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ABSTRACT 1 

Bacteria produce a plethora of natural products that are in clinical, agricultural and 2 

biotechnological use. Genome mining revealed millions of biosynthetic gene clusters (BGCs) 3 

that encode their biosynthesis, and the major challenge is to predict the bioactivities of the 4 

molecules these BGCs specify, and how to elicit their expression. Here, we present an 5 

innovative strategy whereby we harness the power of regulatory networks combined with 6 

global gene expression patterns to predict BGC functions. Studying the regulon of iron master 7 

regulator DmdR1 in Streptomyces coelicolor combined with co-expression data and large-8 

scale comparative genome analysis identified the novel desJGH gene cluster. Mutational and 9 

metabolomics analysis showed that desJGH is required for biosynthesis of the clinical drug 10 

desferrioxamine B. DesJGH thereby dictate the balance between the structurally distinct 11 

desferrioxamines B and E. We propose regulation-based genome mining as a promising 12 

approach to functionally prioritize BGCs to accelerate the discovery of novel bioactive 13 

molecules. 14 

15 
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INTRODUCTION 16 

Within the genetic blueprint of microorganisms lies an immense reservoir of chemical potential, 17 

which likely constitutes the mechanistic basis for numerous microbiome-associated 18 

phenotypes and offers a rich source of raw materials for discovery and development of among 19 

others antibiotics, anticancer agents, immunosuppressants, crop protection agents, and 20 

industrial ingredients 1,2. Genome mining efforts have led to the identification of millions of 21 

biosynthetic gene clusters (BGCs) predicted to encode the biosynthesis of many thousands 22 

of natural product scaffolds 3. However, only an estimated 3% of these specialized metabolites 23 

have undergone experimental characterization thus far, leaving a vast amount of untapped 24 

chemical diversity yet to be explored 4. 25 

  Identifying the diverse roles of specialized metabolites in microbiome interactions is 26 

highly challenging, primarily due to the dynamic nature of the host environment and the 27 

difficulties in replicating such conditions in laboratory settings. Moreover, while these 28 

molecules exhibit a wide range of functions, only a small fraction of metabolites will directly 29 

contribute towards microbiome-associated phenotypes such as disease suppression or 30 

growth promotion, or have the necessary properties to yield the next generation of crop 31 

protection agents, antibiotics, or food additives 5–7. As a result, there is a pressing need for 32 

generalized strategies to predict the functions of specialized metabolites, enabling us to 33 

understand their mechanistic roles in inter-organismal interactions and to gauge their 34 

usefulness for industrial and clinical applications. 35 

 A major aim in current natural product discovery is to identify ways to reduce the 36 

genetic space of sequenced BGCs to manageable numbers, to inform scientists on which 37 

BGCs to prioritize in the search for novel bioactivity. Historically, scientists have investigated 38 

two dimensions, namely the molecular space via high-throughput screening of compound and 39 

strain libraries, followed by the genomic space in the 21st century, by investigating BGCs in 40 

sequenced genomes, based on the identification of enzyme-coding genes 8. Perhaps the most 41 

advanced strategy for the latter has thus far been target-based genome mining, which uses 42 

self-resistance genes inside BGCs as beacons for recognizing the macromolecular targets of 43 
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their products. However, the presence of recognizable self-resistance genes seems to be 44 

limited to a mere 5-10% of BGCs, necessitating complementary methods to predict the 45 

functions of the remaining specialized metabolic diversity 9,10. 46 

We anticipate that an attractive alternative would be regulation-guided approaches, 47 

given that the regulatory system plays a pivotal role in the transcription of BGCs. 48 

Overexpression or inactivation of cluster-situated regulatory genes have been used to activate 49 

their expression 11–13. For example, targeting BGCs containing Streptomyces antibiotic 50 

regulatory protein (SARP) family regulators enabled the discovery of novel antibiotic BGCs 51 

14,15. Also, the Identification of Natural compound Biosynthesis pathways by Exploiting 52 

Knowledge of Transcriptional regulation (INBEKT) strategy was able to unveil a previously 53 

undetectable BGC by identifying regulatory binding sites of the zinc-dependent regulator ZuR 54 

16. These early successes at the single-gene or single-BGC level indicate that genome-wide 55 

analysis of regulatory networks may be even more successful at unveiling BGC functions. 56 

Here, we introduce a computational omics strategy that leverages genome-wide gene 57 

regulation information to provide functional predictions of BGCs in microbes. This novel 58 

approach connects genome-wide regulatory information derived from transcription factor 59 

binding site (TFBS) prediction to gene co-expression networks, thereby associating genes to 60 

functions. Genome-wide regulatory analysis of BGCs of Streptomyces coelicolor M145 in 61 

combination with co-expression patterns unveiled a novel BGC that had escaped detection by 62 

current genome mining software tools. Subsequent mutational analysis and metabolic profiling 63 

experiments showed that this BGC plays an important role in the biosynthesis of the well-64 

studied siderophore desferrioxamine B. These results illustrate the potential of our method to 65 

infer BGC function, facilitate the detection and prioritization of novel BGCs and ultimately pave 66 

the way for identifying genes responsible for the biosynthesis of novel bioactive molecules. 67 

