separate
243 dN/dS ratios were calculated in PAML for test and reference lineages in the *Ensifer* phylogeny.
244 Out of 456 single copy orthologs tested in the two-ratio model, 405 genes showed significant
245 differences between the symbiotic and non-symbiotic clades. We performed paired Wilcoxon
246 signed-rank tests using dN/dS ratios calculated from these 405 significant genes.

247

248 *Identifying symbiosis genes*

249 We also compared dN/dS ratios between mutualist and non-mutualist species at genes expected
250 to be involved in the legume-rhizobium symbiosis. As noted above, there are no annotated
251 genomes available for the 12 legume species in our analysis. To identify symbiosis genes in our

252 transcriptomes, we first obtained a list of sequences (Epstein et al. 2022) for 224 genes that Roy
253 et al. (2020) identified as important for symbiosis in *Medicago*. We mapped these sequences to
254 all 12 legume transcriptomes using bwa-mem. We extracted the positions in our transcriptomes
255 where the symbiosis sequences mapped and filtered our full dataset of dN/dS ratios for these
256 genes. We then compared the dN/dS ratios for these symbiosis genes in the mutualist legume and
257 their matching non-symbiotic relative. We also searched for symbiosis genes among the genes
258 that were significantly different in mutualist and non-mutualist species (calculated using two-
259 ratio models in PAML). We performed a blastn search on sequences for any significant
260 symbiosis genes against the flowering plant database (taxid:3398).

261 To identify symbiosis genes in bacteria, we searched the annotated mutualist genomes for
262 gene descriptions including the following key words: nod, noe, nfe, nodul, nif, fix, fixation, and
263 nitrogenase. Within our set of orthologs, we found 33 genes that contained key words related to
264 nitrogen fixation and nodulation in our dataset of 14 bacteria species. We then compared dN/dS
265 ratios between symbiotic and free-living strains at these symbiosis genes across all pairs in the
266 dataset.

267 In the *Ensifer* genus, many genes that are important for symbiosis with plants are located
268 within plasmids and symbiotic islands (Geddes et al. 2020). The plasmid pSymB is common
269 among all 104 species in our analysis (Fagorzi et al. 2020), while the presence of pSymA is more
270 variable across strains. Although many *nif* and *nod* genes are located on pSymA (Barnett et al.
271 2001), there are also a number of symbiosis genes involved in nitrate/nitrite reduction on pSymB
272 (Finan et al. 2001). Therefore, we identified orthologs on pSymB by using the annotated genome
273 assembly for *Sinorhizobium meliloti* USDA1021 (GCA_002197445.1) and analyzed these genes
274 separately from the chromosome and the rest of the genome.

275 **Results**

276 *Molecular evolution in legumes*

277 We identified 761-1339 matching orthologous genes in the paired legume species. Most pairs
278 showed very similar rates of molecular evolution when we considered genome-wide dN/dS
279 values (Fig. 3). Only one of these comparisons (*C. humilis*, *C. eriophylla*) showed a significant
280 increase in rates of molecular evolution in the mutualist (Table 3). The other species
281 comparisons showed non-significant differences between mutualists and their non-mutualist
282 relatives.

283 When we analyzed differences between mutualists and non-mutualists in species that are
284 non-invasive and represent a loss of mutualism (using a two-ratio model), we found that
285 mutualist species exhibit increased rates of molecular evolution (Fig. 4a). Directly comparing
286 invasive to non-invasive legumes showed that invasive legumes had higher rates of molecular
287 evolution across the genome (Supp. Fig. 1). The total sum of positive ranked scores for the
288 invasive group was 30761 while the total sum of positive ranked scores for the non-invasive
289 group was 7742 ($p < 0.001$).

290

291 *Molecular evolution in rhizobia genomes*

292 We analyzed 836-1288 orthologous genes in the symbiotic and non-symbiotic bacteria pairs.
293 When there were significant differences in evolutionary rates between bacteria species,
294 symbiotic species always had higher dN/dS ratios than non-symbiotic species. Four pairs showed
295 significantly higher rates of molecular evolution in the symbiotic species (Fig. 5). An additional

296 pair, *C. alkaliphilus* and *C. taiwanensis*, also showed higher dN/dS ratios in the symbiotic rhizobia
297 species although this relationship was only marginally significant (Table 4).

298 We analyzed 405 orthologous genes in the comparison between nodulating and non-
299 nodulating *Ensifer* strains. Two-rate models showed that genome wide, the symbiotic strains had
300 higher dN/dS ratios (Fig. 6a, $p=0.0003$). When we analyzed 70 genes on pSymB separately from
301 the rest of the genome, there was no significant difference between nodulating and non-
302 nodulating strains (Fig. 6b, $p=0.2126$). Wilcoxon paired tests performed on the chromosome
303 (plus other various accessory plasmids) showed higher dN/dS ratios in the nodulating strains
304 (Fig. 6b, $p=0.0007$).

305

306 *Symbiosis genes*

307 We identified 17 unique symbiosis genes in our legume ortholog dataset. There was no
308 consistent pattern as to whether these symbiosis genes had higher dN/dS values in the mutualist
309 or non-mutualist plant (Supp. Fig. 2, Supp. Table 3). Differences in dN/dS ratios at symbiosis
310 genes between mutualist and non-mutualistic species were also generally low across the species
311 pairs we tested. One exception is the *Mimosa* pair, where we observed large increases in dN/dS
312 ratios in the non-mutualist *M. grahamii* species compared to the mutualist relative *M.*
313 *aculeaticarpa* (Supp. Fig. 2).

314 We identified only five unique symbiosis genes in our filtered dataset for non-invasive
315 legumes when we performed a two-ratio model on these genes in PAML. All but one of these
316 genes had a higher dN/dS value in the mutualist species (Fig. 3c). Only one gene showed an
317 increased rate of molecular evolution in the non-mutualist species. The top hits from the blastn

318 search predicted this gene encodes for a leucine-rich repeat receptor-like serine/threonine-protein
319 kinase.

320 In the rhizobia genomes, we identified 33 distinct symbiosis genes. For most pairs, there
321 was a fairly equal number of symbiotic and non-symbiotic species with higher dN/dS values at
322 these genes (Supp. Fig. 3, Supp. Table 4). One exception was the non-symbiotic *X.*
323 *autotrophicus*, which had many more genes with higher rates of molecular evolution (14 genes)
324 compared to its symbiotic relative *A. caulinodans* (5 genes).

325

326 *Genes under positive selection*

327 Using the free-ratio dataset, we identified a total of 797 unique genes that were under positive
328 selection in plant species. The number of genes under positive selection varied across species
329 pairs (Supp. Table 5). The dN/dS ratios at these genes were not consistently higher in one species
330 over the other. When we subset our dataset to genes found in all 12 species, we found 78 genes
331 under positive selection. Few of these genes were under positive selection in more than one
332 species in our dataset (Supp. Fig. 4). We found only three genes under positive selection when
333 we considered non-invasive legume dN/dS ratios calculated from two-ratio models in PAML
334 (Fig. 4b). All three genes had higher dN/dS ratios in the mutualist species and a dN/dS ratio
335 under 1 in the non-mutualistic relatives. We identified these genes as a telomere repeat-binding
336 factor, very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase, and 50S ribosomal chloroplastic
337 protein using blastn searches.

