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ABSTRACT

Bacteria produce a plethora of natural products that are in clinical, agricultural and
biotechnological use. Genome mining revealed millions of biosynthetic gene clusters (BGCs)
that encode their biosynthesis, and the major challenge is to predict the bioactivities of the
molecules these BGCs specify, and how to elicit their expression. Here, we present an
innovative strategy whereby we harness the power of regulatory networks combined with
global gene expression patterns to predict BGC functions. Studying the regulon of iron master
regulator DmdR1 in Streptomyces coelicolor combined with co-expression data and large-
scale comparative genome analysis identified the novel desJGH gene cluster. Mutational and
metabolomics analysis showed that desJGH is required for biosynthesis of the clinical drug
desferrioxamine B. DesJGH thereby dictate the balance between the structurally distinct
desferrioxamines B and E. We propose regulation-based genome mining as a promising
approach to functionally prioritize BGCs to accelerate the discovery of novel bioactive

molecules.
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INTRODUCTION

Within the genetic blueprint of microorganisms lies an immense reservoir of chemical potential,
which likely constitutes the mechanistic basis for numerous microbiome-associated
phenotypes and offers a rich source of raw materials for discovery and development of among
others antibiotics, anticancer agents, immunosuppressants, crop protection agents, and
industrial ingredients 2. Genome mining efforts have led to the identification of millions of
biosynthetic gene clusters (BGCs) predicted to encode the biosynthesis of many thousands
of natural product scaffolds 3. However, only an estimated 3% of these specialized metabolites
have undergone experimental characterization thus far, leaving a vast amount of untapped
chemical diversity yet to be explored *.

Identifying the diverse roles of specialized metabolites in microbiome interactions is
highly challenging, primarily due to the dynamic nature of the host environment and the
difficulties in replicating such conditions in laboratory settings. Moreover, while these
molecules exhibit a wide range of functions, only a small fraction of metabolites will directly
contribute towards microbiome-associated phenotypes such as disease suppression or
growth promotion, or have the necessary properties to yield the next generation of crop
protection agents, antibiotics, or food additives >. As a result, there is a pressing need for
generalized strategies to predict the functions of specialized metabolites, enabling us to
understand their mechanistic roles in inter-organismal interactions and to gauge their
usefulness for industrial and clinical applications.

A major aim in current natural product discovery is to identify ways to reduce the
genetic space of sequenced BGCs to manageable numbers, to inform scientists on which
BGCs to prioritize in the search for novel bioactivity. Historically, scientists have investigated
two dimensions, namely the molecular space via high-throughput screening of compound and
strain libraries, followed by the genomic space in the 21% century, by investigating BGCs in
sequenced genomes, based on the identification of enzyme-coding genes 8. Perhaps the most
advanced strategy for the latter has thus far been target-based genome mining, which uses

self-resistance genes inside BGCs as beacons for recognizing the macromolecular targets of
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their products. However, the presence of recognizable self-resistance genes seems to be
limited to a mere 5-10% of BGCs, necessitating complementary methods to predict the
functions of the remaining specialized metabolic diversity °.

We anticipate that an attractive alternative would be regulation-guided approaches,
given that the regulatory system plays a pivotal role in the transcription of BGCs.
Overexpression or inactivation of cluster-situated regulatory genes have been used to activate
their expression 713, For example, targeting BGCs containing Streptomyces antibiotic
regulatory protein (SARP) family regulators enabled the discovery of novel antibiotic BGCs
1415~ Also, the Identification of Natural compound Biosynthesis pathways by Exploiting
Knowledge of Transcriptional regulation (INBEKT) strategy was able to unveil a previously
undetectable BGC by identifying regulatory binding sites of the zinc-dependent regulator ZuR
16, These early successes at the single-gene or single-BGC level indicate that genome-wide
analysis of regulatory networks may be even more successful at unveiling BGC functions.

Here, we introduce a computational omics strategy that leverages genome-wide gene
regulation information to provide functional predictions of BGCs in microbes. This novel
approach connects genome-wide regulatory information derived from transcription factor
binding site (TFBS) prediction to gene co-expression networks, thereby associating genes to
functions. Genome-wide regulatory analysis of BGCs of Streptomyces coelicolor M145 in
combination with co-expression patterns unveiled a novel BGC that had escaped detection by
current genome mining software tools. Subsequent mutational analysis and metabolic profiling
experiments showed that this BGC plays an important role in the biosynthesis of the well-
studied siderophore desferrioxamine B. These results illustrate the potential of our method to
infer BGC function, facilitate the detection and prioritization of novel BGCs and ultimately pave

the way for identifying genes responsible for the biosynthesis of novel bioactive molecules.
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RESULTS AND DISCUSSION

Identifying functional associations through gene regulatory networks

A major challenge in genome-mining-based drug discovery lies in prioritizing BGCs within the
vast unexplored biosynthetic space, and in particular finding novel ways to predict their
function. We hypothesized that regulatory networks that control BGC expression might form a
new, third, dimension for screening for potential functions, complementing phenotypic and
genomic screening. The concept we propose is that if an unknown BGC (or any cluster of
genes) is predicted to be controlled by a transcriptional regulator that responds to a known
signal and is connected to a specific physiological response, that BGC may functionally relate
to known BGCs controlled in a similar manner.