  68 
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RESULTS AND DISCUSSION 69 

 70 

Identifying functional associations through gene regulatory networks 71 

A major challenge in genome-mining-based drug discovery lies in prioritizing BGCs within the 72 

vast unexplored biosynthetic space, and in particular finding novel ways to predict their 73 

function. We hypothesized that regulatory networks that control BGC expression might form a 74 

new, third, dimension for screening for potential functions, complementing phenotypic and 75 

genomic screening. The concept we propose is that if an unknown BGC (or any cluster of 76 

genes) is predicted to be controlled by a transcriptional regulator that responds to a known 77 

signal and is connected to a specific physiological response, that BGC may functionally relate 78 

to known BGCs controlled in a similar manner. 79 

To develop such a regulation-based genome mining strategy and assess its validity, 80 

we chose to focus on the model organism Streptomyces coelicolor M145. This microbe, 81 

belonging to the phylum Actinomycetota, is renowned for its exceptional ability to produce a 82 

wide array of bioactive compounds, making it an interesting target for natural product 83 

discovery 17–20. Moreover, it is the bacterial species with currently the largest number of 84 

functionally characterized BGCs, with 17 out of its 27 BGCs having been connected to the 85 

production of a known metabolite, making it an ideal organism to assess how well regulation 86 

connects to function 21. To investigate the functional relationships between this microbe’s 87 

regulatory machinery and specialized metabolite biosynthesis, we investigated the binding of 88 

transcription factors (TFs) to their corresponding binding sites (TFBSs). For this purpose, we 89 

used the regulatory data of the LogoMotif database 22. Seventeen precalculated and manually 90 

curated position weight matrices (PWMs) associated with TFs in this database were used for 91 

genome-wide predictions of 730 TFBSs, using automated computational matching. Based on 92 

these predictions, a gene regulatory network (GRN) was constructed in which TFBSs were 93 

identified within BGC regions predicted by antiSMASH (Fig. 1a). A total of 81 TFBSs were 94 

found within antiSMASH BGC regions; 55 of these were at the region peripheries and 95 

putatively unrelated to specialized metabolite biosynthesis. To identify which TFBSs were truly 96 
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linked to biosynthetic pathways, we then refined the boundaries of the BGCs (Table S1) using 97 

literature evidence and gene co-expression patterns (see below). This resulted in the 98 

identification of 17 low-confidence and 9 medium/high-confidence BGC-TFBS associations 99 

each matching the physiological or ecological functions associated with the corresponding 100 

regulon (Fig. 1a). These findings agree with existing experimental analyses, thus reinforcing 101 

the utility of our approach in accurately identifying BGC-TFBS connections (Fig. 1b). For 102 

example, there is a clear correlation between TFBSs of the zinc uptake regulator (Zur) and 103 

the zinc-regulated coelibactin locus23, as well as between the pleiotropic antibiotic biosynthesis 104 

regulator AfsQ1 and the antibiotic coelimycin P1 24. Additionally, we observed a connection 105 

between the iron-dependent regulator DmdR1 and the biosynthesis of two iron-chelating 106 

compound families that function as siderophores: the desferrioxamines (DFOs) and 107 

coelichelin 25,26.  108 
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 109 

Figure 1. a, Predicted gene regulatory network of Streptomyces coelicolor based on 17 well-110 

known regulators. Each node in the network represents a (regulatory) gene, and every edge 111 

represents a regulatory interaction between two nodes. The edges colored in dark gray 112 

indicate strong PWM prediction scores, while the lighter gray shades represent weaker 113 

interactions. Matches within BGC regions are depicted as triangles. In six regions (black 114 

circled), the matches fall within a co-expressed region, highlighting their functional relation to 115 

these compounds. b, Representation of the four co-expressed regions, including the locations 116 
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of their detected TFBSs as colored dots. All predicted TFBSs have been experimentally 117 

validated in pre-existing work.  118 

 119 

Co-expression analysis and operon-level expansion of the predicted DmdR1 regulon 120 

Next, we aimed to go beyond antiSMASH-detectable BGCs and assess if we could infer the 121 

function of any uncharacterized operons and gene clusters using regulatory predictions. 122 

Expectedly, the predicted DmdR1 regulon exhibited a clear functional association with 123 

siderophores, as evidenced by the connection between its binding sites and known 124 

siderophore BGCs 27. Therefore, we focused on exploring the functional connection between 125 

DmdR1 binding sites (iron boxes) and iron metabolic genes. A critical issue when using PWMs 126 

is the large number of false positive TFBS hits. To address this, we refined the general 127 