338 In rhizobia, we found 110 unique genes across all pairs that were under positive selection.
339 There was no consistent pattern as to whether symbiotic species or non-symbiotic species
340 contained more genes under positive selection (Supp. Table 6). When we considered genes that

341 were common to all 14 rhizobia genomes, only 13 were under positive selection. None of these
342 genes had dN/dS ratios greater than one in multiple species (Supp. Fig. 5).

343

344 **Discussion**

345 In this study, we investigated shifts in rates of molecular evolution genome-wide and at
346 symbiotic genes in 1) mutualistic versus non-mutualistic legumes, 2) symbiotic versus non-
347 symbiotic rhizobia, and 3) symbiotic and non-symbiotic clades in the *Ensifer* phylogeny. We
348 sequenced and assembled transcriptomes for 12 non-model plant species from across the legume
349 phylogeny. In bacteria, we collected rhizobia genomes from across the Alpha- and Beta-
350 Proteobacteria clades and analyzed 104 genomes across the *Ensifer* phylogeny. When there were
351 significant differences in rates of molecular evolution between mutualists and non-mutualistic
352 species, mutualists always showed faster evolutionary rates genome-wide. When we examined
353 symbiosis genes in both legumes and rhizobia, mutualists did not consistently show higher
354 dN/dS values compared to non-mutualist species. We consider in turn several possible
355 explanations for faster evolutionary rates genome-wide, but not at symbiosis genes, in mutualist
356 legumes and rhizobia.

357 The first potential explanation we consider is coevolution between legumes and rhizobia.
358 If legumes and rhizobia are engaged in ongoing coevolution (i.e. reciprocal adaptation and
359 response), we might predict that increased positive selection would elevate rates of molecular
360 evolution, as reported in parasitic systems (Paterson et al. 2010; Bromham et al. 2013). However,
361 if species are coevolving, we would also expect to see especially high dN/dS ratios at symbiosis
362 genes in mutualist lineages. All the symbiosis genes in our dataset were under purifying selection
363 in both legumes and rhizobia (except for one gene in the *Mimosa* genus), and it was variable

364 whether rates were relatively higher or lower in the mutualist partner. Only our analyses on
365 legumes that have apparently lost nodulation showed that mutualists consistently had higher
366 dN/dS ratios than non-mutualistic legumes at symbiotic genes (though still less than one).
367 Previous work has also failed to find strong evidence for population genetic signatures of
368 balancing or positive selection driving evolution of symbiosis genes in legumes (Yoder 2016;
369 Epstein et al. 2022), consistent with our results.

370 It is possible that different legumes may not have evolved the same symbiosis genes to
371 associate with rhizobia and by mapping known symbiosis genes in *Medicago* to our
372 transcriptomes, we may be missing some key symbiosis genes in our non-model legume species.
373 We found little overlap in genes under positive selection across the dataset, also suggesting that
374 different species are experiencing different selective pressures targeting different genes.
375 However, some symbiosis genes in legumes are highly conserved (Schnabel et al. 2011; Roy et
376 al. 2020) and therefore unlikely to show signs of positive selection expected from coevolution.
377 Symbiosis genes in rhizobia also show evolutionary conservation (Laranjo et al. 2008) and the
378 ability to nodulate plants is largely acquired through the horizontal transfer of symbiotic
379 plasmids (Wernegreen and Riley 1999) or symbiotic islands (Sullivan et al. 1995), providing
380 further support for this interpretation. One hypothetical possibility is that after accepting a
381 symbiotic plasmid or island, a bacterium may undergo many mutations in the rest of the genome
382 to accommodate the new genetic material that allows it access to a plant host. Previous research
383 suggests that the initial introduction of plasmids with symbiotic genes is not enough to maintain
384 cooperation in bacteria long term (Dewar et al. 2021). Therefore, a large-scale change to the
385 genome plus living in a new habitat (root nodule) may drive up dN/dS ratios across the
386 chromosome, but not at genes on the symbiotic plasmid itself. |

387 There could be other mechanisms driving differences in substitution rates between
388 species other than mutualism. Differences in life history strategies in plants have been previously
389 shown to influence rates of molecular evolution. For instance, the generation time hypothesis
390 predicts that long-lived species (i.e. perennials) evolve more slowly compared to annuals (Smith
391 and Donoghue 2008). Additionally, asexual plant species show increased accumulation of
392 substitutions compared to sexually reproducing species (Hollister et al. 2015). Duplicated genes
393 are likely to experience higher rates of molecular evolution (Kimura and Ohta 1974), indicating
394 that organisms with higher ploidy levels might show elevated dN/dS values. Mutualists and non-
395 mutualists generally had similar life history traits (ploidy level, generation time, reproduction)
396 within species pairs in our datasets. Therefore, whether plants participate in mutualism with
397 rhizobia should be the main lifestyle difference between species in our dataset. Our analyses also
398 showed that invasive legumes evolve at a faster rate compared to non-invasive species. High
399 rates of molecular evolution may make plants better at invading new habitats as fast evolving
400 organisms could have greater niche breadth and environmental tolerances. Alternatively,
401 elevated rates of molecular evolution may be a consequence of invasion because once
402 established in a new environment, plants may have to adapt quickly (Young et al. 2018).
403 However, short evolutionary timeframes post invasion may not be long enough for plant
404 genomes to accumulate substitutions. While we cannot account for all possible differences in life
405 history strategies (or other traits) between species, we were able to match most life history traits
406 within species pairs when we could find data on these key traits in the literature. Therefore,
407 differences in molecular evolution between mutualists and non-mutualists in our analyses are
408 unlikely to be fully explained by differences in life history traits.

409 Another potential class of explanations for our results is the efficacy of selection in
410 mutualist populations. Population size is predicted to have drastic effects on genome and
411 molecular evolution. Species with small population sizes are expected to accumulate more
412 deleterious mutations due to genetic drift (Charlesworth 2009). Previous work comparing island
413 to mainland species (Woolfit and Bromham 2005) and small mammals to large mammals
414 (Popadin et al. 2007) has shown that species with small population sizes experience faster rates
415 of molecular evolution. In contrast, genetic drift is less pronounced in large populations and
416 selection is more efficient (Charlesworth 2009). Species engaged in mutualism are expected to
417 grow to larger population sizes because having a beneficial partner can help organisms occupy
418 novel habitats, access nutrients when resources are scarce, and resist natural enemies (Afkhami
419 et al. 2014; Weber and Agrawal 2014; Hayward et al. 2015). Therefore, the high dN/dS ratios in
420 mutualists might be a result of large mutualist populations experiencing (more) positive selection
421 than non-mutualists. Alternatively, higher dN/dS ratios across mutualist genomes could be a
422 result of relaxed negative selection (Bromham et al. 2013). If mutualist legumes always rely on a
423 rhizobia partner for access to nitrogen, there may be less selective pressure to maintain other
424 genes that are important for accessing nutrients in the absence of a rhizobia partner. For instance,
425 genes responsible for root proliferation might be under relaxed selection if it is less important for
426 plants to ‘forage’ for soil nutrients when rhizobia are present. Previous work has shown that
427 mutualist traits and root foraging show a weak (quantitative) genetic correlation (Batstone et al.
428 2017), suggesting that traits could be evolving largely independently (*i.e.*, relaxed selection on
429 root foraging genes while purifying selection acts on symbiotic genes). Given that symbiotic
430 genes in rhizobia are clustered on plasmids or in genomic islands (Werneck and Riley 1999),
431 there is also opportunity for the chromosome to experience relaxed selection while purifying

432 selection simultaneously acts on symbiotic plasmids or islands in bacteria. In addition, if rhizobia
433 undergo more replication events while inside nodules than in the soil, then there could be relaxed
434 selection on genes encoded on the chromosome for traits that only matter in the soil environment
435 (e.g., competition with other microbes) and not inside the intracellular nodule environment.