To develop such a regulation-based genome mining strategy and assess its validity,
we chose to focus on the model organism Streptomyces coelicolor M145. This microbe,
belonging to the phylum Actinomycetota, is renowned for its exceptional ability to produce a
wide array of bioactive compounds, making it an interesting target for natural product
discovery =29, Moreover, it is the bacterial species with currently the largest number of
functionally characterized BGCs, with 17 out of its 27 BGCs having been connected to the
production of a known metabolite, making it an ideal organism to assess how well regulation
connects to function 2. To investigate the functional relationships between this microbe’s
regulatory machinery and specialized metabolite biosynthesis, we investigated the binding of
transcription factors (TFs) to their corresponding binding sites (TFBSs). For this purpose, we
used the regulatory data of the LogoMotif database ?2. Seventeen precalculated and manually
curated position weight matrices (PWMs) associated with TFs in this database were used for
genome-wide predictions of 730 TFBSs, using automated computational matching. Based on
these predictions, a gene regulatory network (GRN) was constructed in which TFBSs were
identified within BGC regions predicted by antiSMASH (Fig. 1a). A total of 81 TFBSs were
found within antiSMASH BGC regions; 55 of these were at the region peripheries and

putatively unrelated to specialized metabolite biosynthesis. To identify which TFBSs were truly
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97 linked to biosynthetic pathways, we then refined the boundaries of the BGCs (Table S1) using

98 literature evidence and gene co-expression patterns (see below). This resulted in the

99 identification of 17 low-confidence and 9 medium/high-confidence BGC-TFBS associations
100 each matching the physiological or ecological functions associated with the corresponding
101 regulon (Fig. 1a). These findings agree with existing experimental analyses, thus reinforcing
102 the utility of our approach in accurately identifying BGC-TFBS connections (Fig. 1b). For
103 example, there is a clear correlation between TFBSs of the zinc uptake regulator (Zur) and
104 the zinc-regulated coelibactin locus?®, as well as between the pleiotropic antibiotic biosynthesis
105 regulator AfsQ1 and the antibiotic coelimycin P1 24, Additionally, we observed a connection
106  between the iron-dependent regulator DmdR1 and the biosynthesis of two iron-chelating
107 compound families that function as siderophores: the desferrioxamines (DFOs) and

108  coelichelin 2525,
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Figure 1. a, Predicted gene regulatory network of Streptomyces coelicolor based on 17 well-
known regulators. Each node in the network represents a (regulatory) gene, and every edge
represents a regulatory interaction between two nodes. The edges colored in dark gray
indicate strong PWM prediction scores, while the lighter gray shades represent weaker
interactions. Matches within BGC regions are depicted as triangles. In six regions (black
circled), the matches fall within a co-expressed region, highlighting their functional relation to

these compounds. b, Representation of the four co-expressed regions, including the locations
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117  of their detected TFBSs as colored dots. All predicted TFBSs have been experimentally
118 validated in pre-existing work.
119

120 Co-expression analysis and operon-level expansion of the predicted DmdR1 regulon

121  Next, we aimed to go beyond antiSMASH-detectable BGCs and assess if we could infer the
122  function of any uncharacterized operons and gene clusters using regulatory predictions.
123  Expectedly, the predicted DmdR1 regulon exhibited a clear functional association with
124  siderophores, as evidenced by the connection between its binding sites and known
125 siderophore BGCs ?’. Therefore, we focused on exploring the functional connection between
126  DmdR1 binding sites (iron boxes) and iron metabolic genes. A critical issue when using PWMs
127 is the large number of false positive TFBS hits. To address this, we refined the general
128 LogoMoatif detection threshold for DmdR1 to be more accurate for S. coelicolor by applying the
129  principles previously described for the calibration of the PREDetector algorithm 28, This
130 approach involves an analysis of the distribution of hits and the ratio of hits in non-coding
131  versus coding regions (Fig. S1). The results demonstrated that higher PWM match scores
132  correlated with a greater frequency of hits detected in non-coding regions, where iron boxes
133  are typically found. By calculating the median score of the non-coding to coding ratio, we
134  established a refined threshold of 22.875, leading to the identification of a total of 39 predicted
135 DmdR1 binding sites (Table S2). Among these 39 predicted binding sites, we identified 25
136  unique binding site locations, 22 of which corresponded to previously reported DmdR1 target
137 genes. Based on these predictions, we identified three novel putative DmdR1 target genes:
138 SCO02114, SCO2275, and SC0O5998.