LogoMotif detection threshold for DmdR1 to be more accurate for S. coelicolor by applying the 128 

principles previously described for the calibration of the PREDetector algorithm 28. This 129 

approach involves an analysis of the distribution of hits and the ratio of hits in non-coding 130 

versus coding regions (Fig. S1). The results demonstrated that higher PWM match scores 131 

correlated with a greater frequency of hits detected in non-coding regions, where iron boxes 132 

are typically found. By calculating the median score of the non-coding to coding ratio, we 133 

established a refined threshold of 22.875, leading to the identification of a total of 39 predicted 134 

DmdR1 binding sites (Table S2). Among these 39 predicted binding sites, we identified 25 135 

unique binding site locations, 22 of which corresponded to previously reported DmdR1 target 136 

genes. Based on these predictions, we identified three novel putative DmdR1 target genes: 137 

SCO2114, SCO2275, and SCO5998. 138 

Bacterial regulons consist not only of genes with TFBSs in their regulatory region, but 139 

also any downstream co-operonic genes. DmdR1-controlled operons were predicted using a 140 

co-expression analysis of a previously published transcriptome. The RNA-Seq dataset of Lee 141 

et al.29 was chosen for its relatively high sample count (22 for S. coelicolor) and the study’s 142 

focus on iron restriction. Reads were retrieved from NCBI SRA and mapped to the S. coelicolor 143 

M145 genome, and gene count data were processed using previously reported techniques to 144 
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generate a pairwise gene co-expression matrix 30,31. Of the 30 predicted DmdR1 target genes 145 

with a significant PWM match score, 26 were anti-correlated with transcription of dmdR1 146 

(Pearson correlation coefficient [PCC] < –0.43, p<0.05, Fig. 2a), including newly predicted 147 

target genes SCO2114, SCO2275, and SCO5998. The co-expression data support the 148 

minimum PWM match score of 22.875; below this threshold, no mean anti-correlated 149 

expression was identified. Only a single gene with a significant PWM score, the GntR-type 150 

regulator SCO6159, was positively co-expressed with dmdR1 (PCC = 0.69), and the 151 

transcription pattern of three putative target genes did not correlate significantly with that of 152 

dmdR1, suggesting a more complicated regulation by multiple transcription factors. DmdR1 153 

target genes were placed into predicted operons using the gene co-expression matrix, as well 154 

as strand and intergenic distance, expanding the putative direct regulon of DmdR1 from 25 to 155 

58 genes, which are found across 16 genomic loci (Fig. 2b). A description of the predicted 156 

DmdR1 regulon, including functional predictions, is presented in SI Discussion 1. As expected, 157 

DmdR1 binding sites were recovered in the coelichelin and desferrioxamine BGCs but not the 158 

ZuR-controlled coelibactin BGC, supporting the use of regulatory analysis for linking 159 

metallophore BGCs to their corresponding metal. Other logical gene annotations present in 160 

the regulon include siderophore-independent iron acquisition, mobilization of stored iron, and 161 

oxidative stress response. 162 

 163 
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 164 

Figure 2. a, Anti-correlation of gene expression between dmdR1 and its predicted regulon. 165 

Left: Pearson correlation coefficients (PCCs) between dmdR1 and all genes with a DmdR1 166 

position weight matrix (PWM) score greater than 15 in their regulatory region. The vertical 167 

dashed line marks the refined PWM score threshold of 22.875. The horizontal dotted lines 168 

mark PCC = ±0.43, corresponding to an adjusted p-value of 0.05. Right: Target genes 169 

immediately downstream of a predicted DmdR1 binding site, ordered by decreasing PWM 170 
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score. Plus and minus indicate the strand of the target gene. Genes marked with an × did not 171 

have significant co-expression with dmdR1. Binding site details are given in Table S2. b, The 172 

putative regulon of DmdR1 in S. coelicolor M145. White dots indicate predicted DmdR1 173 

binding sites. Genes are labeled by SCO number and colored by putative function. Clusters 174 

are drawn to scale, and arrows represent the direction of transcription. 175 

 176 

Metabolic profiling of an unexplored DmdR1-controlled locus  177 

This systematic mapping of the DmdR1 regulon then provided the opportunity to investigate 178 

whether new operons or gene clusters could be identified that would be predicted to function 179 

in iron acquisition. Upon close examination of all individual genes across the regulon, the 180 

uncharacterized region from SCO4045 to SCO4052 stood out due to sequence similarity to 181 

biosynthetic genes (Fig. 2b). Interestingly, SCO4050 encodes a protein similar to the N-182 

acyltransferase DesC (encoded by SCO2784), which catalyzes the conversion of N-183 

hydroxycadaverine to N-hydroxy-N-succinylcadaverine (HSC) and N-hydroxy-N-184 

acetylcadaverine (HAC), the direct precursors of desferrioxamine B, in vitro 32. SCO4048 is a 185 

paralog of desF (SCO2781), which encodes ferrioxamine reductase. Furthermore, SCO4049 186 

is homologous to genes designated as desG in other streptomycetes, and is predicted to 187 