436

437 Conclusion

438 In our study, genome-wide elevated rates of molecular evolution is a common feature of both
439 mutualist partners in the legume-rhizobium symbiosis. Genetic analyses of other positive species
440 interactions also show accelerated rates of molecular evolution in mutualists species, suggesting
441 that our findings are a general characteristic of mutualism overall (Lutzoni and Pagel 1997;
442 Rubin and Moreau 2016). Slower evolution was particularly evident in three non-mutualistic
443 legumes that appear to have lost nodulation. In both plants and rhizobia, there was no consistent
444 pattern in rates of molecular evolution at symbiotic genes which were largely under purifying
445 selection. A combination of relaxed selection and more effective positive selection in large
446 mutualist populations may be responsible for the high rates of molecular evolution we observed
447 in mutualist legumes and rhizobia.

448

449 Data availability

450 Sequence data will be uploaded to SRA upon acceptance. Assembly codes for the bacteria and
451 rhizobia genomes used in the analysis are listed in Table 2 and Supplemental Table 2. All code
452 for reproducing the analysis will be made public on a github repository following acceptance for
453 publication.

454 **Acknowledgements**

455 We thank Stephen Wright, Mark Hibbins, and Tyler Kent for advice on running PAML models
456 and Matt Pennell for suggestions on analyzing dN/dS ratios. We also thank Maria Tocora for
457 advice on running transcriptome assembly programs and George diCenzo for feedback on
458 analyzing the *Ensifer* samples. Our work is supported by NSERC and Queen Elizabeth II/Charles
459 E. Eckenwalder Graduate Scholarships (TLH) and NSERC Discovery Grants (JRS, MEF).

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477 References

478

479 Afkhami ME, McIntyre PJ, Strauss SY. 2014. Mutualist-mediated effects on species' range
480 limits across large geographic scales. *Ecology Letters* 17:1265–1273.

481

482 Afkhami ME, Stinchcombe JR. 2016. Multiple mutualist effects on genomewide expression in
483 the tripartite association between *Medicago truncatula*, nitrogen-fixing bacteria and mycorrhizal
484 fungi. *Molecular Ecology* 25: 4946-4962.

485

486 Alves EU, Guedes RS, Gonçalves EP, Viana JS, Santos SDS, Moura MF de. 2011. Effect of
487 temperature and substrate on germination of *Peltophorum dubium* (Sprengel) Taubert seeds. *Acta
488 Sci. Biol. Sci.* 33:113–118.

489

490 Andrews S. 2010. FastQC: A Quality Control Tool for High Throughput Sequence Data.
491 Available online at: <http://www.bioinformatics.babraham.ac.uk/projects/fastqc/>

492

493 Andrews M, Andrews ME. 2017. Specificity in Legume-Rhizobia Symbioses. *Int J Mol Sci.*
494 18:705.

495

496 Azani N, Babineau M, Bailey CD, Banks H, Barbosa AR, Pinto RB, Boatwright JS, Borges LM,
497 Brown GK, Bruneau A, et al. 2017. A new subfamily classification of the Leguminosae based on
498 a taxonomically comprehensive phylogeny: The Legume Phylogeny Working Group (LPWG).
499 *TAXON* 66:44–77.

500

501 Barker JL, Bronstein JL, Friesen ML, Jones EI, Reeve HK, Zink AG, Frederickson ME. 2017.
502 Synthesizing perspectives on the evolution of cooperation within and between species. *Evolution*
503 71:814–825.

504

505 Barnett MJ, Fisher RF, Jones T, Komp C, Abola AP, Barloy-Hubler F, Bowser L, Capela D,
506 Galibert F, Gouzy J, et al. 2001. Nucleotide sequence and predicted functions of the entire
507 *Sinorhizobium meliloti* pSymA megaplasmid. *Proc. Natl. Acad. Sci. U.S.A.* 98:9883–9888.

508

509 Batstone RT. 2022. Genomes within genomes: nested symbiosis and its implications for plant
510 evolution. *New Phytologist* 234: 28-34.

511

512 Batstone RT, Dutton EM, Wang D, Yang M, Frederickson ME. 2017. The evolution of symbiont
513 preference traits in the model legume *Medicago truncatula*. *New Phytologist* 213:1850–1861.

514

515 Bergstrom CT, Lachmann M. 2003. The Red King effect: When the slowest runner wins the
516 coevolutionary race. *Proceedings of the National Academy of Sciences* 100:593–598.

517

518 Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence
519 data. *Bioinformatics* 30:2114–2120.

520

521 Brockhurst MA, Chapman T, King KC, Mank JE, Paterson S, Hurst GDD. 2014. Running with
522 the Red Queen: the role of biotic conflicts in evolution. *Proc. R. Soc. B* 281:20141382.

523

524 Bromham L. 2009. Why do species vary in their rate of molecular evolution? *Biol Lett* 5:401–
525 404.

526

527 Bromham L, Cowman PF, Lanfear R. 2013. Parasitic plants have increased rates of molecular
528 evolution across all three genomes. *BMC Evol Biol* 13:126.

529

530 Bushanova E, Antipov D, Lapidus A, Prjibelski AD. 2019. rnaSPAdes: a de novo
531 transcriptome assembler and its application to RNA-Seq data. *GigaScience* 8:giz100.

532

533 Charlesworth B. 2009. Effective population size and patterns of molecular evolution and
534 variation. *Nat Rev Genet* 10:195–205.

535

536 Charlesworth B. 2013. Stabilizing Selection, Purifying Selection, and Mutational Bias in Finite
537 Populations. *Genetics* 194:955–971.

538

539 Danneels B, Viruel J, McGrath K, Janssens SB, Wales N, Wilkin P, Carlier A. 2021. Patterns of
540 transmission and horizontal gene transfer in the *Dioscorea sansibarensis* leaf symbiosis revealed
541 by whole-genome sequencing. *Current Biology* 31:2666-2673.e4.

542

543 Delaye L, Ruiz-Ruiz S, Calderon E, Tarazona S, Conesa A, Moya A. 2018. Evidence of the Red-
544 Queen Hypothesis from Accelerated Rates of Evolution of Genes Involved in Biotic Interactions
545 in *Pneumocystis*. *Genome Biol Evol* 10:1596–1606.

546

547 Dewar AE, Thomas JL, Scot TW, Wild G, Griffin AS, West SA, Ghoul M. 2021. Plasmids do
548 not consistently stabilize cooperation across bacteria but may promote broad pathogen host-
549 range. *Nat Ecol Evol* 5:1624-1636.

550

551 Doyle JJ. 2011. Phylogenetic Perspectives on the Origins of Nodulation. *MPMI* 24:1289–1295.

552

553 Emms DM, Kelly S. 2019. OrthoFinder: phylogenetic orthology inference for comparative
554 genomics. *Genome Biology* 20:238.

555

556 Epstein B, Burghardt LT, Heath KD, Grillo MA, Kostanecki A, Hämälä T, Young ND, Tiffin P.
557 2022. Combining GWAS and population genomic analyses to characterize coevolution in a
558 legume-rhizobia symbiosis. *Molecular Ecology* 32:3798-3811.