139 Bacterial regulons consist not only of genes with TFBSs in their regulatory region, but
140 also any downstream co-operonic genes. DmdR1-controlled operons were predicted using a
141  co-expression analysis of a previously published transcriptome. The RNA-Seq dataset of Lee
142 et al.*® was chosen for its relatively high sample count (22 for S. coelicolor) and the study’s
143  focus oniron restriction. Reads were retrieved from NCBI SRA and mapped to the S. coelicolor

144  M145 genome, and gene count data were processed using previously reported techniques to
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145 generate a pairwise gene co-expression matrix 331, Of the 30 predicted DmdR1 target genes
146  with a significant PWM match score, 26 were anti-correlated with transcription of dmdR1
147  (Pearson correlation coefficient [PCC] < —0.43, p<0.05, Fig. 2a), including newly predicted
148 target genes SCO02114, SC02275, and SC0O5998. The co-expression data support the
149  minimum PWM match score of 22.875; below this threshold, no mean anti-correlated
150 expression was identified. Only a single gene with a significant PWM score, the GntR-type
151 regulator SCO6159, was positively co-expressed with dmdR1 (PCC = 0.69), and the
152  transcription pattern of three putative target genes did not correlate significantly with that of
153 dmdR1, suggesting a more complicated regulation by multiple transcription factors. DmdR1
154  target genes were placed into predicted operons using the gene co-expression matrix, as well
155 as strand and intergenic distance, expanding the putative direct regulon of DmdR1 from 25 to
156 58 genes, which are found across 16 genomic loci (Fig. 2b). A description of the predicted
157 DmdR1 regulon, including functional predictions, is presented in Sl Discussion 1. As expected,
158 DmdR1 binding sites were recovered in the coelichelin and desferrioxamine BGCs but not the
159  ZuR-controlled coelibactin BGC, supporting the use of regulatory analysis for linking
160 metallophore BGCs to their corresponding metal. Other logical gene annotations present in
161 the regulon include siderophore-independent iron acquisition, mobilization of stored iron, and
162  oxidative stress response.

163
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Figure 2. a, Anti-correlation of gene expression between dmdR1 and its predicted regulon.
Left: Pearson correlation coefficients (PCCs) between dmdR1 and all genes with a DmdR1
position weight matrix (PWM) score greater than 15 in their regulatory region. The vertical
dashed line marks the refined PWM score threshold of 22.875. The horizontal dotted lines
mark PCC = +0.43, corresponding to an adjusted p-value of 0.05. Right: Target genes

immediately downstream of a predicted DmdR1 binding site, ordered by decreasing PWM
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171  score. Plus and minus indicate the strand of the target gene. Genes marked with an x did not
172  have significant co-expression with dmdR1. Binding site details are given in Table S2. b, The
173  putative regulon of DmdR1 in S. coelicolor M145. White dots indicate predicted DmdR1
174  binding sites. Genes are labeled by SCO number and colored by putative function. Clusters
175 are drawn to scale, and arrows represent the direction of transcription.

176

177  Metabolic profiling of an unexplored DmdR1-controlled locus

178  This systematic mapping of the DmdR1 regulon then provided the opportunity to investigate
179  whether new operons or gene clusters could be identified that would be predicted to function
180 in iron acquisition. Upon close examination of all individual genes across the regulon, the
181 uncharacterized region from SC0O4045 to SC0O4052 stood out due to sequence similarity to
182  biosynthetic genes (Fig. 2b). Interestingly, SCO4050 encodes a protein similar to the N-
183 acyltransferase DesC (encoded by SCO2784), which catalyzes the conversion of N-
184  hydroxycadaverine to N-hydroxy-N-succinylcadaverine (HSC) and N-hydroxy-N-
185 acetylcadaverine (HAC), the direct precursors of desferrioxamine B, in vitro 3. SCO4048 is a
186  paralog of desF (SC0O2781), which encodes ferrioxamine reductase. Furthermore, SC0O4049
187 is homologous to genes designated as desG in other streptomycetes, and is predicted to
188 encode a penicillin amidase family protein; phylogenetic analysis in Actinobacteria revealed
189 that desG, if present, either colocalized with the DFO cluster, or with a separate DmdR1-
190 controlled locus 3. DesG was originally hypothesized to increase DFO structural diversity by
191 producing phenylacetic acid-capped derivatives in some strains; however, no arylated DFOs
192 have been identified in S. coelicolor. Together, SCO4048, SCO4049, and SCO4050 (further
193 referred to as desJ, desG, and desH, respectively) appear to comprise a previously
194  undetected locus putatively related to DFO biosynthesis 2.