encode a penicillin amidase family protein; phylogenetic analysis in Actinobacteria revealed 188 

that desG, if present, either colocalized with the DFO cluster, or with a separate DmdR1-189 

controlled locus 33. DesG was originally hypothesized to increase DFO structural diversity by 190 

producing phenylacetic acid-capped derivatives in some strains; however, no arylated DFOs 191 

have been identified in S. coelicolor. Together, SCO4048, SCO4049, and SCO4050 (further 192 

referred to as desJ, desG, and desH, respectively) appear to comprise a previously 193 

undetected locus putatively related to DFO biosynthesis 33. 194 

To analyze the role of the DmdR1-controlled locus in the production of DFOs, we 195 

applied the CRISPR-based editing system (CRISPR-BEST)34 to construct three knock-out 196 

mutants in which either SCO4048 (desJ), SCO4049 (desG) or SCO4050 (desH) had been 197 

inactivated. The system allows introduction of a premature stop codon in the target ORF, thus 198 
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preventing the production of a functional protein. Using this method, we created null mutants 199 

of SCO4048 (desJ) with mutations W55* or Q68*, resulting in 186 aa or 173 aa truncation of 200 

the gene product, respectively. The introduction of a stop codon at W61 in SCO4049 (desG) 201 

led to a substantial 721 aa shortening, while mutations W43* or Q91* in SCO4050 (desH) 202 

resulted in truncations of 163 aa or 115 aa, respectively. PCR followed by DNA sequencing 203 

was used to verify the correctness of the knock-out mutants. 204 

To obtain extracts for metabolomics, S. coelicolor M145 and its mutant derivatives 205 

were grown in a liquid iron-limited medium (ISP-2) for five days. The metabolites produced 206 

were adsorbed on Diaion® HP20 resin, which was subsequently extracted with methanol and 207 

analyzed using liquid chromatography-mass spectrometry (LC-MS), which revealed changes 208 

in the production of DFO-related metabolites in each of the mutants compared to the wild-type 209 

strain (Fig. 3a). The metabolites were annotated by matching the high-resolution mass 210 

spectrometry (HRMS) and tandem mass spectrometry (MS/MS) spectra to previously 211 

published ones (Fig. S2) 35–37. Statistical analyses showed that only the levels of 212 

desferrioxamine B (DFOB) were significantly increased in extracts of the desJ mutant as 213 

compared to the parental strain (Fig. S3). Metabolomic analysis of ∆desG and ∆desH revealed 214 

an approximate 1000-fold and 16-fold decrease in DFOB production, respectively (Fig. 3 and 215 

Fig. S3). Conversely, the mutants exhibited a significant increase in desferrioxamine E (DFOE) 216 

and its metal complexes, most likely as a result of the nearly abolished DFOB production.  217 

 218 
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 219 

Figure 3. New model for biosynthesis of desferrioxamines B and E. a, Extracted ion 220 

chromatograms for m/z values corresponding to DFO-related metabolites in culture extracts 221 

of the knock-out mutants of SCO4048 (desJ), SCO4049 (desG) and SCO40450 (desH) 222 

compared to the parent S. coelicolor M145 strain. The desG mutant fails to produce DFOB, 223 

while a 16-fold decrease in DFOB biosynthesis was seen in desH mutants (cf. Fig. S3). b, 224 

Proposed biosynthetic pathway for assembly of desferrioxamines E and B. Main biosynthetic 225 

enzymes presented in bold face. DesG and DesH balance intracellular N-hydroxy-N-226 

succinylcadaverine (HSC) and N-hydroxy-N-acetylcadaverine (HAC) concentrations by 227 

converting HSC to HAC. In the absence of DesG and/or DesH, the cells likely fail to produce 228 

sufficient levels of HAC, thereby strongly attenuating the production of DFOB. Although DesC 229 

has been shown to be able to catalyze the acetylation of N-hydroxycadaverine in vitro, the 230 

enzyme can only modestly compensate for the loss of DesH in vivo, underlining the important 231 

role played by DesG and DesH in DFOB production (Fig. S4). 232 

 233 

We genetically complemented the mutants to determine if the effects were due solely to the 234 

gene inactivation and not to second-site mutations. For this, constructs were introduced that 235 

expressed the respective wild-type genes desJ, desG or desH from the constitutive gap 236 

promoter. The complementation constructs were based on vector pSET152 38, which 237 
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integrates at the bacteriophage ΦC31 attachment site on the S. coelicolor genome. The 238 

complemented mutants showed recovery of DFOB production in the complemented strains 239 

(Fig. S5). Taken together, our mutational analysis shows that the attenuation of DFOB 240 

production in the mutants can be fully explained by the inactivation of desG and desH.  241 

DFOB and other capped desferrioxamines have been isolated from many 242 

Streptomyces strains, as well as several other Actinomycetota. To see if the proposed 243 

biosynthetic role for DesGH applies more generally to DFO biosynthesis in other 244 