559

560 Epstein B, Tiffin P. 2021. Comparative genomics reveals high rates of horizontal transfer and
561 strong purifying selection on rhizobial symbiosis genes. *Proceedings of the Royal Society B:
562 Biological Sciences* 288:20201804.

563

564 Fagorzi C, Ilie A, Decorosi F, Cangioli L, Viti C, Mengoni A, diCenzo GC. 2020. Symbiotic and
565 Nonsymbiotic Members of the Genus *Ensifer* (syn. *Sinorhizobium*) Are Separated into Two

566 Clades Based on Comparative Genomics and High-Throughput Phenotyping. *Genome Biol Evol*
567 12:2521–2534.

568

569 Finan TM, Weidner S, Wong K, Buhrmester J, Chain P, Vorhölter FJ, Hernandez-Lucas I,
570 Becker A, Cowie A, Gouzy J, et al. 2001. The complete sequence of the 1,683-kb pSymB
571 megaplasmid from the N₂-fixing endosymbiont *Sinorhizobium meliloti*. *Proc. Natl. Acad. Sci.*
572 *U.S.A.* 98:9889–9894.

573

574 Friesen ML. 2012. Widespread fitness alignment in the legume–rhizobium symbiosis. *New*
575 *Phytologist* 194:1096–1111.

576

577 Fu L, Niu B, Zhu Z, Wu S, Li W. 2012. CD-HIT: accelerated for clustering the next-generation
578 sequencing data. *Bioinformatics* 28:3150–3152.

579

580 Geddes BA, Kearsley J, Morton R, diCenzo GC, Finan TM. 2020. The genomes of rhizobia. In:
581 Advances in Botanical Research. Vol. 94. Elsevier. p. 213–249. Available from:
582 <https://linkinghub.elsevier.com/retrieve/pii/S0065229619300916>

583

584 Griesmann M, Chang Y, Liu X, Song Y, Haberer G, Crook MB, Billault-Penneteau B,
585 Lauressergues D, Keller J, Imanishi L, et al. 2018. Phylogenomics reveals multiple losses of
586 nitrogen-fixing root nodule symbiosis. *Science* 361:eaat1743.

587

588 Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D,
589 Li B, Lieber M, et al. 2013. De novo transcript sequence reconstruction from RNA-seq using the
590 Trinity platform for reference generation and analysis. *Nat Protoc* 8:1494–1512.

591

592 Haston EM, Lewis GP, Hawkins JA. 2005. A phylogenetic reappraisal of the Peltophorum group
593 (Caesalpinieae: Leguminosae) based on the chloroplast trnL-F, rbcL and rps16 sequence data.
594 *American Journal of Botany* 92:1359–1371.

595

596 Hayward J, Horton TR, Pauchard A, Nuñez MA. 2015. A single ectomycorrhizal fungal species
597 can enable a *Pinus* invasion. *Ecology* 96:1438–1444.

598

599 Heath KD, Stinchcombe JR. 2014. Explaining Mutualism Variation: A New Evolutionary
600 Paradox? *Evolution* 68:309–317.

601

602 Hembry DH, Yoder JB, Goodman KR. 2014. Coevolution and the Diversification of Life. *The*
603 *American Naturalist* 184:425–438.

604

605 Hollister JD, Greiner S, Wang W, Wang J, Zhang Y, Wong GK-S, Wright SI, Johnson MTJ.
606 2015. Recurrent Loss of Sex Is Associated with Accumulation of Deleterious Mutations in
607 *Oenothera*. *Molecular Biology and Evolution* 32:896–905.

608

609 Kimura M, Ohta T. 1974. On Some Principles Governing Molecular Evolution. *Proc. Natl.*
610 *Acad. Sci. U.S.A.* 71:2848–2852.

611

612 Laranjo M, Alexandre A, Rivas R, Velázquez E, Young JPW, Oliveira S. 2008. Chickpea
613 rhizobia symbiosis genes are highly conserved across multiple *Mesorhizobium* species. *FEMS*
614 *Microbiology Ecology* 66:391–400.

615

616 LPWG, Bruneau A, Doyle JJ, Herendeen P, Hughes C, Kenicer G, Lewis G, Mackinder B,
617 Pennington RT, Sanderson MJ, et al. 2013. Legume phylogeny and classification in the 21st
618 century: Progress, prospects and lessons for other species-rich clades. *Taxon* 62:217–248.

619

620 Lutzoni F, Pagel M. 1997. Accelerated evolution as a consequence of transitions to mutualism.
621 *Proceedings of the National Academy of Sciences* 94:11422–11427.

622

623 Markova-Raina P, Petrov D. 2011. High sensitivity to aligner and high rate of false positives in
624 the estimates of positive selection in the 12 *Drosophila* genomes. *Genome Res.* 21:863–874.

625

626 McCutcheon JP, Moran NA. 2012. Extreme genome reduction in symbiotic bacteria. *Nat Rev*
627 *Microbiol* 10:13–26.

628

629 McMahon M, Hufford L. 2004. Phylogeny of Amorpheae (Fabaceae: Papilioideae). *American*
630 *Journal of Botany* 91:1219–1230.

631

632 Nuismer SL, Jordano P, Bascompte J. 2013. Coevolution and the Architecture of Mutualistic
633 Networks. *Evolution* 67:338–354.

634

635 O'Brien AM, Jack CN, Friesen ML, Frederickson ME. 2021. Whose trait is it anyways?
636 Coevolution of joint phenotypes and genetic architecture in mutualisms. *Proceedings of the*
637 *Royal Society B: Biological Sciences* 288:20202483.

638

639 Parshuram ZA, Harrison TL, Simonsen AK, Stinchcombe JR, Frederickson ME. 2023.
640 Nonsymbiotic legumes are more invasive, but only if polyploid. *New Phytologist* 237:758–765.

641

642 Paterson S, Vogwill T, Buckling A, Benmayor R, Spiers AJ, Thomson NR, Quail M, Smith F,
643 Walker D, Libberton B, et al. 2010. Antagonistic coevolution accelerates molecular evolution.
644 *Nature* 464:275–278.

645

646 Popadin K, Polishchuk LV, Mamirova L, Knorre D, Gunbin K. 2007. Accumulation of slightly
647 deleterious mutations in mitochondrial protein-coding genes of large versus small mammals.
648 *Proc. Natl. Acad. Sci. U.S.A.* 104:13390–13395.

649

650 R Core Team. 2024. R: A language and environment for statistical computing. R Foundation for
651 Statistical Computing, Vienna, Austria. <<https://www.R-project.org/>>.

652

653 Rahimlou S, Bahram M, Tedersoo L. 2021. Phylogenomics reveals the evolution of root
654 nodulating alpha- and beta-Proteobacteria (rhizobia). *Microbiological Research* 250:126788.

655

656 van Rhijn P, Vanderleyden J. 1995. The Rhizobium-plant symbiosis. *Microbiol Rev* 59:124–142.

657

658 Roy S, Liu W, Nandety RS, Crook A, Mysore KS, Pislaru CI, Frugoli J, Dickstein R, Udvardi
659 MK. 2020. Celebrating 20 Years of Genetic Discoveries in Legume Nodulation and Symbiotic
660 Nitrogen Fixation. *Plant Cell* 32:15–41.

661

662 Rubin BER, Moreau CS. 2016. Comparative genomics reveals convergent rates of evolution in
663 ant-plant mutualisms. *Nat Commun* 7:12679.