195 To analyze the role of the DmdR21-controlled locus in the production of DFOs, we
196 applied the CRISPR-based editing system (CRISPR-BEST)** to construct three knock-out
197  mutants in which either SC0O4048 (desJ), SCO4049 (desG) or SCO4050 (desH) had been

198 inactivated. The system allows introduction of a premature stop codon in the target ORF, thus
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199 preventing the production of a functional protein. Using this method, we created null mutants
200 of SC0O4048 (desJ) with mutations W55* or Q68*, resulting in 186 aa or 173 aa truncation of
201 the gene product, respectively. The introduction of a stop codon at W61 in SCO4049 (desG)
202 led to a substantial 721 aa shortening, while mutations W43* or Q91* in SC0O4050 (desH)
203  resulted in truncations of 163 aa or 115 aa, respectively. PCR followed by DNA sequencing
204  was used to verify the correctness of the knock-out mutants.

205 To obtain extracts for metabolomics, S. coelicolor M145 and its mutant derivatives
206  were grown in a liquid iron-limited medium (ISP-2) for five days. The metabolites produced
207  were adsorbed on Diaion® HP20 resin, which was subsequently extracted with methanol and
208 analyzed using liquid chromatography-mass spectrometry (LC-MS), which revealed changes
209 inthe production of DFO-related metabolites in each of the mutants compared to the wild-type
210 strain (Fig. 3a). The metabolites were annotated by matching the high-resolution mass
211  spectrometry (HRMS) and tandem mass spectrometry (MS/MS) spectra to previously
212  published ones (Fig. S2) 3%, Statistical analyses showed that only the levels of
213 desferrioxamine B (DFOB) were significantly increased in extracts of the desJ mutant as
214  compared to the parental strain (Fig. S3). Metabolomic analysis of AdesG and AdesH revealed
215 an approximate 1000-fold and 16-fold decrease in DFOB production, respectively (Fig. 3 and
216  Fig. S3). Conversely, the mutants exhibited a significant increase in desferrioxamine E (DFOE)
217  and its metal complexes, most likely as a result of the nearly abolished DFOB production.

218
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220  Figure 3. New model for biosynthesis of desferrioxamines B and E. a, Extracted ion
221  chromatograms for m/z values corresponding to DFO-related metabolites in culture extracts
222  of the knock-out mutants of SC0O4048 (desJ), SC0O4049 (desG) and SCO40450 (desH)
223  compared to the parent S. coelicolor M145 strain. The desG mutant fails to produce DFOB,
224  while a 16-fold decrease in DFOB biosynthesis was seen in desH mutants (cf. Fig. S3). b,
225  Proposed biosynthetic pathway for assembly of desferrioxamines E and B. Main biosynthetic
226 enzymes presented in bold face. DesG and DesH balance intracellular N-hydroxy-N-
227  succinylcadaverine (HSC) and N-hydroxy-N-acetylcadaverine (HAC) concentrations by
228  converting HSC to HAC. In the absence of DesG and/or DesH, the cells likely fail to produce
229  sufficient levels of HAC, thereby strongly attenuating the production of DFOB. Although DesC
230 has been shown to be able to catalyze the acetylation of N-hydroxycadaverine in vitro, the
231  enzyme can only modestly compensate for the loss of DesH in vivo, underlining the important
232  role played by DesG and DesH in DFOB production (Fig. S4).

233

234  We genetically complemented the mutants to determine if the effects were due solely to the
235 gene inactivation and not to second-site mutations. For this, constructs were introduced that
236  expressed the respective wild-type genes desJ, desG or desH from the constitutive gap

237 promoter. The complementation constructs were based on vector pSET152 3, which


https://doi.org/10.1101/2024.06.10.598258
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.10.598258; this version posted June 11, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

238 integrates at the bacteriophage ®C31 attachment site on the S. coelicolor genome. The
239  complemented mutants showed recovery of DFOB production in the complemented strains
240 (Fig. Sb). Taken together, our mutational analysis shows that the attenuation of DFOB
241  production in the mutants can be fully explained by the inactivation of desG and desH.