Actinomycetota, we performed a meta-analysis of published DFO producers. In total, we 245 

identified reports of DFO production in 46 sequenced strains, comprising mostly Streptomyces 246 

species (n=34), as well as other Actinomycetota (n=7), Pseudomonadota (n=4), and one 247 

member of Bacteroidota (Table S3). Homologues of desG and desH were found in 36 of the 248 

genomes, all Actinomycetota. One sequenced DFO producer, Gordonia rubripertincta CWB2, 249 

contained desG but not desH; however, the G. rupripertincta DFO locus is part of a larger 250 

BGC that putatively encodes the biosynthesis of the cryptic nocardichelins (see SI Discussion 251 

2), and one of the two other acyltransferase genes in the BGC has presumably replaced desH. 252 

In all other cases, desG and desH are putatively co-operonic, and the two genes are fused in 253 

Streptomyces atratus and Micrococcus spp. CH3 and CH7. Among collected reports of DFO 254 

production, DFOB (Fig. 3b) and other acetyl, fatty-acyl, or aryl “capped” DFOs were common, 255 

isolated from 34 of 47 sequenced strains. However, in line with our discovery, the nine strains 256 

lacking desGH exclusively produced DFOE (Fig. 3b) and other “uncapped” DFOs with 257 

succinylated monomers (Fig. S6). 258 

Based on the combination of the above data, we propose the following pathway for 259 

desferrioxamine biosynthesis in S. coelicolor (Fig. 3b). The biosynthesis of DFOE is encoded 260 

by the canonical biosynthetic locus desABCD (SCO2782-85): DesA and DesB convert L-lysine 261 

to N-hydroxycadaverine, DesC succinylates N-hydroxycadaverine to form HSC 32, and DesD 262 

cylcotrimerizes HSC to produce DFOE 39. In contrast, DesG (SCO4049) and DesH (SCO4050) 263 

enable DFOB production (Fig. 3).  A recent study of DesD concluded that the relative 264 

intracellular concentrations of HSC and HAC must be controlled for DFOB formation 39
. 265 
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Previous investigations of DesC in vitro have shown that it is able to catalyze the conversion 266 

of N-hydroxycadaverine to both HSC and HAC, using succinyl and acetyl-CoA, respectively 267 

32. However, the relative catalytic efficiency of these two processes has yet to be elucidated. 268 

Our experiments strongly suggest that the main function of DesC in vivo is to catalyze the 269 

production of HSC, while HAC results primarily from the action of DesH. We propose that 270 

DesG, which shows sequence similarity to amidases, de-succinylates HSC to regenerate N-271 

hydroxycadaverine, which is then acetylated by the putative acetyltransferase DesH to boost 272 

the levels of HAC relative to HSC in high level DFOB producers. Gene fusions of desGH 273 

observed in some strains are equipped to exploit the high local effective concentration of N-274 

hydroxycadaverine generated by the DesG domain, enabling the DesH domain to acetylate 275 

N-hydroxycadaverine before it can be re-succinylated. The production of DFOB in the ∆desH 276 

mutant is strongly attenuated but not abolished, consistent with the previously reported ability 277 

of DesC to catalyze acylation of N-hydroxycadaverine with acetyl-CoA in addition to succinyl-278 

CoA (Fig. 3a). Taken together, these data indicate that DesC strongly prefers succinyl-CoA 279 

as a substrate over acetyl-CoA, and that DesG and DesH are required to ensure sufficient 280 

quantities of HAC are produced to support high level DFOB production in vivo. This 281 

biosynthetic model is in line with the available phylogenomic, metabolomic, and genetic 282 

evidence, as well as the canonical catalytic chemistry of DesG and DesH homologues. 283 

 284 

CONCLUSION 285 

In conclusion, we have developed a novel computational omics strategy for functional 286 

inference of BGCs in microbes, which uses regulatory information to provide clues regarding 287 

their functional roles in inter-organismal interactions and to gauge their usefulness for 288 

industrial and clinical applications. Uniquely, this method leverages genome-wide gene 289 

regulation information derived from TFBS detection combined with gene co-expression 290 

network analysis to link biosynthetic genes to their potential functions. A key application of this 291 

method is showcased in our study of Streptomyces coelicolor M145, a well-studied model 292 

organism, where we predict the regulons of 17 well-known regulators and 9 high-confidence 293 
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functional associations to known BGCs. Of these, we selected the iron-dependent repressor 294 

DmdR1 and its strong connection to the regulation of siderophore biosynthesis for showcasing 295 

the effectiveness of our approach. This analysis, which involved TFBS prediction of the 296 