664

665 Sachs JL, Russell JE, Hollowell AC. 2011. Evolutionary Instability of Symbiotic Function in
666 *Bradyrhizobium japonicum*. *PLOS ONE* 6:e26370.

667

668 Schnabel EL, Kassaw TK, Smith LS, Marsh JF, Oldroyd GE, Long SR, Frugoli JA. 2011. The
669 ROOT DETERMINED NODULATION1 Gene Regulates Nodule Number in Roots of
670 *Medicago truncatula* and Defines a Highly Conserved, Uncharacterized Plant Gene Family.
671 *Plant Physiol* 157:328–340.

672

673 Simon MF, Grether R, de Queiroz LP, Särkinen TE, Dutra VF, Hughes CE. 2011. The
674 evolutionary history of Mimosa (Leguminosae): toward a phylogeny of the sensitive plants. *Am.*
675 *J. Bot.* 98:1201–1221.

676

677 Simonsen AK, Dinnage R, Barrett LG, Prober SM, Thrall PH. 2017. Symbiosis limits
678 establishment of legumes outside their native range at a global scale. *Nat Commun* 8:14790.

679

680 Smith SA, Donoghue MJ. 2008. Rates of Molecular Evolution Are Linked to Life History in
681 Flowering Plants. *Science* 322:86–89.

682

683 Souza ÉR de, Lewis GP, Forest F, Schnadelbach AS, Berg C van den, Queiroz LP de. 2013.
684 Phylogeny of *Calliandra* (Leguminosae: Mimosoideae) based on nuclear and plastid molecular
685 markers. *TAXON* 62:1200–1219.

686

687 Stahl EA, Dwyer G, Mauricio R, Kreitman M, Bergelson J. 1999. Dynamics of disease resistance
688 polymorphism at the *Rpm1* locus of *Arabidopsis*. *Nature* 400:667–671.

689

690 Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of
691 large phylogenies. *Bioinformatics* 30:1312–1313.

692

693 Sullivan JT, Patrick HN, Lowther WL, Scott DB, Ronson CW. 1995. Nodulating strains of
694 *Rhizobium loti* arise through chromosomal symbiotic gene transfer in the environment. *Proc.*
695 *Natl. Acad. Sci. U.S.A.* 92:8985–8989.

696

697 Tiffin P, Ross-Ibarra J. 2014. Advances and limits of using population genetics to understand
698 local adaptation. *Trends Ecol Evol.* 29:673–680.

699

700 Wang Q, Liu J, Zhu H. 2018. Genetic and Molecular Mechanisms Underlying Symbiotic
701 Specificity in Legume-Rhizobium Interactions. *Frontiers in Plant Science* 9:313.

702

703 Weber MG, Agrawal AA. 2014. Defense mutualisms enhance plant diversification. *Proc Natl
704 Acad Sci USA* 111:16442–16447.

705

706 Wernegreen JJ. 2002. Genome evolution in bacterial endosymbionts of insects. *Nat Rev Genet*
707 3:850–861.

708

709 Wernegreen JJ, Riley MA. 1999. Comparison of the evolutionary dynamics of symbiotic and
710 housekeeping loci: a case for the genetic coherence of rhizobial lineages. *Molecular Biology and
711 Evolution* 16:98–113.

712

713 Werner GDA, Cornwell WK, Sprent JI, Kattge J, Kiers ET. 2014. A single evolutionary
714 innovation drives the deep evolution of symbiotic N₂-fixation in angiosperms. *Nat Commun*
715 5:4087.

716

717 Whitney KD, Gabler CA. 2008. Rapid evolution in introduced species, ‘invasive traits’ and
718 recipient communities: challenges for predicting invasive potential. *Diversity and Distributions*
719 14:569–580.

720

721 Woolfit M, Bromham L. 2003. Increased rates of sequence evolution in endosymbiotic bacteria
722 and fungi with small effective population sizes. *Molecular biology and evolution* 20:1545–1555.

723

724 Woolfit M, Bromham L. 2005. Population Size and Molecular Evolution on Islands.
725 *Proceedings: Biological Sciences* 272:2277–2282.

726

727 Yang Z. 2007. PAML 4: Phylogenetic Analysis by Maximum Likelihood. *Molecular Biology
728 and Evolution* 24:1586–1591.

729

730 Yoder JB. 2016. Understanding the coevolutionary dynamics of mutualism with population
731 genomics. *American Journal of Botany* 103:1742–1752.

732

733 Young RG, Mitterboeck TF, Loeza-Quintana T, Adamowicz SJ. 2018. Rates of molecular
734 evolution and genetic diversity in European vs. North American populations of invasive insect
735 species, *EJE* 115: 718–728.

736

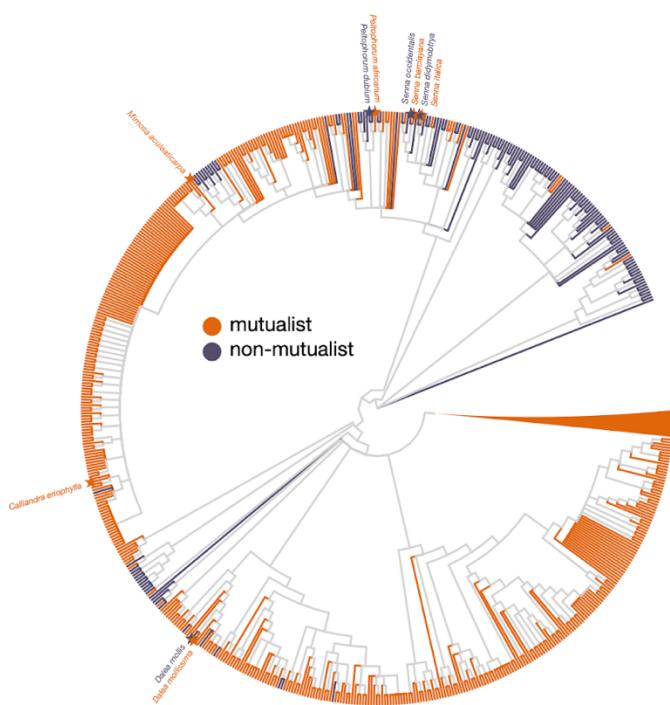
737 Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, FitzJohn RG, McGinn DJ,
738 O’Meara BC, Moles AT, Reich PB, et al. 2014. Three keys to the radiation of angiosperms into
739 freezing environments. *Nature* 506:89–92.

740

741 Zhang X, Wang L, Li J, Batstone RT, Frederickson ME. 2020. *Medicago truncatula* adjusts root
742 proliferation, nodule formation, and partner choice in response to local N heterogeneity. *Plant
743 and Soil* 450:417–428.