242 DFOB and other capped desferrioxamines have been isolated from many
243  Streptomyces strains, as well as several other Actinomycetota. To see if the proposed
244  Dbiosynthetic role for DesGH applies more generally to DFO biosynthesis in other
245  Actinomycetota, we performed a meta-analysis of published DFO producers. In total, we
246  identified reports of DFO production in 46 sequenced strains, comprising mostly Streptomyces
247  species (n=34), as well as other Actinomycetota (n=7), Pseudomonadota (n=4), and one
248  member of Bacteroidota (Table S3). Homologues of desG and desH were found in 36 of the
249  genomes, all Actinomycetota. One sequenced DFO producer, Gordonia rubripertincta CWB2,
250 contained desG but not desH; however, the G. rupripertincta DFO locus is part of a larger
251  BGC that putatively encodes the biosynthesis of the cryptic nocardichelins (see Sl Discussion
252  2), and one of the two other acyltransferase genes in the BGC has presumably replaced desH.
253 In all other cases, desG and desH are putatively co-operonic, and the two genes are fused in
254  Streptomyces atratus and Micrococcus spp. CH3 and CH7. Among collected reports of DFO
255  production, DFOB (Fig. 3b) and other acetyl, fatty-acyl, or aryl “capped” DFOs were common,
256 isolated from 34 of 47 sequenced strains. However, in line with our discovery, the nine strains
257 lacking desGH exclusively produced DFOE (Fig. 3b) and other “uncapped” DFOs with
258  succinylated monomers (Fig. S6).

259 Based on the combination of the above data, we propose the following pathway for
260  desferrioxamine biosynthesis in S. coelicolor (Fig. 3b). The biosynthesis of DFOE is encoded
261 by the canonical biosynthetic locus desABCD (SC02782-85): DesA and DesB convert L-lysine
262  to N-hydroxycadaverine, DesC succinylates N-hydroxycadaverine to form HSC *2, and DesD
263  cylcotrimerizes HSC to produce DFOE *°. In contrast, DesG (SC04049) and DesH (SC0O4050)
264  enable DFOB production (Fig. 3). A recent study of DesD concluded that the relative

265 intracellular concentrations of HSC and HAC must be controlled for DFOB formation 39,
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266  Previous investigations of DesC in vitro have shown that it is able to catalyze the conversion
267  of N-hydroxycadaverine to both HSC and HAC, using succinyl and acetyl-CoA, respectively
268 32, However, the relative catalytic efficiency of these two processes has yet to be elucidated.
269  Our experiments strongly suggest that the main function of DesC in vivo is to catalyze the
270  production of HSC, while HAC results primarily from the action of DesH. We propose that
271  DesG, which shows sequence similarity to amidases, de-succinylates HSC to regenerate N-
272  hydroxycadaverine, which is then acetylated by the putative acetyltransferase DesH to boost
273  the levels of HAC relative to HSC in high level DFOB producers. Gene fusions of desGH
274  observed in some strains are equipped to exploit the high local effective concentration of N-
275  hydroxycadaverine generated by the DesG domain, enabling the DesH domain to acetylate
276  N-hydroxycadaverine before it can be re-succinylated. The production of DFOB in the AdesH
277  mutant is strongly attenuated but not abolished, consistent with the previously reported ability
278  of DesC to catalyze acylation of N-hydroxycadaverine with acetyl-CoA in addition to succinyl-
279  CoA (Fig. 3a). Taken together, these data indicate that DesC strongly prefers succinyl-CoA
280 as a substrate over acetyl-CoA, and that DesG and DesH are required to ensure sufficient
281 quantities of HAC are produced to support high level DFOB production in vivo. This
282  biosynthetic model is in line with the available phylogenomic, metabolomic, and genetic
283  evidence, as well as the canonical catalytic chemistry of DesG and DesH homologues.

284

285 CONCLUSION

286 In conclusion, we have developed a novel computational omics strategy for functional
287 inference of BGCs in microbes, which uses regulatory information to provide clues regarding
288  their functional roles in inter-organismal interactions and to gauge their usefulness for
289 industrial and clinical applications. Uniquely, this method leverages genome-wide gene
290 regulation information derived from TFBS detection combined with gene co-expression
291  network analysis to link biosynthetic genes to their potential functions. A key application of this
292  method is showcased in our study of Streptomyces coelicolor M145, a well-studied model

293  organism, where we predict the regulons of 17 well-known regulators and 9 high-confidence
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294  functional associations to known BGCs. Of these, we selected the iron-dependent repressor
295 DmdR1 and its strong connection to the regulation of siderophore biosynthesis for showcasing
296 the effectiveness of our approach. This analysis, which involved TFBS prediction of the
297 DmdR1 regulon, alongside the detection of co-expression patterns under iron starvation
298  conditions, allowed us to detect an uncharacterized gene cluster with a functional link to iron
299 metabolism. Furthermore, we present evidence that the putative amidase and acyltransferase
300 encoded by desG and desH, respectively, in this cluster collaborate in the efficient
301  biosynthesis of desferrioxamine B by SC04049 and SC0O4050 CRISPR-cBEST knockout
302 mutants and subsequent metabolic profiling experiments. These findings not only validated
303 our hypothesis, but also enabled identification of a novel pathway within the complex
304  biosynthetic route to desferrioxamines. Overall, our results demonstrate the effectiveness of
305 our method in identifying and inferring the function of novel BGCs that escaped detection
306 despite the availability of state-of-the-art genome mining tools. We anticipate that
307 transcriptomics-guided regulatory genome mining, by combining function prediction with
308 application of elicitors that may activate BGCs of interest, will provide pointers as to how to
309 select and activate cryptic BGCs in the extant biosynthetic diversity. This will aid in the
310 identification of their roles in microbiome interactions and guide the discovery of bioactive
311 natural products that are of value for pharmaceutical, agricultural, and biotechnological
312  applications.