DmdR1 regulon, alongside the detection of co-expression patterns under iron starvation 297 

conditions, allowed us to detect an uncharacterized gene cluster with a functional link to iron 298 

metabolism. Furthermore, we present evidence that the putative amidase and acyltransferase 299 

encoded by desG and desH, respectively, in this cluster collaborate in the efficient 300 

biosynthesis of desferrioxamine B by SCO4049 and SCO4050 CRISPR-cBEST knockout 301 

mutants and subsequent metabolic profiling experiments. These findings not only validated 302 

our hypothesis, but also enabled identification of a novel pathway within the complex 303 

biosynthetic route to desferrioxamines. Overall, our results demonstrate the effectiveness of 304 

our method in identifying and inferring the function of novel BGCs that escaped detection 305 

despite the availability of state-of-the-art genome mining tools. We anticipate that 306 

transcriptomics-guided regulatory genome mining, by combining function prediction with 307 

application of elicitors that may activate BGCs of interest, will provide pointers as to how to 308 

select and activate cryptic BGCs in the extant biosynthetic diversity. This will aid in the 309 

identification of their roles in microbiome interactions and guide the discovery of bioactive 310 

natural products that are of value for pharmaceutical, agricultural, and biotechnological 311 

applications. 312 

 313 

METHODS 314 

 315 

General  316 

Default software parameters were used unless otherwise noted. Scripts are available at: 317 

https://github.com/zreitz/dmdR. 318 

 319 
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Construction of the position weight matrix and sequence motif 320 

Ten previously reported DmdR1 binding sites from Streptomyces coelicolor were collected 321 

from literature 26. Thereafter, the occurrences of each nucleotide across all positions of the 322 

sequences were counted to construct a position frequency matrix (PFM). This PFM was 323 

converted to a PWM by applying Bioconductor’s seqLogo v5.29.8 algorithm40, which 324 

calculates the log-likelihood of each nucleotide in the matrix, while taking into account the 325 

background nucleotide distributions. Additionally, the information content (IC) of the resulting 326 

PWM was calculated using Shannon’s entropy calculation methods. The IC was visualized as 327 

a sequence motif with the use of Logomaker v 0.841.  328 

 329 

Identification of DmdR1 binding sites 330 

The genome assembly of Streptomyces coelicolor A3(2) was downloaded from NCBI using 331 

accession GCA_000203835.1. The coding and non-coding regions, as well as the regions 332 

spanning from -350 bp to +50 bp relative to the start codons of each gene were extracted with 333 

MiniMotif22 (https://github.com/HAugustijn/MiniMotif). We employed MOODS v1.9.4.142 to 334 

query these regions for DmdR1 PWM matches, using a p-value threshold of 0.01 and 335 

background distribution of 72% representing the GC percentage of S. coelicolor. The ratio of 336 

hits in non-coding versus coding regions was visualized using the R package ggplot2 43. 337 

 338 

RNA-Seq data processing and co-expression analyses 339 

 Streptomyces coelicolor A3(2) RNA-Seq data, collected by Lee et al.,29 was retrieved 340 

from the European Nucleotide Archive (PRJEB25075).44 Raw read quality was assessed with 341 

FastQC.45 Reads were mapped to the reference genome NC_003888.3 using STAR v2.7.6a:46 342 

Index files were generated with the parameters “--genomeSAindexNbases 10 --343 

sjdbGTFfeatureExon CDS”, and reads were aligned with the parameter “--alignIntronMax 1”. 344 

Mapped reads were indexed using SAMtools v1.3.147 and visualized with the Integrative 345 

Genomics Viewer.48  Per-gene read count tables were generated with featureCounts v2.0.149 346 

using the parameters “-O -M -t CDS -s 2 --fraction”.   347 
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The per-gene RNA-Seq count data was further analyzed in R. A minimum gene 348 

expression cutoff was applied (≥5 counts in 50% of samples), then counts were normalized 349 

by Trimmed Mean of M-values (TMM) and log2 transformed using a hyperbolic arcsine 350 

pseudocount 50. A co-expression bias associated with lowly- and highly-expressed genes (of 351 

unknown origin, but present in several other RNA-Seq datasets 31) was mitigated by 352 

regressing out the first principal component using the sva_network function from the sva 353 

package (Fig. S7)30. The resulting correlation matrix still had an expression-correlated 354 

broadening of correlation coefficients, which was corrected by spatial quantile normalization 355 

(Fig. S7)31 and used for further analyses. An all-to-all Pearson Correlation Coefficient (PCC) 356 

matrix with corrected two-sided Student p-values was calculated using the corAndPValue 357 

function from the package WGCNA.51 A p-value of 0.05 corresponded to a minimum absolute 358 

PCC value of 0.43. The correlation matrix was corrected for remaining expression-level-359 

dependent PCC distribution broadening using spatial quantile normalization 360 

(spqn::normalize_correlation) with the following parameters: ngrp = 20, size_grp = 337, 361 

ref_grp = 18.31  Subsets of the resulting correlation matrix were used for all downstream 362 

analyses. 363 

 364 

Comparative genomics 365 

Desferrioxamine core loci (desABCD) and accessory loci (desGH) were found in 366 

Streptomyces genomes using a modified version of antiSMASH 7 52 367 

(https://github.com/zreitz/antismash/tree/desGH-7-1). The “desABCD” rule requires matches 368 

to all of the following Pfam models with a maximum intergenic distance of 5 kbp: PF00282.22 369 