744

745

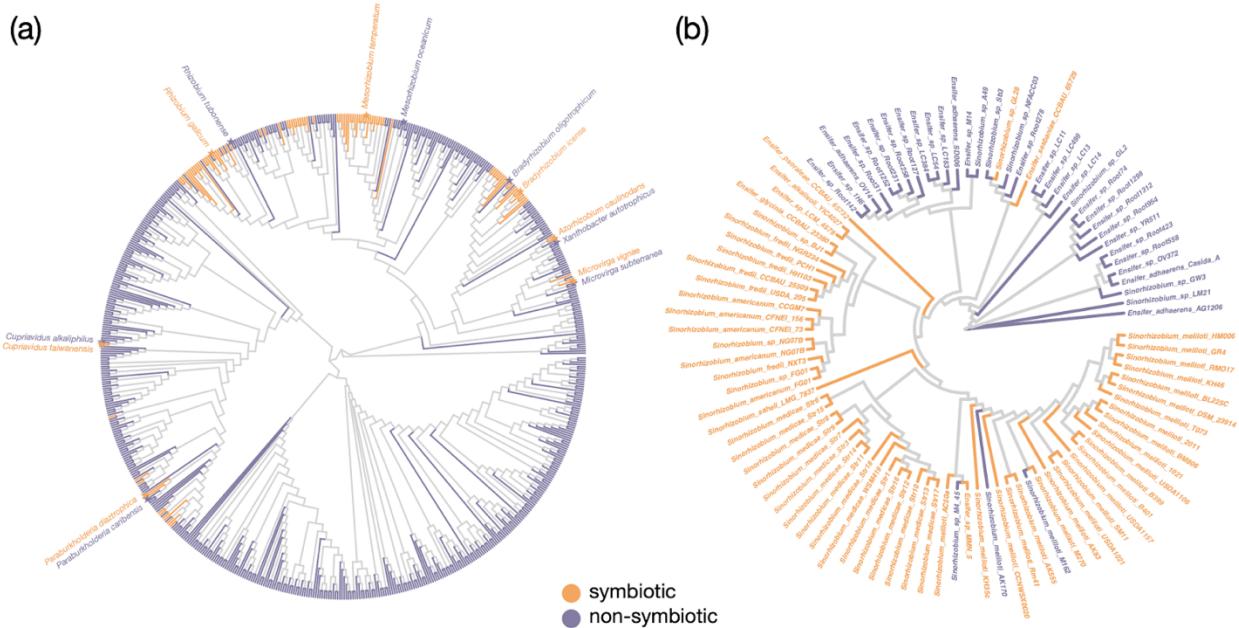

746

747

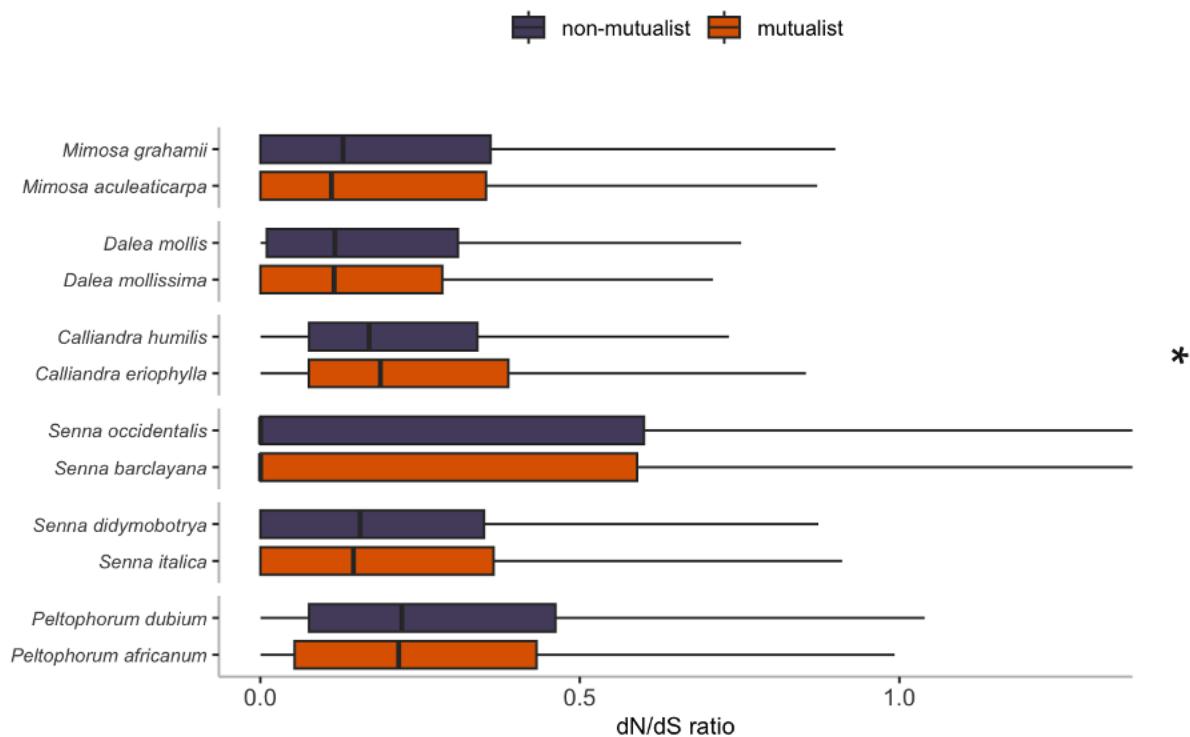
748

749 **Figures**

750


751

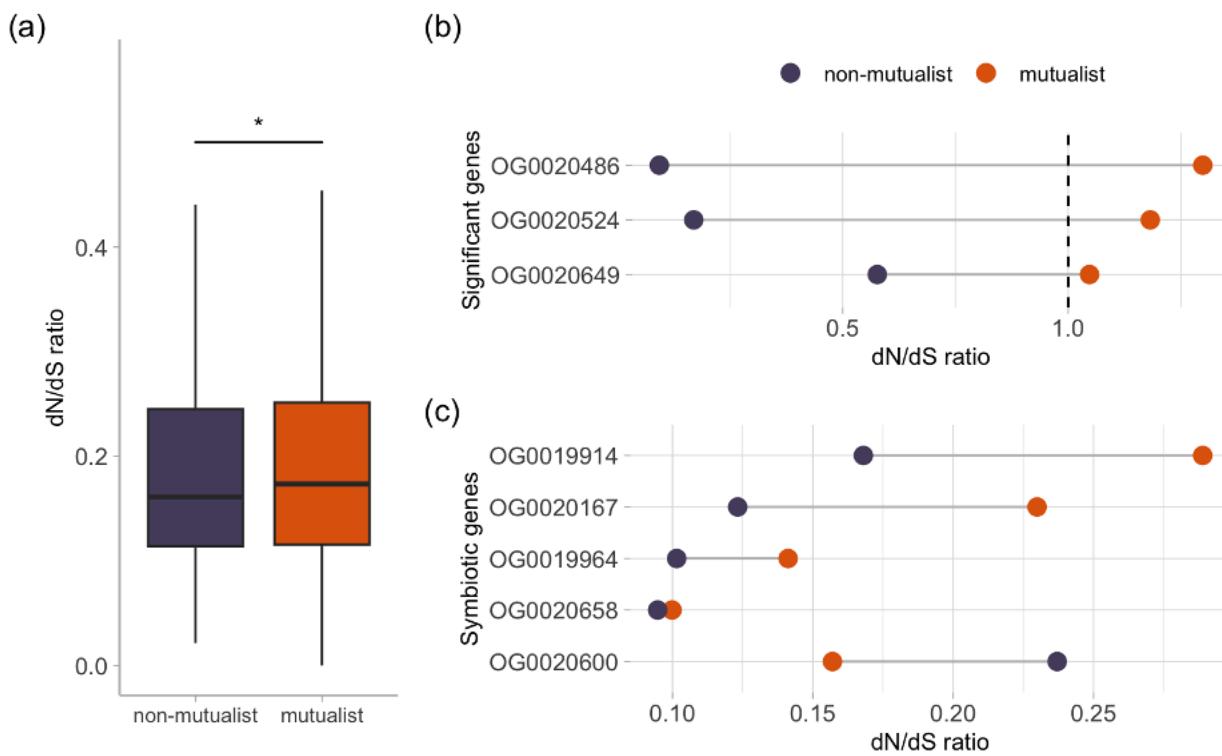
752


753 **Figure 1. Species pairs of mutualistic (orange) and non-mutualistic legumes (purple) in the**
754 **study.** Sampled legume species are indicated by stars at the tips of the tree and labeled with text.
755 The legume tree developed by the Legume Phylogeny Working Group (LPWG 2013) was
756 filtered for species with symbiotic status data. The branches leading to the tips of the tree were
757 coloured based on whether the species at the tip was known to form nodules (Werner et al. 2014)
758 and therefore is a mutualist (orange) or lacked the ability to nodulate and is therefore a non-
759 mutualist (purple). All internal branches are coloured in grey. The *Calliandra* and *Mimosa* non-
760 symbiotic species were obtained from separate smaller phylogenies, and thus not shown here
761 (Simon et al. 2011; Souza et al. 2013).

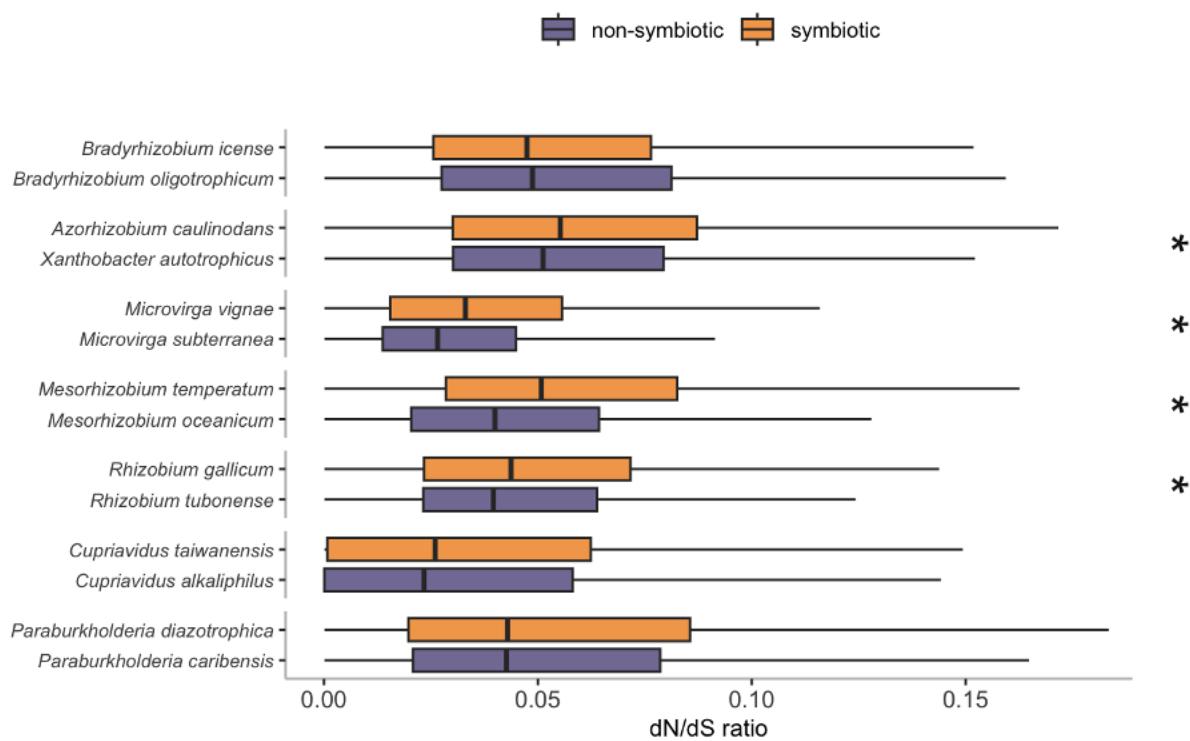
762

763