313

314 METHODS
315

316 General

317  Default software parameters were used unless otherwise noted. Scripts are available at:

318 https://qithub.com/zreitz/dmdR.

319
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320 Construction of the position weight matrix and sequence motif

321  Ten previously reported DmdR1 binding sites from Streptomyces coelicolor were collected
322  from literature 6. Thereafter, the occurrences of each nucleotide across all positions of the
323  sequences were counted to construct a position frequency matrix (PFM). This PFM was
324 converted to a PWM by applying Bioconductor's segLogo Vv5.29.8 algorithm“°, which
325 calculates the log-likelihood of each nucleotide in the matrix, while taking into account the
326  background nucleotide distributions. Additionally, the information content (IC) of the resulting
327 PWM was calculated using Shannon’s entropy calculation methods. The IC was visualized as
328 asequence motif with the use of Logomaker v 0.841,

329

330 Identification of DmdRL1 binding sites

331 The genome assembly of Streptomyces coelicolor A3(2) was downloaded from NCBI using
332 accession GCA_000203835.1. The coding and non-coding regions, as well as the regions
333  spanning from -350 bp to +50 bp relative to the start codons of each gene were extracted with

334  MiniMotif?? (https://github.com/HAugustijn/MiniMotif). We employed MOODS v1.9.4.1%? to

335 query these regions for DmdR1 PWM matches, using a p-value threshold of 0.01 and
336  background distribution of 72% representing the GC percentage of S. coelicolor. The ratio of
337 hits in non-coding versus coding regions was visualized using the R package ggplot2 3.

338

339 RNA-Seq data processing and co-expression analyses

340 Streptomyces coelicolor A3(2) RNA-Seq data, collected by Lee et al.,?® was retrieved
341  from the European Nucleotide Archive (PRJEB25075).4* Raw read quality was assessed with
342  FastQC.* Reads were mapped to the reference genome NC_003888.3 using STAR v2.7.6a:4
343 Index files were generated with the parameters “--genomeSAindexNbases 10 --
344  sjdbGTFfeatureExon CDS”, and reads were aligned with the parameter “--alignintronMax 1.
345 Mapped reads were indexed using SAMtools v1.3.1%" and visualized with the Integrative
346  Genomics Viewer.*® Per-gene read count tables were generated with featureCounts v2.0.1%°

347  using the parameters “-O -M -t CDS -s 2 --fraction”.
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348 The per-gene RNA-Seq count data was further analyzed in R. A minimum gene
349  expression cutoff was applied (25 counts in 50% of samples), then counts were normalized
350 by Trimmed Mean of M-values (TMM) and log. transformed using a hyperbolic arcsine
351 pseudocount °. A co-expression bias associated with lowly- and highly-expressed genes (of
352 unknown origin, but present in several other RNA-Seq datasets %) was mitigated by
353  regressing out the first principal component using the sva_network function from the sva
354 package (Fig. S7)*°. The resulting correlation matrix still had an expression-correlated
355  broadening of correlation coefficients, which was corrected by spatial quantile normalization
356  (Fig. S7)% and used for further analyses. An all-to-all Pearson Correlation Coefficient (PCC)
357  matrix with corrected two-sided Student p-values was calculated using the corAndPValue
358 function from the package WGCNA.5! A p-value of 0.05 corresponded to a minimum absolute
359 PCC value of 0.43. The correlation matrix was corrected for remaining expression-level-
360 dependent PCC distribution broadening using spatial quantile normalization
361  (spgn::normalize_correlation) with the following parameters: ngrp = 20, size_grp = 337,
362 ref _grp = 18.3' Subsets of the resulting correlation matrix were used for all downstream
363 analyses.