(desA), PF13434.9 (desB), PF13523.9 (desC), and PF04183.5 (desD). The “desGH” rule 370 

requires matches to PF01804.21 (desG) and PF13523.9 (desH) with a maximum intergenic 371 

distance of 1 kbp. Genome assemblies for previously reported DFO producers (Table S3) 372 

were downloaded from NCBI Genbank on 21 Nov, 2023, in Genbank format using ncbi-373 

genome-download53. The multiSMASH pipeline54 was used to scan the genomes with 374 

antiSMASH and tabulate the results 52. A gene phylogeny of the resulting desABCD loci was 375 
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obtained from CORASON, run as part of BiG-SCAPE v1.1.5 using settings "--mix --no-classify 376 

--clans-off --cutoffs 1" 55. The resulting phylogenetic tree was annotated using iTOL v5 56.  377 

 378 

Bacterial strains and media 379 

E. coli strains DH5ɑ and ET12567/pUZ800257 were used for routine cloning and for 380 

interspecific conjugation, respectively. E. coli transformants were selected on Luria Bertani 381 

(LB) agar media containing the relevant antibiotics and grown O/N at 37 °C. Streptomyces 382 

coelicolor A3(2) M145 was used as parental strain to construct mutants. All media and routine 383 

Streptomyces techniques are described in the Streptomyces manual 58. Soy flour mannitol 384 

(SFM) agar plates were used to grow Streptomyces strains for preparing spore suspensions. 385 

 386 

Growth conditions and extraction 387 

The cultures were grown in triplicate in 100 mL Erlenmeyer flasks with 1 g of Diaion® HP-20 388 

resin (Resindion, Mitsubishi) in 15 mL of International Streptomyces Project-2 medium (ISP-389 

2; yeast extract 4 g/L, malt extract 10 g/L and dextrose 4 g/L at pH 7.2). The medium was 390 

inoculated using 1 μL of spore stock and incubated in a rotary shaker at 30 °C. After five days 391 

of growth, the resin was vacuum filtered, washed three times with Milli-Q water, and extracted 392 

with 3 x 5 mL of methanol. The crude extracts were then dried, weighed, and dissolved in 393 

methanol at a final concentration of 1 mg/mL. Media blanks were extracted and prepared in a 394 

similar way as negative controls. 395 

 396 

LC-MS based metabolic profiling 397 

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) acquisition was performed 398 

using Shimadzu Nexera X2 ultra high-performance liquid chromatography (UPLC) system, 399 

with attached photodiode array detector (PDA), coupled to Shimadzu 9030 QTOF mass 400 

spectrometer, equipped with a standard electrospray ionization (ESI) source unit, in which a 401 

calibrant delivery system (CDS) is installed. A total of 2 µL of dissolved extracts were injected 402 
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into a Waters Acquity HSS C18 column (1.8 μm, 100 Å, 2.1 × 100 mm). The column was 403 

maintained at 30 °C, and run at a flow rate of 0.5 mL/min, using 0.1% formic acid in H2O as 404 

solvent A, and 0.1% formic acid in acetonitrile as solvent B. A gradient was employed for 405 

chromatographic separation starting at 5% B for 1 min, then 5–85% B for 9 min, 85–100% B 406 

for 1 min, and finally held at 100% B for 3 min. The column was re-equilibrated to 5% B for 3 407 

min before the next run was started. The LC flow was switched to the waste the first 0.5 min, 408 

then to the MS for 13.5 min, then back to the waste to the end of the run. 409 

The MS system was tuned using standard NaI solution (Shimadzu). The same solution was 410 

used to calibrate the system before starting. Additionally, a calibrant solution made from ESI 411 

tuning mix (Sigma-Aldrich) was introduced through the CDS system, the first 0.5 min of each 412 

run, and the masses detected were used for post-run mass correction for the file, ensuring 413 

stable accurate mass measurements.  414 

System suitability was checked by regularly measuring a standard sample made of the 415 

following compounds: 416 

compound concentration (μg/mL) retention time (min) expected m/z 

paracetamol 25 2,375 152,0712 

caffeine 5                           3,246 195,0882 

prednisolone 2,5                           5,290 361,2015 

reserpine 1,25 6,186 609,2812 

clomipramine 1,25 6,379 315,1628 

  417 

All the samples were analyzed in positive polarity, using data dependent acquisition mode. In 418 

this regard, full scan MS spectra (m/z 100–1700, scan rate 10 Hz, ID enabled) were followed 419 

by two data dependent MS/MS spectra (m/z 100–1700, scan rate 10 Hz, ID disabled) for the 420 

two most intense ions per scan. The ions were selected when they reach an intensity threshold 421 

of 1500, isolated at the tuning file Q1 resolution, fragmented using collision induced 422 

dissociation (CID) with fixed collision energy (CE 20 eV), and excluded for 1 s before being 423 

re-selected for fragmentation. For the ESI source, the parameters were set to interface voltage 424 