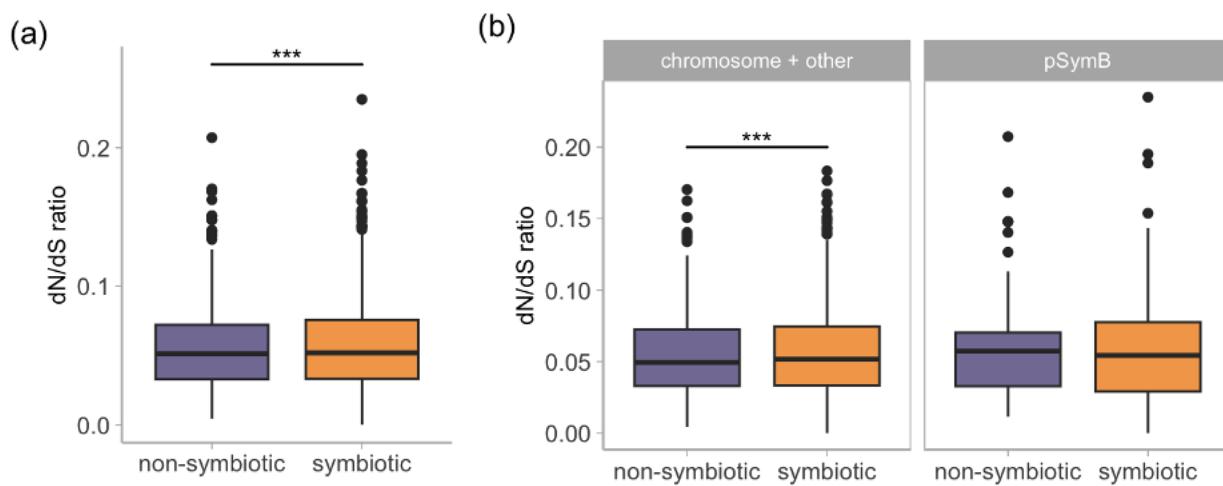
Figure 2. Bacteria species with (orange) or without (purple) *nod* genes. (a) Phylogeny from Rahimlou et al. (2021). The branches leading to the tips of the tree were coloured based on whether the species at the tip is known to have *nod* genes (Rahimlou et al. 2021, Fagorzi et al 2020) and therefore is symbiotic (orange) or lacked *nod* genes and is non-symbiotic (purple). All internal branches are coloured in grey. Species indicated by stars and labeled with text represent the species pairs with genomes used in the analysis. (b) Phylogeny from Fagorzi et al. (2020) trimmed to only the genomes used in the analysis.



774


775

776 **Figure 3. Genome-wide dN/dS ratios estimated from free-ratio models in PAML for**
777 **mutualistic (orange) and non-mutualistic (purple) legumes.** A * indicates species pairs that
778 showed significance at $p < 0.05$ in paired Wilcoxon tests. Outliers ($1.5 \times$ inter quartile range)
779 have been removed from the plot for improved visualization but were included in the paired
780 Wilcoxon signed-rank tests.