364

365 Comparative genomics

366  Desferrioxamine core loci (desABCD) and accessory loci (desGH) were found in
367 Streptomyces genomes using a modified version of antiSMASH 7 %2

368  (https://github.com/zreitz/antismash/tree/desGH-7-1). The “desABCD” rule requires matches

369 to all of the following Pfam models with a maximum intergenic distance of 5 kbp: PF00282.22
370 (desA), PF13434.9 (desB), PF13523.9 (desC), and PF04183.5 (desD). The “desGH” rule
371  requires matches to PF01804.21 (desG) and PF13523.9 (desH) with a maximum intergenic
372 distance of 1 kbp. Genome assemblies for previously reported DFO producers (Table S3)
373  were downloaded from NCBI Genbank on 21 Nov, 2023, in Genbank format using ncbi-
374  genome-download®®. The multiSMASH pipeline®* was used to scan the genomes with

375 antiSMASH and tabulate the results 2. A gene phylogeny of the resulting desABCD loci was
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376  obtained from CORASON, run as part of BiG-SCAPE v1.1.5 using settings "--mix --no-classify
377  --clans-off --cutoffs 1" . The resulting phylogenetic tree was annotated using iTOL v5 %6,
378

379 Bacterial strains and media

380 E. coli strains DH5a and ET12567/pUZ8002%" were used for routine cloning and for
381 interspecific conjugation, respectively. E. coli transformants were selected on Luria Bertani
382 (LB) agar media containing the relevant antibiotics and grown O/N at 37 °C. Streptomyces
383  coelicolor A3(2) M145 was used as parental strain to construct mutants. All media and routine
384  Streptomyces techniques are described in the Streptomyces manual 8. Soy flour mannitol
385 (SFM) agar plates were used to grow Streptomyces strains for preparing spore suspensions.
386

387 Growth conditions and extraction

388  The cultures were grown in triplicate in 200 mL Erlenmeyer flasks with 1 g of Diaion® HP-20
389 resin (Resindion, Mitsubishi) in 15 mL of International Streptomyces Project-2 medium (ISP-
390 2; yeast extract 4 g/L, malt extract 10 g/L and dextrose 4 g/L at pH 7.2). The medium was
391 inoculated using 1 uL of spore stock and incubated in a rotary shaker at 30 °C. After five days
392  of growth, the resin was vacuum filtered, washed three times with Milli-Q water, and extracted
393 with 3 x 5 mL of methanol. The crude extracts were then dried, weighed, and dissolved in
394  methanol at a final concentration of 1 mg/mL. Media blanks were extracted and prepared in a
395  similar way as negative controls.

396

397 LC-MS based metabolic profiling

398  Liquid chromatography-tandem mass spectrometry (LC-MS/MS) acquisition was performed
399 using Shimadzu Nexera X2 ultra high-performance liquid chromatography (UPLC) system,
400 with attached photodiode array detector (PDA), coupled to Shimadzu 9030 QTOF mass
401  spectrometer, equipped with a standard electrospray ionization (ESI) source unit, in which a

402  calibrant delivery system (CDS) is installed. A total of 2 uL of dissolved extracts were injected
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403 into a Waters Acquity HSS C18 column (1.8 um, 100 A, 2.1 x 100 mm). The column was
404 maintained at 30 °C, and run at a flow rate of 0.5 mL/min, using 0.1% formic acid in H-O as
405 solvent A, and 0.1% formic acid in acetonitrile as solvent B. A gradient was employed for
406  chromatographic separation starting at 5% B for 1 min, then 5-85% B for 9 min, 85-100% B
407  for 1 min, and finally held at 100% B for 3 min. The column was re-equilibrated to 5% B for 3
408 min before the next run was started. The LC flow was switched to the waste the first 0.5 min,
409 then to the MS for 13.5 min, then back to the waste to the end of the run.

410 The MS system was tuned using standard Nal solution (Shimadzu). The same solution was
411  used to calibrate the system before starting. Additionally, a calibrant solution made from ESI
412  tuning mix (Sigma-Aldrich) was introduced through the CDS system, the first 0.5 min of each
413  run, and the masses detected were used for post-run mass correction for the file, ensuring
414  stable accurate mass measurements.

415  System suitability was checked by regularly measuring a standard sample made of the

416  following compounds:

compound concentration (ug/mL) retention time (min) expected m/z

paracetamol 25 2,375 152,0712
caffeine 5 3,246 195,0882
prednisolone 2,5 5,290 361,2015
reserpine 1,25 6,186 609,2812
clomipramine 1,25 6,379 315,1628

417

418  All the samples were analyzed in positive polarity, using data dependent acquisition mode. In
419  this regard, full scan MS spectra (m/z 100-1700, scan rate 10 Hz, ID enabled) were followed
420 by two data dependent MS/MS spectra (m/z 100-1700, scan rate 10 Hz, ID disabled) for the
421  two most intense ions per scan. The ions were selected when they reach an intensity threshold
422  of 1500, isolated at the tuning file Q1 resolution, fragmented using collision induced
423  dissociation (CID) with fixed collision energy (CE 20 eV), and excluded for 1 s before being
424  re-selected for fragmentation. For the ESI source, the parameters were set to interface voltage