4 kV, interface temperature 300 °C, nebulizing gas flow 3 L/min, and drying gas flow 10 L/min. 425 
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The parameters used for the CDS probe include an interface voltage 4.5 kV, and nebulizing 426 

gas flow 1 L/min. 427 

 428 

Comparative metabolomics 429 

Raw LC-MS data were converted to open source mzXML format using LabSolutions software 430 

(Shimadzu), and the converted files were imported into MZmine 3.3.059 for data processing. 431 

Unless specified otherwise, m/z tolerance was set to 0.002 m/z or 10.0 ppm, RT tolerance was 432 

set to 0.05 min, MS1 noise level was set to 1.0E3, MS2 noise level to 1.0E1 and the minimum 433 

absolute height was set to 5.0E2. The option to detect isotope signals below noise level was 434 

selected. For feature detection and chromatogram building, the ADAP chromatogram builder60 435 

was used with positive polarity, centroid mass detector, minimum group size of 5 in number of 436 

scans and a 2.0E3 group intensity threshold. The obtained peaks were smoothed (width: 9), 437 

and the chromatograms were deconvoluted using the local minimum search with a 90% 438 

chromatographic threshold, 1% minimum relative height, minimum ratio of peak top/edge of 2 439 

and peak duration of 0.03 to 3.00 min. The detected peaks were deisotoped (monotonic 440 

shape, maximum charge: 5; representative isotope: most intense). Peak lists from different 441 

extracts were aligned (weight for m/z: 20, weight for RT: 20, compare isotopic pattern with a 442 

minimum score of 50%). The gap filling algorithm was used to detect and fill missing peaks 443 

(intensity threshold 1%, RT tolerance: 0.1 minute). Duplicate peaks were filtered, and artifacts 444 

caused by detector ringing were removed (m/z tolerance: 1.0 m/z or 1,000.0 ppm). The aligned 445 

peaks were exported to a MetaboAnalyst. From here, peaks were additionally filtered to keep 446 

only peaks present in all 3 replicates and not in the media blanks, using in-house scripts. The 447 

resulting MetaboAnalyst peak list was uploaded to MetaboAnalyst61, log transformed, and 448 

normalized with Pareto scaling without prior filtering. Missing values were filled with half of the 449 

minimum positive value in the original data. Volcano plots were generated using default 450 

parameters. Additionally, extracted ion chromatograms have been obtained for the ions of the 451 

DFO-related metabolites (m/z tolerance 0.001 or 5 ppm, Table S4). An in-house python script 452 

was used to visualize these chromatograms with matplotlib v3.7.2 pyplot62.  453 
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 454 

Plasmids, constructs and oligonucleotides 455 

All plasmids and constructs described in this work are summarized in Table S5. The 456 

oligonucleotides are listed in Table S6. 457 

Fragment containing gapdh promoter was digested from previously published plasmid 458 

pGWS137063 and cloned into pCRISPR-cBEST34 via the same restriction sites to generated 459 

pGWS1384, where the expression of Cas9n (D10A), cytidine deaminase and uracil-DNA 460 

glycosylase inhibitor (UGI) were under the control of gapdh promoter instead of tipA promoter. 461 

Spacers of each targeted gene were selected on CRISPy-web64 and cloned into NcoI-digested 462 

pGWS1384 via single strand DNA (ssDNA) oligo bridging method. Single strand DNA (ssDNA) 463 

oligos SCO4048_W55 and SCO4048_Q68b were used to generate SCO4048 knockout 464 

constructs pGWS1582 and pGWS1584, respectively. Similarly, SCO4049 knockout construct 465 

pGWS1585 was created using oligo SCO4049_W61. SCO4050 knockout constructs 466 

pGWS1598 and pGWS1590 were created employing oligos SCO4050_W43 and 467 

SCO4050_Q91, respectively. All the generated knockout constructs were validated by Sanger 468 

sequencing using primer sg_T7_R_SnaBI. 469 

For the complementation of SCO4048 null mutant, pGWS1596 was used, an integrative vector 470 

based on pSET152 and harboring SCO4048 under the control of gap promoter. The gap 471 

promoter and the entire coding region (+1/+724) of SCO4048 were amplified from S. coelicolor 472 

M145 genomic DNA using primer pairs Pgap_F and Pgap_R, and SO4048_F and 473 

SCO4048_R, respectively. Fragments were cloned into EcoRI and XbaI digested pSET152 474 

via Gibson assembly to generate pGWS1596. Similarly, pGWS1597 and pGWS1598 were 475 

created for the complementation of SCO4049 and SCO4050 null mutants, respectively. The 476 

coding region (+1/+2347) of SCO4049 in pGWS1597 was amplified using primers 477 

SCO4049_F and SCO4049_R, while the coding region (+1/+619) of SCO4050 in pGWS1598 478 

was amplified using primer pair SCO4050_F and SCO4050_R. 479 
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