781

782
783
784 **Figure 4. Results from two-ratio models performed in PAML on non-invasive legume**
785 **species representing a loss of mutualism in the phylogeny.** (a) Genome-wide average dN/dS
786 ratios for mutualistic (orange) and non-mutualistic (purple) legumes. A * indicates species pairs
787 that showed significance at $p < 0.05$ in paired Wilcoxon tests. In this test, a total of 273 genes
788 with significant differences in dN/dS ratios between mutualists and non-symbiotic species
789 (estimated from two-rate PAML models) were included in the analyses. Outliers ($1.5 \times$ inter
790 quartile range) have been removed from the plot for improved visualization but were included in
791 the paired Wilcoxon signed-rank tests. (b) Differences in dN/dS ratios for genes under positive
792 selection. (c) Differences in dN/dS ratios for symbiotic genes involved in symbiosis with
793 rhizobia.
794

795
796
797 **Figure 5. Genome-wide dN/dS ratios estimated from free-ratio models in PAML for**
798 **symbiotic (orange) and non-symbiotic (purple) bacteria strains. A *** indicates species pairs
799 that showed significance at $p < 0.05$ in paired Wilcoxon tests. Outliers ($1.5 \times$ inter quartile range)
800 were removed from the plot for improved visualization but were included in the paired Wilcoxon
801 signed-rank tests.
802

803
804

805 **Figure 6. dN/dS ratios estimated from two-rate models in PAML for symbiotic (orange)**
806 **and non-symbiotic (purple) strains from the *Ensifer* genus.** A *** indicates comparisons that
807 showed significance at $p < 0.0005$ in paired Wilcoxon tests. (a) dN/dS ratios estimated in all
808 genes across the whole genome. (b) dN/dS ratios estimated on genes separated by their location
809 in the genome. The second panel represents dN/dS ratios calculated from genes found on the
810 pSymB plasmid and the first panel shows dN/dS ratios calculated on genes from the rest of the
811 genome including the chromosome and other plasmids (excluding pSymB).

812
813
814
815
816
817
818
819

820

821

822

823

824

825 **Tables**

826 **Table 1. Species of mutualistic and non-mutualistic legumes used in the study.** *Senna italica*,
827 *P. africanum*, *P. dubium*, and *D. mollis* seeds were sourced from KEW Royal Botanical Gardens
828 Millennial Seed Bank. Seeds of all other species were obtained from USDA-ARS Germplasm
829 Resources Information Network.

830

life style	species	introduced ranges	human uses	ploidy	life history	native region
Non-mutualistic	<i>Senna didymobotrya</i>	20	5	polyploid	perennial	Africa
Mutualist	<i>Senna italica</i>	2	1	polyploid	perennial	Africa, Middle East
Non-mutualistic	<i>Peltophorum dubium</i>	6	3	polyploid	perennial	South America
Mutualist	<i>Peltophorum africanum</i>	7	3	polyploid	perennial	Africa
Non-mutualistic	<i>Senna occidentalis</i>	48	6	polyploid	perennial	South America
Mutualist	<i>Senna barclayana</i>	0	0	NA	annual/perennial	Australia
Non-mutualistic	<i>Dalea mollis</i>	0	1	diploid	annual	North America
Mutualist	<i>Dalea mollissima</i>	0	1	diploid	annual	North America
Non-mutualistic	<i>Mimosa grahamii</i>	0	0	NA	perennial	North America
Mutualist	<i>Mimosa aculeaticarpa</i>	0	0	polyploid	perennial	North/Central America
Non-mutualistic	<i>Calliandra humilis</i>	0	0	NA	perennial	North/Central America
Mutualist	<i>Calliandra eriophylla</i>	0	0	diploid	perennial	North/Central America

831

832

833

834

835 **Table 2. Bacteria strains with genome data collected from NCBI used in the study.**

836

mutualist	species	assembly code	isolation source
Non-symbiotic	<i>Bradyrhizobium oligotrophicum</i>	GCA_000344805.1	Paddy field soil
Symbiotic	<i>Bradyrhizobium license</i>	GCA_001693385.1	Root nodule
Non-symbiotic	<i>Xanthobacter autotrophicus</i>	GCA_000017645.1	Black sludge
Symbiotic	<i>Azorhizobium caulinodans</i>	GCA_000010525.1	Stem nodule
Non-symbiotic	<i>Microvirga subterranea</i>	GCA_003350535.1	Geothermal aquifer
Symbiotic	<i>Microvirga vignae</i>	GCA_001017175.1	Root nodule
Non-symbiotic	<i>Mesorhizobium oceanicum</i>	GCA_001889605.1	Sea water
Symbiotic	<i>Mesorhizobium temperatum</i>	GCA_002284575.1	Root nodule
Non-symbiotic	<i>Rhizobium tubonense</i>	GCA_003240585.1	Plant
Symbiotic	<i>Rhizobium gallicum</i>	GCA_001908615.1	Root nodule
Non-symbiotic	<i>Cupriavidus alkaliphilus</i>	GCA_003254285.1	Alkaline soils
Symbiotic	<i>Cupriavidus taiwanensis</i>	GCA_900250065.1	Root nodule
Non-symbiotic	<i>Paraburkholderia caribensis</i>	GCA_001449005.1	Soil
Symbiotic	<i>Paraburkholderia diazotrophica</i>	GCA_900108945.1	Root nodule

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853 **Table 3. Results of paired Wilcoxon signed-rank tests comparing dN/dS ratios at matching**
854 **genes in mutualistic legumes and non-mutualistic relatives.**

855 The V value is the total sum of ranked genes where the non-mutualistic species had positive
856 values. The U value is the total sum of ranked genes where the mutualist had positive values.
857 The p value is reported for paired Wilcoxon tests where the null hypothesis was that the shift in
858 rank is 0. Significant tests at p<0.05 are bolded.

859

mutalist	non-mutualist	gene no.	V	U	p value
<i>M. aculeaticarpa</i>	<i>M. grahamii</i>	1077	156945	164256	0.5769
<i>D. mollissima</i>	<i>D. mollis</i>	761	109734	95386	0.1253
<i>C. humilis</i>	<i>C. eriophylla</i>	1191	274018	329333	0.0085
<i>S. occidentalis</i>	<i>S. barclayana</i>	1339	95093	84607	0.2160
<i>S. italica</i>	<i>S. didymobotrya</i>	1003	185751	174225	0.4193
<i>P. africanum</i>	<i>P. dubium</i>	964	198736	183639	0.3120

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885 **Table 4. Results of paired Wilcoxon signed-rank tests comparing dN/dS ratios at matching**
886 **genes in symbiotic rhizobia and non-symbiotic relatives.**

887 The V value is the total sum of ranked genes where the non-symbiotic species had positive
888 values. The U value is the total sum of ranked genes where the symbiotic species had positive
889 values. The p value is reported for paired Wilcoxon tests where the null hypothesis was that the
890 shift in rank is 0. Significant tests at p<0.05 are bolded.

891

symbiotic	non-symbiotic	gene no.	V	U	p value
<i>B. license</i>	<i>B. oligotrophicum</i>	1154	335686	326140	0.6718
<i>A. caulinodans</i>	<i>X. autotrophicus</i>	988	200434	285171	<0.0001
<i>M. vignae</i>	<i>M. subterranea</i>	1052	216521	331060	<0.0001
<i>M. temperatum</i>	<i>M. oceanicum</i>	1090	204387	390208	<0.0001
<i>R. gallicum</i>	<i>R. tubonense</i>	1288	373359	451611	0.0032
<i>C. taiwanensis</i>	<i>C. alkaliphilus</i>	836	116267	136849	0.0603
<i>P. diazotrophica</i>	<i>P. caribensis</i>	1074	262824	281622	0.3341

892

893

894

895

896

897