425 4 KkV, interface temperature 300 °C, nebulizing gas flow 3 L/min, and drying gas flow 10 L/min.
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426  The parameters used for the CDS probe include an interface voltage 4.5 kV, and nebulizing
427  gas flow 1 L/min.
428

429 Comparative metabolomics

430 Raw LC-MS data were converted to open source mzXML format using LabSolutions software
431  (Shimadzu), and the converted files were imported into MZmine 3.3.0%° for data processing.
432  Unless specified otherwise, m/z tolerance was set to 0.002 m/z or 10.0 ppm, RT tolerance was
433 set to 0.05 min, MS1 noise level was set to 1.0E3, MS2 noise level to 1.0E1 and the minimum
434  absolute height was set to 5.0E2. The option to detect isotope signals below noise level was
435  selected. For feature detection and chromatogram building, the ADAP chromatogram builder®°
436  was used with positive polarity, centroid mass detector, minimum group size of 5 in number of
437  scans and a 2.0E3 group intensity threshold. The obtained peaks were smoothed (width: 9),
438 and the chromatograms were deconvoluted using the local minimum search with a 90%
439  chromatographic threshold, 1% minimum relative height, minimum ratio of peak top/edge of 2
440 and peak duration of 0.03 to 3.00 min. The detected peaks were deisotoped (monotonic
441  shape, maximum charge: 5; representative isotope: most intense). Peak lists from different
442  extracts were aligned (weight for m/z: 20, weight for RT: 20, compare isotopic pattern with a
443  minimum score of 50%). The gap filling algorithm was used to detect and fill missing peaks
444  (intensity threshold 1%, RT tolerance: 0.1 minute). Duplicate peaks were filtered, and artifacts
445  caused by detector ringing were removed (m/z tolerance: 1.0 m/z or 1,000.0 ppm). The aligned
446  peaks were exported to a MetaboAnalyst. From here, peaks were additionally filtered to keep
447  only peaks present in all 3 replicates and not in the media blanks, using in-house scripts. The
448  resulting MetaboAnalyst peak list was uploaded to MetaboAnalyst®!, log transformed, and
449  normalized with Pareto scaling without prior filtering. Missing values were filled with half of the
450 minimum positive value in the original data. Volcano plots were generated using default
451  parameters. Additionally, extracted ion chromatograms have been obtained for the ions of the
452  DFO-related metabolites (m/z tolerance 0.001 or 5 ppm, Table S4). An in-house python script

453  was used to visualize these chromatograms with matplotlib v3.7.2 pyplot®2.
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454

455  Plasmids, constructs and oligonucleotides

456  All plasmids and constructs described in this work are summarized in Table S5. The
457  oligonucleotides are listed in Table S6.

458  Fragment containing gapdh promoter was digested from previously published plasmid
459 pGWS1370°% and cloned into pCRISPR-cBEST?* via the same restriction sites to generated
460 pGWS1384, where the expression of Cas9n (D10A), cytidine deaminase and uracil-DNA
461  glycosylase inhibitor (UGI) were under the control of gapdh promoter instead of tipA promoter.
462  Spacers of each targeted gene were selected on CRISPy-web® and cloned into Ncol-digested
463 pGWS1384 via single strand DNA (ssDNA) oligo bridging method. Single strand DNA (ssDNA)
464  oligos SC0O4048 W55 and SC0O4048 Q68b were used to generate SC04048 knockout
465  constructs pGWS1582 and pGWS1584, respectively. Similarly, SCO4049 knockout construct
466 pGWS1585 was created using oligo SC04049 W61. SCO4050 knockout constructs
467 pGWS1598 and pGWS1590 were created employing oligos SCO04050 W43 and
468 SCO04050_Q91, respectively. All the generated knockout constructs were validated by Sanger
469  sequencing using primer sg_T7_R_SnaBI.

470  For the complementation of SCO4048 null mutant, pGWS1596 was used, an integrative vector
471  based on pSET152 and harboring SC0O4048 under the control of gap promoter. The gap
472  promoter and the entire coding region (+1/+724) of SCO4048 were amplified from S. coelicolor
473  M145 genomic DNA using primer pairs Pgap F and Pgap R, and S0O4048 F and
474  SCO04048 R, respectively. Fragments were cloned into EcoRI and Xbal digested pSET152
475  via Gibson assembly to generate pGWS1596. Similarly, pPGWS1597 and pGWS1598 were
476  created for the complementation of SCO4049 and SCO4050 null mutants, respectively. The
477 coding region (+1/+2347) of SCO4049 in pGWS1597 was amplified using primers
478  SCO4049_F and SCO4049_R, while the coding region (+1/+619) of SCO4050 in pGWS1598

479  was amplified using primer pair SCO4050_F and SCO4050_R.
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